Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
16#include <linux/sched/debug.h>
17#include <linux/nmi.h>
18#include <linux/debugfs.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/ratelimit.h>
22#include <linux/slab.h>
23#include <linux/export.h>
24#include <linux/sched/clock.h>
25
26#if defined(CONFIG_EDAC)
27#include <linux/edac.h>
28#endif
29
30#include <linux/atomic.h>
31#include <asm/traps.h>
32#include <asm/mach_traps.h>
33#include <asm/nmi.h>
34#include <asm/x86_init.h>
35#include <asm/reboot.h>
36#include <asm/cache.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/nmi.h>
40
41struct nmi_desc {
42 raw_spinlock_t lock;
43 struct list_head head;
44};
45
46static struct nmi_desc nmi_desc[NMI_MAX] =
47{
48 {
49 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[0].head),
51 },
52 {
53 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[1].head),
55 },
56 {
57 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 .head = LIST_HEAD_INIT(nmi_desc[2].head),
59 },
60 {
61 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 .head = LIST_HEAD_INIT(nmi_desc[3].head),
63 },
64
65};
66
67struct nmi_stats {
68 unsigned int normal;
69 unsigned int unknown;
70 unsigned int external;
71 unsigned int swallow;
72};
73
74static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
75
76static int ignore_nmis __read_mostly;
77
78int unknown_nmi_panic;
79/*
80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
81 * only be used in NMI handler.
82 */
83static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
84
85static int __init setup_unknown_nmi_panic(char *str)
86{
87 unknown_nmi_panic = 1;
88 return 1;
89}
90__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
91
92#define nmi_to_desc(type) (&nmi_desc[type])
93
94static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
95
96static int __init nmi_warning_debugfs(void)
97{
98 debugfs_create_u64("nmi_longest_ns", 0644,
99 arch_debugfs_dir, &nmi_longest_ns);
100 return 0;
101}
102fs_initcall(nmi_warning_debugfs);
103
104static void nmi_max_handler(struct irq_work *w)
105{
106 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
107 int remainder_ns, decimal_msecs;
108 u64 whole_msecs = READ_ONCE(a->max_duration);
109
110 remainder_ns = do_div(whole_msecs, (1000 * 1000));
111 decimal_msecs = remainder_ns / 1000;
112
113 printk_ratelimited(KERN_INFO
114 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
115 a->handler, whole_msecs, decimal_msecs);
116}
117
118static int nmi_handle(unsigned int type, struct pt_regs *regs)
119{
120 struct nmi_desc *desc = nmi_to_desc(type);
121 struct nmiaction *a;
122 int handled=0;
123
124 rcu_read_lock();
125
126 /*
127 * NMIs are edge-triggered, which means if you have enough
128 * of them concurrently, you can lose some because only one
129 * can be latched at any given time. Walk the whole list
130 * to handle those situations.
131 */
132 list_for_each_entry_rcu(a, &desc->head, list) {
133 int thishandled;
134 u64 delta;
135
136 delta = sched_clock();
137 thishandled = a->handler(type, regs);
138 handled += thishandled;
139 delta = sched_clock() - delta;
140 trace_nmi_handler(a->handler, (int)delta, thishandled);
141
142 if (delta < nmi_longest_ns || delta < a->max_duration)
143 continue;
144
145 a->max_duration = delta;
146 irq_work_queue(&a->irq_work);
147 }
148
149 rcu_read_unlock();
150
151 /* return total number of NMI events handled */
152 return handled;
153}
154NOKPROBE_SYMBOL(nmi_handle);
155
156int __register_nmi_handler(unsigned int type, struct nmiaction *action)
157{
158 struct nmi_desc *desc = nmi_to_desc(type);
159 unsigned long flags;
160
161 if (!action->handler)
162 return -EINVAL;
163
164 init_irq_work(&action->irq_work, nmi_max_handler);
165
166 raw_spin_lock_irqsave(&desc->lock, flags);
167
168 /*
169 * Indicate if there are multiple registrations on the
170 * internal NMI handler call chains (SERR and IO_CHECK).
171 */
172 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
173 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
174
175 /*
176 * some handlers need to be executed first otherwise a fake
177 * event confuses some handlers (kdump uses this flag)
178 */
179 if (action->flags & NMI_FLAG_FIRST)
180 list_add_rcu(&action->list, &desc->head);
181 else
182 list_add_tail_rcu(&action->list, &desc->head);
183
184 raw_spin_unlock_irqrestore(&desc->lock, flags);
185 return 0;
186}
187EXPORT_SYMBOL(__register_nmi_handler);
188
189void unregister_nmi_handler(unsigned int type, const char *name)
190{
191 struct nmi_desc *desc = nmi_to_desc(type);
192 struct nmiaction *n;
193 unsigned long flags;
194
195 raw_spin_lock_irqsave(&desc->lock, flags);
196
197 list_for_each_entry_rcu(n, &desc->head, list) {
198 /*
199 * the name passed in to describe the nmi handler
200 * is used as the lookup key
201 */
202 if (!strcmp(n->name, name)) {
203 WARN(in_nmi(),
204 "Trying to free NMI (%s) from NMI context!\n", n->name);
205 list_del_rcu(&n->list);
206 break;
207 }
208 }
209
210 raw_spin_unlock_irqrestore(&desc->lock, flags);
211 synchronize_rcu();
212}
213EXPORT_SYMBOL_GPL(unregister_nmi_handler);
214
215static void
216pci_serr_error(unsigned char reason, struct pt_regs *regs)
217{
218 /* check to see if anyone registered against these types of errors */
219 if (nmi_handle(NMI_SERR, regs))
220 return;
221
222 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
223 reason, smp_processor_id());
224
225 if (panic_on_unrecovered_nmi)
226 nmi_panic(regs, "NMI: Not continuing");
227
228 pr_emerg("Dazed and confused, but trying to continue\n");
229
230 /* Clear and disable the PCI SERR error line. */
231 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
232 outb(reason, NMI_REASON_PORT);
233}
234NOKPROBE_SYMBOL(pci_serr_error);
235
236static void
237io_check_error(unsigned char reason, struct pt_regs *regs)
238{
239 unsigned long i;
240
241 /* check to see if anyone registered against these types of errors */
242 if (nmi_handle(NMI_IO_CHECK, regs))
243 return;
244
245 pr_emerg(
246 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
247 reason, smp_processor_id());
248 show_regs(regs);
249
250 if (panic_on_io_nmi) {
251 nmi_panic(regs, "NMI IOCK error: Not continuing");
252
253 /*
254 * If we end up here, it means we have received an NMI while
255 * processing panic(). Simply return without delaying and
256 * re-enabling NMIs.
257 */
258 return;
259 }
260
261 /* Re-enable the IOCK line, wait for a few seconds */
262 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
263 outb(reason, NMI_REASON_PORT);
264
265 i = 20000;
266 while (--i) {
267 touch_nmi_watchdog();
268 udelay(100);
269 }
270
271 reason &= ~NMI_REASON_CLEAR_IOCHK;
272 outb(reason, NMI_REASON_PORT);
273}
274NOKPROBE_SYMBOL(io_check_error);
275
276static void
277unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
278{
279 int handled;
280
281 /*
282 * Use 'false' as back-to-back NMIs are dealt with one level up.
283 * Of course this makes having multiple 'unknown' handlers useless
284 * as only the first one is ever run (unless it can actually determine
285 * if it caused the NMI)
286 */
287 handled = nmi_handle(NMI_UNKNOWN, regs);
288 if (handled) {
289 __this_cpu_add(nmi_stats.unknown, handled);
290 return;
291 }
292
293 __this_cpu_add(nmi_stats.unknown, 1);
294
295 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
296 reason, smp_processor_id());
297
298 pr_emerg("Do you have a strange power saving mode enabled?\n");
299 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300 nmi_panic(regs, "NMI: Not continuing");
301
302 pr_emerg("Dazed and confused, but trying to continue\n");
303}
304NOKPROBE_SYMBOL(unknown_nmi_error);
305
306static DEFINE_PER_CPU(bool, swallow_nmi);
307static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
308
309static void default_do_nmi(struct pt_regs *regs)
310{
311 unsigned char reason = 0;
312 int handled;
313 bool b2b = false;
314
315 /*
316 * CPU-specific NMI must be processed before non-CPU-specific
317 * NMI, otherwise we may lose it, because the CPU-specific
318 * NMI can not be detected/processed on other CPUs.
319 */
320
321 /*
322 * Back-to-back NMIs are interesting because they can either
323 * be two NMI or more than two NMIs (any thing over two is dropped
324 * due to NMI being edge-triggered). If this is the second half
325 * of the back-to-back NMI, assume we dropped things and process
326 * more handlers. Otherwise reset the 'swallow' NMI behaviour
327 */
328 if (regs->ip == __this_cpu_read(last_nmi_rip))
329 b2b = true;
330 else
331 __this_cpu_write(swallow_nmi, false);
332
333 __this_cpu_write(last_nmi_rip, regs->ip);
334
335 handled = nmi_handle(NMI_LOCAL, regs);
336 __this_cpu_add(nmi_stats.normal, handled);
337 if (handled) {
338 /*
339 * There are cases when a NMI handler handles multiple
340 * events in the current NMI. One of these events may
341 * be queued for in the next NMI. Because the event is
342 * already handled, the next NMI will result in an unknown
343 * NMI. Instead lets flag this for a potential NMI to
344 * swallow.
345 */
346 if (handled > 1)
347 __this_cpu_write(swallow_nmi, true);
348 return;
349 }
350
351 /*
352 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
353 *
354 * Another CPU may be processing panic routines while holding
355 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
356 * and if so, call its callback directly. If there is no CPU preparing
357 * crash dump, we simply loop here.
358 */
359 while (!raw_spin_trylock(&nmi_reason_lock)) {
360 run_crash_ipi_callback(regs);
361 cpu_relax();
362 }
363
364 reason = x86_platform.get_nmi_reason();
365
366 if (reason & NMI_REASON_MASK) {
367 if (reason & NMI_REASON_SERR)
368 pci_serr_error(reason, regs);
369 else if (reason & NMI_REASON_IOCHK)
370 io_check_error(reason, regs);
371#ifdef CONFIG_X86_32
372 /*
373 * Reassert NMI in case it became active
374 * meanwhile as it's edge-triggered:
375 */
376 reassert_nmi();
377#endif
378 __this_cpu_add(nmi_stats.external, 1);
379 raw_spin_unlock(&nmi_reason_lock);
380 return;
381 }
382 raw_spin_unlock(&nmi_reason_lock);
383
384 /*
385 * Only one NMI can be latched at a time. To handle
386 * this we may process multiple nmi handlers at once to
387 * cover the case where an NMI is dropped. The downside
388 * to this approach is we may process an NMI prematurely,
389 * while its real NMI is sitting latched. This will cause
390 * an unknown NMI on the next run of the NMI processing.
391 *
392 * We tried to flag that condition above, by setting the
393 * swallow_nmi flag when we process more than one event.
394 * This condition is also only present on the second half
395 * of a back-to-back NMI, so we flag that condition too.
396 *
397 * If both are true, we assume we already processed this
398 * NMI previously and we swallow it. Otherwise we reset
399 * the logic.
400 *
401 * There are scenarios where we may accidentally swallow
402 * a 'real' unknown NMI. For example, while processing
403 * a perf NMI another perf NMI comes in along with a
404 * 'real' unknown NMI. These two NMIs get combined into
405 * one (as descibed above). When the next NMI gets
406 * processed, it will be flagged by perf as handled, but
407 * noone will know that there was a 'real' unknown NMI sent
408 * also. As a result it gets swallowed. Or if the first
409 * perf NMI returns two events handled then the second
410 * NMI will get eaten by the logic below, again losing a
411 * 'real' unknown NMI. But this is the best we can do
412 * for now.
413 */
414 if (b2b && __this_cpu_read(swallow_nmi))
415 __this_cpu_add(nmi_stats.swallow, 1);
416 else
417 unknown_nmi_error(reason, regs);
418}
419NOKPROBE_SYMBOL(default_do_nmi);
420
421/*
422 * NMIs can page fault or hit breakpoints which will cause it to lose
423 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
424 *
425 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
426 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
427 * if the outer NMI came from kernel mode, but we can still nest if the
428 * outer NMI came from user mode.
429 *
430 * To handle these nested NMIs, we have three states:
431 *
432 * 1) not running
433 * 2) executing
434 * 3) latched
435 *
436 * When no NMI is in progress, it is in the "not running" state.
437 * When an NMI comes in, it goes into the "executing" state.
438 * Normally, if another NMI is triggered, it does not interrupt
439 * the running NMI and the HW will simply latch it so that when
440 * the first NMI finishes, it will restart the second NMI.
441 * (Note, the latch is binary, thus multiple NMIs triggering,
442 * when one is running, are ignored. Only one NMI is restarted.)
443 *
444 * If an NMI executes an iret, another NMI can preempt it. We do not
445 * want to allow this new NMI to run, but we want to execute it when the
446 * first one finishes. We set the state to "latched", and the exit of
447 * the first NMI will perform a dec_return, if the result is zero
448 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
449 * dec_return would have set the state to NMI_EXECUTING (what we want it
450 * to be when we are running). In this case, we simply jump back to
451 * rerun the NMI handler again, and restart the 'latched' NMI.
452 *
453 * No trap (breakpoint or page fault) should be hit before nmi_restart,
454 * thus there is no race between the first check of state for NOT_RUNNING
455 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
456 * at this point.
457 *
458 * In case the NMI takes a page fault, we need to save off the CR2
459 * because the NMI could have preempted another page fault and corrupt
460 * the CR2 that is about to be read. As nested NMIs must be restarted
461 * and they can not take breakpoints or page faults, the update of the
462 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
463 * Otherwise, there would be a race of another nested NMI coming in
464 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
465 */
466enum nmi_states {
467 NMI_NOT_RUNNING = 0,
468 NMI_EXECUTING,
469 NMI_LATCHED,
470};
471static DEFINE_PER_CPU(enum nmi_states, nmi_state);
472static DEFINE_PER_CPU(unsigned long, nmi_cr2);
473
474#ifdef CONFIG_X86_64
475/*
476 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
477 * some care, the inner breakpoint will clobber the outer breakpoint's
478 * stack.
479 *
480 * If a breakpoint is being processed, and the debug stack is being
481 * used, if an NMI comes in and also hits a breakpoint, the stack
482 * pointer will be set to the same fixed address as the breakpoint that
483 * was interrupted, causing that stack to be corrupted. To handle this
484 * case, check if the stack that was interrupted is the debug stack, and
485 * if so, change the IDT so that new breakpoints will use the current
486 * stack and not switch to the fixed address. On return of the NMI,
487 * switch back to the original IDT.
488 */
489static DEFINE_PER_CPU(int, update_debug_stack);
490#endif
491
492dotraplinkage notrace void
493do_nmi(struct pt_regs *regs, long error_code)
494{
495 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
496 this_cpu_write(nmi_state, NMI_LATCHED);
497 return;
498 }
499 this_cpu_write(nmi_state, NMI_EXECUTING);
500 this_cpu_write(nmi_cr2, read_cr2());
501nmi_restart:
502
503#ifdef CONFIG_X86_64
504 /*
505 * If we interrupted a breakpoint, it is possible that
506 * the nmi handler will have breakpoints too. We need to
507 * change the IDT such that breakpoints that happen here
508 * continue to use the NMI stack.
509 */
510 if (unlikely(is_debug_stack(regs->sp))) {
511 debug_stack_set_zero();
512 this_cpu_write(update_debug_stack, 1);
513 }
514#endif
515
516 nmi_enter();
517
518 inc_irq_stat(__nmi_count);
519
520 if (!ignore_nmis)
521 default_do_nmi(regs);
522
523 nmi_exit();
524
525#ifdef CONFIG_X86_64
526 if (unlikely(this_cpu_read(update_debug_stack))) {
527 debug_stack_reset();
528 this_cpu_write(update_debug_stack, 0);
529 }
530#endif
531
532 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
533 write_cr2(this_cpu_read(nmi_cr2));
534 if (this_cpu_dec_return(nmi_state))
535 goto nmi_restart;
536}
537NOKPROBE_SYMBOL(do_nmi);
538
539void stop_nmi(void)
540{
541 ignore_nmis++;
542}
543
544void restart_nmi(void)
545{
546 ignore_nmis--;
547}
548
549/* reset the back-to-back NMI logic */
550void local_touch_nmi(void)
551{
552 __this_cpu_write(last_nmi_rip, 0);
553}
554EXPORT_SYMBOL_GPL(local_touch_nmi);
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
16#include <linux/nmi.h>
17#include <linux/debugfs.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/slab.h>
21#include <linux/export.h>
22
23#if defined(CONFIG_EDAC)
24#include <linux/edac.h>
25#endif
26
27#include <linux/atomic.h>
28#include <asm/traps.h>
29#include <asm/mach_traps.h>
30#include <asm/nmi.h>
31#include <asm/x86_init.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/nmi.h>
35
36struct nmi_desc {
37 spinlock_t lock;
38 struct list_head head;
39};
40
41static struct nmi_desc nmi_desc[NMI_MAX] =
42{
43 {
44 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
45 .head = LIST_HEAD_INIT(nmi_desc[0].head),
46 },
47 {
48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
49 .head = LIST_HEAD_INIT(nmi_desc[1].head),
50 },
51 {
52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[2].head),
54 },
55 {
56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
57 .head = LIST_HEAD_INIT(nmi_desc[3].head),
58 },
59
60};
61
62struct nmi_stats {
63 unsigned int normal;
64 unsigned int unknown;
65 unsigned int external;
66 unsigned int swallow;
67};
68
69static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
70
71static int ignore_nmis;
72
73int unknown_nmi_panic;
74/*
75 * Prevent NMI reason port (0x61) being accessed simultaneously, can
76 * only be used in NMI handler.
77 */
78static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
79
80static int __init setup_unknown_nmi_panic(char *str)
81{
82 unknown_nmi_panic = 1;
83 return 1;
84}
85__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
86
87#define nmi_to_desc(type) (&nmi_desc[type])
88
89static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
90
91static int __init nmi_warning_debugfs(void)
92{
93 debugfs_create_u64("nmi_longest_ns", 0644,
94 arch_debugfs_dir, &nmi_longest_ns);
95 return 0;
96}
97fs_initcall(nmi_warning_debugfs);
98
99static void nmi_max_handler(struct irq_work *w)
100{
101 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
102 int remainder_ns, decimal_msecs;
103 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
104
105 remainder_ns = do_div(whole_msecs, (1000 * 1000));
106 decimal_msecs = remainder_ns / 1000;
107
108 printk_ratelimited(KERN_INFO
109 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
110 a->handler, whole_msecs, decimal_msecs);
111}
112
113static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
114{
115 struct nmi_desc *desc = nmi_to_desc(type);
116 struct nmiaction *a;
117 int handled=0;
118
119 rcu_read_lock();
120
121 /*
122 * NMIs are edge-triggered, which means if you have enough
123 * of them concurrently, you can lose some because only one
124 * can be latched at any given time. Walk the whole list
125 * to handle those situations.
126 */
127 list_for_each_entry_rcu(a, &desc->head, list) {
128 int thishandled;
129 u64 delta;
130
131 delta = sched_clock();
132 thishandled = a->handler(type, regs);
133 handled += thishandled;
134 delta = sched_clock() - delta;
135 trace_nmi_handler(a->handler, (int)delta, thishandled);
136
137 if (delta < nmi_longest_ns || delta < a->max_duration)
138 continue;
139
140 a->max_duration = delta;
141 irq_work_queue(&a->irq_work);
142 }
143
144 rcu_read_unlock();
145
146 /* return total number of NMI events handled */
147 return handled;
148}
149
150int __register_nmi_handler(unsigned int type, struct nmiaction *action)
151{
152 struct nmi_desc *desc = nmi_to_desc(type);
153 unsigned long flags;
154
155 if (!action->handler)
156 return -EINVAL;
157
158 init_irq_work(&action->irq_work, nmi_max_handler);
159
160 spin_lock_irqsave(&desc->lock, flags);
161
162 /*
163 * most handlers of type NMI_UNKNOWN never return because
164 * they just assume the NMI is theirs. Just a sanity check
165 * to manage expectations
166 */
167 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
168 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
169 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
170
171 /*
172 * some handlers need to be executed first otherwise a fake
173 * event confuses some handlers (kdump uses this flag)
174 */
175 if (action->flags & NMI_FLAG_FIRST)
176 list_add_rcu(&action->list, &desc->head);
177 else
178 list_add_tail_rcu(&action->list, &desc->head);
179
180 spin_unlock_irqrestore(&desc->lock, flags);
181 return 0;
182}
183EXPORT_SYMBOL(__register_nmi_handler);
184
185void unregister_nmi_handler(unsigned int type, const char *name)
186{
187 struct nmi_desc *desc = nmi_to_desc(type);
188 struct nmiaction *n;
189 unsigned long flags;
190
191 spin_lock_irqsave(&desc->lock, flags);
192
193 list_for_each_entry_rcu(n, &desc->head, list) {
194 /*
195 * the name passed in to describe the nmi handler
196 * is used as the lookup key
197 */
198 if (!strcmp(n->name, name)) {
199 WARN(in_nmi(),
200 "Trying to free NMI (%s) from NMI context!\n", n->name);
201 list_del_rcu(&n->list);
202 break;
203 }
204 }
205
206 spin_unlock_irqrestore(&desc->lock, flags);
207 synchronize_rcu();
208}
209EXPORT_SYMBOL_GPL(unregister_nmi_handler);
210
211static __kprobes void
212pci_serr_error(unsigned char reason, struct pt_regs *regs)
213{
214 /* check to see if anyone registered against these types of errors */
215 if (nmi_handle(NMI_SERR, regs, false))
216 return;
217
218 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
219 reason, smp_processor_id());
220
221 /*
222 * On some machines, PCI SERR line is used to report memory
223 * errors. EDAC makes use of it.
224 */
225#if defined(CONFIG_EDAC)
226 if (edac_handler_set()) {
227 edac_atomic_assert_error();
228 return;
229 }
230#endif
231
232 if (panic_on_unrecovered_nmi)
233 panic("NMI: Not continuing");
234
235 pr_emerg("Dazed and confused, but trying to continue\n");
236
237 /* Clear and disable the PCI SERR error line. */
238 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
239 outb(reason, NMI_REASON_PORT);
240}
241
242static __kprobes void
243io_check_error(unsigned char reason, struct pt_regs *regs)
244{
245 unsigned long i;
246
247 /* check to see if anyone registered against these types of errors */
248 if (nmi_handle(NMI_IO_CHECK, regs, false))
249 return;
250
251 pr_emerg(
252 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
253 reason, smp_processor_id());
254 show_regs(regs);
255
256 if (panic_on_io_nmi)
257 panic("NMI IOCK error: Not continuing");
258
259 /* Re-enable the IOCK line, wait for a few seconds */
260 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
261 outb(reason, NMI_REASON_PORT);
262
263 i = 20000;
264 while (--i) {
265 touch_nmi_watchdog();
266 udelay(100);
267 }
268
269 reason &= ~NMI_REASON_CLEAR_IOCHK;
270 outb(reason, NMI_REASON_PORT);
271}
272
273static __kprobes void
274unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
275{
276 int handled;
277
278 /*
279 * Use 'false' as back-to-back NMIs are dealt with one level up.
280 * Of course this makes having multiple 'unknown' handlers useless
281 * as only the first one is ever run (unless it can actually determine
282 * if it caused the NMI)
283 */
284 handled = nmi_handle(NMI_UNKNOWN, regs, false);
285 if (handled) {
286 __this_cpu_add(nmi_stats.unknown, handled);
287 return;
288 }
289
290 __this_cpu_add(nmi_stats.unknown, 1);
291
292 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
293 reason, smp_processor_id());
294
295 pr_emerg("Do you have a strange power saving mode enabled?\n");
296 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
297 panic("NMI: Not continuing");
298
299 pr_emerg("Dazed and confused, but trying to continue\n");
300}
301
302static DEFINE_PER_CPU(bool, swallow_nmi);
303static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
304
305static __kprobes void default_do_nmi(struct pt_regs *regs)
306{
307 unsigned char reason = 0;
308 int handled;
309 bool b2b = false;
310
311 /*
312 * CPU-specific NMI must be processed before non-CPU-specific
313 * NMI, otherwise we may lose it, because the CPU-specific
314 * NMI can not be detected/processed on other CPUs.
315 */
316
317 /*
318 * Back-to-back NMIs are interesting because they can either
319 * be two NMI or more than two NMIs (any thing over two is dropped
320 * due to NMI being edge-triggered). If this is the second half
321 * of the back-to-back NMI, assume we dropped things and process
322 * more handlers. Otherwise reset the 'swallow' NMI behaviour
323 */
324 if (regs->ip == __this_cpu_read(last_nmi_rip))
325 b2b = true;
326 else
327 __this_cpu_write(swallow_nmi, false);
328
329 __this_cpu_write(last_nmi_rip, regs->ip);
330
331 handled = nmi_handle(NMI_LOCAL, regs, b2b);
332 __this_cpu_add(nmi_stats.normal, handled);
333 if (handled) {
334 /*
335 * There are cases when a NMI handler handles multiple
336 * events in the current NMI. One of these events may
337 * be queued for in the next NMI. Because the event is
338 * already handled, the next NMI will result in an unknown
339 * NMI. Instead lets flag this for a potential NMI to
340 * swallow.
341 */
342 if (handled > 1)
343 __this_cpu_write(swallow_nmi, true);
344 return;
345 }
346
347 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
348 raw_spin_lock(&nmi_reason_lock);
349 reason = x86_platform.get_nmi_reason();
350
351 if (reason & NMI_REASON_MASK) {
352 if (reason & NMI_REASON_SERR)
353 pci_serr_error(reason, regs);
354 else if (reason & NMI_REASON_IOCHK)
355 io_check_error(reason, regs);
356#ifdef CONFIG_X86_32
357 /*
358 * Reassert NMI in case it became active
359 * meanwhile as it's edge-triggered:
360 */
361 reassert_nmi();
362#endif
363 __this_cpu_add(nmi_stats.external, 1);
364 raw_spin_unlock(&nmi_reason_lock);
365 return;
366 }
367 raw_spin_unlock(&nmi_reason_lock);
368
369 /*
370 * Only one NMI can be latched at a time. To handle
371 * this we may process multiple nmi handlers at once to
372 * cover the case where an NMI is dropped. The downside
373 * to this approach is we may process an NMI prematurely,
374 * while its real NMI is sitting latched. This will cause
375 * an unknown NMI on the next run of the NMI processing.
376 *
377 * We tried to flag that condition above, by setting the
378 * swallow_nmi flag when we process more than one event.
379 * This condition is also only present on the second half
380 * of a back-to-back NMI, so we flag that condition too.
381 *
382 * If both are true, we assume we already processed this
383 * NMI previously and we swallow it. Otherwise we reset
384 * the logic.
385 *
386 * There are scenarios where we may accidentally swallow
387 * a 'real' unknown NMI. For example, while processing
388 * a perf NMI another perf NMI comes in along with a
389 * 'real' unknown NMI. These two NMIs get combined into
390 * one (as descibed above). When the next NMI gets
391 * processed, it will be flagged by perf as handled, but
392 * noone will know that there was a 'real' unknown NMI sent
393 * also. As a result it gets swallowed. Or if the first
394 * perf NMI returns two events handled then the second
395 * NMI will get eaten by the logic below, again losing a
396 * 'real' unknown NMI. But this is the best we can do
397 * for now.
398 */
399 if (b2b && __this_cpu_read(swallow_nmi))
400 __this_cpu_add(nmi_stats.swallow, 1);
401 else
402 unknown_nmi_error(reason, regs);
403}
404
405/*
406 * NMIs can hit breakpoints which will cause it to lose its
407 * NMI context with the CPU when the breakpoint does an iret.
408 */
409#ifdef CONFIG_X86_32
410/*
411 * For i386, NMIs use the same stack as the kernel, and we can
412 * add a workaround to the iret problem in C (preventing nested
413 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
414 * can be in:
415 *
416 * 1) not running
417 * 2) executing
418 * 3) latched
419 *
420 * When no NMI is in progress, it is in the "not running" state.
421 * When an NMI comes in, it goes into the "executing" state.
422 * Normally, if another NMI is triggered, it does not interrupt
423 * the running NMI and the HW will simply latch it so that when
424 * the first NMI finishes, it will restart the second NMI.
425 * (Note, the latch is binary, thus multiple NMIs triggering,
426 * when one is running, are ignored. Only one NMI is restarted.)
427 *
428 * If an NMI hits a breakpoint that executes an iret, another
429 * NMI can preempt it. We do not want to allow this new NMI
430 * to run, but we want to execute it when the first one finishes.
431 * We set the state to "latched", and the exit of the first NMI will
432 * perform a dec_return, if the result is zero (NOT_RUNNING), then
433 * it will simply exit the NMI handler. If not, the dec_return
434 * would have set the state to NMI_EXECUTING (what we want it to
435 * be when we are running). In this case, we simply jump back
436 * to rerun the NMI handler again, and restart the 'latched' NMI.
437 *
438 * No trap (breakpoint or page fault) should be hit before nmi_restart,
439 * thus there is no race between the first check of state for NOT_RUNNING
440 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
441 * at this point.
442 *
443 * In case the NMI takes a page fault, we need to save off the CR2
444 * because the NMI could have preempted another page fault and corrupt
445 * the CR2 that is about to be read. As nested NMIs must be restarted
446 * and they can not take breakpoints or page faults, the update of the
447 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
448 * Otherwise, there would be a race of another nested NMI coming in
449 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
450 */
451enum nmi_states {
452 NMI_NOT_RUNNING = 0,
453 NMI_EXECUTING,
454 NMI_LATCHED,
455};
456static DEFINE_PER_CPU(enum nmi_states, nmi_state);
457static DEFINE_PER_CPU(unsigned long, nmi_cr2);
458
459#define nmi_nesting_preprocess(regs) \
460 do { \
461 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
462 this_cpu_write(nmi_state, NMI_LATCHED); \
463 return; \
464 } \
465 this_cpu_write(nmi_state, NMI_EXECUTING); \
466 this_cpu_write(nmi_cr2, read_cr2()); \
467 } while (0); \
468 nmi_restart:
469
470#define nmi_nesting_postprocess() \
471 do { \
472 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
473 write_cr2(this_cpu_read(nmi_cr2)); \
474 if (this_cpu_dec_return(nmi_state)) \
475 goto nmi_restart; \
476 } while (0)
477#else /* x86_64 */
478/*
479 * In x86_64 things are a bit more difficult. This has the same problem
480 * where an NMI hitting a breakpoint that calls iret will remove the
481 * NMI context, allowing a nested NMI to enter. What makes this more
482 * difficult is that both NMIs and breakpoints have their own stack.
483 * When a new NMI or breakpoint is executed, the stack is set to a fixed
484 * point. If an NMI is nested, it will have its stack set at that same
485 * fixed address that the first NMI had, and will start corrupting the
486 * stack. This is handled in entry_64.S, but the same problem exists with
487 * the breakpoint stack.
488 *
489 * If a breakpoint is being processed, and the debug stack is being used,
490 * if an NMI comes in and also hits a breakpoint, the stack pointer
491 * will be set to the same fixed address as the breakpoint that was
492 * interrupted, causing that stack to be corrupted. To handle this case,
493 * check if the stack that was interrupted is the debug stack, and if
494 * so, change the IDT so that new breakpoints will use the current stack
495 * and not switch to the fixed address. On return of the NMI, switch back
496 * to the original IDT.
497 */
498static DEFINE_PER_CPU(int, update_debug_stack);
499
500static inline void nmi_nesting_preprocess(struct pt_regs *regs)
501{
502 /*
503 * If we interrupted a breakpoint, it is possible that
504 * the nmi handler will have breakpoints too. We need to
505 * change the IDT such that breakpoints that happen here
506 * continue to use the NMI stack.
507 */
508 if (unlikely(is_debug_stack(regs->sp))) {
509 debug_stack_set_zero();
510 this_cpu_write(update_debug_stack, 1);
511 }
512}
513
514static inline void nmi_nesting_postprocess(void)
515{
516 if (unlikely(this_cpu_read(update_debug_stack))) {
517 debug_stack_reset();
518 this_cpu_write(update_debug_stack, 0);
519 }
520}
521#endif
522
523dotraplinkage notrace __kprobes void
524do_nmi(struct pt_regs *regs, long error_code)
525{
526 nmi_nesting_preprocess(regs);
527
528 nmi_enter();
529
530 inc_irq_stat(__nmi_count);
531
532 if (!ignore_nmis)
533 default_do_nmi(regs);
534
535 nmi_exit();
536
537 /* On i386, may loop back to preprocess */
538 nmi_nesting_postprocess();
539}
540
541void stop_nmi(void)
542{
543 ignore_nmis++;
544}
545
546void restart_nmi(void)
547{
548 ignore_nmis--;
549}
550
551/* reset the back-to-back NMI logic */
552void local_touch_nmi(void)
553{
554 __this_cpu_write(last_nmi_rip, 0);
555}
556EXPORT_SYMBOL_GPL(local_touch_nmi);