Loading...
1/*
2 * Copyright 2003-2013 Broadcom Corporation.
3 * All Rights Reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the Broadcom
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35
36#include <asm/asm.h>
37#include <asm/asm-offsets.h>
38#include <asm/cpu.h>
39#include <asm/cacheops.h>
40#include <asm/regdef.h>
41#include <asm/mipsregs.h>
42#include <asm/stackframe.h>
43#include <asm/asmmacro.h>
44#include <asm/addrspace.h>
45
46#include <asm/netlogic/common.h>
47
48#include <asm/netlogic/xlp-hal/iomap.h>
49#include <asm/netlogic/xlp-hal/xlp.h>
50#include <asm/netlogic/xlp-hal/sys.h>
51#include <asm/netlogic/xlp-hal/cpucontrol.h>
52
53#define SYS_CPU_COHERENT_BASE CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
54 XLP_IO_SYS_OFFSET(0) + XLP_IO_PCI_HDRSZ + \
55 SYS_CPU_NONCOHERENT_MODE * 4
56
57/* Enable XLP features and workarounds in the LSU */
58.macro xlp_config_lsu
59 li t0, LSU_DEFEATURE
60 mfcr t1, t0
61
62 lui t2, 0x4080 /* Enable Unaligned Access, L2HPE */
63 or t1, t1, t2
64 mtcr t1, t0
65
66 li t0, ICU_DEFEATURE
67 mfcr t1, t0
68 ori t1, 0x1000 /* Enable Icache partitioning */
69 mtcr t1, t0
70
71 li t0, SCHED_DEFEATURE
72 lui t1, 0x0100 /* Disable BRU accepting ALU ops */
73 mtcr t1, t0
74.endm
75
76/*
77 * Allow access to physical mem >64G by enabling ELPA in PAGEGRAIN
78 * register. This is needed before going to C code since the SP can
79 * in this region. Called from all HW threads.
80 */
81.macro xlp_early_mmu_init
82 mfc0 t0, CP0_PAGEMASK, 1
83 li t1, (1 << 29) /* ELPA bit */
84 or t0, t1
85 mtc0 t0, CP0_PAGEMASK, 1
86.endm
87
88/*
89 * L1D cache has to be flushed before enabling threads in XLP.
90 * On XLP8xx/XLP3xx, we do a low level flush using processor control
91 * registers. On XLPII CPUs, usual cache instructions work.
92 */
93.macro xlp_flush_l1_dcache
94 mfc0 t0, CP0_PRID
95 andi t0, t0, PRID_IMP_MASK
96 slt t1, t0, 0x1200
97 beqz t1, 15f
98 nop
99
100 /* XLP8xx low level cache flush */
101 li t0, LSU_DEBUG_DATA0
102 li t1, LSU_DEBUG_ADDR
103 li t2, 0 /* index */
104 li t3, 0x1000 /* loop count */
10511:
106 sll v0, t2, 5
107 mtcr zero, t0
108 ori v1, v0, 0x3 /* way0 | write_enable | write_active */
109 mtcr v1, t1
11012:
111 mfcr v1, t1
112 andi v1, 0x1 /* wait for write_active == 0 */
113 bnez v1, 12b
114 nop
115 mtcr zero, t0
116 ori v1, v0, 0x7 /* way1 | write_enable | write_active */
117 mtcr v1, t1
11813:
119 mfcr v1, t1
120 andi v1, 0x1 /* wait for write_active == 0 */
121 bnez v1, 13b
122 nop
123 addi t2, 1
124 bne t3, t2, 11b
125 nop
126 b 17f
127 nop
128
129 /* XLPII CPUs, Invalidate all 64k of L1 D-cache */
13015:
131 li t0, 0x80000000
132 li t1, 0x80010000
13316: cache Index_Writeback_Inv_D, 0(t0)
134 addiu t0, t0, 32
135 bne t0, t1, 16b
136 nop
13717:
138.endm
139
140/*
141 * nlm_reset_entry will be copied to the reset entry point for
142 * XLR and XLP. The XLP cores start here when they are woken up. This
143 * is also the NMI entry point.
144 *
145 * We use scratch reg 6/7 to save k0/k1 and check for NMI first.
146 *
147 * The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
148 * location, this will have the thread mask (used when core is woken up)
149 * and the current NMI handler in case we reached here for an NMI.
150 *
151 * When a core or thread is newly woken up, it marks itself ready and
152 * loops in a 'wait'. When the CPU really needs waking up, we send an NMI
153 * IPI to it, with the NMI handler set to prom_boot_secondary_cpus
154 */
155 .set noreorder
156 .set noat
157 .set arch=xlr /* for mfcr/mtcr, XLR is sufficient */
158
159FEXPORT(nlm_reset_entry)
160 dmtc0 k0, $22, 6
161 dmtc0 k1, $22, 7
162 mfc0 k0, CP0_STATUS
163 li k1, 0x80000
164 and k1, k0, k1
165 beqz k1, 1f /* go to real reset entry */
166 nop
167 li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
168 ld k0, BOOT_NMI_HANDLER(k1)
169 jr k0
170 nop
171
1721: /* Entry point on core wakeup */
173 mfc0 t0, CP0_PRID /* processor ID */
174 andi t0, PRID_IMP_MASK
175 li t1, 0x1500 /* XLP 9xx */
176 beq t0, t1, 2f /* does not need to set coherent */
177 nop
178
179 li t1, 0x1300 /* XLP 5xx */
180 beq t0, t1, 2f /* does not need to set coherent */
181 nop
182
183 /* set bit in SYS coherent register for the core */
184 mfc0 t0, CP0_EBASE
185 mfc0 t1, CP0_EBASE
186 srl t1, 5
187 andi t1, 0x3 /* t1 <- node */
188 li t2, 0x40000
189 mul t3, t2, t1 /* t3 = node * 0x40000 */
190 srl t0, t0, 2
191 and t0, t0, 0x7 /* t0 <- core */
192 li t1, 0x1
193 sll t0, t1, t0
194 nor t0, t0, zero /* t0 <- ~(1 << core) */
195 li t2, SYS_CPU_COHERENT_BASE
196 add t2, t2, t3 /* t2 <- SYS offset for node */
197 lw t1, 0(t2)
198 and t1, t1, t0
199 sw t1, 0(t2)
200
201 /* read back to ensure complete */
202 lw t1, 0(t2)
203 sync
204
2052:
206 /* Configure LSU on Non-0 Cores. */
207 xlp_config_lsu
208 /* FALL THROUGH */
209
210/*
211 * Wake up sibling threads from the initial thread in a core.
212 */
213EXPORT(nlm_boot_siblings)
214 /* core L1D flush before enable threads */
215 xlp_flush_l1_dcache
216 /* save ra and sp, will be used later (only for boot cpu) */
217 dmtc0 ra, $22, 6
218 dmtc0 sp, $22, 7
219 /* Enable hw threads by writing to MAP_THREADMODE of the core */
220 li t0, CKSEG1ADDR(RESET_DATA_PHYS)
221 lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
222 li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
223 mfcr t2, t0
224 or t2, t2, t1
225 mtcr t2, t0
226
227 /*
228 * The new hardware thread starts at the next instruction
229 * For all the cases other than core 0 thread 0, we will
230 * jump to the secondary wait function.
231
232 * NOTE: All GPR contents are lost after the mtcr above!
233 */
234 mfc0 v0, CP0_EBASE
235 andi v0, 0x3ff /* v0 <- node/core */
236
237 /*
238 * Errata: to avoid potential live lock, setup IFU_BRUB_RESERVE
239 * when running 4 threads per core
240 */
241 andi v1, v0, 0x3 /* v1 <- thread id */
242 bnez v1, 2f
243 nop
244
245 /* thread 0 of each core. */
246 li t0, CKSEG1ADDR(RESET_DATA_PHYS)
247 lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
248 subu t1, 0x3 /* 4-thread per core mode? */
249 bnez t1, 2f
250 nop
251
252 li t0, IFU_BRUB_RESERVE
253 li t1, 0x55
254 mtcr t1, t0
255 _ehb
2562:
257 beqz v0, 4f /* boot cpu (cpuid == 0)? */
258 nop
259
260 /* setup status reg */
261 move t1, zero
262#ifdef CONFIG_64BIT
263 ori t1, ST0_KX
264#endif
265 mtc0 t1, CP0_STATUS
266
267 xlp_early_mmu_init
268
269 /* mark CPU ready */
270 li t3, CKSEG1ADDR(RESET_DATA_PHYS)
271 ADDIU t1, t3, BOOT_CPU_READY
272 sll v1, v0, 2
273 PTR_ADDU t1, v1
274 li t2, 1
275 sw t2, 0(t1)
276 /* Wait until NMI hits */
2773: wait
278 b 3b
279 nop
280
281 /*
282 * For the boot CPU, we have to restore ra and sp and return, rest
283 * of the registers will be restored by the caller
284 */
2854:
286 dmfc0 ra, $22, 6
287 dmfc0 sp, $22, 7
288 jr ra
289 nop
290EXPORT(nlm_reset_entry_end)
291
292LEAF(nlm_init_boot_cpu)
293#ifdef CONFIG_CPU_XLP
294 xlp_config_lsu
295 xlp_early_mmu_init
296#endif
297 jr ra
298 nop
299END(nlm_init_boot_cpu)
1/*
2 * Copyright 2003-2013 Broadcom Corporation.
3 * All Rights Reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the Broadcom
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35
36#include <asm/asm.h>
37#include <asm/asm-offsets.h>
38#include <asm/cacheops.h>
39#include <asm/regdef.h>
40#include <asm/mipsregs.h>
41#include <asm/stackframe.h>
42#include <asm/asmmacro.h>
43#include <asm/addrspace.h>
44
45#include <asm/netlogic/common.h>
46
47#include <asm/netlogic/xlp-hal/iomap.h>
48#include <asm/netlogic/xlp-hal/xlp.h>
49#include <asm/netlogic/xlp-hal/sys.h>
50#include <asm/netlogic/xlp-hal/cpucontrol.h>
51
52#define CP0_EBASE $15
53#define SYS_CPU_COHERENT_BASE CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
54 XLP_IO_SYS_OFFSET(0) + XLP_IO_PCI_HDRSZ + \
55 SYS_CPU_NONCOHERENT_MODE * 4
56
57/* Enable XLP features and workarounds in the LSU */
58.macro xlp_config_lsu
59 li t0, LSU_DEFEATURE
60 mfcr t1, t0
61
62 lui t2, 0xc080 /* SUE, Enable Unaligned Access, L2HPE */
63 or t1, t1, t2
64 mtcr t1, t0
65
66 li t0, ICU_DEFEATURE
67 mfcr t1, t0
68 ori t1, 0x1000 /* Enable Icache partitioning */
69 mtcr t1, t0
70
71 li t0, SCHED_DEFEATURE
72 lui t1, 0x0100 /* Disable BRU accepting ALU ops */
73 mtcr t1, t0
74.endm
75
76/*
77 * L1D cache has to be flushed before enabling threads in XLP.
78 * On XLP8xx/XLP3xx, we do a low level flush using processor control
79 * registers. On XLPII CPUs, usual cache instructions work.
80 */
81.macro xlp_flush_l1_dcache
82 mfc0 t0, CP0_EBASE, 0
83 andi t0, t0, 0xff00
84 slt t1, t0, 0x1200
85 beqz t1, 15f
86 nop
87
88 /* XLP8xx low level cache flush */
89 li t0, LSU_DEBUG_DATA0
90 li t1, LSU_DEBUG_ADDR
91 li t2, 0 /* index */
92 li t3, 0x1000 /* loop count */
9311:
94 sll v0, t2, 5
95 mtcr zero, t0
96 ori v1, v0, 0x3 /* way0 | write_enable | write_active */
97 mtcr v1, t1
9812:
99 mfcr v1, t1
100 andi v1, 0x1 /* wait for write_active == 0 */
101 bnez v1, 12b
102 nop
103 mtcr zero, t0
104 ori v1, v0, 0x7 /* way1 | write_enable | write_active */
105 mtcr v1, t1
10613:
107 mfcr v1, t1
108 andi v1, 0x1 /* wait for write_active == 0 */
109 bnez v1, 13b
110 nop
111 addi t2, 1
112 bne t3, t2, 11b
113 nop
114 b 17f
115 nop
116
117 /* XLPII CPUs, Invalidate all 64k of L1 D-cache */
11815:
119 li t0, 0x80000000
120 li t1, 0x80010000
12116: cache Index_Writeback_Inv_D, 0(t0)
122 addiu t0, t0, 32
123 bne t0, t1, 16b
124 nop
12517:
126.endm
127
128/*
129 * nlm_reset_entry will be copied to the reset entry point for
130 * XLR and XLP. The XLP cores start here when they are woken up. This
131 * is also the NMI entry point.
132 *
133 * We use scratch reg 6/7 to save k0/k1 and check for NMI first.
134 *
135 * The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
136 * location, this will have the thread mask (used when core is woken up)
137 * and the current NMI handler in case we reached here for an NMI.
138 *
139 * When a core or thread is newly woken up, it marks itself ready and
140 * loops in a 'wait'. When the CPU really needs waking up, we send an NMI
141 * IPI to it, with the NMI handler set to prom_boot_secondary_cpus
142 */
143 .set noreorder
144 .set noat
145 .set arch=xlr /* for mfcr/mtcr, XLR is sufficient */
146
147FEXPORT(nlm_reset_entry)
148 dmtc0 k0, $22, 6
149 dmtc0 k1, $22, 7
150 mfc0 k0, CP0_STATUS
151 li k1, 0x80000
152 and k1, k0, k1
153 beqz k1, 1f /* go to real reset entry */
154 nop
155 li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
156 ld k0, BOOT_NMI_HANDLER(k1)
157 jr k0
158 nop
159
1601: /* Entry point on core wakeup */
161 mfc0 t0, CP0_EBASE, 0 /* processor ID */
162 andi t0, 0xff00
163 li t1, 0x1500 /* XLP 9xx */
164 beq t0, t1, 2f /* does not need to set coherent */
165 nop
166
167 /* set bit in SYS coherent register for the core */
168 mfc0 t0, CP0_EBASE, 1
169 mfc0 t1, CP0_EBASE, 1
170 srl t1, 5
171 andi t1, 0x3 /* t1 <- node */
172 li t2, 0x40000
173 mul t3, t2, t1 /* t3 = node * 0x40000 */
174 srl t0, t0, 2
175 and t0, t0, 0x7 /* t0 <- core */
176 li t1, 0x1
177 sll t0, t1, t0
178 nor t0, t0, zero /* t0 <- ~(1 << core) */
179 li t2, SYS_CPU_COHERENT_BASE
180 add t2, t2, t3 /* t2 <- SYS offset for node */
181 lw t1, 0(t2)
182 and t1, t1, t0
183 sw t1, 0(t2)
184
185 /* read back to ensure complete */
186 lw t1, 0(t2)
187 sync
188
1892:
190 /* Configure LSU on Non-0 Cores. */
191 xlp_config_lsu
192 /* FALL THROUGH */
193
194/*
195 * Wake up sibling threads from the initial thread in a core.
196 */
197EXPORT(nlm_boot_siblings)
198 /* core L1D flush before enable threads */
199 xlp_flush_l1_dcache
200 /* Enable hw threads by writing to MAP_THREADMODE of the core */
201 li t0, CKSEG1ADDR(RESET_DATA_PHYS)
202 lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
203 li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
204 mfcr t2, t0
205 or t2, t2, t1
206 mtcr t2, t0
207
208 /*
209 * The new hardware thread starts at the next instruction
210 * For all the cases other than core 0 thread 0, we will
211 * jump to the secondary wait function.
212
213 * NOTE: All GPR contents are lost after the mtcr above!
214 */
215 mfc0 v0, CP0_EBASE, 1
216 andi v0, 0x3ff /* v0 <- node/core */
217
218 beqz v0, 4f /* boot cpu (cpuid == 0)? */
219 nop
220
221 /* setup status reg */
222 move t1, zero
223#ifdef CONFIG_64BIT
224 ori t1, ST0_KX
225#endif
226 mtc0 t1, CP0_STATUS
227
228 /* mark CPU ready */
229 li t3, CKSEG1ADDR(RESET_DATA_PHYS)
230 ADDIU t1, t3, BOOT_CPU_READY
231 sll v1, v0, 2
232 PTR_ADDU t1, v1
233 li t2, 1
234 sw t2, 0(t1)
235 /* Wait until NMI hits */
2363: wait
237 b 3b
238 nop
239
240 /*
241 * For the boot CPU, we have to restore registers and
242 * return
243 */
2444: dmfc0 t0, $4, 2 /* restore SP from UserLocal */
245 li t1, 0xfadebeef
246 dmtc0 t1, $4, 2 /* restore SP from UserLocal */
247 PTR_SUBU sp, t0, PT_SIZE
248 RESTORE_ALL
249 jr ra
250 nop
251EXPORT(nlm_reset_entry_end)
252
253LEAF(nlm_init_boot_cpu)
254#ifdef CONFIG_CPU_XLP
255 xlp_config_lsu
256#endif
257 jr ra
258 nop
259END(nlm_init_boot_cpu)