Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/fixmap.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <asm/smp_plat.h>
  29#include <asm/tlb.h>
  30#include <asm/highmem.h>
  31#include <asm/system_info.h>
  32#include <asm/traps.h>
  33#include <asm/procinfo.h>
  34#include <asm/memory.h>
  35
  36#include <asm/mach/arch.h>
  37#include <asm/mach/map.h>
  38#include <asm/mach/pci.h>
  39#include <asm/fixmap.h>
  40
  41#include "fault.h"
  42#include "mm.h"
  43#include "tcm.h"
  44
  45/*
  46 * empty_zero_page is a special page that is used for
  47 * zero-initialized data and COW.
  48 */
  49struct page *empty_zero_page;
  50EXPORT_SYMBOL(empty_zero_page);
  51
  52/*
  53 * The pmd table for the upper-most set of pages.
  54 */
  55pmd_t *top_pmd;
  56
  57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  58
  59#define CPOLICY_UNCACHED	0
  60#define CPOLICY_BUFFERED	1
  61#define CPOLICY_WRITETHROUGH	2
  62#define CPOLICY_WRITEBACK	3
  63#define CPOLICY_WRITEALLOC	4
  64
  65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  66static unsigned int ecc_mask __initdata = 0;
  67pgprot_t pgprot_user;
  68pgprot_t pgprot_kernel;
  69pgprot_t pgprot_hyp_device;
  70pgprot_t pgprot_s2;
  71pgprot_t pgprot_s2_device;
  72
  73EXPORT_SYMBOL(pgprot_user);
  74EXPORT_SYMBOL(pgprot_kernel);
  75
  76struct cachepolicy {
  77	const char	policy[16];
  78	unsigned int	cr_mask;
  79	pmdval_t	pmd;
  80	pteval_t	pte;
  81	pteval_t	pte_s2;
  82};
  83
  84#ifdef CONFIG_ARM_LPAE
  85#define s2_policy(policy)	policy
  86#else
  87#define s2_policy(policy)	0
  88#endif
  89
  90unsigned long kimage_voffset __ro_after_init;
  91
  92static struct cachepolicy cache_policies[] __initdata = {
  93	{
  94		.policy		= "uncached",
  95		.cr_mask	= CR_W|CR_C,
  96		.pmd		= PMD_SECT_UNCACHED,
  97		.pte		= L_PTE_MT_UNCACHED,
  98		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  99	}, {
 100		.policy		= "buffered",
 101		.cr_mask	= CR_C,
 102		.pmd		= PMD_SECT_BUFFERED,
 103		.pte		= L_PTE_MT_BUFFERABLE,
 104		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
 105	}, {
 106		.policy		= "writethrough",
 107		.cr_mask	= 0,
 108		.pmd		= PMD_SECT_WT,
 109		.pte		= L_PTE_MT_WRITETHROUGH,
 110		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 111	}, {
 112		.policy		= "writeback",
 113		.cr_mask	= 0,
 114		.pmd		= PMD_SECT_WB,
 115		.pte		= L_PTE_MT_WRITEBACK,
 116		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 117	}, {
 118		.policy		= "writealloc",
 119		.cr_mask	= 0,
 120		.pmd		= PMD_SECT_WBWA,
 121		.pte		= L_PTE_MT_WRITEALLOC,
 122		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 123	}
 124};
 125
 126#ifdef CONFIG_CPU_CP15
 127static unsigned long initial_pmd_value __initdata = 0;
 128
 129/*
 130 * Initialise the cache_policy variable with the initial state specified
 131 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 132 * the C code sets the page tables up with the same policy as the head
 133 * assembly code, which avoids an illegal state where the TLBs can get
 134 * confused.  See comments in early_cachepolicy() for more information.
 135 */
 136void __init init_default_cache_policy(unsigned long pmd)
 137{
 138	int i;
 139
 140	initial_pmd_value = pmd;
 141
 142	pmd &= PMD_SECT_CACHE_MASK;
 143
 144	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 145		if (cache_policies[i].pmd == pmd) {
 146			cachepolicy = i;
 147			break;
 148		}
 149
 150	if (i == ARRAY_SIZE(cache_policies))
 151		pr_err("ERROR: could not find cache policy\n");
 152}
 153
 154/*
 155 * These are useful for identifying cache coherency problems by allowing
 156 * the cache or the cache and writebuffer to be turned off.  (Note: the
 157 * write buffer should not be on and the cache off).
 158 */
 159static int __init early_cachepolicy(char *p)
 160{
 161	int i, selected = -1;
 162
 163	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 164		int len = strlen(cache_policies[i].policy);
 165
 166		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 167			selected = i;
 
 
 168			break;
 169		}
 170	}
 171
 172	if (selected == -1)
 173		pr_err("ERROR: unknown or unsupported cache policy\n");
 174
 175	/*
 176	 * This restriction is partly to do with the way we boot; it is
 177	 * unpredictable to have memory mapped using two different sets of
 178	 * memory attributes (shared, type, and cache attribs).  We can not
 179	 * change these attributes once the initial assembly has setup the
 180	 * page tables.
 181	 */
 182	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 183		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 184			cache_policies[cachepolicy].policy);
 185		return 0;
 186	}
 187
 188	if (selected != cachepolicy) {
 189		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 190		cachepolicy = selected;
 191		flush_cache_all();
 192		set_cr(cr);
 193	}
 
 
 194	return 0;
 195}
 196early_param("cachepolicy", early_cachepolicy);
 197
 198static int __init early_nocache(char *__unused)
 199{
 200	char *p = "buffered";
 201	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 202	early_cachepolicy(p);
 203	return 0;
 204}
 205early_param("nocache", early_nocache);
 206
 207static int __init early_nowrite(char *__unused)
 208{
 209	char *p = "uncached";
 210	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 211	early_cachepolicy(p);
 212	return 0;
 213}
 214early_param("nowb", early_nowrite);
 215
 216#ifndef CONFIG_ARM_LPAE
 217static int __init early_ecc(char *p)
 218{
 219	if (memcmp(p, "on", 2) == 0)
 220		ecc_mask = PMD_PROTECTION;
 221	else if (memcmp(p, "off", 3) == 0)
 222		ecc_mask = 0;
 223	return 0;
 224}
 225early_param("ecc", early_ecc);
 226#endif
 227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228#else /* ifdef CONFIG_CPU_CP15 */
 229
 230static int __init early_cachepolicy(char *p)
 231{
 232	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 233}
 234early_param("cachepolicy", early_cachepolicy);
 235
 236static int __init noalign_setup(char *__unused)
 237{
 238	pr_warn("noalign kernel parameter not supported without cp15\n");
 239}
 240__setup("noalign", noalign_setup);
 241
 242#endif /* ifdef CONFIG_CPU_CP15 / else */
 243
 244#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 245#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 246#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 247
 248static struct mem_type mem_types[] __ro_after_init = {
 249	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 250		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 251				  L_PTE_SHARED,
 252		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
 253				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 254				  L_PTE_SHARED,
 255		.prot_l1	= PMD_TYPE_TABLE,
 256		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 257		.domain		= DOMAIN_IO,
 258	},
 259	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 260		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 261		.prot_l1	= PMD_TYPE_TABLE,
 262		.prot_sect	= PROT_SECT_DEVICE,
 263		.domain		= DOMAIN_IO,
 264	},
 265	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 266		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 267		.prot_l1	= PMD_TYPE_TABLE,
 268		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 269		.domain		= DOMAIN_IO,
 270	},
 271	[MT_DEVICE_WC] = {	/* ioremap_wc */
 272		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 273		.prot_l1	= PMD_TYPE_TABLE,
 274		.prot_sect	= PROT_SECT_DEVICE,
 275		.domain		= DOMAIN_IO,
 276	},
 277	[MT_UNCACHED] = {
 278		.prot_pte	= PROT_PTE_DEVICE,
 279		.prot_l1	= PMD_TYPE_TABLE,
 280		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 281		.domain		= DOMAIN_IO,
 282	},
 283	[MT_CACHECLEAN] = {
 284		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 285		.domain    = DOMAIN_KERNEL,
 286	},
 287#ifndef CONFIG_ARM_LPAE
 288	[MT_MINICLEAN] = {
 289		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 290		.domain    = DOMAIN_KERNEL,
 291	},
 292#endif
 293	[MT_LOW_VECTORS] = {
 294		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 295				L_PTE_RDONLY,
 296		.prot_l1   = PMD_TYPE_TABLE,
 297		.domain    = DOMAIN_VECTORS,
 298	},
 299	[MT_HIGH_VECTORS] = {
 300		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 301				L_PTE_USER | L_PTE_RDONLY,
 302		.prot_l1   = PMD_TYPE_TABLE,
 303		.domain    = DOMAIN_VECTORS,
 304	},
 305	[MT_MEMORY_RWX] = {
 306		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 307		.prot_l1   = PMD_TYPE_TABLE,
 308		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 309		.domain    = DOMAIN_KERNEL,
 310	},
 311	[MT_MEMORY_RW] = {
 312		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 313			     L_PTE_XN,
 314		.prot_l1   = PMD_TYPE_TABLE,
 315		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 316		.domain    = DOMAIN_KERNEL,
 317	},
 318	[MT_ROM] = {
 319		.prot_sect = PMD_TYPE_SECT,
 320		.domain    = DOMAIN_KERNEL,
 321	},
 322	[MT_MEMORY_RWX_NONCACHED] = {
 323		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 324				L_PTE_MT_BUFFERABLE,
 325		.prot_l1   = PMD_TYPE_TABLE,
 326		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 327		.domain    = DOMAIN_KERNEL,
 328	},
 329	[MT_MEMORY_RW_DTCM] = {
 330		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 331				L_PTE_XN,
 332		.prot_l1   = PMD_TYPE_TABLE,
 333		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 334		.domain    = DOMAIN_KERNEL,
 335	},
 336	[MT_MEMORY_RWX_ITCM] = {
 337		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 338		.prot_l1   = PMD_TYPE_TABLE,
 339		.domain    = DOMAIN_KERNEL,
 340	},
 341	[MT_MEMORY_RW_SO] = {
 342		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 343				L_PTE_MT_UNCACHED | L_PTE_XN,
 344		.prot_l1   = PMD_TYPE_TABLE,
 345		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 346				PMD_SECT_UNCACHED | PMD_SECT_XN,
 347		.domain    = DOMAIN_KERNEL,
 348	},
 349	[MT_MEMORY_DMA_READY] = {
 350		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 351				L_PTE_XN,
 352		.prot_l1   = PMD_TYPE_TABLE,
 353		.domain    = DOMAIN_KERNEL,
 354	},
 355};
 356
 357const struct mem_type *get_mem_type(unsigned int type)
 358{
 359	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 360}
 361EXPORT_SYMBOL(get_mem_type);
 362
 363static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 364
 365static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 366	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 367
 368static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 369{
 370	return &bm_pte[pte_index(addr)];
 371}
 372
 373static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 374{
 375	return pte_offset_kernel(dir, addr);
 376}
 377
 378static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 379{
 380	pgd_t *pgd = pgd_offset_k(addr);
 381	pud_t *pud = pud_offset(pgd, addr);
 382	pmd_t *pmd = pmd_offset(pud, addr);
 383
 384	return pmd;
 385}
 386
 387void __init early_fixmap_init(void)
 388{
 389	pmd_t *pmd;
 390
 391	/*
 392	 * The early fixmap range spans multiple pmds, for which
 393	 * we are not prepared:
 394	 */
 395	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 396		     != FIXADDR_TOP >> PMD_SHIFT);
 397
 398	pmd = fixmap_pmd(FIXADDR_TOP);
 399	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 400
 401	pte_offset_fixmap = pte_offset_early_fixmap;
 402}
 403
 404/*
 405 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 406 * As a result, this can only be called with preemption disabled, as under
 407 * stop_machine().
 408 */
 409void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 410{
 411	unsigned long vaddr = __fix_to_virt(idx);
 412	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 413
 414	/* Make sure fixmap region does not exceed available allocation. */
 415	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 416		     FIXADDR_END);
 417	BUG_ON(idx >= __end_of_fixed_addresses);
 418
 419	/* we only support device mappings until pgprot_kernel has been set */
 420	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 421		    pgprot_val(pgprot_kernel) == 0))
 422		return;
 423
 424	if (pgprot_val(prot))
 425		set_pte_at(NULL, vaddr, pte,
 426			pfn_pte(phys >> PAGE_SHIFT, prot));
 427	else
 428		pte_clear(NULL, vaddr, pte);
 429	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 430}
 431
 432/*
 433 * Adjust the PMD section entries according to the CPU in use.
 434 */
 435static void __init build_mem_type_table(void)
 436{
 437	struct cachepolicy *cp;
 438	unsigned int cr = get_cr();
 439	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 440	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 441	int cpu_arch = cpu_architecture();
 442	int i;
 443
 444	if (cpu_arch < CPU_ARCH_ARMv6) {
 445#if defined(CONFIG_CPU_DCACHE_DISABLE)
 446		if (cachepolicy > CPOLICY_BUFFERED)
 447			cachepolicy = CPOLICY_BUFFERED;
 448#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 449		if (cachepolicy > CPOLICY_WRITETHROUGH)
 450			cachepolicy = CPOLICY_WRITETHROUGH;
 451#endif
 452	}
 453	if (cpu_arch < CPU_ARCH_ARMv5) {
 454		if (cachepolicy >= CPOLICY_WRITEALLOC)
 455			cachepolicy = CPOLICY_WRITEBACK;
 456		ecc_mask = 0;
 457	}
 458
 459	if (is_smp()) {
 460		if (cachepolicy != CPOLICY_WRITEALLOC) {
 461			pr_warn("Forcing write-allocate cache policy for SMP\n");
 462			cachepolicy = CPOLICY_WRITEALLOC;
 463		}
 464		if (!(initial_pmd_value & PMD_SECT_S)) {
 465			pr_warn("Forcing shared mappings for SMP\n");
 466			initial_pmd_value |= PMD_SECT_S;
 467		}
 468	}
 469
 470	/*
 471	 * Strip out features not present on earlier architectures.
 472	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 473	 * without extended page tables don't have the 'Shared' bit.
 474	 */
 475	if (cpu_arch < CPU_ARCH_ARMv5)
 476		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 477			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 478	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 479		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 480			mem_types[i].prot_sect &= ~PMD_SECT_S;
 481
 482	/*
 483	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 484	 * "update-able on write" bit on ARM610).  However, Xscale and
 485	 * Xscale3 require this bit to be cleared.
 486	 */
 487	if (cpu_is_xscale_family()) {
 488		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 489			mem_types[i].prot_sect &= ~PMD_BIT4;
 490			mem_types[i].prot_l1 &= ~PMD_BIT4;
 491		}
 492	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 493		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 494			if (mem_types[i].prot_l1)
 495				mem_types[i].prot_l1 |= PMD_BIT4;
 496			if (mem_types[i].prot_sect)
 497				mem_types[i].prot_sect |= PMD_BIT4;
 498		}
 499	}
 500
 501	/*
 502	 * Mark the device areas according to the CPU/architecture.
 503	 */
 504	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 505		if (!cpu_is_xsc3()) {
 506			/*
 507			 * Mark device regions on ARMv6+ as execute-never
 508			 * to prevent speculative instruction fetches.
 509			 */
 510			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 511			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 512			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 513			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 514
 515			/* Also setup NX memory mapping */
 516			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 517		}
 518		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 519			/*
 520			 * For ARMv7 with TEX remapping,
 521			 * - shared device is SXCB=1100
 522			 * - nonshared device is SXCB=0100
 523			 * - write combine device mem is SXCB=0001
 524			 * (Uncached Normal memory)
 525			 */
 526			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 527			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 528			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 529		} else if (cpu_is_xsc3()) {
 530			/*
 531			 * For Xscale3,
 532			 * - shared device is TEXCB=00101
 533			 * - nonshared device is TEXCB=01000
 534			 * - write combine device mem is TEXCB=00100
 535			 * (Inner/Outer Uncacheable in xsc3 parlance)
 536			 */
 537			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 538			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 539			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 540		} else {
 541			/*
 542			 * For ARMv6 and ARMv7 without TEX remapping,
 543			 * - shared device is TEXCB=00001
 544			 * - nonshared device is TEXCB=01000
 545			 * - write combine device mem is TEXCB=00100
 546			 * (Uncached Normal in ARMv6 parlance).
 547			 */
 548			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 549			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 550			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 551		}
 552	} else {
 553		/*
 554		 * On others, write combining is "Uncached/Buffered"
 555		 */
 556		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 557	}
 558
 559	/*
 560	 * Now deal with the memory-type mappings
 561	 */
 562	cp = &cache_policies[cachepolicy];
 563	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 564	s2_pgprot = cp->pte_s2;
 565	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 566	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 567
 568#ifndef CONFIG_ARM_LPAE
 569	/*
 570	 * We don't use domains on ARMv6 (since this causes problems with
 571	 * v6/v7 kernels), so we must use a separate memory type for user
 572	 * r/o, kernel r/w to map the vectors page.
 573	 */
 
 574	if (cpu_arch == CPU_ARCH_ARMv6)
 575		vecs_pgprot |= L_PTE_MT_VECTORS;
 576
 577	/*
 578	 * Check is it with support for the PXN bit
 579	 * in the Short-descriptor translation table format descriptors.
 580	 */
 581	if (cpu_arch == CPU_ARCH_ARMv7 &&
 582		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 583		user_pmd_table |= PMD_PXNTABLE;
 584	}
 585#endif
 586
 587	/*
 588	 * ARMv6 and above have extended page tables.
 589	 */
 590	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 591#ifndef CONFIG_ARM_LPAE
 592		/*
 593		 * Mark cache clean areas and XIP ROM read only
 594		 * from SVC mode and no access from userspace.
 595		 */
 596		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 597		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 598		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 599#endif
 600
 601		/*
 602		 * If the initial page tables were created with the S bit
 603		 * set, then we need to do the same here for the same
 604		 * reasons given in early_cachepolicy().
 605		 */
 606		if (initial_pmd_value & PMD_SECT_S) {
 607			user_pgprot |= L_PTE_SHARED;
 608			kern_pgprot |= L_PTE_SHARED;
 609			vecs_pgprot |= L_PTE_SHARED;
 610			s2_pgprot |= L_PTE_SHARED;
 611			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 612			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 613			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 614			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 615			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 616			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 617			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 618			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 619			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 620			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 621			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 622		}
 623	}
 624
 625	/*
 626	 * Non-cacheable Normal - intended for memory areas that must
 627	 * not cause dirty cache line writebacks when used
 628	 */
 629	if (cpu_arch >= CPU_ARCH_ARMv6) {
 630		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 631			/* Non-cacheable Normal is XCB = 001 */
 632			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 633				PMD_SECT_BUFFERED;
 634		} else {
 635			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 636			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 637				PMD_SECT_TEX(1);
 638		}
 639	} else {
 640		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 641	}
 642
 643#ifdef CONFIG_ARM_LPAE
 644	/*
 645	 * Do not generate access flag faults for the kernel mappings.
 646	 */
 647	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 648		mem_types[i].prot_pte |= PTE_EXT_AF;
 649		if (mem_types[i].prot_sect)
 650			mem_types[i].prot_sect |= PMD_SECT_AF;
 651	}
 652	kern_pgprot |= PTE_EXT_AF;
 653	vecs_pgprot |= PTE_EXT_AF;
 654
 655	/*
 656	 * Set PXN for user mappings
 657	 */
 658	user_pgprot |= PTE_EXT_PXN;
 659#endif
 660
 661	for (i = 0; i < 16; i++) {
 662		pteval_t v = pgprot_val(protection_map[i]);
 663		protection_map[i] = __pgprot(v | user_pgprot);
 664	}
 665
 666	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 667	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 668
 669	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 670	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 671				 L_PTE_DIRTY | kern_pgprot);
 672	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 673	pgprot_s2_device  = __pgprot(s2_device_pgprot);
 674	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 675
 676	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 677	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 678	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 679	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 680	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 681	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 682	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 683	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 684	mem_types[MT_ROM].prot_sect |= cp->pmd;
 685
 686	switch (cp->pmd) {
 687	case PMD_SECT_WT:
 688		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 689		break;
 690	case PMD_SECT_WB:
 691	case PMD_SECT_WBWA:
 692		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 693		break;
 694	}
 695	pr_info("Memory policy: %sData cache %s\n",
 696		ecc_mask ? "ECC enabled, " : "", cp->policy);
 697
 698	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 699		struct mem_type *t = &mem_types[i];
 700		if (t->prot_l1)
 701			t->prot_l1 |= PMD_DOMAIN(t->domain);
 702		if (t->prot_sect)
 703			t->prot_sect |= PMD_DOMAIN(t->domain);
 704	}
 705}
 706
 707#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 708pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 709			      unsigned long size, pgprot_t vma_prot)
 710{
 711	if (!pfn_valid(pfn))
 712		return pgprot_noncached(vma_prot);
 713	else if (file->f_flags & O_SYNC)
 714		return pgprot_writecombine(vma_prot);
 715	return vma_prot;
 716}
 717EXPORT_SYMBOL(phys_mem_access_prot);
 718#endif
 719
 720#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 721
 722static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 723{
 724	void *ptr = __va(memblock_alloc(sz, align));
 725	memset(ptr, 0, sz);
 726	return ptr;
 727}
 728
 729static void __init *early_alloc(unsigned long sz)
 730{
 731	return early_alloc_aligned(sz, sz);
 732}
 733
 734static void *__init late_alloc(unsigned long sz)
 735{
 736	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
 737
 738	if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
 739		BUG();
 740	return ptr;
 741}
 742
 743static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 744				unsigned long prot,
 745				void *(*alloc)(unsigned long sz))
 746{
 747	if (pmd_none(*pmd)) {
 748		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 749		__pmd_populate(pmd, __pa(pte), prot);
 750	}
 751	BUG_ON(pmd_bad(*pmd));
 752	return pte_offset_kernel(pmd, addr);
 753}
 754
 755static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 756				      unsigned long prot)
 757{
 758	return arm_pte_alloc(pmd, addr, prot, early_alloc);
 759}
 760
 761static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 762				  unsigned long end, unsigned long pfn,
 763				  const struct mem_type *type,
 764				  void *(*alloc)(unsigned long sz),
 765				  bool ng)
 766{
 767	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 768	do {
 769		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 770			    ng ? PTE_EXT_NG : 0);
 771		pfn++;
 772	} while (pte++, addr += PAGE_SIZE, addr != end);
 773}
 774
 775static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 776			unsigned long end, phys_addr_t phys,
 777			const struct mem_type *type, bool ng)
 778{
 779	pmd_t *p = pmd;
 780
 781#ifndef CONFIG_ARM_LPAE
 782	/*
 783	 * In classic MMU format, puds and pmds are folded in to
 784	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 785	 * group of L1 entries making up one logical pointer to
 786	 * an L2 table (2MB), where as PMDs refer to the individual
 787	 * L1 entries (1MB). Hence increment to get the correct
 788	 * offset for odd 1MB sections.
 789	 * (See arch/arm/include/asm/pgtable-2level.h)
 790	 */
 791	if (addr & SECTION_SIZE)
 792		pmd++;
 793#endif
 794	do {
 795		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 796		phys += SECTION_SIZE;
 797	} while (pmd++, addr += SECTION_SIZE, addr != end);
 798
 799	flush_pmd_entry(p);
 800}
 801
 802static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 803				      unsigned long end, phys_addr_t phys,
 804				      const struct mem_type *type,
 805				      void *(*alloc)(unsigned long sz), bool ng)
 806{
 807	pmd_t *pmd = pmd_offset(pud, addr);
 808	unsigned long next;
 809
 810	do {
 811		/*
 812		 * With LPAE, we must loop over to map
 813		 * all the pmds for the given range.
 814		 */
 815		next = pmd_addr_end(addr, end);
 816
 817		/*
 818		 * Try a section mapping - addr, next and phys must all be
 819		 * aligned to a section boundary.
 820		 */
 821		if (type->prot_sect &&
 822				((addr | next | phys) & ~SECTION_MASK) == 0) {
 823			__map_init_section(pmd, addr, next, phys, type, ng);
 824		} else {
 825			alloc_init_pte(pmd, addr, next,
 826				       __phys_to_pfn(phys), type, alloc, ng);
 827		}
 828
 829		phys += next - addr;
 830
 831	} while (pmd++, addr = next, addr != end);
 832}
 833
 834static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 835				  unsigned long end, phys_addr_t phys,
 836				  const struct mem_type *type,
 837				  void *(*alloc)(unsigned long sz), bool ng)
 838{
 839	pud_t *pud = pud_offset(pgd, addr);
 840	unsigned long next;
 841
 842	do {
 843		next = pud_addr_end(addr, end);
 844		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 845		phys += next - addr;
 846	} while (pud++, addr = next, addr != end);
 847}
 848
 849#ifndef CONFIG_ARM_LPAE
 850static void __init create_36bit_mapping(struct mm_struct *mm,
 851					struct map_desc *md,
 852					const struct mem_type *type,
 853					bool ng)
 854{
 855	unsigned long addr, length, end;
 856	phys_addr_t phys;
 857	pgd_t *pgd;
 858
 859	addr = md->virtual;
 860	phys = __pfn_to_phys(md->pfn);
 861	length = PAGE_ALIGN(md->length);
 862
 863	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 864		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 
 865		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 866		return;
 867	}
 868
 869	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 870	 *	Since domain assignments can in fact be arbitrary, the
 871	 *	'domain == 0' check below is required to insure that ARMv6
 872	 *	supersections are only allocated for domain 0 regardless
 873	 *	of the actual domain assignments in use.
 874	 */
 875	if (type->domain) {
 876		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 
 877		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 878		return;
 879	}
 880
 881	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 882		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 
 883		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 884		return;
 885	}
 886
 887	/*
 888	 * Shift bits [35:32] of address into bits [23:20] of PMD
 889	 * (See ARMv6 spec).
 890	 */
 891	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 892
 893	pgd = pgd_offset(mm, addr);
 894	end = addr + length;
 895	do {
 896		pud_t *pud = pud_offset(pgd, addr);
 897		pmd_t *pmd = pmd_offset(pud, addr);
 898		int i;
 899
 900		for (i = 0; i < 16; i++)
 901			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 902				       (ng ? PMD_SECT_nG : 0));
 903
 904		addr += SUPERSECTION_SIZE;
 905		phys += SUPERSECTION_SIZE;
 906		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 907	} while (addr != end);
 908}
 909#endif	/* !CONFIG_ARM_LPAE */
 910
 911static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 912				    void *(*alloc)(unsigned long sz),
 913				    bool ng)
 
 
 
 
 
 914{
 915	unsigned long addr, length, end;
 916	phys_addr_t phys;
 917	const struct mem_type *type;
 918	pgd_t *pgd;
 919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920	type = &mem_types[md->type];
 921
 922#ifndef CONFIG_ARM_LPAE
 923	/*
 924	 * Catch 36-bit addresses
 925	 */
 926	if (md->pfn >= 0x100000) {
 927		create_36bit_mapping(mm, md, type, ng);
 928		return;
 929	}
 930#endif
 931
 932	addr = md->virtual & PAGE_MASK;
 933	phys = __pfn_to_phys(md->pfn);
 934	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 935
 936	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 937		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 938			(long long)__pfn_to_phys(md->pfn), addr);
 
 939		return;
 940	}
 941
 942	pgd = pgd_offset(mm, addr);
 943	end = addr + length;
 944	do {
 945		unsigned long next = pgd_addr_end(addr, end);
 946
 947		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 948
 949		phys += next - addr;
 950		addr = next;
 951	} while (pgd++, addr != end);
 952}
 953
 954/*
 955 * Create the page directory entries and any necessary
 956 * page tables for the mapping specified by `md'.  We
 957 * are able to cope here with varying sizes and address
 958 * offsets, and we take full advantage of sections and
 959 * supersections.
 960 */
 961static void __init create_mapping(struct map_desc *md)
 962{
 963	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 964		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 965			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 966		return;
 967	}
 968
 969	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 970	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 971	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 972		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 973			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 974	}
 975
 976	__create_mapping(&init_mm, md, early_alloc, false);
 977}
 978
 979void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 980				bool ng)
 981{
 982#ifdef CONFIG_ARM_LPAE
 983	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 984	if (WARN_ON(!pud))
 985		return;
 986	pmd_alloc(mm, pud, 0);
 987#endif
 988	__create_mapping(mm, md, late_alloc, ng);
 989}
 990
 991/*
 992 * Create the architecture specific mappings
 993 */
 994void __init iotable_init(struct map_desc *io_desc, int nr)
 995{
 996	struct map_desc *md;
 997	struct vm_struct *vm;
 998	struct static_vm *svm;
 999
1000	if (!nr)
1001		return;
1002
1003	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
1004
1005	for (md = io_desc; nr; md++, nr--) {
1006		create_mapping(md);
1007
1008		vm = &svm->vm;
1009		vm->addr = (void *)(md->virtual & PAGE_MASK);
1010		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1011		vm->phys_addr = __pfn_to_phys(md->pfn);
1012		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1013		vm->flags |= VM_ARM_MTYPE(md->type);
1014		vm->caller = iotable_init;
1015		add_static_vm_early(svm++);
1016	}
1017}
1018
1019void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1020				  void *caller)
1021{
1022	struct vm_struct *vm;
1023	struct static_vm *svm;
1024
1025	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1026
1027	vm = &svm->vm;
1028	vm->addr = (void *)addr;
1029	vm->size = size;
1030	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1031	vm->caller = caller;
1032	add_static_vm_early(svm);
1033}
1034
1035#ifndef CONFIG_ARM_LPAE
1036
1037/*
1038 * The Linux PMD is made of two consecutive section entries covering 2MB
1039 * (see definition in include/asm/pgtable-2level.h).  However a call to
1040 * create_mapping() may optimize static mappings by using individual
1041 * 1MB section mappings.  This leaves the actual PMD potentially half
1042 * initialized if the top or bottom section entry isn't used, leaving it
1043 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1044 * the virtual space left free by that unused section entry.
1045 *
1046 * Let's avoid the issue by inserting dummy vm entries covering the unused
1047 * PMD halves once the static mappings are in place.
1048 */
1049
1050static void __init pmd_empty_section_gap(unsigned long addr)
1051{
1052	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1053}
1054
1055static void __init fill_pmd_gaps(void)
1056{
1057	struct static_vm *svm;
1058	struct vm_struct *vm;
1059	unsigned long addr, next = 0;
1060	pmd_t *pmd;
1061
1062	list_for_each_entry(svm, &static_vmlist, list) {
1063		vm = &svm->vm;
1064		addr = (unsigned long)vm->addr;
1065		if (addr < next)
1066			continue;
1067
1068		/*
1069		 * Check if this vm starts on an odd section boundary.
1070		 * If so and the first section entry for this PMD is free
1071		 * then we block the corresponding virtual address.
1072		 */
1073		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1074			pmd = pmd_off_k(addr);
1075			if (pmd_none(*pmd))
1076				pmd_empty_section_gap(addr & PMD_MASK);
1077		}
1078
1079		/*
1080		 * Then check if this vm ends on an odd section boundary.
1081		 * If so and the second section entry for this PMD is empty
1082		 * then we block the corresponding virtual address.
1083		 */
1084		addr += vm->size;
1085		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1086			pmd = pmd_off_k(addr) + 1;
1087			if (pmd_none(*pmd))
1088				pmd_empty_section_gap(addr);
1089		}
1090
1091		/* no need to look at any vm entry until we hit the next PMD */
1092		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1093	}
1094}
1095
1096#else
1097#define fill_pmd_gaps() do { } while (0)
1098#endif
1099
1100#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1101static void __init pci_reserve_io(void)
1102{
1103	struct static_vm *svm;
1104
1105	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1106	if (svm)
1107		return;
1108
1109	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1110}
1111#else
1112#define pci_reserve_io() do { } while (0)
1113#endif
1114
1115#ifdef CONFIG_DEBUG_LL
1116void __init debug_ll_io_init(void)
1117{
1118	struct map_desc map;
1119
1120	debug_ll_addr(&map.pfn, &map.virtual);
1121	if (!map.pfn || !map.virtual)
1122		return;
1123	map.pfn = __phys_to_pfn(map.pfn);
1124	map.virtual &= PAGE_MASK;
1125	map.length = PAGE_SIZE;
1126	map.type = MT_DEVICE;
1127	iotable_init(&map, 1);
1128}
1129#endif
1130
1131static void * __initdata vmalloc_min =
1132	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1133
1134/*
1135 * vmalloc=size forces the vmalloc area to be exactly 'size'
1136 * bytes. This can be used to increase (or decrease) the vmalloc
1137 * area - the default is 240m.
1138 */
1139static int __init early_vmalloc(char *arg)
1140{
1141	unsigned long vmalloc_reserve = memparse(arg, NULL);
1142
1143	if (vmalloc_reserve < SZ_16M) {
1144		vmalloc_reserve = SZ_16M;
1145		pr_warn("vmalloc area too small, limiting to %luMB\n",
 
1146			vmalloc_reserve >> 20);
1147	}
1148
1149	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1150		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1151		pr_warn("vmalloc area is too big, limiting to %luMB\n",
 
1152			vmalloc_reserve >> 20);
1153	}
1154
1155	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1156	return 0;
1157}
1158early_param("vmalloc", early_vmalloc);
1159
1160phys_addr_t arm_lowmem_limit __initdata = 0;
1161
1162void __init adjust_lowmem_bounds(void)
1163{
1164	phys_addr_t memblock_limit = 0;
1165	u64 vmalloc_limit;
1166	struct memblock_region *reg;
1167	phys_addr_t lowmem_limit = 0;
1168
1169	/*
1170	 * Let's use our own (unoptimized) equivalent of __pa() that is
1171	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1172	 * The result is used as the upper bound on physical memory address
1173	 * and may itself be outside the valid range for which phys_addr_t
1174	 * and therefore __pa() is defined.
1175	 */
1176	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
 
 
 
1177
1178	for_each_memblock(memory, reg) {
1179		phys_addr_t block_start = reg->base;
1180		phys_addr_t block_end = reg->base + reg->size;
1181
1182		if (reg->base < vmalloc_limit) {
1183			if (block_end > lowmem_limit)
1184				/*
1185				 * Compare as u64 to ensure vmalloc_limit does
1186				 * not get truncated. block_end should always
1187				 * fit in phys_addr_t so there should be no
1188				 * issue with assignment.
1189				 */
1190				lowmem_limit = min_t(u64,
1191							 vmalloc_limit,
1192							 block_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193
1194			/*
1195			 * Find the first non-pmd-aligned page, and point
1196			 * memblock_limit at it. This relies on rounding the
1197			 * limit down to be pmd-aligned, which happens at the
1198			 * end of this function.
1199			 *
1200			 * With this algorithm, the start or end of almost any
1201			 * bank can be non-pmd-aligned. The only exception is
1202			 * that the start of the bank 0 must be section-
1203			 * aligned, since otherwise memory would need to be
1204			 * allocated when mapping the start of bank 0, which
1205			 * occurs before any free memory is mapped.
1206			 */
1207			if (!memblock_limit) {
1208				if (!IS_ALIGNED(block_start, PMD_SIZE))
1209					memblock_limit = block_start;
1210				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1211					memblock_limit = lowmem_limit;
1212			}
1213
1214		}
 
1215	}
 
 
 
1216
1217	arm_lowmem_limit = lowmem_limit;
1218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219	high_memory = __va(arm_lowmem_limit - 1) + 1;
1220
1221	if (!memblock_limit)
1222		memblock_limit = arm_lowmem_limit;
1223
1224	/*
1225	 * Round the memblock limit down to a pmd size.  This
1226	 * helps to ensure that we will allocate memory from the
1227	 * last full pmd, which should be mapped.
1228	 */
1229	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1230
1231	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1232		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1233			phys_addr_t end = memblock_end_of_DRAM();
1234
1235			pr_notice("Ignoring RAM at %pa-%pa\n",
1236				  &memblock_limit, &end);
1237			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1238
1239			memblock_remove(memblock_limit, end - memblock_limit);
1240		}
1241	}
1242
1243	memblock_set_current_limit(memblock_limit);
1244}
1245
1246static inline void prepare_page_table(void)
1247{
1248	unsigned long addr;
1249	phys_addr_t end;
1250
1251	/*
1252	 * Clear out all the mappings below the kernel image.
1253	 */
1254	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1255		pmd_clear(pmd_off_k(addr));
1256
1257#ifdef CONFIG_XIP_KERNEL
1258	/* The XIP kernel is mapped in the module area -- skip over it */
1259	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1260#endif
1261	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1262		pmd_clear(pmd_off_k(addr));
1263
1264	/*
1265	 * Find the end of the first block of lowmem.
1266	 */
1267	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1268	if (end >= arm_lowmem_limit)
1269		end = arm_lowmem_limit;
1270
1271	/*
1272	 * Clear out all the kernel space mappings, except for the first
1273	 * memory bank, up to the vmalloc region.
1274	 */
1275	for (addr = __phys_to_virt(end);
1276	     addr < VMALLOC_START; addr += PMD_SIZE)
1277		pmd_clear(pmd_off_k(addr));
1278}
1279
1280#ifdef CONFIG_ARM_LPAE
1281/* the first page is reserved for pgd */
1282#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1283				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1284#else
1285#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1286#endif
1287
1288/*
1289 * Reserve the special regions of memory
1290 */
1291void __init arm_mm_memblock_reserve(void)
1292{
1293	/*
1294	 * Reserve the page tables.  These are already in use,
1295	 * and can only be in node 0.
1296	 */
1297	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1298
1299#ifdef CONFIG_SA1111
1300	/*
1301	 * Because of the SA1111 DMA bug, we want to preserve our
1302	 * precious DMA-able memory...
1303	 */
1304	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1305#endif
1306}
1307
1308/*
1309 * Set up the device mappings.  Since we clear out the page tables for all
1310 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1311 * device mappings.  This means earlycon can be used to debug this function
1312 * Any other function or debugging method which may touch any device _will_
1313 * crash the kernel.
1314 */
1315static void __init devicemaps_init(const struct machine_desc *mdesc)
1316{
1317	struct map_desc map;
1318	unsigned long addr;
1319	void *vectors;
1320
1321	/*
1322	 * Allocate the vector page early.
1323	 */
1324	vectors = early_alloc(PAGE_SIZE * 2);
1325
1326	early_trap_init(vectors);
1327
1328	/*
1329	 * Clear page table except top pmd used by early fixmaps
1330	 */
1331	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1332		pmd_clear(pmd_off_k(addr));
1333
1334	/*
1335	 * Map the kernel if it is XIP.
1336	 * It is always first in the modulearea.
1337	 */
1338#ifdef CONFIG_XIP_KERNEL
1339	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1340	map.virtual = MODULES_VADDR;
1341	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1342	map.type = MT_ROM;
1343	create_mapping(&map);
1344#endif
1345
1346	/*
1347	 * Map the cache flushing regions.
1348	 */
1349#ifdef FLUSH_BASE
1350	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1351	map.virtual = FLUSH_BASE;
1352	map.length = SZ_1M;
1353	map.type = MT_CACHECLEAN;
1354	create_mapping(&map);
1355#endif
1356#ifdef FLUSH_BASE_MINICACHE
1357	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1358	map.virtual = FLUSH_BASE_MINICACHE;
1359	map.length = SZ_1M;
1360	map.type = MT_MINICLEAN;
1361	create_mapping(&map);
1362#endif
1363
1364	/*
1365	 * Create a mapping for the machine vectors at the high-vectors
1366	 * location (0xffff0000).  If we aren't using high-vectors, also
1367	 * create a mapping at the low-vectors virtual address.
1368	 */
1369	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1370	map.virtual = 0xffff0000;
1371	map.length = PAGE_SIZE;
1372#ifdef CONFIG_KUSER_HELPERS
1373	map.type = MT_HIGH_VECTORS;
1374#else
1375	map.type = MT_LOW_VECTORS;
1376#endif
1377	create_mapping(&map);
1378
1379	if (!vectors_high()) {
1380		map.virtual = 0;
1381		map.length = PAGE_SIZE * 2;
1382		map.type = MT_LOW_VECTORS;
1383		create_mapping(&map);
1384	}
1385
1386	/* Now create a kernel read-only mapping */
1387	map.pfn += 1;
1388	map.virtual = 0xffff0000 + PAGE_SIZE;
1389	map.length = PAGE_SIZE;
1390	map.type = MT_LOW_VECTORS;
1391	create_mapping(&map);
1392
1393	/*
1394	 * Ask the machine support to map in the statically mapped devices.
1395	 */
1396	if (mdesc->map_io)
1397		mdesc->map_io();
1398	else
1399		debug_ll_io_init();
1400	fill_pmd_gaps();
1401
1402	/* Reserve fixed i/o space in VMALLOC region */
1403	pci_reserve_io();
1404
1405	/*
1406	 * Finally flush the caches and tlb to ensure that we're in a
1407	 * consistent state wrt the writebuffer.  This also ensures that
1408	 * any write-allocated cache lines in the vector page are written
1409	 * back.  After this point, we can start to touch devices again.
1410	 */
1411	local_flush_tlb_all();
1412	flush_cache_all();
1413
1414	/* Enable asynchronous aborts */
1415	early_abt_enable();
1416}
1417
1418static void __init kmap_init(void)
1419{
1420#ifdef CONFIG_HIGHMEM
1421	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1422		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1423#endif
1424
1425	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1426			_PAGE_KERNEL_TABLE);
1427}
1428
1429static void __init map_lowmem(void)
1430{
1431	struct memblock_region *reg;
1432	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1433	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1434
1435	/* Map all the lowmem memory banks. */
1436	for_each_memblock(memory, reg) {
1437		phys_addr_t start = reg->base;
1438		phys_addr_t end = start + reg->size;
1439		struct map_desc map;
1440
1441		if (memblock_is_nomap(reg))
1442			continue;
1443
1444		if (end > arm_lowmem_limit)
1445			end = arm_lowmem_limit;
1446		if (start >= end)
1447			break;
1448
1449		if (end < kernel_x_start) {
1450			map.pfn = __phys_to_pfn(start);
1451			map.virtual = __phys_to_virt(start);
1452			map.length = end - start;
1453			map.type = MT_MEMORY_RWX;
1454
1455			create_mapping(&map);
1456		} else if (start >= kernel_x_end) {
1457			map.pfn = __phys_to_pfn(start);
1458			map.virtual = __phys_to_virt(start);
1459			map.length = end - start;
1460			map.type = MT_MEMORY_RW;
1461
1462			create_mapping(&map);
1463		} else {
1464			/* This better cover the entire kernel */
1465			if (start < kernel_x_start) {
1466				map.pfn = __phys_to_pfn(start);
1467				map.virtual = __phys_to_virt(start);
1468				map.length = kernel_x_start - start;
1469				map.type = MT_MEMORY_RW;
1470
1471				create_mapping(&map);
1472			}
1473
1474			map.pfn = __phys_to_pfn(kernel_x_start);
1475			map.virtual = __phys_to_virt(kernel_x_start);
1476			map.length = kernel_x_end - kernel_x_start;
1477			map.type = MT_MEMORY_RWX;
1478
1479			create_mapping(&map);
1480
1481			if (kernel_x_end < end) {
1482				map.pfn = __phys_to_pfn(kernel_x_end);
1483				map.virtual = __phys_to_virt(kernel_x_end);
1484				map.length = end - kernel_x_end;
1485				map.type = MT_MEMORY_RW;
1486
1487				create_mapping(&map);
1488			}
1489		}
1490	}
1491}
1492
1493#ifdef CONFIG_ARM_PV_FIXUP
1494extern unsigned long __atags_pointer;
1495typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1496pgtables_remap lpae_pgtables_remap_asm;
1497
1498/*
1499 * early_paging_init() recreates boot time page table setup, allowing machines
1500 * to switch over to a high (>4G) address space on LPAE systems
1501 */
1502static void __init early_paging_init(const struct machine_desc *mdesc)
 
1503{
1504	pgtables_remap *lpae_pgtables_remap;
1505	unsigned long pa_pgd;
1506	unsigned int cr, ttbcr;
1507	long long offset;
1508	void *boot_data;
 
 
1509
1510	if (!mdesc->pv_fixup)
1511		return;
1512
1513	offset = mdesc->pv_fixup();
1514	if (offset == 0)
1515		return;
 
 
 
 
 
 
 
 
 
1516
1517	/*
1518	 * Get the address of the remap function in the 1:1 identity
1519	 * mapping setup by the early page table assembly code.  We
1520	 * must get this prior to the pv update.  The following barrier
1521	 * ensures that this is complete before we fixup any P:V offsets.
1522	 */
1523	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1524	pa_pgd = __pa(swapper_pg_dir);
1525	boot_data = __va(__atags_pointer);
1526	barrier();
1527
1528	pr_info("Switching physical address space to 0x%08llx\n",
1529		(u64)PHYS_OFFSET + offset);
1530
1531	/* Re-set the phys pfn offset, and the pv offset */
1532	__pv_offset += offset;
1533	__pv_phys_pfn_offset += PFN_DOWN(offset);
1534
1535	/* Run the patch stub to update the constants */
1536	fixup_pv_table(&__pv_table_begin,
1537		(&__pv_table_end - &__pv_table_begin) << 2);
1538
1539	/*
1540	 * We changing not only the virtual to physical mapping, but also
1541	 * the physical addresses used to access memory.  We need to flush
1542	 * all levels of cache in the system with caching disabled to
1543	 * ensure that all data is written back, and nothing is prefetched
1544	 * into the caches.  We also need to prevent the TLB walkers
1545	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1546	 * specific.
1547	 */
1548	cr = get_cr();
1549	set_cr(cr & ~(CR_I | CR_C));
1550	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1551	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1552		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1553	flush_cache_all();
 
1554
1555	/*
1556	 * Fixup the page tables - this must be in the idmap region as
1557	 * we need to disable the MMU to do this safely, and hence it
1558	 * needs to be assembly.  It's fairly simple, as we're using the
1559	 * temporary tables setup by the initial assembly code.
1560	 */
1561	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1562
1563	/* Re-enable the caches and cacheable TLB walks */
1564	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1565	set_cr(cr);
 
1566}
1567
1568#else
1569
1570static void __init early_paging_init(const struct machine_desc *mdesc)
 
1571{
1572	long long offset;
1573
1574	if (!mdesc->pv_fixup)
1575		return;
1576
1577	offset = mdesc->pv_fixup();
1578	if (offset == 0)
1579		return;
1580
1581	pr_crit("Physical address space modification is only to support Keystone2.\n");
1582	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1583	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1584	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1585}
1586
1587#endif
1588
1589static void __init early_fixmap_shutdown(void)
1590{
1591	int i;
1592	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1593
1594	pte_offset_fixmap = pte_offset_late_fixmap;
1595	pmd_clear(fixmap_pmd(va));
1596	local_flush_tlb_kernel_page(va);
1597
1598	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1599		pte_t *pte;
1600		struct map_desc map;
1601
1602		map.virtual = fix_to_virt(i);
1603		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1604
1605		/* Only i/o device mappings are supported ATM */
1606		if (pte_none(*pte) ||
1607		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1608			continue;
1609
1610		map.pfn = pte_pfn(*pte);
1611		map.type = MT_DEVICE;
1612		map.length = PAGE_SIZE;
1613
1614		create_mapping(&map);
1615	}
1616}
1617
1618/*
1619 * paging_init() sets up the page tables, initialises the zone memory
1620 * maps, and sets up the zero page, bad page and bad page tables.
1621 */
1622void __init paging_init(const struct machine_desc *mdesc)
1623{
1624	void *zero_page;
1625
 
1626	prepare_page_table();
1627	map_lowmem();
1628	memblock_set_current_limit(arm_lowmem_limit);
1629	dma_contiguous_remap();
1630	early_fixmap_shutdown();
1631	devicemaps_init(mdesc);
1632	kmap_init();
1633	tcm_init();
1634
1635	top_pmd = pmd_off_k(0xffff0000);
1636
1637	/* allocate the zero page. */
1638	zero_page = early_alloc(PAGE_SIZE);
1639
1640	bootmem_init();
1641
1642	empty_zero_page = virt_to_page(zero_page);
1643	__flush_dcache_page(NULL, empty_zero_page);
1644
1645	/* Compute the virt/idmap offset, mostly for the sake of KVM */
1646	kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1647}
1648
1649void __init early_mm_init(const struct machine_desc *mdesc)
1650{
1651	build_mem_type_table();
1652	early_paging_init(mdesc);
1653}
v3.15
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
 
  25#include <asm/sections.h>
  26#include <asm/setup.h>
  27#include <asm/smp_plat.h>
  28#include <asm/tlb.h>
  29#include <asm/highmem.h>
  30#include <asm/system_info.h>
  31#include <asm/traps.h>
  32#include <asm/procinfo.h>
  33#include <asm/memory.h>
  34
  35#include <asm/mach/arch.h>
  36#include <asm/mach/map.h>
  37#include <asm/mach/pci.h>
 
  38
 
  39#include "mm.h"
  40#include "tcm.h"
  41
  42/*
  43 * empty_zero_page is a special page that is used for
  44 * zero-initialized data and COW.
  45 */
  46struct page *empty_zero_page;
  47EXPORT_SYMBOL(empty_zero_page);
  48
  49/*
  50 * The pmd table for the upper-most set of pages.
  51 */
  52pmd_t *top_pmd;
  53
 
 
  54#define CPOLICY_UNCACHED	0
  55#define CPOLICY_BUFFERED	1
  56#define CPOLICY_WRITETHROUGH	2
  57#define CPOLICY_WRITEBACK	3
  58#define CPOLICY_WRITEALLOC	4
  59
  60static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  61static unsigned int ecc_mask __initdata = 0;
  62pgprot_t pgprot_user;
  63pgprot_t pgprot_kernel;
  64pgprot_t pgprot_hyp_device;
  65pgprot_t pgprot_s2;
  66pgprot_t pgprot_s2_device;
  67
  68EXPORT_SYMBOL(pgprot_user);
  69EXPORT_SYMBOL(pgprot_kernel);
  70
  71struct cachepolicy {
  72	const char	policy[16];
  73	unsigned int	cr_mask;
  74	pmdval_t	pmd;
  75	pteval_t	pte;
  76	pteval_t	pte_s2;
  77};
  78
  79#ifdef CONFIG_ARM_LPAE
  80#define s2_policy(policy)	policy
  81#else
  82#define s2_policy(policy)	0
  83#endif
  84
 
 
  85static struct cachepolicy cache_policies[] __initdata = {
  86	{
  87		.policy		= "uncached",
  88		.cr_mask	= CR_W|CR_C,
  89		.pmd		= PMD_SECT_UNCACHED,
  90		.pte		= L_PTE_MT_UNCACHED,
  91		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  92	}, {
  93		.policy		= "buffered",
  94		.cr_mask	= CR_C,
  95		.pmd		= PMD_SECT_BUFFERED,
  96		.pte		= L_PTE_MT_BUFFERABLE,
  97		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  98	}, {
  99		.policy		= "writethrough",
 100		.cr_mask	= 0,
 101		.pmd		= PMD_SECT_WT,
 102		.pte		= L_PTE_MT_WRITETHROUGH,
 103		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 104	}, {
 105		.policy		= "writeback",
 106		.cr_mask	= 0,
 107		.pmd		= PMD_SECT_WB,
 108		.pte		= L_PTE_MT_WRITEBACK,
 109		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 110	}, {
 111		.policy		= "writealloc",
 112		.cr_mask	= 0,
 113		.pmd		= PMD_SECT_WBWA,
 114		.pte		= L_PTE_MT_WRITEALLOC,
 115		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 116	}
 117};
 118
 119#ifdef CONFIG_CPU_CP15
 
 
 120/*
 121 * These are useful for identifying cache coherency
 122 * problems by allowing the cache or the cache and
 123 * writebuffer to be turned off.  (Note: the write
 124 * buffer should not be on and the cache off).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125 */
 126static int __init early_cachepolicy(char *p)
 127{
 128	int i;
 129
 130	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 131		int len = strlen(cache_policies[i].policy);
 132
 133		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 134			cachepolicy = i;
 135			cr_alignment &= ~cache_policies[i].cr_mask;
 136			cr_no_alignment &= ~cache_policies[i].cr_mask;
 137			break;
 138		}
 139	}
 140	if (i == ARRAY_SIZE(cache_policies))
 141		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
 
 
 142	/*
 143	 * This restriction is partly to do with the way we boot; it is
 144	 * unpredictable to have memory mapped using two different sets of
 145	 * memory attributes (shared, type, and cache attribs).  We can not
 146	 * change these attributes once the initial assembly has setup the
 147	 * page tables.
 148	 */
 149	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 150		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
 151		cachepolicy = CPOLICY_WRITEBACK;
 
 
 
 
 
 
 
 
 152	}
 153	flush_cache_all();
 154	set_cr(cr_alignment);
 155	return 0;
 156}
 157early_param("cachepolicy", early_cachepolicy);
 158
 159static int __init early_nocache(char *__unused)
 160{
 161	char *p = "buffered";
 162	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
 163	early_cachepolicy(p);
 164	return 0;
 165}
 166early_param("nocache", early_nocache);
 167
 168static int __init early_nowrite(char *__unused)
 169{
 170	char *p = "uncached";
 171	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
 172	early_cachepolicy(p);
 173	return 0;
 174}
 175early_param("nowb", early_nowrite);
 176
 177#ifndef CONFIG_ARM_LPAE
 178static int __init early_ecc(char *p)
 179{
 180	if (memcmp(p, "on", 2) == 0)
 181		ecc_mask = PMD_PROTECTION;
 182	else if (memcmp(p, "off", 3) == 0)
 183		ecc_mask = 0;
 184	return 0;
 185}
 186early_param("ecc", early_ecc);
 187#endif
 188
 189static int __init noalign_setup(char *__unused)
 190{
 191	cr_alignment &= ~CR_A;
 192	cr_no_alignment &= ~CR_A;
 193	set_cr(cr_alignment);
 194	return 1;
 195}
 196__setup("noalign", noalign_setup);
 197
 198#ifndef CONFIG_SMP
 199void adjust_cr(unsigned long mask, unsigned long set)
 200{
 201	unsigned long flags;
 202
 203	mask &= ~CR_A;
 204
 205	set &= mask;
 206
 207	local_irq_save(flags);
 208
 209	cr_no_alignment = (cr_no_alignment & ~mask) | set;
 210	cr_alignment = (cr_alignment & ~mask) | set;
 211
 212	set_cr((get_cr() & ~mask) | set);
 213
 214	local_irq_restore(flags);
 215}
 216#endif
 217
 218#else /* ifdef CONFIG_CPU_CP15 */
 219
 220static int __init early_cachepolicy(char *p)
 221{
 222	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
 223}
 224early_param("cachepolicy", early_cachepolicy);
 225
 226static int __init noalign_setup(char *__unused)
 227{
 228	pr_warning("noalign kernel parameter not supported without cp15\n");
 229}
 230__setup("noalign", noalign_setup);
 231
 232#endif /* ifdef CONFIG_CPU_CP15 / else */
 233
 234#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 235#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 236#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 237
 238static struct mem_type mem_types[] = {
 239	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 240		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 241				  L_PTE_SHARED,
 242		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
 243				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 244				  L_PTE_SHARED,
 245		.prot_l1	= PMD_TYPE_TABLE,
 246		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 247		.domain		= DOMAIN_IO,
 248	},
 249	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 250		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 251		.prot_l1	= PMD_TYPE_TABLE,
 252		.prot_sect	= PROT_SECT_DEVICE,
 253		.domain		= DOMAIN_IO,
 254	},
 255	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 256		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 257		.prot_l1	= PMD_TYPE_TABLE,
 258		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 259		.domain		= DOMAIN_IO,
 260	},
 261	[MT_DEVICE_WC] = {	/* ioremap_wc */
 262		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 263		.prot_l1	= PMD_TYPE_TABLE,
 264		.prot_sect	= PROT_SECT_DEVICE,
 265		.domain		= DOMAIN_IO,
 266	},
 267	[MT_UNCACHED] = {
 268		.prot_pte	= PROT_PTE_DEVICE,
 269		.prot_l1	= PMD_TYPE_TABLE,
 270		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 271		.domain		= DOMAIN_IO,
 272	},
 273	[MT_CACHECLEAN] = {
 274		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 275		.domain    = DOMAIN_KERNEL,
 276	},
 277#ifndef CONFIG_ARM_LPAE
 278	[MT_MINICLEAN] = {
 279		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 280		.domain    = DOMAIN_KERNEL,
 281	},
 282#endif
 283	[MT_LOW_VECTORS] = {
 284		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 285				L_PTE_RDONLY,
 286		.prot_l1   = PMD_TYPE_TABLE,
 287		.domain    = DOMAIN_USER,
 288	},
 289	[MT_HIGH_VECTORS] = {
 290		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 291				L_PTE_USER | L_PTE_RDONLY,
 292		.prot_l1   = PMD_TYPE_TABLE,
 293		.domain    = DOMAIN_USER,
 294	},
 295	[MT_MEMORY_RWX] = {
 296		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 297		.prot_l1   = PMD_TYPE_TABLE,
 298		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 299		.domain    = DOMAIN_KERNEL,
 300	},
 301	[MT_MEMORY_RW] = {
 302		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 303			     L_PTE_XN,
 304		.prot_l1   = PMD_TYPE_TABLE,
 305		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306		.domain    = DOMAIN_KERNEL,
 307	},
 308	[MT_ROM] = {
 309		.prot_sect = PMD_TYPE_SECT,
 310		.domain    = DOMAIN_KERNEL,
 311	},
 312	[MT_MEMORY_RWX_NONCACHED] = {
 313		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 314				L_PTE_MT_BUFFERABLE,
 315		.prot_l1   = PMD_TYPE_TABLE,
 316		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 317		.domain    = DOMAIN_KERNEL,
 318	},
 319	[MT_MEMORY_RW_DTCM] = {
 320		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 321				L_PTE_XN,
 322		.prot_l1   = PMD_TYPE_TABLE,
 323		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 324		.domain    = DOMAIN_KERNEL,
 325	},
 326	[MT_MEMORY_RWX_ITCM] = {
 327		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 328		.prot_l1   = PMD_TYPE_TABLE,
 329		.domain    = DOMAIN_KERNEL,
 330	},
 331	[MT_MEMORY_RW_SO] = {
 332		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 333				L_PTE_MT_UNCACHED | L_PTE_XN,
 334		.prot_l1   = PMD_TYPE_TABLE,
 335		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 336				PMD_SECT_UNCACHED | PMD_SECT_XN,
 337		.domain    = DOMAIN_KERNEL,
 338	},
 339	[MT_MEMORY_DMA_READY] = {
 340		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 341				L_PTE_XN,
 342		.prot_l1   = PMD_TYPE_TABLE,
 343		.domain    = DOMAIN_KERNEL,
 344	},
 345};
 346
 347const struct mem_type *get_mem_type(unsigned int type)
 348{
 349	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 350}
 351EXPORT_SYMBOL(get_mem_type);
 352
 353#define PTE_SET_FN(_name, pteop) \
 354static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
 355			void *data) \
 356{ \
 357	pte_t pte = pteop(*ptep); \
 358\
 359	set_pte_ext(ptep, pte, 0); \
 360	return 0; \
 361} \
 362
 363#define SET_MEMORY_FN(_name, callback) \
 364int set_memory_##_name(unsigned long addr, int numpages) \
 365{ \
 366	unsigned long start = addr; \
 367	unsigned long size = PAGE_SIZE*numpages; \
 368	unsigned end = start + size; \
 369\
 370	if (start < MODULES_VADDR || start >= MODULES_END) \
 371		return -EINVAL;\
 372\
 373	if (end < MODULES_VADDR || end >= MODULES_END) \
 374		return -EINVAL; \
 375\
 376	apply_to_page_range(&init_mm, start, size, callback, NULL); \
 377	flush_tlb_kernel_range(start, end); \
 378	return 0;\
 379}
 380
 381PTE_SET_FN(ro, pte_wrprotect)
 382PTE_SET_FN(rw, pte_mkwrite)
 383PTE_SET_FN(x, pte_mkexec)
 384PTE_SET_FN(nx, pte_mknexec)
 385
 386SET_MEMORY_FN(ro, pte_set_ro)
 387SET_MEMORY_FN(rw, pte_set_rw)
 388SET_MEMORY_FN(x, pte_set_x)
 389SET_MEMORY_FN(nx, pte_set_nx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390
 391/*
 392 * Adjust the PMD section entries according to the CPU in use.
 393 */
 394static void __init build_mem_type_table(void)
 395{
 396	struct cachepolicy *cp;
 397	unsigned int cr = get_cr();
 398	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 399	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 400	int cpu_arch = cpu_architecture();
 401	int i;
 402
 403	if (cpu_arch < CPU_ARCH_ARMv6) {
 404#if defined(CONFIG_CPU_DCACHE_DISABLE)
 405		if (cachepolicy > CPOLICY_BUFFERED)
 406			cachepolicy = CPOLICY_BUFFERED;
 407#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 408		if (cachepolicy > CPOLICY_WRITETHROUGH)
 409			cachepolicy = CPOLICY_WRITETHROUGH;
 410#endif
 411	}
 412	if (cpu_arch < CPU_ARCH_ARMv5) {
 413		if (cachepolicy >= CPOLICY_WRITEALLOC)
 414			cachepolicy = CPOLICY_WRITEBACK;
 415		ecc_mask = 0;
 416	}
 417	if (is_smp())
 418		cachepolicy = CPOLICY_WRITEALLOC;
 
 
 
 
 
 
 
 
 
 419
 420	/*
 421	 * Strip out features not present on earlier architectures.
 422	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 423	 * without extended page tables don't have the 'Shared' bit.
 424	 */
 425	if (cpu_arch < CPU_ARCH_ARMv5)
 426		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 427			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 428	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 429		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 430			mem_types[i].prot_sect &= ~PMD_SECT_S;
 431
 432	/*
 433	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 434	 * "update-able on write" bit on ARM610).  However, Xscale and
 435	 * Xscale3 require this bit to be cleared.
 436	 */
 437	if (cpu_is_xscale() || cpu_is_xsc3()) {
 438		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 439			mem_types[i].prot_sect &= ~PMD_BIT4;
 440			mem_types[i].prot_l1 &= ~PMD_BIT4;
 441		}
 442	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 443		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 444			if (mem_types[i].prot_l1)
 445				mem_types[i].prot_l1 |= PMD_BIT4;
 446			if (mem_types[i].prot_sect)
 447				mem_types[i].prot_sect |= PMD_BIT4;
 448		}
 449	}
 450
 451	/*
 452	 * Mark the device areas according to the CPU/architecture.
 453	 */
 454	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 455		if (!cpu_is_xsc3()) {
 456			/*
 457			 * Mark device regions on ARMv6+ as execute-never
 458			 * to prevent speculative instruction fetches.
 459			 */
 460			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 461			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 462			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 463			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 464
 465			/* Also setup NX memory mapping */
 466			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 467		}
 468		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 469			/*
 470			 * For ARMv7 with TEX remapping,
 471			 * - shared device is SXCB=1100
 472			 * - nonshared device is SXCB=0100
 473			 * - write combine device mem is SXCB=0001
 474			 * (Uncached Normal memory)
 475			 */
 476			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 477			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 478			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 479		} else if (cpu_is_xsc3()) {
 480			/*
 481			 * For Xscale3,
 482			 * - shared device is TEXCB=00101
 483			 * - nonshared device is TEXCB=01000
 484			 * - write combine device mem is TEXCB=00100
 485			 * (Inner/Outer Uncacheable in xsc3 parlance)
 486			 */
 487			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 488			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 489			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 490		} else {
 491			/*
 492			 * For ARMv6 and ARMv7 without TEX remapping,
 493			 * - shared device is TEXCB=00001
 494			 * - nonshared device is TEXCB=01000
 495			 * - write combine device mem is TEXCB=00100
 496			 * (Uncached Normal in ARMv6 parlance).
 497			 */
 498			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 499			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 500			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 501		}
 502	} else {
 503		/*
 504		 * On others, write combining is "Uncached/Buffered"
 505		 */
 506		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 507	}
 508
 509	/*
 510	 * Now deal with the memory-type mappings
 511	 */
 512	cp = &cache_policies[cachepolicy];
 513	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 514	s2_pgprot = cp->pte_s2;
 515	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 516	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 517
 
 518	/*
 519	 * We don't use domains on ARMv6 (since this causes problems with
 520	 * v6/v7 kernels), so we must use a separate memory type for user
 521	 * r/o, kernel r/w to map the vectors page.
 522	 */
 523#ifndef CONFIG_ARM_LPAE
 524	if (cpu_arch == CPU_ARCH_ARMv6)
 525		vecs_pgprot |= L_PTE_MT_VECTORS;
 
 
 
 
 
 
 
 
 
 526#endif
 527
 528	/*
 529	 * ARMv6 and above have extended page tables.
 530	 */
 531	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 532#ifndef CONFIG_ARM_LPAE
 533		/*
 534		 * Mark cache clean areas and XIP ROM read only
 535		 * from SVC mode and no access from userspace.
 536		 */
 537		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 538		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 539		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 540#endif
 541
 542		if (is_smp()) {
 543			/*
 544			 * Mark memory with the "shared" attribute
 545			 * for SMP systems
 546			 */
 
 547			user_pgprot |= L_PTE_SHARED;
 548			kern_pgprot |= L_PTE_SHARED;
 549			vecs_pgprot |= L_PTE_SHARED;
 550			s2_pgprot |= L_PTE_SHARED;
 551			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 552			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 553			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 554			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 555			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 556			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 557			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 558			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 559			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 560			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 561			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 562		}
 563	}
 564
 565	/*
 566	 * Non-cacheable Normal - intended for memory areas that must
 567	 * not cause dirty cache line writebacks when used
 568	 */
 569	if (cpu_arch >= CPU_ARCH_ARMv6) {
 570		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 571			/* Non-cacheable Normal is XCB = 001 */
 572			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 573				PMD_SECT_BUFFERED;
 574		} else {
 575			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 576			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 577				PMD_SECT_TEX(1);
 578		}
 579	} else {
 580		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 581	}
 582
 583#ifdef CONFIG_ARM_LPAE
 584	/*
 585	 * Do not generate access flag faults for the kernel mappings.
 586	 */
 587	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 588		mem_types[i].prot_pte |= PTE_EXT_AF;
 589		if (mem_types[i].prot_sect)
 590			mem_types[i].prot_sect |= PMD_SECT_AF;
 591	}
 592	kern_pgprot |= PTE_EXT_AF;
 593	vecs_pgprot |= PTE_EXT_AF;
 
 
 
 
 
 594#endif
 595
 596	for (i = 0; i < 16; i++) {
 597		pteval_t v = pgprot_val(protection_map[i]);
 598		protection_map[i] = __pgprot(v | user_pgprot);
 599	}
 600
 601	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 602	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 603
 604	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 605	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 606				 L_PTE_DIRTY | kern_pgprot);
 607	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 608	pgprot_s2_device  = __pgprot(s2_device_pgprot);
 609	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 610
 611	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 612	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 613	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 614	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 615	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 616	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 617	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 618	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 619	mem_types[MT_ROM].prot_sect |= cp->pmd;
 620
 621	switch (cp->pmd) {
 622	case PMD_SECT_WT:
 623		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 624		break;
 625	case PMD_SECT_WB:
 626	case PMD_SECT_WBWA:
 627		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 628		break;
 629	}
 630	pr_info("Memory policy: %sData cache %s\n",
 631		ecc_mask ? "ECC enabled, " : "", cp->policy);
 632
 633	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 634		struct mem_type *t = &mem_types[i];
 635		if (t->prot_l1)
 636			t->prot_l1 |= PMD_DOMAIN(t->domain);
 637		if (t->prot_sect)
 638			t->prot_sect |= PMD_DOMAIN(t->domain);
 639	}
 640}
 641
 642#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 643pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 644			      unsigned long size, pgprot_t vma_prot)
 645{
 646	if (!pfn_valid(pfn))
 647		return pgprot_noncached(vma_prot);
 648	else if (file->f_flags & O_SYNC)
 649		return pgprot_writecombine(vma_prot);
 650	return vma_prot;
 651}
 652EXPORT_SYMBOL(phys_mem_access_prot);
 653#endif
 654
 655#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 656
 657static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 658{
 659	void *ptr = __va(memblock_alloc(sz, align));
 660	memset(ptr, 0, sz);
 661	return ptr;
 662}
 663
 664static void __init *early_alloc(unsigned long sz)
 665{
 666	return early_alloc_aligned(sz, sz);
 667}
 668
 669static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 
 
 
 
 
 
 
 
 
 
 
 670{
 671	if (pmd_none(*pmd)) {
 672		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 673		__pmd_populate(pmd, __pa(pte), prot);
 674	}
 675	BUG_ON(pmd_bad(*pmd));
 676	return pte_offset_kernel(pmd, addr);
 677}
 678
 
 
 
 
 
 
 679static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 680				  unsigned long end, unsigned long pfn,
 681				  const struct mem_type *type)
 
 
 682{
 683	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 684	do {
 685		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 
 686		pfn++;
 687	} while (pte++, addr += PAGE_SIZE, addr != end);
 688}
 689
 690static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 691			unsigned long end, phys_addr_t phys,
 692			const struct mem_type *type)
 693{
 694	pmd_t *p = pmd;
 695
 696#ifndef CONFIG_ARM_LPAE
 697	/*
 698	 * In classic MMU format, puds and pmds are folded in to
 699	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 700	 * group of L1 entries making up one logical pointer to
 701	 * an L2 table (2MB), where as PMDs refer to the individual
 702	 * L1 entries (1MB). Hence increment to get the correct
 703	 * offset for odd 1MB sections.
 704	 * (See arch/arm/include/asm/pgtable-2level.h)
 705	 */
 706	if (addr & SECTION_SIZE)
 707		pmd++;
 708#endif
 709	do {
 710		*pmd = __pmd(phys | type->prot_sect);
 711		phys += SECTION_SIZE;
 712	} while (pmd++, addr += SECTION_SIZE, addr != end);
 713
 714	flush_pmd_entry(p);
 715}
 716
 717static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 718				      unsigned long end, phys_addr_t phys,
 719				      const struct mem_type *type)
 
 720{
 721	pmd_t *pmd = pmd_offset(pud, addr);
 722	unsigned long next;
 723
 724	do {
 725		/*
 726		 * With LPAE, we must loop over to map
 727		 * all the pmds for the given range.
 728		 */
 729		next = pmd_addr_end(addr, end);
 730
 731		/*
 732		 * Try a section mapping - addr, next and phys must all be
 733		 * aligned to a section boundary.
 734		 */
 735		if (type->prot_sect &&
 736				((addr | next | phys) & ~SECTION_MASK) == 0) {
 737			__map_init_section(pmd, addr, next, phys, type);
 738		} else {
 739			alloc_init_pte(pmd, addr, next,
 740						__phys_to_pfn(phys), type);
 741		}
 742
 743		phys += next - addr;
 744
 745	} while (pmd++, addr = next, addr != end);
 746}
 747
 748static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 749				  unsigned long end, phys_addr_t phys,
 750				  const struct mem_type *type)
 
 751{
 752	pud_t *pud = pud_offset(pgd, addr);
 753	unsigned long next;
 754
 755	do {
 756		next = pud_addr_end(addr, end);
 757		alloc_init_pmd(pud, addr, next, phys, type);
 758		phys += next - addr;
 759	} while (pud++, addr = next, addr != end);
 760}
 761
 762#ifndef CONFIG_ARM_LPAE
 763static void __init create_36bit_mapping(struct map_desc *md,
 764					const struct mem_type *type)
 
 
 765{
 766	unsigned long addr, length, end;
 767	phys_addr_t phys;
 768	pgd_t *pgd;
 769
 770	addr = md->virtual;
 771	phys = __pfn_to_phys(md->pfn);
 772	length = PAGE_ALIGN(md->length);
 773
 774	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 775		printk(KERN_ERR "MM: CPU does not support supersection "
 776		       "mapping for 0x%08llx at 0x%08lx\n",
 777		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 778		return;
 779	}
 780
 781	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 782	 *	Since domain assignments can in fact be arbitrary, the
 783	 *	'domain == 0' check below is required to insure that ARMv6
 784	 *	supersections are only allocated for domain 0 regardless
 785	 *	of the actual domain assignments in use.
 786	 */
 787	if (type->domain) {
 788		printk(KERN_ERR "MM: invalid domain in supersection "
 789		       "mapping for 0x%08llx at 0x%08lx\n",
 790		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 791		return;
 792	}
 793
 794	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 795		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
 796		       " at 0x%08lx invalid alignment\n",
 797		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 798		return;
 799	}
 800
 801	/*
 802	 * Shift bits [35:32] of address into bits [23:20] of PMD
 803	 * (See ARMv6 spec).
 804	 */
 805	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 806
 807	pgd = pgd_offset_k(addr);
 808	end = addr + length;
 809	do {
 810		pud_t *pud = pud_offset(pgd, addr);
 811		pmd_t *pmd = pmd_offset(pud, addr);
 812		int i;
 813
 814		for (i = 0; i < 16; i++)
 815			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 
 816
 817		addr += SUPERSECTION_SIZE;
 818		phys += SUPERSECTION_SIZE;
 819		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 820	} while (addr != end);
 821}
 822#endif	/* !CONFIG_ARM_LPAE */
 823
 824/*
 825 * Create the page directory entries and any necessary
 826 * page tables for the mapping specified by `md'.  We
 827 * are able to cope here with varying sizes and address
 828 * offsets, and we take full advantage of sections and
 829 * supersections.
 830 */
 831static void __init create_mapping(struct map_desc *md)
 832{
 833	unsigned long addr, length, end;
 834	phys_addr_t phys;
 835	const struct mem_type *type;
 836	pgd_t *pgd;
 837
 838	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 839		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
 840		       " at 0x%08lx in user region\n",
 841		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 842		return;
 843	}
 844
 845	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 846	    md->virtual >= PAGE_OFFSET &&
 847	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 848		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
 849		       " at 0x%08lx out of vmalloc space\n",
 850		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 851	}
 852
 853	type = &mem_types[md->type];
 854
 855#ifndef CONFIG_ARM_LPAE
 856	/*
 857	 * Catch 36-bit addresses
 858	 */
 859	if (md->pfn >= 0x100000) {
 860		create_36bit_mapping(md, type);
 861		return;
 862	}
 863#endif
 864
 865	addr = md->virtual & PAGE_MASK;
 866	phys = __pfn_to_phys(md->pfn);
 867	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 868
 869	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 870		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
 871		       "be mapped using pages, ignoring.\n",
 872		       (long long)__pfn_to_phys(md->pfn), addr);
 873		return;
 874	}
 875
 876	pgd = pgd_offset_k(addr);
 877	end = addr + length;
 878	do {
 879		unsigned long next = pgd_addr_end(addr, end);
 880
 881		alloc_init_pud(pgd, addr, next, phys, type);
 882
 883		phys += next - addr;
 884		addr = next;
 885	} while (pgd++, addr != end);
 886}
 887
 888/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889 * Create the architecture specific mappings
 890 */
 891void __init iotable_init(struct map_desc *io_desc, int nr)
 892{
 893	struct map_desc *md;
 894	struct vm_struct *vm;
 895	struct static_vm *svm;
 896
 897	if (!nr)
 898		return;
 899
 900	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 901
 902	for (md = io_desc; nr; md++, nr--) {
 903		create_mapping(md);
 904
 905		vm = &svm->vm;
 906		vm->addr = (void *)(md->virtual & PAGE_MASK);
 907		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 908		vm->phys_addr = __pfn_to_phys(md->pfn);
 909		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
 910		vm->flags |= VM_ARM_MTYPE(md->type);
 911		vm->caller = iotable_init;
 912		add_static_vm_early(svm++);
 913	}
 914}
 915
 916void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
 917				  void *caller)
 918{
 919	struct vm_struct *vm;
 920	struct static_vm *svm;
 921
 922	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 923
 924	vm = &svm->vm;
 925	vm->addr = (void *)addr;
 926	vm->size = size;
 927	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 928	vm->caller = caller;
 929	add_static_vm_early(svm);
 930}
 931
 932#ifndef CONFIG_ARM_LPAE
 933
 934/*
 935 * The Linux PMD is made of two consecutive section entries covering 2MB
 936 * (see definition in include/asm/pgtable-2level.h).  However a call to
 937 * create_mapping() may optimize static mappings by using individual
 938 * 1MB section mappings.  This leaves the actual PMD potentially half
 939 * initialized if the top or bottom section entry isn't used, leaving it
 940 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 941 * the virtual space left free by that unused section entry.
 942 *
 943 * Let's avoid the issue by inserting dummy vm entries covering the unused
 944 * PMD halves once the static mappings are in place.
 945 */
 946
 947static void __init pmd_empty_section_gap(unsigned long addr)
 948{
 949	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
 950}
 951
 952static void __init fill_pmd_gaps(void)
 953{
 954	struct static_vm *svm;
 955	struct vm_struct *vm;
 956	unsigned long addr, next = 0;
 957	pmd_t *pmd;
 958
 959	list_for_each_entry(svm, &static_vmlist, list) {
 960		vm = &svm->vm;
 961		addr = (unsigned long)vm->addr;
 962		if (addr < next)
 963			continue;
 964
 965		/*
 966		 * Check if this vm starts on an odd section boundary.
 967		 * If so and the first section entry for this PMD is free
 968		 * then we block the corresponding virtual address.
 969		 */
 970		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 971			pmd = pmd_off_k(addr);
 972			if (pmd_none(*pmd))
 973				pmd_empty_section_gap(addr & PMD_MASK);
 974		}
 975
 976		/*
 977		 * Then check if this vm ends on an odd section boundary.
 978		 * If so and the second section entry for this PMD is empty
 979		 * then we block the corresponding virtual address.
 980		 */
 981		addr += vm->size;
 982		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 983			pmd = pmd_off_k(addr) + 1;
 984			if (pmd_none(*pmd))
 985				pmd_empty_section_gap(addr);
 986		}
 987
 988		/* no need to look at any vm entry until we hit the next PMD */
 989		next = (addr + PMD_SIZE - 1) & PMD_MASK;
 990	}
 991}
 992
 993#else
 994#define fill_pmd_gaps() do { } while (0)
 995#endif
 996
 997#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
 998static void __init pci_reserve_io(void)
 999{
1000	struct static_vm *svm;
1001
1002	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1003	if (svm)
1004		return;
1005
1006	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1007}
1008#else
1009#define pci_reserve_io() do { } while (0)
1010#endif
1011
1012#ifdef CONFIG_DEBUG_LL
1013void __init debug_ll_io_init(void)
1014{
1015	struct map_desc map;
1016
1017	debug_ll_addr(&map.pfn, &map.virtual);
1018	if (!map.pfn || !map.virtual)
1019		return;
1020	map.pfn = __phys_to_pfn(map.pfn);
1021	map.virtual &= PAGE_MASK;
1022	map.length = PAGE_SIZE;
1023	map.type = MT_DEVICE;
1024	iotable_init(&map, 1);
1025}
1026#endif
1027
1028static void * __initdata vmalloc_min =
1029	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1030
1031/*
1032 * vmalloc=size forces the vmalloc area to be exactly 'size'
1033 * bytes. This can be used to increase (or decrease) the vmalloc
1034 * area - the default is 240m.
1035 */
1036static int __init early_vmalloc(char *arg)
1037{
1038	unsigned long vmalloc_reserve = memparse(arg, NULL);
1039
1040	if (vmalloc_reserve < SZ_16M) {
1041		vmalloc_reserve = SZ_16M;
1042		printk(KERN_WARNING
1043			"vmalloc area too small, limiting to %luMB\n",
1044			vmalloc_reserve >> 20);
1045	}
1046
1047	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1048		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1049		printk(KERN_WARNING
1050			"vmalloc area is too big, limiting to %luMB\n",
1051			vmalloc_reserve >> 20);
1052	}
1053
1054	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1055	return 0;
1056}
1057early_param("vmalloc", early_vmalloc);
1058
1059phys_addr_t arm_lowmem_limit __initdata = 0;
1060
1061void __init sanity_check_meminfo(void)
1062{
1063	phys_addr_t memblock_limit = 0;
1064	int i, j, highmem = 0;
1065	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
 
1066
1067	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1068		struct membank *bank = &meminfo.bank[j];
1069		phys_addr_t size_limit;
1070
1071		*bank = meminfo.bank[i];
1072		size_limit = bank->size;
1073
1074		if (bank->start >= vmalloc_limit)
1075			highmem = 1;
1076		else
1077			size_limit = vmalloc_limit - bank->start;
1078
1079		bank->highmem = highmem;
 
 
1080
1081#ifdef CONFIG_HIGHMEM
1082		/*
1083		 * Split those memory banks which are partially overlapping
1084		 * the vmalloc area greatly simplifying things later.
1085		 */
1086		if (!highmem && bank->size > size_limit) {
1087			if (meminfo.nr_banks >= NR_BANKS) {
1088				printk(KERN_CRIT "NR_BANKS too low, "
1089						 "ignoring high memory\n");
1090			} else {
1091				memmove(bank + 1, bank,
1092					(meminfo.nr_banks - i) * sizeof(*bank));
1093				meminfo.nr_banks++;
1094				i++;
1095				bank[1].size -= size_limit;
1096				bank[1].start = vmalloc_limit;
1097				bank[1].highmem = highmem = 1;
1098				j++;
1099			}
1100			bank->size = size_limit;
1101		}
1102#else
1103		/*
1104		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1105		 */
1106		if (highmem) {
1107			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1108			       "(!CONFIG_HIGHMEM).\n",
1109			       (unsigned long long)bank->start,
1110			       (unsigned long long)bank->start + bank->size - 1);
1111			continue;
1112		}
1113
1114		/*
1115		 * Check whether this memory bank would partially overlap
1116		 * the vmalloc area.
1117		 */
1118		if (bank->size > size_limit) {
1119			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1120			       "to -%.8llx (vmalloc region overlap).\n",
1121			       (unsigned long long)bank->start,
1122			       (unsigned long long)bank->start + bank->size - 1,
1123			       (unsigned long long)bank->start + size_limit - 1);
1124			bank->size = size_limit;
1125		}
1126#endif
1127		if (!bank->highmem) {
1128			phys_addr_t bank_end = bank->start + bank->size;
1129
1130			if (bank_end > arm_lowmem_limit)
1131				arm_lowmem_limit = bank_end;
1132
1133			/*
1134			 * Find the first non-section-aligned page, and point
1135			 * memblock_limit at it. This relies on rounding the
1136			 * limit down to be section-aligned, which happens at
1137			 * the end of this function.
1138			 *
1139			 * With this algorithm, the start or end of almost any
1140			 * bank can be non-section-aligned. The only exception
1141			 * is that the start of the bank 0 must be section-
1142			 * aligned, since otherwise memory would need to be
1143			 * allocated when mapping the start of bank 0, which
1144			 * occurs before any free memory is mapped.
1145			 */
1146			if (!memblock_limit) {
1147				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1148					memblock_limit = bank->start;
1149				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1150					memblock_limit = bank_end;
1151			}
 
1152		}
1153		j++;
1154	}
1155#ifdef CONFIG_HIGHMEM
1156	if (highmem) {
1157		const char *reason = NULL;
1158
1159		if (cache_is_vipt_aliasing()) {
1160			/*
1161			 * Interactions between kmap and other mappings
1162			 * make highmem support with aliasing VIPT caches
1163			 * rather difficult.
1164			 */
1165			reason = "with VIPT aliasing cache";
1166		}
1167		if (reason) {
1168			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1169				reason);
1170			while (j > 0 && meminfo.bank[j - 1].highmem)
1171				j--;
1172		}
1173	}
1174#endif
1175	meminfo.nr_banks = j;
1176	high_memory = __va(arm_lowmem_limit - 1) + 1;
1177
 
 
 
1178	/*
1179	 * Round the memblock limit down to a section size.  This
1180	 * helps to ensure that we will allocate memory from the
1181	 * last full section, which should be mapped.
1182	 */
1183	if (memblock_limit)
1184		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1185	if (!memblock_limit)
1186		memblock_limit = arm_lowmem_limit;
 
 
 
 
 
 
 
 
 
1187
1188	memblock_set_current_limit(memblock_limit);
1189}
1190
1191static inline void prepare_page_table(void)
1192{
1193	unsigned long addr;
1194	phys_addr_t end;
1195
1196	/*
1197	 * Clear out all the mappings below the kernel image.
1198	 */
1199	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1200		pmd_clear(pmd_off_k(addr));
1201
1202#ifdef CONFIG_XIP_KERNEL
1203	/* The XIP kernel is mapped in the module area -- skip over it */
1204	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1205#endif
1206	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1207		pmd_clear(pmd_off_k(addr));
1208
1209	/*
1210	 * Find the end of the first block of lowmem.
1211	 */
1212	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1213	if (end >= arm_lowmem_limit)
1214		end = arm_lowmem_limit;
1215
1216	/*
1217	 * Clear out all the kernel space mappings, except for the first
1218	 * memory bank, up to the vmalloc region.
1219	 */
1220	for (addr = __phys_to_virt(end);
1221	     addr < VMALLOC_START; addr += PMD_SIZE)
1222		pmd_clear(pmd_off_k(addr));
1223}
1224
1225#ifdef CONFIG_ARM_LPAE
1226/* the first page is reserved for pgd */
1227#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1228				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1229#else
1230#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1231#endif
1232
1233/*
1234 * Reserve the special regions of memory
1235 */
1236void __init arm_mm_memblock_reserve(void)
1237{
1238	/*
1239	 * Reserve the page tables.  These are already in use,
1240	 * and can only be in node 0.
1241	 */
1242	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1243
1244#ifdef CONFIG_SA1111
1245	/*
1246	 * Because of the SA1111 DMA bug, we want to preserve our
1247	 * precious DMA-able memory...
1248	 */
1249	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1250#endif
1251}
1252
1253/*
1254 * Set up the device mappings.  Since we clear out the page tables for all
1255 * mappings above VMALLOC_START, we will remove any debug device mappings.
1256 * This means you have to be careful how you debug this function, or any
1257 * called function.  This means you can't use any function or debugging
1258 * method which may touch any device, otherwise the kernel _will_ crash.
1259 */
1260static void __init devicemaps_init(const struct machine_desc *mdesc)
1261{
1262	struct map_desc map;
1263	unsigned long addr;
1264	void *vectors;
1265
1266	/*
1267	 * Allocate the vector page early.
1268	 */
1269	vectors = early_alloc(PAGE_SIZE * 2);
1270
1271	early_trap_init(vectors);
1272
1273	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
 
 
 
1274		pmd_clear(pmd_off_k(addr));
1275
1276	/*
1277	 * Map the kernel if it is XIP.
1278	 * It is always first in the modulearea.
1279	 */
1280#ifdef CONFIG_XIP_KERNEL
1281	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1282	map.virtual = MODULES_VADDR;
1283	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1284	map.type = MT_ROM;
1285	create_mapping(&map);
1286#endif
1287
1288	/*
1289	 * Map the cache flushing regions.
1290	 */
1291#ifdef FLUSH_BASE
1292	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1293	map.virtual = FLUSH_BASE;
1294	map.length = SZ_1M;
1295	map.type = MT_CACHECLEAN;
1296	create_mapping(&map);
1297#endif
1298#ifdef FLUSH_BASE_MINICACHE
1299	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1300	map.virtual = FLUSH_BASE_MINICACHE;
1301	map.length = SZ_1M;
1302	map.type = MT_MINICLEAN;
1303	create_mapping(&map);
1304#endif
1305
1306	/*
1307	 * Create a mapping for the machine vectors at the high-vectors
1308	 * location (0xffff0000).  If we aren't using high-vectors, also
1309	 * create a mapping at the low-vectors virtual address.
1310	 */
1311	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1312	map.virtual = 0xffff0000;
1313	map.length = PAGE_SIZE;
1314#ifdef CONFIG_KUSER_HELPERS
1315	map.type = MT_HIGH_VECTORS;
1316#else
1317	map.type = MT_LOW_VECTORS;
1318#endif
1319	create_mapping(&map);
1320
1321	if (!vectors_high()) {
1322		map.virtual = 0;
1323		map.length = PAGE_SIZE * 2;
1324		map.type = MT_LOW_VECTORS;
1325		create_mapping(&map);
1326	}
1327
1328	/* Now create a kernel read-only mapping */
1329	map.pfn += 1;
1330	map.virtual = 0xffff0000 + PAGE_SIZE;
1331	map.length = PAGE_SIZE;
1332	map.type = MT_LOW_VECTORS;
1333	create_mapping(&map);
1334
1335	/*
1336	 * Ask the machine support to map in the statically mapped devices.
1337	 */
1338	if (mdesc->map_io)
1339		mdesc->map_io();
1340	else
1341		debug_ll_io_init();
1342	fill_pmd_gaps();
1343
1344	/* Reserve fixed i/o space in VMALLOC region */
1345	pci_reserve_io();
1346
1347	/*
1348	 * Finally flush the caches and tlb to ensure that we're in a
1349	 * consistent state wrt the writebuffer.  This also ensures that
1350	 * any write-allocated cache lines in the vector page are written
1351	 * back.  After this point, we can start to touch devices again.
1352	 */
1353	local_flush_tlb_all();
1354	flush_cache_all();
 
 
 
1355}
1356
1357static void __init kmap_init(void)
1358{
1359#ifdef CONFIG_HIGHMEM
1360	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1361		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1362#endif
 
 
 
1363}
1364
1365static void __init map_lowmem(void)
1366{
1367	struct memblock_region *reg;
1368	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1369	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1370
1371	/* Map all the lowmem memory banks. */
1372	for_each_memblock(memory, reg) {
1373		phys_addr_t start = reg->base;
1374		phys_addr_t end = start + reg->size;
1375		struct map_desc map;
1376
 
 
 
1377		if (end > arm_lowmem_limit)
1378			end = arm_lowmem_limit;
1379		if (start >= end)
1380			break;
1381
1382		if (end < kernel_x_start || start >= kernel_x_end) {
1383			map.pfn = __phys_to_pfn(start);
1384			map.virtual = __phys_to_virt(start);
1385			map.length = end - start;
1386			map.type = MT_MEMORY_RWX;
1387
1388			create_mapping(&map);
 
 
 
 
 
 
 
1389		} else {
1390			/* This better cover the entire kernel */
1391			if (start < kernel_x_start) {
1392				map.pfn = __phys_to_pfn(start);
1393				map.virtual = __phys_to_virt(start);
1394				map.length = kernel_x_start - start;
1395				map.type = MT_MEMORY_RW;
1396
1397				create_mapping(&map);
1398			}
1399
1400			map.pfn = __phys_to_pfn(kernel_x_start);
1401			map.virtual = __phys_to_virt(kernel_x_start);
1402			map.length = kernel_x_end - kernel_x_start;
1403			map.type = MT_MEMORY_RWX;
1404
1405			create_mapping(&map);
1406
1407			if (kernel_x_end < end) {
1408				map.pfn = __phys_to_pfn(kernel_x_end);
1409				map.virtual = __phys_to_virt(kernel_x_end);
1410				map.length = end - kernel_x_end;
1411				map.type = MT_MEMORY_RW;
1412
1413				create_mapping(&map);
1414			}
1415		}
1416	}
1417}
1418
1419#ifdef CONFIG_ARM_LPAE
 
 
 
 
1420/*
1421 * early_paging_init() recreates boot time page table setup, allowing machines
1422 * to switch over to a high (>4G) address space on LPAE systems
1423 */
1424void __init early_paging_init(const struct machine_desc *mdesc,
1425			      struct proc_info_list *procinfo)
1426{
1427	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1428	unsigned long map_start, map_end;
1429	pgd_t *pgd0, *pgdk;
1430	pud_t *pud0, *pudk, *pud_start;
1431	pmd_t *pmd0, *pmdk;
1432	phys_addr_t phys;
1433	int i;
1434
1435	if (!(mdesc->init_meminfo))
1436		return;
1437
1438	/* remap kernel code and data */
1439	map_start = init_mm.start_code;
1440	map_end   = init_mm.brk;
1441
1442	/* get a handle on things... */
1443	pgd0 = pgd_offset_k(0);
1444	pud_start = pud0 = pud_offset(pgd0, 0);
1445	pmd0 = pmd_offset(pud0, 0);
1446
1447	pgdk = pgd_offset_k(map_start);
1448	pudk = pud_offset(pgdk, map_start);
1449	pmdk = pmd_offset(pudk, map_start);
1450
1451	mdesc->init_meminfo();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452
1453	/* Run the patch stub to update the constants */
1454	fixup_pv_table(&__pv_table_begin,
1455		(&__pv_table_end - &__pv_table_begin) << 2);
1456
1457	/*
1458	 * Cache cleaning operations for self-modifying code
1459	 * We should clean the entries by MVA but running a
1460	 * for loop over every pv_table entry pointer would
1461	 * just complicate the code.
1462	 */
1463	flush_cache_louis();
1464	dsb();
1465	isb();
1466
1467	/* remap level 1 table */
1468	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1469		set_pud(pud0,
1470			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1471		pmd0 += PTRS_PER_PMD;
1472	}
1473
1474	/* remap pmds for kernel mapping */
1475	phys = __pa(map_start) & PMD_MASK;
1476	do {
1477		*pmdk++ = __pmd(phys | pmdprot);
1478		phys += PMD_SIZE;
1479	} while (phys < map_end);
1480
1481	flush_cache_all();
1482	cpu_switch_mm(pgd0, &init_mm);
1483	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1484	local_flush_bp_all();
1485	local_flush_tlb_all();
1486}
1487
1488#else
1489
1490void __init early_paging_init(const struct machine_desc *mdesc,
1491			      struct proc_info_list *procinfo)
1492{
1493	if (mdesc->init_meminfo)
1494		mdesc->init_meminfo();
 
 
 
 
 
 
 
 
 
 
 
1495}
1496
1497#endif
1498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499/*
1500 * paging_init() sets up the page tables, initialises the zone memory
1501 * maps, and sets up the zero page, bad page and bad page tables.
1502 */
1503void __init paging_init(const struct machine_desc *mdesc)
1504{
1505	void *zero_page;
1506
1507	build_mem_type_table();
1508	prepare_page_table();
1509	map_lowmem();
 
1510	dma_contiguous_remap();
 
1511	devicemaps_init(mdesc);
1512	kmap_init();
1513	tcm_init();
1514
1515	top_pmd = pmd_off_k(0xffff0000);
1516
1517	/* allocate the zero page. */
1518	zero_page = early_alloc(PAGE_SIZE);
1519
1520	bootmem_init();
1521
1522	empty_zero_page = virt_to_page(zero_page);
1523	__flush_dcache_page(NULL, empty_zero_page);
 
 
 
 
 
 
 
 
 
1524}