Linux Audio

Check our new training course

Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_X86_BITOPS_H
  3#define _ASM_X86_BITOPS_H
  4
  5/*
  6 * Copyright 1992, Linus Torvalds.
  7 *
  8 * Note: inlines with more than a single statement should be marked
  9 * __always_inline to avoid problems with older gcc's inlining heuristics.
 10 */
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/compiler.h>
 17#include <asm/alternative.h>
 18#include <asm/rmwcc.h>
 19#include <asm/barrier.h>
 20
 21#if BITS_PER_LONG == 32
 22# define _BITOPS_LONG_SHIFT 5
 23#elif BITS_PER_LONG == 64
 24# define _BITOPS_LONG_SHIFT 6
 25#else
 26# error "Unexpected BITS_PER_LONG"
 27#endif
 28
 29#define BIT_64(n)			(U64_C(1) << (n))
 30
 31/*
 32 * These have to be done with inline assembly: that way the bit-setting
 33 * is guaranteed to be atomic. All bit operations return 0 if the bit
 34 * was cleared before the operation and != 0 if it was not.
 35 *
 36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 37 */
 38
 39#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
 40/* Technically wrong, but this avoids compilation errors on some gcc
 41   versions. */
 42#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
 43#else
 44#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
 45#endif
 46
 47#define ADDR				BITOP_ADDR(addr)
 48
 49/*
 50 * We do the locked ops that don't return the old value as
 51 * a mask operation on a byte.
 52 */
 53#define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
 54#define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
 55#define CONST_MASK(nr)			(1 << ((nr) & 7))
 56
 57/**
 58 * set_bit - Atomically set a bit in memory
 59 * @nr: the bit to set
 60 * @addr: the address to start counting from
 61 *
 62 * This function is atomic and may not be reordered.  See __set_bit()
 63 * if you do not require the atomic guarantees.
 64 *
 65 * Note: there are no guarantees that this function will not be reordered
 66 * on non x86 architectures, so if you are writing portable code,
 67 * make sure not to rely on its reordering guarantees.
 68 *
 69 * Note that @nr may be almost arbitrarily large; this function is not
 70 * restricted to acting on a single-word quantity.
 71 */
 72static __always_inline void
 73set_bit(long nr, volatile unsigned long *addr)
 74{
 75	if (IS_IMMEDIATE(nr)) {
 76		asm volatile(LOCK_PREFIX "orb %1,%0"
 77			: CONST_MASK_ADDR(nr, addr)
 78			: "iq" ((u8)CONST_MASK(nr))
 79			: "memory");
 80	} else {
 81		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
 82			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
 83	}
 84}
 85
 86/**
 87 * __set_bit - Set a bit in memory
 88 * @nr: the bit to set
 89 * @addr: the address to start counting from
 90 *
 91 * Unlike set_bit(), this function is non-atomic and may be reordered.
 92 * If it's called on the same region of memory simultaneously, the effect
 93 * may be that only one operation succeeds.
 94 */
 95static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
 96{
 97	asm volatile(__ASM_SIZE(bts) " %1,%0" : ADDR : "Ir" (nr) : "memory");
 98}
 99
100/**
101 * clear_bit - Clears a bit in memory
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
104 *
105 * clear_bit() is atomic and may not be reordered.  However, it does
106 * not contain a memory barrier, so if it is used for locking purposes,
107 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
108 * in order to ensure changes are visible on other processors.
109 */
110static __always_inline void
111clear_bit(long nr, volatile unsigned long *addr)
112{
113	if (IS_IMMEDIATE(nr)) {
114		asm volatile(LOCK_PREFIX "andb %1,%0"
115			: CONST_MASK_ADDR(nr, addr)
116			: "iq" ((u8)~CONST_MASK(nr)));
117	} else {
118		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
119			: BITOP_ADDR(addr)
120			: "Ir" (nr));
121	}
122}
123
124/*
125 * clear_bit_unlock - Clears a bit in memory
126 * @nr: Bit to clear
127 * @addr: Address to start counting from
128 *
129 * clear_bit() is atomic and implies release semantics before the memory
130 * operation. It can be used for an unlock.
131 */
132static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
133{
134	barrier();
135	clear_bit(nr, addr);
136}
137
138static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
139{
140	asm volatile(__ASM_SIZE(btr) " %1,%0" : ADDR : "Ir" (nr));
141}
142
143static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
144{
145	bool negative;
146	asm volatile(LOCK_PREFIX "andb %2,%1"
147		CC_SET(s)
148		: CC_OUT(s) (negative), ADDR
149		: "ir" ((char) ~(1 << nr)) : "memory");
150	return negative;
151}
152
153// Let everybody know we have it
154#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
155
156/*
157 * __clear_bit_unlock - Clears a bit in memory
158 * @nr: Bit to clear
159 * @addr: Address to start counting from
160 *
161 * __clear_bit() is non-atomic and implies release semantics before the memory
162 * operation. It can be used for an unlock if no other CPUs can concurrently
163 * modify other bits in the word.
164 *
165 * No memory barrier is required here, because x86 cannot reorder stores past
166 * older loads. Same principle as spin_unlock.
167 */
168static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
169{
170	barrier();
171	__clear_bit(nr, addr);
172}
173
 
 
 
174/**
175 * __change_bit - Toggle a bit in memory
176 * @nr: the bit to change
177 * @addr: the address to start counting from
178 *
179 * Unlike change_bit(), this function is non-atomic and may be reordered.
180 * If it's called on the same region of memory simultaneously, the effect
181 * may be that only one operation succeeds.
182 */
183static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
184{
185	asm volatile(__ASM_SIZE(btc) " %1,%0" : ADDR : "Ir" (nr));
186}
187
188/**
189 * change_bit - Toggle a bit in memory
190 * @nr: Bit to change
191 * @addr: Address to start counting from
192 *
193 * change_bit() is atomic and may not be reordered.
194 * Note that @nr may be almost arbitrarily large; this function is not
195 * restricted to acting on a single-word quantity.
196 */
197static __always_inline void change_bit(long nr, volatile unsigned long *addr)
198{
199	if (IS_IMMEDIATE(nr)) {
200		asm volatile(LOCK_PREFIX "xorb %1,%0"
201			: CONST_MASK_ADDR(nr, addr)
202			: "iq" ((u8)CONST_MASK(nr)));
203	} else {
204		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
205			: BITOP_ADDR(addr)
206			: "Ir" (nr));
207	}
208}
209
210/**
211 * test_and_set_bit - Set a bit and return its old value
212 * @nr: Bit to set
213 * @addr: Address to count from
214 *
215 * This operation is atomic and cannot be reordered.
216 * It also implies a memory barrier.
217 */
218static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
219{
220	GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts),
221	                 *addr, "Ir", nr, "%0", c);
222}
223
224/**
225 * test_and_set_bit_lock - Set a bit and return its old value for lock
226 * @nr: Bit to set
227 * @addr: Address to count from
228 *
229 * This is the same as test_and_set_bit on x86.
230 */
231static __always_inline bool
232test_and_set_bit_lock(long nr, volatile unsigned long *addr)
233{
234	return test_and_set_bit(nr, addr);
235}
236
237/**
238 * __test_and_set_bit - Set a bit and return its old value
239 * @nr: Bit to set
240 * @addr: Address to count from
241 *
242 * This operation is non-atomic and can be reordered.
243 * If two examples of this operation race, one can appear to succeed
244 * but actually fail.  You must protect multiple accesses with a lock.
245 */
246static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
247{
248	bool oldbit;
249
250	asm(__ASM_SIZE(bts) " %2,%1"
251	    CC_SET(c)
252	    : CC_OUT(c) (oldbit), ADDR
253	    : "Ir" (nr));
254	return oldbit;
255}
256
257/**
258 * test_and_clear_bit - Clear a bit and return its old value
259 * @nr: Bit to clear
260 * @addr: Address to count from
261 *
262 * This operation is atomic and cannot be reordered.
263 * It also implies a memory barrier.
264 */
265static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
266{
267	GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr),
268	                 *addr, "Ir", nr, "%0", c);
269}
270
271/**
272 * __test_and_clear_bit - Clear a bit and return its old value
273 * @nr: Bit to clear
274 * @addr: Address to count from
275 *
276 * This operation is non-atomic and can be reordered.
277 * If two examples of this operation race, one can appear to succeed
278 * but actually fail.  You must protect multiple accesses with a lock.
279 *
280 * Note: the operation is performed atomically with respect to
281 * the local CPU, but not other CPUs. Portable code should not
282 * rely on this behaviour.
283 * KVM relies on this behaviour on x86 for modifying memory that is also
284 * accessed from a hypervisor on the same CPU if running in a VM: don't change
285 * this without also updating arch/x86/kernel/kvm.c
286 */
287static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
288{
289	bool oldbit;
290
291	asm volatile(__ASM_SIZE(btr) " %2,%1"
292		     CC_SET(c)
293		     : CC_OUT(c) (oldbit), ADDR
294		     : "Ir" (nr));
295	return oldbit;
296}
297
298/* WARNING: non atomic and it can be reordered! */
299static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
300{
301	bool oldbit;
302
303	asm volatile(__ASM_SIZE(btc) " %2,%1"
304		     CC_SET(c)
305		     : CC_OUT(c) (oldbit), ADDR
306		     : "Ir" (nr) : "memory");
307
308	return oldbit;
309}
310
311/**
312 * test_and_change_bit - Change a bit and return its old value
313 * @nr: Bit to change
314 * @addr: Address to count from
315 *
316 * This operation is atomic and cannot be reordered.
317 * It also implies a memory barrier.
318 */
319static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
320{
321	GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc),
322	                 *addr, "Ir", nr, "%0", c);
323}
324
325static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
326{
327	return ((1UL << (nr & (BITS_PER_LONG-1))) &
328		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
329}
330
331static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
332{
333	bool oldbit;
334
335	asm volatile(__ASM_SIZE(bt) " %2,%1"
336		     CC_SET(c)
337		     : CC_OUT(c) (oldbit)
338		     : "m" (*(unsigned long *)addr), "Ir" (nr));
339
340	return oldbit;
341}
342
343#if 0 /* Fool kernel-doc since it doesn't do macros yet */
344/**
345 * test_bit - Determine whether a bit is set
346 * @nr: bit number to test
347 * @addr: Address to start counting from
348 */
349static bool test_bit(int nr, const volatile unsigned long *addr);
350#endif
351
352#define test_bit(nr, addr)			\
353	(__builtin_constant_p((nr))		\
354	 ? constant_test_bit((nr), (addr))	\
355	 : variable_test_bit((nr), (addr)))
356
357/**
358 * __ffs - find first set bit in word
359 * @word: The word to search
360 *
361 * Undefined if no bit exists, so code should check against 0 first.
362 */
363static __always_inline unsigned long __ffs(unsigned long word)
364{
365	asm("rep; bsf %1,%0"
366		: "=r" (word)
367		: "rm" (word));
368	return word;
369}
370
371/**
372 * ffz - find first zero bit in word
373 * @word: The word to search
374 *
375 * Undefined if no zero exists, so code should check against ~0UL first.
376 */
377static __always_inline unsigned long ffz(unsigned long word)
378{
379	asm("rep; bsf %1,%0"
380		: "=r" (word)
381		: "r" (~word));
382	return word;
383}
384
385/*
386 * __fls: find last set bit in word
387 * @word: The word to search
388 *
389 * Undefined if no set bit exists, so code should check against 0 first.
390 */
391static __always_inline unsigned long __fls(unsigned long word)
392{
393	asm("bsr %1,%0"
394	    : "=r" (word)
395	    : "rm" (word));
396	return word;
397}
398
399#undef ADDR
400
401#ifdef __KERNEL__
402/**
403 * ffs - find first set bit in word
404 * @x: the word to search
405 *
406 * This is defined the same way as the libc and compiler builtin ffs
407 * routines, therefore differs in spirit from the other bitops.
408 *
409 * ffs(value) returns 0 if value is 0 or the position of the first
410 * set bit if value is nonzero. The first (least significant) bit
411 * is at position 1.
412 */
413static __always_inline int ffs(int x)
414{
415	int r;
416
417#ifdef CONFIG_X86_64
418	/*
419	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
420	 * dest reg is undefined if x==0, but their CPU architect says its
421	 * value is written to set it to the same as before, except that the
422	 * top 32 bits will be cleared.
423	 *
424	 * We cannot do this on 32 bits because at the very least some
425	 * 486 CPUs did not behave this way.
426	 */
427	asm("bsfl %1,%0"
428	    : "=r" (r)
429	    : "rm" (x), "0" (-1));
430#elif defined(CONFIG_X86_CMOV)
431	asm("bsfl %1,%0\n\t"
432	    "cmovzl %2,%0"
433	    : "=&r" (r) : "rm" (x), "r" (-1));
434#else
435	asm("bsfl %1,%0\n\t"
436	    "jnz 1f\n\t"
437	    "movl $-1,%0\n"
438	    "1:" : "=r" (r) : "rm" (x));
439#endif
440	return r + 1;
441}
442
443/**
444 * fls - find last set bit in word
445 * @x: the word to search
446 *
447 * This is defined in a similar way as the libc and compiler builtin
448 * ffs, but returns the position of the most significant set bit.
449 *
450 * fls(value) returns 0 if value is 0 or the position of the last
451 * set bit if value is nonzero. The last (most significant) bit is
452 * at position 32.
453 */
454static __always_inline int fls(int x)
455{
456	int r;
457
458#ifdef CONFIG_X86_64
459	/*
460	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
461	 * dest reg is undefined if x==0, but their CPU architect says its
462	 * value is written to set it to the same as before, except that the
463	 * top 32 bits will be cleared.
464	 *
465	 * We cannot do this on 32 bits because at the very least some
466	 * 486 CPUs did not behave this way.
467	 */
468	asm("bsrl %1,%0"
469	    : "=r" (r)
470	    : "rm" (x), "0" (-1));
471#elif defined(CONFIG_X86_CMOV)
472	asm("bsrl %1,%0\n\t"
473	    "cmovzl %2,%0"
474	    : "=&r" (r) : "rm" (x), "rm" (-1));
475#else
476	asm("bsrl %1,%0\n\t"
477	    "jnz 1f\n\t"
478	    "movl $-1,%0\n"
479	    "1:" : "=r" (r) : "rm" (x));
480#endif
481	return r + 1;
482}
483
484/**
485 * fls64 - find last set bit in a 64-bit word
486 * @x: the word to search
487 *
488 * This is defined in a similar way as the libc and compiler builtin
489 * ffsll, but returns the position of the most significant set bit.
490 *
491 * fls64(value) returns 0 if value is 0 or the position of the last
492 * set bit if value is nonzero. The last (most significant) bit is
493 * at position 64.
494 */
495#ifdef CONFIG_X86_64
496static __always_inline int fls64(__u64 x)
497{
498	int bitpos = -1;
499	/*
500	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
501	 * dest reg is undefined if x==0, but their CPU architect says its
502	 * value is written to set it to the same as before.
503	 */
504	asm("bsrq %1,%q0"
505	    : "+r" (bitpos)
506	    : "rm" (x));
507	return bitpos + 1;
508}
509#else
510#include <asm-generic/bitops/fls64.h>
511#endif
512
513#include <asm-generic/bitops/find.h>
514
515#include <asm-generic/bitops/sched.h>
 
 
516
517#include <asm/arch_hweight.h>
518
519#include <asm-generic/bitops/const_hweight.h>
520
521#include <asm-generic/bitops/le.h>
522
523#include <asm-generic/bitops/ext2-atomic-setbit.h>
524
525#endif /* __KERNEL__ */
526#endif /* _ASM_X86_BITOPS_H */
v3.15
 
  1#ifndef _ASM_X86_BITOPS_H
  2#define _ASM_X86_BITOPS_H
  3
  4/*
  5 * Copyright 1992, Linus Torvalds.
  6 *
  7 * Note: inlines with more than a single statement should be marked
  8 * __always_inline to avoid problems with older gcc's inlining heuristics.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 16#include <asm/alternative.h>
 17#include <asm/rmwcc.h>
 
 18
 19#if BITS_PER_LONG == 32
 20# define _BITOPS_LONG_SHIFT 5
 21#elif BITS_PER_LONG == 64
 22# define _BITOPS_LONG_SHIFT 6
 23#else
 24# error "Unexpected BITS_PER_LONG"
 25#endif
 26
 27#define BIT_64(n)			(U64_C(1) << (n))
 28
 29/*
 30 * These have to be done with inline assembly: that way the bit-setting
 31 * is guaranteed to be atomic. All bit operations return 0 if the bit
 32 * was cleared before the operation and != 0 if it was not.
 33 *
 34 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 35 */
 36
 37#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
 38/* Technically wrong, but this avoids compilation errors on some gcc
 39   versions. */
 40#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
 41#else
 42#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
 43#endif
 44
 45#define ADDR				BITOP_ADDR(addr)
 46
 47/*
 48 * We do the locked ops that don't return the old value as
 49 * a mask operation on a byte.
 50 */
 51#define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
 52#define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
 53#define CONST_MASK(nr)			(1 << ((nr) & 7))
 54
 55/**
 56 * set_bit - Atomically set a bit in memory
 57 * @nr: the bit to set
 58 * @addr: the address to start counting from
 59 *
 60 * This function is atomic and may not be reordered.  See __set_bit()
 61 * if you do not require the atomic guarantees.
 62 *
 63 * Note: there are no guarantees that this function will not be reordered
 64 * on non x86 architectures, so if you are writing portable code,
 65 * make sure not to rely on its reordering guarantees.
 66 *
 67 * Note that @nr may be almost arbitrarily large; this function is not
 68 * restricted to acting on a single-word quantity.
 69 */
 70static __always_inline void
 71set_bit(long nr, volatile unsigned long *addr)
 72{
 73	if (IS_IMMEDIATE(nr)) {
 74		asm volatile(LOCK_PREFIX "orb %1,%0"
 75			: CONST_MASK_ADDR(nr, addr)
 76			: "iq" ((u8)CONST_MASK(nr))
 77			: "memory");
 78	} else {
 79		asm volatile(LOCK_PREFIX "bts %1,%0"
 80			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
 81	}
 82}
 83
 84/**
 85 * __set_bit - Set a bit in memory
 86 * @nr: the bit to set
 87 * @addr: the address to start counting from
 88 *
 89 * Unlike set_bit(), this function is non-atomic and may be reordered.
 90 * If it's called on the same region of memory simultaneously, the effect
 91 * may be that only one operation succeeds.
 92 */
 93static inline void __set_bit(long nr, volatile unsigned long *addr)
 94{
 95	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
 96}
 97
 98/**
 99 * clear_bit - Clears a bit in memory
100 * @nr: Bit to clear
101 * @addr: Address to start counting from
102 *
103 * clear_bit() is atomic and may not be reordered.  However, it does
104 * not contain a memory barrier, so if it is used for locking purposes,
105 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
106 * in order to ensure changes are visible on other processors.
107 */
108static __always_inline void
109clear_bit(long nr, volatile unsigned long *addr)
110{
111	if (IS_IMMEDIATE(nr)) {
112		asm volatile(LOCK_PREFIX "andb %1,%0"
113			: CONST_MASK_ADDR(nr, addr)
114			: "iq" ((u8)~CONST_MASK(nr)));
115	} else {
116		asm volatile(LOCK_PREFIX "btr %1,%0"
117			: BITOP_ADDR(addr)
118			: "Ir" (nr));
119	}
120}
121
122/*
123 * clear_bit_unlock - Clears a bit in memory
124 * @nr: Bit to clear
125 * @addr: Address to start counting from
126 *
127 * clear_bit() is atomic and implies release semantics before the memory
128 * operation. It can be used for an unlock.
129 */
130static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
131{
132	barrier();
133	clear_bit(nr, addr);
134}
135
136static inline void __clear_bit(long nr, volatile unsigned long *addr)
137{
138	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
139}
140
 
 
 
 
 
 
 
 
 
 
 
 
 
141/*
142 * __clear_bit_unlock - Clears a bit in memory
143 * @nr: Bit to clear
144 * @addr: Address to start counting from
145 *
146 * __clear_bit() is non-atomic and implies release semantics before the memory
147 * operation. It can be used for an unlock if no other CPUs can concurrently
148 * modify other bits in the word.
149 *
150 * No memory barrier is required here, because x86 cannot reorder stores past
151 * older loads. Same principle as spin_unlock.
152 */
153static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
154{
155	barrier();
156	__clear_bit(nr, addr);
157}
158
159#define smp_mb__before_clear_bit()	barrier()
160#define smp_mb__after_clear_bit()	barrier()
161
162/**
163 * __change_bit - Toggle a bit in memory
164 * @nr: the bit to change
165 * @addr: the address to start counting from
166 *
167 * Unlike change_bit(), this function is non-atomic and may be reordered.
168 * If it's called on the same region of memory simultaneously, the effect
169 * may be that only one operation succeeds.
170 */
171static inline void __change_bit(long nr, volatile unsigned long *addr)
172{
173	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
174}
175
176/**
177 * change_bit - Toggle a bit in memory
178 * @nr: Bit to change
179 * @addr: Address to start counting from
180 *
181 * change_bit() is atomic and may not be reordered.
182 * Note that @nr may be almost arbitrarily large; this function is not
183 * restricted to acting on a single-word quantity.
184 */
185static inline void change_bit(long nr, volatile unsigned long *addr)
186{
187	if (IS_IMMEDIATE(nr)) {
188		asm volatile(LOCK_PREFIX "xorb %1,%0"
189			: CONST_MASK_ADDR(nr, addr)
190			: "iq" ((u8)CONST_MASK(nr)));
191	} else {
192		asm volatile(LOCK_PREFIX "btc %1,%0"
193			: BITOP_ADDR(addr)
194			: "Ir" (nr));
195	}
196}
197
198/**
199 * test_and_set_bit - Set a bit and return its old value
200 * @nr: Bit to set
201 * @addr: Address to count from
202 *
203 * This operation is atomic and cannot be reordered.
204 * It also implies a memory barrier.
205 */
206static inline int test_and_set_bit(long nr, volatile unsigned long *addr)
207{
208	GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", "c");
 
209}
210
211/**
212 * test_and_set_bit_lock - Set a bit and return its old value for lock
213 * @nr: Bit to set
214 * @addr: Address to count from
215 *
216 * This is the same as test_and_set_bit on x86.
217 */
218static __always_inline int
219test_and_set_bit_lock(long nr, volatile unsigned long *addr)
220{
221	return test_and_set_bit(nr, addr);
222}
223
224/**
225 * __test_and_set_bit - Set a bit and return its old value
226 * @nr: Bit to set
227 * @addr: Address to count from
228 *
229 * This operation is non-atomic and can be reordered.
230 * If two examples of this operation race, one can appear to succeed
231 * but actually fail.  You must protect multiple accesses with a lock.
232 */
233static inline int __test_and_set_bit(long nr, volatile unsigned long *addr)
234{
235	int oldbit;
236
237	asm("bts %2,%1\n\t"
238	    "sbb %0,%0"
239	    : "=r" (oldbit), ADDR
240	    : "Ir" (nr));
241	return oldbit;
242}
243
244/**
245 * test_and_clear_bit - Clear a bit and return its old value
246 * @nr: Bit to clear
247 * @addr: Address to count from
248 *
249 * This operation is atomic and cannot be reordered.
250 * It also implies a memory barrier.
251 */
252static inline int test_and_clear_bit(long nr, volatile unsigned long *addr)
253{
254	GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", "c");
 
255}
256
257/**
258 * __test_and_clear_bit - Clear a bit and return its old value
259 * @nr: Bit to clear
260 * @addr: Address to count from
261 *
262 * This operation is non-atomic and can be reordered.
263 * If two examples of this operation race, one can appear to succeed
264 * but actually fail.  You must protect multiple accesses with a lock.
265 *
266 * Note: the operation is performed atomically with respect to
267 * the local CPU, but not other CPUs. Portable code should not
268 * rely on this behaviour.
269 * KVM relies on this behaviour on x86 for modifying memory that is also
270 * accessed from a hypervisor on the same CPU if running in a VM: don't change
271 * this without also updating arch/x86/kernel/kvm.c
272 */
273static inline int __test_and_clear_bit(long nr, volatile unsigned long *addr)
274{
275	int oldbit;
276
277	asm volatile("btr %2,%1\n\t"
278		     "sbb %0,%0"
279		     : "=r" (oldbit), ADDR
280		     : "Ir" (nr));
281	return oldbit;
282}
283
284/* WARNING: non atomic and it can be reordered! */
285static inline int __test_and_change_bit(long nr, volatile unsigned long *addr)
286{
287	int oldbit;
288
289	asm volatile("btc %2,%1\n\t"
290		     "sbb %0,%0"
291		     : "=r" (oldbit), ADDR
292		     : "Ir" (nr) : "memory");
293
294	return oldbit;
295}
296
297/**
298 * test_and_change_bit - Change a bit and return its old value
299 * @nr: Bit to change
300 * @addr: Address to count from
301 *
302 * This operation is atomic and cannot be reordered.
303 * It also implies a memory barrier.
304 */
305static inline int test_and_change_bit(long nr, volatile unsigned long *addr)
306{
307	GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", "c");
 
308}
309
310static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr)
311{
312	return ((1UL << (nr & (BITS_PER_LONG-1))) &
313		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
314}
315
316static inline int variable_test_bit(long nr, volatile const unsigned long *addr)
317{
318	int oldbit;
319
320	asm volatile("bt %2,%1\n\t"
321		     "sbb %0,%0"
322		     : "=r" (oldbit)
323		     : "m" (*(unsigned long *)addr), "Ir" (nr));
324
325	return oldbit;
326}
327
328#if 0 /* Fool kernel-doc since it doesn't do macros yet */
329/**
330 * test_bit - Determine whether a bit is set
331 * @nr: bit number to test
332 * @addr: Address to start counting from
333 */
334static int test_bit(int nr, const volatile unsigned long *addr);
335#endif
336
337#define test_bit(nr, addr)			\
338	(__builtin_constant_p((nr))		\
339	 ? constant_test_bit((nr), (addr))	\
340	 : variable_test_bit((nr), (addr)))
341
342/**
343 * __ffs - find first set bit in word
344 * @word: The word to search
345 *
346 * Undefined if no bit exists, so code should check against 0 first.
347 */
348static inline unsigned long __ffs(unsigned long word)
349{
350	asm("rep; bsf %1,%0"
351		: "=r" (word)
352		: "rm" (word));
353	return word;
354}
355
356/**
357 * ffz - find first zero bit in word
358 * @word: The word to search
359 *
360 * Undefined if no zero exists, so code should check against ~0UL first.
361 */
362static inline unsigned long ffz(unsigned long word)
363{
364	asm("rep; bsf %1,%0"
365		: "=r" (word)
366		: "r" (~word));
367	return word;
368}
369
370/*
371 * __fls: find last set bit in word
372 * @word: The word to search
373 *
374 * Undefined if no set bit exists, so code should check against 0 first.
375 */
376static inline unsigned long __fls(unsigned long word)
377{
378	asm("bsr %1,%0"
379	    : "=r" (word)
380	    : "rm" (word));
381	return word;
382}
383
384#undef ADDR
385
386#ifdef __KERNEL__
387/**
388 * ffs - find first set bit in word
389 * @x: the word to search
390 *
391 * This is defined the same way as the libc and compiler builtin ffs
392 * routines, therefore differs in spirit from the other bitops.
393 *
394 * ffs(value) returns 0 if value is 0 or the position of the first
395 * set bit if value is nonzero. The first (least significant) bit
396 * is at position 1.
397 */
398static inline int ffs(int x)
399{
400	int r;
401
402#ifdef CONFIG_X86_64
403	/*
404	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
405	 * dest reg is undefined if x==0, but their CPU architect says its
406	 * value is written to set it to the same as before, except that the
407	 * top 32 bits will be cleared.
408	 *
409	 * We cannot do this on 32 bits because at the very least some
410	 * 486 CPUs did not behave this way.
411	 */
412	asm("bsfl %1,%0"
413	    : "=r" (r)
414	    : "rm" (x), "0" (-1));
415#elif defined(CONFIG_X86_CMOV)
416	asm("bsfl %1,%0\n\t"
417	    "cmovzl %2,%0"
418	    : "=&r" (r) : "rm" (x), "r" (-1));
419#else
420	asm("bsfl %1,%0\n\t"
421	    "jnz 1f\n\t"
422	    "movl $-1,%0\n"
423	    "1:" : "=r" (r) : "rm" (x));
424#endif
425	return r + 1;
426}
427
428/**
429 * fls - find last set bit in word
430 * @x: the word to search
431 *
432 * This is defined in a similar way as the libc and compiler builtin
433 * ffs, but returns the position of the most significant set bit.
434 *
435 * fls(value) returns 0 if value is 0 or the position of the last
436 * set bit if value is nonzero. The last (most significant) bit is
437 * at position 32.
438 */
439static inline int fls(int x)
440{
441	int r;
442
443#ifdef CONFIG_X86_64
444	/*
445	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
446	 * dest reg is undefined if x==0, but their CPU architect says its
447	 * value is written to set it to the same as before, except that the
448	 * top 32 bits will be cleared.
449	 *
450	 * We cannot do this on 32 bits because at the very least some
451	 * 486 CPUs did not behave this way.
452	 */
453	asm("bsrl %1,%0"
454	    : "=r" (r)
455	    : "rm" (x), "0" (-1));
456#elif defined(CONFIG_X86_CMOV)
457	asm("bsrl %1,%0\n\t"
458	    "cmovzl %2,%0"
459	    : "=&r" (r) : "rm" (x), "rm" (-1));
460#else
461	asm("bsrl %1,%0\n\t"
462	    "jnz 1f\n\t"
463	    "movl $-1,%0\n"
464	    "1:" : "=r" (r) : "rm" (x));
465#endif
466	return r + 1;
467}
468
469/**
470 * fls64 - find last set bit in a 64-bit word
471 * @x: the word to search
472 *
473 * This is defined in a similar way as the libc and compiler builtin
474 * ffsll, but returns the position of the most significant set bit.
475 *
476 * fls64(value) returns 0 if value is 0 or the position of the last
477 * set bit if value is nonzero. The last (most significant) bit is
478 * at position 64.
479 */
480#ifdef CONFIG_X86_64
481static __always_inline int fls64(__u64 x)
482{
483	int bitpos = -1;
484	/*
485	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
486	 * dest reg is undefined if x==0, but their CPU architect says its
487	 * value is written to set it to the same as before.
488	 */
489	asm("bsrq %1,%q0"
490	    : "+r" (bitpos)
491	    : "rm" (x));
492	return bitpos + 1;
493}
494#else
495#include <asm-generic/bitops/fls64.h>
496#endif
497
498#include <asm-generic/bitops/find.h>
499
500#include <asm-generic/bitops/sched.h>
501
502#define ARCH_HAS_FAST_MULTIPLIER 1
503
504#include <asm/arch_hweight.h>
505
506#include <asm-generic/bitops/const_hweight.h>
507
508#include <asm-generic/bitops/le.h>
509
510#include <asm-generic/bitops/ext2-atomic-setbit.h>
511
512#endif /* __KERNEL__ */
513#endif /* _ASM_X86_BITOPS_H */