Loading...
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/pkt_cls.h>
109#include <net/checksum.h>
110#include <net/xfrm.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <linux/pci.h>
136#include <linux/inetdevice.h>
137#include <linux/cpu_rmap.h>
138#include <linux/static_key.h>
139#include <linux/hashtable.h>
140#include <linux/vmalloc.h>
141#include <linux/if_macvlan.h>
142#include <linux/errqueue.h>
143#include <linux/hrtimer.h>
144#include <linux/netfilter_ingress.h>
145#include <linux/crash_dump.h>
146#include <linux/sctp.h>
147#include <net/udp_tunnel.h>
148#include <linux/net_namespace.h>
149
150#include "net-sysfs.h"
151
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158static DEFINE_SPINLOCK(ptype_lock);
159static DEFINE_SPINLOCK(offload_lock);
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
162static struct list_head offload_base __read_mostly;
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static seqcount_t devnet_rename_seq;
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233/* Device list insertion */
234static void list_netdevice(struct net_device *dev)
235{
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248}
249
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265}
266
267/*
268 * Our notifier list
269 */
270
271static RAW_NOTIFIER_HEAD(netdev_chain);
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281#ifdef CONFIG_LOCKDEP
282/*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
353#else
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359{
360}
361#endif
362
363/*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393}
394
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415}
416EXPORT_SYMBOL(dev_add_pack);
417
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446out:
447 spin_unlock(&ptype_lock);
448}
449EXPORT_SYMBOL(__dev_remove_pack);
450
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468}
469EXPORT_SYMBOL(dev_remove_pack);
470
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511static void __dev_remove_offload(struct packet_offload *po)
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
527 spin_unlock(&offload_lock);
528}
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
550/******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611}
612EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615/**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724/**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736struct net_device *__dev_get_by_name(struct net *net, const char *name)
737{
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746}
747EXPORT_SYMBOL(__dev_get_by_name);
748
749/**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774/**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786struct net_device *dev_get_by_name(struct net *net, const char *name)
787{
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796}
797EXPORT_SYMBOL(dev_get_by_name);
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812{
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821}
822EXPORT_SYMBOL(__dev_get_by_index);
823
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849/**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860struct net_device *dev_get_by_index(struct net *net, int ifindex)
861{
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870}
871EXPORT_SYMBOL(dev_get_by_index);
872
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
932/**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948{
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957}
958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961{
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970}
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974{
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986}
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002{
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028 if (*name == '\0')
1029 return false;
1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124}
1125
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148{
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252}
1253
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287}
1288
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
1311
1312/**
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
1338
1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 &change_info.info);
1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 }
1343}
1344EXPORT_SYMBOL(netdev_state_change);
1345
1346/**
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
1357{
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 rtnl_unlock();
1362}
1363EXPORT_SYMBOL(netdev_notify_peers);
1364
1365static int __dev_open(struct net_device *dev)
1366{
1367 const struct net_device_ops *ops = dev->netdev_ops;
1368 int ret;
1369
1370 ASSERT_RTNL();
1371
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
1379 netpoll_poll_disable(dev);
1380
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1386 set_bit(__LINK_STATE_START, &dev->state);
1387
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
1390
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1393
1394 netpoll_poll_enable(dev);
1395
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1399 dev->flags |= IFF_UP;
1400 dev_set_rx_mode(dev);
1401 dev_activate(dev);
1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1403 }
1404
1405 return ret;
1406}
1407
1408/**
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1411 *
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1419 */
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
1438static void __dev_close_many(struct list_head *head)
1439{
1440 struct net_device *dev;
1441
1442 ASSERT_RTNL();
1443 might_sleep();
1444
1445 list_for_each_entry(dev, head, close_list) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev);
1448
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1460 }
1461
1462 dev_deactivate_many(head);
1463
1464 list_for_each_entry(dev, head, close_list) {
1465 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
1477 dev->flags &= ~IFF_UP;
1478 netpoll_poll_enable(dev);
1479 }
1480}
1481
1482static void __dev_close(struct net_device *dev)
1483{
1484 LIST_HEAD(single);
1485
1486 list_add(&dev->close_list, &single);
1487 __dev_close_many(&single);
1488 list_del(&single);
1489}
1490
1491void dev_close_many(struct list_head *head, bool unlink)
1492{
1493 struct net_device *dev, *tmp;
1494
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
1497 if (!(dev->flags & IFF_UP))
1498 list_del_init(&dev->close_list);
1499
1500 __dev_close_many(head);
1501
1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 if (unlink)
1506 list_del_init(&dev->close_list);
1507 }
1508}
1509EXPORT_SYMBOL(dev_close_many);
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
1520void dev_close(struct net_device *dev)
1521{
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1524
1525 list_add(&dev->close_list, &single);
1526 dev_close_many(&single, true);
1527 list_del(&single);
1528 }
1529}
1530EXPORT_SYMBOL(dev_close);
1531
1532
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
1545
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
1548
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
1557/**
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1569
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
1574const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575{
1576#define N(val) \
1577 case NETDEV_##val: \
1578 return "NETDEV_" __stringify(val);
1579 switch (cmd) {
1580 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589 };
1590#undef N
1591 return "UNKNOWN_NETDEV_EVENT";
1592}
1593EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 struct net_device *dev)
1597{
1598 struct netdev_notifier_info info = {
1599 .dev = dev,
1600 };
1601
1602 return nb->notifier_call(nb, val, &info);
1603}
1604
1605static int dev_boot_phase = 1;
1606
1607/**
1608 * register_netdevice_notifier - register a network notifier block
1609 * @nb: notifier
1610 *
1611 * Register a notifier to be called when network device events occur.
1612 * The notifier passed is linked into the kernel structures and must
1613 * not be reused until it has been unregistered. A negative errno code
1614 * is returned on a failure.
1615 *
1616 * When registered all registration and up events are replayed
1617 * to the new notifier to allow device to have a race free
1618 * view of the network device list.
1619 */
1620
1621int register_netdevice_notifier(struct notifier_block *nb)
1622{
1623 struct net_device *dev;
1624 struct net_device *last;
1625 struct net *net;
1626 int err;
1627
1628 /* Close race with setup_net() and cleanup_net() */
1629 down_write(&pernet_ops_rwsem);
1630 rtnl_lock();
1631 err = raw_notifier_chain_register(&netdev_chain, nb);
1632 if (err)
1633 goto unlock;
1634 if (dev_boot_phase)
1635 goto unlock;
1636 for_each_net(net) {
1637 for_each_netdev(net, dev) {
1638 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 err = notifier_to_errno(err);
1640 if (err)
1641 goto rollback;
1642
1643 if (!(dev->flags & IFF_UP))
1644 continue;
1645
1646 call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 }
1648 }
1649
1650unlock:
1651 rtnl_unlock();
1652 up_write(&pernet_ops_rwsem);
1653 return err;
1654
1655rollback:
1656 last = dev;
1657 for_each_net(net) {
1658 for_each_netdev(net, dev) {
1659 if (dev == last)
1660 goto outroll;
1661
1662 if (dev->flags & IFF_UP) {
1663 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 dev);
1665 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 }
1667 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 }
1669 }
1670
1671outroll:
1672 raw_notifier_chain_unregister(&netdev_chain, nb);
1673 goto unlock;
1674}
1675EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677/**
1678 * unregister_netdevice_notifier - unregister a network notifier block
1679 * @nb: notifier
1680 *
1681 * Unregister a notifier previously registered by
1682 * register_netdevice_notifier(). The notifier is unlinked into the
1683 * kernel structures and may then be reused. A negative errno code
1684 * is returned on a failure.
1685 *
1686 * After unregistering unregister and down device events are synthesized
1687 * for all devices on the device list to the removed notifier to remove
1688 * the need for special case cleanup code.
1689 */
1690
1691int unregister_netdevice_notifier(struct notifier_block *nb)
1692{
1693 struct net_device *dev;
1694 struct net *net;
1695 int err;
1696
1697 /* Close race with setup_net() and cleanup_net() */
1698 down_write(&pernet_ops_rwsem);
1699 rtnl_lock();
1700 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701 if (err)
1702 goto unlock;
1703
1704 for_each_net(net) {
1705 for_each_netdev(net, dev) {
1706 if (dev->flags & IFF_UP) {
1707 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 dev);
1709 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710 }
1711 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712 }
1713 }
1714unlock:
1715 rtnl_unlock();
1716 up_write(&pernet_ops_rwsem);
1717 return err;
1718}
1719EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721/**
1722 * call_netdevice_notifiers_info - call all network notifier blocks
1723 * @val: value passed unmodified to notifier function
1724 * @info: notifier information data
1725 *
1726 * Call all network notifier blocks. Parameters and return value
1727 * are as for raw_notifier_call_chain().
1728 */
1729
1730static int call_netdevice_notifiers_info(unsigned long val,
1731 struct netdev_notifier_info *info)
1732{
1733 ASSERT_RTNL();
1734 return raw_notifier_call_chain(&netdev_chain, val, info);
1735}
1736
1737/**
1738 * call_netdevice_notifiers - call all network notifier blocks
1739 * @val: value passed unmodified to notifier function
1740 * @dev: net_device pointer passed unmodified to notifier function
1741 *
1742 * Call all network notifier blocks. Parameters and return value
1743 * are as for raw_notifier_call_chain().
1744 */
1745
1746int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747{
1748 struct netdev_notifier_info info = {
1749 .dev = dev,
1750 };
1751
1752 return call_netdevice_notifiers_info(val, &info);
1753}
1754EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756#ifdef CONFIG_NET_INGRESS
1757static struct static_key ingress_needed __read_mostly;
1758
1759void net_inc_ingress_queue(void)
1760{
1761 static_key_slow_inc(&ingress_needed);
1762}
1763EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765void net_dec_ingress_queue(void)
1766{
1767 static_key_slow_dec(&ingress_needed);
1768}
1769EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770#endif
1771
1772#ifdef CONFIG_NET_EGRESS
1773static struct static_key egress_needed __read_mostly;
1774
1775void net_inc_egress_queue(void)
1776{
1777 static_key_slow_inc(&egress_needed);
1778}
1779EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781void net_dec_egress_queue(void)
1782{
1783 static_key_slow_dec(&egress_needed);
1784}
1785EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786#endif
1787
1788static struct static_key netstamp_needed __read_mostly;
1789#ifdef HAVE_JUMP_LABEL
1790static atomic_t netstamp_needed_deferred;
1791static atomic_t netstamp_wanted;
1792static void netstamp_clear(struct work_struct *work)
1793{
1794 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795 int wanted;
1796
1797 wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 if (wanted > 0)
1799 static_key_enable(&netstamp_needed);
1800 else
1801 static_key_disable(&netstamp_needed);
1802}
1803static DECLARE_WORK(netstamp_work, netstamp_clear);
1804#endif
1805
1806void net_enable_timestamp(void)
1807{
1808#ifdef HAVE_JUMP_LABEL
1809 int wanted;
1810
1811 while (1) {
1812 wanted = atomic_read(&netstamp_wanted);
1813 if (wanted <= 0)
1814 break;
1815 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 return;
1817 }
1818 atomic_inc(&netstamp_needed_deferred);
1819 schedule_work(&netstamp_work);
1820#else
1821 static_key_slow_inc(&netstamp_needed);
1822#endif
1823}
1824EXPORT_SYMBOL(net_enable_timestamp);
1825
1826void net_disable_timestamp(void)
1827{
1828#ifdef HAVE_JUMP_LABEL
1829 int wanted;
1830
1831 while (1) {
1832 wanted = atomic_read(&netstamp_wanted);
1833 if (wanted <= 1)
1834 break;
1835 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 return;
1837 }
1838 atomic_dec(&netstamp_needed_deferred);
1839 schedule_work(&netstamp_work);
1840#else
1841 static_key_slow_dec(&netstamp_needed);
1842#endif
1843}
1844EXPORT_SYMBOL(net_disable_timestamp);
1845
1846static inline void net_timestamp_set(struct sk_buff *skb)
1847{
1848 skb->tstamp = 0;
1849 if (static_key_false(&netstamp_needed))
1850 __net_timestamp(skb);
1851}
1852
1853#define net_timestamp_check(COND, SKB) \
1854 if (static_key_false(&netstamp_needed)) { \
1855 if ((COND) && !(SKB)->tstamp) \
1856 __net_timestamp(SKB); \
1857 } \
1858
1859bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860{
1861 unsigned int len;
1862
1863 if (!(dev->flags & IFF_UP))
1864 return false;
1865
1866 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 if (skb->len <= len)
1868 return true;
1869
1870 /* if TSO is enabled, we don't care about the length as the packet
1871 * could be forwarded without being segmented before
1872 */
1873 if (skb_is_gso(skb))
1874 return true;
1875
1876 return false;
1877}
1878EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879
1880int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881{
1882 int ret = ____dev_forward_skb(dev, skb);
1883
1884 if (likely(!ret)) {
1885 skb->protocol = eth_type_trans(skb, dev);
1886 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887 }
1888
1889 return ret;
1890}
1891EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
1893/**
1894 * dev_forward_skb - loopback an skb to another netif
1895 *
1896 * @dev: destination network device
1897 * @skb: buffer to forward
1898 *
1899 * return values:
1900 * NET_RX_SUCCESS (no congestion)
1901 * NET_RX_DROP (packet was dropped, but freed)
1902 *
1903 * dev_forward_skb can be used for injecting an skb from the
1904 * start_xmit function of one device into the receive queue
1905 * of another device.
1906 *
1907 * The receiving device may be in another namespace, so
1908 * we have to clear all information in the skb that could
1909 * impact namespace isolation.
1910 */
1911int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912{
1913 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914}
1915EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
1917static inline int deliver_skb(struct sk_buff *skb,
1918 struct packet_type *pt_prev,
1919 struct net_device *orig_dev)
1920{
1921 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 return -ENOMEM;
1923 refcount_inc(&skb->users);
1924 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925}
1926
1927static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 struct packet_type **pt,
1929 struct net_device *orig_dev,
1930 __be16 type,
1931 struct list_head *ptype_list)
1932{
1933 struct packet_type *ptype, *pt_prev = *pt;
1934
1935 list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 if (ptype->type != type)
1937 continue;
1938 if (pt_prev)
1939 deliver_skb(skb, pt_prev, orig_dev);
1940 pt_prev = ptype;
1941 }
1942 *pt = pt_prev;
1943}
1944
1945static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946{
1947 if (!ptype->af_packet_priv || !skb->sk)
1948 return false;
1949
1950 if (ptype->id_match)
1951 return ptype->id_match(ptype, skb->sk);
1952 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 return true;
1954
1955 return false;
1956}
1957
1958/*
1959 * Support routine. Sends outgoing frames to any network
1960 * taps currently in use.
1961 */
1962
1963void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964{
1965 struct packet_type *ptype;
1966 struct sk_buff *skb2 = NULL;
1967 struct packet_type *pt_prev = NULL;
1968 struct list_head *ptype_list = &ptype_all;
1969
1970 rcu_read_lock();
1971again:
1972 list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 /* Never send packets back to the socket
1974 * they originated from - MvS (miquels@drinkel.ow.org)
1975 */
1976 if (skb_loop_sk(ptype, skb))
1977 continue;
1978
1979 if (pt_prev) {
1980 deliver_skb(skb2, pt_prev, skb->dev);
1981 pt_prev = ptype;
1982 continue;
1983 }
1984
1985 /* need to clone skb, done only once */
1986 skb2 = skb_clone(skb, GFP_ATOMIC);
1987 if (!skb2)
1988 goto out_unlock;
1989
1990 net_timestamp_set(skb2);
1991
1992 /* skb->nh should be correctly
1993 * set by sender, so that the second statement is
1994 * just protection against buggy protocols.
1995 */
1996 skb_reset_mac_header(skb2);
1997
1998 if (skb_network_header(skb2) < skb2->data ||
1999 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 ntohs(skb2->protocol),
2002 dev->name);
2003 skb_reset_network_header(skb2);
2004 }
2005
2006 skb2->transport_header = skb2->network_header;
2007 skb2->pkt_type = PACKET_OUTGOING;
2008 pt_prev = ptype;
2009 }
2010
2011 if (ptype_list == &ptype_all) {
2012 ptype_list = &dev->ptype_all;
2013 goto again;
2014 }
2015out_unlock:
2016 if (pt_prev) {
2017 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 else
2020 kfree_skb(skb2);
2021 }
2022 rcu_read_unlock();
2023}
2024EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025
2026/**
2027 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028 * @dev: Network device
2029 * @txq: number of queues available
2030 *
2031 * If real_num_tx_queues is changed the tc mappings may no longer be
2032 * valid. To resolve this verify the tc mapping remains valid and if
2033 * not NULL the mapping. With no priorities mapping to this
2034 * offset/count pair it will no longer be used. In the worst case TC0
2035 * is invalid nothing can be done so disable priority mappings. If is
2036 * expected that drivers will fix this mapping if they can before
2037 * calling netif_set_real_num_tx_queues.
2038 */
2039static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040{
2041 int i;
2042 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044 /* If TC0 is invalidated disable TC mapping */
2045 if (tc->offset + tc->count > txq) {
2046 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047 dev->num_tc = 0;
2048 return;
2049 }
2050
2051 /* Invalidated prio to tc mappings set to TC0 */
2052 for (i = 1; i < TC_BITMASK + 1; i++) {
2053 int q = netdev_get_prio_tc_map(dev, i);
2054
2055 tc = &dev->tc_to_txq[q];
2056 if (tc->offset + tc->count > txq) {
2057 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 i, q);
2059 netdev_set_prio_tc_map(dev, i, 0);
2060 }
2061 }
2062}
2063
2064int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065{
2066 if (dev->num_tc) {
2067 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 int i;
2069
2070 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071 if ((txq - tc->offset) < tc->count)
2072 return i;
2073 }
2074
2075 return -1;
2076 }
2077
2078 return 0;
2079}
2080EXPORT_SYMBOL(netdev_txq_to_tc);
2081
2082#ifdef CONFIG_XPS
2083static DEFINE_MUTEX(xps_map_mutex);
2084#define xmap_dereference(P) \
2085 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2086
2087static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2088 int tci, u16 index)
2089{
2090 struct xps_map *map = NULL;
2091 int pos;
2092
2093 if (dev_maps)
2094 map = xmap_dereference(dev_maps->cpu_map[tci]);
2095 if (!map)
2096 return false;
2097
2098 for (pos = map->len; pos--;) {
2099 if (map->queues[pos] != index)
2100 continue;
2101
2102 if (map->len > 1) {
2103 map->queues[pos] = map->queues[--map->len];
2104 break;
2105 }
2106
2107 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2108 kfree_rcu(map, rcu);
2109 return false;
2110 }
2111
2112 return true;
2113}
2114
2115static bool remove_xps_queue_cpu(struct net_device *dev,
2116 struct xps_dev_maps *dev_maps,
2117 int cpu, u16 offset, u16 count)
2118{
2119 int num_tc = dev->num_tc ? : 1;
2120 bool active = false;
2121 int tci;
2122
2123 for (tci = cpu * num_tc; num_tc--; tci++) {
2124 int i, j;
2125
2126 for (i = count, j = offset; i--; j++) {
2127 if (!remove_xps_queue(dev_maps, tci, j))
2128 break;
2129 }
2130
2131 active |= i < 0;
2132 }
2133
2134 return active;
2135}
2136
2137static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2138 u16 count)
2139{
2140 struct xps_dev_maps *dev_maps;
2141 int cpu, i;
2142 bool active = false;
2143
2144 mutex_lock(&xps_map_mutex);
2145 dev_maps = xmap_dereference(dev->xps_maps);
2146
2147 if (!dev_maps)
2148 goto out_no_maps;
2149
2150 for_each_possible_cpu(cpu)
2151 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2152 offset, count);
2153
2154 if (!active) {
2155 RCU_INIT_POINTER(dev->xps_maps, NULL);
2156 kfree_rcu(dev_maps, rcu);
2157 }
2158
2159 for (i = offset + (count - 1); count--; i--)
2160 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2161 NUMA_NO_NODE);
2162
2163out_no_maps:
2164 mutex_unlock(&xps_map_mutex);
2165}
2166
2167static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2168{
2169 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2170}
2171
2172static struct xps_map *expand_xps_map(struct xps_map *map,
2173 int cpu, u16 index)
2174{
2175 struct xps_map *new_map;
2176 int alloc_len = XPS_MIN_MAP_ALLOC;
2177 int i, pos;
2178
2179 for (pos = 0; map && pos < map->len; pos++) {
2180 if (map->queues[pos] != index)
2181 continue;
2182 return map;
2183 }
2184
2185 /* Need to add queue to this CPU's existing map */
2186 if (map) {
2187 if (pos < map->alloc_len)
2188 return map;
2189
2190 alloc_len = map->alloc_len * 2;
2191 }
2192
2193 /* Need to allocate new map to store queue on this CPU's map */
2194 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2195 cpu_to_node(cpu));
2196 if (!new_map)
2197 return NULL;
2198
2199 for (i = 0; i < pos; i++)
2200 new_map->queues[i] = map->queues[i];
2201 new_map->alloc_len = alloc_len;
2202 new_map->len = pos;
2203
2204 return new_map;
2205}
2206
2207int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2208 u16 index)
2209{
2210 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2211 int i, cpu, tci, numa_node_id = -2;
2212 int maps_sz, num_tc = 1, tc = 0;
2213 struct xps_map *map, *new_map;
2214 bool active = false;
2215
2216 if (dev->num_tc) {
2217 num_tc = dev->num_tc;
2218 tc = netdev_txq_to_tc(dev, index);
2219 if (tc < 0)
2220 return -EINVAL;
2221 }
2222
2223 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2224 if (maps_sz < L1_CACHE_BYTES)
2225 maps_sz = L1_CACHE_BYTES;
2226
2227 mutex_lock(&xps_map_mutex);
2228
2229 dev_maps = xmap_dereference(dev->xps_maps);
2230
2231 /* allocate memory for queue storage */
2232 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2233 if (!new_dev_maps)
2234 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2235 if (!new_dev_maps) {
2236 mutex_unlock(&xps_map_mutex);
2237 return -ENOMEM;
2238 }
2239
2240 tci = cpu * num_tc + tc;
2241 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2242 NULL;
2243
2244 map = expand_xps_map(map, cpu, index);
2245 if (!map)
2246 goto error;
2247
2248 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249 }
2250
2251 if (!new_dev_maps)
2252 goto out_no_new_maps;
2253
2254 for_each_possible_cpu(cpu) {
2255 /* copy maps belonging to foreign traffic classes */
2256 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2257 /* fill in the new device map from the old device map */
2258 map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 }
2261
2262 /* We need to explicitly update tci as prevous loop
2263 * could break out early if dev_maps is NULL.
2264 */
2265 tci = cpu * num_tc + tc;
2266
2267 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2268 /* add queue to CPU maps */
2269 int pos = 0;
2270
2271 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2272 while ((pos < map->len) && (map->queues[pos] != index))
2273 pos++;
2274
2275 if (pos == map->len)
2276 map->queues[map->len++] = index;
2277#ifdef CONFIG_NUMA
2278 if (numa_node_id == -2)
2279 numa_node_id = cpu_to_node(cpu);
2280 else if (numa_node_id != cpu_to_node(cpu))
2281 numa_node_id = -1;
2282#endif
2283 } else if (dev_maps) {
2284 /* fill in the new device map from the old device map */
2285 map = xmap_dereference(dev_maps->cpu_map[tci]);
2286 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2287 }
2288
2289 /* copy maps belonging to foreign traffic classes */
2290 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2291 /* fill in the new device map from the old device map */
2292 map = xmap_dereference(dev_maps->cpu_map[tci]);
2293 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2294 }
2295 }
2296
2297 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2298
2299 /* Cleanup old maps */
2300 if (!dev_maps)
2301 goto out_no_old_maps;
2302
2303 for_each_possible_cpu(cpu) {
2304 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2305 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2306 map = xmap_dereference(dev_maps->cpu_map[tci]);
2307 if (map && map != new_map)
2308 kfree_rcu(map, rcu);
2309 }
2310 }
2311
2312 kfree_rcu(dev_maps, rcu);
2313
2314out_no_old_maps:
2315 dev_maps = new_dev_maps;
2316 active = true;
2317
2318out_no_new_maps:
2319 /* update Tx queue numa node */
2320 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2321 (numa_node_id >= 0) ? numa_node_id :
2322 NUMA_NO_NODE);
2323
2324 if (!dev_maps)
2325 goto out_no_maps;
2326
2327 /* removes queue from unused CPUs */
2328 for_each_possible_cpu(cpu) {
2329 for (i = tc, tci = cpu * num_tc; i--; tci++)
2330 active |= remove_xps_queue(dev_maps, tci, index);
2331 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2332 active |= remove_xps_queue(dev_maps, tci, index);
2333 for (i = num_tc - tc, tci++; --i; tci++)
2334 active |= remove_xps_queue(dev_maps, tci, index);
2335 }
2336
2337 /* free map if not active */
2338 if (!active) {
2339 RCU_INIT_POINTER(dev->xps_maps, NULL);
2340 kfree_rcu(dev_maps, rcu);
2341 }
2342
2343out_no_maps:
2344 mutex_unlock(&xps_map_mutex);
2345
2346 return 0;
2347error:
2348 /* remove any maps that we added */
2349 for_each_possible_cpu(cpu) {
2350 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2351 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2352 map = dev_maps ?
2353 xmap_dereference(dev_maps->cpu_map[tci]) :
2354 NULL;
2355 if (new_map && new_map != map)
2356 kfree(new_map);
2357 }
2358 }
2359
2360 mutex_unlock(&xps_map_mutex);
2361
2362 kfree(new_dev_maps);
2363 return -ENOMEM;
2364}
2365EXPORT_SYMBOL(netif_set_xps_queue);
2366
2367#endif
2368void netdev_reset_tc(struct net_device *dev)
2369{
2370#ifdef CONFIG_XPS
2371 netif_reset_xps_queues_gt(dev, 0);
2372#endif
2373 dev->num_tc = 0;
2374 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2375 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2376}
2377EXPORT_SYMBOL(netdev_reset_tc);
2378
2379int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2380{
2381 if (tc >= dev->num_tc)
2382 return -EINVAL;
2383
2384#ifdef CONFIG_XPS
2385 netif_reset_xps_queues(dev, offset, count);
2386#endif
2387 dev->tc_to_txq[tc].count = count;
2388 dev->tc_to_txq[tc].offset = offset;
2389 return 0;
2390}
2391EXPORT_SYMBOL(netdev_set_tc_queue);
2392
2393int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2394{
2395 if (num_tc > TC_MAX_QUEUE)
2396 return -EINVAL;
2397
2398#ifdef CONFIG_XPS
2399 netif_reset_xps_queues_gt(dev, 0);
2400#endif
2401 dev->num_tc = num_tc;
2402 return 0;
2403}
2404EXPORT_SYMBOL(netdev_set_num_tc);
2405
2406/*
2407 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2408 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2409 */
2410int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2411{
2412 bool disabling;
2413 int rc;
2414
2415 disabling = txq < dev->real_num_tx_queues;
2416
2417 if (txq < 1 || txq > dev->num_tx_queues)
2418 return -EINVAL;
2419
2420 if (dev->reg_state == NETREG_REGISTERED ||
2421 dev->reg_state == NETREG_UNREGISTERING) {
2422 ASSERT_RTNL();
2423
2424 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2425 txq);
2426 if (rc)
2427 return rc;
2428
2429 if (dev->num_tc)
2430 netif_setup_tc(dev, txq);
2431
2432 dev->real_num_tx_queues = txq;
2433
2434 if (disabling) {
2435 synchronize_net();
2436 qdisc_reset_all_tx_gt(dev, txq);
2437#ifdef CONFIG_XPS
2438 netif_reset_xps_queues_gt(dev, txq);
2439#endif
2440 }
2441 } else {
2442 dev->real_num_tx_queues = txq;
2443 }
2444
2445 return 0;
2446}
2447EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2448
2449#ifdef CONFIG_SYSFS
2450/**
2451 * netif_set_real_num_rx_queues - set actual number of RX queues used
2452 * @dev: Network device
2453 * @rxq: Actual number of RX queues
2454 *
2455 * This must be called either with the rtnl_lock held or before
2456 * registration of the net device. Returns 0 on success, or a
2457 * negative error code. If called before registration, it always
2458 * succeeds.
2459 */
2460int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2461{
2462 int rc;
2463
2464 if (rxq < 1 || rxq > dev->num_rx_queues)
2465 return -EINVAL;
2466
2467 if (dev->reg_state == NETREG_REGISTERED) {
2468 ASSERT_RTNL();
2469
2470 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2471 rxq);
2472 if (rc)
2473 return rc;
2474 }
2475
2476 dev->real_num_rx_queues = rxq;
2477 return 0;
2478}
2479EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2480#endif
2481
2482/**
2483 * netif_get_num_default_rss_queues - default number of RSS queues
2484 *
2485 * This routine should set an upper limit on the number of RSS queues
2486 * used by default by multiqueue devices.
2487 */
2488int netif_get_num_default_rss_queues(void)
2489{
2490 return is_kdump_kernel() ?
2491 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2492}
2493EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2494
2495static void __netif_reschedule(struct Qdisc *q)
2496{
2497 struct softnet_data *sd;
2498 unsigned long flags;
2499
2500 local_irq_save(flags);
2501 sd = this_cpu_ptr(&softnet_data);
2502 q->next_sched = NULL;
2503 *sd->output_queue_tailp = q;
2504 sd->output_queue_tailp = &q->next_sched;
2505 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506 local_irq_restore(flags);
2507}
2508
2509void __netif_schedule(struct Qdisc *q)
2510{
2511 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2512 __netif_reschedule(q);
2513}
2514EXPORT_SYMBOL(__netif_schedule);
2515
2516struct dev_kfree_skb_cb {
2517 enum skb_free_reason reason;
2518};
2519
2520static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2521{
2522 return (struct dev_kfree_skb_cb *)skb->cb;
2523}
2524
2525void netif_schedule_queue(struct netdev_queue *txq)
2526{
2527 rcu_read_lock();
2528 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2529 struct Qdisc *q = rcu_dereference(txq->qdisc);
2530
2531 __netif_schedule(q);
2532 }
2533 rcu_read_unlock();
2534}
2535EXPORT_SYMBOL(netif_schedule_queue);
2536
2537void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2538{
2539 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2540 struct Qdisc *q;
2541
2542 rcu_read_lock();
2543 q = rcu_dereference(dev_queue->qdisc);
2544 __netif_schedule(q);
2545 rcu_read_unlock();
2546 }
2547}
2548EXPORT_SYMBOL(netif_tx_wake_queue);
2549
2550void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2551{
2552 unsigned long flags;
2553
2554 if (unlikely(!skb))
2555 return;
2556
2557 if (likely(refcount_read(&skb->users) == 1)) {
2558 smp_rmb();
2559 refcount_set(&skb->users, 0);
2560 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2561 return;
2562 }
2563 get_kfree_skb_cb(skb)->reason = reason;
2564 local_irq_save(flags);
2565 skb->next = __this_cpu_read(softnet_data.completion_queue);
2566 __this_cpu_write(softnet_data.completion_queue, skb);
2567 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2568 local_irq_restore(flags);
2569}
2570EXPORT_SYMBOL(__dev_kfree_skb_irq);
2571
2572void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2573{
2574 if (in_irq() || irqs_disabled())
2575 __dev_kfree_skb_irq(skb, reason);
2576 else
2577 dev_kfree_skb(skb);
2578}
2579EXPORT_SYMBOL(__dev_kfree_skb_any);
2580
2581
2582/**
2583 * netif_device_detach - mark device as removed
2584 * @dev: network device
2585 *
2586 * Mark device as removed from system and therefore no longer available.
2587 */
2588void netif_device_detach(struct net_device *dev)
2589{
2590 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2591 netif_running(dev)) {
2592 netif_tx_stop_all_queues(dev);
2593 }
2594}
2595EXPORT_SYMBOL(netif_device_detach);
2596
2597/**
2598 * netif_device_attach - mark device as attached
2599 * @dev: network device
2600 *
2601 * Mark device as attached from system and restart if needed.
2602 */
2603void netif_device_attach(struct net_device *dev)
2604{
2605 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2606 netif_running(dev)) {
2607 netif_tx_wake_all_queues(dev);
2608 __netdev_watchdog_up(dev);
2609 }
2610}
2611EXPORT_SYMBOL(netif_device_attach);
2612
2613/*
2614 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2615 * to be used as a distribution range.
2616 */
2617u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2618 unsigned int num_tx_queues)
2619{
2620 u32 hash;
2621 u16 qoffset = 0;
2622 u16 qcount = num_tx_queues;
2623
2624 if (skb_rx_queue_recorded(skb)) {
2625 hash = skb_get_rx_queue(skb);
2626 while (unlikely(hash >= num_tx_queues))
2627 hash -= num_tx_queues;
2628 return hash;
2629 }
2630
2631 if (dev->num_tc) {
2632 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634 qoffset = dev->tc_to_txq[tc].offset;
2635 qcount = dev->tc_to_txq[tc].count;
2636 }
2637
2638 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639}
2640EXPORT_SYMBOL(__skb_tx_hash);
2641
2642static void skb_warn_bad_offload(const struct sk_buff *skb)
2643{
2644 static const netdev_features_t null_features;
2645 struct net_device *dev = skb->dev;
2646 const char *name = "";
2647
2648 if (!net_ratelimit())
2649 return;
2650
2651 if (dev) {
2652 if (dev->dev.parent)
2653 name = dev_driver_string(dev->dev.parent);
2654 else
2655 name = netdev_name(dev);
2656 }
2657 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2658 "gso_type=%d ip_summed=%d\n",
2659 name, dev ? &dev->features : &null_features,
2660 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2661 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2662 skb_shinfo(skb)->gso_type, skb->ip_summed);
2663}
2664
2665/*
2666 * Invalidate hardware checksum when packet is to be mangled, and
2667 * complete checksum manually on outgoing path.
2668 */
2669int skb_checksum_help(struct sk_buff *skb)
2670{
2671 __wsum csum;
2672 int ret = 0, offset;
2673
2674 if (skb->ip_summed == CHECKSUM_COMPLETE)
2675 goto out_set_summed;
2676
2677 if (unlikely(skb_shinfo(skb)->gso_size)) {
2678 skb_warn_bad_offload(skb);
2679 return -EINVAL;
2680 }
2681
2682 /* Before computing a checksum, we should make sure no frag could
2683 * be modified by an external entity : checksum could be wrong.
2684 */
2685 if (skb_has_shared_frag(skb)) {
2686 ret = __skb_linearize(skb);
2687 if (ret)
2688 goto out;
2689 }
2690
2691 offset = skb_checksum_start_offset(skb);
2692 BUG_ON(offset >= skb_headlen(skb));
2693 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2694
2695 offset += skb->csum_offset;
2696 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2697
2698 if (skb_cloned(skb) &&
2699 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2700 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2701 if (ret)
2702 goto out;
2703 }
2704
2705 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2706out_set_summed:
2707 skb->ip_summed = CHECKSUM_NONE;
2708out:
2709 return ret;
2710}
2711EXPORT_SYMBOL(skb_checksum_help);
2712
2713int skb_crc32c_csum_help(struct sk_buff *skb)
2714{
2715 __le32 crc32c_csum;
2716 int ret = 0, offset, start;
2717
2718 if (skb->ip_summed != CHECKSUM_PARTIAL)
2719 goto out;
2720
2721 if (unlikely(skb_is_gso(skb)))
2722 goto out;
2723
2724 /* Before computing a checksum, we should make sure no frag could
2725 * be modified by an external entity : checksum could be wrong.
2726 */
2727 if (unlikely(skb_has_shared_frag(skb))) {
2728 ret = __skb_linearize(skb);
2729 if (ret)
2730 goto out;
2731 }
2732 start = skb_checksum_start_offset(skb);
2733 offset = start + offsetof(struct sctphdr, checksum);
2734 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2735 ret = -EINVAL;
2736 goto out;
2737 }
2738 if (skb_cloned(skb) &&
2739 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2740 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741 if (ret)
2742 goto out;
2743 }
2744 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2745 skb->len - start, ~(__u32)0,
2746 crc32c_csum_stub));
2747 *(__le32 *)(skb->data + offset) = crc32c_csum;
2748 skb->ip_summed = CHECKSUM_NONE;
2749 skb->csum_not_inet = 0;
2750out:
2751 return ret;
2752}
2753
2754__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2755{
2756 __be16 type = skb->protocol;
2757
2758 /* Tunnel gso handlers can set protocol to ethernet. */
2759 if (type == htons(ETH_P_TEB)) {
2760 struct ethhdr *eth;
2761
2762 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2763 return 0;
2764
2765 eth = (struct ethhdr *)skb->data;
2766 type = eth->h_proto;
2767 }
2768
2769 return __vlan_get_protocol(skb, type, depth);
2770}
2771
2772/**
2773 * skb_mac_gso_segment - mac layer segmentation handler.
2774 * @skb: buffer to segment
2775 * @features: features for the output path (see dev->features)
2776 */
2777struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2778 netdev_features_t features)
2779{
2780 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2781 struct packet_offload *ptype;
2782 int vlan_depth = skb->mac_len;
2783 __be16 type = skb_network_protocol(skb, &vlan_depth);
2784
2785 if (unlikely(!type))
2786 return ERR_PTR(-EINVAL);
2787
2788 __skb_pull(skb, vlan_depth);
2789
2790 rcu_read_lock();
2791 list_for_each_entry_rcu(ptype, &offload_base, list) {
2792 if (ptype->type == type && ptype->callbacks.gso_segment) {
2793 segs = ptype->callbacks.gso_segment(skb, features);
2794 break;
2795 }
2796 }
2797 rcu_read_unlock();
2798
2799 __skb_push(skb, skb->data - skb_mac_header(skb));
2800
2801 return segs;
2802}
2803EXPORT_SYMBOL(skb_mac_gso_segment);
2804
2805
2806/* openvswitch calls this on rx path, so we need a different check.
2807 */
2808static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2809{
2810 if (tx_path)
2811 return skb->ip_summed != CHECKSUM_PARTIAL &&
2812 skb->ip_summed != CHECKSUM_UNNECESSARY;
2813
2814 return skb->ip_summed == CHECKSUM_NONE;
2815}
2816
2817/**
2818 * __skb_gso_segment - Perform segmentation on skb.
2819 * @skb: buffer to segment
2820 * @features: features for the output path (see dev->features)
2821 * @tx_path: whether it is called in TX path
2822 *
2823 * This function segments the given skb and returns a list of segments.
2824 *
2825 * It may return NULL if the skb requires no segmentation. This is
2826 * only possible when GSO is used for verifying header integrity.
2827 *
2828 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2829 */
2830struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2831 netdev_features_t features, bool tx_path)
2832{
2833 struct sk_buff *segs;
2834
2835 if (unlikely(skb_needs_check(skb, tx_path))) {
2836 int err;
2837
2838 /* We're going to init ->check field in TCP or UDP header */
2839 err = skb_cow_head(skb, 0);
2840 if (err < 0)
2841 return ERR_PTR(err);
2842 }
2843
2844 /* Only report GSO partial support if it will enable us to
2845 * support segmentation on this frame without needing additional
2846 * work.
2847 */
2848 if (features & NETIF_F_GSO_PARTIAL) {
2849 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2850 struct net_device *dev = skb->dev;
2851
2852 partial_features |= dev->features & dev->gso_partial_features;
2853 if (!skb_gso_ok(skb, features | partial_features))
2854 features &= ~NETIF_F_GSO_PARTIAL;
2855 }
2856
2857 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2858 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2859
2860 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2861 SKB_GSO_CB(skb)->encap_level = 0;
2862
2863 skb_reset_mac_header(skb);
2864 skb_reset_mac_len(skb);
2865
2866 segs = skb_mac_gso_segment(skb, features);
2867
2868 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2869 skb_warn_bad_offload(skb);
2870
2871 return segs;
2872}
2873EXPORT_SYMBOL(__skb_gso_segment);
2874
2875/* Take action when hardware reception checksum errors are detected. */
2876#ifdef CONFIG_BUG
2877void netdev_rx_csum_fault(struct net_device *dev)
2878{
2879 if (net_ratelimit()) {
2880 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2881 dump_stack();
2882 }
2883}
2884EXPORT_SYMBOL(netdev_rx_csum_fault);
2885#endif
2886
2887/* Actually, we should eliminate this check as soon as we know, that:
2888 * 1. IOMMU is present and allows to map all the memory.
2889 * 2. No high memory really exists on this machine.
2890 */
2891
2892static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2893{
2894#ifdef CONFIG_HIGHMEM
2895 int i;
2896
2897 if (!(dev->features & NETIF_F_HIGHDMA)) {
2898 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2899 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2900
2901 if (PageHighMem(skb_frag_page(frag)))
2902 return 1;
2903 }
2904 }
2905
2906 if (PCI_DMA_BUS_IS_PHYS) {
2907 struct device *pdev = dev->dev.parent;
2908
2909 if (!pdev)
2910 return 0;
2911 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2912 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2913 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2914
2915 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2916 return 1;
2917 }
2918 }
2919#endif
2920 return 0;
2921}
2922
2923/* If MPLS offload request, verify we are testing hardware MPLS features
2924 * instead of standard features for the netdev.
2925 */
2926#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2927static netdev_features_t net_mpls_features(struct sk_buff *skb,
2928 netdev_features_t features,
2929 __be16 type)
2930{
2931 if (eth_p_mpls(type))
2932 features &= skb->dev->mpls_features;
2933
2934 return features;
2935}
2936#else
2937static netdev_features_t net_mpls_features(struct sk_buff *skb,
2938 netdev_features_t features,
2939 __be16 type)
2940{
2941 return features;
2942}
2943#endif
2944
2945static netdev_features_t harmonize_features(struct sk_buff *skb,
2946 netdev_features_t features)
2947{
2948 int tmp;
2949 __be16 type;
2950
2951 type = skb_network_protocol(skb, &tmp);
2952 features = net_mpls_features(skb, features, type);
2953
2954 if (skb->ip_summed != CHECKSUM_NONE &&
2955 !can_checksum_protocol(features, type)) {
2956 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2957 }
2958 if (illegal_highdma(skb->dev, skb))
2959 features &= ~NETIF_F_SG;
2960
2961 return features;
2962}
2963
2964netdev_features_t passthru_features_check(struct sk_buff *skb,
2965 struct net_device *dev,
2966 netdev_features_t features)
2967{
2968 return features;
2969}
2970EXPORT_SYMBOL(passthru_features_check);
2971
2972static netdev_features_t dflt_features_check(struct sk_buff *skb,
2973 struct net_device *dev,
2974 netdev_features_t features)
2975{
2976 return vlan_features_check(skb, features);
2977}
2978
2979static netdev_features_t gso_features_check(const struct sk_buff *skb,
2980 struct net_device *dev,
2981 netdev_features_t features)
2982{
2983 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2984
2985 if (gso_segs > dev->gso_max_segs)
2986 return features & ~NETIF_F_GSO_MASK;
2987
2988 /* Support for GSO partial features requires software
2989 * intervention before we can actually process the packets
2990 * so we need to strip support for any partial features now
2991 * and we can pull them back in after we have partially
2992 * segmented the frame.
2993 */
2994 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2995 features &= ~dev->gso_partial_features;
2996
2997 /* Make sure to clear the IPv4 ID mangling feature if the
2998 * IPv4 header has the potential to be fragmented.
2999 */
3000 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3001 struct iphdr *iph = skb->encapsulation ?
3002 inner_ip_hdr(skb) : ip_hdr(skb);
3003
3004 if (!(iph->frag_off & htons(IP_DF)))
3005 features &= ~NETIF_F_TSO_MANGLEID;
3006 }
3007
3008 return features;
3009}
3010
3011netdev_features_t netif_skb_features(struct sk_buff *skb)
3012{
3013 struct net_device *dev = skb->dev;
3014 netdev_features_t features = dev->features;
3015
3016 if (skb_is_gso(skb))
3017 features = gso_features_check(skb, dev, features);
3018
3019 /* If encapsulation offload request, verify we are testing
3020 * hardware encapsulation features instead of standard
3021 * features for the netdev
3022 */
3023 if (skb->encapsulation)
3024 features &= dev->hw_enc_features;
3025
3026 if (skb_vlan_tagged(skb))
3027 features = netdev_intersect_features(features,
3028 dev->vlan_features |
3029 NETIF_F_HW_VLAN_CTAG_TX |
3030 NETIF_F_HW_VLAN_STAG_TX);
3031
3032 if (dev->netdev_ops->ndo_features_check)
3033 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3034 features);
3035 else
3036 features &= dflt_features_check(skb, dev, features);
3037
3038 return harmonize_features(skb, features);
3039}
3040EXPORT_SYMBOL(netif_skb_features);
3041
3042static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3043 struct netdev_queue *txq, bool more)
3044{
3045 unsigned int len;
3046 int rc;
3047
3048 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3049 dev_queue_xmit_nit(skb, dev);
3050
3051 len = skb->len;
3052 trace_net_dev_start_xmit(skb, dev);
3053 rc = netdev_start_xmit(skb, dev, txq, more);
3054 trace_net_dev_xmit(skb, rc, dev, len);
3055
3056 return rc;
3057}
3058
3059struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3060 struct netdev_queue *txq, int *ret)
3061{
3062 struct sk_buff *skb = first;
3063 int rc = NETDEV_TX_OK;
3064
3065 while (skb) {
3066 struct sk_buff *next = skb->next;
3067
3068 skb->next = NULL;
3069 rc = xmit_one(skb, dev, txq, next != NULL);
3070 if (unlikely(!dev_xmit_complete(rc))) {
3071 skb->next = next;
3072 goto out;
3073 }
3074
3075 skb = next;
3076 if (netif_xmit_stopped(txq) && skb) {
3077 rc = NETDEV_TX_BUSY;
3078 break;
3079 }
3080 }
3081
3082out:
3083 *ret = rc;
3084 return skb;
3085}
3086
3087static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3088 netdev_features_t features)
3089{
3090 if (skb_vlan_tag_present(skb) &&
3091 !vlan_hw_offload_capable(features, skb->vlan_proto))
3092 skb = __vlan_hwaccel_push_inside(skb);
3093 return skb;
3094}
3095
3096int skb_csum_hwoffload_help(struct sk_buff *skb,
3097 const netdev_features_t features)
3098{
3099 if (unlikely(skb->csum_not_inet))
3100 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3101 skb_crc32c_csum_help(skb);
3102
3103 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3104}
3105EXPORT_SYMBOL(skb_csum_hwoffload_help);
3106
3107static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3108{
3109 netdev_features_t features;
3110
3111 features = netif_skb_features(skb);
3112 skb = validate_xmit_vlan(skb, features);
3113 if (unlikely(!skb))
3114 goto out_null;
3115
3116 if (netif_needs_gso(skb, features)) {
3117 struct sk_buff *segs;
3118
3119 segs = skb_gso_segment(skb, features);
3120 if (IS_ERR(segs)) {
3121 goto out_kfree_skb;
3122 } else if (segs) {
3123 consume_skb(skb);
3124 skb = segs;
3125 }
3126 } else {
3127 if (skb_needs_linearize(skb, features) &&
3128 __skb_linearize(skb))
3129 goto out_kfree_skb;
3130
3131 /* If packet is not checksummed and device does not
3132 * support checksumming for this protocol, complete
3133 * checksumming here.
3134 */
3135 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3136 if (skb->encapsulation)
3137 skb_set_inner_transport_header(skb,
3138 skb_checksum_start_offset(skb));
3139 else
3140 skb_set_transport_header(skb,
3141 skb_checksum_start_offset(skb));
3142 if (skb_csum_hwoffload_help(skb, features))
3143 goto out_kfree_skb;
3144 }
3145 }
3146
3147 skb = validate_xmit_xfrm(skb, features, again);
3148
3149 return skb;
3150
3151out_kfree_skb:
3152 kfree_skb(skb);
3153out_null:
3154 atomic_long_inc(&dev->tx_dropped);
3155 return NULL;
3156}
3157
3158struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3159{
3160 struct sk_buff *next, *head = NULL, *tail;
3161
3162 for (; skb != NULL; skb = next) {
3163 next = skb->next;
3164 skb->next = NULL;
3165
3166 /* in case skb wont be segmented, point to itself */
3167 skb->prev = skb;
3168
3169 skb = validate_xmit_skb(skb, dev, again);
3170 if (!skb)
3171 continue;
3172
3173 if (!head)
3174 head = skb;
3175 else
3176 tail->next = skb;
3177 /* If skb was segmented, skb->prev points to
3178 * the last segment. If not, it still contains skb.
3179 */
3180 tail = skb->prev;
3181 }
3182 return head;
3183}
3184EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3185
3186static void qdisc_pkt_len_init(struct sk_buff *skb)
3187{
3188 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3189
3190 qdisc_skb_cb(skb)->pkt_len = skb->len;
3191
3192 /* To get more precise estimation of bytes sent on wire,
3193 * we add to pkt_len the headers size of all segments
3194 */
3195 if (shinfo->gso_size) {
3196 unsigned int hdr_len;
3197 u16 gso_segs = shinfo->gso_segs;
3198
3199 /* mac layer + network layer */
3200 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3201
3202 /* + transport layer */
3203 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3204 const struct tcphdr *th;
3205 struct tcphdr _tcphdr;
3206
3207 th = skb_header_pointer(skb, skb_transport_offset(skb),
3208 sizeof(_tcphdr), &_tcphdr);
3209 if (likely(th))
3210 hdr_len += __tcp_hdrlen(th);
3211 } else {
3212 struct udphdr _udphdr;
3213
3214 if (skb_header_pointer(skb, skb_transport_offset(skb),
3215 sizeof(_udphdr), &_udphdr))
3216 hdr_len += sizeof(struct udphdr);
3217 }
3218
3219 if (shinfo->gso_type & SKB_GSO_DODGY)
3220 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3221 shinfo->gso_size);
3222
3223 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3224 }
3225}
3226
3227static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3228 struct net_device *dev,
3229 struct netdev_queue *txq)
3230{
3231 spinlock_t *root_lock = qdisc_lock(q);
3232 struct sk_buff *to_free = NULL;
3233 bool contended;
3234 int rc;
3235
3236 qdisc_calculate_pkt_len(skb, q);
3237
3238 if (q->flags & TCQ_F_NOLOCK) {
3239 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3240 __qdisc_drop(skb, &to_free);
3241 rc = NET_XMIT_DROP;
3242 } else {
3243 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3244 __qdisc_run(q);
3245 }
3246
3247 if (unlikely(to_free))
3248 kfree_skb_list(to_free);
3249 return rc;
3250 }
3251
3252 /*
3253 * Heuristic to force contended enqueues to serialize on a
3254 * separate lock before trying to get qdisc main lock.
3255 * This permits qdisc->running owner to get the lock more
3256 * often and dequeue packets faster.
3257 */
3258 contended = qdisc_is_running(q);
3259 if (unlikely(contended))
3260 spin_lock(&q->busylock);
3261
3262 spin_lock(root_lock);
3263 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3264 __qdisc_drop(skb, &to_free);
3265 rc = NET_XMIT_DROP;
3266 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3267 qdisc_run_begin(q)) {
3268 /*
3269 * This is a work-conserving queue; there are no old skbs
3270 * waiting to be sent out; and the qdisc is not running -
3271 * xmit the skb directly.
3272 */
3273
3274 qdisc_bstats_update(q, skb);
3275
3276 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3277 if (unlikely(contended)) {
3278 spin_unlock(&q->busylock);
3279 contended = false;
3280 }
3281 __qdisc_run(q);
3282 }
3283
3284 qdisc_run_end(q);
3285 rc = NET_XMIT_SUCCESS;
3286 } else {
3287 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3288 if (qdisc_run_begin(q)) {
3289 if (unlikely(contended)) {
3290 spin_unlock(&q->busylock);
3291 contended = false;
3292 }
3293 __qdisc_run(q);
3294 qdisc_run_end(q);
3295 }
3296 }
3297 spin_unlock(root_lock);
3298 if (unlikely(to_free))
3299 kfree_skb_list(to_free);
3300 if (unlikely(contended))
3301 spin_unlock(&q->busylock);
3302 return rc;
3303}
3304
3305#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3306static void skb_update_prio(struct sk_buff *skb)
3307{
3308 const struct netprio_map *map;
3309 const struct sock *sk;
3310 unsigned int prioidx;
3311
3312 if (skb->priority)
3313 return;
3314 map = rcu_dereference_bh(skb->dev->priomap);
3315 if (!map)
3316 return;
3317 sk = skb_to_full_sk(skb);
3318 if (!sk)
3319 return;
3320
3321 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3322
3323 if (prioidx < map->priomap_len)
3324 skb->priority = map->priomap[prioidx];
3325}
3326#else
3327#define skb_update_prio(skb)
3328#endif
3329
3330DEFINE_PER_CPU(int, xmit_recursion);
3331EXPORT_SYMBOL(xmit_recursion);
3332
3333/**
3334 * dev_loopback_xmit - loop back @skb
3335 * @net: network namespace this loopback is happening in
3336 * @sk: sk needed to be a netfilter okfn
3337 * @skb: buffer to transmit
3338 */
3339int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3340{
3341 skb_reset_mac_header(skb);
3342 __skb_pull(skb, skb_network_offset(skb));
3343 skb->pkt_type = PACKET_LOOPBACK;
3344 skb->ip_summed = CHECKSUM_UNNECESSARY;
3345 WARN_ON(!skb_dst(skb));
3346 skb_dst_force(skb);
3347 netif_rx_ni(skb);
3348 return 0;
3349}
3350EXPORT_SYMBOL(dev_loopback_xmit);
3351
3352#ifdef CONFIG_NET_EGRESS
3353static struct sk_buff *
3354sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3355{
3356 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3357 struct tcf_result cl_res;
3358
3359 if (!miniq)
3360 return skb;
3361
3362 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3363 mini_qdisc_bstats_cpu_update(miniq, skb);
3364
3365 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3366 case TC_ACT_OK:
3367 case TC_ACT_RECLASSIFY:
3368 skb->tc_index = TC_H_MIN(cl_res.classid);
3369 break;
3370 case TC_ACT_SHOT:
3371 mini_qdisc_qstats_cpu_drop(miniq);
3372 *ret = NET_XMIT_DROP;
3373 kfree_skb(skb);
3374 return NULL;
3375 case TC_ACT_STOLEN:
3376 case TC_ACT_QUEUED:
3377 case TC_ACT_TRAP:
3378 *ret = NET_XMIT_SUCCESS;
3379 consume_skb(skb);
3380 return NULL;
3381 case TC_ACT_REDIRECT:
3382 /* No need to push/pop skb's mac_header here on egress! */
3383 skb_do_redirect(skb);
3384 *ret = NET_XMIT_SUCCESS;
3385 return NULL;
3386 default:
3387 break;
3388 }
3389
3390 return skb;
3391}
3392#endif /* CONFIG_NET_EGRESS */
3393
3394static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3395{
3396#ifdef CONFIG_XPS
3397 struct xps_dev_maps *dev_maps;
3398 struct xps_map *map;
3399 int queue_index = -1;
3400
3401 rcu_read_lock();
3402 dev_maps = rcu_dereference(dev->xps_maps);
3403 if (dev_maps) {
3404 unsigned int tci = skb->sender_cpu - 1;
3405
3406 if (dev->num_tc) {
3407 tci *= dev->num_tc;
3408 tci += netdev_get_prio_tc_map(dev, skb->priority);
3409 }
3410
3411 map = rcu_dereference(dev_maps->cpu_map[tci]);
3412 if (map) {
3413 if (map->len == 1)
3414 queue_index = map->queues[0];
3415 else
3416 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3417 map->len)];
3418 if (unlikely(queue_index >= dev->real_num_tx_queues))
3419 queue_index = -1;
3420 }
3421 }
3422 rcu_read_unlock();
3423
3424 return queue_index;
3425#else
3426 return -1;
3427#endif
3428}
3429
3430static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3431{
3432 struct sock *sk = skb->sk;
3433 int queue_index = sk_tx_queue_get(sk);
3434
3435 if (queue_index < 0 || skb->ooo_okay ||
3436 queue_index >= dev->real_num_tx_queues) {
3437 int new_index = get_xps_queue(dev, skb);
3438
3439 if (new_index < 0)
3440 new_index = skb_tx_hash(dev, skb);
3441
3442 if (queue_index != new_index && sk &&
3443 sk_fullsock(sk) &&
3444 rcu_access_pointer(sk->sk_dst_cache))
3445 sk_tx_queue_set(sk, new_index);
3446
3447 queue_index = new_index;
3448 }
3449
3450 return queue_index;
3451}
3452
3453struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3454 struct sk_buff *skb,
3455 void *accel_priv)
3456{
3457 int queue_index = 0;
3458
3459#ifdef CONFIG_XPS
3460 u32 sender_cpu = skb->sender_cpu - 1;
3461
3462 if (sender_cpu >= (u32)NR_CPUS)
3463 skb->sender_cpu = raw_smp_processor_id() + 1;
3464#endif
3465
3466 if (dev->real_num_tx_queues != 1) {
3467 const struct net_device_ops *ops = dev->netdev_ops;
3468
3469 if (ops->ndo_select_queue)
3470 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3471 __netdev_pick_tx);
3472 else
3473 queue_index = __netdev_pick_tx(dev, skb);
3474
3475 queue_index = netdev_cap_txqueue(dev, queue_index);
3476 }
3477
3478 skb_set_queue_mapping(skb, queue_index);
3479 return netdev_get_tx_queue(dev, queue_index);
3480}
3481
3482/**
3483 * __dev_queue_xmit - transmit a buffer
3484 * @skb: buffer to transmit
3485 * @accel_priv: private data used for L2 forwarding offload
3486 *
3487 * Queue a buffer for transmission to a network device. The caller must
3488 * have set the device and priority and built the buffer before calling
3489 * this function. The function can be called from an interrupt.
3490 *
3491 * A negative errno code is returned on a failure. A success does not
3492 * guarantee the frame will be transmitted as it may be dropped due
3493 * to congestion or traffic shaping.
3494 *
3495 * -----------------------------------------------------------------------------------
3496 * I notice this method can also return errors from the queue disciplines,
3497 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3498 * be positive.
3499 *
3500 * Regardless of the return value, the skb is consumed, so it is currently
3501 * difficult to retry a send to this method. (You can bump the ref count
3502 * before sending to hold a reference for retry if you are careful.)
3503 *
3504 * When calling this method, interrupts MUST be enabled. This is because
3505 * the BH enable code must have IRQs enabled so that it will not deadlock.
3506 * --BLG
3507 */
3508static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3509{
3510 struct net_device *dev = skb->dev;
3511 struct netdev_queue *txq;
3512 struct Qdisc *q;
3513 int rc = -ENOMEM;
3514 bool again = false;
3515
3516 skb_reset_mac_header(skb);
3517
3518 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3519 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3520
3521 /* Disable soft irqs for various locks below. Also
3522 * stops preemption for RCU.
3523 */
3524 rcu_read_lock_bh();
3525
3526 skb_update_prio(skb);
3527
3528 qdisc_pkt_len_init(skb);
3529#ifdef CONFIG_NET_CLS_ACT
3530 skb->tc_at_ingress = 0;
3531# ifdef CONFIG_NET_EGRESS
3532 if (static_key_false(&egress_needed)) {
3533 skb = sch_handle_egress(skb, &rc, dev);
3534 if (!skb)
3535 goto out;
3536 }
3537# endif
3538#endif
3539 /* If device/qdisc don't need skb->dst, release it right now while
3540 * its hot in this cpu cache.
3541 */
3542 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3543 skb_dst_drop(skb);
3544 else
3545 skb_dst_force(skb);
3546
3547 txq = netdev_pick_tx(dev, skb, accel_priv);
3548 q = rcu_dereference_bh(txq->qdisc);
3549
3550 trace_net_dev_queue(skb);
3551 if (q->enqueue) {
3552 rc = __dev_xmit_skb(skb, q, dev, txq);
3553 goto out;
3554 }
3555
3556 /* The device has no queue. Common case for software devices:
3557 * loopback, all the sorts of tunnels...
3558
3559 * Really, it is unlikely that netif_tx_lock protection is necessary
3560 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3561 * counters.)
3562 * However, it is possible, that they rely on protection
3563 * made by us here.
3564
3565 * Check this and shot the lock. It is not prone from deadlocks.
3566 *Either shot noqueue qdisc, it is even simpler 8)
3567 */
3568 if (dev->flags & IFF_UP) {
3569 int cpu = smp_processor_id(); /* ok because BHs are off */
3570
3571 if (txq->xmit_lock_owner != cpu) {
3572 if (unlikely(__this_cpu_read(xmit_recursion) >
3573 XMIT_RECURSION_LIMIT))
3574 goto recursion_alert;
3575
3576 skb = validate_xmit_skb(skb, dev, &again);
3577 if (!skb)
3578 goto out;
3579
3580 HARD_TX_LOCK(dev, txq, cpu);
3581
3582 if (!netif_xmit_stopped(txq)) {
3583 __this_cpu_inc(xmit_recursion);
3584 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3585 __this_cpu_dec(xmit_recursion);
3586 if (dev_xmit_complete(rc)) {
3587 HARD_TX_UNLOCK(dev, txq);
3588 goto out;
3589 }
3590 }
3591 HARD_TX_UNLOCK(dev, txq);
3592 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3593 dev->name);
3594 } else {
3595 /* Recursion is detected! It is possible,
3596 * unfortunately
3597 */
3598recursion_alert:
3599 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3600 dev->name);
3601 }
3602 }
3603
3604 rc = -ENETDOWN;
3605 rcu_read_unlock_bh();
3606
3607 atomic_long_inc(&dev->tx_dropped);
3608 kfree_skb_list(skb);
3609 return rc;
3610out:
3611 rcu_read_unlock_bh();
3612 return rc;
3613}
3614
3615int dev_queue_xmit(struct sk_buff *skb)
3616{
3617 return __dev_queue_xmit(skb, NULL);
3618}
3619EXPORT_SYMBOL(dev_queue_xmit);
3620
3621int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3622{
3623 return __dev_queue_xmit(skb, accel_priv);
3624}
3625EXPORT_SYMBOL(dev_queue_xmit_accel);
3626
3627
3628/*************************************************************************
3629 * Receiver routines
3630 *************************************************************************/
3631
3632int netdev_max_backlog __read_mostly = 1000;
3633EXPORT_SYMBOL(netdev_max_backlog);
3634
3635int netdev_tstamp_prequeue __read_mostly = 1;
3636int netdev_budget __read_mostly = 300;
3637unsigned int __read_mostly netdev_budget_usecs = 2000;
3638int weight_p __read_mostly = 64; /* old backlog weight */
3639int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3640int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3641int dev_rx_weight __read_mostly = 64;
3642int dev_tx_weight __read_mostly = 64;
3643
3644/* Called with irq disabled */
3645static inline void ____napi_schedule(struct softnet_data *sd,
3646 struct napi_struct *napi)
3647{
3648 list_add_tail(&napi->poll_list, &sd->poll_list);
3649 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3650}
3651
3652#ifdef CONFIG_RPS
3653
3654/* One global table that all flow-based protocols share. */
3655struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3656EXPORT_SYMBOL(rps_sock_flow_table);
3657u32 rps_cpu_mask __read_mostly;
3658EXPORT_SYMBOL(rps_cpu_mask);
3659
3660struct static_key rps_needed __read_mostly;
3661EXPORT_SYMBOL(rps_needed);
3662struct static_key rfs_needed __read_mostly;
3663EXPORT_SYMBOL(rfs_needed);
3664
3665static struct rps_dev_flow *
3666set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3667 struct rps_dev_flow *rflow, u16 next_cpu)
3668{
3669 if (next_cpu < nr_cpu_ids) {
3670#ifdef CONFIG_RFS_ACCEL
3671 struct netdev_rx_queue *rxqueue;
3672 struct rps_dev_flow_table *flow_table;
3673 struct rps_dev_flow *old_rflow;
3674 u32 flow_id;
3675 u16 rxq_index;
3676 int rc;
3677
3678 /* Should we steer this flow to a different hardware queue? */
3679 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3680 !(dev->features & NETIF_F_NTUPLE))
3681 goto out;
3682 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3683 if (rxq_index == skb_get_rx_queue(skb))
3684 goto out;
3685
3686 rxqueue = dev->_rx + rxq_index;
3687 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3688 if (!flow_table)
3689 goto out;
3690 flow_id = skb_get_hash(skb) & flow_table->mask;
3691 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3692 rxq_index, flow_id);
3693 if (rc < 0)
3694 goto out;
3695 old_rflow = rflow;
3696 rflow = &flow_table->flows[flow_id];
3697 rflow->filter = rc;
3698 if (old_rflow->filter == rflow->filter)
3699 old_rflow->filter = RPS_NO_FILTER;
3700 out:
3701#endif
3702 rflow->last_qtail =
3703 per_cpu(softnet_data, next_cpu).input_queue_head;
3704 }
3705
3706 rflow->cpu = next_cpu;
3707 return rflow;
3708}
3709
3710/*
3711 * get_rps_cpu is called from netif_receive_skb and returns the target
3712 * CPU from the RPS map of the receiving queue for a given skb.
3713 * rcu_read_lock must be held on entry.
3714 */
3715static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3716 struct rps_dev_flow **rflowp)
3717{
3718 const struct rps_sock_flow_table *sock_flow_table;
3719 struct netdev_rx_queue *rxqueue = dev->_rx;
3720 struct rps_dev_flow_table *flow_table;
3721 struct rps_map *map;
3722 int cpu = -1;
3723 u32 tcpu;
3724 u32 hash;
3725
3726 if (skb_rx_queue_recorded(skb)) {
3727 u16 index = skb_get_rx_queue(skb);
3728
3729 if (unlikely(index >= dev->real_num_rx_queues)) {
3730 WARN_ONCE(dev->real_num_rx_queues > 1,
3731 "%s received packet on queue %u, but number "
3732 "of RX queues is %u\n",
3733 dev->name, index, dev->real_num_rx_queues);
3734 goto done;
3735 }
3736 rxqueue += index;
3737 }
3738
3739 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3740
3741 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3742 map = rcu_dereference(rxqueue->rps_map);
3743 if (!flow_table && !map)
3744 goto done;
3745
3746 skb_reset_network_header(skb);
3747 hash = skb_get_hash(skb);
3748 if (!hash)
3749 goto done;
3750
3751 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3752 if (flow_table && sock_flow_table) {
3753 struct rps_dev_flow *rflow;
3754 u32 next_cpu;
3755 u32 ident;
3756
3757 /* First check into global flow table if there is a match */
3758 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3759 if ((ident ^ hash) & ~rps_cpu_mask)
3760 goto try_rps;
3761
3762 next_cpu = ident & rps_cpu_mask;
3763
3764 /* OK, now we know there is a match,
3765 * we can look at the local (per receive queue) flow table
3766 */
3767 rflow = &flow_table->flows[hash & flow_table->mask];
3768 tcpu = rflow->cpu;
3769
3770 /*
3771 * If the desired CPU (where last recvmsg was done) is
3772 * different from current CPU (one in the rx-queue flow
3773 * table entry), switch if one of the following holds:
3774 * - Current CPU is unset (>= nr_cpu_ids).
3775 * - Current CPU is offline.
3776 * - The current CPU's queue tail has advanced beyond the
3777 * last packet that was enqueued using this table entry.
3778 * This guarantees that all previous packets for the flow
3779 * have been dequeued, thus preserving in order delivery.
3780 */
3781 if (unlikely(tcpu != next_cpu) &&
3782 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3783 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3784 rflow->last_qtail)) >= 0)) {
3785 tcpu = next_cpu;
3786 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3787 }
3788
3789 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3790 *rflowp = rflow;
3791 cpu = tcpu;
3792 goto done;
3793 }
3794 }
3795
3796try_rps:
3797
3798 if (map) {
3799 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3800 if (cpu_online(tcpu)) {
3801 cpu = tcpu;
3802 goto done;
3803 }
3804 }
3805
3806done:
3807 return cpu;
3808}
3809
3810#ifdef CONFIG_RFS_ACCEL
3811
3812/**
3813 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3814 * @dev: Device on which the filter was set
3815 * @rxq_index: RX queue index
3816 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3817 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3818 *
3819 * Drivers that implement ndo_rx_flow_steer() should periodically call
3820 * this function for each installed filter and remove the filters for
3821 * which it returns %true.
3822 */
3823bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3824 u32 flow_id, u16 filter_id)
3825{
3826 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3827 struct rps_dev_flow_table *flow_table;
3828 struct rps_dev_flow *rflow;
3829 bool expire = true;
3830 unsigned int cpu;
3831
3832 rcu_read_lock();
3833 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3834 if (flow_table && flow_id <= flow_table->mask) {
3835 rflow = &flow_table->flows[flow_id];
3836 cpu = READ_ONCE(rflow->cpu);
3837 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3838 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3839 rflow->last_qtail) <
3840 (int)(10 * flow_table->mask)))
3841 expire = false;
3842 }
3843 rcu_read_unlock();
3844 return expire;
3845}
3846EXPORT_SYMBOL(rps_may_expire_flow);
3847
3848#endif /* CONFIG_RFS_ACCEL */
3849
3850/* Called from hardirq (IPI) context */
3851static void rps_trigger_softirq(void *data)
3852{
3853 struct softnet_data *sd = data;
3854
3855 ____napi_schedule(sd, &sd->backlog);
3856 sd->received_rps++;
3857}
3858
3859#endif /* CONFIG_RPS */
3860
3861/*
3862 * Check if this softnet_data structure is another cpu one
3863 * If yes, queue it to our IPI list and return 1
3864 * If no, return 0
3865 */
3866static int rps_ipi_queued(struct softnet_data *sd)
3867{
3868#ifdef CONFIG_RPS
3869 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3870
3871 if (sd != mysd) {
3872 sd->rps_ipi_next = mysd->rps_ipi_list;
3873 mysd->rps_ipi_list = sd;
3874
3875 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3876 return 1;
3877 }
3878#endif /* CONFIG_RPS */
3879 return 0;
3880}
3881
3882#ifdef CONFIG_NET_FLOW_LIMIT
3883int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3884#endif
3885
3886static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3887{
3888#ifdef CONFIG_NET_FLOW_LIMIT
3889 struct sd_flow_limit *fl;
3890 struct softnet_data *sd;
3891 unsigned int old_flow, new_flow;
3892
3893 if (qlen < (netdev_max_backlog >> 1))
3894 return false;
3895
3896 sd = this_cpu_ptr(&softnet_data);
3897
3898 rcu_read_lock();
3899 fl = rcu_dereference(sd->flow_limit);
3900 if (fl) {
3901 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3902 old_flow = fl->history[fl->history_head];
3903 fl->history[fl->history_head] = new_flow;
3904
3905 fl->history_head++;
3906 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3907
3908 if (likely(fl->buckets[old_flow]))
3909 fl->buckets[old_flow]--;
3910
3911 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3912 fl->count++;
3913 rcu_read_unlock();
3914 return true;
3915 }
3916 }
3917 rcu_read_unlock();
3918#endif
3919 return false;
3920}
3921
3922/*
3923 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3924 * queue (may be a remote CPU queue).
3925 */
3926static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3927 unsigned int *qtail)
3928{
3929 struct softnet_data *sd;
3930 unsigned long flags;
3931 unsigned int qlen;
3932
3933 sd = &per_cpu(softnet_data, cpu);
3934
3935 local_irq_save(flags);
3936
3937 rps_lock(sd);
3938 if (!netif_running(skb->dev))
3939 goto drop;
3940 qlen = skb_queue_len(&sd->input_pkt_queue);
3941 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3942 if (qlen) {
3943enqueue:
3944 __skb_queue_tail(&sd->input_pkt_queue, skb);
3945 input_queue_tail_incr_save(sd, qtail);
3946 rps_unlock(sd);
3947 local_irq_restore(flags);
3948 return NET_RX_SUCCESS;
3949 }
3950
3951 /* Schedule NAPI for backlog device
3952 * We can use non atomic operation since we own the queue lock
3953 */
3954 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3955 if (!rps_ipi_queued(sd))
3956 ____napi_schedule(sd, &sd->backlog);
3957 }
3958 goto enqueue;
3959 }
3960
3961drop:
3962 sd->dropped++;
3963 rps_unlock(sd);
3964
3965 local_irq_restore(flags);
3966
3967 atomic_long_inc(&skb->dev->rx_dropped);
3968 kfree_skb(skb);
3969 return NET_RX_DROP;
3970}
3971
3972static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3973{
3974 struct net_device *dev = skb->dev;
3975 struct netdev_rx_queue *rxqueue;
3976
3977 rxqueue = dev->_rx;
3978
3979 if (skb_rx_queue_recorded(skb)) {
3980 u16 index = skb_get_rx_queue(skb);
3981
3982 if (unlikely(index >= dev->real_num_rx_queues)) {
3983 WARN_ONCE(dev->real_num_rx_queues > 1,
3984 "%s received packet on queue %u, but number "
3985 "of RX queues is %u\n",
3986 dev->name, index, dev->real_num_rx_queues);
3987
3988 return rxqueue; /* Return first rxqueue */
3989 }
3990 rxqueue += index;
3991 }
3992 return rxqueue;
3993}
3994
3995static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3996 struct bpf_prog *xdp_prog)
3997{
3998 struct netdev_rx_queue *rxqueue;
3999 u32 metalen, act = XDP_DROP;
4000 struct xdp_buff xdp;
4001 void *orig_data;
4002 int hlen, off;
4003 u32 mac_len;
4004
4005 /* Reinjected packets coming from act_mirred or similar should
4006 * not get XDP generic processing.
4007 */
4008 if (skb_cloned(skb))
4009 return XDP_PASS;
4010
4011 /* XDP packets must be linear and must have sufficient headroom
4012 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4013 * native XDP provides, thus we need to do it here as well.
4014 */
4015 if (skb_is_nonlinear(skb) ||
4016 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4017 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4018 int troom = skb->tail + skb->data_len - skb->end;
4019
4020 /* In case we have to go down the path and also linearize,
4021 * then lets do the pskb_expand_head() work just once here.
4022 */
4023 if (pskb_expand_head(skb,
4024 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4025 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4026 goto do_drop;
4027 if (skb_linearize(skb))
4028 goto do_drop;
4029 }
4030
4031 /* The XDP program wants to see the packet starting at the MAC
4032 * header.
4033 */
4034 mac_len = skb->data - skb_mac_header(skb);
4035 hlen = skb_headlen(skb) + mac_len;
4036 xdp.data = skb->data - mac_len;
4037 xdp.data_meta = xdp.data;
4038 xdp.data_end = xdp.data + hlen;
4039 xdp.data_hard_start = skb->data - skb_headroom(skb);
4040 orig_data = xdp.data;
4041
4042 rxqueue = netif_get_rxqueue(skb);
4043 xdp.rxq = &rxqueue->xdp_rxq;
4044
4045 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4046
4047 off = xdp.data - orig_data;
4048 if (off > 0)
4049 __skb_pull(skb, off);
4050 else if (off < 0)
4051 __skb_push(skb, -off);
4052 skb->mac_header += off;
4053
4054 switch (act) {
4055 case XDP_REDIRECT:
4056 case XDP_TX:
4057 __skb_push(skb, mac_len);
4058 break;
4059 case XDP_PASS:
4060 metalen = xdp.data - xdp.data_meta;
4061 if (metalen)
4062 skb_metadata_set(skb, metalen);
4063 break;
4064 default:
4065 bpf_warn_invalid_xdp_action(act);
4066 /* fall through */
4067 case XDP_ABORTED:
4068 trace_xdp_exception(skb->dev, xdp_prog, act);
4069 /* fall through */
4070 case XDP_DROP:
4071 do_drop:
4072 kfree_skb(skb);
4073 break;
4074 }
4075
4076 return act;
4077}
4078
4079/* When doing generic XDP we have to bypass the qdisc layer and the
4080 * network taps in order to match in-driver-XDP behavior.
4081 */
4082void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4083{
4084 struct net_device *dev = skb->dev;
4085 struct netdev_queue *txq;
4086 bool free_skb = true;
4087 int cpu, rc;
4088
4089 txq = netdev_pick_tx(dev, skb, NULL);
4090 cpu = smp_processor_id();
4091 HARD_TX_LOCK(dev, txq, cpu);
4092 if (!netif_xmit_stopped(txq)) {
4093 rc = netdev_start_xmit(skb, dev, txq, 0);
4094 if (dev_xmit_complete(rc))
4095 free_skb = false;
4096 }
4097 HARD_TX_UNLOCK(dev, txq);
4098 if (free_skb) {
4099 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4100 kfree_skb(skb);
4101 }
4102}
4103EXPORT_SYMBOL_GPL(generic_xdp_tx);
4104
4105static struct static_key generic_xdp_needed __read_mostly;
4106
4107int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4108{
4109 if (xdp_prog) {
4110 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4111 int err;
4112
4113 if (act != XDP_PASS) {
4114 switch (act) {
4115 case XDP_REDIRECT:
4116 err = xdp_do_generic_redirect(skb->dev, skb,
4117 xdp_prog);
4118 if (err)
4119 goto out_redir;
4120 /* fallthru to submit skb */
4121 case XDP_TX:
4122 generic_xdp_tx(skb, xdp_prog);
4123 break;
4124 }
4125 return XDP_DROP;
4126 }
4127 }
4128 return XDP_PASS;
4129out_redir:
4130 kfree_skb(skb);
4131 return XDP_DROP;
4132}
4133EXPORT_SYMBOL_GPL(do_xdp_generic);
4134
4135static int netif_rx_internal(struct sk_buff *skb)
4136{
4137 int ret;
4138
4139 net_timestamp_check(netdev_tstamp_prequeue, skb);
4140
4141 trace_netif_rx(skb);
4142
4143 if (static_key_false(&generic_xdp_needed)) {
4144 int ret;
4145
4146 preempt_disable();
4147 rcu_read_lock();
4148 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4149 rcu_read_unlock();
4150 preempt_enable();
4151
4152 /* Consider XDP consuming the packet a success from
4153 * the netdev point of view we do not want to count
4154 * this as an error.
4155 */
4156 if (ret != XDP_PASS)
4157 return NET_RX_SUCCESS;
4158 }
4159
4160#ifdef CONFIG_RPS
4161 if (static_key_false(&rps_needed)) {
4162 struct rps_dev_flow voidflow, *rflow = &voidflow;
4163 int cpu;
4164
4165 preempt_disable();
4166 rcu_read_lock();
4167
4168 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4169 if (cpu < 0)
4170 cpu = smp_processor_id();
4171
4172 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4173
4174 rcu_read_unlock();
4175 preempt_enable();
4176 } else
4177#endif
4178 {
4179 unsigned int qtail;
4180
4181 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4182 put_cpu();
4183 }
4184 return ret;
4185}
4186
4187/**
4188 * netif_rx - post buffer to the network code
4189 * @skb: buffer to post
4190 *
4191 * This function receives a packet from a device driver and queues it for
4192 * the upper (protocol) levels to process. It always succeeds. The buffer
4193 * may be dropped during processing for congestion control or by the
4194 * protocol layers.
4195 *
4196 * return values:
4197 * NET_RX_SUCCESS (no congestion)
4198 * NET_RX_DROP (packet was dropped)
4199 *
4200 */
4201
4202int netif_rx(struct sk_buff *skb)
4203{
4204 trace_netif_rx_entry(skb);
4205
4206 return netif_rx_internal(skb);
4207}
4208EXPORT_SYMBOL(netif_rx);
4209
4210int netif_rx_ni(struct sk_buff *skb)
4211{
4212 int err;
4213
4214 trace_netif_rx_ni_entry(skb);
4215
4216 preempt_disable();
4217 err = netif_rx_internal(skb);
4218 if (local_softirq_pending())
4219 do_softirq();
4220 preempt_enable();
4221
4222 return err;
4223}
4224EXPORT_SYMBOL(netif_rx_ni);
4225
4226static __latent_entropy void net_tx_action(struct softirq_action *h)
4227{
4228 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4229
4230 if (sd->completion_queue) {
4231 struct sk_buff *clist;
4232
4233 local_irq_disable();
4234 clist = sd->completion_queue;
4235 sd->completion_queue = NULL;
4236 local_irq_enable();
4237
4238 while (clist) {
4239 struct sk_buff *skb = clist;
4240
4241 clist = clist->next;
4242
4243 WARN_ON(refcount_read(&skb->users));
4244 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4245 trace_consume_skb(skb);
4246 else
4247 trace_kfree_skb(skb, net_tx_action);
4248
4249 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4250 __kfree_skb(skb);
4251 else
4252 __kfree_skb_defer(skb);
4253 }
4254
4255 __kfree_skb_flush();
4256 }
4257
4258 if (sd->output_queue) {
4259 struct Qdisc *head;
4260
4261 local_irq_disable();
4262 head = sd->output_queue;
4263 sd->output_queue = NULL;
4264 sd->output_queue_tailp = &sd->output_queue;
4265 local_irq_enable();
4266
4267 while (head) {
4268 struct Qdisc *q = head;
4269 spinlock_t *root_lock = NULL;
4270
4271 head = head->next_sched;
4272
4273 if (!(q->flags & TCQ_F_NOLOCK)) {
4274 root_lock = qdisc_lock(q);
4275 spin_lock(root_lock);
4276 }
4277 /* We need to make sure head->next_sched is read
4278 * before clearing __QDISC_STATE_SCHED
4279 */
4280 smp_mb__before_atomic();
4281 clear_bit(__QDISC_STATE_SCHED, &q->state);
4282 qdisc_run(q);
4283 if (root_lock)
4284 spin_unlock(root_lock);
4285 }
4286 }
4287
4288 xfrm_dev_backlog(sd);
4289}
4290
4291#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4292/* This hook is defined here for ATM LANE */
4293int (*br_fdb_test_addr_hook)(struct net_device *dev,
4294 unsigned char *addr) __read_mostly;
4295EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4296#endif
4297
4298static inline struct sk_buff *
4299sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4300 struct net_device *orig_dev)
4301{
4302#ifdef CONFIG_NET_CLS_ACT
4303 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4304 struct tcf_result cl_res;
4305
4306 /* If there's at least one ingress present somewhere (so
4307 * we get here via enabled static key), remaining devices
4308 * that are not configured with an ingress qdisc will bail
4309 * out here.
4310 */
4311 if (!miniq)
4312 return skb;
4313
4314 if (*pt_prev) {
4315 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4316 *pt_prev = NULL;
4317 }
4318
4319 qdisc_skb_cb(skb)->pkt_len = skb->len;
4320 skb->tc_at_ingress = 1;
4321 mini_qdisc_bstats_cpu_update(miniq, skb);
4322
4323 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4324 case TC_ACT_OK:
4325 case TC_ACT_RECLASSIFY:
4326 skb->tc_index = TC_H_MIN(cl_res.classid);
4327 break;
4328 case TC_ACT_SHOT:
4329 mini_qdisc_qstats_cpu_drop(miniq);
4330 kfree_skb(skb);
4331 return NULL;
4332 case TC_ACT_STOLEN:
4333 case TC_ACT_QUEUED:
4334 case TC_ACT_TRAP:
4335 consume_skb(skb);
4336 return NULL;
4337 case TC_ACT_REDIRECT:
4338 /* skb_mac_header check was done by cls/act_bpf, so
4339 * we can safely push the L2 header back before
4340 * redirecting to another netdev
4341 */
4342 __skb_push(skb, skb->mac_len);
4343 skb_do_redirect(skb);
4344 return NULL;
4345 default:
4346 break;
4347 }
4348#endif /* CONFIG_NET_CLS_ACT */
4349 return skb;
4350}
4351
4352/**
4353 * netdev_is_rx_handler_busy - check if receive handler is registered
4354 * @dev: device to check
4355 *
4356 * Check if a receive handler is already registered for a given device.
4357 * Return true if there one.
4358 *
4359 * The caller must hold the rtnl_mutex.
4360 */
4361bool netdev_is_rx_handler_busy(struct net_device *dev)
4362{
4363 ASSERT_RTNL();
4364 return dev && rtnl_dereference(dev->rx_handler);
4365}
4366EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4367
4368/**
4369 * netdev_rx_handler_register - register receive handler
4370 * @dev: device to register a handler for
4371 * @rx_handler: receive handler to register
4372 * @rx_handler_data: data pointer that is used by rx handler
4373 *
4374 * Register a receive handler for a device. This handler will then be
4375 * called from __netif_receive_skb. A negative errno code is returned
4376 * on a failure.
4377 *
4378 * The caller must hold the rtnl_mutex.
4379 *
4380 * For a general description of rx_handler, see enum rx_handler_result.
4381 */
4382int netdev_rx_handler_register(struct net_device *dev,
4383 rx_handler_func_t *rx_handler,
4384 void *rx_handler_data)
4385{
4386 if (netdev_is_rx_handler_busy(dev))
4387 return -EBUSY;
4388
4389 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4390 return -EINVAL;
4391
4392 /* Note: rx_handler_data must be set before rx_handler */
4393 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4394 rcu_assign_pointer(dev->rx_handler, rx_handler);
4395
4396 return 0;
4397}
4398EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4399
4400/**
4401 * netdev_rx_handler_unregister - unregister receive handler
4402 * @dev: device to unregister a handler from
4403 *
4404 * Unregister a receive handler from a device.
4405 *
4406 * The caller must hold the rtnl_mutex.
4407 */
4408void netdev_rx_handler_unregister(struct net_device *dev)
4409{
4410
4411 ASSERT_RTNL();
4412 RCU_INIT_POINTER(dev->rx_handler, NULL);
4413 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4414 * section has a guarantee to see a non NULL rx_handler_data
4415 * as well.
4416 */
4417 synchronize_net();
4418 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4419}
4420EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4421
4422/*
4423 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4424 * the special handling of PFMEMALLOC skbs.
4425 */
4426static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4427{
4428 switch (skb->protocol) {
4429 case htons(ETH_P_ARP):
4430 case htons(ETH_P_IP):
4431 case htons(ETH_P_IPV6):
4432 case htons(ETH_P_8021Q):
4433 case htons(ETH_P_8021AD):
4434 return true;
4435 default:
4436 return false;
4437 }
4438}
4439
4440static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4441 int *ret, struct net_device *orig_dev)
4442{
4443#ifdef CONFIG_NETFILTER_INGRESS
4444 if (nf_hook_ingress_active(skb)) {
4445 int ingress_retval;
4446
4447 if (*pt_prev) {
4448 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4449 *pt_prev = NULL;
4450 }
4451
4452 rcu_read_lock();
4453 ingress_retval = nf_hook_ingress(skb);
4454 rcu_read_unlock();
4455 return ingress_retval;
4456 }
4457#endif /* CONFIG_NETFILTER_INGRESS */
4458 return 0;
4459}
4460
4461static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4462{
4463 struct packet_type *ptype, *pt_prev;
4464 rx_handler_func_t *rx_handler;
4465 struct net_device *orig_dev;
4466 bool deliver_exact = false;
4467 int ret = NET_RX_DROP;
4468 __be16 type;
4469
4470 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4471
4472 trace_netif_receive_skb(skb);
4473
4474 orig_dev = skb->dev;
4475
4476 skb_reset_network_header(skb);
4477 if (!skb_transport_header_was_set(skb))
4478 skb_reset_transport_header(skb);
4479 skb_reset_mac_len(skb);
4480
4481 pt_prev = NULL;
4482
4483another_round:
4484 skb->skb_iif = skb->dev->ifindex;
4485
4486 __this_cpu_inc(softnet_data.processed);
4487
4488 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4489 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4490 skb = skb_vlan_untag(skb);
4491 if (unlikely(!skb))
4492 goto out;
4493 }
4494
4495 if (skb_skip_tc_classify(skb))
4496 goto skip_classify;
4497
4498 if (pfmemalloc)
4499 goto skip_taps;
4500
4501 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4502 if (pt_prev)
4503 ret = deliver_skb(skb, pt_prev, orig_dev);
4504 pt_prev = ptype;
4505 }
4506
4507 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4508 if (pt_prev)
4509 ret = deliver_skb(skb, pt_prev, orig_dev);
4510 pt_prev = ptype;
4511 }
4512
4513skip_taps:
4514#ifdef CONFIG_NET_INGRESS
4515 if (static_key_false(&ingress_needed)) {
4516 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4517 if (!skb)
4518 goto out;
4519
4520 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4521 goto out;
4522 }
4523#endif
4524 skb_reset_tc(skb);
4525skip_classify:
4526 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4527 goto drop;
4528
4529 if (skb_vlan_tag_present(skb)) {
4530 if (pt_prev) {
4531 ret = deliver_skb(skb, pt_prev, orig_dev);
4532 pt_prev = NULL;
4533 }
4534 if (vlan_do_receive(&skb))
4535 goto another_round;
4536 else if (unlikely(!skb))
4537 goto out;
4538 }
4539
4540 rx_handler = rcu_dereference(skb->dev->rx_handler);
4541 if (rx_handler) {
4542 if (pt_prev) {
4543 ret = deliver_skb(skb, pt_prev, orig_dev);
4544 pt_prev = NULL;
4545 }
4546 switch (rx_handler(&skb)) {
4547 case RX_HANDLER_CONSUMED:
4548 ret = NET_RX_SUCCESS;
4549 goto out;
4550 case RX_HANDLER_ANOTHER:
4551 goto another_round;
4552 case RX_HANDLER_EXACT:
4553 deliver_exact = true;
4554 case RX_HANDLER_PASS:
4555 break;
4556 default:
4557 BUG();
4558 }
4559 }
4560
4561 if (unlikely(skb_vlan_tag_present(skb))) {
4562 if (skb_vlan_tag_get_id(skb))
4563 skb->pkt_type = PACKET_OTHERHOST;
4564 /* Note: we might in the future use prio bits
4565 * and set skb->priority like in vlan_do_receive()
4566 * For the time being, just ignore Priority Code Point
4567 */
4568 skb->vlan_tci = 0;
4569 }
4570
4571 type = skb->protocol;
4572
4573 /* deliver only exact match when indicated */
4574 if (likely(!deliver_exact)) {
4575 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4576 &ptype_base[ntohs(type) &
4577 PTYPE_HASH_MASK]);
4578 }
4579
4580 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4581 &orig_dev->ptype_specific);
4582
4583 if (unlikely(skb->dev != orig_dev)) {
4584 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4585 &skb->dev->ptype_specific);
4586 }
4587
4588 if (pt_prev) {
4589 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4590 goto drop;
4591 else
4592 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4593 } else {
4594drop:
4595 if (!deliver_exact)
4596 atomic_long_inc(&skb->dev->rx_dropped);
4597 else
4598 atomic_long_inc(&skb->dev->rx_nohandler);
4599 kfree_skb(skb);
4600 /* Jamal, now you will not able to escape explaining
4601 * me how you were going to use this. :-)
4602 */
4603 ret = NET_RX_DROP;
4604 }
4605
4606out:
4607 return ret;
4608}
4609
4610/**
4611 * netif_receive_skb_core - special purpose version of netif_receive_skb
4612 * @skb: buffer to process
4613 *
4614 * More direct receive version of netif_receive_skb(). It should
4615 * only be used by callers that have a need to skip RPS and Generic XDP.
4616 * Caller must also take care of handling if (page_is_)pfmemalloc.
4617 *
4618 * This function may only be called from softirq context and interrupts
4619 * should be enabled.
4620 *
4621 * Return values (usually ignored):
4622 * NET_RX_SUCCESS: no congestion
4623 * NET_RX_DROP: packet was dropped
4624 */
4625int netif_receive_skb_core(struct sk_buff *skb)
4626{
4627 int ret;
4628
4629 rcu_read_lock();
4630 ret = __netif_receive_skb_core(skb, false);
4631 rcu_read_unlock();
4632
4633 return ret;
4634}
4635EXPORT_SYMBOL(netif_receive_skb_core);
4636
4637static int __netif_receive_skb(struct sk_buff *skb)
4638{
4639 int ret;
4640
4641 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4642 unsigned int noreclaim_flag;
4643
4644 /*
4645 * PFMEMALLOC skbs are special, they should
4646 * - be delivered to SOCK_MEMALLOC sockets only
4647 * - stay away from userspace
4648 * - have bounded memory usage
4649 *
4650 * Use PF_MEMALLOC as this saves us from propagating the allocation
4651 * context down to all allocation sites.
4652 */
4653 noreclaim_flag = memalloc_noreclaim_save();
4654 ret = __netif_receive_skb_core(skb, true);
4655 memalloc_noreclaim_restore(noreclaim_flag);
4656 } else
4657 ret = __netif_receive_skb_core(skb, false);
4658
4659 return ret;
4660}
4661
4662static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4663{
4664 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4665 struct bpf_prog *new = xdp->prog;
4666 int ret = 0;
4667
4668 switch (xdp->command) {
4669 case XDP_SETUP_PROG:
4670 rcu_assign_pointer(dev->xdp_prog, new);
4671 if (old)
4672 bpf_prog_put(old);
4673
4674 if (old && !new) {
4675 static_key_slow_dec(&generic_xdp_needed);
4676 } else if (new && !old) {
4677 static_key_slow_inc(&generic_xdp_needed);
4678 dev_disable_lro(dev);
4679 dev_disable_gro_hw(dev);
4680 }
4681 break;
4682
4683 case XDP_QUERY_PROG:
4684 xdp->prog_attached = !!old;
4685 xdp->prog_id = old ? old->aux->id : 0;
4686 break;
4687
4688 default:
4689 ret = -EINVAL;
4690 break;
4691 }
4692
4693 return ret;
4694}
4695
4696static int netif_receive_skb_internal(struct sk_buff *skb)
4697{
4698 int ret;
4699
4700 net_timestamp_check(netdev_tstamp_prequeue, skb);
4701
4702 if (skb_defer_rx_timestamp(skb))
4703 return NET_RX_SUCCESS;
4704
4705 if (static_key_false(&generic_xdp_needed)) {
4706 int ret;
4707
4708 preempt_disable();
4709 rcu_read_lock();
4710 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4711 rcu_read_unlock();
4712 preempt_enable();
4713
4714 if (ret != XDP_PASS)
4715 return NET_RX_DROP;
4716 }
4717
4718 rcu_read_lock();
4719#ifdef CONFIG_RPS
4720 if (static_key_false(&rps_needed)) {
4721 struct rps_dev_flow voidflow, *rflow = &voidflow;
4722 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4723
4724 if (cpu >= 0) {
4725 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4726 rcu_read_unlock();
4727 return ret;
4728 }
4729 }
4730#endif
4731 ret = __netif_receive_skb(skb);
4732 rcu_read_unlock();
4733 return ret;
4734}
4735
4736/**
4737 * netif_receive_skb - process receive buffer from network
4738 * @skb: buffer to process
4739 *
4740 * netif_receive_skb() is the main receive data processing function.
4741 * It always succeeds. The buffer may be dropped during processing
4742 * for congestion control or by the protocol layers.
4743 *
4744 * This function may only be called from softirq context and interrupts
4745 * should be enabled.
4746 *
4747 * Return values (usually ignored):
4748 * NET_RX_SUCCESS: no congestion
4749 * NET_RX_DROP: packet was dropped
4750 */
4751int netif_receive_skb(struct sk_buff *skb)
4752{
4753 trace_netif_receive_skb_entry(skb);
4754
4755 return netif_receive_skb_internal(skb);
4756}
4757EXPORT_SYMBOL(netif_receive_skb);
4758
4759DEFINE_PER_CPU(struct work_struct, flush_works);
4760
4761/* Network device is going away, flush any packets still pending */
4762static void flush_backlog(struct work_struct *work)
4763{
4764 struct sk_buff *skb, *tmp;
4765 struct softnet_data *sd;
4766
4767 local_bh_disable();
4768 sd = this_cpu_ptr(&softnet_data);
4769
4770 local_irq_disable();
4771 rps_lock(sd);
4772 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4773 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4774 __skb_unlink(skb, &sd->input_pkt_queue);
4775 kfree_skb(skb);
4776 input_queue_head_incr(sd);
4777 }
4778 }
4779 rps_unlock(sd);
4780 local_irq_enable();
4781
4782 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4783 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4784 __skb_unlink(skb, &sd->process_queue);
4785 kfree_skb(skb);
4786 input_queue_head_incr(sd);
4787 }
4788 }
4789 local_bh_enable();
4790}
4791
4792static void flush_all_backlogs(void)
4793{
4794 unsigned int cpu;
4795
4796 get_online_cpus();
4797
4798 for_each_online_cpu(cpu)
4799 queue_work_on(cpu, system_highpri_wq,
4800 per_cpu_ptr(&flush_works, cpu));
4801
4802 for_each_online_cpu(cpu)
4803 flush_work(per_cpu_ptr(&flush_works, cpu));
4804
4805 put_online_cpus();
4806}
4807
4808static int napi_gro_complete(struct sk_buff *skb)
4809{
4810 struct packet_offload *ptype;
4811 __be16 type = skb->protocol;
4812 struct list_head *head = &offload_base;
4813 int err = -ENOENT;
4814
4815 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4816
4817 if (NAPI_GRO_CB(skb)->count == 1) {
4818 skb_shinfo(skb)->gso_size = 0;
4819 goto out;
4820 }
4821
4822 rcu_read_lock();
4823 list_for_each_entry_rcu(ptype, head, list) {
4824 if (ptype->type != type || !ptype->callbacks.gro_complete)
4825 continue;
4826
4827 err = ptype->callbacks.gro_complete(skb, 0);
4828 break;
4829 }
4830 rcu_read_unlock();
4831
4832 if (err) {
4833 WARN_ON(&ptype->list == head);
4834 kfree_skb(skb);
4835 return NET_RX_SUCCESS;
4836 }
4837
4838out:
4839 return netif_receive_skb_internal(skb);
4840}
4841
4842/* napi->gro_list contains packets ordered by age.
4843 * youngest packets at the head of it.
4844 * Complete skbs in reverse order to reduce latencies.
4845 */
4846void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4847{
4848 struct sk_buff *skb, *prev = NULL;
4849
4850 /* scan list and build reverse chain */
4851 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4852 skb->prev = prev;
4853 prev = skb;
4854 }
4855
4856 for (skb = prev; skb; skb = prev) {
4857 skb->next = NULL;
4858
4859 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4860 return;
4861
4862 prev = skb->prev;
4863 napi_gro_complete(skb);
4864 napi->gro_count--;
4865 }
4866
4867 napi->gro_list = NULL;
4868}
4869EXPORT_SYMBOL(napi_gro_flush);
4870
4871static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4872{
4873 struct sk_buff *p;
4874 unsigned int maclen = skb->dev->hard_header_len;
4875 u32 hash = skb_get_hash_raw(skb);
4876
4877 for (p = napi->gro_list; p; p = p->next) {
4878 unsigned long diffs;
4879
4880 NAPI_GRO_CB(p)->flush = 0;
4881
4882 if (hash != skb_get_hash_raw(p)) {
4883 NAPI_GRO_CB(p)->same_flow = 0;
4884 continue;
4885 }
4886
4887 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4888 diffs |= p->vlan_tci ^ skb->vlan_tci;
4889 diffs |= skb_metadata_dst_cmp(p, skb);
4890 diffs |= skb_metadata_differs(p, skb);
4891 if (maclen == ETH_HLEN)
4892 diffs |= compare_ether_header(skb_mac_header(p),
4893 skb_mac_header(skb));
4894 else if (!diffs)
4895 diffs = memcmp(skb_mac_header(p),
4896 skb_mac_header(skb),
4897 maclen);
4898 NAPI_GRO_CB(p)->same_flow = !diffs;
4899 }
4900}
4901
4902static void skb_gro_reset_offset(struct sk_buff *skb)
4903{
4904 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4905 const skb_frag_t *frag0 = &pinfo->frags[0];
4906
4907 NAPI_GRO_CB(skb)->data_offset = 0;
4908 NAPI_GRO_CB(skb)->frag0 = NULL;
4909 NAPI_GRO_CB(skb)->frag0_len = 0;
4910
4911 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4912 pinfo->nr_frags &&
4913 !PageHighMem(skb_frag_page(frag0))) {
4914 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4915 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4916 skb_frag_size(frag0),
4917 skb->end - skb->tail);
4918 }
4919}
4920
4921static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4922{
4923 struct skb_shared_info *pinfo = skb_shinfo(skb);
4924
4925 BUG_ON(skb->end - skb->tail < grow);
4926
4927 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4928
4929 skb->data_len -= grow;
4930 skb->tail += grow;
4931
4932 pinfo->frags[0].page_offset += grow;
4933 skb_frag_size_sub(&pinfo->frags[0], grow);
4934
4935 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4936 skb_frag_unref(skb, 0);
4937 memmove(pinfo->frags, pinfo->frags + 1,
4938 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4939 }
4940}
4941
4942static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4943{
4944 struct sk_buff **pp = NULL;
4945 struct packet_offload *ptype;
4946 __be16 type = skb->protocol;
4947 struct list_head *head = &offload_base;
4948 int same_flow;
4949 enum gro_result ret;
4950 int grow;
4951
4952 if (netif_elide_gro(skb->dev))
4953 goto normal;
4954
4955 gro_list_prepare(napi, skb);
4956
4957 rcu_read_lock();
4958 list_for_each_entry_rcu(ptype, head, list) {
4959 if (ptype->type != type || !ptype->callbacks.gro_receive)
4960 continue;
4961
4962 skb_set_network_header(skb, skb_gro_offset(skb));
4963 skb_reset_mac_len(skb);
4964 NAPI_GRO_CB(skb)->same_flow = 0;
4965 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4966 NAPI_GRO_CB(skb)->free = 0;
4967 NAPI_GRO_CB(skb)->encap_mark = 0;
4968 NAPI_GRO_CB(skb)->recursion_counter = 0;
4969 NAPI_GRO_CB(skb)->is_fou = 0;
4970 NAPI_GRO_CB(skb)->is_atomic = 1;
4971 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4972
4973 /* Setup for GRO checksum validation */
4974 switch (skb->ip_summed) {
4975 case CHECKSUM_COMPLETE:
4976 NAPI_GRO_CB(skb)->csum = skb->csum;
4977 NAPI_GRO_CB(skb)->csum_valid = 1;
4978 NAPI_GRO_CB(skb)->csum_cnt = 0;
4979 break;
4980 case CHECKSUM_UNNECESSARY:
4981 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4982 NAPI_GRO_CB(skb)->csum_valid = 0;
4983 break;
4984 default:
4985 NAPI_GRO_CB(skb)->csum_cnt = 0;
4986 NAPI_GRO_CB(skb)->csum_valid = 0;
4987 }
4988
4989 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4990 break;
4991 }
4992 rcu_read_unlock();
4993
4994 if (&ptype->list == head)
4995 goto normal;
4996
4997 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4998 ret = GRO_CONSUMED;
4999 goto ok;
5000 }
5001
5002 same_flow = NAPI_GRO_CB(skb)->same_flow;
5003 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5004
5005 if (pp) {
5006 struct sk_buff *nskb = *pp;
5007
5008 *pp = nskb->next;
5009 nskb->next = NULL;
5010 napi_gro_complete(nskb);
5011 napi->gro_count--;
5012 }
5013
5014 if (same_flow)
5015 goto ok;
5016
5017 if (NAPI_GRO_CB(skb)->flush)
5018 goto normal;
5019
5020 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5021 struct sk_buff *nskb = napi->gro_list;
5022
5023 /* locate the end of the list to select the 'oldest' flow */
5024 while (nskb->next) {
5025 pp = &nskb->next;
5026 nskb = *pp;
5027 }
5028 *pp = NULL;
5029 nskb->next = NULL;
5030 napi_gro_complete(nskb);
5031 } else {
5032 napi->gro_count++;
5033 }
5034 NAPI_GRO_CB(skb)->count = 1;
5035 NAPI_GRO_CB(skb)->age = jiffies;
5036 NAPI_GRO_CB(skb)->last = skb;
5037 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5038 skb->next = napi->gro_list;
5039 napi->gro_list = skb;
5040 ret = GRO_HELD;
5041
5042pull:
5043 grow = skb_gro_offset(skb) - skb_headlen(skb);
5044 if (grow > 0)
5045 gro_pull_from_frag0(skb, grow);
5046ok:
5047 return ret;
5048
5049normal:
5050 ret = GRO_NORMAL;
5051 goto pull;
5052}
5053
5054struct packet_offload *gro_find_receive_by_type(__be16 type)
5055{
5056 struct list_head *offload_head = &offload_base;
5057 struct packet_offload *ptype;
5058
5059 list_for_each_entry_rcu(ptype, offload_head, list) {
5060 if (ptype->type != type || !ptype->callbacks.gro_receive)
5061 continue;
5062 return ptype;
5063 }
5064 return NULL;
5065}
5066EXPORT_SYMBOL(gro_find_receive_by_type);
5067
5068struct packet_offload *gro_find_complete_by_type(__be16 type)
5069{
5070 struct list_head *offload_head = &offload_base;
5071 struct packet_offload *ptype;
5072
5073 list_for_each_entry_rcu(ptype, offload_head, list) {
5074 if (ptype->type != type || !ptype->callbacks.gro_complete)
5075 continue;
5076 return ptype;
5077 }
5078 return NULL;
5079}
5080EXPORT_SYMBOL(gro_find_complete_by_type);
5081
5082static void napi_skb_free_stolen_head(struct sk_buff *skb)
5083{
5084 skb_dst_drop(skb);
5085 secpath_reset(skb);
5086 kmem_cache_free(skbuff_head_cache, skb);
5087}
5088
5089static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5090{
5091 switch (ret) {
5092 case GRO_NORMAL:
5093 if (netif_receive_skb_internal(skb))
5094 ret = GRO_DROP;
5095 break;
5096
5097 case GRO_DROP:
5098 kfree_skb(skb);
5099 break;
5100
5101 case GRO_MERGED_FREE:
5102 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5103 napi_skb_free_stolen_head(skb);
5104 else
5105 __kfree_skb(skb);
5106 break;
5107
5108 case GRO_HELD:
5109 case GRO_MERGED:
5110 case GRO_CONSUMED:
5111 break;
5112 }
5113
5114 return ret;
5115}
5116
5117gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5118{
5119 skb_mark_napi_id(skb, napi);
5120 trace_napi_gro_receive_entry(skb);
5121
5122 skb_gro_reset_offset(skb);
5123
5124 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5125}
5126EXPORT_SYMBOL(napi_gro_receive);
5127
5128static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5129{
5130 if (unlikely(skb->pfmemalloc)) {
5131 consume_skb(skb);
5132 return;
5133 }
5134 __skb_pull(skb, skb_headlen(skb));
5135 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5136 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5137 skb->vlan_tci = 0;
5138 skb->dev = napi->dev;
5139 skb->skb_iif = 0;
5140 skb->encapsulation = 0;
5141 skb_shinfo(skb)->gso_type = 0;
5142 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5143 secpath_reset(skb);
5144
5145 napi->skb = skb;
5146}
5147
5148struct sk_buff *napi_get_frags(struct napi_struct *napi)
5149{
5150 struct sk_buff *skb = napi->skb;
5151
5152 if (!skb) {
5153 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5154 if (skb) {
5155 napi->skb = skb;
5156 skb_mark_napi_id(skb, napi);
5157 }
5158 }
5159 return skb;
5160}
5161EXPORT_SYMBOL(napi_get_frags);
5162
5163static gro_result_t napi_frags_finish(struct napi_struct *napi,
5164 struct sk_buff *skb,
5165 gro_result_t ret)
5166{
5167 switch (ret) {
5168 case GRO_NORMAL:
5169 case GRO_HELD:
5170 __skb_push(skb, ETH_HLEN);
5171 skb->protocol = eth_type_trans(skb, skb->dev);
5172 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5173 ret = GRO_DROP;
5174 break;
5175
5176 case GRO_DROP:
5177 napi_reuse_skb(napi, skb);
5178 break;
5179
5180 case GRO_MERGED_FREE:
5181 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5182 napi_skb_free_stolen_head(skb);
5183 else
5184 napi_reuse_skb(napi, skb);
5185 break;
5186
5187 case GRO_MERGED:
5188 case GRO_CONSUMED:
5189 break;
5190 }
5191
5192 return ret;
5193}
5194
5195/* Upper GRO stack assumes network header starts at gro_offset=0
5196 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5197 * We copy ethernet header into skb->data to have a common layout.
5198 */
5199static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5200{
5201 struct sk_buff *skb = napi->skb;
5202 const struct ethhdr *eth;
5203 unsigned int hlen = sizeof(*eth);
5204
5205 napi->skb = NULL;
5206
5207 skb_reset_mac_header(skb);
5208 skb_gro_reset_offset(skb);
5209
5210 eth = skb_gro_header_fast(skb, 0);
5211 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5212 eth = skb_gro_header_slow(skb, hlen, 0);
5213 if (unlikely(!eth)) {
5214 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5215 __func__, napi->dev->name);
5216 napi_reuse_skb(napi, skb);
5217 return NULL;
5218 }
5219 } else {
5220 gro_pull_from_frag0(skb, hlen);
5221 NAPI_GRO_CB(skb)->frag0 += hlen;
5222 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5223 }
5224 __skb_pull(skb, hlen);
5225
5226 /*
5227 * This works because the only protocols we care about don't require
5228 * special handling.
5229 * We'll fix it up properly in napi_frags_finish()
5230 */
5231 skb->protocol = eth->h_proto;
5232
5233 return skb;
5234}
5235
5236gro_result_t napi_gro_frags(struct napi_struct *napi)
5237{
5238 struct sk_buff *skb = napi_frags_skb(napi);
5239
5240 if (!skb)
5241 return GRO_DROP;
5242
5243 trace_napi_gro_frags_entry(skb);
5244
5245 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5246}
5247EXPORT_SYMBOL(napi_gro_frags);
5248
5249/* Compute the checksum from gro_offset and return the folded value
5250 * after adding in any pseudo checksum.
5251 */
5252__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5253{
5254 __wsum wsum;
5255 __sum16 sum;
5256
5257 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5258
5259 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5260 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5261 if (likely(!sum)) {
5262 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5263 !skb->csum_complete_sw)
5264 netdev_rx_csum_fault(skb->dev);
5265 }
5266
5267 NAPI_GRO_CB(skb)->csum = wsum;
5268 NAPI_GRO_CB(skb)->csum_valid = 1;
5269
5270 return sum;
5271}
5272EXPORT_SYMBOL(__skb_gro_checksum_complete);
5273
5274static void net_rps_send_ipi(struct softnet_data *remsd)
5275{
5276#ifdef CONFIG_RPS
5277 while (remsd) {
5278 struct softnet_data *next = remsd->rps_ipi_next;
5279
5280 if (cpu_online(remsd->cpu))
5281 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5282 remsd = next;
5283 }
5284#endif
5285}
5286
5287/*
5288 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5289 * Note: called with local irq disabled, but exits with local irq enabled.
5290 */
5291static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5292{
5293#ifdef CONFIG_RPS
5294 struct softnet_data *remsd = sd->rps_ipi_list;
5295
5296 if (remsd) {
5297 sd->rps_ipi_list = NULL;
5298
5299 local_irq_enable();
5300
5301 /* Send pending IPI's to kick RPS processing on remote cpus. */
5302 net_rps_send_ipi(remsd);
5303 } else
5304#endif
5305 local_irq_enable();
5306}
5307
5308static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5309{
5310#ifdef CONFIG_RPS
5311 return sd->rps_ipi_list != NULL;
5312#else
5313 return false;
5314#endif
5315}
5316
5317static int process_backlog(struct napi_struct *napi, int quota)
5318{
5319 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5320 bool again = true;
5321 int work = 0;
5322
5323 /* Check if we have pending ipi, its better to send them now,
5324 * not waiting net_rx_action() end.
5325 */
5326 if (sd_has_rps_ipi_waiting(sd)) {
5327 local_irq_disable();
5328 net_rps_action_and_irq_enable(sd);
5329 }
5330
5331 napi->weight = dev_rx_weight;
5332 while (again) {
5333 struct sk_buff *skb;
5334
5335 while ((skb = __skb_dequeue(&sd->process_queue))) {
5336 rcu_read_lock();
5337 __netif_receive_skb(skb);
5338 rcu_read_unlock();
5339 input_queue_head_incr(sd);
5340 if (++work >= quota)
5341 return work;
5342
5343 }
5344
5345 local_irq_disable();
5346 rps_lock(sd);
5347 if (skb_queue_empty(&sd->input_pkt_queue)) {
5348 /*
5349 * Inline a custom version of __napi_complete().
5350 * only current cpu owns and manipulates this napi,
5351 * and NAPI_STATE_SCHED is the only possible flag set
5352 * on backlog.
5353 * We can use a plain write instead of clear_bit(),
5354 * and we dont need an smp_mb() memory barrier.
5355 */
5356 napi->state = 0;
5357 again = false;
5358 } else {
5359 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5360 &sd->process_queue);
5361 }
5362 rps_unlock(sd);
5363 local_irq_enable();
5364 }
5365
5366 return work;
5367}
5368
5369/**
5370 * __napi_schedule - schedule for receive
5371 * @n: entry to schedule
5372 *
5373 * The entry's receive function will be scheduled to run.
5374 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5375 */
5376void __napi_schedule(struct napi_struct *n)
5377{
5378 unsigned long flags;
5379
5380 local_irq_save(flags);
5381 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5382 local_irq_restore(flags);
5383}
5384EXPORT_SYMBOL(__napi_schedule);
5385
5386/**
5387 * napi_schedule_prep - check if napi can be scheduled
5388 * @n: napi context
5389 *
5390 * Test if NAPI routine is already running, and if not mark
5391 * it as running. This is used as a condition variable
5392 * insure only one NAPI poll instance runs. We also make
5393 * sure there is no pending NAPI disable.
5394 */
5395bool napi_schedule_prep(struct napi_struct *n)
5396{
5397 unsigned long val, new;
5398
5399 do {
5400 val = READ_ONCE(n->state);
5401 if (unlikely(val & NAPIF_STATE_DISABLE))
5402 return false;
5403 new = val | NAPIF_STATE_SCHED;
5404
5405 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5406 * This was suggested by Alexander Duyck, as compiler
5407 * emits better code than :
5408 * if (val & NAPIF_STATE_SCHED)
5409 * new |= NAPIF_STATE_MISSED;
5410 */
5411 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5412 NAPIF_STATE_MISSED;
5413 } while (cmpxchg(&n->state, val, new) != val);
5414
5415 return !(val & NAPIF_STATE_SCHED);
5416}
5417EXPORT_SYMBOL(napi_schedule_prep);
5418
5419/**
5420 * __napi_schedule_irqoff - schedule for receive
5421 * @n: entry to schedule
5422 *
5423 * Variant of __napi_schedule() assuming hard irqs are masked
5424 */
5425void __napi_schedule_irqoff(struct napi_struct *n)
5426{
5427 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5428}
5429EXPORT_SYMBOL(__napi_schedule_irqoff);
5430
5431bool napi_complete_done(struct napi_struct *n, int work_done)
5432{
5433 unsigned long flags, val, new;
5434
5435 /*
5436 * 1) Don't let napi dequeue from the cpu poll list
5437 * just in case its running on a different cpu.
5438 * 2) If we are busy polling, do nothing here, we have
5439 * the guarantee we will be called later.
5440 */
5441 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5442 NAPIF_STATE_IN_BUSY_POLL)))
5443 return false;
5444
5445 if (n->gro_list) {
5446 unsigned long timeout = 0;
5447
5448 if (work_done)
5449 timeout = n->dev->gro_flush_timeout;
5450
5451 if (timeout)
5452 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5453 HRTIMER_MODE_REL_PINNED);
5454 else
5455 napi_gro_flush(n, false);
5456 }
5457 if (unlikely(!list_empty(&n->poll_list))) {
5458 /* If n->poll_list is not empty, we need to mask irqs */
5459 local_irq_save(flags);
5460 list_del_init(&n->poll_list);
5461 local_irq_restore(flags);
5462 }
5463
5464 do {
5465 val = READ_ONCE(n->state);
5466
5467 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5468
5469 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5470
5471 /* If STATE_MISSED was set, leave STATE_SCHED set,
5472 * because we will call napi->poll() one more time.
5473 * This C code was suggested by Alexander Duyck to help gcc.
5474 */
5475 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5476 NAPIF_STATE_SCHED;
5477 } while (cmpxchg(&n->state, val, new) != val);
5478
5479 if (unlikely(val & NAPIF_STATE_MISSED)) {
5480 __napi_schedule(n);
5481 return false;
5482 }
5483
5484 return true;
5485}
5486EXPORT_SYMBOL(napi_complete_done);
5487
5488/* must be called under rcu_read_lock(), as we dont take a reference */
5489static struct napi_struct *napi_by_id(unsigned int napi_id)
5490{
5491 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5492 struct napi_struct *napi;
5493
5494 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5495 if (napi->napi_id == napi_id)
5496 return napi;
5497
5498 return NULL;
5499}
5500
5501#if defined(CONFIG_NET_RX_BUSY_POLL)
5502
5503#define BUSY_POLL_BUDGET 8
5504
5505static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5506{
5507 int rc;
5508
5509 /* Busy polling means there is a high chance device driver hard irq
5510 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5511 * set in napi_schedule_prep().
5512 * Since we are about to call napi->poll() once more, we can safely
5513 * clear NAPI_STATE_MISSED.
5514 *
5515 * Note: x86 could use a single "lock and ..." instruction
5516 * to perform these two clear_bit()
5517 */
5518 clear_bit(NAPI_STATE_MISSED, &napi->state);
5519 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5520
5521 local_bh_disable();
5522
5523 /* All we really want here is to re-enable device interrupts.
5524 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5525 */
5526 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5527 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5528 netpoll_poll_unlock(have_poll_lock);
5529 if (rc == BUSY_POLL_BUDGET)
5530 __napi_schedule(napi);
5531 local_bh_enable();
5532}
5533
5534void napi_busy_loop(unsigned int napi_id,
5535 bool (*loop_end)(void *, unsigned long),
5536 void *loop_end_arg)
5537{
5538 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5539 int (*napi_poll)(struct napi_struct *napi, int budget);
5540 void *have_poll_lock = NULL;
5541 struct napi_struct *napi;
5542
5543restart:
5544 napi_poll = NULL;
5545
5546 rcu_read_lock();
5547
5548 napi = napi_by_id(napi_id);
5549 if (!napi)
5550 goto out;
5551
5552 preempt_disable();
5553 for (;;) {
5554 int work = 0;
5555
5556 local_bh_disable();
5557 if (!napi_poll) {
5558 unsigned long val = READ_ONCE(napi->state);
5559
5560 /* If multiple threads are competing for this napi,
5561 * we avoid dirtying napi->state as much as we can.
5562 */
5563 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5564 NAPIF_STATE_IN_BUSY_POLL))
5565 goto count;
5566 if (cmpxchg(&napi->state, val,
5567 val | NAPIF_STATE_IN_BUSY_POLL |
5568 NAPIF_STATE_SCHED) != val)
5569 goto count;
5570 have_poll_lock = netpoll_poll_lock(napi);
5571 napi_poll = napi->poll;
5572 }
5573 work = napi_poll(napi, BUSY_POLL_BUDGET);
5574 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5575count:
5576 if (work > 0)
5577 __NET_ADD_STATS(dev_net(napi->dev),
5578 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5579 local_bh_enable();
5580
5581 if (!loop_end || loop_end(loop_end_arg, start_time))
5582 break;
5583
5584 if (unlikely(need_resched())) {
5585 if (napi_poll)
5586 busy_poll_stop(napi, have_poll_lock);
5587 preempt_enable();
5588 rcu_read_unlock();
5589 cond_resched();
5590 if (loop_end(loop_end_arg, start_time))
5591 return;
5592 goto restart;
5593 }
5594 cpu_relax();
5595 }
5596 if (napi_poll)
5597 busy_poll_stop(napi, have_poll_lock);
5598 preempt_enable();
5599out:
5600 rcu_read_unlock();
5601}
5602EXPORT_SYMBOL(napi_busy_loop);
5603
5604#endif /* CONFIG_NET_RX_BUSY_POLL */
5605
5606static void napi_hash_add(struct napi_struct *napi)
5607{
5608 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5609 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5610 return;
5611
5612 spin_lock(&napi_hash_lock);
5613
5614 /* 0..NR_CPUS range is reserved for sender_cpu use */
5615 do {
5616 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5617 napi_gen_id = MIN_NAPI_ID;
5618 } while (napi_by_id(napi_gen_id));
5619 napi->napi_id = napi_gen_id;
5620
5621 hlist_add_head_rcu(&napi->napi_hash_node,
5622 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5623
5624 spin_unlock(&napi_hash_lock);
5625}
5626
5627/* Warning : caller is responsible to make sure rcu grace period
5628 * is respected before freeing memory containing @napi
5629 */
5630bool napi_hash_del(struct napi_struct *napi)
5631{
5632 bool rcu_sync_needed = false;
5633
5634 spin_lock(&napi_hash_lock);
5635
5636 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5637 rcu_sync_needed = true;
5638 hlist_del_rcu(&napi->napi_hash_node);
5639 }
5640 spin_unlock(&napi_hash_lock);
5641 return rcu_sync_needed;
5642}
5643EXPORT_SYMBOL_GPL(napi_hash_del);
5644
5645static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5646{
5647 struct napi_struct *napi;
5648
5649 napi = container_of(timer, struct napi_struct, timer);
5650
5651 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5652 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5653 */
5654 if (napi->gro_list && !napi_disable_pending(napi) &&
5655 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5656 __napi_schedule_irqoff(napi);
5657
5658 return HRTIMER_NORESTART;
5659}
5660
5661void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5662 int (*poll)(struct napi_struct *, int), int weight)
5663{
5664 INIT_LIST_HEAD(&napi->poll_list);
5665 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5666 napi->timer.function = napi_watchdog;
5667 napi->gro_count = 0;
5668 napi->gro_list = NULL;
5669 napi->skb = NULL;
5670 napi->poll = poll;
5671 if (weight > NAPI_POLL_WEIGHT)
5672 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5673 weight, dev->name);
5674 napi->weight = weight;
5675 list_add(&napi->dev_list, &dev->napi_list);
5676 napi->dev = dev;
5677#ifdef CONFIG_NETPOLL
5678 napi->poll_owner = -1;
5679#endif
5680 set_bit(NAPI_STATE_SCHED, &napi->state);
5681 napi_hash_add(napi);
5682}
5683EXPORT_SYMBOL(netif_napi_add);
5684
5685void napi_disable(struct napi_struct *n)
5686{
5687 might_sleep();
5688 set_bit(NAPI_STATE_DISABLE, &n->state);
5689
5690 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5691 msleep(1);
5692 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5693 msleep(1);
5694
5695 hrtimer_cancel(&n->timer);
5696
5697 clear_bit(NAPI_STATE_DISABLE, &n->state);
5698}
5699EXPORT_SYMBOL(napi_disable);
5700
5701/* Must be called in process context */
5702void netif_napi_del(struct napi_struct *napi)
5703{
5704 might_sleep();
5705 if (napi_hash_del(napi))
5706 synchronize_net();
5707 list_del_init(&napi->dev_list);
5708 napi_free_frags(napi);
5709
5710 kfree_skb_list(napi->gro_list);
5711 napi->gro_list = NULL;
5712 napi->gro_count = 0;
5713}
5714EXPORT_SYMBOL(netif_napi_del);
5715
5716static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5717{
5718 void *have;
5719 int work, weight;
5720
5721 list_del_init(&n->poll_list);
5722
5723 have = netpoll_poll_lock(n);
5724
5725 weight = n->weight;
5726
5727 /* This NAPI_STATE_SCHED test is for avoiding a race
5728 * with netpoll's poll_napi(). Only the entity which
5729 * obtains the lock and sees NAPI_STATE_SCHED set will
5730 * actually make the ->poll() call. Therefore we avoid
5731 * accidentally calling ->poll() when NAPI is not scheduled.
5732 */
5733 work = 0;
5734 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5735 work = n->poll(n, weight);
5736 trace_napi_poll(n, work, weight);
5737 }
5738
5739 WARN_ON_ONCE(work > weight);
5740
5741 if (likely(work < weight))
5742 goto out_unlock;
5743
5744 /* Drivers must not modify the NAPI state if they
5745 * consume the entire weight. In such cases this code
5746 * still "owns" the NAPI instance and therefore can
5747 * move the instance around on the list at-will.
5748 */
5749 if (unlikely(napi_disable_pending(n))) {
5750 napi_complete(n);
5751 goto out_unlock;
5752 }
5753
5754 if (n->gro_list) {
5755 /* flush too old packets
5756 * If HZ < 1000, flush all packets.
5757 */
5758 napi_gro_flush(n, HZ >= 1000);
5759 }
5760
5761 /* Some drivers may have called napi_schedule
5762 * prior to exhausting their budget.
5763 */
5764 if (unlikely(!list_empty(&n->poll_list))) {
5765 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5766 n->dev ? n->dev->name : "backlog");
5767 goto out_unlock;
5768 }
5769
5770 list_add_tail(&n->poll_list, repoll);
5771
5772out_unlock:
5773 netpoll_poll_unlock(have);
5774
5775 return work;
5776}
5777
5778static __latent_entropy void net_rx_action(struct softirq_action *h)
5779{
5780 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5781 unsigned long time_limit = jiffies +
5782 usecs_to_jiffies(netdev_budget_usecs);
5783 int budget = netdev_budget;
5784 LIST_HEAD(list);
5785 LIST_HEAD(repoll);
5786
5787 local_irq_disable();
5788 list_splice_init(&sd->poll_list, &list);
5789 local_irq_enable();
5790
5791 for (;;) {
5792 struct napi_struct *n;
5793
5794 if (list_empty(&list)) {
5795 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5796 goto out;
5797 break;
5798 }
5799
5800 n = list_first_entry(&list, struct napi_struct, poll_list);
5801 budget -= napi_poll(n, &repoll);
5802
5803 /* If softirq window is exhausted then punt.
5804 * Allow this to run for 2 jiffies since which will allow
5805 * an average latency of 1.5/HZ.
5806 */
5807 if (unlikely(budget <= 0 ||
5808 time_after_eq(jiffies, time_limit))) {
5809 sd->time_squeeze++;
5810 break;
5811 }
5812 }
5813
5814 local_irq_disable();
5815
5816 list_splice_tail_init(&sd->poll_list, &list);
5817 list_splice_tail(&repoll, &list);
5818 list_splice(&list, &sd->poll_list);
5819 if (!list_empty(&sd->poll_list))
5820 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5821
5822 net_rps_action_and_irq_enable(sd);
5823out:
5824 __kfree_skb_flush();
5825}
5826
5827struct netdev_adjacent {
5828 struct net_device *dev;
5829
5830 /* upper master flag, there can only be one master device per list */
5831 bool master;
5832
5833 /* counter for the number of times this device was added to us */
5834 u16 ref_nr;
5835
5836 /* private field for the users */
5837 void *private;
5838
5839 struct list_head list;
5840 struct rcu_head rcu;
5841};
5842
5843static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5844 struct list_head *adj_list)
5845{
5846 struct netdev_adjacent *adj;
5847
5848 list_for_each_entry(adj, adj_list, list) {
5849 if (adj->dev == adj_dev)
5850 return adj;
5851 }
5852 return NULL;
5853}
5854
5855static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5856{
5857 struct net_device *dev = data;
5858
5859 return upper_dev == dev;
5860}
5861
5862/**
5863 * netdev_has_upper_dev - Check if device is linked to an upper device
5864 * @dev: device
5865 * @upper_dev: upper device to check
5866 *
5867 * Find out if a device is linked to specified upper device and return true
5868 * in case it is. Note that this checks only immediate upper device,
5869 * not through a complete stack of devices. The caller must hold the RTNL lock.
5870 */
5871bool netdev_has_upper_dev(struct net_device *dev,
5872 struct net_device *upper_dev)
5873{
5874 ASSERT_RTNL();
5875
5876 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5877 upper_dev);
5878}
5879EXPORT_SYMBOL(netdev_has_upper_dev);
5880
5881/**
5882 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5883 * @dev: device
5884 * @upper_dev: upper device to check
5885 *
5886 * Find out if a device is linked to specified upper device and return true
5887 * in case it is. Note that this checks the entire upper device chain.
5888 * The caller must hold rcu lock.
5889 */
5890
5891bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5892 struct net_device *upper_dev)
5893{
5894 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5895 upper_dev);
5896}
5897EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5898
5899/**
5900 * netdev_has_any_upper_dev - Check if device is linked to some device
5901 * @dev: device
5902 *
5903 * Find out if a device is linked to an upper device and return true in case
5904 * it is. The caller must hold the RTNL lock.
5905 */
5906bool netdev_has_any_upper_dev(struct net_device *dev)
5907{
5908 ASSERT_RTNL();
5909
5910 return !list_empty(&dev->adj_list.upper);
5911}
5912EXPORT_SYMBOL(netdev_has_any_upper_dev);
5913
5914/**
5915 * netdev_master_upper_dev_get - Get master upper device
5916 * @dev: device
5917 *
5918 * Find a master upper device and return pointer to it or NULL in case
5919 * it's not there. The caller must hold the RTNL lock.
5920 */
5921struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5922{
5923 struct netdev_adjacent *upper;
5924
5925 ASSERT_RTNL();
5926
5927 if (list_empty(&dev->adj_list.upper))
5928 return NULL;
5929
5930 upper = list_first_entry(&dev->adj_list.upper,
5931 struct netdev_adjacent, list);
5932 if (likely(upper->master))
5933 return upper->dev;
5934 return NULL;
5935}
5936EXPORT_SYMBOL(netdev_master_upper_dev_get);
5937
5938/**
5939 * netdev_has_any_lower_dev - Check if device is linked to some device
5940 * @dev: device
5941 *
5942 * Find out if a device is linked to a lower device and return true in case
5943 * it is. The caller must hold the RTNL lock.
5944 */
5945static bool netdev_has_any_lower_dev(struct net_device *dev)
5946{
5947 ASSERT_RTNL();
5948
5949 return !list_empty(&dev->adj_list.lower);
5950}
5951
5952void *netdev_adjacent_get_private(struct list_head *adj_list)
5953{
5954 struct netdev_adjacent *adj;
5955
5956 adj = list_entry(adj_list, struct netdev_adjacent, list);
5957
5958 return adj->private;
5959}
5960EXPORT_SYMBOL(netdev_adjacent_get_private);
5961
5962/**
5963 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5964 * @dev: device
5965 * @iter: list_head ** of the current position
5966 *
5967 * Gets the next device from the dev's upper list, starting from iter
5968 * position. The caller must hold RCU read lock.
5969 */
5970struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5971 struct list_head **iter)
5972{
5973 struct netdev_adjacent *upper;
5974
5975 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5976
5977 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5978
5979 if (&upper->list == &dev->adj_list.upper)
5980 return NULL;
5981
5982 *iter = &upper->list;
5983
5984 return upper->dev;
5985}
5986EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5987
5988static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5989 struct list_head **iter)
5990{
5991 struct netdev_adjacent *upper;
5992
5993 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5994
5995 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5996
5997 if (&upper->list == &dev->adj_list.upper)
5998 return NULL;
5999
6000 *iter = &upper->list;
6001
6002 return upper->dev;
6003}
6004
6005int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6006 int (*fn)(struct net_device *dev,
6007 void *data),
6008 void *data)
6009{
6010 struct net_device *udev;
6011 struct list_head *iter;
6012 int ret;
6013
6014 for (iter = &dev->adj_list.upper,
6015 udev = netdev_next_upper_dev_rcu(dev, &iter);
6016 udev;
6017 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6018 /* first is the upper device itself */
6019 ret = fn(udev, data);
6020 if (ret)
6021 return ret;
6022
6023 /* then look at all of its upper devices */
6024 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6025 if (ret)
6026 return ret;
6027 }
6028
6029 return 0;
6030}
6031EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6032
6033/**
6034 * netdev_lower_get_next_private - Get the next ->private from the
6035 * lower neighbour list
6036 * @dev: device
6037 * @iter: list_head ** of the current position
6038 *
6039 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6040 * list, starting from iter position. The caller must hold either hold the
6041 * RTNL lock or its own locking that guarantees that the neighbour lower
6042 * list will remain unchanged.
6043 */
6044void *netdev_lower_get_next_private(struct net_device *dev,
6045 struct list_head **iter)
6046{
6047 struct netdev_adjacent *lower;
6048
6049 lower = list_entry(*iter, struct netdev_adjacent, list);
6050
6051 if (&lower->list == &dev->adj_list.lower)
6052 return NULL;
6053
6054 *iter = lower->list.next;
6055
6056 return lower->private;
6057}
6058EXPORT_SYMBOL(netdev_lower_get_next_private);
6059
6060/**
6061 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6062 * lower neighbour list, RCU
6063 * variant
6064 * @dev: device
6065 * @iter: list_head ** of the current position
6066 *
6067 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6068 * list, starting from iter position. The caller must hold RCU read lock.
6069 */
6070void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6071 struct list_head **iter)
6072{
6073 struct netdev_adjacent *lower;
6074
6075 WARN_ON_ONCE(!rcu_read_lock_held());
6076
6077 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6078
6079 if (&lower->list == &dev->adj_list.lower)
6080 return NULL;
6081
6082 *iter = &lower->list;
6083
6084 return lower->private;
6085}
6086EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6087
6088/**
6089 * netdev_lower_get_next - Get the next device from the lower neighbour
6090 * list
6091 * @dev: device
6092 * @iter: list_head ** of the current position
6093 *
6094 * Gets the next netdev_adjacent from the dev's lower neighbour
6095 * list, starting from iter position. The caller must hold RTNL lock or
6096 * its own locking that guarantees that the neighbour lower
6097 * list will remain unchanged.
6098 */
6099void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6100{
6101 struct netdev_adjacent *lower;
6102
6103 lower = list_entry(*iter, struct netdev_adjacent, list);
6104
6105 if (&lower->list == &dev->adj_list.lower)
6106 return NULL;
6107
6108 *iter = lower->list.next;
6109
6110 return lower->dev;
6111}
6112EXPORT_SYMBOL(netdev_lower_get_next);
6113
6114static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6115 struct list_head **iter)
6116{
6117 struct netdev_adjacent *lower;
6118
6119 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6120
6121 if (&lower->list == &dev->adj_list.lower)
6122 return NULL;
6123
6124 *iter = &lower->list;
6125
6126 return lower->dev;
6127}
6128
6129int netdev_walk_all_lower_dev(struct net_device *dev,
6130 int (*fn)(struct net_device *dev,
6131 void *data),
6132 void *data)
6133{
6134 struct net_device *ldev;
6135 struct list_head *iter;
6136 int ret;
6137
6138 for (iter = &dev->adj_list.lower,
6139 ldev = netdev_next_lower_dev(dev, &iter);
6140 ldev;
6141 ldev = netdev_next_lower_dev(dev, &iter)) {
6142 /* first is the lower device itself */
6143 ret = fn(ldev, data);
6144 if (ret)
6145 return ret;
6146
6147 /* then look at all of its lower devices */
6148 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6149 if (ret)
6150 return ret;
6151 }
6152
6153 return 0;
6154}
6155EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6156
6157static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6158 struct list_head **iter)
6159{
6160 struct netdev_adjacent *lower;
6161
6162 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6163 if (&lower->list == &dev->adj_list.lower)
6164 return NULL;
6165
6166 *iter = &lower->list;
6167
6168 return lower->dev;
6169}
6170
6171int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6172 int (*fn)(struct net_device *dev,
6173 void *data),
6174 void *data)
6175{
6176 struct net_device *ldev;
6177 struct list_head *iter;
6178 int ret;
6179
6180 for (iter = &dev->adj_list.lower,
6181 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6182 ldev;
6183 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6184 /* first is the lower device itself */
6185 ret = fn(ldev, data);
6186 if (ret)
6187 return ret;
6188
6189 /* then look at all of its lower devices */
6190 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6191 if (ret)
6192 return ret;
6193 }
6194
6195 return 0;
6196}
6197EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6198
6199/**
6200 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6201 * lower neighbour list, RCU
6202 * variant
6203 * @dev: device
6204 *
6205 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6206 * list. The caller must hold RCU read lock.
6207 */
6208void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6209{
6210 struct netdev_adjacent *lower;
6211
6212 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6213 struct netdev_adjacent, list);
6214 if (lower)
6215 return lower->private;
6216 return NULL;
6217}
6218EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6219
6220/**
6221 * netdev_master_upper_dev_get_rcu - Get master upper device
6222 * @dev: device
6223 *
6224 * Find a master upper device and return pointer to it or NULL in case
6225 * it's not there. The caller must hold the RCU read lock.
6226 */
6227struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6228{
6229 struct netdev_adjacent *upper;
6230
6231 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6232 struct netdev_adjacent, list);
6233 if (upper && likely(upper->master))
6234 return upper->dev;
6235 return NULL;
6236}
6237EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6238
6239static int netdev_adjacent_sysfs_add(struct net_device *dev,
6240 struct net_device *adj_dev,
6241 struct list_head *dev_list)
6242{
6243 char linkname[IFNAMSIZ+7];
6244
6245 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6246 "upper_%s" : "lower_%s", adj_dev->name);
6247 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6248 linkname);
6249}
6250static void netdev_adjacent_sysfs_del(struct net_device *dev,
6251 char *name,
6252 struct list_head *dev_list)
6253{
6254 char linkname[IFNAMSIZ+7];
6255
6256 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6257 "upper_%s" : "lower_%s", name);
6258 sysfs_remove_link(&(dev->dev.kobj), linkname);
6259}
6260
6261static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6262 struct net_device *adj_dev,
6263 struct list_head *dev_list)
6264{
6265 return (dev_list == &dev->adj_list.upper ||
6266 dev_list == &dev->adj_list.lower) &&
6267 net_eq(dev_net(dev), dev_net(adj_dev));
6268}
6269
6270static int __netdev_adjacent_dev_insert(struct net_device *dev,
6271 struct net_device *adj_dev,
6272 struct list_head *dev_list,
6273 void *private, bool master)
6274{
6275 struct netdev_adjacent *adj;
6276 int ret;
6277
6278 adj = __netdev_find_adj(adj_dev, dev_list);
6279
6280 if (adj) {
6281 adj->ref_nr += 1;
6282 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6283 dev->name, adj_dev->name, adj->ref_nr);
6284
6285 return 0;
6286 }
6287
6288 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6289 if (!adj)
6290 return -ENOMEM;
6291
6292 adj->dev = adj_dev;
6293 adj->master = master;
6294 adj->ref_nr = 1;
6295 adj->private = private;
6296 dev_hold(adj_dev);
6297
6298 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6299 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6300
6301 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6302 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6303 if (ret)
6304 goto free_adj;
6305 }
6306
6307 /* Ensure that master link is always the first item in list. */
6308 if (master) {
6309 ret = sysfs_create_link(&(dev->dev.kobj),
6310 &(adj_dev->dev.kobj), "master");
6311 if (ret)
6312 goto remove_symlinks;
6313
6314 list_add_rcu(&adj->list, dev_list);
6315 } else {
6316 list_add_tail_rcu(&adj->list, dev_list);
6317 }
6318
6319 return 0;
6320
6321remove_symlinks:
6322 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6323 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6324free_adj:
6325 kfree(adj);
6326 dev_put(adj_dev);
6327
6328 return ret;
6329}
6330
6331static void __netdev_adjacent_dev_remove(struct net_device *dev,
6332 struct net_device *adj_dev,
6333 u16 ref_nr,
6334 struct list_head *dev_list)
6335{
6336 struct netdev_adjacent *adj;
6337
6338 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6339 dev->name, adj_dev->name, ref_nr);
6340
6341 adj = __netdev_find_adj(adj_dev, dev_list);
6342
6343 if (!adj) {
6344 pr_err("Adjacency does not exist for device %s from %s\n",
6345 dev->name, adj_dev->name);
6346 WARN_ON(1);
6347 return;
6348 }
6349
6350 if (adj->ref_nr > ref_nr) {
6351 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6352 dev->name, adj_dev->name, ref_nr,
6353 adj->ref_nr - ref_nr);
6354 adj->ref_nr -= ref_nr;
6355 return;
6356 }
6357
6358 if (adj->master)
6359 sysfs_remove_link(&(dev->dev.kobj), "master");
6360
6361 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6362 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6363
6364 list_del_rcu(&adj->list);
6365 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6366 adj_dev->name, dev->name, adj_dev->name);
6367 dev_put(adj_dev);
6368 kfree_rcu(adj, rcu);
6369}
6370
6371static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6372 struct net_device *upper_dev,
6373 struct list_head *up_list,
6374 struct list_head *down_list,
6375 void *private, bool master)
6376{
6377 int ret;
6378
6379 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6380 private, master);
6381 if (ret)
6382 return ret;
6383
6384 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6385 private, false);
6386 if (ret) {
6387 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6388 return ret;
6389 }
6390
6391 return 0;
6392}
6393
6394static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6395 struct net_device *upper_dev,
6396 u16 ref_nr,
6397 struct list_head *up_list,
6398 struct list_head *down_list)
6399{
6400 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6401 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6402}
6403
6404static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6405 struct net_device *upper_dev,
6406 void *private, bool master)
6407{
6408 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6409 &dev->adj_list.upper,
6410 &upper_dev->adj_list.lower,
6411 private, master);
6412}
6413
6414static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6415 struct net_device *upper_dev)
6416{
6417 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6418 &dev->adj_list.upper,
6419 &upper_dev->adj_list.lower);
6420}
6421
6422static int __netdev_upper_dev_link(struct net_device *dev,
6423 struct net_device *upper_dev, bool master,
6424 void *upper_priv, void *upper_info,
6425 struct netlink_ext_ack *extack)
6426{
6427 struct netdev_notifier_changeupper_info changeupper_info = {
6428 .info = {
6429 .dev = dev,
6430 .extack = extack,
6431 },
6432 .upper_dev = upper_dev,
6433 .master = master,
6434 .linking = true,
6435 .upper_info = upper_info,
6436 };
6437 struct net_device *master_dev;
6438 int ret = 0;
6439
6440 ASSERT_RTNL();
6441
6442 if (dev == upper_dev)
6443 return -EBUSY;
6444
6445 /* To prevent loops, check if dev is not upper device to upper_dev. */
6446 if (netdev_has_upper_dev(upper_dev, dev))
6447 return -EBUSY;
6448
6449 if (!master) {
6450 if (netdev_has_upper_dev(dev, upper_dev))
6451 return -EEXIST;
6452 } else {
6453 master_dev = netdev_master_upper_dev_get(dev);
6454 if (master_dev)
6455 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6456 }
6457
6458 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6459 &changeupper_info.info);
6460 ret = notifier_to_errno(ret);
6461 if (ret)
6462 return ret;
6463
6464 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6465 master);
6466 if (ret)
6467 return ret;
6468
6469 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6470 &changeupper_info.info);
6471 ret = notifier_to_errno(ret);
6472 if (ret)
6473 goto rollback;
6474
6475 return 0;
6476
6477rollback:
6478 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6479
6480 return ret;
6481}
6482
6483/**
6484 * netdev_upper_dev_link - Add a link to the upper device
6485 * @dev: device
6486 * @upper_dev: new upper device
6487 * @extack: netlink extended ack
6488 *
6489 * Adds a link to device which is upper to this one. The caller must hold
6490 * the RTNL lock. On a failure a negative errno code is returned.
6491 * On success the reference counts are adjusted and the function
6492 * returns zero.
6493 */
6494int netdev_upper_dev_link(struct net_device *dev,
6495 struct net_device *upper_dev,
6496 struct netlink_ext_ack *extack)
6497{
6498 return __netdev_upper_dev_link(dev, upper_dev, false,
6499 NULL, NULL, extack);
6500}
6501EXPORT_SYMBOL(netdev_upper_dev_link);
6502
6503/**
6504 * netdev_master_upper_dev_link - Add a master link to the upper device
6505 * @dev: device
6506 * @upper_dev: new upper device
6507 * @upper_priv: upper device private
6508 * @upper_info: upper info to be passed down via notifier
6509 * @extack: netlink extended ack
6510 *
6511 * Adds a link to device which is upper to this one. In this case, only
6512 * one master upper device can be linked, although other non-master devices
6513 * might be linked as well. The caller must hold the RTNL lock.
6514 * On a failure a negative errno code is returned. On success the reference
6515 * counts are adjusted and the function returns zero.
6516 */
6517int netdev_master_upper_dev_link(struct net_device *dev,
6518 struct net_device *upper_dev,
6519 void *upper_priv, void *upper_info,
6520 struct netlink_ext_ack *extack)
6521{
6522 return __netdev_upper_dev_link(dev, upper_dev, true,
6523 upper_priv, upper_info, extack);
6524}
6525EXPORT_SYMBOL(netdev_master_upper_dev_link);
6526
6527/**
6528 * netdev_upper_dev_unlink - Removes a link to upper device
6529 * @dev: device
6530 * @upper_dev: new upper device
6531 *
6532 * Removes a link to device which is upper to this one. The caller must hold
6533 * the RTNL lock.
6534 */
6535void netdev_upper_dev_unlink(struct net_device *dev,
6536 struct net_device *upper_dev)
6537{
6538 struct netdev_notifier_changeupper_info changeupper_info = {
6539 .info = {
6540 .dev = dev,
6541 },
6542 .upper_dev = upper_dev,
6543 .linking = false,
6544 };
6545
6546 ASSERT_RTNL();
6547
6548 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6549
6550 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6551 &changeupper_info.info);
6552
6553 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6554
6555 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6556 &changeupper_info.info);
6557}
6558EXPORT_SYMBOL(netdev_upper_dev_unlink);
6559
6560/**
6561 * netdev_bonding_info_change - Dispatch event about slave change
6562 * @dev: device
6563 * @bonding_info: info to dispatch
6564 *
6565 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6566 * The caller must hold the RTNL lock.
6567 */
6568void netdev_bonding_info_change(struct net_device *dev,
6569 struct netdev_bonding_info *bonding_info)
6570{
6571 struct netdev_notifier_bonding_info info = {
6572 .info.dev = dev,
6573 };
6574
6575 memcpy(&info.bonding_info, bonding_info,
6576 sizeof(struct netdev_bonding_info));
6577 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6578 &info.info);
6579}
6580EXPORT_SYMBOL(netdev_bonding_info_change);
6581
6582static void netdev_adjacent_add_links(struct net_device *dev)
6583{
6584 struct netdev_adjacent *iter;
6585
6586 struct net *net = dev_net(dev);
6587
6588 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6589 if (!net_eq(net, dev_net(iter->dev)))
6590 continue;
6591 netdev_adjacent_sysfs_add(iter->dev, dev,
6592 &iter->dev->adj_list.lower);
6593 netdev_adjacent_sysfs_add(dev, iter->dev,
6594 &dev->adj_list.upper);
6595 }
6596
6597 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6598 if (!net_eq(net, dev_net(iter->dev)))
6599 continue;
6600 netdev_adjacent_sysfs_add(iter->dev, dev,
6601 &iter->dev->adj_list.upper);
6602 netdev_adjacent_sysfs_add(dev, iter->dev,
6603 &dev->adj_list.lower);
6604 }
6605}
6606
6607static void netdev_adjacent_del_links(struct net_device *dev)
6608{
6609 struct netdev_adjacent *iter;
6610
6611 struct net *net = dev_net(dev);
6612
6613 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6614 if (!net_eq(net, dev_net(iter->dev)))
6615 continue;
6616 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6617 &iter->dev->adj_list.lower);
6618 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6619 &dev->adj_list.upper);
6620 }
6621
6622 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6623 if (!net_eq(net, dev_net(iter->dev)))
6624 continue;
6625 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6626 &iter->dev->adj_list.upper);
6627 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6628 &dev->adj_list.lower);
6629 }
6630}
6631
6632void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6633{
6634 struct netdev_adjacent *iter;
6635
6636 struct net *net = dev_net(dev);
6637
6638 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6639 if (!net_eq(net, dev_net(iter->dev)))
6640 continue;
6641 netdev_adjacent_sysfs_del(iter->dev, oldname,
6642 &iter->dev->adj_list.lower);
6643 netdev_adjacent_sysfs_add(iter->dev, dev,
6644 &iter->dev->adj_list.lower);
6645 }
6646
6647 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6648 if (!net_eq(net, dev_net(iter->dev)))
6649 continue;
6650 netdev_adjacent_sysfs_del(iter->dev, oldname,
6651 &iter->dev->adj_list.upper);
6652 netdev_adjacent_sysfs_add(iter->dev, dev,
6653 &iter->dev->adj_list.upper);
6654 }
6655}
6656
6657void *netdev_lower_dev_get_private(struct net_device *dev,
6658 struct net_device *lower_dev)
6659{
6660 struct netdev_adjacent *lower;
6661
6662 if (!lower_dev)
6663 return NULL;
6664 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6665 if (!lower)
6666 return NULL;
6667
6668 return lower->private;
6669}
6670EXPORT_SYMBOL(netdev_lower_dev_get_private);
6671
6672
6673int dev_get_nest_level(struct net_device *dev)
6674{
6675 struct net_device *lower = NULL;
6676 struct list_head *iter;
6677 int max_nest = -1;
6678 int nest;
6679
6680 ASSERT_RTNL();
6681
6682 netdev_for_each_lower_dev(dev, lower, iter) {
6683 nest = dev_get_nest_level(lower);
6684 if (max_nest < nest)
6685 max_nest = nest;
6686 }
6687
6688 return max_nest + 1;
6689}
6690EXPORT_SYMBOL(dev_get_nest_level);
6691
6692/**
6693 * netdev_lower_change - Dispatch event about lower device state change
6694 * @lower_dev: device
6695 * @lower_state_info: state to dispatch
6696 *
6697 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6698 * The caller must hold the RTNL lock.
6699 */
6700void netdev_lower_state_changed(struct net_device *lower_dev,
6701 void *lower_state_info)
6702{
6703 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6704 .info.dev = lower_dev,
6705 };
6706
6707 ASSERT_RTNL();
6708 changelowerstate_info.lower_state_info = lower_state_info;
6709 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6710 &changelowerstate_info.info);
6711}
6712EXPORT_SYMBOL(netdev_lower_state_changed);
6713
6714static void dev_change_rx_flags(struct net_device *dev, int flags)
6715{
6716 const struct net_device_ops *ops = dev->netdev_ops;
6717
6718 if (ops->ndo_change_rx_flags)
6719 ops->ndo_change_rx_flags(dev, flags);
6720}
6721
6722static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6723{
6724 unsigned int old_flags = dev->flags;
6725 kuid_t uid;
6726 kgid_t gid;
6727
6728 ASSERT_RTNL();
6729
6730 dev->flags |= IFF_PROMISC;
6731 dev->promiscuity += inc;
6732 if (dev->promiscuity == 0) {
6733 /*
6734 * Avoid overflow.
6735 * If inc causes overflow, untouch promisc and return error.
6736 */
6737 if (inc < 0)
6738 dev->flags &= ~IFF_PROMISC;
6739 else {
6740 dev->promiscuity -= inc;
6741 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6742 dev->name);
6743 return -EOVERFLOW;
6744 }
6745 }
6746 if (dev->flags != old_flags) {
6747 pr_info("device %s %s promiscuous mode\n",
6748 dev->name,
6749 dev->flags & IFF_PROMISC ? "entered" : "left");
6750 if (audit_enabled) {
6751 current_uid_gid(&uid, &gid);
6752 audit_log(current->audit_context, GFP_ATOMIC,
6753 AUDIT_ANOM_PROMISCUOUS,
6754 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6755 dev->name, (dev->flags & IFF_PROMISC),
6756 (old_flags & IFF_PROMISC),
6757 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6758 from_kuid(&init_user_ns, uid),
6759 from_kgid(&init_user_ns, gid),
6760 audit_get_sessionid(current));
6761 }
6762
6763 dev_change_rx_flags(dev, IFF_PROMISC);
6764 }
6765 if (notify)
6766 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6767 return 0;
6768}
6769
6770/**
6771 * dev_set_promiscuity - update promiscuity count on a device
6772 * @dev: device
6773 * @inc: modifier
6774 *
6775 * Add or remove promiscuity from a device. While the count in the device
6776 * remains above zero the interface remains promiscuous. Once it hits zero
6777 * the device reverts back to normal filtering operation. A negative inc
6778 * value is used to drop promiscuity on the device.
6779 * Return 0 if successful or a negative errno code on error.
6780 */
6781int dev_set_promiscuity(struct net_device *dev, int inc)
6782{
6783 unsigned int old_flags = dev->flags;
6784 int err;
6785
6786 err = __dev_set_promiscuity(dev, inc, true);
6787 if (err < 0)
6788 return err;
6789 if (dev->flags != old_flags)
6790 dev_set_rx_mode(dev);
6791 return err;
6792}
6793EXPORT_SYMBOL(dev_set_promiscuity);
6794
6795static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6796{
6797 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6798
6799 ASSERT_RTNL();
6800
6801 dev->flags |= IFF_ALLMULTI;
6802 dev->allmulti += inc;
6803 if (dev->allmulti == 0) {
6804 /*
6805 * Avoid overflow.
6806 * If inc causes overflow, untouch allmulti and return error.
6807 */
6808 if (inc < 0)
6809 dev->flags &= ~IFF_ALLMULTI;
6810 else {
6811 dev->allmulti -= inc;
6812 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6813 dev->name);
6814 return -EOVERFLOW;
6815 }
6816 }
6817 if (dev->flags ^ old_flags) {
6818 dev_change_rx_flags(dev, IFF_ALLMULTI);
6819 dev_set_rx_mode(dev);
6820 if (notify)
6821 __dev_notify_flags(dev, old_flags,
6822 dev->gflags ^ old_gflags);
6823 }
6824 return 0;
6825}
6826
6827/**
6828 * dev_set_allmulti - update allmulti count on a device
6829 * @dev: device
6830 * @inc: modifier
6831 *
6832 * Add or remove reception of all multicast frames to a device. While the
6833 * count in the device remains above zero the interface remains listening
6834 * to all interfaces. Once it hits zero the device reverts back to normal
6835 * filtering operation. A negative @inc value is used to drop the counter
6836 * when releasing a resource needing all multicasts.
6837 * Return 0 if successful or a negative errno code on error.
6838 */
6839
6840int dev_set_allmulti(struct net_device *dev, int inc)
6841{
6842 return __dev_set_allmulti(dev, inc, true);
6843}
6844EXPORT_SYMBOL(dev_set_allmulti);
6845
6846/*
6847 * Upload unicast and multicast address lists to device and
6848 * configure RX filtering. When the device doesn't support unicast
6849 * filtering it is put in promiscuous mode while unicast addresses
6850 * are present.
6851 */
6852void __dev_set_rx_mode(struct net_device *dev)
6853{
6854 const struct net_device_ops *ops = dev->netdev_ops;
6855
6856 /* dev_open will call this function so the list will stay sane. */
6857 if (!(dev->flags&IFF_UP))
6858 return;
6859
6860 if (!netif_device_present(dev))
6861 return;
6862
6863 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6864 /* Unicast addresses changes may only happen under the rtnl,
6865 * therefore calling __dev_set_promiscuity here is safe.
6866 */
6867 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6868 __dev_set_promiscuity(dev, 1, false);
6869 dev->uc_promisc = true;
6870 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6871 __dev_set_promiscuity(dev, -1, false);
6872 dev->uc_promisc = false;
6873 }
6874 }
6875
6876 if (ops->ndo_set_rx_mode)
6877 ops->ndo_set_rx_mode(dev);
6878}
6879
6880void dev_set_rx_mode(struct net_device *dev)
6881{
6882 netif_addr_lock_bh(dev);
6883 __dev_set_rx_mode(dev);
6884 netif_addr_unlock_bh(dev);
6885}
6886
6887/**
6888 * dev_get_flags - get flags reported to userspace
6889 * @dev: device
6890 *
6891 * Get the combination of flag bits exported through APIs to userspace.
6892 */
6893unsigned int dev_get_flags(const struct net_device *dev)
6894{
6895 unsigned int flags;
6896
6897 flags = (dev->flags & ~(IFF_PROMISC |
6898 IFF_ALLMULTI |
6899 IFF_RUNNING |
6900 IFF_LOWER_UP |
6901 IFF_DORMANT)) |
6902 (dev->gflags & (IFF_PROMISC |
6903 IFF_ALLMULTI));
6904
6905 if (netif_running(dev)) {
6906 if (netif_oper_up(dev))
6907 flags |= IFF_RUNNING;
6908 if (netif_carrier_ok(dev))
6909 flags |= IFF_LOWER_UP;
6910 if (netif_dormant(dev))
6911 flags |= IFF_DORMANT;
6912 }
6913
6914 return flags;
6915}
6916EXPORT_SYMBOL(dev_get_flags);
6917
6918int __dev_change_flags(struct net_device *dev, unsigned int flags)
6919{
6920 unsigned int old_flags = dev->flags;
6921 int ret;
6922
6923 ASSERT_RTNL();
6924
6925 /*
6926 * Set the flags on our device.
6927 */
6928
6929 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6930 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6931 IFF_AUTOMEDIA)) |
6932 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6933 IFF_ALLMULTI));
6934
6935 /*
6936 * Load in the correct multicast list now the flags have changed.
6937 */
6938
6939 if ((old_flags ^ flags) & IFF_MULTICAST)
6940 dev_change_rx_flags(dev, IFF_MULTICAST);
6941
6942 dev_set_rx_mode(dev);
6943
6944 /*
6945 * Have we downed the interface. We handle IFF_UP ourselves
6946 * according to user attempts to set it, rather than blindly
6947 * setting it.
6948 */
6949
6950 ret = 0;
6951 if ((old_flags ^ flags) & IFF_UP) {
6952 if (old_flags & IFF_UP)
6953 __dev_close(dev);
6954 else
6955 ret = __dev_open(dev);
6956 }
6957
6958 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6959 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6960 unsigned int old_flags = dev->flags;
6961
6962 dev->gflags ^= IFF_PROMISC;
6963
6964 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6965 if (dev->flags != old_flags)
6966 dev_set_rx_mode(dev);
6967 }
6968
6969 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6970 * is important. Some (broken) drivers set IFF_PROMISC, when
6971 * IFF_ALLMULTI is requested not asking us and not reporting.
6972 */
6973 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6974 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6975
6976 dev->gflags ^= IFF_ALLMULTI;
6977 __dev_set_allmulti(dev, inc, false);
6978 }
6979
6980 return ret;
6981}
6982
6983void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6984 unsigned int gchanges)
6985{
6986 unsigned int changes = dev->flags ^ old_flags;
6987
6988 if (gchanges)
6989 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6990
6991 if (changes & IFF_UP) {
6992 if (dev->flags & IFF_UP)
6993 call_netdevice_notifiers(NETDEV_UP, dev);
6994 else
6995 call_netdevice_notifiers(NETDEV_DOWN, dev);
6996 }
6997
6998 if (dev->flags & IFF_UP &&
6999 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7000 struct netdev_notifier_change_info change_info = {
7001 .info = {
7002 .dev = dev,
7003 },
7004 .flags_changed = changes,
7005 };
7006
7007 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7008 }
7009}
7010
7011/**
7012 * dev_change_flags - change device settings
7013 * @dev: device
7014 * @flags: device state flags
7015 *
7016 * Change settings on device based state flags. The flags are
7017 * in the userspace exported format.
7018 */
7019int dev_change_flags(struct net_device *dev, unsigned int flags)
7020{
7021 int ret;
7022 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7023
7024 ret = __dev_change_flags(dev, flags);
7025 if (ret < 0)
7026 return ret;
7027
7028 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7029 __dev_notify_flags(dev, old_flags, changes);
7030 return ret;
7031}
7032EXPORT_SYMBOL(dev_change_flags);
7033
7034int __dev_set_mtu(struct net_device *dev, int new_mtu)
7035{
7036 const struct net_device_ops *ops = dev->netdev_ops;
7037
7038 if (ops->ndo_change_mtu)
7039 return ops->ndo_change_mtu(dev, new_mtu);
7040
7041 dev->mtu = new_mtu;
7042 return 0;
7043}
7044EXPORT_SYMBOL(__dev_set_mtu);
7045
7046/**
7047 * dev_set_mtu - Change maximum transfer unit
7048 * @dev: device
7049 * @new_mtu: new transfer unit
7050 *
7051 * Change the maximum transfer size of the network device.
7052 */
7053int dev_set_mtu(struct net_device *dev, int new_mtu)
7054{
7055 int err, orig_mtu;
7056
7057 if (new_mtu == dev->mtu)
7058 return 0;
7059
7060 /* MTU must be positive, and in range */
7061 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7062 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7063 dev->name, new_mtu, dev->min_mtu);
7064 return -EINVAL;
7065 }
7066
7067 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7068 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7069 dev->name, new_mtu, dev->max_mtu);
7070 return -EINVAL;
7071 }
7072
7073 if (!netif_device_present(dev))
7074 return -ENODEV;
7075
7076 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7077 err = notifier_to_errno(err);
7078 if (err)
7079 return err;
7080
7081 orig_mtu = dev->mtu;
7082 err = __dev_set_mtu(dev, new_mtu);
7083
7084 if (!err) {
7085 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7086 err = notifier_to_errno(err);
7087 if (err) {
7088 /* setting mtu back and notifying everyone again,
7089 * so that they have a chance to revert changes.
7090 */
7091 __dev_set_mtu(dev, orig_mtu);
7092 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7093 }
7094 }
7095 return err;
7096}
7097EXPORT_SYMBOL(dev_set_mtu);
7098
7099/**
7100 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7101 * @dev: device
7102 * @new_len: new tx queue length
7103 */
7104int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7105{
7106 unsigned int orig_len = dev->tx_queue_len;
7107 int res;
7108
7109 if (new_len != (unsigned int)new_len)
7110 return -ERANGE;
7111
7112 if (new_len != orig_len) {
7113 dev->tx_queue_len = new_len;
7114 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7115 res = notifier_to_errno(res);
7116 if (res) {
7117 netdev_err(dev,
7118 "refused to change device tx_queue_len\n");
7119 dev->tx_queue_len = orig_len;
7120 return res;
7121 }
7122 return dev_qdisc_change_tx_queue_len(dev);
7123 }
7124
7125 return 0;
7126}
7127
7128/**
7129 * dev_set_group - Change group this device belongs to
7130 * @dev: device
7131 * @new_group: group this device should belong to
7132 */
7133void dev_set_group(struct net_device *dev, int new_group)
7134{
7135 dev->group = new_group;
7136}
7137EXPORT_SYMBOL(dev_set_group);
7138
7139/**
7140 * dev_set_mac_address - Change Media Access Control Address
7141 * @dev: device
7142 * @sa: new address
7143 *
7144 * Change the hardware (MAC) address of the device
7145 */
7146int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7147{
7148 const struct net_device_ops *ops = dev->netdev_ops;
7149 int err;
7150
7151 if (!ops->ndo_set_mac_address)
7152 return -EOPNOTSUPP;
7153 if (sa->sa_family != dev->type)
7154 return -EINVAL;
7155 if (!netif_device_present(dev))
7156 return -ENODEV;
7157 err = ops->ndo_set_mac_address(dev, sa);
7158 if (err)
7159 return err;
7160 dev->addr_assign_type = NET_ADDR_SET;
7161 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7162 add_device_randomness(dev->dev_addr, dev->addr_len);
7163 return 0;
7164}
7165EXPORT_SYMBOL(dev_set_mac_address);
7166
7167/**
7168 * dev_change_carrier - Change device carrier
7169 * @dev: device
7170 * @new_carrier: new value
7171 *
7172 * Change device carrier
7173 */
7174int dev_change_carrier(struct net_device *dev, bool new_carrier)
7175{
7176 const struct net_device_ops *ops = dev->netdev_ops;
7177
7178 if (!ops->ndo_change_carrier)
7179 return -EOPNOTSUPP;
7180 if (!netif_device_present(dev))
7181 return -ENODEV;
7182 return ops->ndo_change_carrier(dev, new_carrier);
7183}
7184EXPORT_SYMBOL(dev_change_carrier);
7185
7186/**
7187 * dev_get_phys_port_id - Get device physical port ID
7188 * @dev: device
7189 * @ppid: port ID
7190 *
7191 * Get device physical port ID
7192 */
7193int dev_get_phys_port_id(struct net_device *dev,
7194 struct netdev_phys_item_id *ppid)
7195{
7196 const struct net_device_ops *ops = dev->netdev_ops;
7197
7198 if (!ops->ndo_get_phys_port_id)
7199 return -EOPNOTSUPP;
7200 return ops->ndo_get_phys_port_id(dev, ppid);
7201}
7202EXPORT_SYMBOL(dev_get_phys_port_id);
7203
7204/**
7205 * dev_get_phys_port_name - Get device physical port name
7206 * @dev: device
7207 * @name: port name
7208 * @len: limit of bytes to copy to name
7209 *
7210 * Get device physical port name
7211 */
7212int dev_get_phys_port_name(struct net_device *dev,
7213 char *name, size_t len)
7214{
7215 const struct net_device_ops *ops = dev->netdev_ops;
7216
7217 if (!ops->ndo_get_phys_port_name)
7218 return -EOPNOTSUPP;
7219 return ops->ndo_get_phys_port_name(dev, name, len);
7220}
7221EXPORT_SYMBOL(dev_get_phys_port_name);
7222
7223/**
7224 * dev_change_proto_down - update protocol port state information
7225 * @dev: device
7226 * @proto_down: new value
7227 *
7228 * This info can be used by switch drivers to set the phys state of the
7229 * port.
7230 */
7231int dev_change_proto_down(struct net_device *dev, bool proto_down)
7232{
7233 const struct net_device_ops *ops = dev->netdev_ops;
7234
7235 if (!ops->ndo_change_proto_down)
7236 return -EOPNOTSUPP;
7237 if (!netif_device_present(dev))
7238 return -ENODEV;
7239 return ops->ndo_change_proto_down(dev, proto_down);
7240}
7241EXPORT_SYMBOL(dev_change_proto_down);
7242
7243void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7244 struct netdev_bpf *xdp)
7245{
7246 memset(xdp, 0, sizeof(*xdp));
7247 xdp->command = XDP_QUERY_PROG;
7248
7249 /* Query must always succeed. */
7250 WARN_ON(bpf_op(dev, xdp) < 0);
7251}
7252
7253static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7254{
7255 struct netdev_bpf xdp;
7256
7257 __dev_xdp_query(dev, bpf_op, &xdp);
7258
7259 return xdp.prog_attached;
7260}
7261
7262static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7263 struct netlink_ext_ack *extack, u32 flags,
7264 struct bpf_prog *prog)
7265{
7266 struct netdev_bpf xdp;
7267
7268 memset(&xdp, 0, sizeof(xdp));
7269 if (flags & XDP_FLAGS_HW_MODE)
7270 xdp.command = XDP_SETUP_PROG_HW;
7271 else
7272 xdp.command = XDP_SETUP_PROG;
7273 xdp.extack = extack;
7274 xdp.flags = flags;
7275 xdp.prog = prog;
7276
7277 return bpf_op(dev, &xdp);
7278}
7279
7280static void dev_xdp_uninstall(struct net_device *dev)
7281{
7282 struct netdev_bpf xdp;
7283 bpf_op_t ndo_bpf;
7284
7285 /* Remove generic XDP */
7286 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7287
7288 /* Remove from the driver */
7289 ndo_bpf = dev->netdev_ops->ndo_bpf;
7290 if (!ndo_bpf)
7291 return;
7292
7293 __dev_xdp_query(dev, ndo_bpf, &xdp);
7294 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7295 return;
7296
7297 /* Program removal should always succeed */
7298 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7299}
7300
7301/**
7302 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7303 * @dev: device
7304 * @extack: netlink extended ack
7305 * @fd: new program fd or negative value to clear
7306 * @flags: xdp-related flags
7307 *
7308 * Set or clear a bpf program for a device
7309 */
7310int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7311 int fd, u32 flags)
7312{
7313 const struct net_device_ops *ops = dev->netdev_ops;
7314 struct bpf_prog *prog = NULL;
7315 bpf_op_t bpf_op, bpf_chk;
7316 int err;
7317
7318 ASSERT_RTNL();
7319
7320 bpf_op = bpf_chk = ops->ndo_bpf;
7321 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7322 return -EOPNOTSUPP;
7323 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7324 bpf_op = generic_xdp_install;
7325 if (bpf_op == bpf_chk)
7326 bpf_chk = generic_xdp_install;
7327
7328 if (fd >= 0) {
7329 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7330 return -EEXIST;
7331 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7332 __dev_xdp_attached(dev, bpf_op))
7333 return -EBUSY;
7334
7335 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7336 bpf_op == ops->ndo_bpf);
7337 if (IS_ERR(prog))
7338 return PTR_ERR(prog);
7339
7340 if (!(flags & XDP_FLAGS_HW_MODE) &&
7341 bpf_prog_is_dev_bound(prog->aux)) {
7342 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7343 bpf_prog_put(prog);
7344 return -EINVAL;
7345 }
7346 }
7347
7348 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7349 if (err < 0 && prog)
7350 bpf_prog_put(prog);
7351
7352 return err;
7353}
7354
7355/**
7356 * dev_new_index - allocate an ifindex
7357 * @net: the applicable net namespace
7358 *
7359 * Returns a suitable unique value for a new device interface
7360 * number. The caller must hold the rtnl semaphore or the
7361 * dev_base_lock to be sure it remains unique.
7362 */
7363static int dev_new_index(struct net *net)
7364{
7365 int ifindex = net->ifindex;
7366
7367 for (;;) {
7368 if (++ifindex <= 0)
7369 ifindex = 1;
7370 if (!__dev_get_by_index(net, ifindex))
7371 return net->ifindex = ifindex;
7372 }
7373}
7374
7375/* Delayed registration/unregisteration */
7376static LIST_HEAD(net_todo_list);
7377DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7378
7379static void net_set_todo(struct net_device *dev)
7380{
7381 list_add_tail(&dev->todo_list, &net_todo_list);
7382 dev_net(dev)->dev_unreg_count++;
7383}
7384
7385static void rollback_registered_many(struct list_head *head)
7386{
7387 struct net_device *dev, *tmp;
7388 LIST_HEAD(close_head);
7389
7390 BUG_ON(dev_boot_phase);
7391 ASSERT_RTNL();
7392
7393 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7394 /* Some devices call without registering
7395 * for initialization unwind. Remove those
7396 * devices and proceed with the remaining.
7397 */
7398 if (dev->reg_state == NETREG_UNINITIALIZED) {
7399 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7400 dev->name, dev);
7401
7402 WARN_ON(1);
7403 list_del(&dev->unreg_list);
7404 continue;
7405 }
7406 dev->dismantle = true;
7407 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7408 }
7409
7410 /* If device is running, close it first. */
7411 list_for_each_entry(dev, head, unreg_list)
7412 list_add_tail(&dev->close_list, &close_head);
7413 dev_close_many(&close_head, true);
7414
7415 list_for_each_entry(dev, head, unreg_list) {
7416 /* And unlink it from device chain. */
7417 unlist_netdevice(dev);
7418
7419 dev->reg_state = NETREG_UNREGISTERING;
7420 }
7421 flush_all_backlogs();
7422
7423 synchronize_net();
7424
7425 list_for_each_entry(dev, head, unreg_list) {
7426 struct sk_buff *skb = NULL;
7427
7428 /* Shutdown queueing discipline. */
7429 dev_shutdown(dev);
7430
7431 dev_xdp_uninstall(dev);
7432
7433 /* Notify protocols, that we are about to destroy
7434 * this device. They should clean all the things.
7435 */
7436 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7437
7438 if (!dev->rtnl_link_ops ||
7439 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7440 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7441 GFP_KERNEL, NULL, 0);
7442
7443 /*
7444 * Flush the unicast and multicast chains
7445 */
7446 dev_uc_flush(dev);
7447 dev_mc_flush(dev);
7448
7449 if (dev->netdev_ops->ndo_uninit)
7450 dev->netdev_ops->ndo_uninit(dev);
7451
7452 if (skb)
7453 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7454
7455 /* Notifier chain MUST detach us all upper devices. */
7456 WARN_ON(netdev_has_any_upper_dev(dev));
7457 WARN_ON(netdev_has_any_lower_dev(dev));
7458
7459 /* Remove entries from kobject tree */
7460 netdev_unregister_kobject(dev);
7461#ifdef CONFIG_XPS
7462 /* Remove XPS queueing entries */
7463 netif_reset_xps_queues_gt(dev, 0);
7464#endif
7465 }
7466
7467 synchronize_net();
7468
7469 list_for_each_entry(dev, head, unreg_list)
7470 dev_put(dev);
7471}
7472
7473static void rollback_registered(struct net_device *dev)
7474{
7475 LIST_HEAD(single);
7476
7477 list_add(&dev->unreg_list, &single);
7478 rollback_registered_many(&single);
7479 list_del(&single);
7480}
7481
7482static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7483 struct net_device *upper, netdev_features_t features)
7484{
7485 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7486 netdev_features_t feature;
7487 int feature_bit;
7488
7489 for_each_netdev_feature(&upper_disables, feature_bit) {
7490 feature = __NETIF_F_BIT(feature_bit);
7491 if (!(upper->wanted_features & feature)
7492 && (features & feature)) {
7493 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7494 &feature, upper->name);
7495 features &= ~feature;
7496 }
7497 }
7498
7499 return features;
7500}
7501
7502static void netdev_sync_lower_features(struct net_device *upper,
7503 struct net_device *lower, netdev_features_t features)
7504{
7505 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7506 netdev_features_t feature;
7507 int feature_bit;
7508
7509 for_each_netdev_feature(&upper_disables, feature_bit) {
7510 feature = __NETIF_F_BIT(feature_bit);
7511 if (!(features & feature) && (lower->features & feature)) {
7512 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7513 &feature, lower->name);
7514 lower->wanted_features &= ~feature;
7515 netdev_update_features(lower);
7516
7517 if (unlikely(lower->features & feature))
7518 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7519 &feature, lower->name);
7520 }
7521 }
7522}
7523
7524static netdev_features_t netdev_fix_features(struct net_device *dev,
7525 netdev_features_t features)
7526{
7527 /* Fix illegal checksum combinations */
7528 if ((features & NETIF_F_HW_CSUM) &&
7529 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7530 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7531 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7532 }
7533
7534 /* TSO requires that SG is present as well. */
7535 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7536 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7537 features &= ~NETIF_F_ALL_TSO;
7538 }
7539
7540 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7541 !(features & NETIF_F_IP_CSUM)) {
7542 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7543 features &= ~NETIF_F_TSO;
7544 features &= ~NETIF_F_TSO_ECN;
7545 }
7546
7547 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7548 !(features & NETIF_F_IPV6_CSUM)) {
7549 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7550 features &= ~NETIF_F_TSO6;
7551 }
7552
7553 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7554 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7555 features &= ~NETIF_F_TSO_MANGLEID;
7556
7557 /* TSO ECN requires that TSO is present as well. */
7558 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7559 features &= ~NETIF_F_TSO_ECN;
7560
7561 /* Software GSO depends on SG. */
7562 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7563 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7564 features &= ~NETIF_F_GSO;
7565 }
7566
7567 /* GSO partial features require GSO partial be set */
7568 if ((features & dev->gso_partial_features) &&
7569 !(features & NETIF_F_GSO_PARTIAL)) {
7570 netdev_dbg(dev,
7571 "Dropping partially supported GSO features since no GSO partial.\n");
7572 features &= ~dev->gso_partial_features;
7573 }
7574
7575 if (!(features & NETIF_F_RXCSUM)) {
7576 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7577 * successfully merged by hardware must also have the
7578 * checksum verified by hardware. If the user does not
7579 * want to enable RXCSUM, logically, we should disable GRO_HW.
7580 */
7581 if (features & NETIF_F_GRO_HW) {
7582 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7583 features &= ~NETIF_F_GRO_HW;
7584 }
7585 }
7586
7587 /* LRO/HW-GRO features cannot be combined with RX-FCS */
7588 if (features & NETIF_F_RXFCS) {
7589 if (features & NETIF_F_LRO) {
7590 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7591 features &= ~NETIF_F_LRO;
7592 }
7593
7594 if (features & NETIF_F_GRO_HW) {
7595 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7596 features &= ~NETIF_F_GRO_HW;
7597 }
7598 }
7599
7600 return features;
7601}
7602
7603int __netdev_update_features(struct net_device *dev)
7604{
7605 struct net_device *upper, *lower;
7606 netdev_features_t features;
7607 struct list_head *iter;
7608 int err = -1;
7609
7610 ASSERT_RTNL();
7611
7612 features = netdev_get_wanted_features(dev);
7613
7614 if (dev->netdev_ops->ndo_fix_features)
7615 features = dev->netdev_ops->ndo_fix_features(dev, features);
7616
7617 /* driver might be less strict about feature dependencies */
7618 features = netdev_fix_features(dev, features);
7619
7620 /* some features can't be enabled if they're off an an upper device */
7621 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7622 features = netdev_sync_upper_features(dev, upper, features);
7623
7624 if (dev->features == features)
7625 goto sync_lower;
7626
7627 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7628 &dev->features, &features);
7629
7630 if (dev->netdev_ops->ndo_set_features)
7631 err = dev->netdev_ops->ndo_set_features(dev, features);
7632 else
7633 err = 0;
7634
7635 if (unlikely(err < 0)) {
7636 netdev_err(dev,
7637 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7638 err, &features, &dev->features);
7639 /* return non-0 since some features might have changed and
7640 * it's better to fire a spurious notification than miss it
7641 */
7642 return -1;
7643 }
7644
7645sync_lower:
7646 /* some features must be disabled on lower devices when disabled
7647 * on an upper device (think: bonding master or bridge)
7648 */
7649 netdev_for_each_lower_dev(dev, lower, iter)
7650 netdev_sync_lower_features(dev, lower, features);
7651
7652 if (!err) {
7653 netdev_features_t diff = features ^ dev->features;
7654
7655 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7656 /* udp_tunnel_{get,drop}_rx_info both need
7657 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7658 * device, or they won't do anything.
7659 * Thus we need to update dev->features
7660 * *before* calling udp_tunnel_get_rx_info,
7661 * but *after* calling udp_tunnel_drop_rx_info.
7662 */
7663 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7664 dev->features = features;
7665 udp_tunnel_get_rx_info(dev);
7666 } else {
7667 udp_tunnel_drop_rx_info(dev);
7668 }
7669 }
7670
7671 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7672 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7673 dev->features = features;
7674 err |= vlan_get_rx_ctag_filter_info(dev);
7675 } else {
7676 vlan_drop_rx_ctag_filter_info(dev);
7677 }
7678 }
7679
7680 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7681 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7682 dev->features = features;
7683 err |= vlan_get_rx_stag_filter_info(dev);
7684 } else {
7685 vlan_drop_rx_stag_filter_info(dev);
7686 }
7687 }
7688
7689 dev->features = features;
7690 }
7691
7692 return err < 0 ? 0 : 1;
7693}
7694
7695/**
7696 * netdev_update_features - recalculate device features
7697 * @dev: the device to check
7698 *
7699 * Recalculate dev->features set and send notifications if it
7700 * has changed. Should be called after driver or hardware dependent
7701 * conditions might have changed that influence the features.
7702 */
7703void netdev_update_features(struct net_device *dev)
7704{
7705 if (__netdev_update_features(dev))
7706 netdev_features_change(dev);
7707}
7708EXPORT_SYMBOL(netdev_update_features);
7709
7710/**
7711 * netdev_change_features - recalculate device features
7712 * @dev: the device to check
7713 *
7714 * Recalculate dev->features set and send notifications even
7715 * if they have not changed. Should be called instead of
7716 * netdev_update_features() if also dev->vlan_features might
7717 * have changed to allow the changes to be propagated to stacked
7718 * VLAN devices.
7719 */
7720void netdev_change_features(struct net_device *dev)
7721{
7722 __netdev_update_features(dev);
7723 netdev_features_change(dev);
7724}
7725EXPORT_SYMBOL(netdev_change_features);
7726
7727/**
7728 * netif_stacked_transfer_operstate - transfer operstate
7729 * @rootdev: the root or lower level device to transfer state from
7730 * @dev: the device to transfer operstate to
7731 *
7732 * Transfer operational state from root to device. This is normally
7733 * called when a stacking relationship exists between the root
7734 * device and the device(a leaf device).
7735 */
7736void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7737 struct net_device *dev)
7738{
7739 if (rootdev->operstate == IF_OPER_DORMANT)
7740 netif_dormant_on(dev);
7741 else
7742 netif_dormant_off(dev);
7743
7744 if (netif_carrier_ok(rootdev))
7745 netif_carrier_on(dev);
7746 else
7747 netif_carrier_off(dev);
7748}
7749EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7750
7751static int netif_alloc_rx_queues(struct net_device *dev)
7752{
7753 unsigned int i, count = dev->num_rx_queues;
7754 struct netdev_rx_queue *rx;
7755 size_t sz = count * sizeof(*rx);
7756 int err = 0;
7757
7758 BUG_ON(count < 1);
7759
7760 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7761 if (!rx)
7762 return -ENOMEM;
7763
7764 dev->_rx = rx;
7765
7766 for (i = 0; i < count; i++) {
7767 rx[i].dev = dev;
7768
7769 /* XDP RX-queue setup */
7770 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7771 if (err < 0)
7772 goto err_rxq_info;
7773 }
7774 return 0;
7775
7776err_rxq_info:
7777 /* Rollback successful reg's and free other resources */
7778 while (i--)
7779 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7780 kvfree(dev->_rx);
7781 dev->_rx = NULL;
7782 return err;
7783}
7784
7785static void netif_free_rx_queues(struct net_device *dev)
7786{
7787 unsigned int i, count = dev->num_rx_queues;
7788
7789 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7790 if (!dev->_rx)
7791 return;
7792
7793 for (i = 0; i < count; i++)
7794 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7795
7796 kvfree(dev->_rx);
7797}
7798
7799static void netdev_init_one_queue(struct net_device *dev,
7800 struct netdev_queue *queue, void *_unused)
7801{
7802 /* Initialize queue lock */
7803 spin_lock_init(&queue->_xmit_lock);
7804 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7805 queue->xmit_lock_owner = -1;
7806 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7807 queue->dev = dev;
7808#ifdef CONFIG_BQL
7809 dql_init(&queue->dql, HZ);
7810#endif
7811}
7812
7813static void netif_free_tx_queues(struct net_device *dev)
7814{
7815 kvfree(dev->_tx);
7816}
7817
7818static int netif_alloc_netdev_queues(struct net_device *dev)
7819{
7820 unsigned int count = dev->num_tx_queues;
7821 struct netdev_queue *tx;
7822 size_t sz = count * sizeof(*tx);
7823
7824 if (count < 1 || count > 0xffff)
7825 return -EINVAL;
7826
7827 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7828 if (!tx)
7829 return -ENOMEM;
7830
7831 dev->_tx = tx;
7832
7833 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7834 spin_lock_init(&dev->tx_global_lock);
7835
7836 return 0;
7837}
7838
7839void netif_tx_stop_all_queues(struct net_device *dev)
7840{
7841 unsigned int i;
7842
7843 for (i = 0; i < dev->num_tx_queues; i++) {
7844 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7845
7846 netif_tx_stop_queue(txq);
7847 }
7848}
7849EXPORT_SYMBOL(netif_tx_stop_all_queues);
7850
7851/**
7852 * register_netdevice - register a network device
7853 * @dev: device to register
7854 *
7855 * Take a completed network device structure and add it to the kernel
7856 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7857 * chain. 0 is returned on success. A negative errno code is returned
7858 * on a failure to set up the device, or if the name is a duplicate.
7859 *
7860 * Callers must hold the rtnl semaphore. You may want
7861 * register_netdev() instead of this.
7862 *
7863 * BUGS:
7864 * The locking appears insufficient to guarantee two parallel registers
7865 * will not get the same name.
7866 */
7867
7868int register_netdevice(struct net_device *dev)
7869{
7870 int ret;
7871 struct net *net = dev_net(dev);
7872
7873 BUG_ON(dev_boot_phase);
7874 ASSERT_RTNL();
7875
7876 might_sleep();
7877
7878 /* When net_device's are persistent, this will be fatal. */
7879 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7880 BUG_ON(!net);
7881
7882 spin_lock_init(&dev->addr_list_lock);
7883 netdev_set_addr_lockdep_class(dev);
7884
7885 ret = dev_get_valid_name(net, dev, dev->name);
7886 if (ret < 0)
7887 goto out;
7888
7889 /* Init, if this function is available */
7890 if (dev->netdev_ops->ndo_init) {
7891 ret = dev->netdev_ops->ndo_init(dev);
7892 if (ret) {
7893 if (ret > 0)
7894 ret = -EIO;
7895 goto out;
7896 }
7897 }
7898
7899 if (((dev->hw_features | dev->features) &
7900 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7901 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7902 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7903 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7904 ret = -EINVAL;
7905 goto err_uninit;
7906 }
7907
7908 ret = -EBUSY;
7909 if (!dev->ifindex)
7910 dev->ifindex = dev_new_index(net);
7911 else if (__dev_get_by_index(net, dev->ifindex))
7912 goto err_uninit;
7913
7914 /* Transfer changeable features to wanted_features and enable
7915 * software offloads (GSO and GRO).
7916 */
7917 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7918 dev->features |= NETIF_F_SOFT_FEATURES;
7919
7920 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7921 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7922 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7923 }
7924
7925 dev->wanted_features = dev->features & dev->hw_features;
7926
7927 if (!(dev->flags & IFF_LOOPBACK))
7928 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7929
7930 /* If IPv4 TCP segmentation offload is supported we should also
7931 * allow the device to enable segmenting the frame with the option
7932 * of ignoring a static IP ID value. This doesn't enable the
7933 * feature itself but allows the user to enable it later.
7934 */
7935 if (dev->hw_features & NETIF_F_TSO)
7936 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7937 if (dev->vlan_features & NETIF_F_TSO)
7938 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7939 if (dev->mpls_features & NETIF_F_TSO)
7940 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7941 if (dev->hw_enc_features & NETIF_F_TSO)
7942 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7943
7944 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7945 */
7946 dev->vlan_features |= NETIF_F_HIGHDMA;
7947
7948 /* Make NETIF_F_SG inheritable to tunnel devices.
7949 */
7950 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7951
7952 /* Make NETIF_F_SG inheritable to MPLS.
7953 */
7954 dev->mpls_features |= NETIF_F_SG;
7955
7956 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7957 ret = notifier_to_errno(ret);
7958 if (ret)
7959 goto err_uninit;
7960
7961 ret = netdev_register_kobject(dev);
7962 if (ret)
7963 goto err_uninit;
7964 dev->reg_state = NETREG_REGISTERED;
7965
7966 __netdev_update_features(dev);
7967
7968 /*
7969 * Default initial state at registry is that the
7970 * device is present.
7971 */
7972
7973 set_bit(__LINK_STATE_PRESENT, &dev->state);
7974
7975 linkwatch_init_dev(dev);
7976
7977 dev_init_scheduler(dev);
7978 dev_hold(dev);
7979 list_netdevice(dev);
7980 add_device_randomness(dev->dev_addr, dev->addr_len);
7981
7982 /* If the device has permanent device address, driver should
7983 * set dev_addr and also addr_assign_type should be set to
7984 * NET_ADDR_PERM (default value).
7985 */
7986 if (dev->addr_assign_type == NET_ADDR_PERM)
7987 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7988
7989 /* Notify protocols, that a new device appeared. */
7990 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7991 ret = notifier_to_errno(ret);
7992 if (ret) {
7993 rollback_registered(dev);
7994 dev->reg_state = NETREG_UNREGISTERED;
7995 }
7996 /*
7997 * Prevent userspace races by waiting until the network
7998 * device is fully setup before sending notifications.
7999 */
8000 if (!dev->rtnl_link_ops ||
8001 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8002 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8003
8004out:
8005 return ret;
8006
8007err_uninit:
8008 if (dev->netdev_ops->ndo_uninit)
8009 dev->netdev_ops->ndo_uninit(dev);
8010 if (dev->priv_destructor)
8011 dev->priv_destructor(dev);
8012 goto out;
8013}
8014EXPORT_SYMBOL(register_netdevice);
8015
8016/**
8017 * init_dummy_netdev - init a dummy network device for NAPI
8018 * @dev: device to init
8019 *
8020 * This takes a network device structure and initialize the minimum
8021 * amount of fields so it can be used to schedule NAPI polls without
8022 * registering a full blown interface. This is to be used by drivers
8023 * that need to tie several hardware interfaces to a single NAPI
8024 * poll scheduler due to HW limitations.
8025 */
8026int init_dummy_netdev(struct net_device *dev)
8027{
8028 /* Clear everything. Note we don't initialize spinlocks
8029 * are they aren't supposed to be taken by any of the
8030 * NAPI code and this dummy netdev is supposed to be
8031 * only ever used for NAPI polls
8032 */
8033 memset(dev, 0, sizeof(struct net_device));
8034
8035 /* make sure we BUG if trying to hit standard
8036 * register/unregister code path
8037 */
8038 dev->reg_state = NETREG_DUMMY;
8039
8040 /* NAPI wants this */
8041 INIT_LIST_HEAD(&dev->napi_list);
8042
8043 /* a dummy interface is started by default */
8044 set_bit(__LINK_STATE_PRESENT, &dev->state);
8045 set_bit(__LINK_STATE_START, &dev->state);
8046
8047 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8048 * because users of this 'device' dont need to change
8049 * its refcount.
8050 */
8051
8052 return 0;
8053}
8054EXPORT_SYMBOL_GPL(init_dummy_netdev);
8055
8056
8057/**
8058 * register_netdev - register a network device
8059 * @dev: device to register
8060 *
8061 * Take a completed network device structure and add it to the kernel
8062 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8063 * chain. 0 is returned on success. A negative errno code is returned
8064 * on a failure to set up the device, or if the name is a duplicate.
8065 *
8066 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8067 * and expands the device name if you passed a format string to
8068 * alloc_netdev.
8069 */
8070int register_netdev(struct net_device *dev)
8071{
8072 int err;
8073
8074 if (rtnl_lock_killable())
8075 return -EINTR;
8076 err = register_netdevice(dev);
8077 rtnl_unlock();
8078 return err;
8079}
8080EXPORT_SYMBOL(register_netdev);
8081
8082int netdev_refcnt_read(const struct net_device *dev)
8083{
8084 int i, refcnt = 0;
8085
8086 for_each_possible_cpu(i)
8087 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8088 return refcnt;
8089}
8090EXPORT_SYMBOL(netdev_refcnt_read);
8091
8092/**
8093 * netdev_wait_allrefs - wait until all references are gone.
8094 * @dev: target net_device
8095 *
8096 * This is called when unregistering network devices.
8097 *
8098 * Any protocol or device that holds a reference should register
8099 * for netdevice notification, and cleanup and put back the
8100 * reference if they receive an UNREGISTER event.
8101 * We can get stuck here if buggy protocols don't correctly
8102 * call dev_put.
8103 */
8104static void netdev_wait_allrefs(struct net_device *dev)
8105{
8106 unsigned long rebroadcast_time, warning_time;
8107 int refcnt;
8108
8109 linkwatch_forget_dev(dev);
8110
8111 rebroadcast_time = warning_time = jiffies;
8112 refcnt = netdev_refcnt_read(dev);
8113
8114 while (refcnt != 0) {
8115 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8116 rtnl_lock();
8117
8118 /* Rebroadcast unregister notification */
8119 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8120
8121 __rtnl_unlock();
8122 rcu_barrier();
8123 rtnl_lock();
8124
8125 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8126 &dev->state)) {
8127 /* We must not have linkwatch events
8128 * pending on unregister. If this
8129 * happens, we simply run the queue
8130 * unscheduled, resulting in a noop
8131 * for this device.
8132 */
8133 linkwatch_run_queue();
8134 }
8135
8136 __rtnl_unlock();
8137
8138 rebroadcast_time = jiffies;
8139 }
8140
8141 msleep(250);
8142
8143 refcnt = netdev_refcnt_read(dev);
8144
8145 if (time_after(jiffies, warning_time + 10 * HZ)) {
8146 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8147 dev->name, refcnt);
8148 warning_time = jiffies;
8149 }
8150 }
8151}
8152
8153/* The sequence is:
8154 *
8155 * rtnl_lock();
8156 * ...
8157 * register_netdevice(x1);
8158 * register_netdevice(x2);
8159 * ...
8160 * unregister_netdevice(y1);
8161 * unregister_netdevice(y2);
8162 * ...
8163 * rtnl_unlock();
8164 * free_netdev(y1);
8165 * free_netdev(y2);
8166 *
8167 * We are invoked by rtnl_unlock().
8168 * This allows us to deal with problems:
8169 * 1) We can delete sysfs objects which invoke hotplug
8170 * without deadlocking with linkwatch via keventd.
8171 * 2) Since we run with the RTNL semaphore not held, we can sleep
8172 * safely in order to wait for the netdev refcnt to drop to zero.
8173 *
8174 * We must not return until all unregister events added during
8175 * the interval the lock was held have been completed.
8176 */
8177void netdev_run_todo(void)
8178{
8179 struct list_head list;
8180
8181 /* Snapshot list, allow later requests */
8182 list_replace_init(&net_todo_list, &list);
8183
8184 __rtnl_unlock();
8185
8186
8187 /* Wait for rcu callbacks to finish before next phase */
8188 if (!list_empty(&list))
8189 rcu_barrier();
8190
8191 while (!list_empty(&list)) {
8192 struct net_device *dev
8193 = list_first_entry(&list, struct net_device, todo_list);
8194 list_del(&dev->todo_list);
8195
8196 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8197 pr_err("network todo '%s' but state %d\n",
8198 dev->name, dev->reg_state);
8199 dump_stack();
8200 continue;
8201 }
8202
8203 dev->reg_state = NETREG_UNREGISTERED;
8204
8205 netdev_wait_allrefs(dev);
8206
8207 /* paranoia */
8208 BUG_ON(netdev_refcnt_read(dev));
8209 BUG_ON(!list_empty(&dev->ptype_all));
8210 BUG_ON(!list_empty(&dev->ptype_specific));
8211 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8212 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8213#if IS_ENABLED(CONFIG_DECNET)
8214 WARN_ON(dev->dn_ptr);
8215#endif
8216 if (dev->priv_destructor)
8217 dev->priv_destructor(dev);
8218 if (dev->needs_free_netdev)
8219 free_netdev(dev);
8220
8221 /* Report a network device has been unregistered */
8222 rtnl_lock();
8223 dev_net(dev)->dev_unreg_count--;
8224 __rtnl_unlock();
8225 wake_up(&netdev_unregistering_wq);
8226
8227 /* Free network device */
8228 kobject_put(&dev->dev.kobj);
8229 }
8230}
8231
8232/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8233 * all the same fields in the same order as net_device_stats, with only
8234 * the type differing, but rtnl_link_stats64 may have additional fields
8235 * at the end for newer counters.
8236 */
8237void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8238 const struct net_device_stats *netdev_stats)
8239{
8240#if BITS_PER_LONG == 64
8241 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8242 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8243 /* zero out counters that only exist in rtnl_link_stats64 */
8244 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8245 sizeof(*stats64) - sizeof(*netdev_stats));
8246#else
8247 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8248 const unsigned long *src = (const unsigned long *)netdev_stats;
8249 u64 *dst = (u64 *)stats64;
8250
8251 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8252 for (i = 0; i < n; i++)
8253 dst[i] = src[i];
8254 /* zero out counters that only exist in rtnl_link_stats64 */
8255 memset((char *)stats64 + n * sizeof(u64), 0,
8256 sizeof(*stats64) - n * sizeof(u64));
8257#endif
8258}
8259EXPORT_SYMBOL(netdev_stats_to_stats64);
8260
8261/**
8262 * dev_get_stats - get network device statistics
8263 * @dev: device to get statistics from
8264 * @storage: place to store stats
8265 *
8266 * Get network statistics from device. Return @storage.
8267 * The device driver may provide its own method by setting
8268 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8269 * otherwise the internal statistics structure is used.
8270 */
8271struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8272 struct rtnl_link_stats64 *storage)
8273{
8274 const struct net_device_ops *ops = dev->netdev_ops;
8275
8276 if (ops->ndo_get_stats64) {
8277 memset(storage, 0, sizeof(*storage));
8278 ops->ndo_get_stats64(dev, storage);
8279 } else if (ops->ndo_get_stats) {
8280 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8281 } else {
8282 netdev_stats_to_stats64(storage, &dev->stats);
8283 }
8284 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8285 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8286 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8287 return storage;
8288}
8289EXPORT_SYMBOL(dev_get_stats);
8290
8291struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8292{
8293 struct netdev_queue *queue = dev_ingress_queue(dev);
8294
8295#ifdef CONFIG_NET_CLS_ACT
8296 if (queue)
8297 return queue;
8298 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8299 if (!queue)
8300 return NULL;
8301 netdev_init_one_queue(dev, queue, NULL);
8302 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8303 queue->qdisc_sleeping = &noop_qdisc;
8304 rcu_assign_pointer(dev->ingress_queue, queue);
8305#endif
8306 return queue;
8307}
8308
8309static const struct ethtool_ops default_ethtool_ops;
8310
8311void netdev_set_default_ethtool_ops(struct net_device *dev,
8312 const struct ethtool_ops *ops)
8313{
8314 if (dev->ethtool_ops == &default_ethtool_ops)
8315 dev->ethtool_ops = ops;
8316}
8317EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8318
8319void netdev_freemem(struct net_device *dev)
8320{
8321 char *addr = (char *)dev - dev->padded;
8322
8323 kvfree(addr);
8324}
8325
8326/**
8327 * alloc_netdev_mqs - allocate network device
8328 * @sizeof_priv: size of private data to allocate space for
8329 * @name: device name format string
8330 * @name_assign_type: origin of device name
8331 * @setup: callback to initialize device
8332 * @txqs: the number of TX subqueues to allocate
8333 * @rxqs: the number of RX subqueues to allocate
8334 *
8335 * Allocates a struct net_device with private data area for driver use
8336 * and performs basic initialization. Also allocates subqueue structs
8337 * for each queue on the device.
8338 */
8339struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8340 unsigned char name_assign_type,
8341 void (*setup)(struct net_device *),
8342 unsigned int txqs, unsigned int rxqs)
8343{
8344 struct net_device *dev;
8345 unsigned int alloc_size;
8346 struct net_device *p;
8347
8348 BUG_ON(strlen(name) >= sizeof(dev->name));
8349
8350 if (txqs < 1) {
8351 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8352 return NULL;
8353 }
8354
8355 if (rxqs < 1) {
8356 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8357 return NULL;
8358 }
8359
8360 alloc_size = sizeof(struct net_device);
8361 if (sizeof_priv) {
8362 /* ensure 32-byte alignment of private area */
8363 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8364 alloc_size += sizeof_priv;
8365 }
8366 /* ensure 32-byte alignment of whole construct */
8367 alloc_size += NETDEV_ALIGN - 1;
8368
8369 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8370 if (!p)
8371 return NULL;
8372
8373 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8374 dev->padded = (char *)dev - (char *)p;
8375
8376 dev->pcpu_refcnt = alloc_percpu(int);
8377 if (!dev->pcpu_refcnt)
8378 goto free_dev;
8379
8380 if (dev_addr_init(dev))
8381 goto free_pcpu;
8382
8383 dev_mc_init(dev);
8384 dev_uc_init(dev);
8385
8386 dev_net_set(dev, &init_net);
8387
8388 dev->gso_max_size = GSO_MAX_SIZE;
8389 dev->gso_max_segs = GSO_MAX_SEGS;
8390
8391 INIT_LIST_HEAD(&dev->napi_list);
8392 INIT_LIST_HEAD(&dev->unreg_list);
8393 INIT_LIST_HEAD(&dev->close_list);
8394 INIT_LIST_HEAD(&dev->link_watch_list);
8395 INIT_LIST_HEAD(&dev->adj_list.upper);
8396 INIT_LIST_HEAD(&dev->adj_list.lower);
8397 INIT_LIST_HEAD(&dev->ptype_all);
8398 INIT_LIST_HEAD(&dev->ptype_specific);
8399#ifdef CONFIG_NET_SCHED
8400 hash_init(dev->qdisc_hash);
8401#endif
8402 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8403 setup(dev);
8404
8405 if (!dev->tx_queue_len) {
8406 dev->priv_flags |= IFF_NO_QUEUE;
8407 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8408 }
8409
8410 dev->num_tx_queues = txqs;
8411 dev->real_num_tx_queues = txqs;
8412 if (netif_alloc_netdev_queues(dev))
8413 goto free_all;
8414
8415 dev->num_rx_queues = rxqs;
8416 dev->real_num_rx_queues = rxqs;
8417 if (netif_alloc_rx_queues(dev))
8418 goto free_all;
8419
8420 strcpy(dev->name, name);
8421 dev->name_assign_type = name_assign_type;
8422 dev->group = INIT_NETDEV_GROUP;
8423 if (!dev->ethtool_ops)
8424 dev->ethtool_ops = &default_ethtool_ops;
8425
8426 nf_hook_ingress_init(dev);
8427
8428 return dev;
8429
8430free_all:
8431 free_netdev(dev);
8432 return NULL;
8433
8434free_pcpu:
8435 free_percpu(dev->pcpu_refcnt);
8436free_dev:
8437 netdev_freemem(dev);
8438 return NULL;
8439}
8440EXPORT_SYMBOL(alloc_netdev_mqs);
8441
8442/**
8443 * free_netdev - free network device
8444 * @dev: device
8445 *
8446 * This function does the last stage of destroying an allocated device
8447 * interface. The reference to the device object is released. If this
8448 * is the last reference then it will be freed.Must be called in process
8449 * context.
8450 */
8451void free_netdev(struct net_device *dev)
8452{
8453 struct napi_struct *p, *n;
8454
8455 might_sleep();
8456 netif_free_tx_queues(dev);
8457 netif_free_rx_queues(dev);
8458
8459 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8460
8461 /* Flush device addresses */
8462 dev_addr_flush(dev);
8463
8464 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8465 netif_napi_del(p);
8466
8467 free_percpu(dev->pcpu_refcnt);
8468 dev->pcpu_refcnt = NULL;
8469
8470 /* Compatibility with error handling in drivers */
8471 if (dev->reg_state == NETREG_UNINITIALIZED) {
8472 netdev_freemem(dev);
8473 return;
8474 }
8475
8476 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8477 dev->reg_state = NETREG_RELEASED;
8478
8479 /* will free via device release */
8480 put_device(&dev->dev);
8481}
8482EXPORT_SYMBOL(free_netdev);
8483
8484/**
8485 * synchronize_net - Synchronize with packet receive processing
8486 *
8487 * Wait for packets currently being received to be done.
8488 * Does not block later packets from starting.
8489 */
8490void synchronize_net(void)
8491{
8492 might_sleep();
8493 if (rtnl_is_locked())
8494 synchronize_rcu_expedited();
8495 else
8496 synchronize_rcu();
8497}
8498EXPORT_SYMBOL(synchronize_net);
8499
8500/**
8501 * unregister_netdevice_queue - remove device from the kernel
8502 * @dev: device
8503 * @head: list
8504 *
8505 * This function shuts down a device interface and removes it
8506 * from the kernel tables.
8507 * If head not NULL, device is queued to be unregistered later.
8508 *
8509 * Callers must hold the rtnl semaphore. You may want
8510 * unregister_netdev() instead of this.
8511 */
8512
8513void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8514{
8515 ASSERT_RTNL();
8516
8517 if (head) {
8518 list_move_tail(&dev->unreg_list, head);
8519 } else {
8520 rollback_registered(dev);
8521 /* Finish processing unregister after unlock */
8522 net_set_todo(dev);
8523 }
8524}
8525EXPORT_SYMBOL(unregister_netdevice_queue);
8526
8527/**
8528 * unregister_netdevice_many - unregister many devices
8529 * @head: list of devices
8530 *
8531 * Note: As most callers use a stack allocated list_head,
8532 * we force a list_del() to make sure stack wont be corrupted later.
8533 */
8534void unregister_netdevice_many(struct list_head *head)
8535{
8536 struct net_device *dev;
8537
8538 if (!list_empty(head)) {
8539 rollback_registered_many(head);
8540 list_for_each_entry(dev, head, unreg_list)
8541 net_set_todo(dev);
8542 list_del(head);
8543 }
8544}
8545EXPORT_SYMBOL(unregister_netdevice_many);
8546
8547/**
8548 * unregister_netdev - remove device from the kernel
8549 * @dev: device
8550 *
8551 * This function shuts down a device interface and removes it
8552 * from the kernel tables.
8553 *
8554 * This is just a wrapper for unregister_netdevice that takes
8555 * the rtnl semaphore. In general you want to use this and not
8556 * unregister_netdevice.
8557 */
8558void unregister_netdev(struct net_device *dev)
8559{
8560 rtnl_lock();
8561 unregister_netdevice(dev);
8562 rtnl_unlock();
8563}
8564EXPORT_SYMBOL(unregister_netdev);
8565
8566/**
8567 * dev_change_net_namespace - move device to different nethost namespace
8568 * @dev: device
8569 * @net: network namespace
8570 * @pat: If not NULL name pattern to try if the current device name
8571 * is already taken in the destination network namespace.
8572 *
8573 * This function shuts down a device interface and moves it
8574 * to a new network namespace. On success 0 is returned, on
8575 * a failure a netagive errno code is returned.
8576 *
8577 * Callers must hold the rtnl semaphore.
8578 */
8579
8580int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8581{
8582 int err, new_nsid, new_ifindex;
8583
8584 ASSERT_RTNL();
8585
8586 /* Don't allow namespace local devices to be moved. */
8587 err = -EINVAL;
8588 if (dev->features & NETIF_F_NETNS_LOCAL)
8589 goto out;
8590
8591 /* Ensure the device has been registrered */
8592 if (dev->reg_state != NETREG_REGISTERED)
8593 goto out;
8594
8595 /* Get out if there is nothing todo */
8596 err = 0;
8597 if (net_eq(dev_net(dev), net))
8598 goto out;
8599
8600 /* Pick the destination device name, and ensure
8601 * we can use it in the destination network namespace.
8602 */
8603 err = -EEXIST;
8604 if (__dev_get_by_name(net, dev->name)) {
8605 /* We get here if we can't use the current device name */
8606 if (!pat)
8607 goto out;
8608 if (dev_get_valid_name(net, dev, pat) < 0)
8609 goto out;
8610 }
8611
8612 /*
8613 * And now a mini version of register_netdevice unregister_netdevice.
8614 */
8615
8616 /* If device is running close it first. */
8617 dev_close(dev);
8618
8619 /* And unlink it from device chain */
8620 err = -ENODEV;
8621 unlist_netdevice(dev);
8622
8623 synchronize_net();
8624
8625 /* Shutdown queueing discipline. */
8626 dev_shutdown(dev);
8627
8628 /* Notify protocols, that we are about to destroy
8629 * this device. They should clean all the things.
8630 *
8631 * Note that dev->reg_state stays at NETREG_REGISTERED.
8632 * This is wanted because this way 8021q and macvlan know
8633 * the device is just moving and can keep their slaves up.
8634 */
8635 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8636 rcu_barrier();
8637
8638 new_nsid = peernet2id_alloc(dev_net(dev), net);
8639 /* If there is an ifindex conflict assign a new one */
8640 if (__dev_get_by_index(net, dev->ifindex))
8641 new_ifindex = dev_new_index(net);
8642 else
8643 new_ifindex = dev->ifindex;
8644
8645 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8646 new_ifindex);
8647
8648 /*
8649 * Flush the unicast and multicast chains
8650 */
8651 dev_uc_flush(dev);
8652 dev_mc_flush(dev);
8653
8654 /* Send a netdev-removed uevent to the old namespace */
8655 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8656 netdev_adjacent_del_links(dev);
8657
8658 /* Actually switch the network namespace */
8659 dev_net_set(dev, net);
8660 dev->ifindex = new_ifindex;
8661
8662 /* Send a netdev-add uevent to the new namespace */
8663 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8664 netdev_adjacent_add_links(dev);
8665
8666 /* Fixup kobjects */
8667 err = device_rename(&dev->dev, dev->name);
8668 WARN_ON(err);
8669
8670 /* Add the device back in the hashes */
8671 list_netdevice(dev);
8672
8673 /* Notify protocols, that a new device appeared. */
8674 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8675
8676 /*
8677 * Prevent userspace races by waiting until the network
8678 * device is fully setup before sending notifications.
8679 */
8680 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8681
8682 synchronize_net();
8683 err = 0;
8684out:
8685 return err;
8686}
8687EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8688
8689static int dev_cpu_dead(unsigned int oldcpu)
8690{
8691 struct sk_buff **list_skb;
8692 struct sk_buff *skb;
8693 unsigned int cpu;
8694 struct softnet_data *sd, *oldsd, *remsd = NULL;
8695
8696 local_irq_disable();
8697 cpu = smp_processor_id();
8698 sd = &per_cpu(softnet_data, cpu);
8699 oldsd = &per_cpu(softnet_data, oldcpu);
8700
8701 /* Find end of our completion_queue. */
8702 list_skb = &sd->completion_queue;
8703 while (*list_skb)
8704 list_skb = &(*list_skb)->next;
8705 /* Append completion queue from offline CPU. */
8706 *list_skb = oldsd->completion_queue;
8707 oldsd->completion_queue = NULL;
8708
8709 /* Append output queue from offline CPU. */
8710 if (oldsd->output_queue) {
8711 *sd->output_queue_tailp = oldsd->output_queue;
8712 sd->output_queue_tailp = oldsd->output_queue_tailp;
8713 oldsd->output_queue = NULL;
8714 oldsd->output_queue_tailp = &oldsd->output_queue;
8715 }
8716 /* Append NAPI poll list from offline CPU, with one exception :
8717 * process_backlog() must be called by cpu owning percpu backlog.
8718 * We properly handle process_queue & input_pkt_queue later.
8719 */
8720 while (!list_empty(&oldsd->poll_list)) {
8721 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8722 struct napi_struct,
8723 poll_list);
8724
8725 list_del_init(&napi->poll_list);
8726 if (napi->poll == process_backlog)
8727 napi->state = 0;
8728 else
8729 ____napi_schedule(sd, napi);
8730 }
8731
8732 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8733 local_irq_enable();
8734
8735#ifdef CONFIG_RPS
8736 remsd = oldsd->rps_ipi_list;
8737 oldsd->rps_ipi_list = NULL;
8738#endif
8739 /* send out pending IPI's on offline CPU */
8740 net_rps_send_ipi(remsd);
8741
8742 /* Process offline CPU's input_pkt_queue */
8743 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8744 netif_rx_ni(skb);
8745 input_queue_head_incr(oldsd);
8746 }
8747 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8748 netif_rx_ni(skb);
8749 input_queue_head_incr(oldsd);
8750 }
8751
8752 return 0;
8753}
8754
8755/**
8756 * netdev_increment_features - increment feature set by one
8757 * @all: current feature set
8758 * @one: new feature set
8759 * @mask: mask feature set
8760 *
8761 * Computes a new feature set after adding a device with feature set
8762 * @one to the master device with current feature set @all. Will not
8763 * enable anything that is off in @mask. Returns the new feature set.
8764 */
8765netdev_features_t netdev_increment_features(netdev_features_t all,
8766 netdev_features_t one, netdev_features_t mask)
8767{
8768 if (mask & NETIF_F_HW_CSUM)
8769 mask |= NETIF_F_CSUM_MASK;
8770 mask |= NETIF_F_VLAN_CHALLENGED;
8771
8772 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8773 all &= one | ~NETIF_F_ALL_FOR_ALL;
8774
8775 /* If one device supports hw checksumming, set for all. */
8776 if (all & NETIF_F_HW_CSUM)
8777 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8778
8779 return all;
8780}
8781EXPORT_SYMBOL(netdev_increment_features);
8782
8783static struct hlist_head * __net_init netdev_create_hash(void)
8784{
8785 int i;
8786 struct hlist_head *hash;
8787
8788 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8789 if (hash != NULL)
8790 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8791 INIT_HLIST_HEAD(&hash[i]);
8792
8793 return hash;
8794}
8795
8796/* Initialize per network namespace state */
8797static int __net_init netdev_init(struct net *net)
8798{
8799 if (net != &init_net)
8800 INIT_LIST_HEAD(&net->dev_base_head);
8801
8802 net->dev_name_head = netdev_create_hash();
8803 if (net->dev_name_head == NULL)
8804 goto err_name;
8805
8806 net->dev_index_head = netdev_create_hash();
8807 if (net->dev_index_head == NULL)
8808 goto err_idx;
8809
8810 return 0;
8811
8812err_idx:
8813 kfree(net->dev_name_head);
8814err_name:
8815 return -ENOMEM;
8816}
8817
8818/**
8819 * netdev_drivername - network driver for the device
8820 * @dev: network device
8821 *
8822 * Determine network driver for device.
8823 */
8824const char *netdev_drivername(const struct net_device *dev)
8825{
8826 const struct device_driver *driver;
8827 const struct device *parent;
8828 const char *empty = "";
8829
8830 parent = dev->dev.parent;
8831 if (!parent)
8832 return empty;
8833
8834 driver = parent->driver;
8835 if (driver && driver->name)
8836 return driver->name;
8837 return empty;
8838}
8839
8840static void __netdev_printk(const char *level, const struct net_device *dev,
8841 struct va_format *vaf)
8842{
8843 if (dev && dev->dev.parent) {
8844 dev_printk_emit(level[1] - '0',
8845 dev->dev.parent,
8846 "%s %s %s%s: %pV",
8847 dev_driver_string(dev->dev.parent),
8848 dev_name(dev->dev.parent),
8849 netdev_name(dev), netdev_reg_state(dev),
8850 vaf);
8851 } else if (dev) {
8852 printk("%s%s%s: %pV",
8853 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8854 } else {
8855 printk("%s(NULL net_device): %pV", level, vaf);
8856 }
8857}
8858
8859void netdev_printk(const char *level, const struct net_device *dev,
8860 const char *format, ...)
8861{
8862 struct va_format vaf;
8863 va_list args;
8864
8865 va_start(args, format);
8866
8867 vaf.fmt = format;
8868 vaf.va = &args;
8869
8870 __netdev_printk(level, dev, &vaf);
8871
8872 va_end(args);
8873}
8874EXPORT_SYMBOL(netdev_printk);
8875
8876#define define_netdev_printk_level(func, level) \
8877void func(const struct net_device *dev, const char *fmt, ...) \
8878{ \
8879 struct va_format vaf; \
8880 va_list args; \
8881 \
8882 va_start(args, fmt); \
8883 \
8884 vaf.fmt = fmt; \
8885 vaf.va = &args; \
8886 \
8887 __netdev_printk(level, dev, &vaf); \
8888 \
8889 va_end(args); \
8890} \
8891EXPORT_SYMBOL(func);
8892
8893define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8894define_netdev_printk_level(netdev_alert, KERN_ALERT);
8895define_netdev_printk_level(netdev_crit, KERN_CRIT);
8896define_netdev_printk_level(netdev_err, KERN_ERR);
8897define_netdev_printk_level(netdev_warn, KERN_WARNING);
8898define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8899define_netdev_printk_level(netdev_info, KERN_INFO);
8900
8901static void __net_exit netdev_exit(struct net *net)
8902{
8903 kfree(net->dev_name_head);
8904 kfree(net->dev_index_head);
8905 if (net != &init_net)
8906 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8907}
8908
8909static struct pernet_operations __net_initdata netdev_net_ops = {
8910 .init = netdev_init,
8911 .exit = netdev_exit,
8912};
8913
8914static void __net_exit default_device_exit(struct net *net)
8915{
8916 struct net_device *dev, *aux;
8917 /*
8918 * Push all migratable network devices back to the
8919 * initial network namespace
8920 */
8921 rtnl_lock();
8922 for_each_netdev_safe(net, dev, aux) {
8923 int err;
8924 char fb_name[IFNAMSIZ];
8925
8926 /* Ignore unmoveable devices (i.e. loopback) */
8927 if (dev->features & NETIF_F_NETNS_LOCAL)
8928 continue;
8929
8930 /* Leave virtual devices for the generic cleanup */
8931 if (dev->rtnl_link_ops)
8932 continue;
8933
8934 /* Push remaining network devices to init_net */
8935 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8936 err = dev_change_net_namespace(dev, &init_net, fb_name);
8937 if (err) {
8938 pr_emerg("%s: failed to move %s to init_net: %d\n",
8939 __func__, dev->name, err);
8940 BUG();
8941 }
8942 }
8943 rtnl_unlock();
8944}
8945
8946static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8947{
8948 /* Return with the rtnl_lock held when there are no network
8949 * devices unregistering in any network namespace in net_list.
8950 */
8951 struct net *net;
8952 bool unregistering;
8953 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8954
8955 add_wait_queue(&netdev_unregistering_wq, &wait);
8956 for (;;) {
8957 unregistering = false;
8958 rtnl_lock();
8959 list_for_each_entry(net, net_list, exit_list) {
8960 if (net->dev_unreg_count > 0) {
8961 unregistering = true;
8962 break;
8963 }
8964 }
8965 if (!unregistering)
8966 break;
8967 __rtnl_unlock();
8968
8969 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8970 }
8971 remove_wait_queue(&netdev_unregistering_wq, &wait);
8972}
8973
8974static void __net_exit default_device_exit_batch(struct list_head *net_list)
8975{
8976 /* At exit all network devices most be removed from a network
8977 * namespace. Do this in the reverse order of registration.
8978 * Do this across as many network namespaces as possible to
8979 * improve batching efficiency.
8980 */
8981 struct net_device *dev;
8982 struct net *net;
8983 LIST_HEAD(dev_kill_list);
8984
8985 /* To prevent network device cleanup code from dereferencing
8986 * loopback devices or network devices that have been freed
8987 * wait here for all pending unregistrations to complete,
8988 * before unregistring the loopback device and allowing the
8989 * network namespace be freed.
8990 *
8991 * The netdev todo list containing all network devices
8992 * unregistrations that happen in default_device_exit_batch
8993 * will run in the rtnl_unlock() at the end of
8994 * default_device_exit_batch.
8995 */
8996 rtnl_lock_unregistering(net_list);
8997 list_for_each_entry(net, net_list, exit_list) {
8998 for_each_netdev_reverse(net, dev) {
8999 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9000 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9001 else
9002 unregister_netdevice_queue(dev, &dev_kill_list);
9003 }
9004 }
9005 unregister_netdevice_many(&dev_kill_list);
9006 rtnl_unlock();
9007}
9008
9009static struct pernet_operations __net_initdata default_device_ops = {
9010 .exit = default_device_exit,
9011 .exit_batch = default_device_exit_batch,
9012};
9013
9014/*
9015 * Initialize the DEV module. At boot time this walks the device list and
9016 * unhooks any devices that fail to initialise (normally hardware not
9017 * present) and leaves us with a valid list of present and active devices.
9018 *
9019 */
9020
9021/*
9022 * This is called single threaded during boot, so no need
9023 * to take the rtnl semaphore.
9024 */
9025static int __init net_dev_init(void)
9026{
9027 int i, rc = -ENOMEM;
9028
9029 BUG_ON(!dev_boot_phase);
9030
9031 if (dev_proc_init())
9032 goto out;
9033
9034 if (netdev_kobject_init())
9035 goto out;
9036
9037 INIT_LIST_HEAD(&ptype_all);
9038 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9039 INIT_LIST_HEAD(&ptype_base[i]);
9040
9041 INIT_LIST_HEAD(&offload_base);
9042
9043 if (register_pernet_subsys(&netdev_net_ops))
9044 goto out;
9045
9046 /*
9047 * Initialise the packet receive queues.
9048 */
9049
9050 for_each_possible_cpu(i) {
9051 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9052 struct softnet_data *sd = &per_cpu(softnet_data, i);
9053
9054 INIT_WORK(flush, flush_backlog);
9055
9056 skb_queue_head_init(&sd->input_pkt_queue);
9057 skb_queue_head_init(&sd->process_queue);
9058#ifdef CONFIG_XFRM_OFFLOAD
9059 skb_queue_head_init(&sd->xfrm_backlog);
9060#endif
9061 INIT_LIST_HEAD(&sd->poll_list);
9062 sd->output_queue_tailp = &sd->output_queue;
9063#ifdef CONFIG_RPS
9064 sd->csd.func = rps_trigger_softirq;
9065 sd->csd.info = sd;
9066 sd->cpu = i;
9067#endif
9068
9069 sd->backlog.poll = process_backlog;
9070 sd->backlog.weight = weight_p;
9071 }
9072
9073 dev_boot_phase = 0;
9074
9075 /* The loopback device is special if any other network devices
9076 * is present in a network namespace the loopback device must
9077 * be present. Since we now dynamically allocate and free the
9078 * loopback device ensure this invariant is maintained by
9079 * keeping the loopback device as the first device on the
9080 * list of network devices. Ensuring the loopback devices
9081 * is the first device that appears and the last network device
9082 * that disappears.
9083 */
9084 if (register_pernet_device(&loopback_net_ops))
9085 goto out;
9086
9087 if (register_pernet_device(&default_device_ops))
9088 goto out;
9089
9090 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9091 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9092
9093 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9094 NULL, dev_cpu_dead);
9095 WARN_ON(rc < 0);
9096 rc = 0;
9097out:
9098 return rc;
9099}
9100
9101subsys_initcall(net_dev_init);
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <linux/ipv6.h>
122#include <linux/in.h>
123#include <linux/jhash.h>
124#include <linux/random.h>
125#include <trace/events/napi.h>
126#include <trace/events/net.h>
127#include <trace/events/skb.h>
128#include <linux/pci.h>
129#include <linux/inetdevice.h>
130#include <linux/cpu_rmap.h>
131#include <linux/static_key.h>
132#include <linux/hashtable.h>
133#include <linux/vmalloc.h>
134#include <linux/if_macvlan.h>
135
136#include "net-sysfs.h"
137
138/* Instead of increasing this, you should create a hash table. */
139#define MAX_GRO_SKBS 8
140
141/* This should be increased if a protocol with a bigger head is added. */
142#define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144static DEFINE_SPINLOCK(ptype_lock);
145static DEFINE_SPINLOCK(offload_lock);
146struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147struct list_head ptype_all __read_mostly; /* Taps */
148static struct list_head offload_base __read_mostly;
149
150static int netif_rx_internal(struct sk_buff *skb);
151
152/*
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
155 *
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157 *
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
162 *
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
166 *
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
170 */
171DEFINE_RWLOCK(dev_base_lock);
172EXPORT_SYMBOL(dev_base_lock);
173
174/* protects napi_hash addition/deletion and napi_gen_id */
175static DEFINE_SPINLOCK(napi_hash_lock);
176
177static unsigned int napi_gen_id;
178static DEFINE_HASHTABLE(napi_hash, 8);
179
180static seqcount_t devnet_rename_seq;
181
182static inline void dev_base_seq_inc(struct net *net)
183{
184 while (++net->dev_base_seq == 0);
185}
186
187static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188{
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192}
193
194static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195{
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197}
198
199static inline void rps_lock(struct softnet_data *sd)
200{
201#ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203#endif
204}
205
206static inline void rps_unlock(struct softnet_data *sd)
207{
208#ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210#endif
211}
212
213/* Device list insertion */
214static void list_netdevice(struct net_device *dev)
215{
216 struct net *net = dev_net(dev);
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
226
227 dev_base_seq_inc(net);
228}
229
230/* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
232 */
233static void unlist_netdevice(struct net_device *dev)
234{
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(dev_net(dev));
245}
246
247/*
248 * Our notifier list
249 */
250
251static RAW_NOTIFIER_HEAD(netdev_chain);
252
253/*
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
256 */
257
258DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261#ifdef CONFIG_LOCKDEP
262/*
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
265 */
266static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304{
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312}
313
314static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316{
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322}
323
324static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325{
326 int i;
327
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
332}
333#else
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336{
337}
338static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339{
340}
341#endif
342
343/*******************************************************************************
344
345 Protocol management and registration routines
346
347*******************************************************************************/
348
349/*
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
353 *
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
363 */
364
365static inline struct list_head *ptype_head(const struct packet_type *pt)
366{
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371}
372
373/**
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
376 *
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
380 *
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
384 */
385
386void dev_add_pack(struct packet_type *pt)
387{
388 struct list_head *head = ptype_head(pt);
389
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
393}
394EXPORT_SYMBOL(dev_add_pack);
395
396/**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409void __dev_remove_pack(struct packet_type *pt)
410{
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
413
414 spin_lock(&ptype_lock);
415
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
420 }
421 }
422
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424out:
425 spin_unlock(&ptype_lock);
426}
427EXPORT_SYMBOL(__dev_remove_pack);
428
429/**
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
432 *
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
437 *
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
440 */
441void dev_remove_pack(struct packet_type *pt)
442{
443 __dev_remove_pack(pt);
444
445 synchronize_net();
446}
447EXPORT_SYMBOL(dev_remove_pack);
448
449
450/**
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
453 *
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
457 *
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
461 */
462void dev_add_offload(struct packet_offload *po)
463{
464 struct list_head *head = &offload_base;
465
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
469}
470EXPORT_SYMBOL(dev_add_offload);
471
472/**
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
475 *
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
480 *
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
484 */
485static void __dev_remove_offload(struct packet_offload *po)
486{
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
489
490 spin_lock(&offload_lock);
491
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
496 }
497 }
498
499 pr_warn("dev_remove_offload: %p not found\n", po);
500out:
501 spin_unlock(&offload_lock);
502}
503
504/**
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
507 *
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
512 *
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
515 */
516void dev_remove_offload(struct packet_offload *po)
517{
518 __dev_remove_offload(po);
519
520 synchronize_net();
521}
522EXPORT_SYMBOL(dev_remove_offload);
523
524/******************************************************************************
525
526 Device Boot-time Settings Routines
527
528*******************************************************************************/
529
530/* Boot time configuration table */
531static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533/**
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
537 *
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
541 */
542static int netdev_boot_setup_add(char *name, struct ifmap *map)
543{
544 struct netdev_boot_setup *s;
545 int i;
546
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
554 }
555 }
556
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558}
559
560/**
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
563 *
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
568 */
569int netdev_boot_setup_check(struct net_device *dev)
570{
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
573
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
582 }
583 }
584 return 0;
585}
586EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589/**
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
593 *
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
598 */
599unsigned long netdev_boot_base(const char *prefix, int unit)
600{
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
604
605 sprintf(name, "%s%d", prefix, unit);
606
607 /*
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
610 */
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
613
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
618}
619
620/*
621 * Saves at boot time configured settings for any netdevice.
622 */
623int __init netdev_boot_setup(char *str)
624{
625 int ints[5];
626 struct ifmap map;
627
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
631
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
642
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
645}
646
647__setup("netdev=", netdev_boot_setup);
648
649/*******************************************************************************
650
651 Device Interface Subroutines
652
653*******************************************************************************/
654
655/**
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
665 */
666
667struct net_device *__dev_get_by_name(struct net *net, const char *name)
668{
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
671
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
675
676 return NULL;
677}
678EXPORT_SYMBOL(__dev_get_by_name);
679
680/**
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
684 *
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
690 */
691
692struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693{
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
696
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
700
701 return NULL;
702}
703EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705/**
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
709 *
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
715 */
716
717struct net_device *dev_get_by_name(struct net *net, const char *name)
718{
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727}
728EXPORT_SYMBOL(dev_get_by_name);
729
730/**
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
734 *
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
740 */
741
742struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743{
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
746
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
750
751 return NULL;
752}
753EXPORT_SYMBOL(__dev_get_by_index);
754
755/**
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
759 *
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
764 */
765
766struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767{
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776}
777EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780/**
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
789 */
790
791struct net_device *dev_get_by_index(struct net *net, int ifindex)
792{
793 struct net_device *dev;
794
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801}
802EXPORT_SYMBOL(dev_get_by_index);
803
804/**
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
809 *
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
813 */
814int netdev_get_name(struct net *net, char *name, int ifindex)
815{
816 struct net_device *dev;
817 unsigned int seq;
818
819retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
826 }
827
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
833 }
834
835 return 0;
836}
837
838/**
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
843 *
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
849 *
850 */
851
852struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
854{
855 struct net_device *dev;
856
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
861
862 return NULL;
863}
864EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867{
868 struct net_device *dev;
869
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
874
875 return NULL;
876}
877EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880{
881 struct net_device *dev, *ret = NULL;
882
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
889 }
890 rcu_read_unlock();
891 return ret;
892}
893EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895/**
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
900 *
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
904 */
905
906struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
908{
909 struct net_device *dev, *ret;
910
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
916 }
917 }
918 return ret;
919}
920EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922/**
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
925 *
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
929 */
930bool dev_valid_name(const char *name)
931{
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
938
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
943 }
944 return true;
945}
946EXPORT_SYMBOL(dev_valid_name);
947
948/**
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
953 *
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
961 */
962
963static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964{
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
970
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
973 /*
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
977 */
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
980
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
985
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
991
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
996 }
997
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1000 }
1001
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1006
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1010 */
1011 return -ENFILE;
1012}
1013
1014/**
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028int dev_alloc_name(struct net_device *dev, const char *name)
1029{
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1033
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1040}
1041EXPORT_SYMBOL(dev_alloc_name);
1042
1043static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1046{
1047 char buf[IFNAMSIZ];
1048 int ret;
1049
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1054}
1055
1056static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1059{
1060 BUG_ON(!net);
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072 return 0;
1073}
1074
1075/**
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1082 */
1083int dev_change_name(struct net_device *dev, const char *newname)
1084{
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1089
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1092
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1096
1097 write_seqcount_begin(&devnet_rename_seq);
1098
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1102 }
1103
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1110 }
1111
1112rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1118 }
1119
1120 write_seqcount_end(&devnet_rename_seq);
1121
1122 netdev_adjacent_rename_links(dev, oldname);
1123
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1127
1128 synchronize_rcu();
1129
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1133
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1136
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1148 }
1149 }
1150
1151 return err;
1152}
1153
1154/**
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1159 *
1160 * Set ifalias for a device,
1161 */
1162int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163{
1164 char *new_ifalias;
1165
1166 ASSERT_RTNL();
1167
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1170
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1175 }
1176
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1181
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1184}
1185
1186
1187/**
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1190 *
1191 * Called to indicate a device has changed features.
1192 */
1193void netdev_features_change(struct net_device *dev)
1194{
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196}
1197EXPORT_SYMBOL(netdev_features_change);
1198
1199/**
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1202 *
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1206 */
1207void netdev_state_change(struct net_device *dev)
1208{
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 }
1213}
1214EXPORT_SYMBOL(netdev_state_change);
1215
1216/**
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226void netdev_notify_peers(struct net_device *dev)
1227{
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1231}
1232EXPORT_SYMBOL(netdev_notify_peers);
1233
1234static int __dev_open(struct net_device *dev)
1235{
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1238
1239 ASSERT_RTNL();
1240
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1243
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1247 */
1248 netpoll_poll_disable(dev);
1249
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1254
1255 set_bit(__LINK_STATE_START, &dev->state);
1256
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1259
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1262
1263 netpoll_poll_enable(dev);
1264
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1273 }
1274
1275 return ret;
1276}
1277
1278/**
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1281 *
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1286 *
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1289 */
1290int dev_open(struct net_device *dev)
1291{
1292 int ret;
1293
1294 if (dev->flags & IFF_UP)
1295 return 0;
1296
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1300
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304 return ret;
1305}
1306EXPORT_SYMBOL(dev_open);
1307
1308static int __dev_close_many(struct list_head *head)
1309{
1310 struct net_device *dev;
1311
1312 ASSERT_RTNL();
1313 might_sleep();
1314
1315 list_for_each_entry(dev, head, close_list) {
1316 /* Temporarily disable netpoll until the interface is down */
1317 netpoll_poll_disable(dev);
1318
1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321 clear_bit(__LINK_STATE_START, &dev->state);
1322
1323 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324 * can be even on different cpu. So just clear netif_running().
1325 *
1326 * dev->stop() will invoke napi_disable() on all of it's
1327 * napi_struct instances on this device.
1328 */
1329 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1330 }
1331
1332 dev_deactivate_many(head);
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 const struct net_device_ops *ops = dev->netdev_ops;
1336
1337 /*
1338 * Call the device specific close. This cannot fail.
1339 * Only if device is UP
1340 *
1341 * We allow it to be called even after a DETACH hot-plug
1342 * event.
1343 */
1344 if (ops->ndo_stop)
1345 ops->ndo_stop(dev);
1346
1347 dev->flags &= ~IFF_UP;
1348 net_dmaengine_put();
1349 netpoll_poll_enable(dev);
1350 }
1351
1352 return 0;
1353}
1354
1355static int __dev_close(struct net_device *dev)
1356{
1357 int retval;
1358 LIST_HEAD(single);
1359
1360 list_add(&dev->close_list, &single);
1361 retval = __dev_close_many(&single);
1362 list_del(&single);
1363
1364 return retval;
1365}
1366
1367static int dev_close_many(struct list_head *head)
1368{
1369 struct net_device *dev, *tmp;
1370
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1375
1376 __dev_close_many(head);
1377
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1382 }
1383
1384 return 0;
1385}
1386
1387/**
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1390 *
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1395 */
1396int dev_close(struct net_device *dev)
1397{
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1400
1401 list_add(&dev->close_list, &single);
1402 dev_close_many(&single);
1403 list_del(&single);
1404 }
1405 return 0;
1406}
1407EXPORT_SYMBOL(dev_close);
1408
1409
1410/**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418void dev_disable_lro(struct net_device *dev)
1419{
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436}
1437EXPORT_SYMBOL(dev_disable_lro);
1438
1439static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441{
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446}
1447
1448static int dev_boot_phase = 1;
1449
1450/**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464int register_netdevice_notifier(struct notifier_block *nb)
1465{
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514}
1515EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517/**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531int unregister_netdevice_notifier(struct notifier_block *nb)
1532{
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552unlock:
1553 rtnl_unlock();
1554 return err;
1555}
1556EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558/**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571{
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575}
1576
1577/**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587{
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591}
1592EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594static struct static_key netstamp_needed __read_mostly;
1595#ifdef HAVE_JUMP_LABEL
1596/* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600static atomic_t netstamp_needed_deferred;
1601#endif
1602
1603void net_enable_timestamp(void)
1604{
1605#ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613#endif
1614 static_key_slow_inc(&netstamp_needed);
1615}
1616EXPORT_SYMBOL(net_enable_timestamp);
1617
1618void net_disable_timestamp(void)
1619{
1620#ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625#endif
1626 static_key_slow_dec(&netstamp_needed);
1627}
1628EXPORT_SYMBOL(net_disable_timestamp);
1629
1630static inline void net_timestamp_set(struct sk_buff *skb)
1631{
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635}
1636
1637#define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644{
1645 unsigned int len;
1646
1647 if (!(dev->flags & IFF_UP))
1648 return false;
1649
1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 if (skb->len <= len)
1652 return true;
1653
1654 /* if TSO is enabled, we don't care about the length as the packet
1655 * could be forwarded without being segmented before
1656 */
1657 if (skb_is_gso(skb))
1658 return true;
1659
1660 return false;
1661}
1662EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
1664/**
1665 * dev_forward_skb - loopback an skb to another netif
1666 *
1667 * @dev: destination network device
1668 * @skb: buffer to forward
1669 *
1670 * return values:
1671 * NET_RX_SUCCESS (no congestion)
1672 * NET_RX_DROP (packet was dropped, but freed)
1673 *
1674 * dev_forward_skb can be used for injecting an skb from the
1675 * start_xmit function of one device into the receive queue
1676 * of another device.
1677 *
1678 * The receiving device may be in another namespace, so
1679 * we have to clear all information in the skb that could
1680 * impact namespace isolation.
1681 */
1682int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return netif_rx_internal(skb);
1702}
1703EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1708{
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713}
1714
1715static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716{
1717 if (!ptype->af_packet_priv || !skb->sk)
1718 return false;
1719
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1724
1725 return false;
1726}
1727
1728/*
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1731 */
1732
1733static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734{
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1738
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1743 */
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1750 }
1751
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1753 if (!skb2)
1754 break;
1755
1756 net_timestamp_set(skb2);
1757
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1761 */
1762 skb_reset_mac_header(skb2);
1763
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
1769 skb_reset_network_header(skb2);
1770 }
1771
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1774 pt_prev = ptype;
1775 }
1776 }
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 rcu_read_unlock();
1780}
1781
1782/**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
1795static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796{
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 dev->num_tc = 0;
1804 return;
1805 }
1806
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1810
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
1815 netdev_set_prio_tc_map(dev, i, 0);
1816 }
1817 }
1818}
1819
1820#ifdef CONFIG_XPS
1821static DEFINE_MUTEX(xps_map_mutex);
1822#define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
1827{
1828 struct xps_map *map = NULL;
1829 int pos;
1830
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1842 }
1843 break;
1844 }
1845 }
1846
1847 return map;
1848}
1849
1850static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851{
1852 struct xps_dev_maps *dev_maps;
1853 int cpu, i;
1854 bool active = false;
1855
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1858
1859 if (!dev_maps)
1860 goto out_no_maps;
1861
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1866 }
1867 if (i == dev->num_tx_queues)
1868 active = true;
1869 }
1870
1871 if (!active) {
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1874 }
1875
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1879
1880out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1882}
1883
1884static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1886{
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1890
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1895 }
1896
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1901
1902 alloc_len = map->alloc_len * 2;
1903 }
1904
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1910
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1915
1916 return new_map;
1917}
1918
1919int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
1921{
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968#ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973#endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041}
2042EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044#endif
2045/*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050{
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070#ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072#endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078}
2079EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081#ifdef CONFIG_SYSFS
2082/**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093{
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110}
2111EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112#endif
2113
2114/**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120int netif_get_num_default_rss_queues(void)
2121{
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123}
2124EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126static inline void __netif_reschedule(struct Qdisc *q)
2127{
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138}
2139
2140void __netif_schedule(struct Qdisc *q)
2141{
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144}
2145EXPORT_SYMBOL(__netif_schedule);
2146
2147struct dev_kfree_skb_cb {
2148 enum skb_free_reason reason;
2149};
2150
2151static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152{
2153 return (struct dev_kfree_skb_cb *)skb->cb;
2154}
2155
2156void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157{
2158 unsigned long flags;
2159
2160 if (likely(atomic_read(&skb->users) == 1)) {
2161 smp_rmb();
2162 atomic_set(&skb->users, 0);
2163 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 return;
2165 }
2166 get_kfree_skb_cb(skb)->reason = reason;
2167 local_irq_save(flags);
2168 skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 __this_cpu_write(softnet_data.completion_queue, skb);
2170 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 local_irq_restore(flags);
2172}
2173EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174
2175void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176{
2177 if (in_irq() || irqs_disabled())
2178 __dev_kfree_skb_irq(skb, reason);
2179 else
2180 dev_kfree_skb(skb);
2181}
2182EXPORT_SYMBOL(__dev_kfree_skb_any);
2183
2184
2185/**
2186 * netif_device_detach - mark device as removed
2187 * @dev: network device
2188 *
2189 * Mark device as removed from system and therefore no longer available.
2190 */
2191void netif_device_detach(struct net_device *dev)
2192{
2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 netif_running(dev)) {
2195 netif_tx_stop_all_queues(dev);
2196 }
2197}
2198EXPORT_SYMBOL(netif_device_detach);
2199
2200/**
2201 * netif_device_attach - mark device as attached
2202 * @dev: network device
2203 *
2204 * Mark device as attached from system and restart if needed.
2205 */
2206void netif_device_attach(struct net_device *dev)
2207{
2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 netif_running(dev)) {
2210 netif_tx_wake_all_queues(dev);
2211 __netdev_watchdog_up(dev);
2212 }
2213}
2214EXPORT_SYMBOL(netif_device_attach);
2215
2216static void skb_warn_bad_offload(const struct sk_buff *skb)
2217{
2218 static const netdev_features_t null_features = 0;
2219 struct net_device *dev = skb->dev;
2220 const char *driver = "";
2221
2222 if (!net_ratelimit())
2223 return;
2224
2225 if (dev && dev->dev.parent)
2226 driver = dev_driver_string(dev->dev.parent);
2227
2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 "gso_type=%d ip_summed=%d\n",
2230 driver, dev ? &dev->features : &null_features,
2231 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 skb_shinfo(skb)->gso_type, skb->ip_summed);
2234}
2235
2236/*
2237 * Invalidate hardware checksum when packet is to be mangled, and
2238 * complete checksum manually on outgoing path.
2239 */
2240int skb_checksum_help(struct sk_buff *skb)
2241{
2242 __wsum csum;
2243 int ret = 0, offset;
2244
2245 if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 goto out_set_summed;
2247
2248 if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 skb_warn_bad_offload(skb);
2250 return -EINVAL;
2251 }
2252
2253 /* Before computing a checksum, we should make sure no frag could
2254 * be modified by an external entity : checksum could be wrong.
2255 */
2256 if (skb_has_shared_frag(skb)) {
2257 ret = __skb_linearize(skb);
2258 if (ret)
2259 goto out;
2260 }
2261
2262 offset = skb_checksum_start_offset(skb);
2263 BUG_ON(offset >= skb_headlen(skb));
2264 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265
2266 offset += skb->csum_offset;
2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268
2269 if (skb_cloned(skb) &&
2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 if (ret)
2273 goto out;
2274 }
2275
2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277out_set_summed:
2278 skb->ip_summed = CHECKSUM_NONE;
2279out:
2280 return ret;
2281}
2282EXPORT_SYMBOL(skb_checksum_help);
2283
2284__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285{
2286 unsigned int vlan_depth = skb->mac_len;
2287 __be16 type = skb->protocol;
2288
2289 /* Tunnel gso handlers can set protocol to ethernet. */
2290 if (type == htons(ETH_P_TEB)) {
2291 struct ethhdr *eth;
2292
2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 return 0;
2295
2296 eth = (struct ethhdr *)skb_mac_header(skb);
2297 type = eth->h_proto;
2298 }
2299
2300 /* if skb->protocol is 802.1Q/AD then the header should already be
2301 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2302 * ETH_HLEN otherwise
2303 */
2304 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2305 if (vlan_depth) {
2306 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2307 return 0;
2308 vlan_depth -= VLAN_HLEN;
2309 } else {
2310 vlan_depth = ETH_HLEN;
2311 }
2312 do {
2313 struct vlan_hdr *vh;
2314
2315 if (unlikely(!pskb_may_pull(skb,
2316 vlan_depth + VLAN_HLEN)))
2317 return 0;
2318
2319 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2320 type = vh->h_vlan_encapsulated_proto;
2321 vlan_depth += VLAN_HLEN;
2322 } while (type == htons(ETH_P_8021Q) ||
2323 type == htons(ETH_P_8021AD));
2324 }
2325
2326 *depth = vlan_depth;
2327
2328 return type;
2329}
2330
2331/**
2332 * skb_mac_gso_segment - mac layer segmentation handler.
2333 * @skb: buffer to segment
2334 * @features: features for the output path (see dev->features)
2335 */
2336struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2337 netdev_features_t features)
2338{
2339 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2340 struct packet_offload *ptype;
2341 int vlan_depth = skb->mac_len;
2342 __be16 type = skb_network_protocol(skb, &vlan_depth);
2343
2344 if (unlikely(!type))
2345 return ERR_PTR(-EINVAL);
2346
2347 __skb_pull(skb, vlan_depth);
2348
2349 rcu_read_lock();
2350 list_for_each_entry_rcu(ptype, &offload_base, list) {
2351 if (ptype->type == type && ptype->callbacks.gso_segment) {
2352 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2353 int err;
2354
2355 err = ptype->callbacks.gso_send_check(skb);
2356 segs = ERR_PTR(err);
2357 if (err || skb_gso_ok(skb, features))
2358 break;
2359 __skb_push(skb, (skb->data -
2360 skb_network_header(skb)));
2361 }
2362 segs = ptype->callbacks.gso_segment(skb, features);
2363 break;
2364 }
2365 }
2366 rcu_read_unlock();
2367
2368 __skb_push(skb, skb->data - skb_mac_header(skb));
2369
2370 return segs;
2371}
2372EXPORT_SYMBOL(skb_mac_gso_segment);
2373
2374
2375/* openvswitch calls this on rx path, so we need a different check.
2376 */
2377static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2378{
2379 if (tx_path)
2380 return skb->ip_summed != CHECKSUM_PARTIAL;
2381 else
2382 return skb->ip_summed == CHECKSUM_NONE;
2383}
2384
2385/**
2386 * __skb_gso_segment - Perform segmentation on skb.
2387 * @skb: buffer to segment
2388 * @features: features for the output path (see dev->features)
2389 * @tx_path: whether it is called in TX path
2390 *
2391 * This function segments the given skb and returns a list of segments.
2392 *
2393 * It may return NULL if the skb requires no segmentation. This is
2394 * only possible when GSO is used for verifying header integrity.
2395 */
2396struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2397 netdev_features_t features, bool tx_path)
2398{
2399 if (unlikely(skb_needs_check(skb, tx_path))) {
2400 int err;
2401
2402 skb_warn_bad_offload(skb);
2403
2404 if (skb_header_cloned(skb) &&
2405 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2406 return ERR_PTR(err);
2407 }
2408
2409 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2410 SKB_GSO_CB(skb)->encap_level = 0;
2411
2412 skb_reset_mac_header(skb);
2413 skb_reset_mac_len(skb);
2414
2415 return skb_mac_gso_segment(skb, features);
2416}
2417EXPORT_SYMBOL(__skb_gso_segment);
2418
2419/* Take action when hardware reception checksum errors are detected. */
2420#ifdef CONFIG_BUG
2421void netdev_rx_csum_fault(struct net_device *dev)
2422{
2423 if (net_ratelimit()) {
2424 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2425 dump_stack();
2426 }
2427}
2428EXPORT_SYMBOL(netdev_rx_csum_fault);
2429#endif
2430
2431/* Actually, we should eliminate this check as soon as we know, that:
2432 * 1. IOMMU is present and allows to map all the memory.
2433 * 2. No high memory really exists on this machine.
2434 */
2435
2436static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2437{
2438#ifdef CONFIG_HIGHMEM
2439 int i;
2440 if (!(dev->features & NETIF_F_HIGHDMA)) {
2441 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2442 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2443 if (PageHighMem(skb_frag_page(frag)))
2444 return 1;
2445 }
2446 }
2447
2448 if (PCI_DMA_BUS_IS_PHYS) {
2449 struct device *pdev = dev->dev.parent;
2450
2451 if (!pdev)
2452 return 0;
2453 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2454 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2455 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2456 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2457 return 1;
2458 }
2459 }
2460#endif
2461 return 0;
2462}
2463
2464struct dev_gso_cb {
2465 void (*destructor)(struct sk_buff *skb);
2466};
2467
2468#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2469
2470static void dev_gso_skb_destructor(struct sk_buff *skb)
2471{
2472 struct dev_gso_cb *cb;
2473
2474 kfree_skb_list(skb->next);
2475 skb->next = NULL;
2476
2477 cb = DEV_GSO_CB(skb);
2478 if (cb->destructor)
2479 cb->destructor(skb);
2480}
2481
2482/**
2483 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2484 * @skb: buffer to segment
2485 * @features: device features as applicable to this skb
2486 *
2487 * This function segments the given skb and stores the list of segments
2488 * in skb->next.
2489 */
2490static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2491{
2492 struct sk_buff *segs;
2493
2494 segs = skb_gso_segment(skb, features);
2495
2496 /* Verifying header integrity only. */
2497 if (!segs)
2498 return 0;
2499
2500 if (IS_ERR(segs))
2501 return PTR_ERR(segs);
2502
2503 skb->next = segs;
2504 DEV_GSO_CB(skb)->destructor = skb->destructor;
2505 skb->destructor = dev_gso_skb_destructor;
2506
2507 return 0;
2508}
2509
2510static netdev_features_t harmonize_features(struct sk_buff *skb,
2511 netdev_features_t features)
2512{
2513 int tmp;
2514
2515 if (skb->ip_summed != CHECKSUM_NONE &&
2516 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2517 features &= ~NETIF_F_ALL_CSUM;
2518 } else if (illegal_highdma(skb->dev, skb)) {
2519 features &= ~NETIF_F_SG;
2520 }
2521
2522 return features;
2523}
2524
2525netdev_features_t netif_skb_features(struct sk_buff *skb)
2526{
2527 __be16 protocol = skb->protocol;
2528 netdev_features_t features = skb->dev->features;
2529
2530 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2531 features &= ~NETIF_F_GSO_MASK;
2532
2533 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2534 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2535 protocol = veh->h_vlan_encapsulated_proto;
2536 } else if (!vlan_tx_tag_present(skb)) {
2537 return harmonize_features(skb, features);
2538 }
2539
2540 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2541 NETIF_F_HW_VLAN_STAG_TX);
2542
2543 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2544 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2545 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2546 NETIF_F_HW_VLAN_STAG_TX;
2547
2548 return harmonize_features(skb, features);
2549}
2550EXPORT_SYMBOL(netif_skb_features);
2551
2552int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2553 struct netdev_queue *txq)
2554{
2555 const struct net_device_ops *ops = dev->netdev_ops;
2556 int rc = NETDEV_TX_OK;
2557 unsigned int skb_len;
2558
2559 if (likely(!skb->next)) {
2560 netdev_features_t features;
2561
2562 /*
2563 * If device doesn't need skb->dst, release it right now while
2564 * its hot in this cpu cache
2565 */
2566 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2567 skb_dst_drop(skb);
2568
2569 features = netif_skb_features(skb);
2570
2571 if (vlan_tx_tag_present(skb) &&
2572 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2573 skb = __vlan_put_tag(skb, skb->vlan_proto,
2574 vlan_tx_tag_get(skb));
2575 if (unlikely(!skb))
2576 goto out;
2577
2578 skb->vlan_tci = 0;
2579 }
2580
2581 /* If encapsulation offload request, verify we are testing
2582 * hardware encapsulation features instead of standard
2583 * features for the netdev
2584 */
2585 if (skb->encapsulation)
2586 features &= dev->hw_enc_features;
2587
2588 if (netif_needs_gso(skb, features)) {
2589 if (unlikely(dev_gso_segment(skb, features)))
2590 goto out_kfree_skb;
2591 if (skb->next)
2592 goto gso;
2593 } else {
2594 if (skb_needs_linearize(skb, features) &&
2595 __skb_linearize(skb))
2596 goto out_kfree_skb;
2597
2598 /* If packet is not checksummed and device does not
2599 * support checksumming for this protocol, complete
2600 * checksumming here.
2601 */
2602 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2603 if (skb->encapsulation)
2604 skb_set_inner_transport_header(skb,
2605 skb_checksum_start_offset(skb));
2606 else
2607 skb_set_transport_header(skb,
2608 skb_checksum_start_offset(skb));
2609 if (!(features & NETIF_F_ALL_CSUM) &&
2610 skb_checksum_help(skb))
2611 goto out_kfree_skb;
2612 }
2613 }
2614
2615 if (!list_empty(&ptype_all))
2616 dev_queue_xmit_nit(skb, dev);
2617
2618 skb_len = skb->len;
2619 trace_net_dev_start_xmit(skb, dev);
2620 rc = ops->ndo_start_xmit(skb, dev);
2621 trace_net_dev_xmit(skb, rc, dev, skb_len);
2622 if (rc == NETDEV_TX_OK)
2623 txq_trans_update(txq);
2624 return rc;
2625 }
2626
2627gso:
2628 do {
2629 struct sk_buff *nskb = skb->next;
2630
2631 skb->next = nskb->next;
2632 nskb->next = NULL;
2633
2634 if (!list_empty(&ptype_all))
2635 dev_queue_xmit_nit(nskb, dev);
2636
2637 skb_len = nskb->len;
2638 trace_net_dev_start_xmit(nskb, dev);
2639 rc = ops->ndo_start_xmit(nskb, dev);
2640 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2641 if (unlikely(rc != NETDEV_TX_OK)) {
2642 if (rc & ~NETDEV_TX_MASK)
2643 goto out_kfree_gso_skb;
2644 nskb->next = skb->next;
2645 skb->next = nskb;
2646 return rc;
2647 }
2648 txq_trans_update(txq);
2649 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2650 return NETDEV_TX_BUSY;
2651 } while (skb->next);
2652
2653out_kfree_gso_skb:
2654 if (likely(skb->next == NULL)) {
2655 skb->destructor = DEV_GSO_CB(skb)->destructor;
2656 consume_skb(skb);
2657 return rc;
2658 }
2659out_kfree_skb:
2660 kfree_skb(skb);
2661out:
2662 return rc;
2663}
2664EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2665
2666static void qdisc_pkt_len_init(struct sk_buff *skb)
2667{
2668 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2669
2670 qdisc_skb_cb(skb)->pkt_len = skb->len;
2671
2672 /* To get more precise estimation of bytes sent on wire,
2673 * we add to pkt_len the headers size of all segments
2674 */
2675 if (shinfo->gso_size) {
2676 unsigned int hdr_len;
2677 u16 gso_segs = shinfo->gso_segs;
2678
2679 /* mac layer + network layer */
2680 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2681
2682 /* + transport layer */
2683 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2684 hdr_len += tcp_hdrlen(skb);
2685 else
2686 hdr_len += sizeof(struct udphdr);
2687
2688 if (shinfo->gso_type & SKB_GSO_DODGY)
2689 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2690 shinfo->gso_size);
2691
2692 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2693 }
2694}
2695
2696static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2697 struct net_device *dev,
2698 struct netdev_queue *txq)
2699{
2700 spinlock_t *root_lock = qdisc_lock(q);
2701 bool contended;
2702 int rc;
2703
2704 qdisc_pkt_len_init(skb);
2705 qdisc_calculate_pkt_len(skb, q);
2706 /*
2707 * Heuristic to force contended enqueues to serialize on a
2708 * separate lock before trying to get qdisc main lock.
2709 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2710 * and dequeue packets faster.
2711 */
2712 contended = qdisc_is_running(q);
2713 if (unlikely(contended))
2714 spin_lock(&q->busylock);
2715
2716 spin_lock(root_lock);
2717 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2718 kfree_skb(skb);
2719 rc = NET_XMIT_DROP;
2720 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2721 qdisc_run_begin(q)) {
2722 /*
2723 * This is a work-conserving queue; there are no old skbs
2724 * waiting to be sent out; and the qdisc is not running -
2725 * xmit the skb directly.
2726 */
2727 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2728 skb_dst_force(skb);
2729
2730 qdisc_bstats_update(q, skb);
2731
2732 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2733 if (unlikely(contended)) {
2734 spin_unlock(&q->busylock);
2735 contended = false;
2736 }
2737 __qdisc_run(q);
2738 } else
2739 qdisc_run_end(q);
2740
2741 rc = NET_XMIT_SUCCESS;
2742 } else {
2743 skb_dst_force(skb);
2744 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2745 if (qdisc_run_begin(q)) {
2746 if (unlikely(contended)) {
2747 spin_unlock(&q->busylock);
2748 contended = false;
2749 }
2750 __qdisc_run(q);
2751 }
2752 }
2753 spin_unlock(root_lock);
2754 if (unlikely(contended))
2755 spin_unlock(&q->busylock);
2756 return rc;
2757}
2758
2759#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2760static void skb_update_prio(struct sk_buff *skb)
2761{
2762 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2763
2764 if (!skb->priority && skb->sk && map) {
2765 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2766
2767 if (prioidx < map->priomap_len)
2768 skb->priority = map->priomap[prioidx];
2769 }
2770}
2771#else
2772#define skb_update_prio(skb)
2773#endif
2774
2775static DEFINE_PER_CPU(int, xmit_recursion);
2776#define RECURSION_LIMIT 10
2777
2778/**
2779 * dev_loopback_xmit - loop back @skb
2780 * @skb: buffer to transmit
2781 */
2782int dev_loopback_xmit(struct sk_buff *skb)
2783{
2784 skb_reset_mac_header(skb);
2785 __skb_pull(skb, skb_network_offset(skb));
2786 skb->pkt_type = PACKET_LOOPBACK;
2787 skb->ip_summed = CHECKSUM_UNNECESSARY;
2788 WARN_ON(!skb_dst(skb));
2789 skb_dst_force(skb);
2790 netif_rx_ni(skb);
2791 return 0;
2792}
2793EXPORT_SYMBOL(dev_loopback_xmit);
2794
2795/**
2796 * __dev_queue_xmit - transmit a buffer
2797 * @skb: buffer to transmit
2798 * @accel_priv: private data used for L2 forwarding offload
2799 *
2800 * Queue a buffer for transmission to a network device. The caller must
2801 * have set the device and priority and built the buffer before calling
2802 * this function. The function can be called from an interrupt.
2803 *
2804 * A negative errno code is returned on a failure. A success does not
2805 * guarantee the frame will be transmitted as it may be dropped due
2806 * to congestion or traffic shaping.
2807 *
2808 * -----------------------------------------------------------------------------------
2809 * I notice this method can also return errors from the queue disciplines,
2810 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2811 * be positive.
2812 *
2813 * Regardless of the return value, the skb is consumed, so it is currently
2814 * difficult to retry a send to this method. (You can bump the ref count
2815 * before sending to hold a reference for retry if you are careful.)
2816 *
2817 * When calling this method, interrupts MUST be enabled. This is because
2818 * the BH enable code must have IRQs enabled so that it will not deadlock.
2819 * --BLG
2820 */
2821static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2822{
2823 struct net_device *dev = skb->dev;
2824 struct netdev_queue *txq;
2825 struct Qdisc *q;
2826 int rc = -ENOMEM;
2827
2828 skb_reset_mac_header(skb);
2829
2830 /* Disable soft irqs for various locks below. Also
2831 * stops preemption for RCU.
2832 */
2833 rcu_read_lock_bh();
2834
2835 skb_update_prio(skb);
2836
2837 txq = netdev_pick_tx(dev, skb, accel_priv);
2838 q = rcu_dereference_bh(txq->qdisc);
2839
2840#ifdef CONFIG_NET_CLS_ACT
2841 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2842#endif
2843 trace_net_dev_queue(skb);
2844 if (q->enqueue) {
2845 rc = __dev_xmit_skb(skb, q, dev, txq);
2846 goto out;
2847 }
2848
2849 /* The device has no queue. Common case for software devices:
2850 loopback, all the sorts of tunnels...
2851
2852 Really, it is unlikely that netif_tx_lock protection is necessary
2853 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2854 counters.)
2855 However, it is possible, that they rely on protection
2856 made by us here.
2857
2858 Check this and shot the lock. It is not prone from deadlocks.
2859 Either shot noqueue qdisc, it is even simpler 8)
2860 */
2861 if (dev->flags & IFF_UP) {
2862 int cpu = smp_processor_id(); /* ok because BHs are off */
2863
2864 if (txq->xmit_lock_owner != cpu) {
2865
2866 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2867 goto recursion_alert;
2868
2869 HARD_TX_LOCK(dev, txq, cpu);
2870
2871 if (!netif_xmit_stopped(txq)) {
2872 __this_cpu_inc(xmit_recursion);
2873 rc = dev_hard_start_xmit(skb, dev, txq);
2874 __this_cpu_dec(xmit_recursion);
2875 if (dev_xmit_complete(rc)) {
2876 HARD_TX_UNLOCK(dev, txq);
2877 goto out;
2878 }
2879 }
2880 HARD_TX_UNLOCK(dev, txq);
2881 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2882 dev->name);
2883 } else {
2884 /* Recursion is detected! It is possible,
2885 * unfortunately
2886 */
2887recursion_alert:
2888 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2889 dev->name);
2890 }
2891 }
2892
2893 rc = -ENETDOWN;
2894 rcu_read_unlock_bh();
2895
2896 atomic_long_inc(&dev->tx_dropped);
2897 kfree_skb(skb);
2898 return rc;
2899out:
2900 rcu_read_unlock_bh();
2901 return rc;
2902}
2903
2904int dev_queue_xmit(struct sk_buff *skb)
2905{
2906 return __dev_queue_xmit(skb, NULL);
2907}
2908EXPORT_SYMBOL(dev_queue_xmit);
2909
2910int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2911{
2912 return __dev_queue_xmit(skb, accel_priv);
2913}
2914EXPORT_SYMBOL(dev_queue_xmit_accel);
2915
2916
2917/*=======================================================================
2918 Receiver routines
2919 =======================================================================*/
2920
2921int netdev_max_backlog __read_mostly = 1000;
2922EXPORT_SYMBOL(netdev_max_backlog);
2923
2924int netdev_tstamp_prequeue __read_mostly = 1;
2925int netdev_budget __read_mostly = 300;
2926int weight_p __read_mostly = 64; /* old backlog weight */
2927
2928/* Called with irq disabled */
2929static inline void ____napi_schedule(struct softnet_data *sd,
2930 struct napi_struct *napi)
2931{
2932 list_add_tail(&napi->poll_list, &sd->poll_list);
2933 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2934}
2935
2936#ifdef CONFIG_RPS
2937
2938/* One global table that all flow-based protocols share. */
2939struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2940EXPORT_SYMBOL(rps_sock_flow_table);
2941
2942struct static_key rps_needed __read_mostly;
2943
2944static struct rps_dev_flow *
2945set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2946 struct rps_dev_flow *rflow, u16 next_cpu)
2947{
2948 if (next_cpu != RPS_NO_CPU) {
2949#ifdef CONFIG_RFS_ACCEL
2950 struct netdev_rx_queue *rxqueue;
2951 struct rps_dev_flow_table *flow_table;
2952 struct rps_dev_flow *old_rflow;
2953 u32 flow_id;
2954 u16 rxq_index;
2955 int rc;
2956
2957 /* Should we steer this flow to a different hardware queue? */
2958 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2959 !(dev->features & NETIF_F_NTUPLE))
2960 goto out;
2961 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2962 if (rxq_index == skb_get_rx_queue(skb))
2963 goto out;
2964
2965 rxqueue = dev->_rx + rxq_index;
2966 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2967 if (!flow_table)
2968 goto out;
2969 flow_id = skb_get_hash(skb) & flow_table->mask;
2970 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2971 rxq_index, flow_id);
2972 if (rc < 0)
2973 goto out;
2974 old_rflow = rflow;
2975 rflow = &flow_table->flows[flow_id];
2976 rflow->filter = rc;
2977 if (old_rflow->filter == rflow->filter)
2978 old_rflow->filter = RPS_NO_FILTER;
2979 out:
2980#endif
2981 rflow->last_qtail =
2982 per_cpu(softnet_data, next_cpu).input_queue_head;
2983 }
2984
2985 rflow->cpu = next_cpu;
2986 return rflow;
2987}
2988
2989/*
2990 * get_rps_cpu is called from netif_receive_skb and returns the target
2991 * CPU from the RPS map of the receiving queue for a given skb.
2992 * rcu_read_lock must be held on entry.
2993 */
2994static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2995 struct rps_dev_flow **rflowp)
2996{
2997 struct netdev_rx_queue *rxqueue;
2998 struct rps_map *map;
2999 struct rps_dev_flow_table *flow_table;
3000 struct rps_sock_flow_table *sock_flow_table;
3001 int cpu = -1;
3002 u16 tcpu;
3003 u32 hash;
3004
3005 if (skb_rx_queue_recorded(skb)) {
3006 u16 index = skb_get_rx_queue(skb);
3007 if (unlikely(index >= dev->real_num_rx_queues)) {
3008 WARN_ONCE(dev->real_num_rx_queues > 1,
3009 "%s received packet on queue %u, but number "
3010 "of RX queues is %u\n",
3011 dev->name, index, dev->real_num_rx_queues);
3012 goto done;
3013 }
3014 rxqueue = dev->_rx + index;
3015 } else
3016 rxqueue = dev->_rx;
3017
3018 map = rcu_dereference(rxqueue->rps_map);
3019 if (map) {
3020 if (map->len == 1 &&
3021 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3022 tcpu = map->cpus[0];
3023 if (cpu_online(tcpu))
3024 cpu = tcpu;
3025 goto done;
3026 }
3027 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3028 goto done;
3029 }
3030
3031 skb_reset_network_header(skb);
3032 hash = skb_get_hash(skb);
3033 if (!hash)
3034 goto done;
3035
3036 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3037 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3038 if (flow_table && sock_flow_table) {
3039 u16 next_cpu;
3040 struct rps_dev_flow *rflow;
3041
3042 rflow = &flow_table->flows[hash & flow_table->mask];
3043 tcpu = rflow->cpu;
3044
3045 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3046
3047 /*
3048 * If the desired CPU (where last recvmsg was done) is
3049 * different from current CPU (one in the rx-queue flow
3050 * table entry), switch if one of the following holds:
3051 * - Current CPU is unset (equal to RPS_NO_CPU).
3052 * - Current CPU is offline.
3053 * - The current CPU's queue tail has advanced beyond the
3054 * last packet that was enqueued using this table entry.
3055 * This guarantees that all previous packets for the flow
3056 * have been dequeued, thus preserving in order delivery.
3057 */
3058 if (unlikely(tcpu != next_cpu) &&
3059 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3060 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3061 rflow->last_qtail)) >= 0)) {
3062 tcpu = next_cpu;
3063 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3064 }
3065
3066 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3067 *rflowp = rflow;
3068 cpu = tcpu;
3069 goto done;
3070 }
3071 }
3072
3073 if (map) {
3074 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3075
3076 if (cpu_online(tcpu)) {
3077 cpu = tcpu;
3078 goto done;
3079 }
3080 }
3081
3082done:
3083 return cpu;
3084}
3085
3086#ifdef CONFIG_RFS_ACCEL
3087
3088/**
3089 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3090 * @dev: Device on which the filter was set
3091 * @rxq_index: RX queue index
3092 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3093 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3094 *
3095 * Drivers that implement ndo_rx_flow_steer() should periodically call
3096 * this function for each installed filter and remove the filters for
3097 * which it returns %true.
3098 */
3099bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3100 u32 flow_id, u16 filter_id)
3101{
3102 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3103 struct rps_dev_flow_table *flow_table;
3104 struct rps_dev_flow *rflow;
3105 bool expire = true;
3106 int cpu;
3107
3108 rcu_read_lock();
3109 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3110 if (flow_table && flow_id <= flow_table->mask) {
3111 rflow = &flow_table->flows[flow_id];
3112 cpu = ACCESS_ONCE(rflow->cpu);
3113 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3114 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3115 rflow->last_qtail) <
3116 (int)(10 * flow_table->mask)))
3117 expire = false;
3118 }
3119 rcu_read_unlock();
3120 return expire;
3121}
3122EXPORT_SYMBOL(rps_may_expire_flow);
3123
3124#endif /* CONFIG_RFS_ACCEL */
3125
3126/* Called from hardirq (IPI) context */
3127static void rps_trigger_softirq(void *data)
3128{
3129 struct softnet_data *sd = data;
3130
3131 ____napi_schedule(sd, &sd->backlog);
3132 sd->received_rps++;
3133}
3134
3135#endif /* CONFIG_RPS */
3136
3137/*
3138 * Check if this softnet_data structure is another cpu one
3139 * If yes, queue it to our IPI list and return 1
3140 * If no, return 0
3141 */
3142static int rps_ipi_queued(struct softnet_data *sd)
3143{
3144#ifdef CONFIG_RPS
3145 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3146
3147 if (sd != mysd) {
3148 sd->rps_ipi_next = mysd->rps_ipi_list;
3149 mysd->rps_ipi_list = sd;
3150
3151 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3152 return 1;
3153 }
3154#endif /* CONFIG_RPS */
3155 return 0;
3156}
3157
3158#ifdef CONFIG_NET_FLOW_LIMIT
3159int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3160#endif
3161
3162static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3163{
3164#ifdef CONFIG_NET_FLOW_LIMIT
3165 struct sd_flow_limit *fl;
3166 struct softnet_data *sd;
3167 unsigned int old_flow, new_flow;
3168
3169 if (qlen < (netdev_max_backlog >> 1))
3170 return false;
3171
3172 sd = &__get_cpu_var(softnet_data);
3173
3174 rcu_read_lock();
3175 fl = rcu_dereference(sd->flow_limit);
3176 if (fl) {
3177 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3178 old_flow = fl->history[fl->history_head];
3179 fl->history[fl->history_head] = new_flow;
3180
3181 fl->history_head++;
3182 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3183
3184 if (likely(fl->buckets[old_flow]))
3185 fl->buckets[old_flow]--;
3186
3187 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3188 fl->count++;
3189 rcu_read_unlock();
3190 return true;
3191 }
3192 }
3193 rcu_read_unlock();
3194#endif
3195 return false;
3196}
3197
3198/*
3199 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3200 * queue (may be a remote CPU queue).
3201 */
3202static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3203 unsigned int *qtail)
3204{
3205 struct softnet_data *sd;
3206 unsigned long flags;
3207 unsigned int qlen;
3208
3209 sd = &per_cpu(softnet_data, cpu);
3210
3211 local_irq_save(flags);
3212
3213 rps_lock(sd);
3214 qlen = skb_queue_len(&sd->input_pkt_queue);
3215 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3216 if (skb_queue_len(&sd->input_pkt_queue)) {
3217enqueue:
3218 __skb_queue_tail(&sd->input_pkt_queue, skb);
3219 input_queue_tail_incr_save(sd, qtail);
3220 rps_unlock(sd);
3221 local_irq_restore(flags);
3222 return NET_RX_SUCCESS;
3223 }
3224
3225 /* Schedule NAPI for backlog device
3226 * We can use non atomic operation since we own the queue lock
3227 */
3228 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3229 if (!rps_ipi_queued(sd))
3230 ____napi_schedule(sd, &sd->backlog);
3231 }
3232 goto enqueue;
3233 }
3234
3235 sd->dropped++;
3236 rps_unlock(sd);
3237
3238 local_irq_restore(flags);
3239
3240 atomic_long_inc(&skb->dev->rx_dropped);
3241 kfree_skb(skb);
3242 return NET_RX_DROP;
3243}
3244
3245static int netif_rx_internal(struct sk_buff *skb)
3246{
3247 int ret;
3248
3249 net_timestamp_check(netdev_tstamp_prequeue, skb);
3250
3251 trace_netif_rx(skb);
3252#ifdef CONFIG_RPS
3253 if (static_key_false(&rps_needed)) {
3254 struct rps_dev_flow voidflow, *rflow = &voidflow;
3255 int cpu;
3256
3257 preempt_disable();
3258 rcu_read_lock();
3259
3260 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3261 if (cpu < 0)
3262 cpu = smp_processor_id();
3263
3264 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3265
3266 rcu_read_unlock();
3267 preempt_enable();
3268 } else
3269#endif
3270 {
3271 unsigned int qtail;
3272 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3273 put_cpu();
3274 }
3275 return ret;
3276}
3277
3278/**
3279 * netif_rx - post buffer to the network code
3280 * @skb: buffer to post
3281 *
3282 * This function receives a packet from a device driver and queues it for
3283 * the upper (protocol) levels to process. It always succeeds. The buffer
3284 * may be dropped during processing for congestion control or by the
3285 * protocol layers.
3286 *
3287 * return values:
3288 * NET_RX_SUCCESS (no congestion)
3289 * NET_RX_DROP (packet was dropped)
3290 *
3291 */
3292
3293int netif_rx(struct sk_buff *skb)
3294{
3295 trace_netif_rx_entry(skb);
3296
3297 return netif_rx_internal(skb);
3298}
3299EXPORT_SYMBOL(netif_rx);
3300
3301int netif_rx_ni(struct sk_buff *skb)
3302{
3303 int err;
3304
3305 trace_netif_rx_ni_entry(skb);
3306
3307 preempt_disable();
3308 err = netif_rx_internal(skb);
3309 if (local_softirq_pending())
3310 do_softirq();
3311 preempt_enable();
3312
3313 return err;
3314}
3315EXPORT_SYMBOL(netif_rx_ni);
3316
3317static void net_tx_action(struct softirq_action *h)
3318{
3319 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3320
3321 if (sd->completion_queue) {
3322 struct sk_buff *clist;
3323
3324 local_irq_disable();
3325 clist = sd->completion_queue;
3326 sd->completion_queue = NULL;
3327 local_irq_enable();
3328
3329 while (clist) {
3330 struct sk_buff *skb = clist;
3331 clist = clist->next;
3332
3333 WARN_ON(atomic_read(&skb->users));
3334 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3335 trace_consume_skb(skb);
3336 else
3337 trace_kfree_skb(skb, net_tx_action);
3338 __kfree_skb(skb);
3339 }
3340 }
3341
3342 if (sd->output_queue) {
3343 struct Qdisc *head;
3344
3345 local_irq_disable();
3346 head = sd->output_queue;
3347 sd->output_queue = NULL;
3348 sd->output_queue_tailp = &sd->output_queue;
3349 local_irq_enable();
3350
3351 while (head) {
3352 struct Qdisc *q = head;
3353 spinlock_t *root_lock;
3354
3355 head = head->next_sched;
3356
3357 root_lock = qdisc_lock(q);
3358 if (spin_trylock(root_lock)) {
3359 smp_mb__before_clear_bit();
3360 clear_bit(__QDISC_STATE_SCHED,
3361 &q->state);
3362 qdisc_run(q);
3363 spin_unlock(root_lock);
3364 } else {
3365 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3366 &q->state)) {
3367 __netif_reschedule(q);
3368 } else {
3369 smp_mb__before_clear_bit();
3370 clear_bit(__QDISC_STATE_SCHED,
3371 &q->state);
3372 }
3373 }
3374 }
3375 }
3376}
3377
3378#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3379 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3380/* This hook is defined here for ATM LANE */
3381int (*br_fdb_test_addr_hook)(struct net_device *dev,
3382 unsigned char *addr) __read_mostly;
3383EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3384#endif
3385
3386#ifdef CONFIG_NET_CLS_ACT
3387/* TODO: Maybe we should just force sch_ingress to be compiled in
3388 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3389 * a compare and 2 stores extra right now if we dont have it on
3390 * but have CONFIG_NET_CLS_ACT
3391 * NOTE: This doesn't stop any functionality; if you dont have
3392 * the ingress scheduler, you just can't add policies on ingress.
3393 *
3394 */
3395static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3396{
3397 struct net_device *dev = skb->dev;
3398 u32 ttl = G_TC_RTTL(skb->tc_verd);
3399 int result = TC_ACT_OK;
3400 struct Qdisc *q;
3401
3402 if (unlikely(MAX_RED_LOOP < ttl++)) {
3403 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3404 skb->skb_iif, dev->ifindex);
3405 return TC_ACT_SHOT;
3406 }
3407
3408 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3409 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3410
3411 q = rxq->qdisc;
3412 if (q != &noop_qdisc) {
3413 spin_lock(qdisc_lock(q));
3414 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3415 result = qdisc_enqueue_root(skb, q);
3416 spin_unlock(qdisc_lock(q));
3417 }
3418
3419 return result;
3420}
3421
3422static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3423 struct packet_type **pt_prev,
3424 int *ret, struct net_device *orig_dev)
3425{
3426 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3427
3428 if (!rxq || rxq->qdisc == &noop_qdisc)
3429 goto out;
3430
3431 if (*pt_prev) {
3432 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3433 *pt_prev = NULL;
3434 }
3435
3436 switch (ing_filter(skb, rxq)) {
3437 case TC_ACT_SHOT:
3438 case TC_ACT_STOLEN:
3439 kfree_skb(skb);
3440 return NULL;
3441 }
3442
3443out:
3444 skb->tc_verd = 0;
3445 return skb;
3446}
3447#endif
3448
3449/**
3450 * netdev_rx_handler_register - register receive handler
3451 * @dev: device to register a handler for
3452 * @rx_handler: receive handler to register
3453 * @rx_handler_data: data pointer that is used by rx handler
3454 *
3455 * Register a receive handler for a device. This handler will then be
3456 * called from __netif_receive_skb. A negative errno code is returned
3457 * on a failure.
3458 *
3459 * The caller must hold the rtnl_mutex.
3460 *
3461 * For a general description of rx_handler, see enum rx_handler_result.
3462 */
3463int netdev_rx_handler_register(struct net_device *dev,
3464 rx_handler_func_t *rx_handler,
3465 void *rx_handler_data)
3466{
3467 ASSERT_RTNL();
3468
3469 if (dev->rx_handler)
3470 return -EBUSY;
3471
3472 /* Note: rx_handler_data must be set before rx_handler */
3473 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3474 rcu_assign_pointer(dev->rx_handler, rx_handler);
3475
3476 return 0;
3477}
3478EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3479
3480/**
3481 * netdev_rx_handler_unregister - unregister receive handler
3482 * @dev: device to unregister a handler from
3483 *
3484 * Unregister a receive handler from a device.
3485 *
3486 * The caller must hold the rtnl_mutex.
3487 */
3488void netdev_rx_handler_unregister(struct net_device *dev)
3489{
3490
3491 ASSERT_RTNL();
3492 RCU_INIT_POINTER(dev->rx_handler, NULL);
3493 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3494 * section has a guarantee to see a non NULL rx_handler_data
3495 * as well.
3496 */
3497 synchronize_net();
3498 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3499}
3500EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3501
3502/*
3503 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3504 * the special handling of PFMEMALLOC skbs.
3505 */
3506static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3507{
3508 switch (skb->protocol) {
3509 case htons(ETH_P_ARP):
3510 case htons(ETH_P_IP):
3511 case htons(ETH_P_IPV6):
3512 case htons(ETH_P_8021Q):
3513 case htons(ETH_P_8021AD):
3514 return true;
3515 default:
3516 return false;
3517 }
3518}
3519
3520static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3521{
3522 struct packet_type *ptype, *pt_prev;
3523 rx_handler_func_t *rx_handler;
3524 struct net_device *orig_dev;
3525 struct net_device *null_or_dev;
3526 bool deliver_exact = false;
3527 int ret = NET_RX_DROP;
3528 __be16 type;
3529
3530 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3531
3532 trace_netif_receive_skb(skb);
3533
3534 orig_dev = skb->dev;
3535
3536 skb_reset_network_header(skb);
3537 if (!skb_transport_header_was_set(skb))
3538 skb_reset_transport_header(skb);
3539 skb_reset_mac_len(skb);
3540
3541 pt_prev = NULL;
3542
3543 rcu_read_lock();
3544
3545another_round:
3546 skb->skb_iif = skb->dev->ifindex;
3547
3548 __this_cpu_inc(softnet_data.processed);
3549
3550 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3551 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3552 skb = vlan_untag(skb);
3553 if (unlikely(!skb))
3554 goto unlock;
3555 }
3556
3557#ifdef CONFIG_NET_CLS_ACT
3558 if (skb->tc_verd & TC_NCLS) {
3559 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3560 goto ncls;
3561 }
3562#endif
3563
3564 if (pfmemalloc)
3565 goto skip_taps;
3566
3567 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3568 if (!ptype->dev || ptype->dev == skb->dev) {
3569 if (pt_prev)
3570 ret = deliver_skb(skb, pt_prev, orig_dev);
3571 pt_prev = ptype;
3572 }
3573 }
3574
3575skip_taps:
3576#ifdef CONFIG_NET_CLS_ACT
3577 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3578 if (!skb)
3579 goto unlock;
3580ncls:
3581#endif
3582
3583 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3584 goto drop;
3585
3586 if (vlan_tx_tag_present(skb)) {
3587 if (pt_prev) {
3588 ret = deliver_skb(skb, pt_prev, orig_dev);
3589 pt_prev = NULL;
3590 }
3591 if (vlan_do_receive(&skb))
3592 goto another_round;
3593 else if (unlikely(!skb))
3594 goto unlock;
3595 }
3596
3597 rx_handler = rcu_dereference(skb->dev->rx_handler);
3598 if (rx_handler) {
3599 if (pt_prev) {
3600 ret = deliver_skb(skb, pt_prev, orig_dev);
3601 pt_prev = NULL;
3602 }
3603 switch (rx_handler(&skb)) {
3604 case RX_HANDLER_CONSUMED:
3605 ret = NET_RX_SUCCESS;
3606 goto unlock;
3607 case RX_HANDLER_ANOTHER:
3608 goto another_round;
3609 case RX_HANDLER_EXACT:
3610 deliver_exact = true;
3611 case RX_HANDLER_PASS:
3612 break;
3613 default:
3614 BUG();
3615 }
3616 }
3617
3618 if (unlikely(vlan_tx_tag_present(skb))) {
3619 if (vlan_tx_tag_get_id(skb))
3620 skb->pkt_type = PACKET_OTHERHOST;
3621 /* Note: we might in the future use prio bits
3622 * and set skb->priority like in vlan_do_receive()
3623 * For the time being, just ignore Priority Code Point
3624 */
3625 skb->vlan_tci = 0;
3626 }
3627
3628 /* deliver only exact match when indicated */
3629 null_or_dev = deliver_exact ? skb->dev : NULL;
3630
3631 type = skb->protocol;
3632 list_for_each_entry_rcu(ptype,
3633 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3634 if (ptype->type == type &&
3635 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3636 ptype->dev == orig_dev)) {
3637 if (pt_prev)
3638 ret = deliver_skb(skb, pt_prev, orig_dev);
3639 pt_prev = ptype;
3640 }
3641 }
3642
3643 if (pt_prev) {
3644 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3645 goto drop;
3646 else
3647 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3648 } else {
3649drop:
3650 atomic_long_inc(&skb->dev->rx_dropped);
3651 kfree_skb(skb);
3652 /* Jamal, now you will not able to escape explaining
3653 * me how you were going to use this. :-)
3654 */
3655 ret = NET_RX_DROP;
3656 }
3657
3658unlock:
3659 rcu_read_unlock();
3660 return ret;
3661}
3662
3663static int __netif_receive_skb(struct sk_buff *skb)
3664{
3665 int ret;
3666
3667 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3668 unsigned long pflags = current->flags;
3669
3670 /*
3671 * PFMEMALLOC skbs are special, they should
3672 * - be delivered to SOCK_MEMALLOC sockets only
3673 * - stay away from userspace
3674 * - have bounded memory usage
3675 *
3676 * Use PF_MEMALLOC as this saves us from propagating the allocation
3677 * context down to all allocation sites.
3678 */
3679 current->flags |= PF_MEMALLOC;
3680 ret = __netif_receive_skb_core(skb, true);
3681 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3682 } else
3683 ret = __netif_receive_skb_core(skb, false);
3684
3685 return ret;
3686}
3687
3688static int netif_receive_skb_internal(struct sk_buff *skb)
3689{
3690 net_timestamp_check(netdev_tstamp_prequeue, skb);
3691
3692 if (skb_defer_rx_timestamp(skb))
3693 return NET_RX_SUCCESS;
3694
3695#ifdef CONFIG_RPS
3696 if (static_key_false(&rps_needed)) {
3697 struct rps_dev_flow voidflow, *rflow = &voidflow;
3698 int cpu, ret;
3699
3700 rcu_read_lock();
3701
3702 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3703
3704 if (cpu >= 0) {
3705 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3706 rcu_read_unlock();
3707 return ret;
3708 }
3709 rcu_read_unlock();
3710 }
3711#endif
3712 return __netif_receive_skb(skb);
3713}
3714
3715/**
3716 * netif_receive_skb - process receive buffer from network
3717 * @skb: buffer to process
3718 *
3719 * netif_receive_skb() is the main receive data processing function.
3720 * It always succeeds. The buffer may be dropped during processing
3721 * for congestion control or by the protocol layers.
3722 *
3723 * This function may only be called from softirq context and interrupts
3724 * should be enabled.
3725 *
3726 * Return values (usually ignored):
3727 * NET_RX_SUCCESS: no congestion
3728 * NET_RX_DROP: packet was dropped
3729 */
3730int netif_receive_skb(struct sk_buff *skb)
3731{
3732 trace_netif_receive_skb_entry(skb);
3733
3734 return netif_receive_skb_internal(skb);
3735}
3736EXPORT_SYMBOL(netif_receive_skb);
3737
3738/* Network device is going away, flush any packets still pending
3739 * Called with irqs disabled.
3740 */
3741static void flush_backlog(void *arg)
3742{
3743 struct net_device *dev = arg;
3744 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3745 struct sk_buff *skb, *tmp;
3746
3747 rps_lock(sd);
3748 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3749 if (skb->dev == dev) {
3750 __skb_unlink(skb, &sd->input_pkt_queue);
3751 kfree_skb(skb);
3752 input_queue_head_incr(sd);
3753 }
3754 }
3755 rps_unlock(sd);
3756
3757 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3758 if (skb->dev == dev) {
3759 __skb_unlink(skb, &sd->process_queue);
3760 kfree_skb(skb);
3761 input_queue_head_incr(sd);
3762 }
3763 }
3764}
3765
3766static int napi_gro_complete(struct sk_buff *skb)
3767{
3768 struct packet_offload *ptype;
3769 __be16 type = skb->protocol;
3770 struct list_head *head = &offload_base;
3771 int err = -ENOENT;
3772
3773 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3774
3775 if (NAPI_GRO_CB(skb)->count == 1) {
3776 skb_shinfo(skb)->gso_size = 0;
3777 goto out;
3778 }
3779
3780 rcu_read_lock();
3781 list_for_each_entry_rcu(ptype, head, list) {
3782 if (ptype->type != type || !ptype->callbacks.gro_complete)
3783 continue;
3784
3785 err = ptype->callbacks.gro_complete(skb, 0);
3786 break;
3787 }
3788 rcu_read_unlock();
3789
3790 if (err) {
3791 WARN_ON(&ptype->list == head);
3792 kfree_skb(skb);
3793 return NET_RX_SUCCESS;
3794 }
3795
3796out:
3797 return netif_receive_skb_internal(skb);
3798}
3799
3800/* napi->gro_list contains packets ordered by age.
3801 * youngest packets at the head of it.
3802 * Complete skbs in reverse order to reduce latencies.
3803 */
3804void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3805{
3806 struct sk_buff *skb, *prev = NULL;
3807
3808 /* scan list and build reverse chain */
3809 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3810 skb->prev = prev;
3811 prev = skb;
3812 }
3813
3814 for (skb = prev; skb; skb = prev) {
3815 skb->next = NULL;
3816
3817 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3818 return;
3819
3820 prev = skb->prev;
3821 napi_gro_complete(skb);
3822 napi->gro_count--;
3823 }
3824
3825 napi->gro_list = NULL;
3826}
3827EXPORT_SYMBOL(napi_gro_flush);
3828
3829static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3830{
3831 struct sk_buff *p;
3832 unsigned int maclen = skb->dev->hard_header_len;
3833 u32 hash = skb_get_hash_raw(skb);
3834
3835 for (p = napi->gro_list; p; p = p->next) {
3836 unsigned long diffs;
3837
3838 NAPI_GRO_CB(p)->flush = 0;
3839
3840 if (hash != skb_get_hash_raw(p)) {
3841 NAPI_GRO_CB(p)->same_flow = 0;
3842 continue;
3843 }
3844
3845 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3846 diffs |= p->vlan_tci ^ skb->vlan_tci;
3847 if (maclen == ETH_HLEN)
3848 diffs |= compare_ether_header(skb_mac_header(p),
3849 skb_mac_header(skb));
3850 else if (!diffs)
3851 diffs = memcmp(skb_mac_header(p),
3852 skb_mac_header(skb),
3853 maclen);
3854 NAPI_GRO_CB(p)->same_flow = !diffs;
3855 }
3856}
3857
3858static void skb_gro_reset_offset(struct sk_buff *skb)
3859{
3860 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3861 const skb_frag_t *frag0 = &pinfo->frags[0];
3862
3863 NAPI_GRO_CB(skb)->data_offset = 0;
3864 NAPI_GRO_CB(skb)->frag0 = NULL;
3865 NAPI_GRO_CB(skb)->frag0_len = 0;
3866
3867 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3868 pinfo->nr_frags &&
3869 !PageHighMem(skb_frag_page(frag0))) {
3870 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3871 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3872 }
3873}
3874
3875static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3876{
3877 struct skb_shared_info *pinfo = skb_shinfo(skb);
3878
3879 BUG_ON(skb->end - skb->tail < grow);
3880
3881 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3882
3883 skb->data_len -= grow;
3884 skb->tail += grow;
3885
3886 pinfo->frags[0].page_offset += grow;
3887 skb_frag_size_sub(&pinfo->frags[0], grow);
3888
3889 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3890 skb_frag_unref(skb, 0);
3891 memmove(pinfo->frags, pinfo->frags + 1,
3892 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3893 }
3894}
3895
3896static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3897{
3898 struct sk_buff **pp = NULL;
3899 struct packet_offload *ptype;
3900 __be16 type = skb->protocol;
3901 struct list_head *head = &offload_base;
3902 int same_flow;
3903 enum gro_result ret;
3904 int grow;
3905
3906 if (!(skb->dev->features & NETIF_F_GRO))
3907 goto normal;
3908
3909 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3910 goto normal;
3911
3912 gro_list_prepare(napi, skb);
3913 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3914
3915 rcu_read_lock();
3916 list_for_each_entry_rcu(ptype, head, list) {
3917 if (ptype->type != type || !ptype->callbacks.gro_receive)
3918 continue;
3919
3920 skb_set_network_header(skb, skb_gro_offset(skb));
3921 skb_reset_mac_len(skb);
3922 NAPI_GRO_CB(skb)->same_flow = 0;
3923 NAPI_GRO_CB(skb)->flush = 0;
3924 NAPI_GRO_CB(skb)->free = 0;
3925 NAPI_GRO_CB(skb)->udp_mark = 0;
3926
3927 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3928 break;
3929 }
3930 rcu_read_unlock();
3931
3932 if (&ptype->list == head)
3933 goto normal;
3934
3935 same_flow = NAPI_GRO_CB(skb)->same_flow;
3936 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3937
3938 if (pp) {
3939 struct sk_buff *nskb = *pp;
3940
3941 *pp = nskb->next;
3942 nskb->next = NULL;
3943 napi_gro_complete(nskb);
3944 napi->gro_count--;
3945 }
3946
3947 if (same_flow)
3948 goto ok;
3949
3950 if (NAPI_GRO_CB(skb)->flush)
3951 goto normal;
3952
3953 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3954 struct sk_buff *nskb = napi->gro_list;
3955
3956 /* locate the end of the list to select the 'oldest' flow */
3957 while (nskb->next) {
3958 pp = &nskb->next;
3959 nskb = *pp;
3960 }
3961 *pp = NULL;
3962 nskb->next = NULL;
3963 napi_gro_complete(nskb);
3964 } else {
3965 napi->gro_count++;
3966 }
3967 NAPI_GRO_CB(skb)->count = 1;
3968 NAPI_GRO_CB(skb)->age = jiffies;
3969 NAPI_GRO_CB(skb)->last = skb;
3970 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3971 skb->next = napi->gro_list;
3972 napi->gro_list = skb;
3973 ret = GRO_HELD;
3974
3975pull:
3976 grow = skb_gro_offset(skb) - skb_headlen(skb);
3977 if (grow > 0)
3978 gro_pull_from_frag0(skb, grow);
3979ok:
3980 return ret;
3981
3982normal:
3983 ret = GRO_NORMAL;
3984 goto pull;
3985}
3986
3987struct packet_offload *gro_find_receive_by_type(__be16 type)
3988{
3989 struct list_head *offload_head = &offload_base;
3990 struct packet_offload *ptype;
3991
3992 list_for_each_entry_rcu(ptype, offload_head, list) {
3993 if (ptype->type != type || !ptype->callbacks.gro_receive)
3994 continue;
3995 return ptype;
3996 }
3997 return NULL;
3998}
3999EXPORT_SYMBOL(gro_find_receive_by_type);
4000
4001struct packet_offload *gro_find_complete_by_type(__be16 type)
4002{
4003 struct list_head *offload_head = &offload_base;
4004 struct packet_offload *ptype;
4005
4006 list_for_each_entry_rcu(ptype, offload_head, list) {
4007 if (ptype->type != type || !ptype->callbacks.gro_complete)
4008 continue;
4009 return ptype;
4010 }
4011 return NULL;
4012}
4013EXPORT_SYMBOL(gro_find_complete_by_type);
4014
4015static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4016{
4017 switch (ret) {
4018 case GRO_NORMAL:
4019 if (netif_receive_skb_internal(skb))
4020 ret = GRO_DROP;
4021 break;
4022
4023 case GRO_DROP:
4024 kfree_skb(skb);
4025 break;
4026
4027 case GRO_MERGED_FREE:
4028 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4029 kmem_cache_free(skbuff_head_cache, skb);
4030 else
4031 __kfree_skb(skb);
4032 break;
4033
4034 case GRO_HELD:
4035 case GRO_MERGED:
4036 break;
4037 }
4038
4039 return ret;
4040}
4041
4042gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4043{
4044 trace_napi_gro_receive_entry(skb);
4045
4046 skb_gro_reset_offset(skb);
4047
4048 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4049}
4050EXPORT_SYMBOL(napi_gro_receive);
4051
4052static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4053{
4054 __skb_pull(skb, skb_headlen(skb));
4055 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4056 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4057 skb->vlan_tci = 0;
4058 skb->dev = napi->dev;
4059 skb->skb_iif = 0;
4060 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4061
4062 napi->skb = skb;
4063}
4064
4065struct sk_buff *napi_get_frags(struct napi_struct *napi)
4066{
4067 struct sk_buff *skb = napi->skb;
4068
4069 if (!skb) {
4070 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4071 napi->skb = skb;
4072 }
4073 return skb;
4074}
4075EXPORT_SYMBOL(napi_get_frags);
4076
4077static gro_result_t napi_frags_finish(struct napi_struct *napi,
4078 struct sk_buff *skb,
4079 gro_result_t ret)
4080{
4081 switch (ret) {
4082 case GRO_NORMAL:
4083 case GRO_HELD:
4084 __skb_push(skb, ETH_HLEN);
4085 skb->protocol = eth_type_trans(skb, skb->dev);
4086 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4087 ret = GRO_DROP;
4088 break;
4089
4090 case GRO_DROP:
4091 case GRO_MERGED_FREE:
4092 napi_reuse_skb(napi, skb);
4093 break;
4094
4095 case GRO_MERGED:
4096 break;
4097 }
4098
4099 return ret;
4100}
4101
4102/* Upper GRO stack assumes network header starts at gro_offset=0
4103 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4104 * We copy ethernet header into skb->data to have a common layout.
4105 */
4106static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4107{
4108 struct sk_buff *skb = napi->skb;
4109 const struct ethhdr *eth;
4110 unsigned int hlen = sizeof(*eth);
4111
4112 napi->skb = NULL;
4113
4114 skb_reset_mac_header(skb);
4115 skb_gro_reset_offset(skb);
4116
4117 eth = skb_gro_header_fast(skb, 0);
4118 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4119 eth = skb_gro_header_slow(skb, hlen, 0);
4120 if (unlikely(!eth)) {
4121 napi_reuse_skb(napi, skb);
4122 return NULL;
4123 }
4124 } else {
4125 gro_pull_from_frag0(skb, hlen);
4126 NAPI_GRO_CB(skb)->frag0 += hlen;
4127 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4128 }
4129 __skb_pull(skb, hlen);
4130
4131 /*
4132 * This works because the only protocols we care about don't require
4133 * special handling.
4134 * We'll fix it up properly in napi_frags_finish()
4135 */
4136 skb->protocol = eth->h_proto;
4137
4138 return skb;
4139}
4140
4141gro_result_t napi_gro_frags(struct napi_struct *napi)
4142{
4143 struct sk_buff *skb = napi_frags_skb(napi);
4144
4145 if (!skb)
4146 return GRO_DROP;
4147
4148 trace_napi_gro_frags_entry(skb);
4149
4150 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4151}
4152EXPORT_SYMBOL(napi_gro_frags);
4153
4154/*
4155 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4156 * Note: called with local irq disabled, but exits with local irq enabled.
4157 */
4158static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4159{
4160#ifdef CONFIG_RPS
4161 struct softnet_data *remsd = sd->rps_ipi_list;
4162
4163 if (remsd) {
4164 sd->rps_ipi_list = NULL;
4165
4166 local_irq_enable();
4167
4168 /* Send pending IPI's to kick RPS processing on remote cpus. */
4169 while (remsd) {
4170 struct softnet_data *next = remsd->rps_ipi_next;
4171
4172 if (cpu_online(remsd->cpu))
4173 smp_call_function_single_async(remsd->cpu,
4174 &remsd->csd);
4175 remsd = next;
4176 }
4177 } else
4178#endif
4179 local_irq_enable();
4180}
4181
4182static int process_backlog(struct napi_struct *napi, int quota)
4183{
4184 int work = 0;
4185 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4186
4187#ifdef CONFIG_RPS
4188 /* Check if we have pending ipi, its better to send them now,
4189 * not waiting net_rx_action() end.
4190 */
4191 if (sd->rps_ipi_list) {
4192 local_irq_disable();
4193 net_rps_action_and_irq_enable(sd);
4194 }
4195#endif
4196 napi->weight = weight_p;
4197 local_irq_disable();
4198 while (work < quota) {
4199 struct sk_buff *skb;
4200 unsigned int qlen;
4201
4202 while ((skb = __skb_dequeue(&sd->process_queue))) {
4203 local_irq_enable();
4204 __netif_receive_skb(skb);
4205 local_irq_disable();
4206 input_queue_head_incr(sd);
4207 if (++work >= quota) {
4208 local_irq_enable();
4209 return work;
4210 }
4211 }
4212
4213 rps_lock(sd);
4214 qlen = skb_queue_len(&sd->input_pkt_queue);
4215 if (qlen)
4216 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4217 &sd->process_queue);
4218
4219 if (qlen < quota - work) {
4220 /*
4221 * Inline a custom version of __napi_complete().
4222 * only current cpu owns and manipulates this napi,
4223 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4224 * we can use a plain write instead of clear_bit(),
4225 * and we dont need an smp_mb() memory barrier.
4226 */
4227 list_del(&napi->poll_list);
4228 napi->state = 0;
4229
4230 quota = work + qlen;
4231 }
4232 rps_unlock(sd);
4233 }
4234 local_irq_enable();
4235
4236 return work;
4237}
4238
4239/**
4240 * __napi_schedule - schedule for receive
4241 * @n: entry to schedule
4242 *
4243 * The entry's receive function will be scheduled to run
4244 */
4245void __napi_schedule(struct napi_struct *n)
4246{
4247 unsigned long flags;
4248
4249 local_irq_save(flags);
4250 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4251 local_irq_restore(flags);
4252}
4253EXPORT_SYMBOL(__napi_schedule);
4254
4255void __napi_complete(struct napi_struct *n)
4256{
4257 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4258 BUG_ON(n->gro_list);
4259
4260 list_del(&n->poll_list);
4261 smp_mb__before_clear_bit();
4262 clear_bit(NAPI_STATE_SCHED, &n->state);
4263}
4264EXPORT_SYMBOL(__napi_complete);
4265
4266void napi_complete(struct napi_struct *n)
4267{
4268 unsigned long flags;
4269
4270 /*
4271 * don't let napi dequeue from the cpu poll list
4272 * just in case its running on a different cpu
4273 */
4274 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4275 return;
4276
4277 napi_gro_flush(n, false);
4278 local_irq_save(flags);
4279 __napi_complete(n);
4280 local_irq_restore(flags);
4281}
4282EXPORT_SYMBOL(napi_complete);
4283
4284/* must be called under rcu_read_lock(), as we dont take a reference */
4285struct napi_struct *napi_by_id(unsigned int napi_id)
4286{
4287 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4288 struct napi_struct *napi;
4289
4290 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4291 if (napi->napi_id == napi_id)
4292 return napi;
4293
4294 return NULL;
4295}
4296EXPORT_SYMBOL_GPL(napi_by_id);
4297
4298void napi_hash_add(struct napi_struct *napi)
4299{
4300 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4301
4302 spin_lock(&napi_hash_lock);
4303
4304 /* 0 is not a valid id, we also skip an id that is taken
4305 * we expect both events to be extremely rare
4306 */
4307 napi->napi_id = 0;
4308 while (!napi->napi_id) {
4309 napi->napi_id = ++napi_gen_id;
4310 if (napi_by_id(napi->napi_id))
4311 napi->napi_id = 0;
4312 }
4313
4314 hlist_add_head_rcu(&napi->napi_hash_node,
4315 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4316
4317 spin_unlock(&napi_hash_lock);
4318 }
4319}
4320EXPORT_SYMBOL_GPL(napi_hash_add);
4321
4322/* Warning : caller is responsible to make sure rcu grace period
4323 * is respected before freeing memory containing @napi
4324 */
4325void napi_hash_del(struct napi_struct *napi)
4326{
4327 spin_lock(&napi_hash_lock);
4328
4329 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4330 hlist_del_rcu(&napi->napi_hash_node);
4331
4332 spin_unlock(&napi_hash_lock);
4333}
4334EXPORT_SYMBOL_GPL(napi_hash_del);
4335
4336void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4337 int (*poll)(struct napi_struct *, int), int weight)
4338{
4339 INIT_LIST_HEAD(&napi->poll_list);
4340 napi->gro_count = 0;
4341 napi->gro_list = NULL;
4342 napi->skb = NULL;
4343 napi->poll = poll;
4344 if (weight > NAPI_POLL_WEIGHT)
4345 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4346 weight, dev->name);
4347 napi->weight = weight;
4348 list_add(&napi->dev_list, &dev->napi_list);
4349 napi->dev = dev;
4350#ifdef CONFIG_NETPOLL
4351 spin_lock_init(&napi->poll_lock);
4352 napi->poll_owner = -1;
4353#endif
4354 set_bit(NAPI_STATE_SCHED, &napi->state);
4355}
4356EXPORT_SYMBOL(netif_napi_add);
4357
4358void netif_napi_del(struct napi_struct *napi)
4359{
4360 list_del_init(&napi->dev_list);
4361 napi_free_frags(napi);
4362
4363 kfree_skb_list(napi->gro_list);
4364 napi->gro_list = NULL;
4365 napi->gro_count = 0;
4366}
4367EXPORT_SYMBOL(netif_napi_del);
4368
4369static void net_rx_action(struct softirq_action *h)
4370{
4371 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4372 unsigned long time_limit = jiffies + 2;
4373 int budget = netdev_budget;
4374 void *have;
4375
4376 local_irq_disable();
4377
4378 while (!list_empty(&sd->poll_list)) {
4379 struct napi_struct *n;
4380 int work, weight;
4381
4382 /* If softirq window is exhuasted then punt.
4383 * Allow this to run for 2 jiffies since which will allow
4384 * an average latency of 1.5/HZ.
4385 */
4386 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4387 goto softnet_break;
4388
4389 local_irq_enable();
4390
4391 /* Even though interrupts have been re-enabled, this
4392 * access is safe because interrupts can only add new
4393 * entries to the tail of this list, and only ->poll()
4394 * calls can remove this head entry from the list.
4395 */
4396 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4397
4398 have = netpoll_poll_lock(n);
4399
4400 weight = n->weight;
4401
4402 /* This NAPI_STATE_SCHED test is for avoiding a race
4403 * with netpoll's poll_napi(). Only the entity which
4404 * obtains the lock and sees NAPI_STATE_SCHED set will
4405 * actually make the ->poll() call. Therefore we avoid
4406 * accidentally calling ->poll() when NAPI is not scheduled.
4407 */
4408 work = 0;
4409 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4410 work = n->poll(n, weight);
4411 trace_napi_poll(n);
4412 }
4413
4414 WARN_ON_ONCE(work > weight);
4415
4416 budget -= work;
4417
4418 local_irq_disable();
4419
4420 /* Drivers must not modify the NAPI state if they
4421 * consume the entire weight. In such cases this code
4422 * still "owns" the NAPI instance and therefore can
4423 * move the instance around on the list at-will.
4424 */
4425 if (unlikely(work == weight)) {
4426 if (unlikely(napi_disable_pending(n))) {
4427 local_irq_enable();
4428 napi_complete(n);
4429 local_irq_disable();
4430 } else {
4431 if (n->gro_list) {
4432 /* flush too old packets
4433 * If HZ < 1000, flush all packets.
4434 */
4435 local_irq_enable();
4436 napi_gro_flush(n, HZ >= 1000);
4437 local_irq_disable();
4438 }
4439 list_move_tail(&n->poll_list, &sd->poll_list);
4440 }
4441 }
4442
4443 netpoll_poll_unlock(have);
4444 }
4445out:
4446 net_rps_action_and_irq_enable(sd);
4447
4448#ifdef CONFIG_NET_DMA
4449 /*
4450 * There may not be any more sk_buffs coming right now, so push
4451 * any pending DMA copies to hardware
4452 */
4453 dma_issue_pending_all();
4454#endif
4455
4456 return;
4457
4458softnet_break:
4459 sd->time_squeeze++;
4460 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4461 goto out;
4462}
4463
4464struct netdev_adjacent {
4465 struct net_device *dev;
4466
4467 /* upper master flag, there can only be one master device per list */
4468 bool master;
4469
4470 /* counter for the number of times this device was added to us */
4471 u16 ref_nr;
4472
4473 /* private field for the users */
4474 void *private;
4475
4476 struct list_head list;
4477 struct rcu_head rcu;
4478};
4479
4480static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4481 struct net_device *adj_dev,
4482 struct list_head *adj_list)
4483{
4484 struct netdev_adjacent *adj;
4485
4486 list_for_each_entry(adj, adj_list, list) {
4487 if (adj->dev == adj_dev)
4488 return adj;
4489 }
4490 return NULL;
4491}
4492
4493/**
4494 * netdev_has_upper_dev - Check if device is linked to an upper device
4495 * @dev: device
4496 * @upper_dev: upper device to check
4497 *
4498 * Find out if a device is linked to specified upper device and return true
4499 * in case it is. Note that this checks only immediate upper device,
4500 * not through a complete stack of devices. The caller must hold the RTNL lock.
4501 */
4502bool netdev_has_upper_dev(struct net_device *dev,
4503 struct net_device *upper_dev)
4504{
4505 ASSERT_RTNL();
4506
4507 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4508}
4509EXPORT_SYMBOL(netdev_has_upper_dev);
4510
4511/**
4512 * netdev_has_any_upper_dev - Check if device is linked to some device
4513 * @dev: device
4514 *
4515 * Find out if a device is linked to an upper device and return true in case
4516 * it is. The caller must hold the RTNL lock.
4517 */
4518static bool netdev_has_any_upper_dev(struct net_device *dev)
4519{
4520 ASSERT_RTNL();
4521
4522 return !list_empty(&dev->all_adj_list.upper);
4523}
4524
4525/**
4526 * netdev_master_upper_dev_get - Get master upper device
4527 * @dev: device
4528 *
4529 * Find a master upper device and return pointer to it or NULL in case
4530 * it's not there. The caller must hold the RTNL lock.
4531 */
4532struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4533{
4534 struct netdev_adjacent *upper;
4535
4536 ASSERT_RTNL();
4537
4538 if (list_empty(&dev->adj_list.upper))
4539 return NULL;
4540
4541 upper = list_first_entry(&dev->adj_list.upper,
4542 struct netdev_adjacent, list);
4543 if (likely(upper->master))
4544 return upper->dev;
4545 return NULL;
4546}
4547EXPORT_SYMBOL(netdev_master_upper_dev_get);
4548
4549void *netdev_adjacent_get_private(struct list_head *adj_list)
4550{
4551 struct netdev_adjacent *adj;
4552
4553 adj = list_entry(adj_list, struct netdev_adjacent, list);
4554
4555 return adj->private;
4556}
4557EXPORT_SYMBOL(netdev_adjacent_get_private);
4558
4559/**
4560 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4561 * @dev: device
4562 * @iter: list_head ** of the current position
4563 *
4564 * Gets the next device from the dev's upper list, starting from iter
4565 * position. The caller must hold RCU read lock.
4566 */
4567struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4568 struct list_head **iter)
4569{
4570 struct netdev_adjacent *upper;
4571
4572 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4573
4574 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4575
4576 if (&upper->list == &dev->adj_list.upper)
4577 return NULL;
4578
4579 *iter = &upper->list;
4580
4581 return upper->dev;
4582}
4583EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4584
4585/**
4586 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4587 * @dev: device
4588 * @iter: list_head ** of the current position
4589 *
4590 * Gets the next device from the dev's upper list, starting from iter
4591 * position. The caller must hold RCU read lock.
4592 */
4593struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4594 struct list_head **iter)
4595{
4596 struct netdev_adjacent *upper;
4597
4598 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4599
4600 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4601
4602 if (&upper->list == &dev->all_adj_list.upper)
4603 return NULL;
4604
4605 *iter = &upper->list;
4606
4607 return upper->dev;
4608}
4609EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4610
4611/**
4612 * netdev_lower_get_next_private - Get the next ->private from the
4613 * lower neighbour list
4614 * @dev: device
4615 * @iter: list_head ** of the current position
4616 *
4617 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4618 * list, starting from iter position. The caller must hold either hold the
4619 * RTNL lock or its own locking that guarantees that the neighbour lower
4620 * list will remain unchainged.
4621 */
4622void *netdev_lower_get_next_private(struct net_device *dev,
4623 struct list_head **iter)
4624{
4625 struct netdev_adjacent *lower;
4626
4627 lower = list_entry(*iter, struct netdev_adjacent, list);
4628
4629 if (&lower->list == &dev->adj_list.lower)
4630 return NULL;
4631
4632 *iter = lower->list.next;
4633
4634 return lower->private;
4635}
4636EXPORT_SYMBOL(netdev_lower_get_next_private);
4637
4638/**
4639 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4640 * lower neighbour list, RCU
4641 * variant
4642 * @dev: device
4643 * @iter: list_head ** of the current position
4644 *
4645 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4646 * list, starting from iter position. The caller must hold RCU read lock.
4647 */
4648void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4649 struct list_head **iter)
4650{
4651 struct netdev_adjacent *lower;
4652
4653 WARN_ON_ONCE(!rcu_read_lock_held());
4654
4655 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4656
4657 if (&lower->list == &dev->adj_list.lower)
4658 return NULL;
4659
4660 *iter = &lower->list;
4661
4662 return lower->private;
4663}
4664EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4665
4666/**
4667 * netdev_lower_get_next - Get the next device from the lower neighbour
4668 * list
4669 * @dev: device
4670 * @iter: list_head ** of the current position
4671 *
4672 * Gets the next netdev_adjacent from the dev's lower neighbour
4673 * list, starting from iter position. The caller must hold RTNL lock or
4674 * its own locking that guarantees that the neighbour lower
4675 * list will remain unchainged.
4676 */
4677void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4678{
4679 struct netdev_adjacent *lower;
4680
4681 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4682
4683 if (&lower->list == &dev->adj_list.lower)
4684 return NULL;
4685
4686 *iter = &lower->list;
4687
4688 return lower->dev;
4689}
4690EXPORT_SYMBOL(netdev_lower_get_next);
4691
4692/**
4693 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4694 * lower neighbour list, RCU
4695 * variant
4696 * @dev: device
4697 *
4698 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4699 * list. The caller must hold RCU read lock.
4700 */
4701void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4702{
4703 struct netdev_adjacent *lower;
4704
4705 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4706 struct netdev_adjacent, list);
4707 if (lower)
4708 return lower->private;
4709 return NULL;
4710}
4711EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4712
4713/**
4714 * netdev_master_upper_dev_get_rcu - Get master upper device
4715 * @dev: device
4716 *
4717 * Find a master upper device and return pointer to it or NULL in case
4718 * it's not there. The caller must hold the RCU read lock.
4719 */
4720struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4721{
4722 struct netdev_adjacent *upper;
4723
4724 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4725 struct netdev_adjacent, list);
4726 if (upper && likely(upper->master))
4727 return upper->dev;
4728 return NULL;
4729}
4730EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4731
4732static int netdev_adjacent_sysfs_add(struct net_device *dev,
4733 struct net_device *adj_dev,
4734 struct list_head *dev_list)
4735{
4736 char linkname[IFNAMSIZ+7];
4737 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4738 "upper_%s" : "lower_%s", adj_dev->name);
4739 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4740 linkname);
4741}
4742static void netdev_adjacent_sysfs_del(struct net_device *dev,
4743 char *name,
4744 struct list_head *dev_list)
4745{
4746 char linkname[IFNAMSIZ+7];
4747 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4748 "upper_%s" : "lower_%s", name);
4749 sysfs_remove_link(&(dev->dev.kobj), linkname);
4750}
4751
4752#define netdev_adjacent_is_neigh_list(dev, dev_list) \
4753 (dev_list == &dev->adj_list.upper || \
4754 dev_list == &dev->adj_list.lower)
4755
4756static int __netdev_adjacent_dev_insert(struct net_device *dev,
4757 struct net_device *adj_dev,
4758 struct list_head *dev_list,
4759 void *private, bool master)
4760{
4761 struct netdev_adjacent *adj;
4762 int ret;
4763
4764 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4765
4766 if (adj) {
4767 adj->ref_nr++;
4768 return 0;
4769 }
4770
4771 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4772 if (!adj)
4773 return -ENOMEM;
4774
4775 adj->dev = adj_dev;
4776 adj->master = master;
4777 adj->ref_nr = 1;
4778 adj->private = private;
4779 dev_hold(adj_dev);
4780
4781 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4782 adj_dev->name, dev->name, adj_dev->name);
4783
4784 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4785 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4786 if (ret)
4787 goto free_adj;
4788 }
4789
4790 /* Ensure that master link is always the first item in list. */
4791 if (master) {
4792 ret = sysfs_create_link(&(dev->dev.kobj),
4793 &(adj_dev->dev.kobj), "master");
4794 if (ret)
4795 goto remove_symlinks;
4796
4797 list_add_rcu(&adj->list, dev_list);
4798 } else {
4799 list_add_tail_rcu(&adj->list, dev_list);
4800 }
4801
4802 return 0;
4803
4804remove_symlinks:
4805 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4806 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4807free_adj:
4808 kfree(adj);
4809 dev_put(adj_dev);
4810
4811 return ret;
4812}
4813
4814static void __netdev_adjacent_dev_remove(struct net_device *dev,
4815 struct net_device *adj_dev,
4816 struct list_head *dev_list)
4817{
4818 struct netdev_adjacent *adj;
4819
4820 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4821
4822 if (!adj) {
4823 pr_err("tried to remove device %s from %s\n",
4824 dev->name, adj_dev->name);
4825 BUG();
4826 }
4827
4828 if (adj->ref_nr > 1) {
4829 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4830 adj->ref_nr-1);
4831 adj->ref_nr--;
4832 return;
4833 }
4834
4835 if (adj->master)
4836 sysfs_remove_link(&(dev->dev.kobj), "master");
4837
4838 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4839 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4840
4841 list_del_rcu(&adj->list);
4842 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4843 adj_dev->name, dev->name, adj_dev->name);
4844 dev_put(adj_dev);
4845 kfree_rcu(adj, rcu);
4846}
4847
4848static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4849 struct net_device *upper_dev,
4850 struct list_head *up_list,
4851 struct list_head *down_list,
4852 void *private, bool master)
4853{
4854 int ret;
4855
4856 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4857 master);
4858 if (ret)
4859 return ret;
4860
4861 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4862 false);
4863 if (ret) {
4864 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4865 return ret;
4866 }
4867
4868 return 0;
4869}
4870
4871static int __netdev_adjacent_dev_link(struct net_device *dev,
4872 struct net_device *upper_dev)
4873{
4874 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4875 &dev->all_adj_list.upper,
4876 &upper_dev->all_adj_list.lower,
4877 NULL, false);
4878}
4879
4880static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4881 struct net_device *upper_dev,
4882 struct list_head *up_list,
4883 struct list_head *down_list)
4884{
4885 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4886 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4887}
4888
4889static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4890 struct net_device *upper_dev)
4891{
4892 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4893 &dev->all_adj_list.upper,
4894 &upper_dev->all_adj_list.lower);
4895}
4896
4897static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4898 struct net_device *upper_dev,
4899 void *private, bool master)
4900{
4901 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4902
4903 if (ret)
4904 return ret;
4905
4906 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4907 &dev->adj_list.upper,
4908 &upper_dev->adj_list.lower,
4909 private, master);
4910 if (ret) {
4911 __netdev_adjacent_dev_unlink(dev, upper_dev);
4912 return ret;
4913 }
4914
4915 return 0;
4916}
4917
4918static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4919 struct net_device *upper_dev)
4920{
4921 __netdev_adjacent_dev_unlink(dev, upper_dev);
4922 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4923 &dev->adj_list.upper,
4924 &upper_dev->adj_list.lower);
4925}
4926
4927static int __netdev_upper_dev_link(struct net_device *dev,
4928 struct net_device *upper_dev, bool master,
4929 void *private)
4930{
4931 struct netdev_adjacent *i, *j, *to_i, *to_j;
4932 int ret = 0;
4933
4934 ASSERT_RTNL();
4935
4936 if (dev == upper_dev)
4937 return -EBUSY;
4938
4939 /* To prevent loops, check if dev is not upper device to upper_dev. */
4940 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4941 return -EBUSY;
4942
4943 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4944 return -EEXIST;
4945
4946 if (master && netdev_master_upper_dev_get(dev))
4947 return -EBUSY;
4948
4949 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4950 master);
4951 if (ret)
4952 return ret;
4953
4954 /* Now that we linked these devs, make all the upper_dev's
4955 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4956 * versa, and don't forget the devices itself. All of these
4957 * links are non-neighbours.
4958 */
4959 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4960 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4961 pr_debug("Interlinking %s with %s, non-neighbour\n",
4962 i->dev->name, j->dev->name);
4963 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4964 if (ret)
4965 goto rollback_mesh;
4966 }
4967 }
4968
4969 /* add dev to every upper_dev's upper device */
4970 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4971 pr_debug("linking %s's upper device %s with %s\n",
4972 upper_dev->name, i->dev->name, dev->name);
4973 ret = __netdev_adjacent_dev_link(dev, i->dev);
4974 if (ret)
4975 goto rollback_upper_mesh;
4976 }
4977
4978 /* add upper_dev to every dev's lower device */
4979 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4980 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4981 i->dev->name, upper_dev->name);
4982 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4983 if (ret)
4984 goto rollback_lower_mesh;
4985 }
4986
4987 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4988 return 0;
4989
4990rollback_lower_mesh:
4991 to_i = i;
4992 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4993 if (i == to_i)
4994 break;
4995 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4996 }
4997
4998 i = NULL;
4999
5000rollback_upper_mesh:
5001 to_i = i;
5002 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5003 if (i == to_i)
5004 break;
5005 __netdev_adjacent_dev_unlink(dev, i->dev);
5006 }
5007
5008 i = j = NULL;
5009
5010rollback_mesh:
5011 to_i = i;
5012 to_j = j;
5013 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5014 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5015 if (i == to_i && j == to_j)
5016 break;
5017 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5018 }
5019 if (i == to_i)
5020 break;
5021 }
5022
5023 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5024
5025 return ret;
5026}
5027
5028/**
5029 * netdev_upper_dev_link - Add a link to the upper device
5030 * @dev: device
5031 * @upper_dev: new upper device
5032 *
5033 * Adds a link to device which is upper to this one. The caller must hold
5034 * the RTNL lock. On a failure a negative errno code is returned.
5035 * On success the reference counts are adjusted and the function
5036 * returns zero.
5037 */
5038int netdev_upper_dev_link(struct net_device *dev,
5039 struct net_device *upper_dev)
5040{
5041 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5042}
5043EXPORT_SYMBOL(netdev_upper_dev_link);
5044
5045/**
5046 * netdev_master_upper_dev_link - Add a master link to the upper device
5047 * @dev: device
5048 * @upper_dev: new upper device
5049 *
5050 * Adds a link to device which is upper to this one. In this case, only
5051 * one master upper device can be linked, although other non-master devices
5052 * might be linked as well. The caller must hold the RTNL lock.
5053 * On a failure a negative errno code is returned. On success the reference
5054 * counts are adjusted and the function returns zero.
5055 */
5056int netdev_master_upper_dev_link(struct net_device *dev,
5057 struct net_device *upper_dev)
5058{
5059 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5060}
5061EXPORT_SYMBOL(netdev_master_upper_dev_link);
5062
5063int netdev_master_upper_dev_link_private(struct net_device *dev,
5064 struct net_device *upper_dev,
5065 void *private)
5066{
5067 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5068}
5069EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5070
5071/**
5072 * netdev_upper_dev_unlink - Removes a link to upper device
5073 * @dev: device
5074 * @upper_dev: new upper device
5075 *
5076 * Removes a link to device which is upper to this one. The caller must hold
5077 * the RTNL lock.
5078 */
5079void netdev_upper_dev_unlink(struct net_device *dev,
5080 struct net_device *upper_dev)
5081{
5082 struct netdev_adjacent *i, *j;
5083 ASSERT_RTNL();
5084
5085 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5086
5087 /* Here is the tricky part. We must remove all dev's lower
5088 * devices from all upper_dev's upper devices and vice
5089 * versa, to maintain the graph relationship.
5090 */
5091 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5092 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5093 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5094
5095 /* remove also the devices itself from lower/upper device
5096 * list
5097 */
5098 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5099 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5100
5101 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5102 __netdev_adjacent_dev_unlink(dev, i->dev);
5103
5104 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5105}
5106EXPORT_SYMBOL(netdev_upper_dev_unlink);
5107
5108void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5109{
5110 struct netdev_adjacent *iter;
5111
5112 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5113 netdev_adjacent_sysfs_del(iter->dev, oldname,
5114 &iter->dev->adj_list.lower);
5115 netdev_adjacent_sysfs_add(iter->dev, dev,
5116 &iter->dev->adj_list.lower);
5117 }
5118
5119 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5120 netdev_adjacent_sysfs_del(iter->dev, oldname,
5121 &iter->dev->adj_list.upper);
5122 netdev_adjacent_sysfs_add(iter->dev, dev,
5123 &iter->dev->adj_list.upper);
5124 }
5125}
5126
5127void *netdev_lower_dev_get_private(struct net_device *dev,
5128 struct net_device *lower_dev)
5129{
5130 struct netdev_adjacent *lower;
5131
5132 if (!lower_dev)
5133 return NULL;
5134 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5135 if (!lower)
5136 return NULL;
5137
5138 return lower->private;
5139}
5140EXPORT_SYMBOL(netdev_lower_dev_get_private);
5141
5142
5143int dev_get_nest_level(struct net_device *dev,
5144 bool (*type_check)(struct net_device *dev))
5145{
5146 struct net_device *lower = NULL;
5147 struct list_head *iter;
5148 int max_nest = -1;
5149 int nest;
5150
5151 ASSERT_RTNL();
5152
5153 netdev_for_each_lower_dev(dev, lower, iter) {
5154 nest = dev_get_nest_level(lower, type_check);
5155 if (max_nest < nest)
5156 max_nest = nest;
5157 }
5158
5159 if (type_check(dev))
5160 max_nest++;
5161
5162 return max_nest;
5163}
5164EXPORT_SYMBOL(dev_get_nest_level);
5165
5166static void dev_change_rx_flags(struct net_device *dev, int flags)
5167{
5168 const struct net_device_ops *ops = dev->netdev_ops;
5169
5170 if (ops->ndo_change_rx_flags)
5171 ops->ndo_change_rx_flags(dev, flags);
5172}
5173
5174static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5175{
5176 unsigned int old_flags = dev->flags;
5177 kuid_t uid;
5178 kgid_t gid;
5179
5180 ASSERT_RTNL();
5181
5182 dev->flags |= IFF_PROMISC;
5183 dev->promiscuity += inc;
5184 if (dev->promiscuity == 0) {
5185 /*
5186 * Avoid overflow.
5187 * If inc causes overflow, untouch promisc and return error.
5188 */
5189 if (inc < 0)
5190 dev->flags &= ~IFF_PROMISC;
5191 else {
5192 dev->promiscuity -= inc;
5193 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5194 dev->name);
5195 return -EOVERFLOW;
5196 }
5197 }
5198 if (dev->flags != old_flags) {
5199 pr_info("device %s %s promiscuous mode\n",
5200 dev->name,
5201 dev->flags & IFF_PROMISC ? "entered" : "left");
5202 if (audit_enabled) {
5203 current_uid_gid(&uid, &gid);
5204 audit_log(current->audit_context, GFP_ATOMIC,
5205 AUDIT_ANOM_PROMISCUOUS,
5206 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5207 dev->name, (dev->flags & IFF_PROMISC),
5208 (old_flags & IFF_PROMISC),
5209 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5210 from_kuid(&init_user_ns, uid),
5211 from_kgid(&init_user_ns, gid),
5212 audit_get_sessionid(current));
5213 }
5214
5215 dev_change_rx_flags(dev, IFF_PROMISC);
5216 }
5217 if (notify)
5218 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5219 return 0;
5220}
5221
5222/**
5223 * dev_set_promiscuity - update promiscuity count on a device
5224 * @dev: device
5225 * @inc: modifier
5226 *
5227 * Add or remove promiscuity from a device. While the count in the device
5228 * remains above zero the interface remains promiscuous. Once it hits zero
5229 * the device reverts back to normal filtering operation. A negative inc
5230 * value is used to drop promiscuity on the device.
5231 * Return 0 if successful or a negative errno code on error.
5232 */
5233int dev_set_promiscuity(struct net_device *dev, int inc)
5234{
5235 unsigned int old_flags = dev->flags;
5236 int err;
5237
5238 err = __dev_set_promiscuity(dev, inc, true);
5239 if (err < 0)
5240 return err;
5241 if (dev->flags != old_flags)
5242 dev_set_rx_mode(dev);
5243 return err;
5244}
5245EXPORT_SYMBOL(dev_set_promiscuity);
5246
5247static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5248{
5249 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5250
5251 ASSERT_RTNL();
5252
5253 dev->flags |= IFF_ALLMULTI;
5254 dev->allmulti += inc;
5255 if (dev->allmulti == 0) {
5256 /*
5257 * Avoid overflow.
5258 * If inc causes overflow, untouch allmulti and return error.
5259 */
5260 if (inc < 0)
5261 dev->flags &= ~IFF_ALLMULTI;
5262 else {
5263 dev->allmulti -= inc;
5264 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5265 dev->name);
5266 return -EOVERFLOW;
5267 }
5268 }
5269 if (dev->flags ^ old_flags) {
5270 dev_change_rx_flags(dev, IFF_ALLMULTI);
5271 dev_set_rx_mode(dev);
5272 if (notify)
5273 __dev_notify_flags(dev, old_flags,
5274 dev->gflags ^ old_gflags);
5275 }
5276 return 0;
5277}
5278
5279/**
5280 * dev_set_allmulti - update allmulti count on a device
5281 * @dev: device
5282 * @inc: modifier
5283 *
5284 * Add or remove reception of all multicast frames to a device. While the
5285 * count in the device remains above zero the interface remains listening
5286 * to all interfaces. Once it hits zero the device reverts back to normal
5287 * filtering operation. A negative @inc value is used to drop the counter
5288 * when releasing a resource needing all multicasts.
5289 * Return 0 if successful or a negative errno code on error.
5290 */
5291
5292int dev_set_allmulti(struct net_device *dev, int inc)
5293{
5294 return __dev_set_allmulti(dev, inc, true);
5295}
5296EXPORT_SYMBOL(dev_set_allmulti);
5297
5298/*
5299 * Upload unicast and multicast address lists to device and
5300 * configure RX filtering. When the device doesn't support unicast
5301 * filtering it is put in promiscuous mode while unicast addresses
5302 * are present.
5303 */
5304void __dev_set_rx_mode(struct net_device *dev)
5305{
5306 const struct net_device_ops *ops = dev->netdev_ops;
5307
5308 /* dev_open will call this function so the list will stay sane. */
5309 if (!(dev->flags&IFF_UP))
5310 return;
5311
5312 if (!netif_device_present(dev))
5313 return;
5314
5315 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5316 /* Unicast addresses changes may only happen under the rtnl,
5317 * therefore calling __dev_set_promiscuity here is safe.
5318 */
5319 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5320 __dev_set_promiscuity(dev, 1, false);
5321 dev->uc_promisc = true;
5322 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5323 __dev_set_promiscuity(dev, -1, false);
5324 dev->uc_promisc = false;
5325 }
5326 }
5327
5328 if (ops->ndo_set_rx_mode)
5329 ops->ndo_set_rx_mode(dev);
5330}
5331
5332void dev_set_rx_mode(struct net_device *dev)
5333{
5334 netif_addr_lock_bh(dev);
5335 __dev_set_rx_mode(dev);
5336 netif_addr_unlock_bh(dev);
5337}
5338
5339/**
5340 * dev_get_flags - get flags reported to userspace
5341 * @dev: device
5342 *
5343 * Get the combination of flag bits exported through APIs to userspace.
5344 */
5345unsigned int dev_get_flags(const struct net_device *dev)
5346{
5347 unsigned int flags;
5348
5349 flags = (dev->flags & ~(IFF_PROMISC |
5350 IFF_ALLMULTI |
5351 IFF_RUNNING |
5352 IFF_LOWER_UP |
5353 IFF_DORMANT)) |
5354 (dev->gflags & (IFF_PROMISC |
5355 IFF_ALLMULTI));
5356
5357 if (netif_running(dev)) {
5358 if (netif_oper_up(dev))
5359 flags |= IFF_RUNNING;
5360 if (netif_carrier_ok(dev))
5361 flags |= IFF_LOWER_UP;
5362 if (netif_dormant(dev))
5363 flags |= IFF_DORMANT;
5364 }
5365
5366 return flags;
5367}
5368EXPORT_SYMBOL(dev_get_flags);
5369
5370int __dev_change_flags(struct net_device *dev, unsigned int flags)
5371{
5372 unsigned int old_flags = dev->flags;
5373 int ret;
5374
5375 ASSERT_RTNL();
5376
5377 /*
5378 * Set the flags on our device.
5379 */
5380
5381 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5382 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5383 IFF_AUTOMEDIA)) |
5384 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5385 IFF_ALLMULTI));
5386
5387 /*
5388 * Load in the correct multicast list now the flags have changed.
5389 */
5390
5391 if ((old_flags ^ flags) & IFF_MULTICAST)
5392 dev_change_rx_flags(dev, IFF_MULTICAST);
5393
5394 dev_set_rx_mode(dev);
5395
5396 /*
5397 * Have we downed the interface. We handle IFF_UP ourselves
5398 * according to user attempts to set it, rather than blindly
5399 * setting it.
5400 */
5401
5402 ret = 0;
5403 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5404 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5405
5406 if (!ret)
5407 dev_set_rx_mode(dev);
5408 }
5409
5410 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5411 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5412 unsigned int old_flags = dev->flags;
5413
5414 dev->gflags ^= IFF_PROMISC;
5415
5416 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5417 if (dev->flags != old_flags)
5418 dev_set_rx_mode(dev);
5419 }
5420
5421 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5422 is important. Some (broken) drivers set IFF_PROMISC, when
5423 IFF_ALLMULTI is requested not asking us and not reporting.
5424 */
5425 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5426 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5427
5428 dev->gflags ^= IFF_ALLMULTI;
5429 __dev_set_allmulti(dev, inc, false);
5430 }
5431
5432 return ret;
5433}
5434
5435void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5436 unsigned int gchanges)
5437{
5438 unsigned int changes = dev->flags ^ old_flags;
5439
5440 if (gchanges)
5441 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5442
5443 if (changes & IFF_UP) {
5444 if (dev->flags & IFF_UP)
5445 call_netdevice_notifiers(NETDEV_UP, dev);
5446 else
5447 call_netdevice_notifiers(NETDEV_DOWN, dev);
5448 }
5449
5450 if (dev->flags & IFF_UP &&
5451 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5452 struct netdev_notifier_change_info change_info;
5453
5454 change_info.flags_changed = changes;
5455 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5456 &change_info.info);
5457 }
5458}
5459
5460/**
5461 * dev_change_flags - change device settings
5462 * @dev: device
5463 * @flags: device state flags
5464 *
5465 * Change settings on device based state flags. The flags are
5466 * in the userspace exported format.
5467 */
5468int dev_change_flags(struct net_device *dev, unsigned int flags)
5469{
5470 int ret;
5471 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5472
5473 ret = __dev_change_flags(dev, flags);
5474 if (ret < 0)
5475 return ret;
5476
5477 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5478 __dev_notify_flags(dev, old_flags, changes);
5479 return ret;
5480}
5481EXPORT_SYMBOL(dev_change_flags);
5482
5483static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5484{
5485 const struct net_device_ops *ops = dev->netdev_ops;
5486
5487 if (ops->ndo_change_mtu)
5488 return ops->ndo_change_mtu(dev, new_mtu);
5489
5490 dev->mtu = new_mtu;
5491 return 0;
5492}
5493
5494/**
5495 * dev_set_mtu - Change maximum transfer unit
5496 * @dev: device
5497 * @new_mtu: new transfer unit
5498 *
5499 * Change the maximum transfer size of the network device.
5500 */
5501int dev_set_mtu(struct net_device *dev, int new_mtu)
5502{
5503 int err, orig_mtu;
5504
5505 if (new_mtu == dev->mtu)
5506 return 0;
5507
5508 /* MTU must be positive. */
5509 if (new_mtu < 0)
5510 return -EINVAL;
5511
5512 if (!netif_device_present(dev))
5513 return -ENODEV;
5514
5515 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5516 err = notifier_to_errno(err);
5517 if (err)
5518 return err;
5519
5520 orig_mtu = dev->mtu;
5521 err = __dev_set_mtu(dev, new_mtu);
5522
5523 if (!err) {
5524 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5525 err = notifier_to_errno(err);
5526 if (err) {
5527 /* setting mtu back and notifying everyone again,
5528 * so that they have a chance to revert changes.
5529 */
5530 __dev_set_mtu(dev, orig_mtu);
5531 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5532 }
5533 }
5534 return err;
5535}
5536EXPORT_SYMBOL(dev_set_mtu);
5537
5538/**
5539 * dev_set_group - Change group this device belongs to
5540 * @dev: device
5541 * @new_group: group this device should belong to
5542 */
5543void dev_set_group(struct net_device *dev, int new_group)
5544{
5545 dev->group = new_group;
5546}
5547EXPORT_SYMBOL(dev_set_group);
5548
5549/**
5550 * dev_set_mac_address - Change Media Access Control Address
5551 * @dev: device
5552 * @sa: new address
5553 *
5554 * Change the hardware (MAC) address of the device
5555 */
5556int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5557{
5558 const struct net_device_ops *ops = dev->netdev_ops;
5559 int err;
5560
5561 if (!ops->ndo_set_mac_address)
5562 return -EOPNOTSUPP;
5563 if (sa->sa_family != dev->type)
5564 return -EINVAL;
5565 if (!netif_device_present(dev))
5566 return -ENODEV;
5567 err = ops->ndo_set_mac_address(dev, sa);
5568 if (err)
5569 return err;
5570 dev->addr_assign_type = NET_ADDR_SET;
5571 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5572 add_device_randomness(dev->dev_addr, dev->addr_len);
5573 return 0;
5574}
5575EXPORT_SYMBOL(dev_set_mac_address);
5576
5577/**
5578 * dev_change_carrier - Change device carrier
5579 * @dev: device
5580 * @new_carrier: new value
5581 *
5582 * Change device carrier
5583 */
5584int dev_change_carrier(struct net_device *dev, bool new_carrier)
5585{
5586 const struct net_device_ops *ops = dev->netdev_ops;
5587
5588 if (!ops->ndo_change_carrier)
5589 return -EOPNOTSUPP;
5590 if (!netif_device_present(dev))
5591 return -ENODEV;
5592 return ops->ndo_change_carrier(dev, new_carrier);
5593}
5594EXPORT_SYMBOL(dev_change_carrier);
5595
5596/**
5597 * dev_get_phys_port_id - Get device physical port ID
5598 * @dev: device
5599 * @ppid: port ID
5600 *
5601 * Get device physical port ID
5602 */
5603int dev_get_phys_port_id(struct net_device *dev,
5604 struct netdev_phys_port_id *ppid)
5605{
5606 const struct net_device_ops *ops = dev->netdev_ops;
5607
5608 if (!ops->ndo_get_phys_port_id)
5609 return -EOPNOTSUPP;
5610 return ops->ndo_get_phys_port_id(dev, ppid);
5611}
5612EXPORT_SYMBOL(dev_get_phys_port_id);
5613
5614/**
5615 * dev_new_index - allocate an ifindex
5616 * @net: the applicable net namespace
5617 *
5618 * Returns a suitable unique value for a new device interface
5619 * number. The caller must hold the rtnl semaphore or the
5620 * dev_base_lock to be sure it remains unique.
5621 */
5622static int dev_new_index(struct net *net)
5623{
5624 int ifindex = net->ifindex;
5625 for (;;) {
5626 if (++ifindex <= 0)
5627 ifindex = 1;
5628 if (!__dev_get_by_index(net, ifindex))
5629 return net->ifindex = ifindex;
5630 }
5631}
5632
5633/* Delayed registration/unregisteration */
5634static LIST_HEAD(net_todo_list);
5635DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5636
5637static void net_set_todo(struct net_device *dev)
5638{
5639 list_add_tail(&dev->todo_list, &net_todo_list);
5640 dev_net(dev)->dev_unreg_count++;
5641}
5642
5643static void rollback_registered_many(struct list_head *head)
5644{
5645 struct net_device *dev, *tmp;
5646 LIST_HEAD(close_head);
5647
5648 BUG_ON(dev_boot_phase);
5649 ASSERT_RTNL();
5650
5651 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5652 /* Some devices call without registering
5653 * for initialization unwind. Remove those
5654 * devices and proceed with the remaining.
5655 */
5656 if (dev->reg_state == NETREG_UNINITIALIZED) {
5657 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5658 dev->name, dev);
5659
5660 WARN_ON(1);
5661 list_del(&dev->unreg_list);
5662 continue;
5663 }
5664 dev->dismantle = true;
5665 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5666 }
5667
5668 /* If device is running, close it first. */
5669 list_for_each_entry(dev, head, unreg_list)
5670 list_add_tail(&dev->close_list, &close_head);
5671 dev_close_many(&close_head);
5672
5673 list_for_each_entry(dev, head, unreg_list) {
5674 /* And unlink it from device chain. */
5675 unlist_netdevice(dev);
5676
5677 dev->reg_state = NETREG_UNREGISTERING;
5678 }
5679
5680 synchronize_net();
5681
5682 list_for_each_entry(dev, head, unreg_list) {
5683 /* Shutdown queueing discipline. */
5684 dev_shutdown(dev);
5685
5686
5687 /* Notify protocols, that we are about to destroy
5688 this device. They should clean all the things.
5689 */
5690 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5691
5692 if (!dev->rtnl_link_ops ||
5693 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5694 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5695
5696 /*
5697 * Flush the unicast and multicast chains
5698 */
5699 dev_uc_flush(dev);
5700 dev_mc_flush(dev);
5701
5702 if (dev->netdev_ops->ndo_uninit)
5703 dev->netdev_ops->ndo_uninit(dev);
5704
5705 /* Notifier chain MUST detach us all upper devices. */
5706 WARN_ON(netdev_has_any_upper_dev(dev));
5707
5708 /* Remove entries from kobject tree */
5709 netdev_unregister_kobject(dev);
5710#ifdef CONFIG_XPS
5711 /* Remove XPS queueing entries */
5712 netif_reset_xps_queues_gt(dev, 0);
5713#endif
5714 }
5715
5716 synchronize_net();
5717
5718 list_for_each_entry(dev, head, unreg_list)
5719 dev_put(dev);
5720}
5721
5722static void rollback_registered(struct net_device *dev)
5723{
5724 LIST_HEAD(single);
5725
5726 list_add(&dev->unreg_list, &single);
5727 rollback_registered_many(&single);
5728 list_del(&single);
5729}
5730
5731static netdev_features_t netdev_fix_features(struct net_device *dev,
5732 netdev_features_t features)
5733{
5734 /* Fix illegal checksum combinations */
5735 if ((features & NETIF_F_HW_CSUM) &&
5736 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5737 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5738 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5739 }
5740
5741 /* TSO requires that SG is present as well. */
5742 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5743 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5744 features &= ~NETIF_F_ALL_TSO;
5745 }
5746
5747 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5748 !(features & NETIF_F_IP_CSUM)) {
5749 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5750 features &= ~NETIF_F_TSO;
5751 features &= ~NETIF_F_TSO_ECN;
5752 }
5753
5754 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5755 !(features & NETIF_F_IPV6_CSUM)) {
5756 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5757 features &= ~NETIF_F_TSO6;
5758 }
5759
5760 /* TSO ECN requires that TSO is present as well. */
5761 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5762 features &= ~NETIF_F_TSO_ECN;
5763
5764 /* Software GSO depends on SG. */
5765 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5766 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5767 features &= ~NETIF_F_GSO;
5768 }
5769
5770 /* UFO needs SG and checksumming */
5771 if (features & NETIF_F_UFO) {
5772 /* maybe split UFO into V4 and V6? */
5773 if (!((features & NETIF_F_GEN_CSUM) ||
5774 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5775 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5776 netdev_dbg(dev,
5777 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5778 features &= ~NETIF_F_UFO;
5779 }
5780
5781 if (!(features & NETIF_F_SG)) {
5782 netdev_dbg(dev,
5783 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5784 features &= ~NETIF_F_UFO;
5785 }
5786 }
5787
5788#ifdef CONFIG_NET_RX_BUSY_POLL
5789 if (dev->netdev_ops->ndo_busy_poll)
5790 features |= NETIF_F_BUSY_POLL;
5791 else
5792#endif
5793 features &= ~NETIF_F_BUSY_POLL;
5794
5795 return features;
5796}
5797
5798int __netdev_update_features(struct net_device *dev)
5799{
5800 netdev_features_t features;
5801 int err = 0;
5802
5803 ASSERT_RTNL();
5804
5805 features = netdev_get_wanted_features(dev);
5806
5807 if (dev->netdev_ops->ndo_fix_features)
5808 features = dev->netdev_ops->ndo_fix_features(dev, features);
5809
5810 /* driver might be less strict about feature dependencies */
5811 features = netdev_fix_features(dev, features);
5812
5813 if (dev->features == features)
5814 return 0;
5815
5816 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5817 &dev->features, &features);
5818
5819 if (dev->netdev_ops->ndo_set_features)
5820 err = dev->netdev_ops->ndo_set_features(dev, features);
5821
5822 if (unlikely(err < 0)) {
5823 netdev_err(dev,
5824 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5825 err, &features, &dev->features);
5826 return -1;
5827 }
5828
5829 if (!err)
5830 dev->features = features;
5831
5832 return 1;
5833}
5834
5835/**
5836 * netdev_update_features - recalculate device features
5837 * @dev: the device to check
5838 *
5839 * Recalculate dev->features set and send notifications if it
5840 * has changed. Should be called after driver or hardware dependent
5841 * conditions might have changed that influence the features.
5842 */
5843void netdev_update_features(struct net_device *dev)
5844{
5845 if (__netdev_update_features(dev))
5846 netdev_features_change(dev);
5847}
5848EXPORT_SYMBOL(netdev_update_features);
5849
5850/**
5851 * netdev_change_features - recalculate device features
5852 * @dev: the device to check
5853 *
5854 * Recalculate dev->features set and send notifications even
5855 * if they have not changed. Should be called instead of
5856 * netdev_update_features() if also dev->vlan_features might
5857 * have changed to allow the changes to be propagated to stacked
5858 * VLAN devices.
5859 */
5860void netdev_change_features(struct net_device *dev)
5861{
5862 __netdev_update_features(dev);
5863 netdev_features_change(dev);
5864}
5865EXPORT_SYMBOL(netdev_change_features);
5866
5867/**
5868 * netif_stacked_transfer_operstate - transfer operstate
5869 * @rootdev: the root or lower level device to transfer state from
5870 * @dev: the device to transfer operstate to
5871 *
5872 * Transfer operational state from root to device. This is normally
5873 * called when a stacking relationship exists between the root
5874 * device and the device(a leaf device).
5875 */
5876void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5877 struct net_device *dev)
5878{
5879 if (rootdev->operstate == IF_OPER_DORMANT)
5880 netif_dormant_on(dev);
5881 else
5882 netif_dormant_off(dev);
5883
5884 if (netif_carrier_ok(rootdev)) {
5885 if (!netif_carrier_ok(dev))
5886 netif_carrier_on(dev);
5887 } else {
5888 if (netif_carrier_ok(dev))
5889 netif_carrier_off(dev);
5890 }
5891}
5892EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5893
5894#ifdef CONFIG_SYSFS
5895static int netif_alloc_rx_queues(struct net_device *dev)
5896{
5897 unsigned int i, count = dev->num_rx_queues;
5898 struct netdev_rx_queue *rx;
5899
5900 BUG_ON(count < 1);
5901
5902 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5903 if (!rx)
5904 return -ENOMEM;
5905
5906 dev->_rx = rx;
5907
5908 for (i = 0; i < count; i++)
5909 rx[i].dev = dev;
5910 return 0;
5911}
5912#endif
5913
5914static void netdev_init_one_queue(struct net_device *dev,
5915 struct netdev_queue *queue, void *_unused)
5916{
5917 /* Initialize queue lock */
5918 spin_lock_init(&queue->_xmit_lock);
5919 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5920 queue->xmit_lock_owner = -1;
5921 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5922 queue->dev = dev;
5923#ifdef CONFIG_BQL
5924 dql_init(&queue->dql, HZ);
5925#endif
5926}
5927
5928static void netif_free_tx_queues(struct net_device *dev)
5929{
5930 if (is_vmalloc_addr(dev->_tx))
5931 vfree(dev->_tx);
5932 else
5933 kfree(dev->_tx);
5934}
5935
5936static int netif_alloc_netdev_queues(struct net_device *dev)
5937{
5938 unsigned int count = dev->num_tx_queues;
5939 struct netdev_queue *tx;
5940 size_t sz = count * sizeof(*tx);
5941
5942 BUG_ON(count < 1 || count > 0xffff);
5943
5944 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5945 if (!tx) {
5946 tx = vzalloc(sz);
5947 if (!tx)
5948 return -ENOMEM;
5949 }
5950 dev->_tx = tx;
5951
5952 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5953 spin_lock_init(&dev->tx_global_lock);
5954
5955 return 0;
5956}
5957
5958/**
5959 * register_netdevice - register a network device
5960 * @dev: device to register
5961 *
5962 * Take a completed network device structure and add it to the kernel
5963 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5964 * chain. 0 is returned on success. A negative errno code is returned
5965 * on a failure to set up the device, or if the name is a duplicate.
5966 *
5967 * Callers must hold the rtnl semaphore. You may want
5968 * register_netdev() instead of this.
5969 *
5970 * BUGS:
5971 * The locking appears insufficient to guarantee two parallel registers
5972 * will not get the same name.
5973 */
5974
5975int register_netdevice(struct net_device *dev)
5976{
5977 int ret;
5978 struct net *net = dev_net(dev);
5979
5980 BUG_ON(dev_boot_phase);
5981 ASSERT_RTNL();
5982
5983 might_sleep();
5984
5985 /* When net_device's are persistent, this will be fatal. */
5986 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5987 BUG_ON(!net);
5988
5989 spin_lock_init(&dev->addr_list_lock);
5990 netdev_set_addr_lockdep_class(dev);
5991
5992 dev->iflink = -1;
5993
5994 ret = dev_get_valid_name(net, dev, dev->name);
5995 if (ret < 0)
5996 goto out;
5997
5998 /* Init, if this function is available */
5999 if (dev->netdev_ops->ndo_init) {
6000 ret = dev->netdev_ops->ndo_init(dev);
6001 if (ret) {
6002 if (ret > 0)
6003 ret = -EIO;
6004 goto out;
6005 }
6006 }
6007
6008 if (((dev->hw_features | dev->features) &
6009 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6010 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6011 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6012 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6013 ret = -EINVAL;
6014 goto err_uninit;
6015 }
6016
6017 ret = -EBUSY;
6018 if (!dev->ifindex)
6019 dev->ifindex = dev_new_index(net);
6020 else if (__dev_get_by_index(net, dev->ifindex))
6021 goto err_uninit;
6022
6023 if (dev->iflink == -1)
6024 dev->iflink = dev->ifindex;
6025
6026 /* Transfer changeable features to wanted_features and enable
6027 * software offloads (GSO and GRO).
6028 */
6029 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6030 dev->features |= NETIF_F_SOFT_FEATURES;
6031 dev->wanted_features = dev->features & dev->hw_features;
6032
6033 if (!(dev->flags & IFF_LOOPBACK)) {
6034 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6035 }
6036
6037 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6038 */
6039 dev->vlan_features |= NETIF_F_HIGHDMA;
6040
6041 /* Make NETIF_F_SG inheritable to tunnel devices.
6042 */
6043 dev->hw_enc_features |= NETIF_F_SG;
6044
6045 /* Make NETIF_F_SG inheritable to MPLS.
6046 */
6047 dev->mpls_features |= NETIF_F_SG;
6048
6049 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6050 ret = notifier_to_errno(ret);
6051 if (ret)
6052 goto err_uninit;
6053
6054 ret = netdev_register_kobject(dev);
6055 if (ret)
6056 goto err_uninit;
6057 dev->reg_state = NETREG_REGISTERED;
6058
6059 __netdev_update_features(dev);
6060
6061 /*
6062 * Default initial state at registry is that the
6063 * device is present.
6064 */
6065
6066 set_bit(__LINK_STATE_PRESENT, &dev->state);
6067
6068 linkwatch_init_dev(dev);
6069
6070 dev_init_scheduler(dev);
6071 dev_hold(dev);
6072 list_netdevice(dev);
6073 add_device_randomness(dev->dev_addr, dev->addr_len);
6074
6075 /* If the device has permanent device address, driver should
6076 * set dev_addr and also addr_assign_type should be set to
6077 * NET_ADDR_PERM (default value).
6078 */
6079 if (dev->addr_assign_type == NET_ADDR_PERM)
6080 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6081
6082 /* Notify protocols, that a new device appeared. */
6083 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6084 ret = notifier_to_errno(ret);
6085 if (ret) {
6086 rollback_registered(dev);
6087 dev->reg_state = NETREG_UNREGISTERED;
6088 }
6089 /*
6090 * Prevent userspace races by waiting until the network
6091 * device is fully setup before sending notifications.
6092 */
6093 if (!dev->rtnl_link_ops ||
6094 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6095 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6096
6097out:
6098 return ret;
6099
6100err_uninit:
6101 if (dev->netdev_ops->ndo_uninit)
6102 dev->netdev_ops->ndo_uninit(dev);
6103 goto out;
6104}
6105EXPORT_SYMBOL(register_netdevice);
6106
6107/**
6108 * init_dummy_netdev - init a dummy network device for NAPI
6109 * @dev: device to init
6110 *
6111 * This takes a network device structure and initialize the minimum
6112 * amount of fields so it can be used to schedule NAPI polls without
6113 * registering a full blown interface. This is to be used by drivers
6114 * that need to tie several hardware interfaces to a single NAPI
6115 * poll scheduler due to HW limitations.
6116 */
6117int init_dummy_netdev(struct net_device *dev)
6118{
6119 /* Clear everything. Note we don't initialize spinlocks
6120 * are they aren't supposed to be taken by any of the
6121 * NAPI code and this dummy netdev is supposed to be
6122 * only ever used for NAPI polls
6123 */
6124 memset(dev, 0, sizeof(struct net_device));
6125
6126 /* make sure we BUG if trying to hit standard
6127 * register/unregister code path
6128 */
6129 dev->reg_state = NETREG_DUMMY;
6130
6131 /* NAPI wants this */
6132 INIT_LIST_HEAD(&dev->napi_list);
6133
6134 /* a dummy interface is started by default */
6135 set_bit(__LINK_STATE_PRESENT, &dev->state);
6136 set_bit(__LINK_STATE_START, &dev->state);
6137
6138 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6139 * because users of this 'device' dont need to change
6140 * its refcount.
6141 */
6142
6143 return 0;
6144}
6145EXPORT_SYMBOL_GPL(init_dummy_netdev);
6146
6147
6148/**
6149 * register_netdev - register a network device
6150 * @dev: device to register
6151 *
6152 * Take a completed network device structure and add it to the kernel
6153 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6154 * chain. 0 is returned on success. A negative errno code is returned
6155 * on a failure to set up the device, or if the name is a duplicate.
6156 *
6157 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6158 * and expands the device name if you passed a format string to
6159 * alloc_netdev.
6160 */
6161int register_netdev(struct net_device *dev)
6162{
6163 int err;
6164
6165 rtnl_lock();
6166 err = register_netdevice(dev);
6167 rtnl_unlock();
6168 return err;
6169}
6170EXPORT_SYMBOL(register_netdev);
6171
6172int netdev_refcnt_read(const struct net_device *dev)
6173{
6174 int i, refcnt = 0;
6175
6176 for_each_possible_cpu(i)
6177 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6178 return refcnt;
6179}
6180EXPORT_SYMBOL(netdev_refcnt_read);
6181
6182/**
6183 * netdev_wait_allrefs - wait until all references are gone.
6184 * @dev: target net_device
6185 *
6186 * This is called when unregistering network devices.
6187 *
6188 * Any protocol or device that holds a reference should register
6189 * for netdevice notification, and cleanup and put back the
6190 * reference if they receive an UNREGISTER event.
6191 * We can get stuck here if buggy protocols don't correctly
6192 * call dev_put.
6193 */
6194static void netdev_wait_allrefs(struct net_device *dev)
6195{
6196 unsigned long rebroadcast_time, warning_time;
6197 int refcnt;
6198
6199 linkwatch_forget_dev(dev);
6200
6201 rebroadcast_time = warning_time = jiffies;
6202 refcnt = netdev_refcnt_read(dev);
6203
6204 while (refcnt != 0) {
6205 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6206 rtnl_lock();
6207
6208 /* Rebroadcast unregister notification */
6209 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6210
6211 __rtnl_unlock();
6212 rcu_barrier();
6213 rtnl_lock();
6214
6215 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6216 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6217 &dev->state)) {
6218 /* We must not have linkwatch events
6219 * pending on unregister. If this
6220 * happens, we simply run the queue
6221 * unscheduled, resulting in a noop
6222 * for this device.
6223 */
6224 linkwatch_run_queue();
6225 }
6226
6227 __rtnl_unlock();
6228
6229 rebroadcast_time = jiffies;
6230 }
6231
6232 msleep(250);
6233
6234 refcnt = netdev_refcnt_read(dev);
6235
6236 if (time_after(jiffies, warning_time + 10 * HZ)) {
6237 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6238 dev->name, refcnt);
6239 warning_time = jiffies;
6240 }
6241 }
6242}
6243
6244/* The sequence is:
6245 *
6246 * rtnl_lock();
6247 * ...
6248 * register_netdevice(x1);
6249 * register_netdevice(x2);
6250 * ...
6251 * unregister_netdevice(y1);
6252 * unregister_netdevice(y2);
6253 * ...
6254 * rtnl_unlock();
6255 * free_netdev(y1);
6256 * free_netdev(y2);
6257 *
6258 * We are invoked by rtnl_unlock().
6259 * This allows us to deal with problems:
6260 * 1) We can delete sysfs objects which invoke hotplug
6261 * without deadlocking with linkwatch via keventd.
6262 * 2) Since we run with the RTNL semaphore not held, we can sleep
6263 * safely in order to wait for the netdev refcnt to drop to zero.
6264 *
6265 * We must not return until all unregister events added during
6266 * the interval the lock was held have been completed.
6267 */
6268void netdev_run_todo(void)
6269{
6270 struct list_head list;
6271
6272 /* Snapshot list, allow later requests */
6273 list_replace_init(&net_todo_list, &list);
6274
6275 __rtnl_unlock();
6276
6277
6278 /* Wait for rcu callbacks to finish before next phase */
6279 if (!list_empty(&list))
6280 rcu_barrier();
6281
6282 while (!list_empty(&list)) {
6283 struct net_device *dev
6284 = list_first_entry(&list, struct net_device, todo_list);
6285 list_del(&dev->todo_list);
6286
6287 rtnl_lock();
6288 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6289 __rtnl_unlock();
6290
6291 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6292 pr_err("network todo '%s' but state %d\n",
6293 dev->name, dev->reg_state);
6294 dump_stack();
6295 continue;
6296 }
6297
6298 dev->reg_state = NETREG_UNREGISTERED;
6299
6300 on_each_cpu(flush_backlog, dev, 1);
6301
6302 netdev_wait_allrefs(dev);
6303
6304 /* paranoia */
6305 BUG_ON(netdev_refcnt_read(dev));
6306 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6307 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6308 WARN_ON(dev->dn_ptr);
6309
6310 if (dev->destructor)
6311 dev->destructor(dev);
6312
6313 /* Report a network device has been unregistered */
6314 rtnl_lock();
6315 dev_net(dev)->dev_unreg_count--;
6316 __rtnl_unlock();
6317 wake_up(&netdev_unregistering_wq);
6318
6319 /* Free network device */
6320 kobject_put(&dev->dev.kobj);
6321 }
6322}
6323
6324/* Convert net_device_stats to rtnl_link_stats64. They have the same
6325 * fields in the same order, with only the type differing.
6326 */
6327void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6328 const struct net_device_stats *netdev_stats)
6329{
6330#if BITS_PER_LONG == 64
6331 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6332 memcpy(stats64, netdev_stats, sizeof(*stats64));
6333#else
6334 size_t i, n = sizeof(*stats64) / sizeof(u64);
6335 const unsigned long *src = (const unsigned long *)netdev_stats;
6336 u64 *dst = (u64 *)stats64;
6337
6338 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6339 sizeof(*stats64) / sizeof(u64));
6340 for (i = 0; i < n; i++)
6341 dst[i] = src[i];
6342#endif
6343}
6344EXPORT_SYMBOL(netdev_stats_to_stats64);
6345
6346/**
6347 * dev_get_stats - get network device statistics
6348 * @dev: device to get statistics from
6349 * @storage: place to store stats
6350 *
6351 * Get network statistics from device. Return @storage.
6352 * The device driver may provide its own method by setting
6353 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6354 * otherwise the internal statistics structure is used.
6355 */
6356struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6357 struct rtnl_link_stats64 *storage)
6358{
6359 const struct net_device_ops *ops = dev->netdev_ops;
6360
6361 if (ops->ndo_get_stats64) {
6362 memset(storage, 0, sizeof(*storage));
6363 ops->ndo_get_stats64(dev, storage);
6364 } else if (ops->ndo_get_stats) {
6365 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6366 } else {
6367 netdev_stats_to_stats64(storage, &dev->stats);
6368 }
6369 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6370 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6371 return storage;
6372}
6373EXPORT_SYMBOL(dev_get_stats);
6374
6375struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6376{
6377 struct netdev_queue *queue = dev_ingress_queue(dev);
6378
6379#ifdef CONFIG_NET_CLS_ACT
6380 if (queue)
6381 return queue;
6382 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6383 if (!queue)
6384 return NULL;
6385 netdev_init_one_queue(dev, queue, NULL);
6386 queue->qdisc = &noop_qdisc;
6387 queue->qdisc_sleeping = &noop_qdisc;
6388 rcu_assign_pointer(dev->ingress_queue, queue);
6389#endif
6390 return queue;
6391}
6392
6393static const struct ethtool_ops default_ethtool_ops;
6394
6395void netdev_set_default_ethtool_ops(struct net_device *dev,
6396 const struct ethtool_ops *ops)
6397{
6398 if (dev->ethtool_ops == &default_ethtool_ops)
6399 dev->ethtool_ops = ops;
6400}
6401EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6402
6403void netdev_freemem(struct net_device *dev)
6404{
6405 char *addr = (char *)dev - dev->padded;
6406
6407 if (is_vmalloc_addr(addr))
6408 vfree(addr);
6409 else
6410 kfree(addr);
6411}
6412
6413/**
6414 * alloc_netdev_mqs - allocate network device
6415 * @sizeof_priv: size of private data to allocate space for
6416 * @name: device name format string
6417 * @setup: callback to initialize device
6418 * @txqs: the number of TX subqueues to allocate
6419 * @rxqs: the number of RX subqueues to allocate
6420 *
6421 * Allocates a struct net_device with private data area for driver use
6422 * and performs basic initialization. Also allocates subqueue structs
6423 * for each queue on the device.
6424 */
6425struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6426 void (*setup)(struct net_device *),
6427 unsigned int txqs, unsigned int rxqs)
6428{
6429 struct net_device *dev;
6430 size_t alloc_size;
6431 struct net_device *p;
6432
6433 BUG_ON(strlen(name) >= sizeof(dev->name));
6434
6435 if (txqs < 1) {
6436 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6437 return NULL;
6438 }
6439
6440#ifdef CONFIG_SYSFS
6441 if (rxqs < 1) {
6442 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6443 return NULL;
6444 }
6445#endif
6446
6447 alloc_size = sizeof(struct net_device);
6448 if (sizeof_priv) {
6449 /* ensure 32-byte alignment of private area */
6450 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6451 alloc_size += sizeof_priv;
6452 }
6453 /* ensure 32-byte alignment of whole construct */
6454 alloc_size += NETDEV_ALIGN - 1;
6455
6456 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6457 if (!p)
6458 p = vzalloc(alloc_size);
6459 if (!p)
6460 return NULL;
6461
6462 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6463 dev->padded = (char *)dev - (char *)p;
6464
6465 dev->pcpu_refcnt = alloc_percpu(int);
6466 if (!dev->pcpu_refcnt)
6467 goto free_dev;
6468
6469 if (dev_addr_init(dev))
6470 goto free_pcpu;
6471
6472 dev_mc_init(dev);
6473 dev_uc_init(dev);
6474
6475 dev_net_set(dev, &init_net);
6476
6477 dev->gso_max_size = GSO_MAX_SIZE;
6478 dev->gso_max_segs = GSO_MAX_SEGS;
6479
6480 INIT_LIST_HEAD(&dev->napi_list);
6481 INIT_LIST_HEAD(&dev->unreg_list);
6482 INIT_LIST_HEAD(&dev->close_list);
6483 INIT_LIST_HEAD(&dev->link_watch_list);
6484 INIT_LIST_HEAD(&dev->adj_list.upper);
6485 INIT_LIST_HEAD(&dev->adj_list.lower);
6486 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6487 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6488 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6489 setup(dev);
6490
6491 dev->num_tx_queues = txqs;
6492 dev->real_num_tx_queues = txqs;
6493 if (netif_alloc_netdev_queues(dev))
6494 goto free_all;
6495
6496#ifdef CONFIG_SYSFS
6497 dev->num_rx_queues = rxqs;
6498 dev->real_num_rx_queues = rxqs;
6499 if (netif_alloc_rx_queues(dev))
6500 goto free_all;
6501#endif
6502
6503 strcpy(dev->name, name);
6504 dev->group = INIT_NETDEV_GROUP;
6505 if (!dev->ethtool_ops)
6506 dev->ethtool_ops = &default_ethtool_ops;
6507 return dev;
6508
6509free_all:
6510 free_netdev(dev);
6511 return NULL;
6512
6513free_pcpu:
6514 free_percpu(dev->pcpu_refcnt);
6515 netif_free_tx_queues(dev);
6516#ifdef CONFIG_SYSFS
6517 kfree(dev->_rx);
6518#endif
6519
6520free_dev:
6521 netdev_freemem(dev);
6522 return NULL;
6523}
6524EXPORT_SYMBOL(alloc_netdev_mqs);
6525
6526/**
6527 * free_netdev - free network device
6528 * @dev: device
6529 *
6530 * This function does the last stage of destroying an allocated device
6531 * interface. The reference to the device object is released.
6532 * If this is the last reference then it will be freed.
6533 */
6534void free_netdev(struct net_device *dev)
6535{
6536 struct napi_struct *p, *n;
6537
6538 release_net(dev_net(dev));
6539
6540 netif_free_tx_queues(dev);
6541#ifdef CONFIG_SYSFS
6542 kfree(dev->_rx);
6543#endif
6544
6545 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6546
6547 /* Flush device addresses */
6548 dev_addr_flush(dev);
6549
6550 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6551 netif_napi_del(p);
6552
6553 free_percpu(dev->pcpu_refcnt);
6554 dev->pcpu_refcnt = NULL;
6555
6556 /* Compatibility with error handling in drivers */
6557 if (dev->reg_state == NETREG_UNINITIALIZED) {
6558 netdev_freemem(dev);
6559 return;
6560 }
6561
6562 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6563 dev->reg_state = NETREG_RELEASED;
6564
6565 /* will free via device release */
6566 put_device(&dev->dev);
6567}
6568EXPORT_SYMBOL(free_netdev);
6569
6570/**
6571 * synchronize_net - Synchronize with packet receive processing
6572 *
6573 * Wait for packets currently being received to be done.
6574 * Does not block later packets from starting.
6575 */
6576void synchronize_net(void)
6577{
6578 might_sleep();
6579 if (rtnl_is_locked())
6580 synchronize_rcu_expedited();
6581 else
6582 synchronize_rcu();
6583}
6584EXPORT_SYMBOL(synchronize_net);
6585
6586/**
6587 * unregister_netdevice_queue - remove device from the kernel
6588 * @dev: device
6589 * @head: list
6590 *
6591 * This function shuts down a device interface and removes it
6592 * from the kernel tables.
6593 * If head not NULL, device is queued to be unregistered later.
6594 *
6595 * Callers must hold the rtnl semaphore. You may want
6596 * unregister_netdev() instead of this.
6597 */
6598
6599void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6600{
6601 ASSERT_RTNL();
6602
6603 if (head) {
6604 list_move_tail(&dev->unreg_list, head);
6605 } else {
6606 rollback_registered(dev);
6607 /* Finish processing unregister after unlock */
6608 net_set_todo(dev);
6609 }
6610}
6611EXPORT_SYMBOL(unregister_netdevice_queue);
6612
6613/**
6614 * unregister_netdevice_many - unregister many devices
6615 * @head: list of devices
6616 */
6617void unregister_netdevice_many(struct list_head *head)
6618{
6619 struct net_device *dev;
6620
6621 if (!list_empty(head)) {
6622 rollback_registered_many(head);
6623 list_for_each_entry(dev, head, unreg_list)
6624 net_set_todo(dev);
6625 }
6626}
6627EXPORT_SYMBOL(unregister_netdevice_many);
6628
6629/**
6630 * unregister_netdev - remove device from the kernel
6631 * @dev: device
6632 *
6633 * This function shuts down a device interface and removes it
6634 * from the kernel tables.
6635 *
6636 * This is just a wrapper for unregister_netdevice that takes
6637 * the rtnl semaphore. In general you want to use this and not
6638 * unregister_netdevice.
6639 */
6640void unregister_netdev(struct net_device *dev)
6641{
6642 rtnl_lock();
6643 unregister_netdevice(dev);
6644 rtnl_unlock();
6645}
6646EXPORT_SYMBOL(unregister_netdev);
6647
6648/**
6649 * dev_change_net_namespace - move device to different nethost namespace
6650 * @dev: device
6651 * @net: network namespace
6652 * @pat: If not NULL name pattern to try if the current device name
6653 * is already taken in the destination network namespace.
6654 *
6655 * This function shuts down a device interface and moves it
6656 * to a new network namespace. On success 0 is returned, on
6657 * a failure a netagive errno code is returned.
6658 *
6659 * Callers must hold the rtnl semaphore.
6660 */
6661
6662int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6663{
6664 int err;
6665
6666 ASSERT_RTNL();
6667
6668 /* Don't allow namespace local devices to be moved. */
6669 err = -EINVAL;
6670 if (dev->features & NETIF_F_NETNS_LOCAL)
6671 goto out;
6672
6673 /* Ensure the device has been registrered */
6674 if (dev->reg_state != NETREG_REGISTERED)
6675 goto out;
6676
6677 /* Get out if there is nothing todo */
6678 err = 0;
6679 if (net_eq(dev_net(dev), net))
6680 goto out;
6681
6682 /* Pick the destination device name, and ensure
6683 * we can use it in the destination network namespace.
6684 */
6685 err = -EEXIST;
6686 if (__dev_get_by_name(net, dev->name)) {
6687 /* We get here if we can't use the current device name */
6688 if (!pat)
6689 goto out;
6690 if (dev_get_valid_name(net, dev, pat) < 0)
6691 goto out;
6692 }
6693
6694 /*
6695 * And now a mini version of register_netdevice unregister_netdevice.
6696 */
6697
6698 /* If device is running close it first. */
6699 dev_close(dev);
6700
6701 /* And unlink it from device chain */
6702 err = -ENODEV;
6703 unlist_netdevice(dev);
6704
6705 synchronize_net();
6706
6707 /* Shutdown queueing discipline. */
6708 dev_shutdown(dev);
6709
6710 /* Notify protocols, that we are about to destroy
6711 this device. They should clean all the things.
6712
6713 Note that dev->reg_state stays at NETREG_REGISTERED.
6714 This is wanted because this way 8021q and macvlan know
6715 the device is just moving and can keep their slaves up.
6716 */
6717 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6718 rcu_barrier();
6719 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6720 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6721
6722 /*
6723 * Flush the unicast and multicast chains
6724 */
6725 dev_uc_flush(dev);
6726 dev_mc_flush(dev);
6727
6728 /* Send a netdev-removed uevent to the old namespace */
6729 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6730
6731 /* Actually switch the network namespace */
6732 dev_net_set(dev, net);
6733
6734 /* If there is an ifindex conflict assign a new one */
6735 if (__dev_get_by_index(net, dev->ifindex)) {
6736 int iflink = (dev->iflink == dev->ifindex);
6737 dev->ifindex = dev_new_index(net);
6738 if (iflink)
6739 dev->iflink = dev->ifindex;
6740 }
6741
6742 /* Send a netdev-add uevent to the new namespace */
6743 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6744
6745 /* Fixup kobjects */
6746 err = device_rename(&dev->dev, dev->name);
6747 WARN_ON(err);
6748
6749 /* Add the device back in the hashes */
6750 list_netdevice(dev);
6751
6752 /* Notify protocols, that a new device appeared. */
6753 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6754
6755 /*
6756 * Prevent userspace races by waiting until the network
6757 * device is fully setup before sending notifications.
6758 */
6759 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6760
6761 synchronize_net();
6762 err = 0;
6763out:
6764 return err;
6765}
6766EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6767
6768static int dev_cpu_callback(struct notifier_block *nfb,
6769 unsigned long action,
6770 void *ocpu)
6771{
6772 struct sk_buff **list_skb;
6773 struct sk_buff *skb;
6774 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6775 struct softnet_data *sd, *oldsd;
6776
6777 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6778 return NOTIFY_OK;
6779
6780 local_irq_disable();
6781 cpu = smp_processor_id();
6782 sd = &per_cpu(softnet_data, cpu);
6783 oldsd = &per_cpu(softnet_data, oldcpu);
6784
6785 /* Find end of our completion_queue. */
6786 list_skb = &sd->completion_queue;
6787 while (*list_skb)
6788 list_skb = &(*list_skb)->next;
6789 /* Append completion queue from offline CPU. */
6790 *list_skb = oldsd->completion_queue;
6791 oldsd->completion_queue = NULL;
6792
6793 /* Append output queue from offline CPU. */
6794 if (oldsd->output_queue) {
6795 *sd->output_queue_tailp = oldsd->output_queue;
6796 sd->output_queue_tailp = oldsd->output_queue_tailp;
6797 oldsd->output_queue = NULL;
6798 oldsd->output_queue_tailp = &oldsd->output_queue;
6799 }
6800 /* Append NAPI poll list from offline CPU. */
6801 if (!list_empty(&oldsd->poll_list)) {
6802 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6803 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6804 }
6805
6806 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6807 local_irq_enable();
6808
6809 /* Process offline CPU's input_pkt_queue */
6810 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6811 netif_rx_internal(skb);
6812 input_queue_head_incr(oldsd);
6813 }
6814 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6815 netif_rx_internal(skb);
6816 input_queue_head_incr(oldsd);
6817 }
6818
6819 return NOTIFY_OK;
6820}
6821
6822
6823/**
6824 * netdev_increment_features - increment feature set by one
6825 * @all: current feature set
6826 * @one: new feature set
6827 * @mask: mask feature set
6828 *
6829 * Computes a new feature set after adding a device with feature set
6830 * @one to the master device with current feature set @all. Will not
6831 * enable anything that is off in @mask. Returns the new feature set.
6832 */
6833netdev_features_t netdev_increment_features(netdev_features_t all,
6834 netdev_features_t one, netdev_features_t mask)
6835{
6836 if (mask & NETIF_F_GEN_CSUM)
6837 mask |= NETIF_F_ALL_CSUM;
6838 mask |= NETIF_F_VLAN_CHALLENGED;
6839
6840 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6841 all &= one | ~NETIF_F_ALL_FOR_ALL;
6842
6843 /* If one device supports hw checksumming, set for all. */
6844 if (all & NETIF_F_GEN_CSUM)
6845 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6846
6847 return all;
6848}
6849EXPORT_SYMBOL(netdev_increment_features);
6850
6851static struct hlist_head * __net_init netdev_create_hash(void)
6852{
6853 int i;
6854 struct hlist_head *hash;
6855
6856 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6857 if (hash != NULL)
6858 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6859 INIT_HLIST_HEAD(&hash[i]);
6860
6861 return hash;
6862}
6863
6864/* Initialize per network namespace state */
6865static int __net_init netdev_init(struct net *net)
6866{
6867 if (net != &init_net)
6868 INIT_LIST_HEAD(&net->dev_base_head);
6869
6870 net->dev_name_head = netdev_create_hash();
6871 if (net->dev_name_head == NULL)
6872 goto err_name;
6873
6874 net->dev_index_head = netdev_create_hash();
6875 if (net->dev_index_head == NULL)
6876 goto err_idx;
6877
6878 return 0;
6879
6880err_idx:
6881 kfree(net->dev_name_head);
6882err_name:
6883 return -ENOMEM;
6884}
6885
6886/**
6887 * netdev_drivername - network driver for the device
6888 * @dev: network device
6889 *
6890 * Determine network driver for device.
6891 */
6892const char *netdev_drivername(const struct net_device *dev)
6893{
6894 const struct device_driver *driver;
6895 const struct device *parent;
6896 const char *empty = "";
6897
6898 parent = dev->dev.parent;
6899 if (!parent)
6900 return empty;
6901
6902 driver = parent->driver;
6903 if (driver && driver->name)
6904 return driver->name;
6905 return empty;
6906}
6907
6908static int __netdev_printk(const char *level, const struct net_device *dev,
6909 struct va_format *vaf)
6910{
6911 int r;
6912
6913 if (dev && dev->dev.parent) {
6914 r = dev_printk_emit(level[1] - '0',
6915 dev->dev.parent,
6916 "%s %s %s: %pV",
6917 dev_driver_string(dev->dev.parent),
6918 dev_name(dev->dev.parent),
6919 netdev_name(dev), vaf);
6920 } else if (dev) {
6921 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6922 } else {
6923 r = printk("%s(NULL net_device): %pV", level, vaf);
6924 }
6925
6926 return r;
6927}
6928
6929int netdev_printk(const char *level, const struct net_device *dev,
6930 const char *format, ...)
6931{
6932 struct va_format vaf;
6933 va_list args;
6934 int r;
6935
6936 va_start(args, format);
6937
6938 vaf.fmt = format;
6939 vaf.va = &args;
6940
6941 r = __netdev_printk(level, dev, &vaf);
6942
6943 va_end(args);
6944
6945 return r;
6946}
6947EXPORT_SYMBOL(netdev_printk);
6948
6949#define define_netdev_printk_level(func, level) \
6950int func(const struct net_device *dev, const char *fmt, ...) \
6951{ \
6952 int r; \
6953 struct va_format vaf; \
6954 va_list args; \
6955 \
6956 va_start(args, fmt); \
6957 \
6958 vaf.fmt = fmt; \
6959 vaf.va = &args; \
6960 \
6961 r = __netdev_printk(level, dev, &vaf); \
6962 \
6963 va_end(args); \
6964 \
6965 return r; \
6966} \
6967EXPORT_SYMBOL(func);
6968
6969define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6970define_netdev_printk_level(netdev_alert, KERN_ALERT);
6971define_netdev_printk_level(netdev_crit, KERN_CRIT);
6972define_netdev_printk_level(netdev_err, KERN_ERR);
6973define_netdev_printk_level(netdev_warn, KERN_WARNING);
6974define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6975define_netdev_printk_level(netdev_info, KERN_INFO);
6976
6977static void __net_exit netdev_exit(struct net *net)
6978{
6979 kfree(net->dev_name_head);
6980 kfree(net->dev_index_head);
6981}
6982
6983static struct pernet_operations __net_initdata netdev_net_ops = {
6984 .init = netdev_init,
6985 .exit = netdev_exit,
6986};
6987
6988static void __net_exit default_device_exit(struct net *net)
6989{
6990 struct net_device *dev, *aux;
6991 /*
6992 * Push all migratable network devices back to the
6993 * initial network namespace
6994 */
6995 rtnl_lock();
6996 for_each_netdev_safe(net, dev, aux) {
6997 int err;
6998 char fb_name[IFNAMSIZ];
6999
7000 /* Ignore unmoveable devices (i.e. loopback) */
7001 if (dev->features & NETIF_F_NETNS_LOCAL)
7002 continue;
7003
7004 /* Leave virtual devices for the generic cleanup */
7005 if (dev->rtnl_link_ops)
7006 continue;
7007
7008 /* Push remaining network devices to init_net */
7009 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7010 err = dev_change_net_namespace(dev, &init_net, fb_name);
7011 if (err) {
7012 pr_emerg("%s: failed to move %s to init_net: %d\n",
7013 __func__, dev->name, err);
7014 BUG();
7015 }
7016 }
7017 rtnl_unlock();
7018}
7019
7020static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7021{
7022 /* Return with the rtnl_lock held when there are no network
7023 * devices unregistering in any network namespace in net_list.
7024 */
7025 struct net *net;
7026 bool unregistering;
7027 DEFINE_WAIT(wait);
7028
7029 for (;;) {
7030 prepare_to_wait(&netdev_unregistering_wq, &wait,
7031 TASK_UNINTERRUPTIBLE);
7032 unregistering = false;
7033 rtnl_lock();
7034 list_for_each_entry(net, net_list, exit_list) {
7035 if (net->dev_unreg_count > 0) {
7036 unregistering = true;
7037 break;
7038 }
7039 }
7040 if (!unregistering)
7041 break;
7042 __rtnl_unlock();
7043 schedule();
7044 }
7045 finish_wait(&netdev_unregistering_wq, &wait);
7046}
7047
7048static void __net_exit default_device_exit_batch(struct list_head *net_list)
7049{
7050 /* At exit all network devices most be removed from a network
7051 * namespace. Do this in the reverse order of registration.
7052 * Do this across as many network namespaces as possible to
7053 * improve batching efficiency.
7054 */
7055 struct net_device *dev;
7056 struct net *net;
7057 LIST_HEAD(dev_kill_list);
7058
7059 /* To prevent network device cleanup code from dereferencing
7060 * loopback devices or network devices that have been freed
7061 * wait here for all pending unregistrations to complete,
7062 * before unregistring the loopback device and allowing the
7063 * network namespace be freed.
7064 *
7065 * The netdev todo list containing all network devices
7066 * unregistrations that happen in default_device_exit_batch
7067 * will run in the rtnl_unlock() at the end of
7068 * default_device_exit_batch.
7069 */
7070 rtnl_lock_unregistering(net_list);
7071 list_for_each_entry(net, net_list, exit_list) {
7072 for_each_netdev_reverse(net, dev) {
7073 if (dev->rtnl_link_ops)
7074 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7075 else
7076 unregister_netdevice_queue(dev, &dev_kill_list);
7077 }
7078 }
7079 unregister_netdevice_many(&dev_kill_list);
7080 list_del(&dev_kill_list);
7081 rtnl_unlock();
7082}
7083
7084static struct pernet_operations __net_initdata default_device_ops = {
7085 .exit = default_device_exit,
7086 .exit_batch = default_device_exit_batch,
7087};
7088
7089/*
7090 * Initialize the DEV module. At boot time this walks the device list and
7091 * unhooks any devices that fail to initialise (normally hardware not
7092 * present) and leaves us with a valid list of present and active devices.
7093 *
7094 */
7095
7096/*
7097 * This is called single threaded during boot, so no need
7098 * to take the rtnl semaphore.
7099 */
7100static int __init net_dev_init(void)
7101{
7102 int i, rc = -ENOMEM;
7103
7104 BUG_ON(!dev_boot_phase);
7105
7106 if (dev_proc_init())
7107 goto out;
7108
7109 if (netdev_kobject_init())
7110 goto out;
7111
7112 INIT_LIST_HEAD(&ptype_all);
7113 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7114 INIT_LIST_HEAD(&ptype_base[i]);
7115
7116 INIT_LIST_HEAD(&offload_base);
7117
7118 if (register_pernet_subsys(&netdev_net_ops))
7119 goto out;
7120
7121 /*
7122 * Initialise the packet receive queues.
7123 */
7124
7125 for_each_possible_cpu(i) {
7126 struct softnet_data *sd = &per_cpu(softnet_data, i);
7127
7128 skb_queue_head_init(&sd->input_pkt_queue);
7129 skb_queue_head_init(&sd->process_queue);
7130 INIT_LIST_HEAD(&sd->poll_list);
7131 sd->output_queue_tailp = &sd->output_queue;
7132#ifdef CONFIG_RPS
7133 sd->csd.func = rps_trigger_softirq;
7134 sd->csd.info = sd;
7135 sd->cpu = i;
7136#endif
7137
7138 sd->backlog.poll = process_backlog;
7139 sd->backlog.weight = weight_p;
7140 }
7141
7142 dev_boot_phase = 0;
7143
7144 /* The loopback device is special if any other network devices
7145 * is present in a network namespace the loopback device must
7146 * be present. Since we now dynamically allocate and free the
7147 * loopback device ensure this invariant is maintained by
7148 * keeping the loopback device as the first device on the
7149 * list of network devices. Ensuring the loopback devices
7150 * is the first device that appears and the last network device
7151 * that disappears.
7152 */
7153 if (register_pernet_device(&loopback_net_ops))
7154 goto out;
7155
7156 if (register_pernet_device(&default_device_ops))
7157 goto out;
7158
7159 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7160 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7161
7162 hotcpu_notifier(dev_cpu_callback, 0);
7163 dst_init();
7164 rc = 0;
7165out:
7166 return rc;
7167}
7168
7169subsys_initcall(net_dev_init);