Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *	Generic address resultion entity
  3 *
  4 *	Authors:
  5 *	net_random Alan Cox
  6 *	net_ratelimit Andi Kleen
  7 *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
  8 *
  9 *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
 10 *
 11 *	This program is free software; you can redistribute it and/or
 12 *      modify it under the terms of the GNU General Public License
 13 *      as published by the Free Software Foundation; either version
 14 *      2 of the License, or (at your option) any later version.
 15 */
 16
 17#include <linux/module.h>
 18#include <linux/jiffies.h>
 19#include <linux/kernel.h>
 20#include <linux/ctype.h>
 21#include <linux/inet.h>
 22#include <linux/mm.h>
 23#include <linux/net.h>
 24#include <linux/string.h>
 25#include <linux/types.h>
 26#include <linux/percpu.h>
 27#include <linux/init.h>
 28#include <linux/ratelimit.h>
 29#include <linux/socket.h>
 30
 31#include <net/sock.h>
 32#include <net/net_ratelimit.h>
 33#include <net/ipv6.h>
 34
 35#include <asm/byteorder.h>
 36#include <linux/uaccess.h>
 
 
 
 37
 38DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
 39/*
 40 * All net warning printk()s should be guarded by this function.
 41 */
 42int net_ratelimit(void)
 43{
 44	return __ratelimit(&net_ratelimit_state);
 45}
 46EXPORT_SYMBOL(net_ratelimit);
 47
 48/*
 49 * Convert an ASCII string to binary IP.
 50 * This is outside of net/ipv4/ because various code that uses IP addresses
 51 * is otherwise not dependent on the TCP/IP stack.
 52 */
 53
 54__be32 in_aton(const char *str)
 55{
 56	unsigned int l;
 57	unsigned int val;
 58	int i;
 59
 60	l = 0;
 61	for (i = 0; i < 4; i++)	{
 62		l <<= 8;
 63		if (*str != '\0') {
 64			val = 0;
 65			while (*str != '\0' && *str != '.' && *str != '\n') {
 66				val *= 10;
 67				val += *str - '0';
 68				str++;
 69			}
 70			l |= val;
 71			if (*str != '\0')
 72				str++;
 73		}
 74	}
 75	return htonl(l);
 76}
 77EXPORT_SYMBOL(in_aton);
 78
 79#define IN6PTON_XDIGIT		0x00010000
 80#define IN6PTON_DIGIT		0x00020000
 81#define IN6PTON_COLON_MASK	0x00700000
 82#define IN6PTON_COLON_1		0x00100000	/* single : requested */
 83#define IN6PTON_COLON_2		0x00200000	/* second : requested */
 84#define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
 85#define IN6PTON_DOT		0x00800000	/* . */
 86#define IN6PTON_DELIM		0x10000000
 87#define IN6PTON_NULL		0x20000000	/* first/tail */
 88#define IN6PTON_UNKNOWN		0x40000000
 89
 90static inline int xdigit2bin(char c, int delim)
 91{
 92	int val;
 93
 94	if (c == delim || c == '\0')
 95		return IN6PTON_DELIM;
 96	if (c == ':')
 97		return IN6PTON_COLON_MASK;
 98	if (c == '.')
 99		return IN6PTON_DOT;
100
101	val = hex_to_bin(c);
102	if (val >= 0)
103		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
104
105	if (delim == -1)
106		return IN6PTON_DELIM;
107	return IN6PTON_UNKNOWN;
108}
109
110/**
111 * in4_pton - convert an IPv4 address from literal to binary representation
112 * @src: the start of the IPv4 address string
113 * @srclen: the length of the string, -1 means strlen(src)
114 * @dst: the binary (u8[4] array) representation of the IPv4 address
115 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
116 * @end: A pointer to the end of the parsed string will be placed here
117 *
118 * Return one on success, return zero when any error occurs
119 * and @end will point to the end of the parsed string.
120 *
121 */
122int in4_pton(const char *src, int srclen,
123	     u8 *dst,
124	     int delim, const char **end)
125{
126	const char *s;
127	u8 *d;
128	u8 dbuf[4];
129	int ret = 0;
130	int i;
131	int w = 0;
132
133	if (srclen < 0)
134		srclen = strlen(src);
135	s = src;
136	d = dbuf;
137	i = 0;
138	while (1) {
139		int c;
140		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
141		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
142			goto out;
143		}
144		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
145			if (w == 0)
146				goto out;
147			*d++ = w & 0xff;
148			w = 0;
149			i++;
150			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
151				if (i != 4)
152					goto out;
153				break;
154			}
155			goto cont;
156		}
157		w = (w * 10) + c;
158		if ((w & 0xffff) > 255) {
159			goto out;
160		}
161cont:
162		if (i >= 4)
163			goto out;
164		s++;
165		srclen--;
166	}
167	ret = 1;
168	memcpy(dst, dbuf, sizeof(dbuf));
169out:
170	if (end)
171		*end = s;
172	return ret;
173}
174EXPORT_SYMBOL(in4_pton);
175
176/**
177 * in6_pton - convert an IPv6 address from literal to binary representation
178 * @src: the start of the IPv6 address string
179 * @srclen: the length of the string, -1 means strlen(src)
180 * @dst: the binary (u8[16] array) representation of the IPv6 address
181 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
182 * @end: A pointer to the end of the parsed string will be placed here
183 *
184 * Return one on success, return zero when any error occurs
185 * and @end will point to the end of the parsed string.
186 *
187 */
188int in6_pton(const char *src, int srclen,
189	     u8 *dst,
190	     int delim, const char **end)
191{
192	const char *s, *tok = NULL;
193	u8 *d, *dc = NULL;
194	u8 dbuf[16];
195	int ret = 0;
196	int i;
197	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
198	int w = 0;
199
200	memset(dbuf, 0, sizeof(dbuf));
201
202	s = src;
203	d = dbuf;
204	if (srclen < 0)
205		srclen = strlen(src);
206
207	while (1) {
208		int c;
209
210		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
211		if (!(c & state))
212			goto out;
213		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
214			/* process one 16-bit word */
215			if (!(state & IN6PTON_NULL)) {
216				*d++ = (w >> 8) & 0xff;
217				*d++ = w & 0xff;
218			}
219			w = 0;
220			if (c & IN6PTON_DELIM) {
221				/* We've processed last word */
222				break;
223			}
224			/*
225			 * COLON_1 => XDIGIT
226			 * COLON_2 => XDIGIT|DELIM
227			 * COLON_1_2 => COLON_2
228			 */
229			switch (state & IN6PTON_COLON_MASK) {
230			case IN6PTON_COLON_2:
231				dc = d;
232				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
233				if (dc - dbuf >= sizeof(dbuf))
234					state |= IN6PTON_NULL;
235				break;
236			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
237				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
238				break;
239			case IN6PTON_COLON_1:
240				state = IN6PTON_XDIGIT;
241				break;
242			case IN6PTON_COLON_1_2:
243				state = IN6PTON_COLON_2;
244				break;
245			default:
246				state = 0;
247			}
248			tok = s + 1;
249			goto cont;
250		}
251
252		if (c & IN6PTON_DOT) {
253			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
254			if (ret > 0) {
255				d += 4;
256				break;
257			}
258			goto out;
259		}
260
261		w = (w << 4) | (0xff & c);
262		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
263		if (!(w & 0xf000)) {
264			state |= IN6PTON_XDIGIT;
265		}
266		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
267			state |= IN6PTON_COLON_1_2;
268			state &= ~IN6PTON_DELIM;
269		}
270		if (d + 2 >= dbuf + sizeof(dbuf)) {
271			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
272		}
273cont:
274		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
275		    d + 4 == dbuf + sizeof(dbuf)) {
276			state |= IN6PTON_DOT;
277		}
278		if (d >= dbuf + sizeof(dbuf)) {
279			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
280		}
281		s++;
282		srclen--;
283	}
284
285	i = 15; d--;
286
287	if (dc) {
288		while (d >= dc)
289			dst[i--] = *d--;
290		while (i >= dc - dbuf)
291			dst[i--] = 0;
292		while (i >= 0)
293			dst[i--] = *d--;
294	} else
295		memcpy(dst, dbuf, sizeof(dbuf));
296
297	ret = 1;
298out:
299	if (end)
300		*end = s;
301	return ret;
302}
303EXPORT_SYMBOL(in6_pton);
304
305static int inet4_pton(const char *src, u16 port_num,
306		struct sockaddr_storage *addr)
307{
308	struct sockaddr_in *addr4 = (struct sockaddr_in *)addr;
309	int srclen = strlen(src);
310
311	if (srclen > INET_ADDRSTRLEN)
312		return -EINVAL;
313
314	if (in4_pton(src, srclen, (u8 *)&addr4->sin_addr.s_addr,
315		     '\n', NULL) == 0)
316		return -EINVAL;
317
318	addr4->sin_family = AF_INET;
319	addr4->sin_port = htons(port_num);
320
321	return 0;
322}
323
324static int inet6_pton(struct net *net, const char *src, u16 port_num,
325		struct sockaddr_storage *addr)
326{
327	struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)addr;
328	const char *scope_delim;
329	int srclen = strlen(src);
330
331	if (srclen > INET6_ADDRSTRLEN)
332		return -EINVAL;
333
334	if (in6_pton(src, srclen, (u8 *)&addr6->sin6_addr.s6_addr,
335		     '%', &scope_delim) == 0)
336		return -EINVAL;
337
338	if (ipv6_addr_type(&addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL &&
339	    src + srclen != scope_delim && *scope_delim == '%') {
340		struct net_device *dev;
341		char scope_id[16];
342		size_t scope_len = min_t(size_t, sizeof(scope_id) - 1,
343					 src + srclen - scope_delim - 1);
344
345		memcpy(scope_id, scope_delim + 1, scope_len);
346		scope_id[scope_len] = '\0';
347
348		dev = dev_get_by_name(net, scope_id);
349		if (dev) {
350			addr6->sin6_scope_id = dev->ifindex;
351			dev_put(dev);
352		} else if (kstrtouint(scope_id, 0, &addr6->sin6_scope_id)) {
353			return -EINVAL;
354		}
355	}
356
357	addr6->sin6_family = AF_INET6;
358	addr6->sin6_port = htons(port_num);
359
360	return 0;
361}
362
363/**
364 * inet_pton_with_scope - convert an IPv4/IPv6 and port to socket address
365 * @net: net namespace (used for scope handling)
366 * @af: address family, AF_INET, AF_INET6 or AF_UNSPEC for either
367 * @src: the start of the address string
368 * @port: the start of the port string (or NULL for none)
369 * @addr: output socket address
370 *
371 * Return zero on success, return errno when any error occurs.
372 */
373int inet_pton_with_scope(struct net *net, __kernel_sa_family_t af,
374		const char *src, const char *port, struct sockaddr_storage *addr)
375{
376	u16 port_num;
377	int ret = -EINVAL;
378
379	if (port) {
380		if (kstrtou16(port, 0, &port_num))
381			return -EINVAL;
382	} else {
383		port_num = 0;
384	}
385
386	switch (af) {
387	case AF_INET:
388		ret = inet4_pton(src, port_num, addr);
389		break;
390	case AF_INET6:
391		ret = inet6_pton(net, src, port_num, addr);
392		break;
393	case AF_UNSPEC:
394		ret = inet4_pton(src, port_num, addr);
395		if (ret)
396			ret = inet6_pton(net, src, port_num, addr);
397		break;
398	default:
399		pr_err("unexpected address family %d\n", af);
400	};
401
402	return ret;
403}
404EXPORT_SYMBOL(inet_pton_with_scope);
405
406bool inet_addr_is_any(struct sockaddr *addr)
407{
408	if (addr->sa_family == AF_INET6) {
409		struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)addr;
410		const struct sockaddr_in6 in6_any =
411			{ .sin6_addr = IN6ADDR_ANY_INIT };
412
413		if (!memcmp(in6->sin6_addr.s6_addr,
414			    in6_any.sin6_addr.s6_addr, 16))
415			return true;
416	} else if (addr->sa_family == AF_INET) {
417		struct sockaddr_in *in = (struct sockaddr_in *)addr;
418
419		if (in->sin_addr.s_addr == htonl(INADDR_ANY))
420			return true;
421	} else {
422		pr_warn("unexpected address family %u\n", addr->sa_family);
423	}
424
425	return false;
426}
427EXPORT_SYMBOL(inet_addr_is_any);
428
429void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
430			      __be32 from, __be32 to, bool pseudohdr)
431{
 
432	if (skb->ip_summed != CHECKSUM_PARTIAL) {
433		csum_replace4(sum, from, to);
 
434		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
435			skb->csum = ~csum_add(csum_sub(~(skb->csum),
436						       (__force __wsum)from),
437					      (__force __wsum)to);
438	} else if (pseudohdr)
439		*sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
440						    (__force __wsum)from),
441					   (__force __wsum)to));
442}
443EXPORT_SYMBOL(inet_proto_csum_replace4);
444
445void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
446			       const __be32 *from, const __be32 *to,
447			       bool pseudohdr)
448{
449	__be32 diff[] = {
450		~from[0], ~from[1], ~from[2], ~from[3],
451		to[0], to[1], to[2], to[3],
452	};
453	if (skb->ip_summed != CHECKSUM_PARTIAL) {
454		*sum = csum_fold(csum_partial(diff, sizeof(diff),
455				 ~csum_unfold(*sum)));
456		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
457			skb->csum = ~csum_partial(diff, sizeof(diff),
458						  ~skb->csum);
459	} else if (pseudohdr)
460		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
461				  csum_unfold(*sum)));
462}
463EXPORT_SYMBOL(inet_proto_csum_replace16);
464
465void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
466				     __wsum diff, bool pseudohdr)
 
 
 
 
467{
468	if (skb->ip_summed != CHECKSUM_PARTIAL) {
469		*sum = csum_fold(csum_add(diff, ~csum_unfold(*sum)));
470		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
471			skb->csum = ~csum_add(diff, ~skb->csum);
472	} else if (pseudohdr) {
473		*sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474	}
 
 
 
 
 
 
 
 
475}
476EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);
v3.15
  1/*
  2 *	Generic address resultion entity
  3 *
  4 *	Authors:
  5 *	net_random Alan Cox
  6 *	net_ratelimit Andi Kleen
  7 *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
  8 *
  9 *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
 10 *
 11 *	This program is free software; you can redistribute it and/or
 12 *      modify it under the terms of the GNU General Public License
 13 *      as published by the Free Software Foundation; either version
 14 *      2 of the License, or (at your option) any later version.
 15 */
 16
 17#include <linux/module.h>
 18#include <linux/jiffies.h>
 19#include <linux/kernel.h>
 20#include <linux/ctype.h>
 21#include <linux/inet.h>
 22#include <linux/mm.h>
 23#include <linux/net.h>
 24#include <linux/string.h>
 25#include <linux/types.h>
 26#include <linux/percpu.h>
 27#include <linux/init.h>
 28#include <linux/ratelimit.h>
 
 29
 30#include <net/sock.h>
 31#include <net/net_ratelimit.h>
 
 32
 33#include <asm/byteorder.h>
 34#include <asm/uaccess.h>
 35
 36int net_msg_warn __read_mostly = 1;
 37EXPORT_SYMBOL(net_msg_warn);
 38
 39DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
 40/*
 41 * All net warning printk()s should be guarded by this function.
 42 */
 43int net_ratelimit(void)
 44{
 45	return __ratelimit(&net_ratelimit_state);
 46}
 47EXPORT_SYMBOL(net_ratelimit);
 48
 49/*
 50 * Convert an ASCII string to binary IP.
 51 * This is outside of net/ipv4/ because various code that uses IP addresses
 52 * is otherwise not dependent on the TCP/IP stack.
 53 */
 54
 55__be32 in_aton(const char *str)
 56{
 57	unsigned long l;
 58	unsigned int val;
 59	int i;
 60
 61	l = 0;
 62	for (i = 0; i < 4; i++)	{
 63		l <<= 8;
 64		if (*str != '\0') {
 65			val = 0;
 66			while (*str != '\0' && *str != '.' && *str != '\n') {
 67				val *= 10;
 68				val += *str - '0';
 69				str++;
 70			}
 71			l |= val;
 72			if (*str != '\0')
 73				str++;
 74		}
 75	}
 76	return htonl(l);
 77}
 78EXPORT_SYMBOL(in_aton);
 79
 80#define IN6PTON_XDIGIT		0x00010000
 81#define IN6PTON_DIGIT		0x00020000
 82#define IN6PTON_COLON_MASK	0x00700000
 83#define IN6PTON_COLON_1		0x00100000	/* single : requested */
 84#define IN6PTON_COLON_2		0x00200000	/* second : requested */
 85#define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
 86#define IN6PTON_DOT		0x00800000	/* . */
 87#define IN6PTON_DELIM		0x10000000
 88#define IN6PTON_NULL		0x20000000	/* first/tail */
 89#define IN6PTON_UNKNOWN		0x40000000
 90
 91static inline int xdigit2bin(char c, int delim)
 92{
 93	int val;
 94
 95	if (c == delim || c == '\0')
 96		return IN6PTON_DELIM;
 97	if (c == ':')
 98		return IN6PTON_COLON_MASK;
 99	if (c == '.')
100		return IN6PTON_DOT;
101
102	val = hex_to_bin(c);
103	if (val >= 0)
104		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
105
106	if (delim == -1)
107		return IN6PTON_DELIM;
108	return IN6PTON_UNKNOWN;
109}
110
111/**
112 * in4_pton - convert an IPv4 address from literal to binary representation
113 * @src: the start of the IPv4 address string
114 * @srclen: the length of the string, -1 means strlen(src)
115 * @dst: the binary (u8[4] array) representation of the IPv4 address
116 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
117 * @end: A pointer to the end of the parsed string will be placed here
118 *
119 * Return one on success, return zero when any error occurs
120 * and @end will point to the end of the parsed string.
121 *
122 */
123int in4_pton(const char *src, int srclen,
124	     u8 *dst,
125	     int delim, const char **end)
126{
127	const char *s;
128	u8 *d;
129	u8 dbuf[4];
130	int ret = 0;
131	int i;
132	int w = 0;
133
134	if (srclen < 0)
135		srclen = strlen(src);
136	s = src;
137	d = dbuf;
138	i = 0;
139	while(1) {
140		int c;
141		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
142		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
143			goto out;
144		}
145		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
146			if (w == 0)
147				goto out;
148			*d++ = w & 0xff;
149			w = 0;
150			i++;
151			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
152				if (i != 4)
153					goto out;
154				break;
155			}
156			goto cont;
157		}
158		w = (w * 10) + c;
159		if ((w & 0xffff) > 255) {
160			goto out;
161		}
162cont:
163		if (i >= 4)
164			goto out;
165		s++;
166		srclen--;
167	}
168	ret = 1;
169	memcpy(dst, dbuf, sizeof(dbuf));
170out:
171	if (end)
172		*end = s;
173	return ret;
174}
175EXPORT_SYMBOL(in4_pton);
176
177/**
178 * in6_pton - convert an IPv6 address from literal to binary representation
179 * @src: the start of the IPv6 address string
180 * @srclen: the length of the string, -1 means strlen(src)
181 * @dst: the binary (u8[16] array) representation of the IPv6 address
182 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
183 * @end: A pointer to the end of the parsed string will be placed here
184 *
185 * Return one on success, return zero when any error occurs
186 * and @end will point to the end of the parsed string.
187 *
188 */
189int in6_pton(const char *src, int srclen,
190	     u8 *dst,
191	     int delim, const char **end)
192{
193	const char *s, *tok = NULL;
194	u8 *d, *dc = NULL;
195	u8 dbuf[16];
196	int ret = 0;
197	int i;
198	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
199	int w = 0;
200
201	memset(dbuf, 0, sizeof(dbuf));
202
203	s = src;
204	d = dbuf;
205	if (srclen < 0)
206		srclen = strlen(src);
207
208	while (1) {
209		int c;
210
211		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
212		if (!(c & state))
213			goto out;
214		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
215			/* process one 16-bit word */
216			if (!(state & IN6PTON_NULL)) {
217				*d++ = (w >> 8) & 0xff;
218				*d++ = w & 0xff;
219			}
220			w = 0;
221			if (c & IN6PTON_DELIM) {
222				/* We've processed last word */
223				break;
224			}
225			/*
226			 * COLON_1 => XDIGIT
227			 * COLON_2 => XDIGIT|DELIM
228			 * COLON_1_2 => COLON_2
229			 */
230			switch (state & IN6PTON_COLON_MASK) {
231			case IN6PTON_COLON_2:
232				dc = d;
233				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
234				if (dc - dbuf >= sizeof(dbuf))
235					state |= IN6PTON_NULL;
236				break;
237			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
238				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
239				break;
240			case IN6PTON_COLON_1:
241				state = IN6PTON_XDIGIT;
242				break;
243			case IN6PTON_COLON_1_2:
244				state = IN6PTON_COLON_2;
245				break;
246			default:
247				state = 0;
248			}
249			tok = s + 1;
250			goto cont;
251		}
252
253		if (c & IN6PTON_DOT) {
254			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
255			if (ret > 0) {
256				d += 4;
257				break;
258			}
259			goto out;
260		}
261
262		w = (w << 4) | (0xff & c);
263		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
264		if (!(w & 0xf000)) {
265			state |= IN6PTON_XDIGIT;
266		}
267		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
268			state |= IN6PTON_COLON_1_2;
269			state &= ~IN6PTON_DELIM;
270		}
271		if (d + 2 >= dbuf + sizeof(dbuf)) {
272			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
273		}
274cont:
275		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
276		    d + 4 == dbuf + sizeof(dbuf)) {
277			state |= IN6PTON_DOT;
278		}
279		if (d >= dbuf + sizeof(dbuf)) {
280			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
281		}
282		s++;
283		srclen--;
284	}
285
286	i = 15; d--;
287
288	if (dc) {
289		while(d >= dc)
290			dst[i--] = *d--;
291		while(i >= dc - dbuf)
292			dst[i--] = 0;
293		while(i >= 0)
294			dst[i--] = *d--;
295	} else
296		memcpy(dst, dbuf, sizeof(dbuf));
297
298	ret = 1;
299out:
300	if (end)
301		*end = s;
302	return ret;
303}
304EXPORT_SYMBOL(in6_pton);
305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
307			      __be32 from, __be32 to, int pseudohdr)
308{
309	__be32 diff[] = { ~from, to };
310	if (skb->ip_summed != CHECKSUM_PARTIAL) {
311		*sum = csum_fold(csum_partial(diff, sizeof(diff),
312				~csum_unfold(*sum)));
313		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
314			skb->csum = ~csum_partial(diff, sizeof(diff),
315						~skb->csum);
 
316	} else if (pseudohdr)
317		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
318				csum_unfold(*sum)));
 
319}
320EXPORT_SYMBOL(inet_proto_csum_replace4);
321
322void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
323			       const __be32 *from, const __be32 *to,
324			       int pseudohdr)
325{
326	__be32 diff[] = {
327		~from[0], ~from[1], ~from[2], ~from[3],
328		to[0], to[1], to[2], to[3],
329	};
330	if (skb->ip_summed != CHECKSUM_PARTIAL) {
331		*sum = csum_fold(csum_partial(diff, sizeof(diff),
332				 ~csum_unfold(*sum)));
333		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
334			skb->csum = ~csum_partial(diff, sizeof(diff),
335						  ~skb->csum);
336	} else if (pseudohdr)
337		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
338				  csum_unfold(*sum)));
339}
340EXPORT_SYMBOL(inet_proto_csum_replace16);
341
342struct __net_random_once_work {
343	struct work_struct work;
344	struct static_key *key;
345};
346
347static void __net_random_once_deferred(struct work_struct *w)
348{
349	struct __net_random_once_work *work =
350		container_of(w, struct __net_random_once_work, work);
351	BUG_ON(!static_key_enabled(work->key));
352	static_key_slow_dec(work->key);
353	kfree(work);
354}
355
356static void __net_random_once_disable_jump(struct static_key *key)
357{
358	struct __net_random_once_work *w;
359
360	w = kmalloc(sizeof(*w), GFP_ATOMIC);
361	if (!w)
362		return;
363
364	INIT_WORK(&w->work, __net_random_once_deferred);
365	w->key = key;
366	schedule_work(&w->work);
367}
368
369bool __net_get_random_once(void *buf, int nbytes, bool *done,
370			   struct static_key *once_key)
371{
372	static DEFINE_SPINLOCK(lock);
373	unsigned long flags;
374
375	spin_lock_irqsave(&lock, flags);
376	if (*done) {
377		spin_unlock_irqrestore(&lock, flags);
378		return false;
379	}
380
381	get_random_bytes(buf, nbytes);
382	*done = true;
383	spin_unlock_irqrestore(&lock, flags);
384
385	__net_random_once_disable_jump(once_key);
386
387	return true;
388}
389EXPORT_SYMBOL(__net_get_random_once);