Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *	Intel SMP support routines.
  3 *
  4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  5 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  6 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  7 *
  8 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
  9 *
 10 *	This code is released under the GNU General Public License version 2 or
 11 *	later.
 12 */
 13
 14#include <linux/init.h>
 15
 16#include <linux/mm.h>
 17#include <linux/delay.h>
 18#include <linux/spinlock.h>
 19#include <linux/export.h>
 20#include <linux/kernel_stat.h>
 21#include <linux/mc146818rtc.h>
 22#include <linux/cache.h>
 23#include <linux/interrupt.h>
 24#include <linux/cpu.h>
 25#include <linux/gfp.h>
 26
 27#include <asm/mtrr.h>
 28#include <asm/tlbflush.h>
 29#include <asm/mmu_context.h>
 30#include <asm/proto.h>
 31#include <asm/apic.h>
 32#include <asm/nmi.h>
 33#include <asm/mce.h>
 34#include <asm/trace/irq_vectors.h>
 35#include <asm/kexec.h>
 36#include <asm/virtext.h>
 37
 38/*
 39 *	Some notes on x86 processor bugs affecting SMP operation:
 40 *
 41 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 42 *	The Linux implications for SMP are handled as follows:
 43 *
 44 *	Pentium III / [Xeon]
 45 *		None of the E1AP-E3AP errata are visible to the user.
 46 *
 47 *	E1AP.	see PII A1AP
 48 *	E2AP.	see PII A2AP
 49 *	E3AP.	see PII A3AP
 50 *
 51 *	Pentium II / [Xeon]
 52 *		None of the A1AP-A3AP errata are visible to the user.
 53 *
 54 *	A1AP.	see PPro 1AP
 55 *	A2AP.	see PPro 2AP
 56 *	A3AP.	see PPro 7AP
 57 *
 58 *	Pentium Pro
 59 *		None of 1AP-9AP errata are visible to the normal user,
 60 *	except occasional delivery of 'spurious interrupt' as trap #15.
 61 *	This is very rare and a non-problem.
 62 *
 63 *	1AP.	Linux maps APIC as non-cacheable
 64 *	2AP.	worked around in hardware
 65 *	3AP.	fixed in C0 and above steppings microcode update.
 66 *		Linux does not use excessive STARTUP_IPIs.
 67 *	4AP.	worked around in hardware
 68 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 69 *		'noapic' mode has vector 0xf filled out properly.
 70 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 71 *	7AP.	We do not assume writes to the LVT deassering IRQs
 72 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 73 *	9AP.	We do not use mixed mode
 74 *
 75 *	Pentium
 76 *		There is a marginal case where REP MOVS on 100MHz SMP
 77 *	machines with B stepping processors can fail. XXX should provide
 78 *	an L1cache=Writethrough or L1cache=off option.
 79 *
 80 *		B stepping CPUs may hang. There are hardware work arounds
 81 *	for this. We warn about it in case your board doesn't have the work
 82 *	arounds. Basically that's so I can tell anyone with a B stepping
 83 *	CPU and SMP problems "tough".
 84 *
 85 *	Specific items [From Pentium Processor Specification Update]
 86 *
 87 *	1AP.	Linux doesn't use remote read
 88 *	2AP.	Linux doesn't trust APIC errors
 89 *	3AP.	We work around this
 90 *	4AP.	Linux never generated 3 interrupts of the same priority
 91 *		to cause a lost local interrupt.
 92 *	5AP.	Remote read is never used
 93 *	6AP.	not affected - worked around in hardware
 94 *	7AP.	not affected - worked around in hardware
 95 *	8AP.	worked around in hardware - we get explicit CS errors if not
 96 *	9AP.	only 'noapic' mode affected. Might generate spurious
 97 *		interrupts, we log only the first one and count the
 98 *		rest silently.
 99 *	10AP.	not affected - worked around in hardware
100 *	11AP.	Linux reads the APIC between writes to avoid this, as per
101 *		the documentation. Make sure you preserve this as it affects
102 *		the C stepping chips too.
103 *	12AP.	not affected - worked around in hardware
104 *	13AP.	not affected - worked around in hardware
105 *	14AP.	we always deassert INIT during bootup
106 *	15AP.	not affected - worked around in hardware
107 *	16AP.	not affected - worked around in hardware
108 *	17AP.	not affected - worked around in hardware
109 *	18AP.	not affected - worked around in hardware
110 *	19AP.	not affected - worked around in BIOS
111 *
112 *	If this sounds worrying believe me these bugs are either ___RARE___,
113 *	or are signal timing bugs worked around in hardware and there's
114 *	about nothing of note with C stepping upwards.
115 */
116
117static atomic_t stopping_cpu = ATOMIC_INIT(-1);
118static bool smp_no_nmi_ipi = false;
119
120/*
121 * this function sends a 'reschedule' IPI to another CPU.
122 * it goes straight through and wastes no time serializing
123 * anything. Worst case is that we lose a reschedule ...
124 */
125static void native_smp_send_reschedule(int cpu)
126{
127	if (unlikely(cpu_is_offline(cpu))) {
128		WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu);
129		return;
130	}
131	apic->send_IPI(cpu, RESCHEDULE_VECTOR);
132}
133
134void native_send_call_func_single_ipi(int cpu)
135{
136	apic->send_IPI(cpu, CALL_FUNCTION_SINGLE_VECTOR);
137}
138
139void native_send_call_func_ipi(const struct cpumask *mask)
140{
141	cpumask_var_t allbutself;
142
143	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
144		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
145		return;
146	}
147
148	cpumask_copy(allbutself, cpu_online_mask);
149	cpumask_clear_cpu(smp_processor_id(), allbutself);
150
151	if (cpumask_equal(mask, allbutself) &&
152	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
153		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
154	else
155		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
156
157	free_cpumask_var(allbutself);
158}
159
160static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
161{
162	/* We are registered on stopping cpu too, avoid spurious NMI */
163	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
164		return NMI_HANDLED;
165
166	cpu_emergency_vmxoff();
167	stop_this_cpu(NULL);
168
169	return NMI_HANDLED;
170}
171
172/*
173 * this function calls the 'stop' function on all other CPUs in the system.
174 */
175
176asmlinkage __visible void smp_reboot_interrupt(void)
177{
178	ipi_entering_ack_irq();
179	cpu_emergency_vmxoff();
180	stop_this_cpu(NULL);
181	irq_exit();
182}
183
184static void native_stop_other_cpus(int wait)
185{
186	unsigned long flags;
187	unsigned long timeout;
188
189	if (reboot_force)
190		return;
191
192	/*
193	 * Use an own vector here because smp_call_function
194	 * does lots of things not suitable in a panic situation.
195	 */
196
197	/*
198	 * We start by using the REBOOT_VECTOR irq.
199	 * The irq is treated as a sync point to allow critical
200	 * regions of code on other cpus to release their spin locks
201	 * and re-enable irqs.  Jumping straight to an NMI might
202	 * accidentally cause deadlocks with further shutdown/panic
203	 * code.  By syncing, we give the cpus up to one second to
204	 * finish their work before we force them off with the NMI.
205	 */
206	if (num_online_cpus() > 1) {
207		/* did someone beat us here? */
208		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
209			return;
210
211		/* sync above data before sending IRQ */
212		wmb();
213
214		apic->send_IPI_allbutself(REBOOT_VECTOR);
215
216		/*
217		 * Don't wait longer than a second if the caller
218		 * didn't ask us to wait.
219		 */
220		timeout = USEC_PER_SEC;
221		while (num_online_cpus() > 1 && (wait || timeout--))
222			udelay(1);
223	}
224	
225	/* if the REBOOT_VECTOR didn't work, try with the NMI */
226	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
227		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
228					 NMI_FLAG_FIRST, "smp_stop"))
229			/* Note: we ignore failures here */
230			/* Hope the REBOOT_IRQ is good enough */
231			goto finish;
232
233		/* sync above data before sending IRQ */
234		wmb();
235
236		pr_emerg("Shutting down cpus with NMI\n");
237
238		apic->send_IPI_allbutself(NMI_VECTOR);
239
240		/*
241		 * Don't wait longer than a 10 ms if the caller
242		 * didn't ask us to wait.
243		 */
244		timeout = USEC_PER_MSEC * 10;
245		while (num_online_cpus() > 1 && (wait || timeout--))
246			udelay(1);
247	}
248
249finish:
250	local_irq_save(flags);
251	disable_local_APIC();
252	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
253	local_irq_restore(flags);
254}
255
256/*
257 * Reschedule call back. KVM uses this interrupt to force a cpu out of
258 * guest mode
259 */
260__visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
261{
262	ack_APIC_irq();
263	inc_irq_stat(irq_resched_count);
264
265	if (trace_resched_ipi_enabled()) {
266		/*
267		 * scheduler_ipi() might call irq_enter() as well, but
268		 * nested calls are fine.
269		 */
270		irq_enter();
271		trace_reschedule_entry(RESCHEDULE_VECTOR);
272		scheduler_ipi();
273		trace_reschedule_exit(RESCHEDULE_VECTOR);
274		irq_exit();
275		return;
276	}
277	scheduler_ipi();
278}
279
280__visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281{
282	ipi_entering_ack_irq();
283	trace_call_function_entry(CALL_FUNCTION_VECTOR);
284	inc_irq_stat(irq_call_count);
285	generic_smp_call_function_interrupt();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286	trace_call_function_exit(CALL_FUNCTION_VECTOR);
287	exiting_irq();
288}
289
290__visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r)
291{
292	ipi_entering_ack_irq();
293	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
294	inc_irq_stat(irq_call_count);
295	generic_smp_call_function_single_interrupt();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
297	exiting_irq();
298}
299
300static int __init nonmi_ipi_setup(char *str)
301{
302	smp_no_nmi_ipi = true;
303	return 1;
304}
305
306__setup("nonmi_ipi", nonmi_ipi_setup);
307
308struct smp_ops smp_ops = {
309	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
310	.smp_prepare_cpus	= native_smp_prepare_cpus,
311	.smp_cpus_done		= native_smp_cpus_done,
312
313	.stop_other_cpus	= native_stop_other_cpus,
314#if defined(CONFIG_KEXEC_CORE)
315	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
316#endif
317	.smp_send_reschedule	= native_smp_send_reschedule,
318
319	.cpu_up			= native_cpu_up,
320	.cpu_die		= native_cpu_die,
321	.cpu_disable		= native_cpu_disable,
322	.play_dead		= native_play_dead,
323
324	.send_call_func_ipi	= native_send_call_func_ipi,
325	.send_call_func_single_ipi = native_send_call_func_single_ipi,
326};
327EXPORT_SYMBOL_GPL(smp_ops);
v3.15
  1/*
  2 *	Intel SMP support routines.
  3 *
  4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  5 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  6 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  7 *
  8 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
  9 *
 10 *	This code is released under the GNU General Public License version 2 or
 11 *	later.
 12 */
 13
 14#include <linux/init.h>
 15
 16#include <linux/mm.h>
 17#include <linux/delay.h>
 18#include <linux/spinlock.h>
 19#include <linux/export.h>
 20#include <linux/kernel_stat.h>
 21#include <linux/mc146818rtc.h>
 22#include <linux/cache.h>
 23#include <linux/interrupt.h>
 24#include <linux/cpu.h>
 25#include <linux/gfp.h>
 26
 27#include <asm/mtrr.h>
 28#include <asm/tlbflush.h>
 29#include <asm/mmu_context.h>
 30#include <asm/proto.h>
 31#include <asm/apic.h>
 32#include <asm/nmi.h>
 
 33#include <asm/trace/irq_vectors.h>
 
 
 
 34/*
 35 *	Some notes on x86 processor bugs affecting SMP operation:
 36 *
 37 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 38 *	The Linux implications for SMP are handled as follows:
 39 *
 40 *	Pentium III / [Xeon]
 41 *		None of the E1AP-E3AP errata are visible to the user.
 42 *
 43 *	E1AP.	see PII A1AP
 44 *	E2AP.	see PII A2AP
 45 *	E3AP.	see PII A3AP
 46 *
 47 *	Pentium II / [Xeon]
 48 *		None of the A1AP-A3AP errata are visible to the user.
 49 *
 50 *	A1AP.	see PPro 1AP
 51 *	A2AP.	see PPro 2AP
 52 *	A3AP.	see PPro 7AP
 53 *
 54 *	Pentium Pro
 55 *		None of 1AP-9AP errata are visible to the normal user,
 56 *	except occasional delivery of 'spurious interrupt' as trap #15.
 57 *	This is very rare and a non-problem.
 58 *
 59 *	1AP.	Linux maps APIC as non-cacheable
 60 *	2AP.	worked around in hardware
 61 *	3AP.	fixed in C0 and above steppings microcode update.
 62 *		Linux does not use excessive STARTUP_IPIs.
 63 *	4AP.	worked around in hardware
 64 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 65 *		'noapic' mode has vector 0xf filled out properly.
 66 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 67 *	7AP.	We do not assume writes to the LVT deassering IRQs
 68 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 69 *	9AP.	We do not use mixed mode
 70 *
 71 *	Pentium
 72 *		There is a marginal case where REP MOVS on 100MHz SMP
 73 *	machines with B stepping processors can fail. XXX should provide
 74 *	an L1cache=Writethrough or L1cache=off option.
 75 *
 76 *		B stepping CPUs may hang. There are hardware work arounds
 77 *	for this. We warn about it in case your board doesn't have the work
 78 *	arounds. Basically that's so I can tell anyone with a B stepping
 79 *	CPU and SMP problems "tough".
 80 *
 81 *	Specific items [From Pentium Processor Specification Update]
 82 *
 83 *	1AP.	Linux doesn't use remote read
 84 *	2AP.	Linux doesn't trust APIC errors
 85 *	3AP.	We work around this
 86 *	4AP.	Linux never generated 3 interrupts of the same priority
 87 *		to cause a lost local interrupt.
 88 *	5AP.	Remote read is never used
 89 *	6AP.	not affected - worked around in hardware
 90 *	7AP.	not affected - worked around in hardware
 91 *	8AP.	worked around in hardware - we get explicit CS errors if not
 92 *	9AP.	only 'noapic' mode affected. Might generate spurious
 93 *		interrupts, we log only the first one and count the
 94 *		rest silently.
 95 *	10AP.	not affected - worked around in hardware
 96 *	11AP.	Linux reads the APIC between writes to avoid this, as per
 97 *		the documentation. Make sure you preserve this as it affects
 98 *		the C stepping chips too.
 99 *	12AP.	not affected - worked around in hardware
100 *	13AP.	not affected - worked around in hardware
101 *	14AP.	we always deassert INIT during bootup
102 *	15AP.	not affected - worked around in hardware
103 *	16AP.	not affected - worked around in hardware
104 *	17AP.	not affected - worked around in hardware
105 *	18AP.	not affected - worked around in hardware
106 *	19AP.	not affected - worked around in BIOS
107 *
108 *	If this sounds worrying believe me these bugs are either ___RARE___,
109 *	or are signal timing bugs worked around in hardware and there's
110 *	about nothing of note with C stepping upwards.
111 */
112
113static atomic_t stopping_cpu = ATOMIC_INIT(-1);
114static bool smp_no_nmi_ipi = false;
115
116/*
117 * this function sends a 'reschedule' IPI to another CPU.
118 * it goes straight through and wastes no time serializing
119 * anything. Worst case is that we lose a reschedule ...
120 */
121static void native_smp_send_reschedule(int cpu)
122{
123	if (unlikely(cpu_is_offline(cpu))) {
124		WARN_ON(1);
125		return;
126	}
127	apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);
128}
129
130void native_send_call_func_single_ipi(int cpu)
131{
132	apic->send_IPI_mask(cpumask_of(cpu), CALL_FUNCTION_SINGLE_VECTOR);
133}
134
135void native_send_call_func_ipi(const struct cpumask *mask)
136{
137	cpumask_var_t allbutself;
138
139	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
140		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
141		return;
142	}
143
144	cpumask_copy(allbutself, cpu_online_mask);
145	cpumask_clear_cpu(smp_processor_id(), allbutself);
146
147	if (cpumask_equal(mask, allbutself) &&
148	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
149		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
150	else
151		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
152
153	free_cpumask_var(allbutself);
154}
155
156static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
157{
158	/* We are registered on stopping cpu too, avoid spurious NMI */
159	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
160		return NMI_HANDLED;
161
 
162	stop_this_cpu(NULL);
163
164	return NMI_HANDLED;
165}
166
167/*
168 * this function calls the 'stop' function on all other CPUs in the system.
169 */
170
171asmlinkage __visible void smp_reboot_interrupt(void)
172{
173	ack_APIC_irq();
174	irq_enter();
175	stop_this_cpu(NULL);
176	irq_exit();
177}
178
179static void native_stop_other_cpus(int wait)
180{
181	unsigned long flags;
182	unsigned long timeout;
183
184	if (reboot_force)
185		return;
186
187	/*
188	 * Use an own vector here because smp_call_function
189	 * does lots of things not suitable in a panic situation.
190	 */
191
192	/*
193	 * We start by using the REBOOT_VECTOR irq.
194	 * The irq is treated as a sync point to allow critical
195	 * regions of code on other cpus to release their spin locks
196	 * and re-enable irqs.  Jumping straight to an NMI might
197	 * accidentally cause deadlocks with further shutdown/panic
198	 * code.  By syncing, we give the cpus up to one second to
199	 * finish their work before we force them off with the NMI.
200	 */
201	if (num_online_cpus() > 1) {
202		/* did someone beat us here? */
203		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
204			return;
205
206		/* sync above data before sending IRQ */
207		wmb();
208
209		apic->send_IPI_allbutself(REBOOT_VECTOR);
210
211		/*
212		 * Don't wait longer than a second if the caller
213		 * didn't ask us to wait.
214		 */
215		timeout = USEC_PER_SEC;
216		while (num_online_cpus() > 1 && (wait || timeout--))
217			udelay(1);
218	}
219	
220	/* if the REBOOT_VECTOR didn't work, try with the NMI */
221	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
222		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
223					 NMI_FLAG_FIRST, "smp_stop"))
224			/* Note: we ignore failures here */
225			/* Hope the REBOOT_IRQ is good enough */
226			goto finish;
227
228		/* sync above data before sending IRQ */
229		wmb();
230
231		pr_emerg("Shutting down cpus with NMI\n");
232
233		apic->send_IPI_allbutself(NMI_VECTOR);
234
235		/*
236		 * Don't wait longer than a 10 ms if the caller
237		 * didn't ask us to wait.
238		 */
239		timeout = USEC_PER_MSEC * 10;
240		while (num_online_cpus() > 1 && (wait || timeout--))
241			udelay(1);
242	}
243
244finish:
245	local_irq_save(flags);
246	disable_local_APIC();
 
247	local_irq_restore(flags);
248}
249
250/*
251 * Reschedule call back.
 
252 */
253static inline void __smp_reschedule_interrupt(void)
254{
 
255	inc_irq_stat(irq_resched_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
256	scheduler_ipi();
257}
258
259__visible void smp_reschedule_interrupt(struct pt_regs *regs)
260{
261	ack_APIC_irq();
262	__smp_reschedule_interrupt();
263	/*
264	 * KVM uses this interrupt to force a cpu out of guest mode
265	 */
266}
267
268static inline void smp_entering_irq(void)
269{
270	ack_APIC_irq();
271	irq_enter();
272}
273
274__visible void smp_trace_reschedule_interrupt(struct pt_regs *regs)
275{
276	/*
277	 * Need to call irq_enter() before calling the trace point.
278	 * __smp_reschedule_interrupt() calls irq_enter/exit() too (in
279	 * scheduler_ipi(). This is OK, since those functions are allowed
280	 * to nest.
281	 */
282	smp_entering_irq();
283	trace_reschedule_entry(RESCHEDULE_VECTOR);
284	__smp_reschedule_interrupt();
285	trace_reschedule_exit(RESCHEDULE_VECTOR);
286	exiting_irq();
287	/*
288	 * KVM uses this interrupt to force a cpu out of guest mode
289	 */
290}
291
292static inline void __smp_call_function_interrupt(void)
293{
 
 
 
294	generic_smp_call_function_interrupt();
295	inc_irq_stat(irq_call_count);
296}
297
298__visible void smp_call_function_interrupt(struct pt_regs *regs)
299{
300	smp_entering_irq();
301	__smp_call_function_interrupt();
302	exiting_irq();
303}
304
305__visible void smp_trace_call_function_interrupt(struct pt_regs *regs)
306{
307	smp_entering_irq();
308	trace_call_function_entry(CALL_FUNCTION_VECTOR);
309	__smp_call_function_interrupt();
310	trace_call_function_exit(CALL_FUNCTION_VECTOR);
311	exiting_irq();
312}
313
314static inline void __smp_call_function_single_interrupt(void)
315{
 
 
 
316	generic_smp_call_function_single_interrupt();
317	inc_irq_stat(irq_call_count);
318}
319
320__visible void smp_call_function_single_interrupt(struct pt_regs *regs)
321{
322	smp_entering_irq();
323	__smp_call_function_single_interrupt();
324	exiting_irq();
325}
326
327__visible void smp_trace_call_function_single_interrupt(struct pt_regs *regs)
328{
329	smp_entering_irq();
330	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
331	__smp_call_function_single_interrupt();
332	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
333	exiting_irq();
334}
335
336static int __init nonmi_ipi_setup(char *str)
337{
338	smp_no_nmi_ipi = true;
339	return 1;
340}
341
342__setup("nonmi_ipi", nonmi_ipi_setup);
343
344struct smp_ops smp_ops = {
345	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
346	.smp_prepare_cpus	= native_smp_prepare_cpus,
347	.smp_cpus_done		= native_smp_cpus_done,
348
349	.stop_other_cpus	= native_stop_other_cpus,
 
 
 
350	.smp_send_reschedule	= native_smp_send_reschedule,
351
352	.cpu_up			= native_cpu_up,
353	.cpu_die		= native_cpu_die,
354	.cpu_disable		= native_cpu_disable,
355	.play_dead		= native_play_dead,
356
357	.send_call_func_ipi	= native_send_call_func_ipi,
358	.send_call_func_single_ipi = native_send_call_func_single_ipi,
359};
360EXPORT_SYMBOL_GPL(smp_ops);