Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/export.h>
16#include <linux/screen_info.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/initrd.h>
20#include <linux/root_dev.h>
21#include <linux/highmem.h>
22#include <linux/console.h>
23#include <linux/pfn.h>
24#include <linux/debugfs.h>
25#include <linux/kexec.h>
26#include <linux/sizes.h>
27#include <linux/device.h>
28#include <linux/dma-contiguous.h>
29#include <linux/decompress/generic.h>
30#include <linux/of_fdt.h>
31
32#include <asm/addrspace.h>
33#include <asm/bootinfo.h>
34#include <asm/bugs.h>
35#include <asm/cache.h>
36#include <asm/cdmm.h>
37#include <asm/cpu.h>
38#include <asm/debug.h>
39#include <asm/sections.h>
40#include <asm/setup.h>
41#include <asm/smp-ops.h>
42#include <asm/prom.h>
43
44#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45const char __section(.appended_dtb) __appended_dtb[0x100000];
46#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47
48struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49
50EXPORT_SYMBOL(cpu_data);
51
52#ifdef CONFIG_VT
53struct screen_info screen_info;
54#endif
55
56/*
57 * Setup information
58 *
59 * These are initialized so they are in the .data section
60 */
61unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62
63EXPORT_SYMBOL(mips_machtype);
64
65struct boot_mem_map boot_mem_map;
66
67static char __initdata command_line[COMMAND_LINE_SIZE];
68char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69
70#ifdef CONFIG_CMDLINE_BOOL
71static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72#endif
73
74/*
75 * mips_io_port_base is the begin of the address space to which x86 style
76 * I/O ports are mapped.
77 */
78const unsigned long mips_io_port_base = -1;
79EXPORT_SYMBOL(mips_io_port_base);
80
81static struct resource code_resource = { .name = "Kernel code", };
82static struct resource data_resource = { .name = "Kernel data", };
83static struct resource bss_resource = { .name = "Kernel bss", };
84
85static void *detect_magic __initdata = detect_memory_region;
86
87void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
88{
89 int x = boot_mem_map.nr_map;
90 int i;
91
92 /*
93 * If the region reaches the top of the physical address space, adjust
94 * the size slightly so that (start + size) doesn't overflow
95 */
96 if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
97 --size;
98
99 /* Sanity check */
100 if (start + size < start) {
101 pr_warn("Trying to add an invalid memory region, skipped\n");
102 return;
103 }
104
105 /*
106 * Try to merge with existing entry, if any.
107 */
108 for (i = 0; i < boot_mem_map.nr_map; i++) {
109 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
110 unsigned long top;
111
112 if (entry->type != type)
113 continue;
114
115 if (start + size < entry->addr)
116 continue; /* no overlap */
117
118 if (entry->addr + entry->size < start)
119 continue; /* no overlap */
120
121 top = max(entry->addr + entry->size, start + size);
122 entry->addr = min(entry->addr, start);
123 entry->size = top - entry->addr;
124
125 return;
126 }
127
128 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
129 pr_err("Ooops! Too many entries in the memory map!\n");
130 return;
131 }
132
133 boot_mem_map.map[x].addr = start;
134 boot_mem_map.map[x].size = size;
135 boot_mem_map.map[x].type = type;
136 boot_mem_map.nr_map++;
137}
138
139void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
140{
141 void *dm = &detect_magic;
142 phys_addr_t size;
143
144 for (size = sz_min; size < sz_max; size <<= 1) {
145 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
146 break;
147 }
148
149 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
150 ((unsigned long long) size) / SZ_1M,
151 (unsigned long long) start,
152 ((unsigned long long) sz_min) / SZ_1M,
153 ((unsigned long long) sz_max) / SZ_1M);
154
155 add_memory_region(start, size, BOOT_MEM_RAM);
156}
157
158static bool __init __maybe_unused memory_region_available(phys_addr_t start,
159 phys_addr_t size)
160{
161 int i;
162 bool in_ram = false, free = true;
163
164 for (i = 0; i < boot_mem_map.nr_map; i++) {
165 phys_addr_t start_, end_;
166
167 start_ = boot_mem_map.map[i].addr;
168 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
169
170 switch (boot_mem_map.map[i].type) {
171 case BOOT_MEM_RAM:
172 if (start >= start_ && start + size <= end_)
173 in_ram = true;
174 break;
175 case BOOT_MEM_RESERVED:
176 if ((start >= start_ && start < end_) ||
177 (start < start_ && start + size >= start_))
178 free = false;
179 break;
180 default:
181 continue;
182 }
183 }
184
185 return in_ram && free;
186}
187
188static void __init print_memory_map(void)
189{
190 int i;
191 const int field = 2 * sizeof(unsigned long);
192
193 for (i = 0; i < boot_mem_map.nr_map; i++) {
194 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
195 field, (unsigned long long) boot_mem_map.map[i].size,
196 field, (unsigned long long) boot_mem_map.map[i].addr);
197
198 switch (boot_mem_map.map[i].type) {
199 case BOOT_MEM_RAM:
200 printk(KERN_CONT "(usable)\n");
201 break;
202 case BOOT_MEM_INIT_RAM:
203 printk(KERN_CONT "(usable after init)\n");
204 break;
205 case BOOT_MEM_ROM_DATA:
206 printk(KERN_CONT "(ROM data)\n");
207 break;
208 case BOOT_MEM_RESERVED:
209 printk(KERN_CONT "(reserved)\n");
210 break;
211 default:
212 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
213 break;
214 }
215 }
216}
217
218/*
219 * Manage initrd
220 */
221#ifdef CONFIG_BLK_DEV_INITRD
222
223static int __init rd_start_early(char *p)
224{
225 unsigned long start = memparse(p, &p);
226
227#ifdef CONFIG_64BIT
228 /* Guess if the sign extension was forgotten by bootloader */
229 if (start < XKPHYS)
230 start = (int)start;
231#endif
232 initrd_start = start;
233 initrd_end += start;
234 return 0;
235}
236early_param("rd_start", rd_start_early);
237
238static int __init rd_size_early(char *p)
239{
240 initrd_end += memparse(p, &p);
241 return 0;
242}
243early_param("rd_size", rd_size_early);
244
245/* it returns the next free pfn after initrd */
246static unsigned long __init init_initrd(void)
247{
248 unsigned long end;
249
250 /*
251 * Board specific code or command line parser should have
252 * already set up initrd_start and initrd_end. In these cases
253 * perfom sanity checks and use them if all looks good.
254 */
255 if (!initrd_start || initrd_end <= initrd_start)
256 goto disable;
257
258 if (initrd_start & ~PAGE_MASK) {
259 pr_err("initrd start must be page aligned\n");
260 goto disable;
261 }
262 if (initrd_start < PAGE_OFFSET) {
263 pr_err("initrd start < PAGE_OFFSET\n");
264 goto disable;
265 }
266
267 /*
268 * Sanitize initrd addresses. For example firmware
269 * can't guess if they need to pass them through
270 * 64-bits values if the kernel has been built in pure
271 * 32-bit. We need also to switch from KSEG0 to XKPHYS
272 * addresses now, so the code can now safely use __pa().
273 */
274 end = __pa(initrd_end);
275 initrd_end = (unsigned long)__va(end);
276 initrd_start = (unsigned long)__va(__pa(initrd_start));
277
278 ROOT_DEV = Root_RAM0;
279 return PFN_UP(end);
280disable:
281 initrd_start = 0;
282 initrd_end = 0;
283 return 0;
284}
285
286/* In some conditions (e.g. big endian bootloader with a little endian
287 kernel), the initrd might appear byte swapped. Try to detect this and
288 byte swap it if needed. */
289static void __init maybe_bswap_initrd(void)
290{
291#if defined(CONFIG_CPU_CAVIUM_OCTEON)
292 u64 buf;
293
294 /* Check for CPIO signature */
295 if (!memcmp((void *)initrd_start, "070701", 6))
296 return;
297
298 /* Check for compressed initrd */
299 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
300 return;
301
302 /* Try again with a byte swapped header */
303 buf = swab64p((u64 *)initrd_start);
304 if (!memcmp(&buf, "070701", 6) ||
305 decompress_method((unsigned char *)(&buf), 8, NULL)) {
306 unsigned long i;
307
308 pr_info("Byteswapped initrd detected\n");
309 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
310 swab64s((u64 *)i);
311 }
312#endif
313}
314
315static void __init finalize_initrd(void)
316{
317 unsigned long size = initrd_end - initrd_start;
318
319 if (size == 0) {
320 printk(KERN_INFO "Initrd not found or empty");
321 goto disable;
322 }
323 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
324 printk(KERN_ERR "Initrd extends beyond end of memory");
325 goto disable;
326 }
327
328 maybe_bswap_initrd();
329
330 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
331 initrd_below_start_ok = 1;
332
333 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
334 initrd_start, size);
335 return;
336disable:
337 printk(KERN_CONT " - disabling initrd\n");
338 initrd_start = 0;
339 initrd_end = 0;
340}
341
342#else /* !CONFIG_BLK_DEV_INITRD */
343
344static unsigned long __init init_initrd(void)
345{
346 return 0;
347}
348
349#define finalize_initrd() do {} while (0)
350
351#endif
352
353/*
354 * Initialize the bootmem allocator. It also setup initrd related data
355 * if needed.
356 */
357#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
358
359static void __init bootmem_init(void)
360{
361 init_initrd();
362 finalize_initrd();
363}
364
365#else /* !CONFIG_SGI_IP27 */
366
367static unsigned long __init bootmap_bytes(unsigned long pages)
368{
369 unsigned long bytes = DIV_ROUND_UP(pages, 8);
370
371 return ALIGN(bytes, sizeof(long));
372}
373
374static void __init bootmem_init(void)
375{
376 unsigned long reserved_end;
377 unsigned long mapstart = ~0UL;
378 unsigned long bootmap_size;
379 phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX;
380 bool bootmap_valid = false;
381 int i;
382
383 /*
384 * Sanity check any INITRD first. We don't take it into account
385 * for bootmem setup initially, rely on the end-of-kernel-code
386 * as our memory range starting point. Once bootmem is inited we
387 * will reserve the area used for the initrd.
388 */
389 init_initrd();
390 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
391
392 /*
393 * max_low_pfn is not a number of pages. The number of pages
394 * of the system is given by 'max_low_pfn - min_low_pfn'.
395 */
396 min_low_pfn = ~0UL;
397 max_low_pfn = 0;
398
399 /*
400 * Find the highest page frame number we have available
401 * and the lowest used RAM address
402 */
403 for (i = 0; i < boot_mem_map.nr_map; i++) {
404 unsigned long start, end;
405
406 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
407 continue;
408
409 start = PFN_UP(boot_mem_map.map[i].addr);
410 end = PFN_DOWN(boot_mem_map.map[i].addr
411 + boot_mem_map.map[i].size);
412
413 ramstart = min(ramstart, boot_mem_map.map[i].addr);
414
415#ifndef CONFIG_HIGHMEM
416 /*
417 * Skip highmem here so we get an accurate max_low_pfn if low
418 * memory stops short of high memory.
419 * If the region overlaps HIGHMEM_START, end is clipped so
420 * max_pfn excludes the highmem portion.
421 */
422 if (start >= PFN_DOWN(HIGHMEM_START))
423 continue;
424 if (end > PFN_DOWN(HIGHMEM_START))
425 end = PFN_DOWN(HIGHMEM_START);
426#endif
427
428 if (end > max_low_pfn)
429 max_low_pfn = end;
430 if (start < min_low_pfn)
431 min_low_pfn = start;
432 if (end <= reserved_end)
433 continue;
434#ifdef CONFIG_BLK_DEV_INITRD
435 /* Skip zones before initrd and initrd itself */
436 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
437 continue;
438#endif
439 if (start >= mapstart)
440 continue;
441 mapstart = max(reserved_end, start);
442 }
443
444 /*
445 * Reserve any memory between the start of RAM and PHYS_OFFSET
446 */
447 if (ramstart > PHYS_OFFSET)
448 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
449 BOOT_MEM_RESERVED);
450
451 if (min_low_pfn >= max_low_pfn)
452 panic("Incorrect memory mapping !!!");
453 if (min_low_pfn > ARCH_PFN_OFFSET) {
454 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
455 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
456 min_low_pfn - ARCH_PFN_OFFSET);
457 } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
458 pr_info("%lu free pages won't be used\n",
459 ARCH_PFN_OFFSET - min_low_pfn);
460 }
461 min_low_pfn = ARCH_PFN_OFFSET;
462
463 /*
464 * Determine low and high memory ranges
465 */
466 max_pfn = max_low_pfn;
467 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
468#ifdef CONFIG_HIGHMEM
469 highstart_pfn = PFN_DOWN(HIGHMEM_START);
470 highend_pfn = max_low_pfn;
471#endif
472 max_low_pfn = PFN_DOWN(HIGHMEM_START);
473 }
474
475#ifdef CONFIG_BLK_DEV_INITRD
476 /*
477 * mapstart should be after initrd_end
478 */
479 if (initrd_end)
480 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
481#endif
482
483 /*
484 * check that mapstart doesn't overlap with any of
485 * memory regions that have been reserved through eg. DTB
486 */
487 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
488
489 bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
490 bootmap_size);
491 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
492 unsigned long mapstart_addr;
493
494 switch (boot_mem_map.map[i].type) {
495 case BOOT_MEM_RESERVED:
496 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
497 boot_mem_map.map[i].size);
498 if (PHYS_PFN(mapstart_addr) < mapstart)
499 break;
500
501 bootmap_valid = memory_region_available(mapstart_addr,
502 bootmap_size);
503 if (bootmap_valid)
504 mapstart = PHYS_PFN(mapstart_addr);
505 break;
506 default:
507 break;
508 }
509 }
510
511 if (!bootmap_valid)
512 panic("No memory area to place a bootmap bitmap");
513
514 /*
515 * Initialize the boot-time allocator with low memory only.
516 */
517 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
518 min_low_pfn, max_low_pfn))
519 panic("Unexpected memory size required for bootmap");
520
521 for (i = 0; i < boot_mem_map.nr_map; i++) {
522 unsigned long start, end;
523
524 start = PFN_UP(boot_mem_map.map[i].addr);
525 end = PFN_DOWN(boot_mem_map.map[i].addr
526 + boot_mem_map.map[i].size);
527
528 if (start <= min_low_pfn)
529 start = min_low_pfn;
530 if (start >= end)
531 continue;
532
533#ifndef CONFIG_HIGHMEM
534 if (end > max_low_pfn)
535 end = max_low_pfn;
536
537 /*
538 * ... finally, is the area going away?
539 */
540 if (end <= start)
541 continue;
542#endif
543
544 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
545 }
546
547 /*
548 * Register fully available low RAM pages with the bootmem allocator.
549 */
550 for (i = 0; i < boot_mem_map.nr_map; i++) {
551 unsigned long start, end, size;
552
553 start = PFN_UP(boot_mem_map.map[i].addr);
554 end = PFN_DOWN(boot_mem_map.map[i].addr
555 + boot_mem_map.map[i].size);
556
557 /*
558 * Reserve usable memory.
559 */
560 switch (boot_mem_map.map[i].type) {
561 case BOOT_MEM_RAM:
562 break;
563 case BOOT_MEM_INIT_RAM:
564 memory_present(0, start, end);
565 continue;
566 default:
567 /* Not usable memory */
568 if (start > min_low_pfn && end < max_low_pfn)
569 reserve_bootmem(boot_mem_map.map[i].addr,
570 boot_mem_map.map[i].size,
571 BOOTMEM_DEFAULT);
572 continue;
573 }
574
575 /*
576 * We are rounding up the start address of usable memory
577 * and at the end of the usable range downwards.
578 */
579 if (start >= max_low_pfn)
580 continue;
581 if (start < reserved_end)
582 start = reserved_end;
583 if (end > max_low_pfn)
584 end = max_low_pfn;
585
586 /*
587 * ... finally, is the area going away?
588 */
589 if (end <= start)
590 continue;
591 size = end - start;
592
593 /* Register lowmem ranges */
594 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
595 memory_present(0, start, end);
596 }
597
598 /*
599 * Reserve the bootmap memory.
600 */
601 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
602
603#ifdef CONFIG_RELOCATABLE
604 /*
605 * The kernel reserves all memory below its _end symbol as bootmem,
606 * but the kernel may now be at a much higher address. The memory
607 * between the original and new locations may be returned to the system.
608 */
609 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
610 unsigned long offset;
611 extern void show_kernel_relocation(const char *level);
612
613 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
614 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
615
616#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
617 /*
618 * This information is necessary when debugging the kernel
619 * But is a security vulnerability otherwise!
620 */
621 show_kernel_relocation(KERN_INFO);
622#endif
623 }
624#endif
625
626 /*
627 * Reserve initrd memory if needed.
628 */
629 finalize_initrd();
630}
631
632#endif /* CONFIG_SGI_IP27 */
633
634/*
635 * arch_mem_init - initialize memory management subsystem
636 *
637 * o plat_mem_setup() detects the memory configuration and will record detected
638 * memory areas using add_memory_region.
639 *
640 * At this stage the memory configuration of the system is known to the
641 * kernel but generic memory management system is still entirely uninitialized.
642 *
643 * o bootmem_init()
644 * o sparse_init()
645 * o paging_init()
646 * o dma_contiguous_reserve()
647 *
648 * At this stage the bootmem allocator is ready to use.
649 *
650 * NOTE: historically plat_mem_setup did the entire platform initialization.
651 * This was rather impractical because it meant plat_mem_setup had to
652 * get away without any kind of memory allocator. To keep old code from
653 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
654 * initialization hook for anything else was introduced.
655 */
656
657static int usermem __initdata;
658
659static int __init early_parse_mem(char *p)
660{
661 phys_addr_t start, size;
662
663 /*
664 * If a user specifies memory size, we
665 * blow away any automatically generated
666 * size.
667 */
668 if (usermem == 0) {
669 boot_mem_map.nr_map = 0;
670 usermem = 1;
671 }
672 start = 0;
673 size = memparse(p, &p);
674 if (*p == '@')
675 start = memparse(p + 1, &p);
676
677 add_memory_region(start, size, BOOT_MEM_RAM);
678
679 return 0;
680}
681early_param("mem", early_parse_mem);
682
683static int __init early_parse_memmap(char *p)
684{
685 char *oldp;
686 u64 start_at, mem_size;
687
688 if (!p)
689 return -EINVAL;
690
691 if (!strncmp(p, "exactmap", 8)) {
692 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
693 return 0;
694 }
695
696 oldp = p;
697 mem_size = memparse(p, &p);
698 if (p == oldp)
699 return -EINVAL;
700
701 if (*p == '@') {
702 start_at = memparse(p+1, &p);
703 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
704 } else if (*p == '#') {
705 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
706 return -EINVAL;
707 } else if (*p == '$') {
708 start_at = memparse(p+1, &p);
709 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
710 } else {
711 pr_err("\"memmap\" invalid format!\n");
712 return -EINVAL;
713 }
714
715 if (*p == '\0') {
716 usermem = 1;
717 return 0;
718 } else
719 return -EINVAL;
720}
721early_param("memmap", early_parse_memmap);
722
723#ifdef CONFIG_PROC_VMCORE
724unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
725static int __init early_parse_elfcorehdr(char *p)
726{
727 int i;
728
729 setup_elfcorehdr = memparse(p, &p);
730
731 for (i = 0; i < boot_mem_map.nr_map; i++) {
732 unsigned long start = boot_mem_map.map[i].addr;
733 unsigned long end = (boot_mem_map.map[i].addr +
734 boot_mem_map.map[i].size);
735 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
736 /*
737 * Reserve from the elf core header to the end of
738 * the memory segment, that should all be kdump
739 * reserved memory.
740 */
741 setup_elfcorehdr_size = end - setup_elfcorehdr;
742 break;
743 }
744 }
745 /*
746 * If we don't find it in the memory map, then we shouldn't
747 * have to worry about it, as the new kernel won't use it.
748 */
749 return 0;
750}
751early_param("elfcorehdr", early_parse_elfcorehdr);
752#endif
753
754static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
755{
756 phys_addr_t size;
757 int i;
758
759 size = end - mem;
760 if (!size)
761 return;
762
763 /* Make sure it is in the boot_mem_map */
764 for (i = 0; i < boot_mem_map.nr_map; i++) {
765 if (mem >= boot_mem_map.map[i].addr &&
766 mem < (boot_mem_map.map[i].addr +
767 boot_mem_map.map[i].size))
768 return;
769 }
770 add_memory_region(mem, size, type);
771}
772
773#ifdef CONFIG_KEXEC
774static inline unsigned long long get_total_mem(void)
775{
776 unsigned long long total;
777
778 total = max_pfn - min_low_pfn;
779 return total << PAGE_SHIFT;
780}
781
782static void __init mips_parse_crashkernel(void)
783{
784 unsigned long long total_mem;
785 unsigned long long crash_size, crash_base;
786 int ret;
787
788 total_mem = get_total_mem();
789 ret = parse_crashkernel(boot_command_line, total_mem,
790 &crash_size, &crash_base);
791 if (ret != 0 || crash_size <= 0)
792 return;
793
794 if (!memory_region_available(crash_base, crash_size)) {
795 pr_warn("Invalid memory region reserved for crash kernel\n");
796 return;
797 }
798
799 crashk_res.start = crash_base;
800 crashk_res.end = crash_base + crash_size - 1;
801}
802
803static void __init request_crashkernel(struct resource *res)
804{
805 int ret;
806
807 if (crashk_res.start == crashk_res.end)
808 return;
809
810 ret = request_resource(res, &crashk_res);
811 if (!ret)
812 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
813 (unsigned long)((crashk_res.end -
814 crashk_res.start + 1) >> 20),
815 (unsigned long)(crashk_res.start >> 20));
816}
817#else /* !defined(CONFIG_KEXEC) */
818static void __init mips_parse_crashkernel(void)
819{
820}
821
822static void __init request_crashkernel(struct resource *res)
823{
824}
825#endif /* !defined(CONFIG_KEXEC) */
826
827#define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
828#define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
829#define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
830#define BUILTIN_EXTEND_WITH_PROM \
831 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
832
833static void __init arch_mem_init(char **cmdline_p)
834{
835 struct memblock_region *reg;
836 extern void plat_mem_setup(void);
837
838#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
839 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
840#else
841 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
842 (USE_DTB_CMDLINE && !boot_command_line[0]))
843 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
844
845 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
846 if (boot_command_line[0])
847 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
848 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
849 }
850
851#if defined(CONFIG_CMDLINE_BOOL)
852 if (builtin_cmdline[0]) {
853 if (boot_command_line[0])
854 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
855 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
856 }
857
858 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
859 if (boot_command_line[0])
860 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
861 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
862 }
863#endif
864#endif
865
866 /* call board setup routine */
867 plat_mem_setup();
868
869 /*
870 * Make sure all kernel memory is in the maps. The "UP" and
871 * "DOWN" are opposite for initdata since if it crosses over
872 * into another memory section you don't want that to be
873 * freed when the initdata is freed.
874 */
875 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
876 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
877 BOOT_MEM_RAM);
878 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
879 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
880 BOOT_MEM_INIT_RAM);
881
882 pr_info("Determined physical RAM map:\n");
883 print_memory_map();
884
885 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
886
887 *cmdline_p = command_line;
888
889 parse_early_param();
890
891 if (usermem) {
892 pr_info("User-defined physical RAM map:\n");
893 print_memory_map();
894 }
895
896 early_init_fdt_reserve_self();
897 early_init_fdt_scan_reserved_mem();
898
899 bootmem_init();
900#ifdef CONFIG_PROC_VMCORE
901 if (setup_elfcorehdr && setup_elfcorehdr_size) {
902 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
903 setup_elfcorehdr, setup_elfcorehdr_size);
904 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
905 BOOTMEM_DEFAULT);
906 }
907#endif
908
909 mips_parse_crashkernel();
910#ifdef CONFIG_KEXEC
911 if (crashk_res.start != crashk_res.end)
912 reserve_bootmem(crashk_res.start,
913 crashk_res.end - crashk_res.start + 1,
914 BOOTMEM_DEFAULT);
915#endif
916 device_tree_init();
917 sparse_init();
918 plat_swiotlb_setup();
919
920 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
921 /* Tell bootmem about cma reserved memblock section */
922 for_each_memblock(reserved, reg)
923 if (reg->size != 0)
924 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
925
926 reserve_bootmem_region(__pa_symbol(&__nosave_begin),
927 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
928}
929
930static void __init resource_init(void)
931{
932 int i;
933
934 if (UNCAC_BASE != IO_BASE)
935 return;
936
937 code_resource.start = __pa_symbol(&_text);
938 code_resource.end = __pa_symbol(&_etext) - 1;
939 data_resource.start = __pa_symbol(&_etext);
940 data_resource.end = __pa_symbol(&_edata) - 1;
941 bss_resource.start = __pa_symbol(&__bss_start);
942 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
943
944 for (i = 0; i < boot_mem_map.nr_map; i++) {
945 struct resource *res;
946 unsigned long start, end;
947
948 start = boot_mem_map.map[i].addr;
949 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
950 if (start >= HIGHMEM_START)
951 continue;
952 if (end >= HIGHMEM_START)
953 end = HIGHMEM_START - 1;
954
955 res = alloc_bootmem(sizeof(struct resource));
956
957 res->start = start;
958 res->end = end;
959 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
960
961 switch (boot_mem_map.map[i].type) {
962 case BOOT_MEM_RAM:
963 case BOOT_MEM_INIT_RAM:
964 case BOOT_MEM_ROM_DATA:
965 res->name = "System RAM";
966 res->flags |= IORESOURCE_SYSRAM;
967 break;
968 case BOOT_MEM_RESERVED:
969 default:
970 res->name = "reserved";
971 }
972
973 request_resource(&iomem_resource, res);
974
975 /*
976 * We don't know which RAM region contains kernel data,
977 * so we try it repeatedly and let the resource manager
978 * test it.
979 */
980 request_resource(res, &code_resource);
981 request_resource(res, &data_resource);
982 request_resource(res, &bss_resource);
983 request_crashkernel(res);
984 }
985}
986
987#ifdef CONFIG_SMP
988static void __init prefill_possible_map(void)
989{
990 int i, possible = num_possible_cpus();
991
992 if (possible > nr_cpu_ids)
993 possible = nr_cpu_ids;
994
995 for (i = 0; i < possible; i++)
996 set_cpu_possible(i, true);
997 for (; i < NR_CPUS; i++)
998 set_cpu_possible(i, false);
999
1000 nr_cpu_ids = possible;
1001}
1002#else
1003static inline void prefill_possible_map(void) {}
1004#endif
1005
1006void __init setup_arch(char **cmdline_p)
1007{
1008 cpu_probe();
1009 mips_cm_probe();
1010 prom_init();
1011
1012 setup_early_fdc_console();
1013#ifdef CONFIG_EARLY_PRINTK
1014 setup_early_printk();
1015#endif
1016 cpu_report();
1017 check_bugs_early();
1018
1019#if defined(CONFIG_VT)
1020#if defined(CONFIG_VGA_CONSOLE)
1021 conswitchp = &vga_con;
1022#elif defined(CONFIG_DUMMY_CONSOLE)
1023 conswitchp = &dummy_con;
1024#endif
1025#endif
1026
1027 arch_mem_init(cmdline_p);
1028
1029 resource_init();
1030 plat_smp_setup();
1031 prefill_possible_map();
1032
1033 cpu_cache_init();
1034 paging_init();
1035}
1036
1037unsigned long kernelsp[NR_CPUS];
1038unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1039
1040#ifdef CONFIG_USE_OF
1041unsigned long fw_passed_dtb;
1042#endif
1043
1044#ifdef CONFIG_DEBUG_FS
1045struct dentry *mips_debugfs_dir;
1046static int __init debugfs_mips(void)
1047{
1048 struct dentry *d;
1049
1050 d = debugfs_create_dir("mips", NULL);
1051 if (!d)
1052 return -ENOMEM;
1053 mips_debugfs_dir = d;
1054 return 0;
1055}
1056arch_initcall(debugfs_mips);
1057#endif
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/export.h>
16#include <linux/screen_info.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/initrd.h>
20#include <linux/root_dev.h>
21#include <linux/highmem.h>
22#include <linux/console.h>
23#include <linux/pfn.h>
24#include <linux/debugfs.h>
25#include <linux/kexec.h>
26#include <linux/sizes.h>
27
28#include <asm/addrspace.h>
29#include <asm/bootinfo.h>
30#include <asm/bugs.h>
31#include <asm/cache.h>
32#include <asm/cpu.h>
33#include <asm/sections.h>
34#include <asm/setup.h>
35#include <asm/smp-ops.h>
36#include <asm/prom.h>
37
38struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
39
40EXPORT_SYMBOL(cpu_data);
41
42#ifdef CONFIG_VT
43struct screen_info screen_info;
44#endif
45
46/*
47 * Despite it's name this variable is even if we don't have PCI
48 */
49unsigned int PCI_DMA_BUS_IS_PHYS;
50
51EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
52
53/*
54 * Setup information
55 *
56 * These are initialized so they are in the .data section
57 */
58unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
59
60EXPORT_SYMBOL(mips_machtype);
61
62struct boot_mem_map boot_mem_map;
63
64static char __initdata command_line[COMMAND_LINE_SIZE];
65char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
66
67#ifdef CONFIG_CMDLINE_BOOL
68static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
69#endif
70
71/*
72 * mips_io_port_base is the begin of the address space to which x86 style
73 * I/O ports are mapped.
74 */
75const unsigned long mips_io_port_base = -1;
76EXPORT_SYMBOL(mips_io_port_base);
77
78static struct resource code_resource = { .name = "Kernel code", };
79static struct resource data_resource = { .name = "Kernel data", };
80
81static void *detect_magic __initdata = detect_memory_region;
82
83void __init add_memory_region(phys_t start, phys_t size, long type)
84{
85 int x = boot_mem_map.nr_map;
86 int i;
87
88 /* Sanity check */
89 if (start + size < start) {
90 pr_warning("Trying to add an invalid memory region, skipped\n");
91 return;
92 }
93
94 /*
95 * Try to merge with existing entry, if any.
96 */
97 for (i = 0; i < boot_mem_map.nr_map; i++) {
98 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
99 unsigned long top;
100
101 if (entry->type != type)
102 continue;
103
104 if (start + size < entry->addr)
105 continue; /* no overlap */
106
107 if (entry->addr + entry->size < start)
108 continue; /* no overlap */
109
110 top = max(entry->addr + entry->size, start + size);
111 entry->addr = min(entry->addr, start);
112 entry->size = top - entry->addr;
113
114 return;
115 }
116
117 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
118 pr_err("Ooops! Too many entries in the memory map!\n");
119 return;
120 }
121
122 boot_mem_map.map[x].addr = start;
123 boot_mem_map.map[x].size = size;
124 boot_mem_map.map[x].type = type;
125 boot_mem_map.nr_map++;
126}
127
128void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
129{
130 void *dm = &detect_magic;
131 phys_t size;
132
133 for (size = sz_min; size < sz_max; size <<= 1) {
134 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
135 break;
136 }
137
138 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
139 ((unsigned long long) size) / SZ_1M,
140 (unsigned long long) start,
141 ((unsigned long long) sz_min) / SZ_1M,
142 ((unsigned long long) sz_max) / SZ_1M);
143
144 add_memory_region(start, size, BOOT_MEM_RAM);
145}
146
147static void __init print_memory_map(void)
148{
149 int i;
150 const int field = 2 * sizeof(unsigned long);
151
152 for (i = 0; i < boot_mem_map.nr_map; i++) {
153 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
154 field, (unsigned long long) boot_mem_map.map[i].size,
155 field, (unsigned long long) boot_mem_map.map[i].addr);
156
157 switch (boot_mem_map.map[i].type) {
158 case BOOT_MEM_RAM:
159 printk(KERN_CONT "(usable)\n");
160 break;
161 case BOOT_MEM_INIT_RAM:
162 printk(KERN_CONT "(usable after init)\n");
163 break;
164 case BOOT_MEM_ROM_DATA:
165 printk(KERN_CONT "(ROM data)\n");
166 break;
167 case BOOT_MEM_RESERVED:
168 printk(KERN_CONT "(reserved)\n");
169 break;
170 default:
171 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
172 break;
173 }
174 }
175}
176
177/*
178 * Manage initrd
179 */
180#ifdef CONFIG_BLK_DEV_INITRD
181
182static int __init rd_start_early(char *p)
183{
184 unsigned long start = memparse(p, &p);
185
186#ifdef CONFIG_64BIT
187 /* Guess if the sign extension was forgotten by bootloader */
188 if (start < XKPHYS)
189 start = (int)start;
190#endif
191 initrd_start = start;
192 initrd_end += start;
193 return 0;
194}
195early_param("rd_start", rd_start_early);
196
197static int __init rd_size_early(char *p)
198{
199 initrd_end += memparse(p, &p);
200 return 0;
201}
202early_param("rd_size", rd_size_early);
203
204/* it returns the next free pfn after initrd */
205static unsigned long __init init_initrd(void)
206{
207 unsigned long end;
208
209 /*
210 * Board specific code or command line parser should have
211 * already set up initrd_start and initrd_end. In these cases
212 * perfom sanity checks and use them if all looks good.
213 */
214 if (!initrd_start || initrd_end <= initrd_start)
215 goto disable;
216
217 if (initrd_start & ~PAGE_MASK) {
218 pr_err("initrd start must be page aligned\n");
219 goto disable;
220 }
221 if (initrd_start < PAGE_OFFSET) {
222 pr_err("initrd start < PAGE_OFFSET\n");
223 goto disable;
224 }
225
226 /*
227 * Sanitize initrd addresses. For example firmware
228 * can't guess if they need to pass them through
229 * 64-bits values if the kernel has been built in pure
230 * 32-bit. We need also to switch from KSEG0 to XKPHYS
231 * addresses now, so the code can now safely use __pa().
232 */
233 end = __pa(initrd_end);
234 initrd_end = (unsigned long)__va(end);
235 initrd_start = (unsigned long)__va(__pa(initrd_start));
236
237 ROOT_DEV = Root_RAM0;
238 return PFN_UP(end);
239disable:
240 initrd_start = 0;
241 initrd_end = 0;
242 return 0;
243}
244
245static void __init finalize_initrd(void)
246{
247 unsigned long size = initrd_end - initrd_start;
248
249 if (size == 0) {
250 printk(KERN_INFO "Initrd not found or empty");
251 goto disable;
252 }
253 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
254 printk(KERN_ERR "Initrd extends beyond end of memory");
255 goto disable;
256 }
257
258 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
259 initrd_below_start_ok = 1;
260
261 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
262 initrd_start, size);
263 return;
264disable:
265 printk(KERN_CONT " - disabling initrd\n");
266 initrd_start = 0;
267 initrd_end = 0;
268}
269
270#else /* !CONFIG_BLK_DEV_INITRD */
271
272static unsigned long __init init_initrd(void)
273{
274 return 0;
275}
276
277#define finalize_initrd() do {} while (0)
278
279#endif
280
281/*
282 * Initialize the bootmem allocator. It also setup initrd related data
283 * if needed.
284 */
285#ifdef CONFIG_SGI_IP27
286
287static void __init bootmem_init(void)
288{
289 init_initrd();
290 finalize_initrd();
291}
292
293#else /* !CONFIG_SGI_IP27 */
294
295static void __init bootmem_init(void)
296{
297 unsigned long reserved_end;
298 unsigned long mapstart = ~0UL;
299 unsigned long bootmap_size;
300 int i;
301
302 /*
303 * Sanity check any INITRD first. We don't take it into account
304 * for bootmem setup initially, rely on the end-of-kernel-code
305 * as our memory range starting point. Once bootmem is inited we
306 * will reserve the area used for the initrd.
307 */
308 init_initrd();
309 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
310
311 /*
312 * max_low_pfn is not a number of pages. The number of pages
313 * of the system is given by 'max_low_pfn - min_low_pfn'.
314 */
315 min_low_pfn = ~0UL;
316 max_low_pfn = 0;
317
318 /*
319 * Find the highest page frame number we have available.
320 */
321 for (i = 0; i < boot_mem_map.nr_map; i++) {
322 unsigned long start, end;
323
324 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
325 continue;
326
327 start = PFN_UP(boot_mem_map.map[i].addr);
328 end = PFN_DOWN(boot_mem_map.map[i].addr
329 + boot_mem_map.map[i].size);
330
331 if (end > max_low_pfn)
332 max_low_pfn = end;
333 if (start < min_low_pfn)
334 min_low_pfn = start;
335 if (end <= reserved_end)
336 continue;
337 if (start >= mapstart)
338 continue;
339 mapstart = max(reserved_end, start);
340 }
341
342 if (min_low_pfn >= max_low_pfn)
343 panic("Incorrect memory mapping !!!");
344 if (min_low_pfn > ARCH_PFN_OFFSET) {
345 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
346 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
347 min_low_pfn - ARCH_PFN_OFFSET);
348 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
349 pr_info("%lu free pages won't be used\n",
350 ARCH_PFN_OFFSET - min_low_pfn);
351 }
352 min_low_pfn = ARCH_PFN_OFFSET;
353
354 /*
355 * Determine low and high memory ranges
356 */
357 max_pfn = max_low_pfn;
358 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
359#ifdef CONFIG_HIGHMEM
360 highstart_pfn = PFN_DOWN(HIGHMEM_START);
361 highend_pfn = max_low_pfn;
362#endif
363 max_low_pfn = PFN_DOWN(HIGHMEM_START);
364 }
365
366#ifdef CONFIG_BLK_DEV_INITRD
367 /*
368 * mapstart should be after initrd_end
369 */
370 if (initrd_end)
371 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
372#endif
373
374 /*
375 * Initialize the boot-time allocator with low memory only.
376 */
377 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
378 min_low_pfn, max_low_pfn);
379
380
381 for (i = 0; i < boot_mem_map.nr_map; i++) {
382 unsigned long start, end;
383
384 start = PFN_UP(boot_mem_map.map[i].addr);
385 end = PFN_DOWN(boot_mem_map.map[i].addr
386 + boot_mem_map.map[i].size);
387
388 if (start <= min_low_pfn)
389 start = min_low_pfn;
390 if (start >= end)
391 continue;
392
393#ifndef CONFIG_HIGHMEM
394 if (end > max_low_pfn)
395 end = max_low_pfn;
396
397 /*
398 * ... finally, is the area going away?
399 */
400 if (end <= start)
401 continue;
402#endif
403
404 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
405 }
406
407 /*
408 * Register fully available low RAM pages with the bootmem allocator.
409 */
410 for (i = 0; i < boot_mem_map.nr_map; i++) {
411 unsigned long start, end, size;
412
413 start = PFN_UP(boot_mem_map.map[i].addr);
414 end = PFN_DOWN(boot_mem_map.map[i].addr
415 + boot_mem_map.map[i].size);
416
417 /*
418 * Reserve usable memory.
419 */
420 switch (boot_mem_map.map[i].type) {
421 case BOOT_MEM_RAM:
422 break;
423 case BOOT_MEM_INIT_RAM:
424 memory_present(0, start, end);
425 continue;
426 default:
427 /* Not usable memory */
428 continue;
429 }
430
431 /*
432 * We are rounding up the start address of usable memory
433 * and at the end of the usable range downwards.
434 */
435 if (start >= max_low_pfn)
436 continue;
437 if (start < reserved_end)
438 start = reserved_end;
439 if (end > max_low_pfn)
440 end = max_low_pfn;
441
442 /*
443 * ... finally, is the area going away?
444 */
445 if (end <= start)
446 continue;
447 size = end - start;
448
449 /* Register lowmem ranges */
450 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
451 memory_present(0, start, end);
452 }
453
454 /*
455 * Reserve the bootmap memory.
456 */
457 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
458
459 /*
460 * Reserve initrd memory if needed.
461 */
462 finalize_initrd();
463}
464
465#endif /* CONFIG_SGI_IP27 */
466
467/*
468 * arch_mem_init - initialize memory management subsystem
469 *
470 * o plat_mem_setup() detects the memory configuration and will record detected
471 * memory areas using add_memory_region.
472 *
473 * At this stage the memory configuration of the system is known to the
474 * kernel but generic memory management system is still entirely uninitialized.
475 *
476 * o bootmem_init()
477 * o sparse_init()
478 * o paging_init()
479 *
480 * At this stage the bootmem allocator is ready to use.
481 *
482 * NOTE: historically plat_mem_setup did the entire platform initialization.
483 * This was rather impractical because it meant plat_mem_setup had to
484 * get away without any kind of memory allocator. To keep old code from
485 * breaking plat_setup was just renamed to plat_setup and a second platform
486 * initialization hook for anything else was introduced.
487 */
488
489static int usermem __initdata;
490
491static int __init early_parse_mem(char *p)
492{
493 unsigned long start, size;
494
495 /*
496 * If a user specifies memory size, we
497 * blow away any automatically generated
498 * size.
499 */
500 if (usermem == 0) {
501 boot_mem_map.nr_map = 0;
502 usermem = 1;
503 }
504 start = 0;
505 size = memparse(p, &p);
506 if (*p == '@')
507 start = memparse(p + 1, &p);
508
509 add_memory_region(start, size, BOOT_MEM_RAM);
510 return 0;
511}
512early_param("mem", early_parse_mem);
513
514#ifdef CONFIG_PROC_VMCORE
515unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
516static int __init early_parse_elfcorehdr(char *p)
517{
518 int i;
519
520 setup_elfcorehdr = memparse(p, &p);
521
522 for (i = 0; i < boot_mem_map.nr_map; i++) {
523 unsigned long start = boot_mem_map.map[i].addr;
524 unsigned long end = (boot_mem_map.map[i].addr +
525 boot_mem_map.map[i].size);
526 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
527 /*
528 * Reserve from the elf core header to the end of
529 * the memory segment, that should all be kdump
530 * reserved memory.
531 */
532 setup_elfcorehdr_size = end - setup_elfcorehdr;
533 break;
534 }
535 }
536 /*
537 * If we don't find it in the memory map, then we shouldn't
538 * have to worry about it, as the new kernel won't use it.
539 */
540 return 0;
541}
542early_param("elfcorehdr", early_parse_elfcorehdr);
543#endif
544
545static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
546{
547 phys_t size;
548 int i;
549
550 size = end - mem;
551 if (!size)
552 return;
553
554 /* Make sure it is in the boot_mem_map */
555 for (i = 0; i < boot_mem_map.nr_map; i++) {
556 if (mem >= boot_mem_map.map[i].addr &&
557 mem < (boot_mem_map.map[i].addr +
558 boot_mem_map.map[i].size))
559 return;
560 }
561 add_memory_region(mem, size, type);
562}
563
564#ifdef CONFIG_KEXEC
565static inline unsigned long long get_total_mem(void)
566{
567 unsigned long long total;
568
569 total = max_pfn - min_low_pfn;
570 return total << PAGE_SHIFT;
571}
572
573static void __init mips_parse_crashkernel(void)
574{
575 unsigned long long total_mem;
576 unsigned long long crash_size, crash_base;
577 int ret;
578
579 total_mem = get_total_mem();
580 ret = parse_crashkernel(boot_command_line, total_mem,
581 &crash_size, &crash_base);
582 if (ret != 0 || crash_size <= 0)
583 return;
584
585 crashk_res.start = crash_base;
586 crashk_res.end = crash_base + crash_size - 1;
587}
588
589static void __init request_crashkernel(struct resource *res)
590{
591 int ret;
592
593 ret = request_resource(res, &crashk_res);
594 if (!ret)
595 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
596 (unsigned long)((crashk_res.end -
597 crashk_res.start + 1) >> 20),
598 (unsigned long)(crashk_res.start >> 20));
599}
600#else /* !defined(CONFIG_KEXEC) */
601static void __init mips_parse_crashkernel(void)
602{
603}
604
605static void __init request_crashkernel(struct resource *res)
606{
607}
608#endif /* !defined(CONFIG_KEXEC) */
609
610static void __init arch_mem_init(char **cmdline_p)
611{
612 extern void plat_mem_setup(void);
613
614 /* call board setup routine */
615 plat_mem_setup();
616
617 /*
618 * Make sure all kernel memory is in the maps. The "UP" and
619 * "DOWN" are opposite for initdata since if it crosses over
620 * into another memory section you don't want that to be
621 * freed when the initdata is freed.
622 */
623 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
624 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
625 BOOT_MEM_RAM);
626 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
627 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
628 BOOT_MEM_INIT_RAM);
629
630 pr_info("Determined physical RAM map:\n");
631 print_memory_map();
632
633#ifdef CONFIG_CMDLINE_BOOL
634#ifdef CONFIG_CMDLINE_OVERRIDE
635 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
636#else
637 if (builtin_cmdline[0]) {
638 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
639 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
640 }
641 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
642#endif
643#else
644 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
645#endif
646 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
647
648 *cmdline_p = command_line;
649
650 parse_early_param();
651
652 if (usermem) {
653 pr_info("User-defined physical RAM map:\n");
654 print_memory_map();
655 }
656
657 bootmem_init();
658#ifdef CONFIG_PROC_VMCORE
659 if (setup_elfcorehdr && setup_elfcorehdr_size) {
660 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
661 setup_elfcorehdr, setup_elfcorehdr_size);
662 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
663 BOOTMEM_DEFAULT);
664 }
665#endif
666
667 mips_parse_crashkernel();
668#ifdef CONFIG_KEXEC
669 if (crashk_res.start != crashk_res.end)
670 reserve_bootmem(crashk_res.start,
671 crashk_res.end - crashk_res.start + 1,
672 BOOTMEM_DEFAULT);
673#endif
674 device_tree_init();
675 sparse_init();
676 plat_swiotlb_setup();
677 paging_init();
678}
679
680static void __init resource_init(void)
681{
682 int i;
683
684 if (UNCAC_BASE != IO_BASE)
685 return;
686
687 code_resource.start = __pa_symbol(&_text);
688 code_resource.end = __pa_symbol(&_etext) - 1;
689 data_resource.start = __pa_symbol(&_etext);
690 data_resource.end = __pa_symbol(&_edata) - 1;
691
692 for (i = 0; i < boot_mem_map.nr_map; i++) {
693 struct resource *res;
694 unsigned long start, end;
695
696 start = boot_mem_map.map[i].addr;
697 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
698 if (start >= HIGHMEM_START)
699 continue;
700 if (end >= HIGHMEM_START)
701 end = HIGHMEM_START - 1;
702
703 res = alloc_bootmem(sizeof(struct resource));
704 switch (boot_mem_map.map[i].type) {
705 case BOOT_MEM_RAM:
706 case BOOT_MEM_INIT_RAM:
707 case BOOT_MEM_ROM_DATA:
708 res->name = "System RAM";
709 break;
710 case BOOT_MEM_RESERVED:
711 default:
712 res->name = "reserved";
713 }
714
715 res->start = start;
716 res->end = end;
717
718 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
719 request_resource(&iomem_resource, res);
720
721 /*
722 * We don't know which RAM region contains kernel data,
723 * so we try it repeatedly and let the resource manager
724 * test it.
725 */
726 request_resource(res, &code_resource);
727 request_resource(res, &data_resource);
728 request_crashkernel(res);
729 }
730}
731
732void __init setup_arch(char **cmdline_p)
733{
734 cpu_probe();
735 prom_init();
736
737#ifdef CONFIG_EARLY_PRINTK
738 setup_early_printk();
739#endif
740 cpu_report();
741 check_bugs_early();
742
743#if defined(CONFIG_VT)
744#if defined(CONFIG_VGA_CONSOLE)
745 conswitchp = &vga_con;
746#elif defined(CONFIG_DUMMY_CONSOLE)
747 conswitchp = &dummy_con;
748#endif
749#endif
750
751 arch_mem_init(cmdline_p);
752
753 resource_init();
754 plat_smp_setup();
755
756 cpu_cache_init();
757}
758
759unsigned long kernelsp[NR_CPUS];
760unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
761
762#ifdef CONFIG_DEBUG_FS
763struct dentry *mips_debugfs_dir;
764static int __init debugfs_mips(void)
765{
766 struct dentry *d;
767
768 d = debugfs_create_dir("mips", NULL);
769 if (!d)
770 return -ENOMEM;
771 mips_debugfs_dir = d;
772 return 0;
773}
774arch_initcall(debugfs_mips);
775#endif