Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/module.h>
  21#include <linux/kdebug.h>
  22#include <linux/sched.h>
  23#include <linux/uaccess.h>
  24#include <linux/slab.h>
  25#include <linux/cpu.h>
  26#include <linux/bitops.h>
  27#include <linux/device.h>
  28
  29#include <asm/apic.h>
  30#include <asm/stacktrace.h>
  31#include <asm/nmi.h>
  32#include <asm/smp.h>
  33#include <asm/alternative.h>
  34#include <asm/timer.h>
  35#include <asm/desc.h>
  36#include <asm/ldt.h>
  37
  38#include "perf_event.h"
  39
  40struct x86_pmu x86_pmu __read_mostly;
  41
  42DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  43	.enabled = 1,
  44};
  45
  46u64 __read_mostly hw_cache_event_ids
  47				[PERF_COUNT_HW_CACHE_MAX]
  48				[PERF_COUNT_HW_CACHE_OP_MAX]
  49				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  50u64 __read_mostly hw_cache_extra_regs
  51				[PERF_COUNT_HW_CACHE_MAX]
  52				[PERF_COUNT_HW_CACHE_OP_MAX]
  53				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  54
  55/*
  56 * Propagate event elapsed time into the generic event.
  57 * Can only be executed on the CPU where the event is active.
  58 * Returns the delta events processed.
  59 */
  60u64 x86_perf_event_update(struct perf_event *event)
  61{
  62	struct hw_perf_event *hwc = &event->hw;
  63	int shift = 64 - x86_pmu.cntval_bits;
  64	u64 prev_raw_count, new_raw_count;
  65	int idx = hwc->idx;
  66	s64 delta;
  67
  68	if (idx == INTEL_PMC_IDX_FIXED_BTS)
  69		return 0;
  70
  71	/*
  72	 * Careful: an NMI might modify the previous event value.
  73	 *
  74	 * Our tactic to handle this is to first atomically read and
  75	 * exchange a new raw count - then add that new-prev delta
  76	 * count to the generic event atomically:
  77	 */
  78again:
  79	prev_raw_count = local64_read(&hwc->prev_count);
  80	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  81
  82	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  83					new_raw_count) != prev_raw_count)
  84		goto again;
  85
  86	/*
  87	 * Now we have the new raw value and have updated the prev
  88	 * timestamp already. We can now calculate the elapsed delta
  89	 * (event-)time and add that to the generic event.
  90	 *
  91	 * Careful, not all hw sign-extends above the physical width
  92	 * of the count.
  93	 */
  94	delta = (new_raw_count << shift) - (prev_raw_count << shift);
  95	delta >>= shift;
  96
  97	local64_add(delta, &event->count);
  98	local64_sub(delta, &hwc->period_left);
  99
 100	return new_raw_count;
 101}
 102
 103/*
 104 * Find and validate any extra registers to set up.
 105 */
 106static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 107{
 108	struct hw_perf_event_extra *reg;
 109	struct extra_reg *er;
 110
 111	reg = &event->hw.extra_reg;
 112
 113	if (!x86_pmu.extra_regs)
 114		return 0;
 115
 116	for (er = x86_pmu.extra_regs; er->msr; er++) {
 117		if (er->event != (config & er->config_mask))
 118			continue;
 119		if (event->attr.config1 & ~er->valid_mask)
 120			return -EINVAL;
 121
 122		reg->idx = er->idx;
 123		reg->config = event->attr.config1;
 124		reg->reg = er->msr;
 125		break;
 126	}
 127	return 0;
 128}
 129
 130static atomic_t active_events;
 131static DEFINE_MUTEX(pmc_reserve_mutex);
 132
 133#ifdef CONFIG_X86_LOCAL_APIC
 134
 135static bool reserve_pmc_hardware(void)
 136{
 137	int i;
 138
 139	for (i = 0; i < x86_pmu.num_counters; i++) {
 140		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 141			goto perfctr_fail;
 142	}
 143
 144	for (i = 0; i < x86_pmu.num_counters; i++) {
 145		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 146			goto eventsel_fail;
 147	}
 148
 149	return true;
 150
 151eventsel_fail:
 152	for (i--; i >= 0; i--)
 153		release_evntsel_nmi(x86_pmu_config_addr(i));
 154
 155	i = x86_pmu.num_counters;
 156
 157perfctr_fail:
 158	for (i--; i >= 0; i--)
 159		release_perfctr_nmi(x86_pmu_event_addr(i));
 160
 161	return false;
 162}
 163
 164static void release_pmc_hardware(void)
 165{
 166	int i;
 167
 168	for (i = 0; i < x86_pmu.num_counters; i++) {
 169		release_perfctr_nmi(x86_pmu_event_addr(i));
 170		release_evntsel_nmi(x86_pmu_config_addr(i));
 171	}
 172}
 173
 174#else
 175
 176static bool reserve_pmc_hardware(void) { return true; }
 177static void release_pmc_hardware(void) {}
 178
 179#endif
 180
 181static bool check_hw_exists(void)
 182{
 183	u64 val, val_fail, val_new= ~0;
 184	int i, reg, reg_fail, ret = 0;
 185	int bios_fail = 0;
 186
 187	/*
 188	 * Check to see if the BIOS enabled any of the counters, if so
 189	 * complain and bail.
 190	 */
 191	for (i = 0; i < x86_pmu.num_counters; i++) {
 192		reg = x86_pmu_config_addr(i);
 193		ret = rdmsrl_safe(reg, &val);
 194		if (ret)
 195			goto msr_fail;
 196		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 197			bios_fail = 1;
 198			val_fail = val;
 199			reg_fail = reg;
 200		}
 201	}
 202
 203	if (x86_pmu.num_counters_fixed) {
 204		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 205		ret = rdmsrl_safe(reg, &val);
 206		if (ret)
 207			goto msr_fail;
 208		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
 209			if (val & (0x03 << i*4)) {
 210				bios_fail = 1;
 211				val_fail = val;
 212				reg_fail = reg;
 213			}
 214		}
 215	}
 216
 217	/*
 218	 * Read the current value, change it and read it back to see if it
 219	 * matches, this is needed to detect certain hardware emulators
 220	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 221	 */
 222	reg = x86_pmu_event_addr(0);
 223	if (rdmsrl_safe(reg, &val))
 224		goto msr_fail;
 225	val ^= 0xffffUL;
 226	ret = wrmsrl_safe(reg, val);
 227	ret |= rdmsrl_safe(reg, &val_new);
 228	if (ret || val != val_new)
 229		goto msr_fail;
 230
 231	/*
 232	 * We still allow the PMU driver to operate:
 233	 */
 234	if (bios_fail) {
 235		printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
 236		printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
 237	}
 238
 239	return true;
 240
 241msr_fail:
 242	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
 243	printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
 244
 245	return false;
 246}
 247
 248static void hw_perf_event_destroy(struct perf_event *event)
 249{
 250	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
 251		release_pmc_hardware();
 252		release_ds_buffers();
 253		mutex_unlock(&pmc_reserve_mutex);
 254	}
 255}
 256
 257static inline int x86_pmu_initialized(void)
 258{
 259	return x86_pmu.handle_irq != NULL;
 260}
 261
 262static inline int
 263set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 264{
 265	struct perf_event_attr *attr = &event->attr;
 266	unsigned int cache_type, cache_op, cache_result;
 267	u64 config, val;
 268
 269	config = attr->config;
 270
 271	cache_type = (config >>  0) & 0xff;
 272	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 273		return -EINVAL;
 274
 275	cache_op = (config >>  8) & 0xff;
 276	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 277		return -EINVAL;
 278
 279	cache_result = (config >> 16) & 0xff;
 280	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 281		return -EINVAL;
 282
 283	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
 284
 285	if (val == 0)
 286		return -ENOENT;
 287
 288	if (val == -1)
 289		return -EINVAL;
 290
 291	hwc->config |= val;
 292	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
 293	return x86_pmu_extra_regs(val, event);
 294}
 295
 296int x86_setup_perfctr(struct perf_event *event)
 297{
 298	struct perf_event_attr *attr = &event->attr;
 299	struct hw_perf_event *hwc = &event->hw;
 300	u64 config;
 301
 302	if (!is_sampling_event(event)) {
 303		hwc->sample_period = x86_pmu.max_period;
 304		hwc->last_period = hwc->sample_period;
 305		local64_set(&hwc->period_left, hwc->sample_period);
 306	} else {
 307		/*
 308		 * If we have a PMU initialized but no APIC
 309		 * interrupts, we cannot sample hardware
 310		 * events (user-space has to fall back and
 311		 * sample via a hrtimer based software event):
 312		 */
 313		if (!x86_pmu.apic)
 314			return -EOPNOTSUPP;
 315	}
 316
 317	if (attr->type == PERF_TYPE_RAW)
 318		return x86_pmu_extra_regs(event->attr.config, event);
 319
 320	if (attr->type == PERF_TYPE_HW_CACHE)
 321		return set_ext_hw_attr(hwc, event);
 322
 323	if (attr->config >= x86_pmu.max_events)
 324		return -EINVAL;
 325
 326	/*
 327	 * The generic map:
 328	 */
 329	config = x86_pmu.event_map(attr->config);
 330
 331	if (config == 0)
 332		return -ENOENT;
 333
 334	if (config == -1LL)
 335		return -EINVAL;
 336
 337	/*
 338	 * Branch tracing:
 339	 */
 340	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
 341	    !attr->freq && hwc->sample_period == 1) {
 342		/* BTS is not supported by this architecture. */
 343		if (!x86_pmu.bts_active)
 344			return -EOPNOTSUPP;
 345
 346		/* BTS is currently only allowed for user-mode. */
 347		if (!attr->exclude_kernel)
 348			return -EOPNOTSUPP;
 349	}
 350
 351	hwc->config |= config;
 352
 353	return 0;
 354}
 355
 356/*
 357 * check that branch_sample_type is compatible with
 358 * settings needed for precise_ip > 1 which implies
 359 * using the LBR to capture ALL taken branches at the
 360 * priv levels of the measurement
 361 */
 362static inline int precise_br_compat(struct perf_event *event)
 363{
 364	u64 m = event->attr.branch_sample_type;
 365	u64 b = 0;
 366
 367	/* must capture all branches */
 368	if (!(m & PERF_SAMPLE_BRANCH_ANY))
 369		return 0;
 370
 371	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 372
 373	if (!event->attr.exclude_user)
 374		b |= PERF_SAMPLE_BRANCH_USER;
 375
 376	if (!event->attr.exclude_kernel)
 377		b |= PERF_SAMPLE_BRANCH_KERNEL;
 378
 379	/*
 380	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 381	 */
 382
 383	return m == b;
 384}
 385
 386int x86_pmu_hw_config(struct perf_event *event)
 387{
 388	if (event->attr.precise_ip) {
 389		int precise = 0;
 390
 391		/* Support for constant skid */
 392		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 393			precise++;
 394
 395			/* Support for IP fixup */
 396			if (x86_pmu.lbr_nr)
 397				precise++;
 398		}
 399
 400		if (event->attr.precise_ip > precise)
 401			return -EOPNOTSUPP;
 402		/*
 403		 * check that PEBS LBR correction does not conflict with
 404		 * whatever the user is asking with attr->branch_sample_type
 405		 */
 406		if (event->attr.precise_ip > 1 &&
 407		    x86_pmu.intel_cap.pebs_format < 2) {
 408			u64 *br_type = &event->attr.branch_sample_type;
 409
 410			if (has_branch_stack(event)) {
 411				if (!precise_br_compat(event))
 412					return -EOPNOTSUPP;
 413
 414				/* branch_sample_type is compatible */
 415
 416			} else {
 417				/*
 418				 * user did not specify  branch_sample_type
 419				 *
 420				 * For PEBS fixups, we capture all
 421				 * the branches at the priv level of the
 422				 * event.
 423				 */
 424				*br_type = PERF_SAMPLE_BRANCH_ANY;
 425
 426				if (!event->attr.exclude_user)
 427					*br_type |= PERF_SAMPLE_BRANCH_USER;
 428
 429				if (!event->attr.exclude_kernel)
 430					*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 431			}
 432		}
 433	}
 434
 435	/*
 436	 * Generate PMC IRQs:
 437	 * (keep 'enabled' bit clear for now)
 438	 */
 439	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 440
 441	/*
 442	 * Count user and OS events unless requested not to
 443	 */
 444	if (!event->attr.exclude_user)
 445		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 446	if (!event->attr.exclude_kernel)
 447		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 448
 449	if (event->attr.type == PERF_TYPE_RAW)
 450		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 451
 452	return x86_setup_perfctr(event);
 453}
 454
 455/*
 456 * Setup the hardware configuration for a given attr_type
 457 */
 458static int __x86_pmu_event_init(struct perf_event *event)
 459{
 460	int err;
 461
 462	if (!x86_pmu_initialized())
 463		return -ENODEV;
 464
 465	err = 0;
 466	if (!atomic_inc_not_zero(&active_events)) {
 467		mutex_lock(&pmc_reserve_mutex);
 468		if (atomic_read(&active_events) == 0) {
 469			if (!reserve_pmc_hardware())
 470				err = -EBUSY;
 471			else
 472				reserve_ds_buffers();
 473		}
 474		if (!err)
 475			atomic_inc(&active_events);
 476		mutex_unlock(&pmc_reserve_mutex);
 477	}
 478	if (err)
 479		return err;
 480
 481	event->destroy = hw_perf_event_destroy;
 482
 483	event->hw.idx = -1;
 484	event->hw.last_cpu = -1;
 485	event->hw.last_tag = ~0ULL;
 486
 487	/* mark unused */
 488	event->hw.extra_reg.idx = EXTRA_REG_NONE;
 489	event->hw.branch_reg.idx = EXTRA_REG_NONE;
 490
 491	return x86_pmu.hw_config(event);
 492}
 493
 494void x86_pmu_disable_all(void)
 495{
 496	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 497	int idx;
 498
 499	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 500		u64 val;
 501
 502		if (!test_bit(idx, cpuc->active_mask))
 503			continue;
 504		rdmsrl(x86_pmu_config_addr(idx), val);
 505		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 506			continue;
 507		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 508		wrmsrl(x86_pmu_config_addr(idx), val);
 509	}
 510}
 511
 512static void x86_pmu_disable(struct pmu *pmu)
 513{
 514	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 515
 516	if (!x86_pmu_initialized())
 517		return;
 518
 519	if (!cpuc->enabled)
 520		return;
 521
 522	cpuc->n_added = 0;
 523	cpuc->enabled = 0;
 524	barrier();
 525
 526	x86_pmu.disable_all();
 527}
 528
 529void x86_pmu_enable_all(int added)
 530{
 531	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 532	int idx;
 533
 534	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 535		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 536
 537		if (!test_bit(idx, cpuc->active_mask))
 538			continue;
 539
 540		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 541	}
 542}
 543
 544static struct pmu pmu;
 545
 546static inline int is_x86_event(struct perf_event *event)
 547{
 548	return event->pmu == &pmu;
 549}
 550
 551/*
 552 * Event scheduler state:
 553 *
 554 * Assign events iterating over all events and counters, beginning
 555 * with events with least weights first. Keep the current iterator
 556 * state in struct sched_state.
 557 */
 558struct sched_state {
 559	int	weight;
 560	int	event;		/* event index */
 561	int	counter;	/* counter index */
 562	int	unassigned;	/* number of events to be assigned left */
 563	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 564};
 565
 566/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 567#define	SCHED_STATES_MAX	2
 568
 569struct perf_sched {
 570	int			max_weight;
 571	int			max_events;
 572	struct perf_event	**events;
 573	struct sched_state	state;
 574	int			saved_states;
 575	struct sched_state	saved[SCHED_STATES_MAX];
 576};
 577
 578/*
 579 * Initialize interator that runs through all events and counters.
 580 */
 581static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
 582			    int num, int wmin, int wmax)
 583{
 584	int idx;
 585
 586	memset(sched, 0, sizeof(*sched));
 587	sched->max_events	= num;
 588	sched->max_weight	= wmax;
 589	sched->events		= events;
 590
 591	for (idx = 0; idx < num; idx++) {
 592		if (events[idx]->hw.constraint->weight == wmin)
 593			break;
 594	}
 595
 596	sched->state.event	= idx;		/* start with min weight */
 597	sched->state.weight	= wmin;
 598	sched->state.unassigned	= num;
 599}
 600
 601static void perf_sched_save_state(struct perf_sched *sched)
 602{
 603	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 604		return;
 605
 606	sched->saved[sched->saved_states] = sched->state;
 607	sched->saved_states++;
 608}
 609
 610static bool perf_sched_restore_state(struct perf_sched *sched)
 611{
 612	if (!sched->saved_states)
 613		return false;
 614
 615	sched->saved_states--;
 616	sched->state = sched->saved[sched->saved_states];
 617
 618	/* continue with next counter: */
 619	clear_bit(sched->state.counter++, sched->state.used);
 620
 621	return true;
 622}
 623
 624/*
 625 * Select a counter for the current event to schedule. Return true on
 626 * success.
 627 */
 628static bool __perf_sched_find_counter(struct perf_sched *sched)
 629{
 630	struct event_constraint *c;
 631	int idx;
 632
 633	if (!sched->state.unassigned)
 634		return false;
 635
 636	if (sched->state.event >= sched->max_events)
 637		return false;
 638
 639	c = sched->events[sched->state.event]->hw.constraint;
 640	/* Prefer fixed purpose counters */
 641	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 642		idx = INTEL_PMC_IDX_FIXED;
 643		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 644			if (!__test_and_set_bit(idx, sched->state.used))
 645				goto done;
 646		}
 647	}
 648	/* Grab the first unused counter starting with idx */
 649	idx = sched->state.counter;
 650	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 651		if (!__test_and_set_bit(idx, sched->state.used))
 652			goto done;
 653	}
 654
 655	return false;
 656
 657done:
 658	sched->state.counter = idx;
 659
 660	if (c->overlap)
 661		perf_sched_save_state(sched);
 662
 663	return true;
 664}
 665
 666static bool perf_sched_find_counter(struct perf_sched *sched)
 667{
 668	while (!__perf_sched_find_counter(sched)) {
 669		if (!perf_sched_restore_state(sched))
 670			return false;
 671	}
 672
 673	return true;
 674}
 675
 676/*
 677 * Go through all unassigned events and find the next one to schedule.
 678 * Take events with the least weight first. Return true on success.
 679 */
 680static bool perf_sched_next_event(struct perf_sched *sched)
 681{
 682	struct event_constraint *c;
 683
 684	if (!sched->state.unassigned || !--sched->state.unassigned)
 685		return false;
 686
 687	do {
 688		/* next event */
 689		sched->state.event++;
 690		if (sched->state.event >= sched->max_events) {
 691			/* next weight */
 692			sched->state.event = 0;
 693			sched->state.weight++;
 694			if (sched->state.weight > sched->max_weight)
 695				return false;
 696		}
 697		c = sched->events[sched->state.event]->hw.constraint;
 698	} while (c->weight != sched->state.weight);
 699
 700	sched->state.counter = 0;	/* start with first counter */
 701
 702	return true;
 703}
 704
 705/*
 706 * Assign a counter for each event.
 707 */
 708int perf_assign_events(struct perf_event **events, int n,
 709			int wmin, int wmax, int *assign)
 710{
 711	struct perf_sched sched;
 712
 713	perf_sched_init(&sched, events, n, wmin, wmax);
 714
 715	do {
 716		if (!perf_sched_find_counter(&sched))
 717			break;	/* failed */
 718		if (assign)
 719			assign[sched.state.event] = sched.state.counter;
 720	} while (perf_sched_next_event(&sched));
 721
 722	return sched.state.unassigned;
 723}
 724
 725int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 726{
 727	struct event_constraint *c;
 728	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 729	struct perf_event *e;
 730	int i, wmin, wmax, num = 0;
 731	struct hw_perf_event *hwc;
 732
 733	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
 734
 735	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 736		hwc = &cpuc->event_list[i]->hw;
 737		c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
 738		hwc->constraint = c;
 739
 740		wmin = min(wmin, c->weight);
 741		wmax = max(wmax, c->weight);
 742	}
 743
 744	/*
 745	 * fastpath, try to reuse previous register
 746	 */
 747	for (i = 0; i < n; i++) {
 748		hwc = &cpuc->event_list[i]->hw;
 749		c = hwc->constraint;
 750
 751		/* never assigned */
 752		if (hwc->idx == -1)
 753			break;
 754
 755		/* constraint still honored */
 756		if (!test_bit(hwc->idx, c->idxmsk))
 757			break;
 758
 759		/* not already used */
 760		if (test_bit(hwc->idx, used_mask))
 761			break;
 762
 763		__set_bit(hwc->idx, used_mask);
 764		if (assign)
 765			assign[i] = hwc->idx;
 766	}
 767
 768	/* slow path */
 769	if (i != n)
 770		num = perf_assign_events(cpuc->event_list, n, wmin,
 771					 wmax, assign);
 772
 773	/*
 774	 * Mark the event as committed, so we do not put_constraint()
 775	 * in case new events are added and fail scheduling.
 776	 */
 777	if (!num && assign) {
 778		for (i = 0; i < n; i++) {
 779			e = cpuc->event_list[i];
 780			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
 781		}
 782	}
 783	/*
 784	 * scheduling failed or is just a simulation,
 785	 * free resources if necessary
 786	 */
 787	if (!assign || num) {
 788		for (i = 0; i < n; i++) {
 789			e = cpuc->event_list[i];
 790			/*
 791			 * do not put_constraint() on comitted events,
 792			 * because they are good to go
 793			 */
 794			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
 795				continue;
 796
 797			if (x86_pmu.put_event_constraints)
 798				x86_pmu.put_event_constraints(cpuc, e);
 799		}
 800	}
 801	return num ? -EINVAL : 0;
 802}
 803
 804/*
 805 * dogrp: true if must collect siblings events (group)
 806 * returns total number of events and error code
 807 */
 808static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
 809{
 810	struct perf_event *event;
 811	int n, max_count;
 812
 813	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
 814
 815	/* current number of events already accepted */
 816	n = cpuc->n_events;
 817
 818	if (is_x86_event(leader)) {
 819		if (n >= max_count)
 820			return -EINVAL;
 821		cpuc->event_list[n] = leader;
 822		n++;
 823	}
 824	if (!dogrp)
 825		return n;
 826
 827	list_for_each_entry(event, &leader->sibling_list, group_entry) {
 828		if (!is_x86_event(event) ||
 829		    event->state <= PERF_EVENT_STATE_OFF)
 830			continue;
 831
 832		if (n >= max_count)
 833			return -EINVAL;
 834
 835		cpuc->event_list[n] = event;
 836		n++;
 837	}
 838	return n;
 839}
 840
 841static inline void x86_assign_hw_event(struct perf_event *event,
 842				struct cpu_hw_events *cpuc, int i)
 843{
 844	struct hw_perf_event *hwc = &event->hw;
 845
 846	hwc->idx = cpuc->assign[i];
 847	hwc->last_cpu = smp_processor_id();
 848	hwc->last_tag = ++cpuc->tags[i];
 849
 850	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
 851		hwc->config_base = 0;
 852		hwc->event_base	= 0;
 853	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
 854		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 855		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
 856		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
 857	} else {
 858		hwc->config_base = x86_pmu_config_addr(hwc->idx);
 859		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
 860		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
 861	}
 862}
 863
 864static inline int match_prev_assignment(struct hw_perf_event *hwc,
 865					struct cpu_hw_events *cpuc,
 866					int i)
 867{
 868	return hwc->idx == cpuc->assign[i] &&
 869		hwc->last_cpu == smp_processor_id() &&
 870		hwc->last_tag == cpuc->tags[i];
 871}
 872
 873static void x86_pmu_start(struct perf_event *event, int flags);
 874
 875static void x86_pmu_enable(struct pmu *pmu)
 876{
 877	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 878	struct perf_event *event;
 879	struct hw_perf_event *hwc;
 880	int i, added = cpuc->n_added;
 881
 882	if (!x86_pmu_initialized())
 883		return;
 884
 885	if (cpuc->enabled)
 886		return;
 887
 888	if (cpuc->n_added) {
 889		int n_running = cpuc->n_events - cpuc->n_added;
 890		/*
 891		 * apply assignment obtained either from
 892		 * hw_perf_group_sched_in() or x86_pmu_enable()
 893		 *
 894		 * step1: save events moving to new counters
 895		 */
 896		for (i = 0; i < n_running; i++) {
 897			event = cpuc->event_list[i];
 898			hwc = &event->hw;
 899
 900			/*
 901			 * we can avoid reprogramming counter if:
 902			 * - assigned same counter as last time
 903			 * - running on same CPU as last time
 904			 * - no other event has used the counter since
 905			 */
 906			if (hwc->idx == -1 ||
 907			    match_prev_assignment(hwc, cpuc, i))
 908				continue;
 909
 910			/*
 911			 * Ensure we don't accidentally enable a stopped
 912			 * counter simply because we rescheduled.
 913			 */
 914			if (hwc->state & PERF_HES_STOPPED)
 915				hwc->state |= PERF_HES_ARCH;
 916
 917			x86_pmu_stop(event, PERF_EF_UPDATE);
 918		}
 919
 920		/*
 921		 * step2: reprogram moved events into new counters
 922		 */
 923		for (i = 0; i < cpuc->n_events; i++) {
 924			event = cpuc->event_list[i];
 925			hwc = &event->hw;
 926
 927			if (!match_prev_assignment(hwc, cpuc, i))
 928				x86_assign_hw_event(event, cpuc, i);
 929			else if (i < n_running)
 930				continue;
 931
 932			if (hwc->state & PERF_HES_ARCH)
 933				continue;
 934
 935			x86_pmu_start(event, PERF_EF_RELOAD);
 936		}
 937		cpuc->n_added = 0;
 938		perf_events_lapic_init();
 939	}
 940
 941	cpuc->enabled = 1;
 942	barrier();
 943
 944	x86_pmu.enable_all(added);
 945}
 946
 947static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
 948
 949/*
 950 * Set the next IRQ period, based on the hwc->period_left value.
 951 * To be called with the event disabled in hw:
 952 */
 953int x86_perf_event_set_period(struct perf_event *event)
 954{
 955	struct hw_perf_event *hwc = &event->hw;
 956	s64 left = local64_read(&hwc->period_left);
 957	s64 period = hwc->sample_period;
 958	int ret = 0, idx = hwc->idx;
 959
 960	if (idx == INTEL_PMC_IDX_FIXED_BTS)
 961		return 0;
 962
 963	/*
 964	 * If we are way outside a reasonable range then just skip forward:
 965	 */
 966	if (unlikely(left <= -period)) {
 967		left = period;
 968		local64_set(&hwc->period_left, left);
 969		hwc->last_period = period;
 970		ret = 1;
 971	}
 972
 973	if (unlikely(left <= 0)) {
 974		left += period;
 975		local64_set(&hwc->period_left, left);
 976		hwc->last_period = period;
 977		ret = 1;
 978	}
 979	/*
 980	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
 981	 */
 982	if (unlikely(left < 2))
 983		left = 2;
 984
 985	if (left > x86_pmu.max_period)
 986		left = x86_pmu.max_period;
 987
 988	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
 989
 990	/*
 991	 * The hw event starts counting from this event offset,
 992	 * mark it to be able to extra future deltas:
 993	 */
 994	local64_set(&hwc->prev_count, (u64)-left);
 995
 996	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
 997
 998	/*
 999	 * Due to erratum on certan cpu we need
1000	 * a second write to be sure the register
1001	 * is updated properly
1002	 */
1003	if (x86_pmu.perfctr_second_write) {
1004		wrmsrl(hwc->event_base,
1005			(u64)(-left) & x86_pmu.cntval_mask);
1006	}
1007
1008	perf_event_update_userpage(event);
1009
1010	return ret;
1011}
1012
1013void x86_pmu_enable_event(struct perf_event *event)
1014{
1015	if (__this_cpu_read(cpu_hw_events.enabled))
1016		__x86_pmu_enable_event(&event->hw,
1017				       ARCH_PERFMON_EVENTSEL_ENABLE);
1018}
1019
1020/*
1021 * Add a single event to the PMU.
1022 *
1023 * The event is added to the group of enabled events
1024 * but only if it can be scehduled with existing events.
1025 */
1026static int x86_pmu_add(struct perf_event *event, int flags)
1027{
1028	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1029	struct hw_perf_event *hwc;
1030	int assign[X86_PMC_IDX_MAX];
1031	int n, n0, ret;
1032
1033	hwc = &event->hw;
1034
1035	perf_pmu_disable(event->pmu);
1036	n0 = cpuc->n_events;
1037	ret = n = collect_events(cpuc, event, false);
1038	if (ret < 0)
1039		goto out;
1040
1041	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1042	if (!(flags & PERF_EF_START))
1043		hwc->state |= PERF_HES_ARCH;
1044
1045	/*
1046	 * If group events scheduling transaction was started,
1047	 * skip the schedulability test here, it will be performed
1048	 * at commit time (->commit_txn) as a whole.
1049	 */
1050	if (cpuc->group_flag & PERF_EVENT_TXN)
1051		goto done_collect;
1052
1053	ret = x86_pmu.schedule_events(cpuc, n, assign);
1054	if (ret)
1055		goto out;
1056	/*
1057	 * copy new assignment, now we know it is possible
1058	 * will be used by hw_perf_enable()
1059	 */
1060	memcpy(cpuc->assign, assign, n*sizeof(int));
1061
1062done_collect:
1063	/*
1064	 * Commit the collect_events() state. See x86_pmu_del() and
1065	 * x86_pmu_*_txn().
1066	 */
1067	cpuc->n_events = n;
1068	cpuc->n_added += n - n0;
1069	cpuc->n_txn += n - n0;
1070
1071	ret = 0;
1072out:
1073	perf_pmu_enable(event->pmu);
1074	return ret;
1075}
1076
1077static void x86_pmu_start(struct perf_event *event, int flags)
1078{
1079	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1080	int idx = event->hw.idx;
1081
1082	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1083		return;
1084
1085	if (WARN_ON_ONCE(idx == -1))
1086		return;
1087
1088	if (flags & PERF_EF_RELOAD) {
1089		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1090		x86_perf_event_set_period(event);
1091	}
1092
1093	event->hw.state = 0;
1094
1095	cpuc->events[idx] = event;
1096	__set_bit(idx, cpuc->active_mask);
1097	__set_bit(idx, cpuc->running);
1098	x86_pmu.enable(event);
1099	perf_event_update_userpage(event);
1100}
1101
1102void perf_event_print_debug(void)
1103{
1104	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1105	u64 pebs;
1106	struct cpu_hw_events *cpuc;
1107	unsigned long flags;
1108	int cpu, idx;
1109
1110	if (!x86_pmu.num_counters)
1111		return;
1112
1113	local_irq_save(flags);
1114
1115	cpu = smp_processor_id();
1116	cpuc = &per_cpu(cpu_hw_events, cpu);
1117
1118	if (x86_pmu.version >= 2) {
1119		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1120		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1121		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1122		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1123		rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1124
1125		pr_info("\n");
1126		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1127		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1128		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1129		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1130		pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1131	}
1132	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1133
1134	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1135		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1136		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1137
1138		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1139
1140		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1141			cpu, idx, pmc_ctrl);
1142		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1143			cpu, idx, pmc_count);
1144		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1145			cpu, idx, prev_left);
1146	}
1147	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1148		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1149
1150		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1151			cpu, idx, pmc_count);
1152	}
1153	local_irq_restore(flags);
1154}
1155
1156void x86_pmu_stop(struct perf_event *event, int flags)
1157{
1158	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1159	struct hw_perf_event *hwc = &event->hw;
1160
1161	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1162		x86_pmu.disable(event);
1163		cpuc->events[hwc->idx] = NULL;
1164		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1165		hwc->state |= PERF_HES_STOPPED;
1166	}
1167
1168	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1169		/*
1170		 * Drain the remaining delta count out of a event
1171		 * that we are disabling:
1172		 */
1173		x86_perf_event_update(event);
1174		hwc->state |= PERF_HES_UPTODATE;
1175	}
1176}
1177
1178static void x86_pmu_del(struct perf_event *event, int flags)
1179{
1180	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1181	int i;
1182
1183	/*
1184	 * event is descheduled
1185	 */
1186	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1187
1188	/*
1189	 * If we're called during a txn, we don't need to do anything.
1190	 * The events never got scheduled and ->cancel_txn will truncate
1191	 * the event_list.
1192	 *
1193	 * XXX assumes any ->del() called during a TXN will only be on
1194	 * an event added during that same TXN.
1195	 */
1196	if (cpuc->group_flag & PERF_EVENT_TXN)
1197		return;
1198
1199	/*
1200	 * Not a TXN, therefore cleanup properly.
1201	 */
1202	x86_pmu_stop(event, PERF_EF_UPDATE);
1203
1204	for (i = 0; i < cpuc->n_events; i++) {
1205		if (event == cpuc->event_list[i])
1206			break;
1207	}
1208
1209	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1210		return;
1211
1212	/* If we have a newly added event; make sure to decrease n_added. */
1213	if (i >= cpuc->n_events - cpuc->n_added)
1214		--cpuc->n_added;
1215
1216	if (x86_pmu.put_event_constraints)
1217		x86_pmu.put_event_constraints(cpuc, event);
1218
1219	/* Delete the array entry. */
1220	while (++i < cpuc->n_events)
1221		cpuc->event_list[i-1] = cpuc->event_list[i];
1222	--cpuc->n_events;
1223
1224	perf_event_update_userpage(event);
1225}
1226
1227int x86_pmu_handle_irq(struct pt_regs *regs)
1228{
1229	struct perf_sample_data data;
1230	struct cpu_hw_events *cpuc;
1231	struct perf_event *event;
1232	int idx, handled = 0;
1233	u64 val;
1234
1235	cpuc = &__get_cpu_var(cpu_hw_events);
1236
1237	/*
1238	 * Some chipsets need to unmask the LVTPC in a particular spot
1239	 * inside the nmi handler.  As a result, the unmasking was pushed
1240	 * into all the nmi handlers.
1241	 *
1242	 * This generic handler doesn't seem to have any issues where the
1243	 * unmasking occurs so it was left at the top.
1244	 */
1245	apic_write(APIC_LVTPC, APIC_DM_NMI);
1246
1247	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1248		if (!test_bit(idx, cpuc->active_mask)) {
1249			/*
1250			 * Though we deactivated the counter some cpus
1251			 * might still deliver spurious interrupts still
1252			 * in flight. Catch them:
1253			 */
1254			if (__test_and_clear_bit(idx, cpuc->running))
1255				handled++;
1256			continue;
1257		}
1258
1259		event = cpuc->events[idx];
1260
1261		val = x86_perf_event_update(event);
1262		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1263			continue;
1264
1265		/*
1266		 * event overflow
1267		 */
1268		handled++;
1269		perf_sample_data_init(&data, 0, event->hw.last_period);
1270
1271		if (!x86_perf_event_set_period(event))
1272			continue;
1273
1274		if (perf_event_overflow(event, &data, regs))
1275			x86_pmu_stop(event, 0);
1276	}
1277
1278	if (handled)
1279		inc_irq_stat(apic_perf_irqs);
1280
1281	return handled;
1282}
1283
1284void perf_events_lapic_init(void)
1285{
1286	if (!x86_pmu.apic || !x86_pmu_initialized())
1287		return;
1288
1289	/*
1290	 * Always use NMI for PMU
1291	 */
1292	apic_write(APIC_LVTPC, APIC_DM_NMI);
1293}
1294
1295static int __kprobes
1296perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1297{
1298	u64 start_clock;
1299	u64 finish_clock;
1300	int ret;
1301
1302	if (!atomic_read(&active_events))
1303		return NMI_DONE;
1304
1305	start_clock = sched_clock();
1306	ret = x86_pmu.handle_irq(regs);
1307	finish_clock = sched_clock();
1308
1309	perf_sample_event_took(finish_clock - start_clock);
1310
1311	return ret;
1312}
1313
1314struct event_constraint emptyconstraint;
1315struct event_constraint unconstrained;
1316
1317static int
1318x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1319{
1320	unsigned int cpu = (long)hcpu;
1321	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1322	int ret = NOTIFY_OK;
1323
1324	switch (action & ~CPU_TASKS_FROZEN) {
1325	case CPU_UP_PREPARE:
1326		cpuc->kfree_on_online = NULL;
1327		if (x86_pmu.cpu_prepare)
1328			ret = x86_pmu.cpu_prepare(cpu);
1329		break;
1330
1331	case CPU_STARTING:
1332		if (x86_pmu.attr_rdpmc)
1333			set_in_cr4(X86_CR4_PCE);
1334		if (x86_pmu.cpu_starting)
1335			x86_pmu.cpu_starting(cpu);
1336		break;
1337
1338	case CPU_ONLINE:
1339		kfree(cpuc->kfree_on_online);
1340		break;
1341
1342	case CPU_DYING:
1343		if (x86_pmu.cpu_dying)
1344			x86_pmu.cpu_dying(cpu);
1345		break;
1346
1347	case CPU_UP_CANCELED:
1348	case CPU_DEAD:
1349		if (x86_pmu.cpu_dead)
1350			x86_pmu.cpu_dead(cpu);
1351		break;
1352
1353	default:
1354		break;
1355	}
1356
1357	return ret;
1358}
1359
1360static void __init pmu_check_apic(void)
1361{
1362	if (cpu_has_apic)
1363		return;
1364
1365	x86_pmu.apic = 0;
1366	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1367	pr_info("no hardware sampling interrupt available.\n");
1368}
1369
1370static struct attribute_group x86_pmu_format_group = {
1371	.name = "format",
1372	.attrs = NULL,
1373};
1374
1375/*
1376 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1377 * out of events_attr attributes.
1378 */
1379static void __init filter_events(struct attribute **attrs)
1380{
1381	struct device_attribute *d;
1382	struct perf_pmu_events_attr *pmu_attr;
1383	int i, j;
1384
1385	for (i = 0; attrs[i]; i++) {
1386		d = (struct device_attribute *)attrs[i];
1387		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1388		/* str trumps id */
1389		if (pmu_attr->event_str)
1390			continue;
1391		if (x86_pmu.event_map(i))
1392			continue;
1393
1394		for (j = i; attrs[j]; j++)
1395			attrs[j] = attrs[j + 1];
1396
1397		/* Check the shifted attr. */
1398		i--;
1399	}
1400}
1401
1402/* Merge two pointer arrays */
1403static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1404{
1405	struct attribute **new;
1406	int j, i;
1407
1408	for (j = 0; a[j]; j++)
1409		;
1410	for (i = 0; b[i]; i++)
1411		j++;
1412	j++;
1413
1414	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1415	if (!new)
1416		return NULL;
1417
1418	j = 0;
1419	for (i = 0; a[i]; i++)
1420		new[j++] = a[i];
1421	for (i = 0; b[i]; i++)
1422		new[j++] = b[i];
1423	new[j] = NULL;
1424
1425	return new;
1426}
1427
1428ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1429			  char *page)
1430{
1431	struct perf_pmu_events_attr *pmu_attr = \
1432		container_of(attr, struct perf_pmu_events_attr, attr);
1433	u64 config = x86_pmu.event_map(pmu_attr->id);
1434
1435	/* string trumps id */
1436	if (pmu_attr->event_str)
1437		return sprintf(page, "%s", pmu_attr->event_str);
1438
1439	return x86_pmu.events_sysfs_show(page, config);
1440}
1441
1442EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1443EVENT_ATTR(instructions,		INSTRUCTIONS		);
1444EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1445EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1446EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1447EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1448EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1449EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1450EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1451EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1452
1453static struct attribute *empty_attrs;
1454
1455static struct attribute *events_attr[] = {
1456	EVENT_PTR(CPU_CYCLES),
1457	EVENT_PTR(INSTRUCTIONS),
1458	EVENT_PTR(CACHE_REFERENCES),
1459	EVENT_PTR(CACHE_MISSES),
1460	EVENT_PTR(BRANCH_INSTRUCTIONS),
1461	EVENT_PTR(BRANCH_MISSES),
1462	EVENT_PTR(BUS_CYCLES),
1463	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1464	EVENT_PTR(STALLED_CYCLES_BACKEND),
1465	EVENT_PTR(REF_CPU_CYCLES),
1466	NULL,
1467};
1468
1469static struct attribute_group x86_pmu_events_group = {
1470	.name = "events",
1471	.attrs = events_attr,
1472};
1473
1474ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1475{
1476	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1477	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1478	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1479	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1480	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1481	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1482	ssize_t ret;
1483
1484	/*
1485	* We have whole page size to spend and just little data
1486	* to write, so we can safely use sprintf.
1487	*/
1488	ret = sprintf(page, "event=0x%02llx", event);
1489
1490	if (umask)
1491		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1492
1493	if (edge)
1494		ret += sprintf(page + ret, ",edge");
1495
1496	if (pc)
1497		ret += sprintf(page + ret, ",pc");
1498
1499	if (any)
1500		ret += sprintf(page + ret, ",any");
1501
1502	if (inv)
1503		ret += sprintf(page + ret, ",inv");
1504
1505	if (cmask)
1506		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1507
1508	ret += sprintf(page + ret, "\n");
1509
1510	return ret;
1511}
1512
1513static int __init init_hw_perf_events(void)
1514{
1515	struct x86_pmu_quirk *quirk;
1516	int err;
1517
1518	pr_info("Performance Events: ");
1519
1520	switch (boot_cpu_data.x86_vendor) {
1521	case X86_VENDOR_INTEL:
1522		err = intel_pmu_init();
1523		break;
1524	case X86_VENDOR_AMD:
1525		err = amd_pmu_init();
1526		break;
1527	default:
1528		err = -ENOTSUPP;
1529	}
1530	if (err != 0) {
1531		pr_cont("no PMU driver, software events only.\n");
1532		return 0;
1533	}
1534
1535	pmu_check_apic();
1536
1537	/* sanity check that the hardware exists or is emulated */
1538	if (!check_hw_exists())
1539		return 0;
1540
1541	pr_cont("%s PMU driver.\n", x86_pmu.name);
1542
1543	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1544
1545	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1546		quirk->func();
1547
1548	if (!x86_pmu.intel_ctrl)
1549		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1550
1551	perf_events_lapic_init();
1552	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1553
1554	unconstrained = (struct event_constraint)
1555		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1556				   0, x86_pmu.num_counters, 0, 0);
1557
1558	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1559
1560	if (x86_pmu.event_attrs)
1561		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1562
1563	if (!x86_pmu.events_sysfs_show)
1564		x86_pmu_events_group.attrs = &empty_attrs;
1565	else
1566		filter_events(x86_pmu_events_group.attrs);
1567
1568	if (x86_pmu.cpu_events) {
1569		struct attribute **tmp;
1570
1571		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1572		if (!WARN_ON(!tmp))
1573			x86_pmu_events_group.attrs = tmp;
1574	}
1575
1576	pr_info("... version:                %d\n",     x86_pmu.version);
1577	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1578	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1579	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1580	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1581	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1582	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1583
1584	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1585	perf_cpu_notifier(x86_pmu_notifier);
1586
1587	return 0;
1588}
1589early_initcall(init_hw_perf_events);
1590
1591static inline void x86_pmu_read(struct perf_event *event)
1592{
1593	x86_perf_event_update(event);
1594}
1595
1596/*
1597 * Start group events scheduling transaction
1598 * Set the flag to make pmu::enable() not perform the
1599 * schedulability test, it will be performed at commit time
1600 */
1601static void x86_pmu_start_txn(struct pmu *pmu)
1602{
1603	perf_pmu_disable(pmu);
1604	__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1605	__this_cpu_write(cpu_hw_events.n_txn, 0);
1606}
1607
1608/*
1609 * Stop group events scheduling transaction
1610 * Clear the flag and pmu::enable() will perform the
1611 * schedulability test.
1612 */
1613static void x86_pmu_cancel_txn(struct pmu *pmu)
1614{
1615	__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1616	/*
1617	 * Truncate collected array by the number of events added in this
1618	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1619	 */
1620	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1621	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1622	perf_pmu_enable(pmu);
1623}
1624
1625/*
1626 * Commit group events scheduling transaction
1627 * Perform the group schedulability test as a whole
1628 * Return 0 if success
1629 *
1630 * Does not cancel the transaction on failure; expects the caller to do this.
1631 */
1632static int x86_pmu_commit_txn(struct pmu *pmu)
1633{
1634	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1635	int assign[X86_PMC_IDX_MAX];
1636	int n, ret;
1637
1638	n = cpuc->n_events;
1639
1640	if (!x86_pmu_initialized())
1641		return -EAGAIN;
1642
1643	ret = x86_pmu.schedule_events(cpuc, n, assign);
1644	if (ret)
1645		return ret;
1646
1647	/*
1648	 * copy new assignment, now we know it is possible
1649	 * will be used by hw_perf_enable()
1650	 */
1651	memcpy(cpuc->assign, assign, n*sizeof(int));
1652
1653	cpuc->group_flag &= ~PERF_EVENT_TXN;
1654	perf_pmu_enable(pmu);
1655	return 0;
1656}
1657/*
1658 * a fake_cpuc is used to validate event groups. Due to
1659 * the extra reg logic, we need to also allocate a fake
1660 * per_core and per_cpu structure. Otherwise, group events
1661 * using extra reg may conflict without the kernel being
1662 * able to catch this when the last event gets added to
1663 * the group.
1664 */
1665static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1666{
1667	kfree(cpuc->shared_regs);
1668	kfree(cpuc);
1669}
1670
1671static struct cpu_hw_events *allocate_fake_cpuc(void)
1672{
1673	struct cpu_hw_events *cpuc;
1674	int cpu = raw_smp_processor_id();
1675
1676	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1677	if (!cpuc)
1678		return ERR_PTR(-ENOMEM);
1679
1680	/* only needed, if we have extra_regs */
1681	if (x86_pmu.extra_regs) {
1682		cpuc->shared_regs = allocate_shared_regs(cpu);
1683		if (!cpuc->shared_regs)
1684			goto error;
1685	}
1686	cpuc->is_fake = 1;
1687	return cpuc;
1688error:
1689	free_fake_cpuc(cpuc);
1690	return ERR_PTR(-ENOMEM);
1691}
1692
1693/*
1694 * validate that we can schedule this event
1695 */
1696static int validate_event(struct perf_event *event)
1697{
1698	struct cpu_hw_events *fake_cpuc;
1699	struct event_constraint *c;
1700	int ret = 0;
1701
1702	fake_cpuc = allocate_fake_cpuc();
1703	if (IS_ERR(fake_cpuc))
1704		return PTR_ERR(fake_cpuc);
1705
1706	c = x86_pmu.get_event_constraints(fake_cpuc, event);
1707
1708	if (!c || !c->weight)
1709		ret = -EINVAL;
1710
1711	if (x86_pmu.put_event_constraints)
1712		x86_pmu.put_event_constraints(fake_cpuc, event);
1713
1714	free_fake_cpuc(fake_cpuc);
1715
1716	return ret;
1717}
1718
1719/*
1720 * validate a single event group
1721 *
1722 * validation include:
1723 *	- check events are compatible which each other
1724 *	- events do not compete for the same counter
1725 *	- number of events <= number of counters
1726 *
1727 * validation ensures the group can be loaded onto the
1728 * PMU if it was the only group available.
1729 */
1730static int validate_group(struct perf_event *event)
1731{
1732	struct perf_event *leader = event->group_leader;
1733	struct cpu_hw_events *fake_cpuc;
1734	int ret = -EINVAL, n;
1735
1736	fake_cpuc = allocate_fake_cpuc();
1737	if (IS_ERR(fake_cpuc))
1738		return PTR_ERR(fake_cpuc);
1739	/*
1740	 * the event is not yet connected with its
1741	 * siblings therefore we must first collect
1742	 * existing siblings, then add the new event
1743	 * before we can simulate the scheduling
1744	 */
1745	n = collect_events(fake_cpuc, leader, true);
1746	if (n < 0)
1747		goto out;
1748
1749	fake_cpuc->n_events = n;
1750	n = collect_events(fake_cpuc, event, false);
1751	if (n < 0)
1752		goto out;
1753
1754	fake_cpuc->n_events = n;
1755
1756	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1757
1758out:
1759	free_fake_cpuc(fake_cpuc);
1760	return ret;
1761}
1762
1763static int x86_pmu_event_init(struct perf_event *event)
1764{
1765	struct pmu *tmp;
1766	int err;
1767
1768	switch (event->attr.type) {
1769	case PERF_TYPE_RAW:
1770	case PERF_TYPE_HARDWARE:
1771	case PERF_TYPE_HW_CACHE:
1772		break;
1773
1774	default:
1775		return -ENOENT;
1776	}
1777
1778	err = __x86_pmu_event_init(event);
1779	if (!err) {
1780		/*
1781		 * we temporarily connect event to its pmu
1782		 * such that validate_group() can classify
1783		 * it as an x86 event using is_x86_event()
1784		 */
1785		tmp = event->pmu;
1786		event->pmu = &pmu;
1787
1788		if (event->group_leader != event)
1789			err = validate_group(event);
1790		else
1791			err = validate_event(event);
1792
1793		event->pmu = tmp;
1794	}
1795	if (err) {
1796		if (event->destroy)
1797			event->destroy(event);
1798	}
1799
1800	return err;
1801}
1802
1803static int x86_pmu_event_idx(struct perf_event *event)
1804{
1805	int idx = event->hw.idx;
1806
1807	if (!x86_pmu.attr_rdpmc)
1808		return 0;
1809
1810	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1811		idx -= INTEL_PMC_IDX_FIXED;
1812		idx |= 1 << 30;
1813	}
1814
1815	return idx + 1;
1816}
1817
1818static ssize_t get_attr_rdpmc(struct device *cdev,
1819			      struct device_attribute *attr,
1820			      char *buf)
1821{
1822	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1823}
1824
1825static void change_rdpmc(void *info)
1826{
1827	bool enable = !!(unsigned long)info;
1828
1829	if (enable)
1830		set_in_cr4(X86_CR4_PCE);
1831	else
1832		clear_in_cr4(X86_CR4_PCE);
1833}
1834
1835static ssize_t set_attr_rdpmc(struct device *cdev,
1836			      struct device_attribute *attr,
1837			      const char *buf, size_t count)
1838{
1839	unsigned long val;
1840	ssize_t ret;
1841
1842	ret = kstrtoul(buf, 0, &val);
1843	if (ret)
1844		return ret;
1845
1846	if (x86_pmu.attr_rdpmc_broken)
1847		return -ENOTSUPP;
1848
1849	if (!!val != !!x86_pmu.attr_rdpmc) {
1850		x86_pmu.attr_rdpmc = !!val;
1851		on_each_cpu(change_rdpmc, (void *)val, 1);
1852	}
1853
1854	return count;
1855}
1856
1857static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1858
1859static struct attribute *x86_pmu_attrs[] = {
1860	&dev_attr_rdpmc.attr,
1861	NULL,
1862};
1863
1864static struct attribute_group x86_pmu_attr_group = {
1865	.attrs = x86_pmu_attrs,
1866};
1867
1868static const struct attribute_group *x86_pmu_attr_groups[] = {
1869	&x86_pmu_attr_group,
1870	&x86_pmu_format_group,
1871	&x86_pmu_events_group,
1872	NULL,
1873};
1874
1875static void x86_pmu_flush_branch_stack(void)
1876{
1877	if (x86_pmu.flush_branch_stack)
1878		x86_pmu.flush_branch_stack();
1879}
1880
1881void perf_check_microcode(void)
1882{
1883	if (x86_pmu.check_microcode)
1884		x86_pmu.check_microcode();
1885}
1886EXPORT_SYMBOL_GPL(perf_check_microcode);
1887
1888static struct pmu pmu = {
1889	.pmu_enable		= x86_pmu_enable,
1890	.pmu_disable		= x86_pmu_disable,
1891
1892	.attr_groups		= x86_pmu_attr_groups,
1893
1894	.event_init		= x86_pmu_event_init,
1895
1896	.add			= x86_pmu_add,
1897	.del			= x86_pmu_del,
1898	.start			= x86_pmu_start,
1899	.stop			= x86_pmu_stop,
1900	.read			= x86_pmu_read,
1901
1902	.start_txn		= x86_pmu_start_txn,
1903	.cancel_txn		= x86_pmu_cancel_txn,
1904	.commit_txn		= x86_pmu_commit_txn,
1905
1906	.event_idx		= x86_pmu_event_idx,
1907	.flush_branch_stack	= x86_pmu_flush_branch_stack,
1908};
1909
1910void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1911{
1912	struct cyc2ns_data *data;
1913
1914	userpg->cap_user_time = 0;
1915	userpg->cap_user_time_zero = 0;
1916	userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
1917	userpg->pmc_width = x86_pmu.cntval_bits;
1918
1919	if (!sched_clock_stable())
1920		return;
1921
1922	data = cyc2ns_read_begin();
1923
1924	userpg->cap_user_time = 1;
1925	userpg->time_mult = data->cyc2ns_mul;
1926	userpg->time_shift = data->cyc2ns_shift;
1927	userpg->time_offset = data->cyc2ns_offset - now;
1928
1929	userpg->cap_user_time_zero = 1;
1930	userpg->time_zero = data->cyc2ns_offset;
1931
1932	cyc2ns_read_end(data);
1933}
1934
1935/*
1936 * callchain support
1937 */
1938
1939static int backtrace_stack(void *data, char *name)
1940{
1941	return 0;
1942}
1943
1944static void backtrace_address(void *data, unsigned long addr, int reliable)
1945{
1946	struct perf_callchain_entry *entry = data;
1947
1948	perf_callchain_store(entry, addr);
1949}
1950
1951static const struct stacktrace_ops backtrace_ops = {
1952	.stack			= backtrace_stack,
1953	.address		= backtrace_address,
1954	.walk_stack		= print_context_stack_bp,
1955};
1956
1957void
1958perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1959{
1960	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1961		/* TODO: We don't support guest os callchain now */
1962		return;
1963	}
1964
1965	perf_callchain_store(entry, regs->ip);
1966
1967	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1968}
1969
1970static inline int
1971valid_user_frame(const void __user *fp, unsigned long size)
1972{
1973	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1974}
1975
1976static unsigned long get_segment_base(unsigned int segment)
1977{
1978	struct desc_struct *desc;
1979	int idx = segment >> 3;
1980
1981	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1982		if (idx > LDT_ENTRIES)
1983			return 0;
1984
1985		if (idx > current->active_mm->context.size)
1986			return 0;
1987
1988		desc = current->active_mm->context.ldt;
1989	} else {
1990		if (idx > GDT_ENTRIES)
1991			return 0;
1992
1993		desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1994	}
1995
1996	return get_desc_base(desc + idx);
1997}
1998
1999#ifdef CONFIG_COMPAT
2000
2001#include <asm/compat.h>
2002
2003static inline int
2004perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2005{
2006	/* 32-bit process in 64-bit kernel. */
2007	unsigned long ss_base, cs_base;
2008	struct stack_frame_ia32 frame;
2009	const void __user *fp;
2010
2011	if (!test_thread_flag(TIF_IA32))
2012		return 0;
2013
2014	cs_base = get_segment_base(regs->cs);
2015	ss_base = get_segment_base(regs->ss);
2016
2017	fp = compat_ptr(ss_base + regs->bp);
2018	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2019		unsigned long bytes;
2020		frame.next_frame     = 0;
2021		frame.return_address = 0;
2022
2023		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2024		if (bytes != 0)
2025			break;
2026
2027		if (!valid_user_frame(fp, sizeof(frame)))
2028			break;
2029
2030		perf_callchain_store(entry, cs_base + frame.return_address);
2031		fp = compat_ptr(ss_base + frame.next_frame);
2032	}
2033	return 1;
2034}
2035#else
2036static inline int
2037perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2038{
2039    return 0;
2040}
2041#endif
2042
2043void
2044perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2045{
2046	struct stack_frame frame;
2047	const void __user *fp;
2048
2049	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2050		/* TODO: We don't support guest os callchain now */
2051		return;
2052	}
2053
2054	/*
2055	 * We don't know what to do with VM86 stacks.. ignore them for now.
2056	 */
2057	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2058		return;
2059
2060	fp = (void __user *)regs->bp;
2061
2062	perf_callchain_store(entry, regs->ip);
2063
2064	if (!current->mm)
2065		return;
2066
2067	if (perf_callchain_user32(regs, entry))
2068		return;
2069
2070	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2071		unsigned long bytes;
2072		frame.next_frame	     = NULL;
2073		frame.return_address = 0;
2074
2075		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2076		if (bytes != 0)
2077			break;
2078
2079		if (!valid_user_frame(fp, sizeof(frame)))
2080			break;
2081
2082		perf_callchain_store(entry, frame.return_address);
2083		fp = frame.next_frame;
2084	}
2085}
2086
2087/*
2088 * Deal with code segment offsets for the various execution modes:
2089 *
2090 *   VM86 - the good olde 16 bit days, where the linear address is
2091 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2092 *
2093 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2094 *          to figure out what the 32bit base address is.
2095 *
2096 *    X32 - has TIF_X32 set, but is running in x86_64
2097 *
2098 * X86_64 - CS,DS,SS,ES are all zero based.
2099 */
2100static unsigned long code_segment_base(struct pt_regs *regs)
2101{
2102	/*
2103	 * If we are in VM86 mode, add the segment offset to convert to a
2104	 * linear address.
2105	 */
2106	if (regs->flags & X86_VM_MASK)
2107		return 0x10 * regs->cs;
2108
2109	/*
2110	 * For IA32 we look at the GDT/LDT segment base to convert the
2111	 * effective IP to a linear address.
2112	 */
2113#ifdef CONFIG_X86_32
2114	if (user_mode(regs) && regs->cs != __USER_CS)
2115		return get_segment_base(regs->cs);
2116#else
2117	if (test_thread_flag(TIF_IA32)) {
2118		if (user_mode(regs) && regs->cs != __USER32_CS)
2119			return get_segment_base(regs->cs);
2120	}
2121#endif
2122	return 0;
2123}
2124
2125unsigned long perf_instruction_pointer(struct pt_regs *regs)
2126{
2127	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2128		return perf_guest_cbs->get_guest_ip();
2129
2130	return regs->ip + code_segment_base(regs);
2131}
2132
2133unsigned long perf_misc_flags(struct pt_regs *regs)
2134{
2135	int misc = 0;
2136
2137	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2138		if (perf_guest_cbs->is_user_mode())
2139			misc |= PERF_RECORD_MISC_GUEST_USER;
2140		else
2141			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2142	} else {
2143		if (user_mode(regs))
2144			misc |= PERF_RECORD_MISC_USER;
2145		else
2146			misc |= PERF_RECORD_MISC_KERNEL;
2147	}
2148
2149	if (regs->flags & PERF_EFLAGS_EXACT)
2150		misc |= PERF_RECORD_MISC_EXACT_IP;
2151
2152	return misc;
2153}
2154
2155void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2156{
2157	cap->version		= x86_pmu.version;
2158	cap->num_counters_gp	= x86_pmu.num_counters;
2159	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2160	cap->bit_width_gp	= x86_pmu.cntval_bits;
2161	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2162	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2163	cap->events_mask_len	= x86_pmu.events_mask_len;
2164}
2165EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);