Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *		This program is free software; you can redistribute it and/or
   5 *		modify it under the terms of the GNU General Public License
   6 *		as published by the Free Software Foundation; either version
   7 *		2 of the License, or (at your option) any later version.
   8 *
   9 *	Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:	Ross Biro
  11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *	Additional Authors:
  15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *		David Hinds <dahinds@users.sourceforge.net>
  18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *		Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *	Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *		Alan Cox	:	device private ioctl copies fields back.
  28 *		Alan Cox	:	Transmit queue code does relevant
  29 *					stunts to keep the queue safe.
  30 *		Alan Cox	:	Fixed double lock.
  31 *		Alan Cox	:	Fixed promisc NULL pointer trap
  32 *		????????	:	Support the full private ioctl range
  33 *		Alan Cox	:	Moved ioctl permission check into
  34 *					drivers
  35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
  36 *		Alan Cox	:	100 backlog just doesn't cut it when
  37 *					you start doing multicast video 8)
  38 *		Alan Cox	:	Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *		Alan Cox	:	Took out transmit every packet pass
  41 *					Saved a few bytes in the ioctl handler
  42 *		Alan Cox	:	Network driver sets packet type before
  43 *					calling netif_rx. Saves a function
  44 *					call a packet.
  45 *		Alan Cox	:	Hashed net_bh()
  46 *		Richard Kooijman:	Timestamp fixes.
  47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
  48 *		Alan Cox	:	Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *					changes.
  51 *		Rudi Cilibrasi	:	Pass the right thing to
  52 *					set_mac_address()
  53 *		Dave Miller	:	32bit quantity for the device lock to
  54 *					make it work out on a Sparc.
  55 *		Bjorn Ekwall	:	Added KERNELD hack.
  56 *		Alan Cox	:	Cleaned up the backlog initialise.
  57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
  58 *					1 device.
  59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
  60 *					is no device open function.
  61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
  62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
  63 *		Cyrus Durgin	:	Cleaned for KMOD
  64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
  65 *					A network device unload needs to purge
  66 *					the backlog queue.
  67 *	Paul Rusty Russell	:	SIOCSIFNAME
  68 *              Pekka Riikonen  :	Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *				        - netif_rx() feedback
  73 */
  74
  75#include <linux/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/sched/mm.h>
  85#include <linux/mutex.h>
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/notifier.h>
  97#include <linux/skbuff.h>
  98#include <linux/bpf.h>
  99#include <linux/bpf_trace.h>
 100#include <net/net_namespace.h>
 101#include <net/sock.h>
 102#include <net/busy_poll.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/stat.h>
 105#include <net/dst.h>
 106#include <net/dst_metadata.h>
 107#include <net/pkt_sched.h>
 108#include <net/pkt_cls.h>
 109#include <net/checksum.h>
 110#include <net/xfrm.h>
 111#include <linux/highmem.h>
 112#include <linux/init.h>
 113#include <linux/module.h>
 114#include <linux/netpoll.h>
 115#include <linux/rcupdate.h>
 116#include <linux/delay.h>
 117#include <net/iw_handler.h>
 118#include <asm/current.h>
 119#include <linux/audit.h>
 120#include <linux/dmaengine.h>
 121#include <linux/err.h>
 122#include <linux/ctype.h>
 123#include <linux/if_arp.h>
 124#include <linux/if_vlan.h>
 125#include <linux/ip.h>
 126#include <net/ip.h>
 127#include <net/mpls.h>
 128#include <linux/ipv6.h>
 129#include <linux/in.h>
 130#include <linux/jhash.h>
 131#include <linux/random.h>
 132#include <trace/events/napi.h>
 133#include <trace/events/net.h>
 134#include <trace/events/skb.h>
 135#include <linux/pci.h>
 136#include <linux/inetdevice.h>
 137#include <linux/cpu_rmap.h>
 138#include <linux/static_key.h>
 139#include <linux/hashtable.h>
 140#include <linux/vmalloc.h>
 141#include <linux/if_macvlan.h>
 142#include <linux/errqueue.h>
 143#include <linux/hrtimer.h>
 144#include <linux/netfilter_ingress.h>
 145#include <linux/crash_dump.h>
 146#include <linux/sctp.h>
 147#include <net/udp_tunnel.h>
 148#include <linux/net_namespace.h>
 149
 150#include "net-sysfs.h"
 151
 152/* Instead of increasing this, you should create a hash table. */
 153#define MAX_GRO_SKBS 8
 154
 155/* This should be increased if a protocol with a bigger head is added. */
 156#define GRO_MAX_HEAD (MAX_HEADER + 128)
 157
 158static DEFINE_SPINLOCK(ptype_lock);
 159static DEFINE_SPINLOCK(offload_lock);
 160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 161struct list_head ptype_all __read_mostly;	/* Taps */
 162static struct list_head offload_base __read_mostly;
 163
 164static int netif_rx_internal(struct sk_buff *skb);
 165static int call_netdevice_notifiers_info(unsigned long val,
 166					 struct netdev_notifier_info *info);
 167static struct napi_struct *napi_by_id(unsigned int napi_id);
 168
 169/*
 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 171 * semaphore.
 172 *
 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 174 *
 175 * Writers must hold the rtnl semaphore while they loop through the
 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
 177 * actual updates.  This allows pure readers to access the list even
 178 * while a writer is preparing to update it.
 179 *
 180 * To put it another way, dev_base_lock is held for writing only to
 181 * protect against pure readers; the rtnl semaphore provides the
 182 * protection against other writers.
 183 *
 184 * See, for example usages, register_netdevice() and
 185 * unregister_netdevice(), which must be called with the rtnl
 186 * semaphore held.
 187 */
 188DEFINE_RWLOCK(dev_base_lock);
 189EXPORT_SYMBOL(dev_base_lock);
 190
 191static DEFINE_MUTEX(ifalias_mutex);
 192
 193/* protects napi_hash addition/deletion and napi_gen_id */
 194static DEFINE_SPINLOCK(napi_hash_lock);
 195
 196static unsigned int napi_gen_id = NR_CPUS;
 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 198
 199static seqcount_t devnet_rename_seq;
 200
 201static inline void dev_base_seq_inc(struct net *net)
 202{
 203	while (++net->dev_base_seq == 0)
 204		;
 205}
 206
 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 208{
 209	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 210
 211	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 212}
 213
 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 215{
 216	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 217}
 218
 219static inline void rps_lock(struct softnet_data *sd)
 220{
 221#ifdef CONFIG_RPS
 222	spin_lock(&sd->input_pkt_queue.lock);
 223#endif
 224}
 225
 226static inline void rps_unlock(struct softnet_data *sd)
 227{
 228#ifdef CONFIG_RPS
 229	spin_unlock(&sd->input_pkt_queue.lock);
 230#endif
 231}
 232
 233/* Device list insertion */
 234static void list_netdevice(struct net_device *dev)
 235{
 236	struct net *net = dev_net(dev);
 237
 238	ASSERT_RTNL();
 239
 240	write_lock_bh(&dev_base_lock);
 241	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 242	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 243	hlist_add_head_rcu(&dev->index_hlist,
 244			   dev_index_hash(net, dev->ifindex));
 245	write_unlock_bh(&dev_base_lock);
 246
 247	dev_base_seq_inc(net);
 248}
 249
 250/* Device list removal
 251 * caller must respect a RCU grace period before freeing/reusing dev
 252 */
 253static void unlist_netdevice(struct net_device *dev)
 254{
 255	ASSERT_RTNL();
 256
 257	/* Unlink dev from the device chain */
 258	write_lock_bh(&dev_base_lock);
 259	list_del_rcu(&dev->dev_list);
 260	hlist_del_rcu(&dev->name_hlist);
 261	hlist_del_rcu(&dev->index_hlist);
 262	write_unlock_bh(&dev_base_lock);
 263
 264	dev_base_seq_inc(dev_net(dev));
 265}
 266
 267/*
 268 *	Our notifier list
 269 */
 270
 271static RAW_NOTIFIER_HEAD(netdev_chain);
 272
 273/*
 274 *	Device drivers call our routines to queue packets here. We empty the
 275 *	queue in the local softnet handler.
 276 */
 277
 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 279EXPORT_PER_CPU_SYMBOL(softnet_data);
 280
 281#ifdef CONFIG_LOCKDEP
 282/*
 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 284 * according to dev->type
 285 */
 286static const unsigned short netdev_lock_type[] = {
 287	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 288	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 289	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 290	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 291	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 292	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 293	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 294	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 295	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 296	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 297	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 298	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 299	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 300	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 301	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 302
 303static const char *const netdev_lock_name[] = {
 304	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 305	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 306	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 307	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 308	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 309	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 310	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 311	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 312	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 313	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 314	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 315	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 316	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 317	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 318	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 319
 320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 322
 323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 324{
 325	int i;
 326
 327	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 328		if (netdev_lock_type[i] == dev_type)
 329			return i;
 330	/* the last key is used by default */
 331	return ARRAY_SIZE(netdev_lock_type) - 1;
 332}
 333
 334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 335						 unsigned short dev_type)
 336{
 337	int i;
 338
 339	i = netdev_lock_pos(dev_type);
 340	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 341				   netdev_lock_name[i]);
 342}
 343
 344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 345{
 346	int i;
 347
 348	i = netdev_lock_pos(dev->type);
 349	lockdep_set_class_and_name(&dev->addr_list_lock,
 350				   &netdev_addr_lock_key[i],
 351				   netdev_lock_name[i]);
 352}
 353#else
 354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 355						 unsigned short dev_type)
 356{
 357}
 358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 359{
 360}
 361#endif
 362
 363/*******************************************************************************
 364 *
 365 *		Protocol management and registration routines
 366 *
 367 *******************************************************************************/
 368
 
 
 
 369
 370/*
 371 *	Add a protocol ID to the list. Now that the input handler is
 372 *	smarter we can dispense with all the messy stuff that used to be
 373 *	here.
 374 *
 375 *	BEWARE!!! Protocol handlers, mangling input packets,
 376 *	MUST BE last in hash buckets and checking protocol handlers
 377 *	MUST start from promiscuous ptype_all chain in net_bh.
 378 *	It is true now, do not change it.
 379 *	Explanation follows: if protocol handler, mangling packet, will
 380 *	be the first on list, it is not able to sense, that packet
 381 *	is cloned and should be copied-on-write, so that it will
 382 *	change it and subsequent readers will get broken packet.
 383 *							--ANK (980803)
 384 */
 385
 386static inline struct list_head *ptype_head(const struct packet_type *pt)
 387{
 388	if (pt->type == htons(ETH_P_ALL))
 389		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 390	else
 391		return pt->dev ? &pt->dev->ptype_specific :
 392				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 393}
 394
 395/**
 396 *	dev_add_pack - add packet handler
 397 *	@pt: packet type declaration
 398 *
 399 *	Add a protocol handler to the networking stack. The passed &packet_type
 400 *	is linked into kernel lists and may not be freed until it has been
 401 *	removed from the kernel lists.
 402 *
 403 *	This call does not sleep therefore it can not
 404 *	guarantee all CPU's that are in middle of receiving packets
 405 *	will see the new packet type (until the next received packet).
 406 */
 407
 408void dev_add_pack(struct packet_type *pt)
 409{
 410	struct list_head *head = ptype_head(pt);
 411
 412	spin_lock(&ptype_lock);
 413	list_add_rcu(&pt->list, head);
 414	spin_unlock(&ptype_lock);
 415}
 416EXPORT_SYMBOL(dev_add_pack);
 417
 418/**
 419 *	__dev_remove_pack	 - remove packet handler
 420 *	@pt: packet type declaration
 421 *
 422 *	Remove a protocol handler that was previously added to the kernel
 423 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 424 *	from the kernel lists and can be freed or reused once this function
 425 *	returns.
 426 *
 427 *      The packet type might still be in use by receivers
 428 *	and must not be freed until after all the CPU's have gone
 429 *	through a quiescent state.
 430 */
 431void __dev_remove_pack(struct packet_type *pt)
 432{
 433	struct list_head *head = ptype_head(pt);
 434	struct packet_type *pt1;
 435
 436	spin_lock(&ptype_lock);
 437
 438	list_for_each_entry(pt1, head, list) {
 439		if (pt == pt1) {
 440			list_del_rcu(&pt->list);
 441			goto out;
 442		}
 443	}
 444
 445	pr_warn("dev_remove_pack: %p not found\n", pt);
 446out:
 447	spin_unlock(&ptype_lock);
 448}
 449EXPORT_SYMBOL(__dev_remove_pack);
 450
 451/**
 452 *	dev_remove_pack	 - remove packet handler
 453 *	@pt: packet type declaration
 454 *
 455 *	Remove a protocol handler that was previously added to the kernel
 456 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 457 *	from the kernel lists and can be freed or reused once this function
 458 *	returns.
 459 *
 460 *	This call sleeps to guarantee that no CPU is looking at the packet
 461 *	type after return.
 462 */
 463void dev_remove_pack(struct packet_type *pt)
 464{
 465	__dev_remove_pack(pt);
 466
 467	synchronize_net();
 468}
 469EXPORT_SYMBOL(dev_remove_pack);
 470
 471
 472/**
 473 *	dev_add_offload - register offload handlers
 474 *	@po: protocol offload declaration
 475 *
 476 *	Add protocol offload handlers to the networking stack. The passed
 477 *	&proto_offload is linked into kernel lists and may not be freed until
 478 *	it has been removed from the kernel lists.
 479 *
 480 *	This call does not sleep therefore it can not
 481 *	guarantee all CPU's that are in middle of receiving packets
 482 *	will see the new offload handlers (until the next received packet).
 483 */
 484void dev_add_offload(struct packet_offload *po)
 485{
 486	struct packet_offload *elem;
 487
 488	spin_lock(&offload_lock);
 489	list_for_each_entry(elem, &offload_base, list) {
 490		if (po->priority < elem->priority)
 491			break;
 492	}
 493	list_add_rcu(&po->list, elem->list.prev);
 494	spin_unlock(&offload_lock);
 495}
 496EXPORT_SYMBOL(dev_add_offload);
 497
 498/**
 499 *	__dev_remove_offload	 - remove offload handler
 500 *	@po: packet offload declaration
 501 *
 502 *	Remove a protocol offload handler that was previously added to the
 503 *	kernel offload handlers by dev_add_offload(). The passed &offload_type
 504 *	is removed from the kernel lists and can be freed or reused once this
 505 *	function returns.
 506 *
 507 *      The packet type might still be in use by receivers
 508 *	and must not be freed until after all the CPU's have gone
 509 *	through a quiescent state.
 510 */
 511static void __dev_remove_offload(struct packet_offload *po)
 512{
 513	struct list_head *head = &offload_base;
 514	struct packet_offload *po1;
 515
 516	spin_lock(&offload_lock);
 517
 518	list_for_each_entry(po1, head, list) {
 519		if (po == po1) {
 520			list_del_rcu(&po->list);
 521			goto out;
 522		}
 523	}
 524
 525	pr_warn("dev_remove_offload: %p not found\n", po);
 526out:
 527	spin_unlock(&offload_lock);
 528}
 529
 530/**
 531 *	dev_remove_offload	 - remove packet offload handler
 532 *	@po: packet offload declaration
 533 *
 534 *	Remove a packet offload handler that was previously added to the kernel
 535 *	offload handlers by dev_add_offload(). The passed &offload_type is
 536 *	removed from the kernel lists and can be freed or reused once this
 537 *	function returns.
 538 *
 539 *	This call sleeps to guarantee that no CPU is looking at the packet
 540 *	type after return.
 541 */
 542void dev_remove_offload(struct packet_offload *po)
 543{
 544	__dev_remove_offload(po);
 545
 546	synchronize_net();
 547}
 548EXPORT_SYMBOL(dev_remove_offload);
 549
 550/******************************************************************************
 551 *
 552 *		      Device Boot-time Settings Routines
 553 *
 554 ******************************************************************************/
 555
 556/* Boot time configuration table */
 557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 558
 559/**
 560 *	netdev_boot_setup_add	- add new setup entry
 561 *	@name: name of the device
 562 *	@map: configured settings for the device
 563 *
 564 *	Adds new setup entry to the dev_boot_setup list.  The function
 565 *	returns 0 on error and 1 on success.  This is a generic routine to
 566 *	all netdevices.
 567 */
 568static int netdev_boot_setup_add(char *name, struct ifmap *map)
 569{
 570	struct netdev_boot_setup *s;
 571	int i;
 572
 573	s = dev_boot_setup;
 574	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 575		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 576			memset(s[i].name, 0, sizeof(s[i].name));
 577			strlcpy(s[i].name, name, IFNAMSIZ);
 578			memcpy(&s[i].map, map, sizeof(s[i].map));
 579			break;
 580		}
 581	}
 582
 583	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 584}
 585
 586/**
 587 * netdev_boot_setup_check	- check boot time settings
 588 * @dev: the netdevice
 589 *
 590 * Check boot time settings for the device.
 591 * The found settings are set for the device to be used
 592 * later in the device probing.
 593 * Returns 0 if no settings found, 1 if they are.
 594 */
 595int netdev_boot_setup_check(struct net_device *dev)
 596{
 597	struct netdev_boot_setup *s = dev_boot_setup;
 598	int i;
 599
 600	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 601		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 602		    !strcmp(dev->name, s[i].name)) {
 603			dev->irq = s[i].map.irq;
 604			dev->base_addr = s[i].map.base_addr;
 605			dev->mem_start = s[i].map.mem_start;
 606			dev->mem_end = s[i].map.mem_end;
 607			return 1;
 608		}
 609	}
 610	return 0;
 611}
 612EXPORT_SYMBOL(netdev_boot_setup_check);
 613
 614
 615/**
 616 * netdev_boot_base	- get address from boot time settings
 617 * @prefix: prefix for network device
 618 * @unit: id for network device
 619 *
 620 * Check boot time settings for the base address of device.
 621 * The found settings are set for the device to be used
 622 * later in the device probing.
 623 * Returns 0 if no settings found.
 624 */
 625unsigned long netdev_boot_base(const char *prefix, int unit)
 626{
 627	const struct netdev_boot_setup *s = dev_boot_setup;
 628	char name[IFNAMSIZ];
 629	int i;
 630
 631	sprintf(name, "%s%d", prefix, unit);
 632
 633	/*
 634	 * If device already registered then return base of 1
 635	 * to indicate not to probe for this interface
 636	 */
 637	if (__dev_get_by_name(&init_net, name))
 638		return 1;
 639
 640	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 641		if (!strcmp(name, s[i].name))
 642			return s[i].map.base_addr;
 643	return 0;
 644}
 645
 646/*
 647 * Saves at boot time configured settings for any netdevice.
 648 */
 649int __init netdev_boot_setup(char *str)
 650{
 651	int ints[5];
 652	struct ifmap map;
 653
 654	str = get_options(str, ARRAY_SIZE(ints), ints);
 655	if (!str || !*str)
 656		return 0;
 657
 658	/* Save settings */
 659	memset(&map, 0, sizeof(map));
 660	if (ints[0] > 0)
 661		map.irq = ints[1];
 662	if (ints[0] > 1)
 663		map.base_addr = ints[2];
 664	if (ints[0] > 2)
 665		map.mem_start = ints[3];
 666	if (ints[0] > 3)
 667		map.mem_end = ints[4];
 668
 669	/* Add new entry to the list */
 670	return netdev_boot_setup_add(str, &map);
 671}
 672
 673__setup("netdev=", netdev_boot_setup);
 674
 675/*******************************************************************************
 676 *
 677 *			    Device Interface Subroutines
 678 *
 679 *******************************************************************************/
 680
 681/**
 682 *	dev_get_iflink	- get 'iflink' value of a interface
 683 *	@dev: targeted interface
 684 *
 685 *	Indicates the ifindex the interface is linked to.
 686 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
 687 */
 688
 689int dev_get_iflink(const struct net_device *dev)
 690{
 691	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 692		return dev->netdev_ops->ndo_get_iflink(dev);
 693
 694	return dev->ifindex;
 695}
 696EXPORT_SYMBOL(dev_get_iflink);
 697
 698/**
 699 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
 700 *	@dev: targeted interface
 701 *	@skb: The packet.
 702 *
 703 *	For better visibility of tunnel traffic OVS needs to retrieve
 704 *	egress tunnel information for a packet. Following API allows
 705 *	user to get this info.
 706 */
 707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 708{
 709	struct ip_tunnel_info *info;
 710
 711	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 712		return -EINVAL;
 713
 714	info = skb_tunnel_info_unclone(skb);
 715	if (!info)
 716		return -ENOMEM;
 717	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 718		return -EINVAL;
 719
 720	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 721}
 722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 723
 724/**
 725 *	__dev_get_by_name	- find a device by its name
 726 *	@net: the applicable net namespace
 727 *	@name: name to find
 728 *
 729 *	Find an interface by name. Must be called under RTNL semaphore
 730 *	or @dev_base_lock. If the name is found a pointer to the device
 731 *	is returned. If the name is not found then %NULL is returned. The
 732 *	reference counters are not incremented so the caller must be
 733 *	careful with locks.
 734 */
 735
 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
 737{
 738	struct net_device *dev;
 739	struct hlist_head *head = dev_name_hash(net, name);
 740
 741	hlist_for_each_entry(dev, head, name_hlist)
 742		if (!strncmp(dev->name, name, IFNAMSIZ))
 743			return dev;
 744
 745	return NULL;
 746}
 747EXPORT_SYMBOL(__dev_get_by_name);
 748
 749/**
 750 * dev_get_by_name_rcu	- find a device by its name
 751 * @net: the applicable net namespace
 752 * @name: name to find
 753 *
 754 * Find an interface by name.
 755 * If the name is found a pointer to the device is returned.
 756 * If the name is not found then %NULL is returned.
 757 * The reference counters are not incremented so the caller must be
 758 * careful with locks. The caller must hold RCU lock.
 759 */
 760
 761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 762{
 763	struct net_device *dev;
 764	struct hlist_head *head = dev_name_hash(net, name);
 765
 766	hlist_for_each_entry_rcu(dev, head, name_hlist)
 767		if (!strncmp(dev->name, name, IFNAMSIZ))
 768			return dev;
 769
 770	return NULL;
 771}
 772EXPORT_SYMBOL(dev_get_by_name_rcu);
 773
 774/**
 775 *	dev_get_by_name		- find a device by its name
 776 *	@net: the applicable net namespace
 777 *	@name: name to find
 778 *
 779 *	Find an interface by name. This can be called from any
 780 *	context and does its own locking. The returned handle has
 781 *	the usage count incremented and the caller must use dev_put() to
 782 *	release it when it is no longer needed. %NULL is returned if no
 783 *	matching device is found.
 784 */
 785
 786struct net_device *dev_get_by_name(struct net *net, const char *name)
 787{
 788	struct net_device *dev;
 789
 790	rcu_read_lock();
 791	dev = dev_get_by_name_rcu(net, name);
 792	if (dev)
 793		dev_hold(dev);
 794	rcu_read_unlock();
 795	return dev;
 796}
 797EXPORT_SYMBOL(dev_get_by_name);
 798
 799/**
 800 *	__dev_get_by_index - find a device by its ifindex
 801 *	@net: the applicable net namespace
 802 *	@ifindex: index of device
 803 *
 804 *	Search for an interface by index. Returns %NULL if the device
 805 *	is not found or a pointer to the device. The device has not
 806 *	had its reference counter increased so the caller must be careful
 807 *	about locking. The caller must hold either the RTNL semaphore
 808 *	or @dev_base_lock.
 809 */
 810
 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 812{
 813	struct net_device *dev;
 814	struct hlist_head *head = dev_index_hash(net, ifindex);
 815
 816	hlist_for_each_entry(dev, head, index_hlist)
 817		if (dev->ifindex == ifindex)
 818			return dev;
 819
 820	return NULL;
 821}
 822EXPORT_SYMBOL(__dev_get_by_index);
 823
 824/**
 825 *	dev_get_by_index_rcu - find a device by its ifindex
 826 *	@net: the applicable net namespace
 827 *	@ifindex: index of device
 828 *
 829 *	Search for an interface by index. Returns %NULL if the device
 830 *	is not found or a pointer to the device. The device has not
 831 *	had its reference counter increased so the caller must be careful
 832 *	about locking. The caller must hold RCU lock.
 833 */
 834
 835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 836{
 837	struct net_device *dev;
 838	struct hlist_head *head = dev_index_hash(net, ifindex);
 839
 840	hlist_for_each_entry_rcu(dev, head, index_hlist)
 841		if (dev->ifindex == ifindex)
 842			return dev;
 843
 844	return NULL;
 845}
 846EXPORT_SYMBOL(dev_get_by_index_rcu);
 847
 848
 849/**
 850 *	dev_get_by_index - find a device by its ifindex
 851 *	@net: the applicable net namespace
 852 *	@ifindex: index of device
 853 *
 854 *	Search for an interface by index. Returns NULL if the device
 855 *	is not found or a pointer to the device. The device returned has
 856 *	had a reference added and the pointer is safe until the user calls
 857 *	dev_put to indicate they have finished with it.
 858 */
 859
 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
 861{
 862	struct net_device *dev;
 863
 864	rcu_read_lock();
 865	dev = dev_get_by_index_rcu(net, ifindex);
 866	if (dev)
 867		dev_hold(dev);
 868	rcu_read_unlock();
 869	return dev;
 870}
 871EXPORT_SYMBOL(dev_get_by_index);
 872
 873/**
 874 *	dev_get_by_napi_id - find a device by napi_id
 875 *	@napi_id: ID of the NAPI struct
 876 *
 877 *	Search for an interface by NAPI ID. Returns %NULL if the device
 878 *	is not found or a pointer to the device. The device has not had
 879 *	its reference counter increased so the caller must be careful
 880 *	about locking. The caller must hold RCU lock.
 881 */
 882
 883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 884{
 885	struct napi_struct *napi;
 886
 887	WARN_ON_ONCE(!rcu_read_lock_held());
 888
 889	if (napi_id < MIN_NAPI_ID)
 890		return NULL;
 891
 892	napi = napi_by_id(napi_id);
 893
 894	return napi ? napi->dev : NULL;
 895}
 896EXPORT_SYMBOL(dev_get_by_napi_id);
 897
 898/**
 899 *	netdev_get_name - get a netdevice name, knowing its ifindex.
 900 *	@net: network namespace
 901 *	@name: a pointer to the buffer where the name will be stored.
 902 *	@ifindex: the ifindex of the interface to get the name from.
 903 *
 904 *	The use of raw_seqcount_begin() and cond_resched() before
 905 *	retrying is required as we want to give the writers a chance
 906 *	to complete when CONFIG_PREEMPT is not set.
 907 */
 908int netdev_get_name(struct net *net, char *name, int ifindex)
 909{
 910	struct net_device *dev;
 911	unsigned int seq;
 912
 913retry:
 914	seq = raw_seqcount_begin(&devnet_rename_seq);
 915	rcu_read_lock();
 916	dev = dev_get_by_index_rcu(net, ifindex);
 917	if (!dev) {
 918		rcu_read_unlock();
 919		return -ENODEV;
 920	}
 921
 922	strcpy(name, dev->name);
 923	rcu_read_unlock();
 924	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 925		cond_resched();
 926		goto retry;
 927	}
 928
 929	return 0;
 930}
 931
 932/**
 933 *	dev_getbyhwaddr_rcu - find a device by its hardware address
 934 *	@net: the applicable net namespace
 935 *	@type: media type of device
 936 *	@ha: hardware address
 937 *
 938 *	Search for an interface by MAC address. Returns NULL if the device
 939 *	is not found or a pointer to the device.
 940 *	The caller must hold RCU or RTNL.
 941 *	The returned device has not had its ref count increased
 942 *	and the caller must therefore be careful about locking
 943 *
 944 */
 945
 946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 947				       const char *ha)
 948{
 949	struct net_device *dev;
 950
 951	for_each_netdev_rcu(net, dev)
 952		if (dev->type == type &&
 953		    !memcmp(dev->dev_addr, ha, dev->addr_len))
 954			return dev;
 955
 956	return NULL;
 957}
 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 959
 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 961{
 962	struct net_device *dev;
 963
 964	ASSERT_RTNL();
 965	for_each_netdev(net, dev)
 966		if (dev->type == type)
 967			return dev;
 968
 969	return NULL;
 970}
 971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 972
 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 974{
 975	struct net_device *dev, *ret = NULL;
 976
 977	rcu_read_lock();
 978	for_each_netdev_rcu(net, dev)
 979		if (dev->type == type) {
 980			dev_hold(dev);
 981			ret = dev;
 982			break;
 983		}
 984	rcu_read_unlock();
 985	return ret;
 986}
 987EXPORT_SYMBOL(dev_getfirstbyhwtype);
 988
 989/**
 990 *	__dev_get_by_flags - find any device with given flags
 991 *	@net: the applicable net namespace
 992 *	@if_flags: IFF_* values
 993 *	@mask: bitmask of bits in if_flags to check
 994 *
 995 *	Search for any interface with the given flags. Returns NULL if a device
 996 *	is not found or a pointer to the device. Must be called inside
 997 *	rtnl_lock(), and result refcount is unchanged.
 998 */
 999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001				      unsigned short mask)
1002{
1003	struct net_device *dev, *ret;
1004
1005	ASSERT_RTNL();
1006
1007	ret = NULL;
1008	for_each_netdev(net, dev) {
1009		if (((dev->flags ^ if_flags) & mask) == 0) {
1010			ret = dev;
1011			break;
1012		}
1013	}
1014	return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 *	dev_valid_name - check if name is okay for network device
1020 *	@name: name string
1021 *
1022 *	Network device names need to be valid file names to
1023 *	to allow sysfs to work.  We also disallow any kind of
1024 *	whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028	if (*name == '\0')
1029		return false;
1030	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031		return false;
1032	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033		return false;
1034
1035	while (*name) {
1036		if (*name == '/' || *name == ':' || isspace(*name))
1037			return false;
1038		name++;
1039	}
1040	return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 *	__dev_alloc_name - allocate a name for a device
1046 *	@net: network namespace to allocate the device name in
1047 *	@name: name format string
1048 *	@buf:  scratch buffer and result name string
1049 *
1050 *	Passed a format string - eg "lt%d" it will try and find a suitable
1051 *	id. It scans list of devices to build up a free map, then chooses
1052 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053 *	while allocating the name and adding the device in order to avoid
1054 *	duplicates.
1055 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 *	Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061	int i = 0;
1062	const char *p;
1063	const int max_netdevices = 8*PAGE_SIZE;
1064	unsigned long *inuse;
1065	struct net_device *d;
1066
1067	if (!dev_valid_name(name))
1068		return -EINVAL;
1069
1070	p = strchr(name, '%');
1071	if (p) {
1072		/*
1073		 * Verify the string as this thing may have come from
1074		 * the user.  There must be either one "%d" and no other "%"
1075		 * characters.
1076		 */
1077		if (p[1] != 'd' || strchr(p + 2, '%'))
1078			return -EINVAL;
1079
1080		/* Use one page as a bit array of possible slots */
1081		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082		if (!inuse)
1083			return -ENOMEM;
1084
1085		for_each_netdev(net, d) {
1086			if (!sscanf(d->name, name, &i))
1087				continue;
1088			if (i < 0 || i >= max_netdevices)
1089				continue;
1090
1091			/*  avoid cases where sscanf is not exact inverse of printf */
1092			snprintf(buf, IFNAMSIZ, name, i);
1093			if (!strncmp(buf, d->name, IFNAMSIZ))
1094				set_bit(i, inuse);
1095		}
1096
1097		i = find_first_zero_bit(inuse, max_netdevices);
1098		free_page((unsigned long) inuse);
1099	}
1100
1101	snprintf(buf, IFNAMSIZ, name, i);
 
1102	if (!__dev_get_by_name(net, buf))
1103		return i;
1104
1105	/* It is possible to run out of possible slots
1106	 * when the name is long and there isn't enough space left
1107	 * for the digits, or if all bits are used.
1108	 */
1109	return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113			     struct net_device *dev,
1114			     const char *name)
1115{
1116	char buf[IFNAMSIZ];
1117	int ret;
1118
1119	BUG_ON(!net);
1120	ret = __dev_alloc_name(net, name, buf);
1121	if (ret >= 0)
1122		strlcpy(dev->name, buf, IFNAMSIZ);
1123	return ret;
1124}
1125
1126/**
1127 *	dev_alloc_name - allocate a name for a device
1128 *	@dev: device
1129 *	@name: name format string
1130 *
1131 *	Passed a format string - eg "lt%d" it will try and find a suitable
1132 *	id. It scans list of devices to build up a free map, then chooses
1133 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134 *	while allocating the name and adding the device in order to avoid
1135 *	duplicates.
1136 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 *	Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142	return dev_alloc_name_ns(dev_net(dev), dev, name);
 
 
 
 
 
 
 
 
 
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147		       const char *name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148{
1149	BUG_ON(!net);
1150
1151	if (!dev_valid_name(name))
1152		return -EINVAL;
1153
1154	if (strchr(name, '%'))
1155		return dev_alloc_name_ns(net, dev, name);
1156	else if (__dev_get_by_name(net, name))
1157		return -EEXIST;
1158	else if (dev->name != name)
1159		strlcpy(dev->name, name, IFNAMSIZ);
1160
1161	return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 *	dev_change_name - change name of a device
1167 *	@dev: device
1168 *	@newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 *	Change name of a device, can pass format strings "eth%d".
1171 *	for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175	unsigned char old_assign_type;
1176	char oldname[IFNAMSIZ];
1177	int err = 0;
1178	int ret;
1179	struct net *net;
1180
1181	ASSERT_RTNL();
1182	BUG_ON(!dev_net(dev));
1183
1184	net = dev_net(dev);
1185	if (dev->flags & IFF_UP)
1186		return -EBUSY;
1187
1188	write_seqcount_begin(&devnet_rename_seq);
1189
1190	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191		write_seqcount_end(&devnet_rename_seq);
1192		return 0;
1193	}
1194
1195	memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197	err = dev_get_valid_name(net, dev, newname);
1198	if (err < 0) {
1199		write_seqcount_end(&devnet_rename_seq);
1200		return err;
1201	}
1202
1203	if (oldname[0] && !strchr(oldname, '%'))
1204		netdev_info(dev, "renamed from %s\n", oldname);
1205
1206	old_assign_type = dev->name_assign_type;
1207	dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210	ret = device_rename(&dev->dev, dev->name);
1211	if (ret) {
1212		memcpy(dev->name, oldname, IFNAMSIZ);
1213		dev->name_assign_type = old_assign_type;
1214		write_seqcount_end(&devnet_rename_seq);
1215		return ret;
1216	}
1217
1218	write_seqcount_end(&devnet_rename_seq);
1219
1220	netdev_adjacent_rename_links(dev, oldname);
1221
1222	write_lock_bh(&dev_base_lock);
1223	hlist_del_rcu(&dev->name_hlist);
1224	write_unlock_bh(&dev_base_lock);
1225
1226	synchronize_rcu();
1227
1228	write_lock_bh(&dev_base_lock);
1229	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230	write_unlock_bh(&dev_base_lock);
1231
1232	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233	ret = notifier_to_errno(ret);
1234
1235	if (ret) {
1236		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237		if (err >= 0) {
1238			err = ret;
1239			write_seqcount_begin(&devnet_rename_seq);
1240			memcpy(dev->name, oldname, IFNAMSIZ);
1241			memcpy(oldname, newname, IFNAMSIZ);
1242			dev->name_assign_type = old_assign_type;
1243			old_assign_type = NET_NAME_RENAMED;
1244			goto rollback;
1245		} else {
1246			pr_err("%s: name change rollback failed: %d\n",
1247			       dev->name, ret);
1248		}
1249	}
1250
1251	return err;
1252}
1253
1254/**
1255 *	dev_set_alias - change ifalias of a device
1256 *	@dev: device
1257 *	@alias: name up to IFALIASZ
1258 *	@len: limit of bytes to copy from info
1259 *
1260 *	Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264	struct dev_ifalias *new_alias = NULL;
 
 
1265
1266	if (len >= IFALIASZ)
1267		return -EINVAL;
1268
1269	if (len) {
1270		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271		if (!new_alias)
1272			return -ENOMEM;
1273
1274		memcpy(new_alias->ifalias, alias, len);
1275		new_alias->ifalias[len] = 0;
1276	}
1277
1278	mutex_lock(&ifalias_mutex);
1279	rcu_swap_protected(dev->ifalias, new_alias,
1280			   mutex_is_locked(&ifalias_mutex));
1281	mutex_unlock(&ifalias_mutex);
1282
1283	if (new_alias)
1284		kfree_rcu(new_alias, rcuhead);
1285
 
1286	return len;
1287}
1288
1289/**
1290 *	dev_get_alias - get ifalias of a device
1291 *	@dev: device
1292 *	@name: buffer to store name of ifalias
1293 *	@len: size of buffer
1294 *
1295 *	get ifalias for a device.  Caller must make sure dev cannot go
1296 *	away,  e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300	const struct dev_ifalias *alias;
1301	int ret = 0;
1302
1303	rcu_read_lock();
1304	alias = rcu_dereference(dev->ifalias);
1305	if (alias)
1306		ret = snprintf(name, len, "%s", alias->ifalias);
1307	rcu_read_unlock();
1308
1309	return ret;
1310}
1311
1312/**
1313 *	netdev_features_change - device changes features
1314 *	@dev: device to cause notification
1315 *
1316 *	Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
1320	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1324/**
1325 *	netdev_state_change - device changes state
1326 *	@dev: device to cause notification
1327 *
1328 *	Called to indicate a device has changed state. This function calls
1329 *	the notifier chains for netdev_chain and sends a NEWLINK message
1330 *	to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334	if (dev->flags & IFF_UP) {
1335		struct netdev_notifier_change_info change_info = {
1336			.info.dev = dev,
1337		};
1338
1339		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340					      &change_info.info);
1341		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342	}
1343}
1344EXPORT_SYMBOL(netdev_state_change);
1345
1346/**
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
1357{
1358	rtnl_lock();
1359	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361	rtnl_unlock();
1362}
1363EXPORT_SYMBOL(netdev_notify_peers);
1364
1365static int __dev_open(struct net_device *dev)
1366{
1367	const struct net_device_ops *ops = dev->netdev_ops;
1368	int ret;
1369
1370	ASSERT_RTNL();
1371
1372	if (!netif_device_present(dev))
1373		return -ENODEV;
1374
1375	/* Block netpoll from trying to do any rx path servicing.
1376	 * If we don't do this there is a chance ndo_poll_controller
1377	 * or ndo_poll may be running while we open the device
1378	 */
1379	netpoll_poll_disable(dev);
1380
1381	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382	ret = notifier_to_errno(ret);
1383	if (ret)
1384		return ret;
1385
1386	set_bit(__LINK_STATE_START, &dev->state);
1387
1388	if (ops->ndo_validate_addr)
1389		ret = ops->ndo_validate_addr(dev);
1390
1391	if (!ret && ops->ndo_open)
1392		ret = ops->ndo_open(dev);
1393
1394	netpoll_poll_enable(dev);
1395
1396	if (ret)
1397		clear_bit(__LINK_STATE_START, &dev->state);
1398	else {
1399		dev->flags |= IFF_UP;
 
1400		dev_set_rx_mode(dev);
1401		dev_activate(dev);
1402		add_device_randomness(dev->dev_addr, dev->addr_len);
1403	}
1404
1405	return ret;
1406}
1407
1408/**
1409 *	dev_open	- prepare an interface for use.
1410 *	@dev:	device to open
1411 *
1412 *	Takes a device from down to up state. The device's private open
1413 *	function is invoked and then the multicast lists are loaded. Finally
1414 *	the device is moved into the up state and a %NETDEV_UP message is
1415 *	sent to the netdev notifier chain.
1416 *
1417 *	Calling this function on an active interface is a nop. On a failure
1418 *	a negative errno code is returned.
1419 */
1420int dev_open(struct net_device *dev)
1421{
1422	int ret;
1423
1424	if (dev->flags & IFF_UP)
1425		return 0;
1426
1427	ret = __dev_open(dev);
1428	if (ret < 0)
1429		return ret;
1430
1431	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432	call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434	return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
1438static void __dev_close_many(struct list_head *head)
1439{
1440	struct net_device *dev;
1441
1442	ASSERT_RTNL();
1443	might_sleep();
1444
1445	list_for_each_entry(dev, head, close_list) {
1446		/* Temporarily disable netpoll until the interface is down */
1447		netpoll_poll_disable(dev);
1448
1449		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451		clear_bit(__LINK_STATE_START, &dev->state);
1452
1453		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454		 * can be even on different cpu. So just clear netif_running().
1455		 *
1456		 * dev->stop() will invoke napi_disable() on all of it's
1457		 * napi_struct instances on this device.
1458		 */
1459		smp_mb__after_atomic(); /* Commit netif_running(). */
1460	}
1461
1462	dev_deactivate_many(head);
1463
1464	list_for_each_entry(dev, head, close_list) {
1465		const struct net_device_ops *ops = dev->netdev_ops;
1466
1467		/*
1468		 *	Call the device specific close. This cannot fail.
1469		 *	Only if device is UP
1470		 *
1471		 *	We allow it to be called even after a DETACH hot-plug
1472		 *	event.
1473		 */
1474		if (ops->ndo_stop)
1475			ops->ndo_stop(dev);
1476
1477		dev->flags &= ~IFF_UP;
 
1478		netpoll_poll_enable(dev);
1479	}
 
 
1480}
1481
1482static void __dev_close(struct net_device *dev)
1483{
 
1484	LIST_HEAD(single);
1485
1486	list_add(&dev->close_list, &single);
1487	__dev_close_many(&single);
1488	list_del(&single);
 
 
1489}
1490
1491void dev_close_many(struct list_head *head, bool unlink)
1492{
1493	struct net_device *dev, *tmp;
1494
1495	/* Remove the devices that don't need to be closed */
1496	list_for_each_entry_safe(dev, tmp, head, close_list)
1497		if (!(dev->flags & IFF_UP))
1498			list_del_init(&dev->close_list);
1499
1500	__dev_close_many(head);
1501
1502	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505		if (unlink)
1506			list_del_init(&dev->close_list);
1507	}
 
 
1508}
1509EXPORT_SYMBOL(dev_close_many);
1510
1511/**
1512 *	dev_close - shutdown an interface.
1513 *	@dev: device to shutdown
1514 *
1515 *	This function moves an active device into down state. A
1516 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 *	chain.
1519 */
1520void dev_close(struct net_device *dev)
1521{
1522	if (dev->flags & IFF_UP) {
1523		LIST_HEAD(single);
1524
1525		list_add(&dev->close_list, &single);
1526		dev_close_many(&single, true);
1527		list_del(&single);
1528	}
 
1529}
1530EXPORT_SYMBOL(dev_close);
1531
1532
1533/**
1534 *	dev_disable_lro - disable Large Receive Offload on a device
1535 *	@dev: device
1536 *
1537 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538 *	called under RTNL.  This is needed if received packets may be
1539 *	forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
1543	struct net_device *lower_dev;
1544	struct list_head *iter;
 
 
 
 
 
 
 
 
1545
1546	dev->wanted_features &= ~NETIF_F_LRO;
1547	netdev_update_features(dev);
1548
1549	if (unlikely(dev->features & NETIF_F_LRO))
1550		netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553		dev_disable_lro(lower_dev);
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
1557/**
1558 *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 *	@dev: device
1560 *
1561 *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562 *	called under RTNL.  This is needed if Generic XDP is installed on
1563 *	the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568	netdev_update_features(dev);
1569
1570	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
1574const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575{
1576#define N(val) 						\
1577	case NETDEV_##val:				\
1578		return "NETDEV_" __stringify(val);
1579	switch (cmd) {
1580	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589	};
1590#undef N
1591	return "UNKNOWN_NETDEV_EVENT";
1592}
1593EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596				   struct net_device *dev)
1597{
1598	struct netdev_notifier_info info = {
1599		.dev = dev,
1600	};
1601
 
1602	return nb->notifier_call(nb, val, &info);
1603}
1604
1605static int dev_boot_phase = 1;
1606
1607/**
1608 * register_netdevice_notifier - register a network notifier block
1609 * @nb: notifier
1610 *
1611 * Register a notifier to be called when network device events occur.
1612 * The notifier passed is linked into the kernel structures and must
1613 * not be reused until it has been unregistered. A negative errno code
1614 * is returned on a failure.
1615 *
1616 * When registered all registration and up events are replayed
1617 * to the new notifier to allow device to have a race free
1618 * view of the network device list.
1619 */
1620
1621int register_netdevice_notifier(struct notifier_block *nb)
1622{
1623	struct net_device *dev;
1624	struct net_device *last;
1625	struct net *net;
1626	int err;
1627
1628	/* Close race with setup_net() and cleanup_net() */
1629	down_write(&pernet_ops_rwsem);
1630	rtnl_lock();
1631	err = raw_notifier_chain_register(&netdev_chain, nb);
1632	if (err)
1633		goto unlock;
1634	if (dev_boot_phase)
1635		goto unlock;
1636	for_each_net(net) {
1637		for_each_netdev(net, dev) {
1638			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639			err = notifier_to_errno(err);
1640			if (err)
1641				goto rollback;
1642
1643			if (!(dev->flags & IFF_UP))
1644				continue;
1645
1646			call_netdevice_notifier(nb, NETDEV_UP, dev);
1647		}
1648	}
1649
1650unlock:
1651	rtnl_unlock();
1652	up_write(&pernet_ops_rwsem);
1653	return err;
1654
1655rollback:
1656	last = dev;
1657	for_each_net(net) {
1658		for_each_netdev(net, dev) {
1659			if (dev == last)
1660				goto outroll;
1661
1662			if (dev->flags & IFF_UP) {
1663				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664							dev);
1665				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666			}
1667			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668		}
1669	}
1670
1671outroll:
1672	raw_notifier_chain_unregister(&netdev_chain, nb);
1673	goto unlock;
1674}
1675EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677/**
1678 * unregister_netdevice_notifier - unregister a network notifier block
1679 * @nb: notifier
1680 *
1681 * Unregister a notifier previously registered by
1682 * register_netdevice_notifier(). The notifier is unlinked into the
1683 * kernel structures and may then be reused. A negative errno code
1684 * is returned on a failure.
1685 *
1686 * After unregistering unregister and down device events are synthesized
1687 * for all devices on the device list to the removed notifier to remove
1688 * the need for special case cleanup code.
1689 */
1690
1691int unregister_netdevice_notifier(struct notifier_block *nb)
1692{
1693	struct net_device *dev;
1694	struct net *net;
1695	int err;
1696
1697	/* Close race with setup_net() and cleanup_net() */
1698	down_write(&pernet_ops_rwsem);
1699	rtnl_lock();
1700	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701	if (err)
1702		goto unlock;
1703
1704	for_each_net(net) {
1705		for_each_netdev(net, dev) {
1706			if (dev->flags & IFF_UP) {
1707				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708							dev);
1709				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710			}
1711			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712		}
1713	}
1714unlock:
1715	rtnl_unlock();
1716	up_write(&pernet_ops_rwsem);
1717	return err;
1718}
1719EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721/**
1722 *	call_netdevice_notifiers_info - call all network notifier blocks
1723 *	@val: value passed unmodified to notifier function
 
1724 *	@info: notifier information data
1725 *
1726 *	Call all network notifier blocks.  Parameters and return value
1727 *	are as for raw_notifier_call_chain().
1728 */
1729
1730static int call_netdevice_notifiers_info(unsigned long val,
 
1731					 struct netdev_notifier_info *info)
1732{
1733	ASSERT_RTNL();
 
1734	return raw_notifier_call_chain(&netdev_chain, val, info);
1735}
1736
1737/**
1738 *	call_netdevice_notifiers - call all network notifier blocks
1739 *      @val: value passed unmodified to notifier function
1740 *      @dev: net_device pointer passed unmodified to notifier function
1741 *
1742 *	Call all network notifier blocks.  Parameters and return value
1743 *	are as for raw_notifier_call_chain().
1744 */
1745
1746int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747{
1748	struct netdev_notifier_info info = {
1749		.dev = dev,
1750	};
1751
1752	return call_netdevice_notifiers_info(val, &info);
1753}
1754EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756#ifdef CONFIG_NET_INGRESS
1757static struct static_key ingress_needed __read_mostly;
1758
1759void net_inc_ingress_queue(void)
1760{
1761	static_key_slow_inc(&ingress_needed);
1762}
1763EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765void net_dec_ingress_queue(void)
1766{
1767	static_key_slow_dec(&ingress_needed);
1768}
1769EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770#endif
1771
1772#ifdef CONFIG_NET_EGRESS
1773static struct static_key egress_needed __read_mostly;
1774
1775void net_inc_egress_queue(void)
1776{
1777	static_key_slow_inc(&egress_needed);
1778}
1779EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781void net_dec_egress_queue(void)
1782{
1783	static_key_slow_dec(&egress_needed);
1784}
1785EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786#endif
1787
1788static struct static_key netstamp_needed __read_mostly;
1789#ifdef HAVE_JUMP_LABEL
 
 
 
 
1790static atomic_t netstamp_needed_deferred;
1791static atomic_t netstamp_wanted;
1792static void netstamp_clear(struct work_struct *work)
1793{
1794	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795	int wanted;
1796
1797	wanted = atomic_add_return(deferred, &netstamp_wanted);
1798	if (wanted > 0)
1799		static_key_enable(&netstamp_needed);
1800	else
1801		static_key_disable(&netstamp_needed);
1802}
1803static DECLARE_WORK(netstamp_work, netstamp_clear);
1804#endif
1805
1806void net_enable_timestamp(void)
1807{
1808#ifdef HAVE_JUMP_LABEL
1809	int wanted;
1810
1811	while (1) {
1812		wanted = atomic_read(&netstamp_wanted);
1813		if (wanted <= 0)
1814			break;
1815		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816			return;
1817	}
1818	atomic_inc(&netstamp_needed_deferred);
1819	schedule_work(&netstamp_work);
1820#else
1821	static_key_slow_inc(&netstamp_needed);
1822#endif
 
1823}
1824EXPORT_SYMBOL(net_enable_timestamp);
1825
1826void net_disable_timestamp(void)
1827{
1828#ifdef HAVE_JUMP_LABEL
1829	int wanted;
1830
1831	while (1) {
1832		wanted = atomic_read(&netstamp_wanted);
1833		if (wanted <= 1)
1834			break;
1835		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836			return;
1837	}
1838	atomic_dec(&netstamp_needed_deferred);
1839	schedule_work(&netstamp_work);
1840#else
1841	static_key_slow_dec(&netstamp_needed);
1842#endif
 
1843}
1844EXPORT_SYMBOL(net_disable_timestamp);
1845
1846static inline void net_timestamp_set(struct sk_buff *skb)
1847{
1848	skb->tstamp = 0;
1849	if (static_key_false(&netstamp_needed))
1850		__net_timestamp(skb);
1851}
1852
1853#define net_timestamp_check(COND, SKB)			\
1854	if (static_key_false(&netstamp_needed)) {		\
1855		if ((COND) && !(SKB)->tstamp)	\
1856			__net_timestamp(SKB);		\
1857	}						\
1858
1859bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860{
1861	unsigned int len;
1862
1863	if (!(dev->flags & IFF_UP))
1864		return false;
1865
1866	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867	if (skb->len <= len)
1868		return true;
1869
1870	/* if TSO is enabled, we don't care about the length as the packet
1871	 * could be forwarded without being segmented before
1872	 */
1873	if (skb_is_gso(skb))
1874		return true;
1875
1876	return false;
1877}
1878EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879
1880int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881{
1882	int ret = ____dev_forward_skb(dev, skb);
1883
1884	if (likely(!ret)) {
1885		skb->protocol = eth_type_trans(skb, dev);
1886		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887	}
1888
1889	return ret;
1890}
1891EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
1893/**
1894 * dev_forward_skb - loopback an skb to another netif
1895 *
1896 * @dev: destination network device
1897 * @skb: buffer to forward
1898 *
1899 * return values:
1900 *	NET_RX_SUCCESS	(no congestion)
1901 *	NET_RX_DROP     (packet was dropped, but freed)
1902 *
1903 * dev_forward_skb can be used for injecting an skb from the
1904 * start_xmit function of one device into the receive queue
1905 * of another device.
1906 *
1907 * The receiving device may be in another namespace, so
1908 * we have to clear all information in the skb that could
1909 * impact namespace isolation.
1910 */
1911int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912{
1913	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914}
1915EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
1917static inline int deliver_skb(struct sk_buff *skb,
1918			      struct packet_type *pt_prev,
1919			      struct net_device *orig_dev)
1920{
1921	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922		return -ENOMEM;
1923	refcount_inc(&skb->users);
1924	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925}
1926
1927static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928					  struct packet_type **pt,
1929					  struct net_device *orig_dev,
1930					  __be16 type,
1931					  struct list_head *ptype_list)
1932{
1933	struct packet_type *ptype, *pt_prev = *pt;
1934
1935	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936		if (ptype->type != type)
1937			continue;
1938		if (pt_prev)
1939			deliver_skb(skb, pt_prev, orig_dev);
1940		pt_prev = ptype;
1941	}
1942	*pt = pt_prev;
1943}
1944
1945static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946{
1947	if (!ptype->af_packet_priv || !skb->sk)
1948		return false;
1949
1950	if (ptype->id_match)
1951		return ptype->id_match(ptype, skb->sk);
1952	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953		return true;
1954
1955	return false;
1956}
1957
1958/*
1959 *	Support routine. Sends outgoing frames to any network
1960 *	taps currently in use.
1961 */
1962
1963void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964{
1965	struct packet_type *ptype;
1966	struct sk_buff *skb2 = NULL;
1967	struct packet_type *pt_prev = NULL;
1968	struct list_head *ptype_list = &ptype_all;
1969
1970	rcu_read_lock();
1971again:
1972	list_for_each_entry_rcu(ptype, ptype_list, list) {
1973		/* Never send packets back to the socket
1974		 * they originated from - MvS (miquels@drinkel.ow.org)
1975		 */
1976		if (skb_loop_sk(ptype, skb))
1977			continue;
 
 
 
 
 
1978
1979		if (pt_prev) {
1980			deliver_skb(skb2, pt_prev, skb->dev);
1981			pt_prev = ptype;
1982			continue;
1983		}
1984
1985		/* need to clone skb, done only once */
1986		skb2 = skb_clone(skb, GFP_ATOMIC);
1987		if (!skb2)
1988			goto out_unlock;
1989
1990		net_timestamp_set(skb2);
1991
1992		/* skb->nh should be correctly
1993		 * set by sender, so that the second statement is
1994		 * just protection against buggy protocols.
1995		 */
1996		skb_reset_mac_header(skb2);
1997
1998		if (skb_network_header(skb2) < skb2->data ||
1999		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001					     ntohs(skb2->protocol),
2002					     dev->name);
2003			skb_reset_network_header(skb2);
2004		}
2005
2006		skb2->transport_header = skb2->network_header;
2007		skb2->pkt_type = PACKET_OUTGOING;
2008		pt_prev = ptype;
2009	}
 
 
 
2010
2011	if (ptype_list == &ptype_all) {
2012		ptype_list = &dev->ptype_all;
2013		goto again;
2014	}
2015out_unlock:
2016	if (pt_prev) {
2017		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019		else
2020			kfree_skb(skb2);
2021	}
 
 
2022	rcu_read_unlock();
2023}
2024EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025
2026/**
2027 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028 * @dev: Network device
2029 * @txq: number of queues available
2030 *
2031 * If real_num_tx_queues is changed the tc mappings may no longer be
2032 * valid. To resolve this verify the tc mapping remains valid and if
2033 * not NULL the mapping. With no priorities mapping to this
2034 * offset/count pair it will no longer be used. In the worst case TC0
2035 * is invalid nothing can be done so disable priority mappings. If is
2036 * expected that drivers will fix this mapping if they can before
2037 * calling netif_set_real_num_tx_queues.
2038 */
2039static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040{
2041	int i;
2042	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044	/* If TC0 is invalidated disable TC mapping */
2045	if (tc->offset + tc->count > txq) {
2046		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047		dev->num_tc = 0;
2048		return;
2049	}
2050
2051	/* Invalidated prio to tc mappings set to TC0 */
2052	for (i = 1; i < TC_BITMASK + 1; i++) {
2053		int q = netdev_get_prio_tc_map(dev, i);
2054
2055		tc = &dev->tc_to_txq[q];
2056		if (tc->offset + tc->count > txq) {
2057			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058				i, q);
2059			netdev_set_prio_tc_map(dev, i, 0);
2060		}
2061	}
2062}
2063
2064int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065{
2066	if (dev->num_tc) {
2067		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068		int i;
2069
2070		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071			if ((txq - tc->offset) < tc->count)
2072				return i;
2073		}
2074
2075		return -1;
2076	}
2077
2078	return 0;
2079}
2080EXPORT_SYMBOL(netdev_txq_to_tc);
2081
2082#ifdef CONFIG_XPS
2083static DEFINE_MUTEX(xps_map_mutex);
2084#define xmap_dereference(P)		\
2085	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2086
2087static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2088			     int tci, u16 index)
2089{
2090	struct xps_map *map = NULL;
2091	int pos;
2092
2093	if (dev_maps)
2094		map = xmap_dereference(dev_maps->cpu_map[tci]);
2095	if (!map)
2096		return false;
2097
2098	for (pos = map->len; pos--;) {
2099		if (map->queues[pos] != index)
2100			continue;
2101
2102		if (map->len > 1) {
2103			map->queues[pos] = map->queues[--map->len];
 
 
 
 
 
 
 
2104			break;
2105		}
2106
2107		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2108		kfree_rcu(map, rcu);
2109		return false;
2110	}
2111
2112	return true;
2113}
2114
2115static bool remove_xps_queue_cpu(struct net_device *dev,
2116				 struct xps_dev_maps *dev_maps,
2117				 int cpu, u16 offset, u16 count)
2118{
2119	int num_tc = dev->num_tc ? : 1;
2120	bool active = false;
2121	int tci;
2122
2123	for (tci = cpu * num_tc; num_tc--; tci++) {
2124		int i, j;
2125
2126		for (i = count, j = offset; i--; j++) {
2127			if (!remove_xps_queue(dev_maps, tci, j))
2128				break;
2129		}
2130
2131		active |= i < 0;
2132	}
2133
2134	return active;
2135}
2136
2137static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2138				   u16 count)
2139{
2140	struct xps_dev_maps *dev_maps;
2141	int cpu, i;
2142	bool active = false;
2143
2144	mutex_lock(&xps_map_mutex);
2145	dev_maps = xmap_dereference(dev->xps_maps);
2146
2147	if (!dev_maps)
2148		goto out_no_maps;
2149
2150	for_each_possible_cpu(cpu)
2151		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2152					       offset, count);
 
 
 
 
 
2153
2154	if (!active) {
2155		RCU_INIT_POINTER(dev->xps_maps, NULL);
2156		kfree_rcu(dev_maps, rcu);
2157	}
2158
2159	for (i = offset + (count - 1); count--; i--)
2160		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2161					     NUMA_NO_NODE);
2162
2163out_no_maps:
2164	mutex_unlock(&xps_map_mutex);
2165}
2166
2167static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2168{
2169	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2170}
2171
2172static struct xps_map *expand_xps_map(struct xps_map *map,
2173				      int cpu, u16 index)
2174{
2175	struct xps_map *new_map;
2176	int alloc_len = XPS_MIN_MAP_ALLOC;
2177	int i, pos;
2178
2179	for (pos = 0; map && pos < map->len; pos++) {
2180		if (map->queues[pos] != index)
2181			continue;
2182		return map;
2183	}
2184
2185	/* Need to add queue to this CPU's existing map */
2186	if (map) {
2187		if (pos < map->alloc_len)
2188			return map;
2189
2190		alloc_len = map->alloc_len * 2;
2191	}
2192
2193	/* Need to allocate new map to store queue on this CPU's map */
2194	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2195			       cpu_to_node(cpu));
2196	if (!new_map)
2197		return NULL;
2198
2199	for (i = 0; i < pos; i++)
2200		new_map->queues[i] = map->queues[i];
2201	new_map->alloc_len = alloc_len;
2202	new_map->len = pos;
2203
2204	return new_map;
2205}
2206
2207int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2208			u16 index)
2209{
2210	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2211	int i, cpu, tci, numa_node_id = -2;
2212	int maps_sz, num_tc = 1, tc = 0;
2213	struct xps_map *map, *new_map;
 
 
2214	bool active = false;
2215
2216	if (dev->num_tc) {
2217		num_tc = dev->num_tc;
2218		tc = netdev_txq_to_tc(dev, index);
2219		if (tc < 0)
2220			return -EINVAL;
2221	}
2222
2223	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2224	if (maps_sz < L1_CACHE_BYTES)
2225		maps_sz = L1_CACHE_BYTES;
2226
2227	mutex_lock(&xps_map_mutex);
2228
2229	dev_maps = xmap_dereference(dev->xps_maps);
2230
2231	/* allocate memory for queue storage */
2232	for_each_cpu_and(cpu, cpu_online_mask, mask) {
 
 
 
2233		if (!new_dev_maps)
2234			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2235		if (!new_dev_maps) {
2236			mutex_unlock(&xps_map_mutex);
2237			return -ENOMEM;
2238		}
2239
2240		tci = cpu * num_tc + tc;
2241		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2242				 NULL;
2243
2244		map = expand_xps_map(map, cpu, index);
2245		if (!map)
2246			goto error;
2247
2248		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249	}
2250
2251	if (!new_dev_maps)
2252		goto out_no_new_maps;
2253
2254	for_each_possible_cpu(cpu) {
2255		/* copy maps belonging to foreign traffic classes */
2256		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2257			/* fill in the new device map from the old device map */
2258			map = xmap_dereference(dev_maps->cpu_map[tci]);
2259			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260		}
2261
2262		/* We need to explicitly update tci as prevous loop
2263		 * could break out early if dev_maps is NULL.
2264		 */
2265		tci = cpu * num_tc + tc;
2266
2267		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2268			/* add queue to CPU maps */
2269			int pos = 0;
2270
2271			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2272			while ((pos < map->len) && (map->queues[pos] != index))
2273				pos++;
2274
2275			if (pos == map->len)
2276				map->queues[map->len++] = index;
2277#ifdef CONFIG_NUMA
2278			if (numa_node_id == -2)
2279				numa_node_id = cpu_to_node(cpu);
2280			else if (numa_node_id != cpu_to_node(cpu))
2281				numa_node_id = -1;
2282#endif
2283		} else if (dev_maps) {
2284			/* fill in the new device map from the old device map */
2285			map = xmap_dereference(dev_maps->cpu_map[tci]);
2286			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2287		}
2288
2289		/* copy maps belonging to foreign traffic classes */
2290		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2291			/* fill in the new device map from the old device map */
2292			map = xmap_dereference(dev_maps->cpu_map[tci]);
2293			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2294		}
2295	}
2296
2297	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2298
2299	/* Cleanup old maps */
2300	if (!dev_maps)
2301		goto out_no_old_maps;
2302
2303	for_each_possible_cpu(cpu) {
2304		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2305			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2306			map = xmap_dereference(dev_maps->cpu_map[tci]);
2307			if (map && map != new_map)
2308				kfree_rcu(map, rcu);
2309		}
2310	}
2311
2312	kfree_rcu(dev_maps, rcu);
 
2313
2314out_no_old_maps:
2315	dev_maps = new_dev_maps;
2316	active = true;
2317
2318out_no_new_maps:
2319	/* update Tx queue numa node */
2320	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2321				     (numa_node_id >= 0) ? numa_node_id :
2322				     NUMA_NO_NODE);
2323
2324	if (!dev_maps)
2325		goto out_no_maps;
2326
2327	/* removes queue from unused CPUs */
2328	for_each_possible_cpu(cpu) {
2329		for (i = tc, tci = cpu * num_tc; i--; tci++)
2330			active |= remove_xps_queue(dev_maps, tci, index);
2331		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2332			active |= remove_xps_queue(dev_maps, tci, index);
2333		for (i = num_tc - tc, tci++; --i; tci++)
2334			active |= remove_xps_queue(dev_maps, tci, index);
2335	}
2336
2337	/* free map if not active */
2338	if (!active) {
2339		RCU_INIT_POINTER(dev->xps_maps, NULL);
2340		kfree_rcu(dev_maps, rcu);
2341	}
2342
2343out_no_maps:
2344	mutex_unlock(&xps_map_mutex);
2345
2346	return 0;
2347error:
2348	/* remove any maps that we added */
2349	for_each_possible_cpu(cpu) {
2350		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2351			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2352			map = dev_maps ?
2353			      xmap_dereference(dev_maps->cpu_map[tci]) :
2354			      NULL;
2355			if (new_map && new_map != map)
2356				kfree(new_map);
2357		}
2358	}
2359
2360	mutex_unlock(&xps_map_mutex);
2361
2362	kfree(new_dev_maps);
2363	return -ENOMEM;
2364}
2365EXPORT_SYMBOL(netif_set_xps_queue);
2366
2367#endif
2368void netdev_reset_tc(struct net_device *dev)
2369{
2370#ifdef CONFIG_XPS
2371	netif_reset_xps_queues_gt(dev, 0);
2372#endif
2373	dev->num_tc = 0;
2374	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2375	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2376}
2377EXPORT_SYMBOL(netdev_reset_tc);
2378
2379int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2380{
2381	if (tc >= dev->num_tc)
2382		return -EINVAL;
2383
2384#ifdef CONFIG_XPS
2385	netif_reset_xps_queues(dev, offset, count);
2386#endif
2387	dev->tc_to_txq[tc].count = count;
2388	dev->tc_to_txq[tc].offset = offset;
2389	return 0;
2390}
2391EXPORT_SYMBOL(netdev_set_tc_queue);
2392
2393int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2394{
2395	if (num_tc > TC_MAX_QUEUE)
2396		return -EINVAL;
2397
2398#ifdef CONFIG_XPS
2399	netif_reset_xps_queues_gt(dev, 0);
2400#endif
2401	dev->num_tc = num_tc;
2402	return 0;
2403}
2404EXPORT_SYMBOL(netdev_set_num_tc);
2405
2406/*
2407 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2408 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2409 */
2410int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2411{
2412	bool disabling;
2413	int rc;
2414
2415	disabling = txq < dev->real_num_tx_queues;
2416
2417	if (txq < 1 || txq > dev->num_tx_queues)
2418		return -EINVAL;
2419
2420	if (dev->reg_state == NETREG_REGISTERED ||
2421	    dev->reg_state == NETREG_UNREGISTERING) {
2422		ASSERT_RTNL();
2423
2424		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2425						  txq);
2426		if (rc)
2427			return rc;
2428
2429		if (dev->num_tc)
2430			netif_setup_tc(dev, txq);
2431
2432		dev->real_num_tx_queues = txq;
2433
2434		if (disabling) {
2435			synchronize_net();
2436			qdisc_reset_all_tx_gt(dev, txq);
2437#ifdef CONFIG_XPS
2438			netif_reset_xps_queues_gt(dev, txq);
2439#endif
2440		}
2441	} else {
2442		dev->real_num_tx_queues = txq;
2443	}
2444
 
2445	return 0;
2446}
2447EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2448
2449#ifdef CONFIG_SYSFS
2450/**
2451 *	netif_set_real_num_rx_queues - set actual number of RX queues used
2452 *	@dev: Network device
2453 *	@rxq: Actual number of RX queues
2454 *
2455 *	This must be called either with the rtnl_lock held or before
2456 *	registration of the net device.  Returns 0 on success, or a
2457 *	negative error code.  If called before registration, it always
2458 *	succeeds.
2459 */
2460int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2461{
2462	int rc;
2463
2464	if (rxq < 1 || rxq > dev->num_rx_queues)
2465		return -EINVAL;
2466
2467	if (dev->reg_state == NETREG_REGISTERED) {
2468		ASSERT_RTNL();
2469
2470		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2471						  rxq);
2472		if (rc)
2473			return rc;
2474	}
2475
2476	dev->real_num_rx_queues = rxq;
2477	return 0;
2478}
2479EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2480#endif
2481
2482/**
2483 * netif_get_num_default_rss_queues - default number of RSS queues
2484 *
2485 * This routine should set an upper limit on the number of RSS queues
2486 * used by default by multiqueue devices.
2487 */
2488int netif_get_num_default_rss_queues(void)
2489{
2490	return is_kdump_kernel() ?
2491		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2492}
2493EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2494
2495static void __netif_reschedule(struct Qdisc *q)
2496{
2497	struct softnet_data *sd;
2498	unsigned long flags;
2499
2500	local_irq_save(flags);
2501	sd = this_cpu_ptr(&softnet_data);
2502	q->next_sched = NULL;
2503	*sd->output_queue_tailp = q;
2504	sd->output_queue_tailp = &q->next_sched;
2505	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506	local_irq_restore(flags);
2507}
2508
2509void __netif_schedule(struct Qdisc *q)
2510{
2511	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2512		__netif_reschedule(q);
2513}
2514EXPORT_SYMBOL(__netif_schedule);
2515
2516struct dev_kfree_skb_cb {
2517	enum skb_free_reason reason;
2518};
2519
2520static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2521{
2522	return (struct dev_kfree_skb_cb *)skb->cb;
2523}
2524
2525void netif_schedule_queue(struct netdev_queue *txq)
2526{
2527	rcu_read_lock();
2528	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2529		struct Qdisc *q = rcu_dereference(txq->qdisc);
2530
2531		__netif_schedule(q);
2532	}
2533	rcu_read_unlock();
2534}
2535EXPORT_SYMBOL(netif_schedule_queue);
2536
2537void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2538{
2539	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2540		struct Qdisc *q;
2541
2542		rcu_read_lock();
2543		q = rcu_dereference(dev_queue->qdisc);
2544		__netif_schedule(q);
2545		rcu_read_unlock();
2546	}
2547}
2548EXPORT_SYMBOL(netif_tx_wake_queue);
2549
2550void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2551{
2552	unsigned long flags;
2553
2554	if (unlikely(!skb))
2555		return;
2556
2557	if (likely(refcount_read(&skb->users) == 1)) {
2558		smp_rmb();
2559		refcount_set(&skb->users, 0);
2560	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2561		return;
2562	}
2563	get_kfree_skb_cb(skb)->reason = reason;
2564	local_irq_save(flags);
2565	skb->next = __this_cpu_read(softnet_data.completion_queue);
2566	__this_cpu_write(softnet_data.completion_queue, skb);
2567	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2568	local_irq_restore(flags);
2569}
2570EXPORT_SYMBOL(__dev_kfree_skb_irq);
2571
2572void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2573{
2574	if (in_irq() || irqs_disabled())
2575		__dev_kfree_skb_irq(skb, reason);
2576	else
2577		dev_kfree_skb(skb);
2578}
2579EXPORT_SYMBOL(__dev_kfree_skb_any);
2580
2581
2582/**
2583 * netif_device_detach - mark device as removed
2584 * @dev: network device
2585 *
2586 * Mark device as removed from system and therefore no longer available.
2587 */
2588void netif_device_detach(struct net_device *dev)
2589{
2590	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2591	    netif_running(dev)) {
2592		netif_tx_stop_all_queues(dev);
2593	}
2594}
2595EXPORT_SYMBOL(netif_device_detach);
2596
2597/**
2598 * netif_device_attach - mark device as attached
2599 * @dev: network device
2600 *
2601 * Mark device as attached from system and restart if needed.
2602 */
2603void netif_device_attach(struct net_device *dev)
2604{
2605	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2606	    netif_running(dev)) {
2607		netif_tx_wake_all_queues(dev);
2608		__netdev_watchdog_up(dev);
2609	}
2610}
2611EXPORT_SYMBOL(netif_device_attach);
2612
2613/*
2614 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2615 * to be used as a distribution range.
2616 */
2617u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2618		  unsigned int num_tx_queues)
2619{
2620	u32 hash;
2621	u16 qoffset = 0;
2622	u16 qcount = num_tx_queues;
2623
2624	if (skb_rx_queue_recorded(skb)) {
2625		hash = skb_get_rx_queue(skb);
2626		while (unlikely(hash >= num_tx_queues))
2627			hash -= num_tx_queues;
2628		return hash;
2629	}
2630
2631	if (dev->num_tc) {
2632		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634		qoffset = dev->tc_to_txq[tc].offset;
2635		qcount = dev->tc_to_txq[tc].count;
2636	}
2637
2638	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639}
2640EXPORT_SYMBOL(__skb_tx_hash);
2641
2642static void skb_warn_bad_offload(const struct sk_buff *skb)
2643{
2644	static const netdev_features_t null_features;
2645	struct net_device *dev = skb->dev;
2646	const char *name = "";
2647
2648	if (!net_ratelimit())
2649		return;
2650
2651	if (dev) {
2652		if (dev->dev.parent)
2653			name = dev_driver_string(dev->dev.parent);
2654		else
2655			name = netdev_name(dev);
2656	}
2657	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2658	     "gso_type=%d ip_summed=%d\n",
2659	     name, dev ? &dev->features : &null_features,
2660	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2661	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2662	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2663}
2664
2665/*
2666 * Invalidate hardware checksum when packet is to be mangled, and
2667 * complete checksum manually on outgoing path.
2668 */
2669int skb_checksum_help(struct sk_buff *skb)
2670{
2671	__wsum csum;
2672	int ret = 0, offset;
2673
2674	if (skb->ip_summed == CHECKSUM_COMPLETE)
2675		goto out_set_summed;
2676
2677	if (unlikely(skb_shinfo(skb)->gso_size)) {
2678		skb_warn_bad_offload(skb);
2679		return -EINVAL;
2680	}
2681
2682	/* Before computing a checksum, we should make sure no frag could
2683	 * be modified by an external entity : checksum could be wrong.
2684	 */
2685	if (skb_has_shared_frag(skb)) {
2686		ret = __skb_linearize(skb);
2687		if (ret)
2688			goto out;
2689	}
2690
2691	offset = skb_checksum_start_offset(skb);
2692	BUG_ON(offset >= skb_headlen(skb));
2693	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2694
2695	offset += skb->csum_offset;
2696	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2697
2698	if (skb_cloned(skb) &&
2699	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2700		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2701		if (ret)
2702			goto out;
2703	}
2704
2705	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2706out_set_summed:
2707	skb->ip_summed = CHECKSUM_NONE;
2708out:
2709	return ret;
2710}
2711EXPORT_SYMBOL(skb_checksum_help);
2712
2713int skb_crc32c_csum_help(struct sk_buff *skb)
2714{
2715	__le32 crc32c_csum;
2716	int ret = 0, offset, start;
2717
2718	if (skb->ip_summed != CHECKSUM_PARTIAL)
2719		goto out;
2720
2721	if (unlikely(skb_is_gso(skb)))
2722		goto out;
2723
2724	/* Before computing a checksum, we should make sure no frag could
2725	 * be modified by an external entity : checksum could be wrong.
2726	 */
2727	if (unlikely(skb_has_shared_frag(skb))) {
2728		ret = __skb_linearize(skb);
2729		if (ret)
2730			goto out;
2731	}
2732	start = skb_checksum_start_offset(skb);
2733	offset = start + offsetof(struct sctphdr, checksum);
2734	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2735		ret = -EINVAL;
2736		goto out;
2737	}
2738	if (skb_cloned(skb) &&
2739	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2740		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741		if (ret)
2742			goto out;
2743	}
2744	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2745						  skb->len - start, ~(__u32)0,
2746						  crc32c_csum_stub));
2747	*(__le32 *)(skb->data + offset) = crc32c_csum;
2748	skb->ip_summed = CHECKSUM_NONE;
2749	skb->csum_not_inet = 0;
2750out:
2751	return ret;
2752}
2753
2754__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2755{
 
2756	__be16 type = skb->protocol;
2757
2758	/* Tunnel gso handlers can set protocol to ethernet. */
2759	if (type == htons(ETH_P_TEB)) {
2760		struct ethhdr *eth;
2761
2762		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2763			return 0;
2764
2765		eth = (struct ethhdr *)skb->data;
2766		type = eth->h_proto;
2767	}
2768
2769	return __vlan_get_protocol(skb, type, depth);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770}
2771
2772/**
2773 *	skb_mac_gso_segment - mac layer segmentation handler.
2774 *	@skb: buffer to segment
2775 *	@features: features for the output path (see dev->features)
2776 */
2777struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2778				    netdev_features_t features)
2779{
2780	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2781	struct packet_offload *ptype;
2782	int vlan_depth = skb->mac_len;
2783	__be16 type = skb_network_protocol(skb, &vlan_depth);
2784
2785	if (unlikely(!type))
2786		return ERR_PTR(-EINVAL);
2787
2788	__skb_pull(skb, vlan_depth);
2789
2790	rcu_read_lock();
2791	list_for_each_entry_rcu(ptype, &offload_base, list) {
2792		if (ptype->type == type && ptype->callbacks.gso_segment) {
 
 
 
 
 
 
 
 
 
 
2793			segs = ptype->callbacks.gso_segment(skb, features);
2794			break;
2795		}
2796	}
2797	rcu_read_unlock();
2798
2799	__skb_push(skb, skb->data - skb_mac_header(skb));
2800
2801	return segs;
2802}
2803EXPORT_SYMBOL(skb_mac_gso_segment);
2804
2805
2806/* openvswitch calls this on rx path, so we need a different check.
2807 */
2808static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2809{
2810	if (tx_path)
2811		return skb->ip_summed != CHECKSUM_PARTIAL &&
2812		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2813
2814	return skb->ip_summed == CHECKSUM_NONE;
2815}
2816
2817/**
2818 *	__skb_gso_segment - Perform segmentation on skb.
2819 *	@skb: buffer to segment
2820 *	@features: features for the output path (see dev->features)
2821 *	@tx_path: whether it is called in TX path
2822 *
2823 *	This function segments the given skb and returns a list of segments.
2824 *
2825 *	It may return NULL if the skb requires no segmentation.  This is
2826 *	only possible when GSO is used for verifying header integrity.
2827 *
2828 *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2829 */
2830struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2831				  netdev_features_t features, bool tx_path)
2832{
2833	struct sk_buff *segs;
2834
2835	if (unlikely(skb_needs_check(skb, tx_path))) {
2836		int err;
2837
2838		/* We're going to init ->check field in TCP or UDP header */
2839		err = skb_cow_head(skb, 0);
2840		if (err < 0)
2841			return ERR_PTR(err);
2842	}
2843
2844	/* Only report GSO partial support if it will enable us to
2845	 * support segmentation on this frame without needing additional
2846	 * work.
2847	 */
2848	if (features & NETIF_F_GSO_PARTIAL) {
2849		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2850		struct net_device *dev = skb->dev;
2851
2852		partial_features |= dev->features & dev->gso_partial_features;
2853		if (!skb_gso_ok(skb, features | partial_features))
2854			features &= ~NETIF_F_GSO_PARTIAL;
2855	}
2856
2857	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2858		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2859
2860	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2861	SKB_GSO_CB(skb)->encap_level = 0;
2862
2863	skb_reset_mac_header(skb);
2864	skb_reset_mac_len(skb);
2865
2866	segs = skb_mac_gso_segment(skb, features);
2867
2868	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2869		skb_warn_bad_offload(skb);
2870
2871	return segs;
2872}
2873EXPORT_SYMBOL(__skb_gso_segment);
2874
2875/* Take action when hardware reception checksum errors are detected. */
2876#ifdef CONFIG_BUG
2877void netdev_rx_csum_fault(struct net_device *dev)
2878{
2879	if (net_ratelimit()) {
2880		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2881		dump_stack();
2882	}
2883}
2884EXPORT_SYMBOL(netdev_rx_csum_fault);
2885#endif
2886
2887/* Actually, we should eliminate this check as soon as we know, that:
2888 * 1. IOMMU is present and allows to map all the memory.
2889 * 2. No high memory really exists on this machine.
2890 */
2891
2892static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2893{
2894#ifdef CONFIG_HIGHMEM
2895	int i;
2896
2897	if (!(dev->features & NETIF_F_HIGHDMA)) {
2898		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2899			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2900
2901			if (PageHighMem(skb_frag_page(frag)))
2902				return 1;
2903		}
2904	}
2905
2906	if (PCI_DMA_BUS_IS_PHYS) {
2907		struct device *pdev = dev->dev.parent;
2908
2909		if (!pdev)
2910			return 0;
2911		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2912			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2913			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2914
2915			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2916				return 1;
2917		}
2918	}
2919#endif
2920	return 0;
2921}
2922
2923/* If MPLS offload request, verify we are testing hardware MPLS features
2924 * instead of standard features for the netdev.
2925 */
2926#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2927static netdev_features_t net_mpls_features(struct sk_buff *skb,
2928					   netdev_features_t features,
2929					   __be16 type)
2930{
2931	if (eth_p_mpls(type))
2932		features &= skb->dev->mpls_features;
2933
2934	return features;
2935}
2936#else
2937static netdev_features_t net_mpls_features(struct sk_buff *skb,
2938					   netdev_features_t features,
2939					   __be16 type)
2940{
2941	return features;
2942}
2943#endif
2944
2945static netdev_features_t harmonize_features(struct sk_buff *skb,
2946	netdev_features_t features)
2947{
2948	int tmp;
2949	__be16 type;
2950
2951	type = skb_network_protocol(skb, &tmp);
2952	features = net_mpls_features(skb, features, type);
2953
2954	if (skb->ip_summed != CHECKSUM_NONE &&
2955	    !can_checksum_protocol(features, type)) {
2956		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2957	}
2958	if (illegal_highdma(skb->dev, skb))
2959		features &= ~NETIF_F_SG;
2960
2961	return features;
 
 
2962}
2963
2964netdev_features_t passthru_features_check(struct sk_buff *skb,
2965					  struct net_device *dev,
2966					  netdev_features_t features)
 
 
 
 
 
 
2967{
2968	return features;
2969}
2970EXPORT_SYMBOL(passthru_features_check);
2971
2972static netdev_features_t dflt_features_check(struct sk_buff *skb,
2973					     struct net_device *dev,
2974					     netdev_features_t features)
2975{
2976	return vlan_features_check(skb, features);
2977}
2978
2979static netdev_features_t gso_features_check(const struct sk_buff *skb,
2980					    struct net_device *dev,
2981					    netdev_features_t features)
2982{
2983	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2984
2985	if (gso_segs > dev->gso_max_segs)
2986		return features & ~NETIF_F_GSO_MASK;
2987
2988	/* Support for GSO partial features requires software
2989	 * intervention before we can actually process the packets
2990	 * so we need to strip support for any partial features now
2991	 * and we can pull them back in after we have partially
2992	 * segmented the frame.
2993	 */
2994	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2995		features &= ~dev->gso_partial_features;
2996
2997	/* Make sure to clear the IPv4 ID mangling feature if the
2998	 * IPv4 header has the potential to be fragmented.
2999	 */
3000	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3001		struct iphdr *iph = skb->encapsulation ?
3002				    inner_ip_hdr(skb) : ip_hdr(skb);
 
3003
3004		if (!(iph->frag_off & htons(IP_DF)))
3005			features &= ~NETIF_F_TSO_MANGLEID;
 
 
 
3006	}
3007
3008	return features;
3009}
3010
3011netdev_features_t netif_skb_features(struct sk_buff *skb)
3012{
3013	struct net_device *dev = skb->dev;
3014	netdev_features_t features = dev->features;
3015
3016	if (skb_is_gso(skb))
3017		features = gso_features_check(skb, dev, features);
3018
3019	/* If encapsulation offload request, verify we are testing
3020	 * hardware encapsulation features instead of standard
3021	 * features for the netdev
3022	 */
3023	if (skb->encapsulation)
3024		features &= dev->hw_enc_features;
3025
3026	if (skb_vlan_tagged(skb))
3027		features = netdev_intersect_features(features,
3028						     dev->vlan_features |
3029						     NETIF_F_HW_VLAN_CTAG_TX |
3030						     NETIF_F_HW_VLAN_STAG_TX);
3031
3032	if (dev->netdev_ops->ndo_features_check)
3033		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3034								features);
3035	else
3036		features &= dflt_features_check(skb, dev, features);
3037
3038	return harmonize_features(skb, features);
3039}
3040EXPORT_SYMBOL(netif_skb_features);
3041
3042static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3043		    struct netdev_queue *txq, bool more)
3044{
3045	unsigned int len;
3046	int rc;
3047
3048	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3049		dev_queue_xmit_nit(skb, dev);
3050
3051	len = skb->len;
3052	trace_net_dev_start_xmit(skb, dev);
3053	rc = netdev_start_xmit(skb, dev, txq, more);
3054	trace_net_dev_xmit(skb, rc, dev, len);
3055
3056	return rc;
3057}
 
 
 
 
3058
3059struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3060				    struct netdev_queue *txq, int *ret)
3061{
3062	struct sk_buff *skb = first;
3063	int rc = NETDEV_TX_OK;
3064
3065	while (skb) {
3066		struct sk_buff *next = skb->next;
 
 
 
 
3067
3068		skb->next = NULL;
3069		rc = xmit_one(skb, dev, txq, next != NULL);
3070		if (unlikely(!dev_xmit_complete(rc))) {
3071			skb->next = next;
3072			goto out;
3073		}
3074
3075		skb = next;
3076		if (netif_xmit_stopped(txq) && skb) {
3077			rc = NETDEV_TX_BUSY;
3078			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079		}
3080	}
3081
3082out:
3083	*ret = rc;
3084	return skb;
3085}
3086
3087static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3088					  netdev_features_t features)
3089{
3090	if (skb_vlan_tag_present(skb) &&
3091	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3092		skb = __vlan_hwaccel_push_inside(skb);
3093	return skb;
3094}
3095
3096int skb_csum_hwoffload_help(struct sk_buff *skb,
3097			    const netdev_features_t features)
3098{
3099	if (unlikely(skb->csum_not_inet))
3100		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3101			skb_crc32c_csum_help(skb);
3102
3103	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3104}
3105EXPORT_SYMBOL(skb_csum_hwoffload_help);
3106
3107static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3108{
3109	netdev_features_t features;
3110
3111	features = netif_skb_features(skb);
3112	skb = validate_xmit_vlan(skb, features);
3113	if (unlikely(!skb))
3114		goto out_null;
3115
3116	if (netif_needs_gso(skb, features)) {
3117		struct sk_buff *segs;
3118
3119		segs = skb_gso_segment(skb, features);
3120		if (IS_ERR(segs)) {
3121			goto out_kfree_skb;
3122		} else if (segs) {
3123			consume_skb(skb);
3124			skb = segs;
3125		}
3126	} else {
3127		if (skb_needs_linearize(skb, features) &&
3128		    __skb_linearize(skb))
3129			goto out_kfree_skb;
3130
3131		/* If packet is not checksummed and device does not
3132		 * support checksumming for this protocol, complete
3133		 * checksumming here.
3134		 */
3135		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3136			if (skb->encapsulation)
3137				skb_set_inner_transport_header(skb,
3138							       skb_checksum_start_offset(skb));
3139			else
3140				skb_set_transport_header(skb,
3141							 skb_checksum_start_offset(skb));
3142			if (skb_csum_hwoffload_help(skb, features))
3143				goto out_kfree_skb;
3144		}
 
 
 
 
 
 
 
 
 
 
3145	}
3146
3147	skb = validate_xmit_xfrm(skb, features, again);
3148
3149	return skb;
3150
3151out_kfree_skb:
3152	kfree_skb(skb);
3153out_null:
3154	atomic_long_inc(&dev->tx_dropped);
3155	return NULL;
3156}
3157
3158struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3159{
3160	struct sk_buff *next, *head = NULL, *tail;
3161
3162	for (; skb != NULL; skb = next) {
3163		next = skb->next;
3164		skb->next = NULL;
3165
3166		/* in case skb wont be segmented, point to itself */
3167		skb->prev = skb;
3168
3169		skb = validate_xmit_skb(skb, dev, again);
3170		if (!skb)
3171			continue;
3172
3173		if (!head)
3174			head = skb;
3175		else
3176			tail->next = skb;
3177		/* If skb was segmented, skb->prev points to
3178		 * the last segment. If not, it still contains skb.
3179		 */
3180		tail = skb->prev;
3181	}
3182	return head;
3183}
3184EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3185
3186static void qdisc_pkt_len_init(struct sk_buff *skb)
3187{
3188	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3189
3190	qdisc_skb_cb(skb)->pkt_len = skb->len;
3191
3192	/* To get more precise estimation of bytes sent on wire,
3193	 * we add to pkt_len the headers size of all segments
3194	 */
3195	if (shinfo->gso_size)  {
3196		unsigned int hdr_len;
3197		u16 gso_segs = shinfo->gso_segs;
3198
3199		/* mac layer + network layer */
3200		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3201
3202		/* + transport layer */
3203		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3204			const struct tcphdr *th;
3205			struct tcphdr _tcphdr;
3206
3207			th = skb_header_pointer(skb, skb_transport_offset(skb),
3208						sizeof(_tcphdr), &_tcphdr);
3209			if (likely(th))
3210				hdr_len += __tcp_hdrlen(th);
3211		} else {
3212			struct udphdr _udphdr;
3213
3214			if (skb_header_pointer(skb, skb_transport_offset(skb),
3215					       sizeof(_udphdr), &_udphdr))
3216				hdr_len += sizeof(struct udphdr);
3217		}
3218
3219		if (shinfo->gso_type & SKB_GSO_DODGY)
3220			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3221						shinfo->gso_size);
3222
3223		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3224	}
3225}
3226
3227static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3228				 struct net_device *dev,
3229				 struct netdev_queue *txq)
3230{
3231	spinlock_t *root_lock = qdisc_lock(q);
3232	struct sk_buff *to_free = NULL;
3233	bool contended;
3234	int rc;
3235
 
3236	qdisc_calculate_pkt_len(skb, q);
3237
3238	if (q->flags & TCQ_F_NOLOCK) {
3239		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3240			__qdisc_drop(skb, &to_free);
3241			rc = NET_XMIT_DROP;
3242		} else {
3243			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3244			__qdisc_run(q);
3245		}
3246
3247		if (unlikely(to_free))
3248			kfree_skb_list(to_free);
3249		return rc;
3250	}
3251
3252	/*
3253	 * Heuristic to force contended enqueues to serialize on a
3254	 * separate lock before trying to get qdisc main lock.
3255	 * This permits qdisc->running owner to get the lock more
3256	 * often and dequeue packets faster.
3257	 */
3258	contended = qdisc_is_running(q);
3259	if (unlikely(contended))
3260		spin_lock(&q->busylock);
3261
3262	spin_lock(root_lock);
3263	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3264		__qdisc_drop(skb, &to_free);
3265		rc = NET_XMIT_DROP;
3266	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3267		   qdisc_run_begin(q)) {
3268		/*
3269		 * This is a work-conserving queue; there are no old skbs
3270		 * waiting to be sent out; and the qdisc is not running -
3271		 * xmit the skb directly.
3272		 */
 
 
3273
3274		qdisc_bstats_update(q, skb);
3275
3276		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3277			if (unlikely(contended)) {
3278				spin_unlock(&q->busylock);
3279				contended = false;
3280			}
3281			__qdisc_run(q);
3282		}
 
3283
3284		qdisc_run_end(q);
3285		rc = NET_XMIT_SUCCESS;
3286	} else {
3287		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
 
3288		if (qdisc_run_begin(q)) {
3289			if (unlikely(contended)) {
3290				spin_unlock(&q->busylock);
3291				contended = false;
3292			}
3293			__qdisc_run(q);
3294			qdisc_run_end(q);
3295		}
3296	}
3297	spin_unlock(root_lock);
3298	if (unlikely(to_free))
3299		kfree_skb_list(to_free);
3300	if (unlikely(contended))
3301		spin_unlock(&q->busylock);
3302	return rc;
3303}
3304
3305#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3306static void skb_update_prio(struct sk_buff *skb)
3307{
3308	const struct netprio_map *map;
3309	const struct sock *sk;
3310	unsigned int prioidx;
3311
3312	if (skb->priority)
3313		return;
3314	map = rcu_dereference_bh(skb->dev->priomap);
3315	if (!map)
3316		return;
3317	sk = skb_to_full_sk(skb);
3318	if (!sk)
3319		return;
3320
3321	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
 
3322
3323	if (prioidx < map->priomap_len)
3324		skb->priority = map->priomap[prioidx];
 
3325}
3326#else
3327#define skb_update_prio(skb)
3328#endif
3329
3330DEFINE_PER_CPU(int, xmit_recursion);
3331EXPORT_SYMBOL(xmit_recursion);
3332
3333/**
3334 *	dev_loopback_xmit - loop back @skb
3335 *	@net: network namespace this loopback is happening in
3336 *	@sk:  sk needed to be a netfilter okfn
3337 *	@skb: buffer to transmit
3338 */
3339int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3340{
3341	skb_reset_mac_header(skb);
3342	__skb_pull(skb, skb_network_offset(skb));
3343	skb->pkt_type = PACKET_LOOPBACK;
3344	skb->ip_summed = CHECKSUM_UNNECESSARY;
3345	WARN_ON(!skb_dst(skb));
3346	skb_dst_force(skb);
3347	netif_rx_ni(skb);
3348	return 0;
3349}
3350EXPORT_SYMBOL(dev_loopback_xmit);
3351
3352#ifdef CONFIG_NET_EGRESS
3353static struct sk_buff *
3354sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3355{
3356	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3357	struct tcf_result cl_res;
3358
3359	if (!miniq)
3360		return skb;
3361
3362	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3363	mini_qdisc_bstats_cpu_update(miniq, skb);
3364
3365	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3366	case TC_ACT_OK:
3367	case TC_ACT_RECLASSIFY:
3368		skb->tc_index = TC_H_MIN(cl_res.classid);
3369		break;
3370	case TC_ACT_SHOT:
3371		mini_qdisc_qstats_cpu_drop(miniq);
3372		*ret = NET_XMIT_DROP;
3373		kfree_skb(skb);
3374		return NULL;
3375	case TC_ACT_STOLEN:
3376	case TC_ACT_QUEUED:
3377	case TC_ACT_TRAP:
3378		*ret = NET_XMIT_SUCCESS;
3379		consume_skb(skb);
3380		return NULL;
3381	case TC_ACT_REDIRECT:
3382		/* No need to push/pop skb's mac_header here on egress! */
3383		skb_do_redirect(skb);
3384		*ret = NET_XMIT_SUCCESS;
3385		return NULL;
3386	default:
3387		break;
3388	}
3389
3390	return skb;
3391}
3392#endif /* CONFIG_NET_EGRESS */
3393
3394static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3395{
3396#ifdef CONFIG_XPS
3397	struct xps_dev_maps *dev_maps;
3398	struct xps_map *map;
3399	int queue_index = -1;
3400
3401	rcu_read_lock();
3402	dev_maps = rcu_dereference(dev->xps_maps);
3403	if (dev_maps) {
3404		unsigned int tci = skb->sender_cpu - 1;
3405
3406		if (dev->num_tc) {
3407			tci *= dev->num_tc;
3408			tci += netdev_get_prio_tc_map(dev, skb->priority);
3409		}
3410
3411		map = rcu_dereference(dev_maps->cpu_map[tci]);
3412		if (map) {
3413			if (map->len == 1)
3414				queue_index = map->queues[0];
3415			else
3416				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3417									   map->len)];
3418			if (unlikely(queue_index >= dev->real_num_tx_queues))
3419				queue_index = -1;
3420		}
3421	}
3422	rcu_read_unlock();
3423
3424	return queue_index;
3425#else
3426	return -1;
3427#endif
3428}
3429
3430static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3431{
3432	struct sock *sk = skb->sk;
3433	int queue_index = sk_tx_queue_get(sk);
3434
3435	if (queue_index < 0 || skb->ooo_okay ||
3436	    queue_index >= dev->real_num_tx_queues) {
3437		int new_index = get_xps_queue(dev, skb);
3438
3439		if (new_index < 0)
3440			new_index = skb_tx_hash(dev, skb);
3441
3442		if (queue_index != new_index && sk &&
3443		    sk_fullsock(sk) &&
3444		    rcu_access_pointer(sk->sk_dst_cache))
3445			sk_tx_queue_set(sk, new_index);
3446
3447		queue_index = new_index;
3448	}
3449
3450	return queue_index;
3451}
3452
3453struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3454				    struct sk_buff *skb,
3455				    void *accel_priv)
3456{
3457	int queue_index = 0;
3458
3459#ifdef CONFIG_XPS
3460	u32 sender_cpu = skb->sender_cpu - 1;
3461
3462	if (sender_cpu >= (u32)NR_CPUS)
3463		skb->sender_cpu = raw_smp_processor_id() + 1;
3464#endif
3465
3466	if (dev->real_num_tx_queues != 1) {
3467		const struct net_device_ops *ops = dev->netdev_ops;
3468
3469		if (ops->ndo_select_queue)
3470			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3471							    __netdev_pick_tx);
3472		else
3473			queue_index = __netdev_pick_tx(dev, skb);
3474
3475		queue_index = netdev_cap_txqueue(dev, queue_index);
3476	}
3477
3478	skb_set_queue_mapping(skb, queue_index);
3479	return netdev_get_tx_queue(dev, queue_index);
3480}
3481
3482/**
3483 *	__dev_queue_xmit - transmit a buffer
3484 *	@skb: buffer to transmit
3485 *	@accel_priv: private data used for L2 forwarding offload
3486 *
3487 *	Queue a buffer for transmission to a network device. The caller must
3488 *	have set the device and priority and built the buffer before calling
3489 *	this function. The function can be called from an interrupt.
3490 *
3491 *	A negative errno code is returned on a failure. A success does not
3492 *	guarantee the frame will be transmitted as it may be dropped due
3493 *	to congestion or traffic shaping.
3494 *
3495 * -----------------------------------------------------------------------------------
3496 *      I notice this method can also return errors from the queue disciplines,
3497 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3498 *      be positive.
3499 *
3500 *      Regardless of the return value, the skb is consumed, so it is currently
3501 *      difficult to retry a send to this method.  (You can bump the ref count
3502 *      before sending to hold a reference for retry if you are careful.)
3503 *
3504 *      When calling this method, interrupts MUST be enabled.  This is because
3505 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3506 *          --BLG
3507 */
3508static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3509{
3510	struct net_device *dev = skb->dev;
3511	struct netdev_queue *txq;
3512	struct Qdisc *q;
3513	int rc = -ENOMEM;
3514	bool again = false;
3515
3516	skb_reset_mac_header(skb);
3517
3518	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3519		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3520
3521	/* Disable soft irqs for various locks below. Also
3522	 * stops preemption for RCU.
3523	 */
3524	rcu_read_lock_bh();
3525
3526	skb_update_prio(skb);
3527
3528	qdisc_pkt_len_init(skb);
3529#ifdef CONFIG_NET_CLS_ACT
3530	skb->tc_at_ingress = 0;
3531# ifdef CONFIG_NET_EGRESS
3532	if (static_key_false(&egress_needed)) {
3533		skb = sch_handle_egress(skb, &rc, dev);
3534		if (!skb)
3535			goto out;
3536	}
3537# endif
3538#endif
3539	/* If device/qdisc don't need skb->dst, release it right now while
3540	 * its hot in this cpu cache.
3541	 */
3542	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3543		skb_dst_drop(skb);
3544	else
3545		skb_dst_force(skb);
3546
3547	txq = netdev_pick_tx(dev, skb, accel_priv);
3548	q = rcu_dereference_bh(txq->qdisc);
3549
 
 
 
3550	trace_net_dev_queue(skb);
3551	if (q->enqueue) {
3552		rc = __dev_xmit_skb(skb, q, dev, txq);
3553		goto out;
3554	}
3555
3556	/* The device has no queue. Common case for software devices:
3557	 * loopback, all the sorts of tunnels...
3558
3559	 * Really, it is unlikely that netif_tx_lock protection is necessary
3560	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3561	 * counters.)
3562	 * However, it is possible, that they rely on protection
3563	 * made by us here.
3564
3565	 * Check this and shot the lock. It is not prone from deadlocks.
3566	 *Either shot noqueue qdisc, it is even simpler 8)
3567	 */
3568	if (dev->flags & IFF_UP) {
3569		int cpu = smp_processor_id(); /* ok because BHs are off */
3570
3571		if (txq->xmit_lock_owner != cpu) {
3572			if (unlikely(__this_cpu_read(xmit_recursion) >
3573				     XMIT_RECURSION_LIMIT))
3574				goto recursion_alert;
3575
3576			skb = validate_xmit_skb(skb, dev, &again);
3577			if (!skb)
3578				goto out;
3579
3580			HARD_TX_LOCK(dev, txq, cpu);
3581
3582			if (!netif_xmit_stopped(txq)) {
3583				__this_cpu_inc(xmit_recursion);
3584				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3585				__this_cpu_dec(xmit_recursion);
3586				if (dev_xmit_complete(rc)) {
3587					HARD_TX_UNLOCK(dev, txq);
3588					goto out;
3589				}
3590			}
3591			HARD_TX_UNLOCK(dev, txq);
3592			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3593					     dev->name);
3594		} else {
3595			/* Recursion is detected! It is possible,
3596			 * unfortunately
3597			 */
3598recursion_alert:
3599			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3600					     dev->name);
3601		}
3602	}
3603
3604	rc = -ENETDOWN;
3605	rcu_read_unlock_bh();
3606
3607	atomic_long_inc(&dev->tx_dropped);
3608	kfree_skb_list(skb);
3609	return rc;
3610out:
3611	rcu_read_unlock_bh();
3612	return rc;
3613}
3614
3615int dev_queue_xmit(struct sk_buff *skb)
3616{
3617	return __dev_queue_xmit(skb, NULL);
3618}
3619EXPORT_SYMBOL(dev_queue_xmit);
3620
3621int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3622{
3623	return __dev_queue_xmit(skb, accel_priv);
3624}
3625EXPORT_SYMBOL(dev_queue_xmit_accel);
3626
3627
3628/*************************************************************************
3629 *			Receiver routines
3630 *************************************************************************/
3631
3632int netdev_max_backlog __read_mostly = 1000;
3633EXPORT_SYMBOL(netdev_max_backlog);
3634
3635int netdev_tstamp_prequeue __read_mostly = 1;
3636int netdev_budget __read_mostly = 300;
3637unsigned int __read_mostly netdev_budget_usecs = 2000;
3638int weight_p __read_mostly = 64;           /* old backlog weight */
3639int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3640int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3641int dev_rx_weight __read_mostly = 64;
3642int dev_tx_weight __read_mostly = 64;
3643
3644/* Called with irq disabled */
3645static inline void ____napi_schedule(struct softnet_data *sd,
3646				     struct napi_struct *napi)
3647{
3648	list_add_tail(&napi->poll_list, &sd->poll_list);
3649	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3650}
3651
3652#ifdef CONFIG_RPS
3653
3654/* One global table that all flow-based protocols share. */
3655struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3656EXPORT_SYMBOL(rps_sock_flow_table);
3657u32 rps_cpu_mask __read_mostly;
3658EXPORT_SYMBOL(rps_cpu_mask);
3659
3660struct static_key rps_needed __read_mostly;
3661EXPORT_SYMBOL(rps_needed);
3662struct static_key rfs_needed __read_mostly;
3663EXPORT_SYMBOL(rfs_needed);
3664
3665static struct rps_dev_flow *
3666set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3667	    struct rps_dev_flow *rflow, u16 next_cpu)
3668{
3669	if (next_cpu < nr_cpu_ids) {
3670#ifdef CONFIG_RFS_ACCEL
3671		struct netdev_rx_queue *rxqueue;
3672		struct rps_dev_flow_table *flow_table;
3673		struct rps_dev_flow *old_rflow;
3674		u32 flow_id;
3675		u16 rxq_index;
3676		int rc;
3677
3678		/* Should we steer this flow to a different hardware queue? */
3679		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3680		    !(dev->features & NETIF_F_NTUPLE))
3681			goto out;
3682		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3683		if (rxq_index == skb_get_rx_queue(skb))
3684			goto out;
3685
3686		rxqueue = dev->_rx + rxq_index;
3687		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3688		if (!flow_table)
3689			goto out;
3690		flow_id = skb_get_hash(skb) & flow_table->mask;
3691		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3692							rxq_index, flow_id);
3693		if (rc < 0)
3694			goto out;
3695		old_rflow = rflow;
3696		rflow = &flow_table->flows[flow_id];
3697		rflow->filter = rc;
3698		if (old_rflow->filter == rflow->filter)
3699			old_rflow->filter = RPS_NO_FILTER;
3700	out:
3701#endif
3702		rflow->last_qtail =
3703			per_cpu(softnet_data, next_cpu).input_queue_head;
3704	}
3705
3706	rflow->cpu = next_cpu;
3707	return rflow;
3708}
3709
3710/*
3711 * get_rps_cpu is called from netif_receive_skb and returns the target
3712 * CPU from the RPS map of the receiving queue for a given skb.
3713 * rcu_read_lock must be held on entry.
3714 */
3715static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3716		       struct rps_dev_flow **rflowp)
3717{
3718	const struct rps_sock_flow_table *sock_flow_table;
3719	struct netdev_rx_queue *rxqueue = dev->_rx;
3720	struct rps_dev_flow_table *flow_table;
3721	struct rps_map *map;
 
 
3722	int cpu = -1;
3723	u32 tcpu;
3724	u32 hash;
3725
3726	if (skb_rx_queue_recorded(skb)) {
3727		u16 index = skb_get_rx_queue(skb);
3728
3729		if (unlikely(index >= dev->real_num_rx_queues)) {
3730			WARN_ONCE(dev->real_num_rx_queues > 1,
3731				  "%s received packet on queue %u, but number "
3732				  "of RX queues is %u\n",
3733				  dev->name, index, dev->real_num_rx_queues);
3734			goto done;
3735		}
3736		rxqueue += index;
3737	}
3738
3739	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3740
3741	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3742	map = rcu_dereference(rxqueue->rps_map);
3743	if (!flow_table && !map)
 
 
 
 
 
 
 
 
3744		goto done;
 
3745
3746	skb_reset_network_header(skb);
3747	hash = skb_get_hash(skb);
3748	if (!hash)
3749		goto done;
3750
 
3751	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3752	if (flow_table && sock_flow_table) {
 
3753		struct rps_dev_flow *rflow;
3754		u32 next_cpu;
3755		u32 ident;
3756
3757		/* First check into global flow table if there is a match */
3758		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3759		if ((ident ^ hash) & ~rps_cpu_mask)
3760			goto try_rps;
3761
3762		next_cpu = ident & rps_cpu_mask;
3763
3764		/* OK, now we know there is a match,
3765		 * we can look at the local (per receive queue) flow table
3766		 */
3767		rflow = &flow_table->flows[hash & flow_table->mask];
3768		tcpu = rflow->cpu;
3769
 
 
3770		/*
3771		 * If the desired CPU (where last recvmsg was done) is
3772		 * different from current CPU (one in the rx-queue flow
3773		 * table entry), switch if one of the following holds:
3774		 *   - Current CPU is unset (>= nr_cpu_ids).
3775		 *   - Current CPU is offline.
3776		 *   - The current CPU's queue tail has advanced beyond the
3777		 *     last packet that was enqueued using this table entry.
3778		 *     This guarantees that all previous packets for the flow
3779		 *     have been dequeued, thus preserving in order delivery.
3780		 */
3781		if (unlikely(tcpu != next_cpu) &&
3782		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3783		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3784		      rflow->last_qtail)) >= 0)) {
3785			tcpu = next_cpu;
3786			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3787		}
3788
3789		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3790			*rflowp = rflow;
3791			cpu = tcpu;
3792			goto done;
3793		}
3794	}
3795
3796try_rps:
3797
3798	if (map) {
3799		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
 
3800		if (cpu_online(tcpu)) {
3801			cpu = tcpu;
3802			goto done;
3803		}
3804	}
3805
3806done:
3807	return cpu;
3808}
3809
3810#ifdef CONFIG_RFS_ACCEL
3811
3812/**
3813 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3814 * @dev: Device on which the filter was set
3815 * @rxq_index: RX queue index
3816 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3817 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3818 *
3819 * Drivers that implement ndo_rx_flow_steer() should periodically call
3820 * this function for each installed filter and remove the filters for
3821 * which it returns %true.
3822 */
3823bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3824			 u32 flow_id, u16 filter_id)
3825{
3826	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3827	struct rps_dev_flow_table *flow_table;
3828	struct rps_dev_flow *rflow;
3829	bool expire = true;
3830	unsigned int cpu;
3831
3832	rcu_read_lock();
3833	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3834	if (flow_table && flow_id <= flow_table->mask) {
3835		rflow = &flow_table->flows[flow_id];
3836		cpu = READ_ONCE(rflow->cpu);
3837		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3838		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3839			   rflow->last_qtail) <
3840		     (int)(10 * flow_table->mask)))
3841			expire = false;
3842	}
3843	rcu_read_unlock();
3844	return expire;
3845}
3846EXPORT_SYMBOL(rps_may_expire_flow);
3847
3848#endif /* CONFIG_RFS_ACCEL */
3849
3850/* Called from hardirq (IPI) context */
3851static void rps_trigger_softirq(void *data)
3852{
3853	struct softnet_data *sd = data;
3854
3855	____napi_schedule(sd, &sd->backlog);
3856	sd->received_rps++;
3857}
3858
3859#endif /* CONFIG_RPS */
3860
3861/*
3862 * Check if this softnet_data structure is another cpu one
3863 * If yes, queue it to our IPI list and return 1
3864 * If no, return 0
3865 */
3866static int rps_ipi_queued(struct softnet_data *sd)
3867{
3868#ifdef CONFIG_RPS
3869	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3870
3871	if (sd != mysd) {
3872		sd->rps_ipi_next = mysd->rps_ipi_list;
3873		mysd->rps_ipi_list = sd;
3874
3875		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3876		return 1;
3877	}
3878#endif /* CONFIG_RPS */
3879	return 0;
3880}
3881
3882#ifdef CONFIG_NET_FLOW_LIMIT
3883int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3884#endif
3885
3886static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3887{
3888#ifdef CONFIG_NET_FLOW_LIMIT
3889	struct sd_flow_limit *fl;
3890	struct softnet_data *sd;
3891	unsigned int old_flow, new_flow;
3892
3893	if (qlen < (netdev_max_backlog >> 1))
3894		return false;
3895
3896	sd = this_cpu_ptr(&softnet_data);
3897
3898	rcu_read_lock();
3899	fl = rcu_dereference(sd->flow_limit);
3900	if (fl) {
3901		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3902		old_flow = fl->history[fl->history_head];
3903		fl->history[fl->history_head] = new_flow;
3904
3905		fl->history_head++;
3906		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3907
3908		if (likely(fl->buckets[old_flow]))
3909			fl->buckets[old_flow]--;
3910
3911		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3912			fl->count++;
3913			rcu_read_unlock();
3914			return true;
3915		}
3916	}
3917	rcu_read_unlock();
3918#endif
3919	return false;
3920}
3921
3922/*
3923 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3924 * queue (may be a remote CPU queue).
3925 */
3926static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3927			      unsigned int *qtail)
3928{
3929	struct softnet_data *sd;
3930	unsigned long flags;
3931	unsigned int qlen;
3932
3933	sd = &per_cpu(softnet_data, cpu);
3934
3935	local_irq_save(flags);
3936
3937	rps_lock(sd);
3938	if (!netif_running(skb->dev))
3939		goto drop;
3940	qlen = skb_queue_len(&sd->input_pkt_queue);
3941	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3942		if (qlen) {
3943enqueue:
3944			__skb_queue_tail(&sd->input_pkt_queue, skb);
3945			input_queue_tail_incr_save(sd, qtail);
3946			rps_unlock(sd);
3947			local_irq_restore(flags);
3948			return NET_RX_SUCCESS;
3949		}
3950
3951		/* Schedule NAPI for backlog device
3952		 * We can use non atomic operation since we own the queue lock
3953		 */
3954		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3955			if (!rps_ipi_queued(sd))
3956				____napi_schedule(sd, &sd->backlog);
3957		}
3958		goto enqueue;
3959	}
3960
3961drop:
3962	sd->dropped++;
3963	rps_unlock(sd);
3964
3965	local_irq_restore(flags);
3966
3967	atomic_long_inc(&skb->dev->rx_dropped);
3968	kfree_skb(skb);
3969	return NET_RX_DROP;
3970}
3971
3972static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3973{
3974	struct net_device *dev = skb->dev;
3975	struct netdev_rx_queue *rxqueue;
3976
3977	rxqueue = dev->_rx;
3978
3979	if (skb_rx_queue_recorded(skb)) {
3980		u16 index = skb_get_rx_queue(skb);
3981
3982		if (unlikely(index >= dev->real_num_rx_queues)) {
3983			WARN_ONCE(dev->real_num_rx_queues > 1,
3984				  "%s received packet on queue %u, but number "
3985				  "of RX queues is %u\n",
3986				  dev->name, index, dev->real_num_rx_queues);
3987
3988			return rxqueue; /* Return first rxqueue */
3989		}
3990		rxqueue += index;
3991	}
3992	return rxqueue;
3993}
3994
3995static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3996				     struct bpf_prog *xdp_prog)
3997{
3998	struct netdev_rx_queue *rxqueue;
3999	u32 metalen, act = XDP_DROP;
4000	struct xdp_buff xdp;
4001	void *orig_data;
4002	int hlen, off;
4003	u32 mac_len;
4004
4005	/* Reinjected packets coming from act_mirred or similar should
4006	 * not get XDP generic processing.
4007	 */
4008	if (skb_cloned(skb))
4009		return XDP_PASS;
4010
4011	/* XDP packets must be linear and must have sufficient headroom
4012	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4013	 * native XDP provides, thus we need to do it here as well.
4014	 */
4015	if (skb_is_nonlinear(skb) ||
4016	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4017		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4018		int troom = skb->tail + skb->data_len - skb->end;
4019
4020		/* In case we have to go down the path and also linearize,
4021		 * then lets do the pskb_expand_head() work just once here.
4022		 */
4023		if (pskb_expand_head(skb,
4024				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4025				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4026			goto do_drop;
4027		if (skb_linearize(skb))
4028			goto do_drop;
4029	}
4030
4031	/* The XDP program wants to see the packet starting at the MAC
4032	 * header.
4033	 */
4034	mac_len = skb->data - skb_mac_header(skb);
4035	hlen = skb_headlen(skb) + mac_len;
4036	xdp.data = skb->data - mac_len;
4037	xdp.data_meta = xdp.data;
4038	xdp.data_end = xdp.data + hlen;
4039	xdp.data_hard_start = skb->data - skb_headroom(skb);
4040	orig_data = xdp.data;
4041
4042	rxqueue = netif_get_rxqueue(skb);
4043	xdp.rxq = &rxqueue->xdp_rxq;
4044
4045	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4046
4047	off = xdp.data - orig_data;
4048	if (off > 0)
4049		__skb_pull(skb, off);
4050	else if (off < 0)
4051		__skb_push(skb, -off);
4052	skb->mac_header += off;
4053
4054	switch (act) {
4055	case XDP_REDIRECT:
4056	case XDP_TX:
4057		__skb_push(skb, mac_len);
4058		break;
4059	case XDP_PASS:
4060		metalen = xdp.data - xdp.data_meta;
4061		if (metalen)
4062			skb_metadata_set(skb, metalen);
4063		break;
4064	default:
4065		bpf_warn_invalid_xdp_action(act);
4066		/* fall through */
4067	case XDP_ABORTED:
4068		trace_xdp_exception(skb->dev, xdp_prog, act);
4069		/* fall through */
4070	case XDP_DROP:
4071	do_drop:
4072		kfree_skb(skb);
4073		break;
4074	}
4075
4076	return act;
4077}
4078
4079/* When doing generic XDP we have to bypass the qdisc layer and the
4080 * network taps in order to match in-driver-XDP behavior.
4081 */
4082void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4083{
4084	struct net_device *dev = skb->dev;
4085	struct netdev_queue *txq;
4086	bool free_skb = true;
4087	int cpu, rc;
4088
4089	txq = netdev_pick_tx(dev, skb, NULL);
4090	cpu = smp_processor_id();
4091	HARD_TX_LOCK(dev, txq, cpu);
4092	if (!netif_xmit_stopped(txq)) {
4093		rc = netdev_start_xmit(skb, dev, txq, 0);
4094		if (dev_xmit_complete(rc))
4095			free_skb = false;
4096	}
4097	HARD_TX_UNLOCK(dev, txq);
4098	if (free_skb) {
4099		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4100		kfree_skb(skb);
4101	}
4102}
4103EXPORT_SYMBOL_GPL(generic_xdp_tx);
4104
4105static struct static_key generic_xdp_needed __read_mostly;
4106
4107int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4108{
4109	if (xdp_prog) {
4110		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4111		int err;
4112
4113		if (act != XDP_PASS) {
4114			switch (act) {
4115			case XDP_REDIRECT:
4116				err = xdp_do_generic_redirect(skb->dev, skb,
4117							      xdp_prog);
4118				if (err)
4119					goto out_redir;
4120			/* fallthru to submit skb */
4121			case XDP_TX:
4122				generic_xdp_tx(skb, xdp_prog);
4123				break;
4124			}
4125			return XDP_DROP;
4126		}
4127	}
4128	return XDP_PASS;
4129out_redir:
4130	kfree_skb(skb);
4131	return XDP_DROP;
4132}
4133EXPORT_SYMBOL_GPL(do_xdp_generic);
4134
4135static int netif_rx_internal(struct sk_buff *skb)
4136{
4137	int ret;
4138
4139	net_timestamp_check(netdev_tstamp_prequeue, skb);
4140
4141	trace_netif_rx(skb);
4142
4143	if (static_key_false(&generic_xdp_needed)) {
4144		int ret;
4145
4146		preempt_disable();
4147		rcu_read_lock();
4148		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4149		rcu_read_unlock();
4150		preempt_enable();
4151
4152		/* Consider XDP consuming the packet a success from
4153		 * the netdev point of view we do not want to count
4154		 * this as an error.
4155		 */
4156		if (ret != XDP_PASS)
4157			return NET_RX_SUCCESS;
4158	}
4159
4160#ifdef CONFIG_RPS
4161	if (static_key_false(&rps_needed)) {
4162		struct rps_dev_flow voidflow, *rflow = &voidflow;
4163		int cpu;
4164
4165		preempt_disable();
4166		rcu_read_lock();
4167
4168		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4169		if (cpu < 0)
4170			cpu = smp_processor_id();
4171
4172		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4173
4174		rcu_read_unlock();
4175		preempt_enable();
4176	} else
4177#endif
4178	{
4179		unsigned int qtail;
4180
4181		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4182		put_cpu();
4183	}
4184	return ret;
4185}
4186
4187/**
4188 *	netif_rx	-	post buffer to the network code
4189 *	@skb: buffer to post
4190 *
4191 *	This function receives a packet from a device driver and queues it for
4192 *	the upper (protocol) levels to process.  It always succeeds. The buffer
4193 *	may be dropped during processing for congestion control or by the
4194 *	protocol layers.
4195 *
4196 *	return values:
4197 *	NET_RX_SUCCESS	(no congestion)
4198 *	NET_RX_DROP     (packet was dropped)
4199 *
4200 */
4201
4202int netif_rx(struct sk_buff *skb)
4203{
4204	trace_netif_rx_entry(skb);
4205
4206	return netif_rx_internal(skb);
4207}
4208EXPORT_SYMBOL(netif_rx);
4209
4210int netif_rx_ni(struct sk_buff *skb)
4211{
4212	int err;
4213
4214	trace_netif_rx_ni_entry(skb);
4215
4216	preempt_disable();
4217	err = netif_rx_internal(skb);
4218	if (local_softirq_pending())
4219		do_softirq();
4220	preempt_enable();
4221
4222	return err;
4223}
4224EXPORT_SYMBOL(netif_rx_ni);
4225
4226static __latent_entropy void net_tx_action(struct softirq_action *h)
4227{
4228	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4229
4230	if (sd->completion_queue) {
4231		struct sk_buff *clist;
4232
4233		local_irq_disable();
4234		clist = sd->completion_queue;
4235		sd->completion_queue = NULL;
4236		local_irq_enable();
4237
4238		while (clist) {
4239			struct sk_buff *skb = clist;
4240
4241			clist = clist->next;
4242
4243			WARN_ON(refcount_read(&skb->users));
4244			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4245				trace_consume_skb(skb);
4246			else
4247				trace_kfree_skb(skb, net_tx_action);
4248
4249			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4250				__kfree_skb(skb);
4251			else
4252				__kfree_skb_defer(skb);
4253		}
4254
4255		__kfree_skb_flush();
4256	}
4257
4258	if (sd->output_queue) {
4259		struct Qdisc *head;
4260
4261		local_irq_disable();
4262		head = sd->output_queue;
4263		sd->output_queue = NULL;
4264		sd->output_queue_tailp = &sd->output_queue;
4265		local_irq_enable();
4266
4267		while (head) {
4268			struct Qdisc *q = head;
4269			spinlock_t *root_lock = NULL;
4270
4271			head = head->next_sched;
4272
4273			if (!(q->flags & TCQ_F_NOLOCK)) {
4274				root_lock = qdisc_lock(q);
4275				spin_lock(root_lock);
4276			}
4277			/* We need to make sure head->next_sched is read
4278			 * before clearing __QDISC_STATE_SCHED
4279			 */
4280			smp_mb__before_atomic();
4281			clear_bit(__QDISC_STATE_SCHED, &q->state);
4282			qdisc_run(q);
4283			if (root_lock)
4284				spin_unlock(root_lock);
 
 
 
 
 
 
 
 
 
 
4285		}
4286	}
4287
4288	xfrm_dev_backlog(sd);
4289}
4290
4291#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
 
4292/* This hook is defined here for ATM LANE */
4293int (*br_fdb_test_addr_hook)(struct net_device *dev,
4294			     unsigned char *addr) __read_mostly;
4295EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4296#endif
4297
4298static inline struct sk_buff *
4299sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4300		   struct net_device *orig_dev)
4301{
4302#ifdef CONFIG_NET_CLS_ACT
4303	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4304	struct tcf_result cl_res;
 
 
 
 
 
 
 
 
 
 
 
 
4305
4306	/* If there's at least one ingress present somewhere (so
4307	 * we get here via enabled static key), remaining devices
4308	 * that are not configured with an ingress qdisc will bail
4309	 * out here.
4310	 */
4311	if (!miniq)
4312		return skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4313
4314	if (*pt_prev) {
4315		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4316		*pt_prev = NULL;
4317	}
4318
4319	qdisc_skb_cb(skb)->pkt_len = skb->len;
4320	skb->tc_at_ingress = 1;
4321	mini_qdisc_bstats_cpu_update(miniq, skb);
4322
4323	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4324	case TC_ACT_OK:
4325	case TC_ACT_RECLASSIFY:
4326		skb->tc_index = TC_H_MIN(cl_res.classid);
4327		break;
4328	case TC_ACT_SHOT:
4329		mini_qdisc_qstats_cpu_drop(miniq);
4330		kfree_skb(skb);
4331		return NULL;
4332	case TC_ACT_STOLEN:
4333	case TC_ACT_QUEUED:
4334	case TC_ACT_TRAP:
4335		consume_skb(skb);
4336		return NULL;
4337	case TC_ACT_REDIRECT:
4338		/* skb_mac_header check was done by cls/act_bpf, so
4339		 * we can safely push the L2 header back before
4340		 * redirecting to another netdev
4341		 */
4342		__skb_push(skb, skb->mac_len);
4343		skb_do_redirect(skb);
4344		return NULL;
4345	default:
4346		break;
4347	}
4348#endif /* CONFIG_NET_CLS_ACT */
4349	return skb;
4350}
4351
4352/**
4353 *	netdev_is_rx_handler_busy - check if receive handler is registered
4354 *	@dev: device to check
4355 *
4356 *	Check if a receive handler is already registered for a given device.
4357 *	Return true if there one.
4358 *
4359 *	The caller must hold the rtnl_mutex.
4360 */
4361bool netdev_is_rx_handler_busy(struct net_device *dev)
4362{
4363	ASSERT_RTNL();
4364	return dev && rtnl_dereference(dev->rx_handler);
4365}
4366EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4367
4368/**
4369 *	netdev_rx_handler_register - register receive handler
4370 *	@dev: device to register a handler for
4371 *	@rx_handler: receive handler to register
4372 *	@rx_handler_data: data pointer that is used by rx handler
4373 *
4374 *	Register a receive handler for a device. This handler will then be
4375 *	called from __netif_receive_skb. A negative errno code is returned
4376 *	on a failure.
4377 *
4378 *	The caller must hold the rtnl_mutex.
4379 *
4380 *	For a general description of rx_handler, see enum rx_handler_result.
4381 */
4382int netdev_rx_handler_register(struct net_device *dev,
4383			       rx_handler_func_t *rx_handler,
4384			       void *rx_handler_data)
4385{
4386	if (netdev_is_rx_handler_busy(dev))
4387		return -EBUSY;
4388
4389	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4390		return -EINVAL;
4391
4392	/* Note: rx_handler_data must be set before rx_handler */
4393	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4394	rcu_assign_pointer(dev->rx_handler, rx_handler);
4395
4396	return 0;
4397}
4398EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4399
4400/**
4401 *	netdev_rx_handler_unregister - unregister receive handler
4402 *	@dev: device to unregister a handler from
4403 *
4404 *	Unregister a receive handler from a device.
4405 *
4406 *	The caller must hold the rtnl_mutex.
4407 */
4408void netdev_rx_handler_unregister(struct net_device *dev)
4409{
4410
4411	ASSERT_RTNL();
4412	RCU_INIT_POINTER(dev->rx_handler, NULL);
4413	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4414	 * section has a guarantee to see a non NULL rx_handler_data
4415	 * as well.
4416	 */
4417	synchronize_net();
4418	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4419}
4420EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4421
4422/*
4423 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4424 * the special handling of PFMEMALLOC skbs.
4425 */
4426static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4427{
4428	switch (skb->protocol) {
4429	case htons(ETH_P_ARP):
4430	case htons(ETH_P_IP):
4431	case htons(ETH_P_IPV6):
4432	case htons(ETH_P_8021Q):
4433	case htons(ETH_P_8021AD):
4434		return true;
4435	default:
4436		return false;
4437	}
4438}
4439
4440static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4441			     int *ret, struct net_device *orig_dev)
4442{
4443#ifdef CONFIG_NETFILTER_INGRESS
4444	if (nf_hook_ingress_active(skb)) {
4445		int ingress_retval;
4446
4447		if (*pt_prev) {
4448			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4449			*pt_prev = NULL;
4450		}
4451
4452		rcu_read_lock();
4453		ingress_retval = nf_hook_ingress(skb);
4454		rcu_read_unlock();
4455		return ingress_retval;
4456	}
4457#endif /* CONFIG_NETFILTER_INGRESS */
4458	return 0;
4459}
4460
4461static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4462{
4463	struct packet_type *ptype, *pt_prev;
4464	rx_handler_func_t *rx_handler;
4465	struct net_device *orig_dev;
 
4466	bool deliver_exact = false;
4467	int ret = NET_RX_DROP;
4468	__be16 type;
4469
4470	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4471
4472	trace_netif_receive_skb(skb);
4473
4474	orig_dev = skb->dev;
4475
4476	skb_reset_network_header(skb);
4477	if (!skb_transport_header_was_set(skb))
4478		skb_reset_transport_header(skb);
4479	skb_reset_mac_len(skb);
4480
4481	pt_prev = NULL;
4482
 
 
4483another_round:
4484	skb->skb_iif = skb->dev->ifindex;
4485
4486	__this_cpu_inc(softnet_data.processed);
4487
4488	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4489	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4490		skb = skb_vlan_untag(skb);
4491		if (unlikely(!skb))
4492			goto out;
4493	}
4494
4495	if (skb_skip_tc_classify(skb))
4496		goto skip_classify;
 
 
 
 
4497
4498	if (pfmemalloc)
4499		goto skip_taps;
4500
4501	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4502		if (pt_prev)
4503			ret = deliver_skb(skb, pt_prev, orig_dev);
4504		pt_prev = ptype;
4505	}
4506
4507	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4508		if (pt_prev)
4509			ret = deliver_skb(skb, pt_prev, orig_dev);
4510		pt_prev = ptype;
4511	}
4512
4513skip_taps:
4514#ifdef CONFIG_NET_INGRESS
4515	if (static_key_false(&ingress_needed)) {
4516		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4517		if (!skb)
4518			goto out;
4519
4520		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4521			goto out;
4522	}
4523#endif
4524	skb_reset_tc(skb);
4525skip_classify:
4526	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4527		goto drop;
4528
4529	if (skb_vlan_tag_present(skb)) {
4530		if (pt_prev) {
4531			ret = deliver_skb(skb, pt_prev, orig_dev);
4532			pt_prev = NULL;
4533		}
4534		if (vlan_do_receive(&skb))
4535			goto another_round;
4536		else if (unlikely(!skb))
4537			goto out;
4538	}
4539
4540	rx_handler = rcu_dereference(skb->dev->rx_handler);
4541	if (rx_handler) {
4542		if (pt_prev) {
4543			ret = deliver_skb(skb, pt_prev, orig_dev);
4544			pt_prev = NULL;
4545		}
4546		switch (rx_handler(&skb)) {
4547		case RX_HANDLER_CONSUMED:
4548			ret = NET_RX_SUCCESS;
4549			goto out;
4550		case RX_HANDLER_ANOTHER:
4551			goto another_round;
4552		case RX_HANDLER_EXACT:
4553			deliver_exact = true;
4554		case RX_HANDLER_PASS:
4555			break;
4556		default:
4557			BUG();
4558		}
4559	}
4560
4561	if (unlikely(skb_vlan_tag_present(skb))) {
4562		if (skb_vlan_tag_get_id(skb))
4563			skb->pkt_type = PACKET_OTHERHOST;
4564		/* Note: we might in the future use prio bits
4565		 * and set skb->priority like in vlan_do_receive()
4566		 * For the time being, just ignore Priority Code Point
4567		 */
4568		skb->vlan_tci = 0;
4569	}
4570
4571	type = skb->protocol;
4572
4573	/* deliver only exact match when indicated */
4574	if (likely(!deliver_exact)) {
4575		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4576				       &ptype_base[ntohs(type) &
4577						   PTYPE_HASH_MASK]);
4578	}
4579
4580	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4581			       &orig_dev->ptype_specific);
4582
4583	if (unlikely(skb->dev != orig_dev)) {
4584		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4585				       &skb->dev->ptype_specific);
 
 
 
 
4586	}
4587
4588	if (pt_prev) {
4589		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4590			goto drop;
4591		else
4592			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4593	} else {
4594drop:
4595		if (!deliver_exact)
4596			atomic_long_inc(&skb->dev->rx_dropped);
4597		else
4598			atomic_long_inc(&skb->dev->rx_nohandler);
4599		kfree_skb(skb);
4600		/* Jamal, now you will not able to escape explaining
4601		 * me how you were going to use this. :-)
4602		 */
4603		ret = NET_RX_DROP;
4604	}
4605
4606out:
4607	return ret;
4608}
4609
4610/**
4611 *	netif_receive_skb_core - special purpose version of netif_receive_skb
4612 *	@skb: buffer to process
4613 *
4614 *	More direct receive version of netif_receive_skb().  It should
4615 *	only be used by callers that have a need to skip RPS and Generic XDP.
4616 *	Caller must also take care of handling if (page_is_)pfmemalloc.
4617 *
4618 *	This function may only be called from softirq context and interrupts
4619 *	should be enabled.
4620 *
4621 *	Return values (usually ignored):
4622 *	NET_RX_SUCCESS: no congestion
4623 *	NET_RX_DROP: packet was dropped
4624 */
4625int netif_receive_skb_core(struct sk_buff *skb)
4626{
4627	int ret;
4628
4629	rcu_read_lock();
4630	ret = __netif_receive_skb_core(skb, false);
4631	rcu_read_unlock();
4632
4633	return ret;
4634}
4635EXPORT_SYMBOL(netif_receive_skb_core);
4636
4637static int __netif_receive_skb(struct sk_buff *skb)
4638{
4639	int ret;
4640
4641	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4642		unsigned int noreclaim_flag;
4643
4644		/*
4645		 * PFMEMALLOC skbs are special, they should
4646		 * - be delivered to SOCK_MEMALLOC sockets only
4647		 * - stay away from userspace
4648		 * - have bounded memory usage
4649		 *
4650		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4651		 * context down to all allocation sites.
4652		 */
4653		noreclaim_flag = memalloc_noreclaim_save();
4654		ret = __netif_receive_skb_core(skb, true);
4655		memalloc_noreclaim_restore(noreclaim_flag);
4656	} else
4657		ret = __netif_receive_skb_core(skb, false);
4658
4659	return ret;
4660}
4661
4662static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4663{
4664	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4665	struct bpf_prog *new = xdp->prog;
4666	int ret = 0;
4667
4668	switch (xdp->command) {
4669	case XDP_SETUP_PROG:
4670		rcu_assign_pointer(dev->xdp_prog, new);
4671		if (old)
4672			bpf_prog_put(old);
4673
4674		if (old && !new) {
4675			static_key_slow_dec(&generic_xdp_needed);
4676		} else if (new && !old) {
4677			static_key_slow_inc(&generic_xdp_needed);
4678			dev_disable_lro(dev);
4679			dev_disable_gro_hw(dev);
4680		}
4681		break;
4682
4683	case XDP_QUERY_PROG:
4684		xdp->prog_attached = !!old;
4685		xdp->prog_id = old ? old->aux->id : 0;
4686		break;
4687
4688	default:
4689		ret = -EINVAL;
4690		break;
4691	}
4692
4693	return ret;
4694}
4695
4696static int netif_receive_skb_internal(struct sk_buff *skb)
4697{
4698	int ret;
4699
4700	net_timestamp_check(netdev_tstamp_prequeue, skb);
4701
4702	if (skb_defer_rx_timestamp(skb))
4703		return NET_RX_SUCCESS;
4704
4705	if (static_key_false(&generic_xdp_needed)) {
4706		int ret;
4707
4708		preempt_disable();
4709		rcu_read_lock();
4710		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4711		rcu_read_unlock();
4712		preempt_enable();
4713
4714		if (ret != XDP_PASS)
4715			return NET_RX_DROP;
4716	}
4717
4718	rcu_read_lock();
4719#ifdef CONFIG_RPS
4720	if (static_key_false(&rps_needed)) {
4721		struct rps_dev_flow voidflow, *rflow = &voidflow;
4722		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 
 
 
 
4723
4724		if (cpu >= 0) {
4725			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4726			rcu_read_unlock();
4727			return ret;
4728		}
 
4729	}
4730#endif
4731	ret = __netif_receive_skb(skb);
4732	rcu_read_unlock();
4733	return ret;
4734}
4735
4736/**
4737 *	netif_receive_skb - process receive buffer from network
4738 *	@skb: buffer to process
4739 *
4740 *	netif_receive_skb() is the main receive data processing function.
4741 *	It always succeeds. The buffer may be dropped during processing
4742 *	for congestion control or by the protocol layers.
4743 *
4744 *	This function may only be called from softirq context and interrupts
4745 *	should be enabled.
4746 *
4747 *	Return values (usually ignored):
4748 *	NET_RX_SUCCESS: no congestion
4749 *	NET_RX_DROP: packet was dropped
4750 */
4751int netif_receive_skb(struct sk_buff *skb)
4752{
4753	trace_netif_receive_skb_entry(skb);
4754
4755	return netif_receive_skb_internal(skb);
4756}
4757EXPORT_SYMBOL(netif_receive_skb);
4758
4759DEFINE_PER_CPU(struct work_struct, flush_works);
4760
4761/* Network device is going away, flush any packets still pending */
4762static void flush_backlog(struct work_struct *work)
4763{
 
 
4764	struct sk_buff *skb, *tmp;
4765	struct softnet_data *sd;
4766
4767	local_bh_disable();
4768	sd = this_cpu_ptr(&softnet_data);
4769
4770	local_irq_disable();
4771	rps_lock(sd);
4772	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4773		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4774			__skb_unlink(skb, &sd->input_pkt_queue);
4775			kfree_skb(skb);
4776			input_queue_head_incr(sd);
4777		}
4778	}
4779	rps_unlock(sd);
4780	local_irq_enable();
4781
4782	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4783		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4784			__skb_unlink(skb, &sd->process_queue);
4785			kfree_skb(skb);
4786			input_queue_head_incr(sd);
4787		}
4788	}
4789	local_bh_enable();
4790}
4791
4792static void flush_all_backlogs(void)
4793{
4794	unsigned int cpu;
4795
4796	get_online_cpus();
4797
4798	for_each_online_cpu(cpu)
4799		queue_work_on(cpu, system_highpri_wq,
4800			      per_cpu_ptr(&flush_works, cpu));
4801
4802	for_each_online_cpu(cpu)
4803		flush_work(per_cpu_ptr(&flush_works, cpu));
4804
4805	put_online_cpus();
4806}
4807
4808static int napi_gro_complete(struct sk_buff *skb)
4809{
4810	struct packet_offload *ptype;
4811	__be16 type = skb->protocol;
4812	struct list_head *head = &offload_base;
4813	int err = -ENOENT;
4814
4815	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4816
4817	if (NAPI_GRO_CB(skb)->count == 1) {
4818		skb_shinfo(skb)->gso_size = 0;
4819		goto out;
4820	}
4821
4822	rcu_read_lock();
4823	list_for_each_entry_rcu(ptype, head, list) {
4824		if (ptype->type != type || !ptype->callbacks.gro_complete)
4825			continue;
4826
4827		err = ptype->callbacks.gro_complete(skb, 0);
4828		break;
4829	}
4830	rcu_read_unlock();
4831
4832	if (err) {
4833		WARN_ON(&ptype->list == head);
4834		kfree_skb(skb);
4835		return NET_RX_SUCCESS;
4836	}
4837
4838out:
4839	return netif_receive_skb_internal(skb);
4840}
4841
4842/* napi->gro_list contains packets ordered by age.
4843 * youngest packets at the head of it.
4844 * Complete skbs in reverse order to reduce latencies.
4845 */
4846void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4847{
4848	struct sk_buff *skb, *prev = NULL;
4849
4850	/* scan list and build reverse chain */
4851	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4852		skb->prev = prev;
4853		prev = skb;
4854	}
4855
4856	for (skb = prev; skb; skb = prev) {
4857		skb->next = NULL;
4858
4859		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4860			return;
4861
4862		prev = skb->prev;
4863		napi_gro_complete(skb);
4864		napi->gro_count--;
4865	}
4866
4867	napi->gro_list = NULL;
4868}
4869EXPORT_SYMBOL(napi_gro_flush);
4870
4871static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4872{
4873	struct sk_buff *p;
4874	unsigned int maclen = skb->dev->hard_header_len;
4875	u32 hash = skb_get_hash_raw(skb);
4876
4877	for (p = napi->gro_list; p; p = p->next) {
4878		unsigned long diffs;
4879
4880		NAPI_GRO_CB(p)->flush = 0;
4881
4882		if (hash != skb_get_hash_raw(p)) {
4883			NAPI_GRO_CB(p)->same_flow = 0;
4884			continue;
4885		}
4886
4887		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4888		diffs |= p->vlan_tci ^ skb->vlan_tci;
4889		diffs |= skb_metadata_dst_cmp(p, skb);
4890		diffs |= skb_metadata_differs(p, skb);
4891		if (maclen == ETH_HLEN)
4892			diffs |= compare_ether_header(skb_mac_header(p),
4893						      skb_mac_header(skb));
4894		else if (!diffs)
4895			diffs = memcmp(skb_mac_header(p),
4896				       skb_mac_header(skb),
4897				       maclen);
4898		NAPI_GRO_CB(p)->same_flow = !diffs;
4899	}
4900}
4901
4902static void skb_gro_reset_offset(struct sk_buff *skb)
4903{
4904	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4905	const skb_frag_t *frag0 = &pinfo->frags[0];
4906
4907	NAPI_GRO_CB(skb)->data_offset = 0;
4908	NAPI_GRO_CB(skb)->frag0 = NULL;
4909	NAPI_GRO_CB(skb)->frag0_len = 0;
4910
4911	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4912	    pinfo->nr_frags &&
4913	    !PageHighMem(skb_frag_page(frag0))) {
4914		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4915		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4916						    skb_frag_size(frag0),
4917						    skb->end - skb->tail);
4918	}
4919}
4920
4921static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4922{
4923	struct skb_shared_info *pinfo = skb_shinfo(skb);
4924
4925	BUG_ON(skb->end - skb->tail < grow);
4926
4927	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4928
4929	skb->data_len -= grow;
4930	skb->tail += grow;
4931
4932	pinfo->frags[0].page_offset += grow;
4933	skb_frag_size_sub(&pinfo->frags[0], grow);
4934
4935	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4936		skb_frag_unref(skb, 0);
4937		memmove(pinfo->frags, pinfo->frags + 1,
4938			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4939	}
4940}
4941
4942static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4943{
4944	struct sk_buff **pp = NULL;
4945	struct packet_offload *ptype;
4946	__be16 type = skb->protocol;
4947	struct list_head *head = &offload_base;
4948	int same_flow;
4949	enum gro_result ret;
4950	int grow;
4951
4952	if (netif_elide_gro(skb->dev))
 
 
 
4953		goto normal;
4954
4955	gro_list_prepare(napi, skb);
 
4956
4957	rcu_read_lock();
4958	list_for_each_entry_rcu(ptype, head, list) {
4959		if (ptype->type != type || !ptype->callbacks.gro_receive)
4960			continue;
4961
4962		skb_set_network_header(skb, skb_gro_offset(skb));
4963		skb_reset_mac_len(skb);
4964		NAPI_GRO_CB(skb)->same_flow = 0;
4965		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4966		NAPI_GRO_CB(skb)->free = 0;
4967		NAPI_GRO_CB(skb)->encap_mark = 0;
4968		NAPI_GRO_CB(skb)->recursion_counter = 0;
4969		NAPI_GRO_CB(skb)->is_fou = 0;
4970		NAPI_GRO_CB(skb)->is_atomic = 1;
4971		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4972
4973		/* Setup for GRO checksum validation */
4974		switch (skb->ip_summed) {
4975		case CHECKSUM_COMPLETE:
4976			NAPI_GRO_CB(skb)->csum = skb->csum;
4977			NAPI_GRO_CB(skb)->csum_valid = 1;
4978			NAPI_GRO_CB(skb)->csum_cnt = 0;
4979			break;
4980		case CHECKSUM_UNNECESSARY:
4981			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4982			NAPI_GRO_CB(skb)->csum_valid = 0;
4983			break;
4984		default:
4985			NAPI_GRO_CB(skb)->csum_cnt = 0;
4986			NAPI_GRO_CB(skb)->csum_valid = 0;
4987		}
4988
4989		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4990		break;
4991	}
4992	rcu_read_unlock();
4993
4994	if (&ptype->list == head)
4995		goto normal;
4996
4997	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4998		ret = GRO_CONSUMED;
4999		goto ok;
5000	}
5001
5002	same_flow = NAPI_GRO_CB(skb)->same_flow;
5003	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5004
5005	if (pp) {
5006		struct sk_buff *nskb = *pp;
5007
5008		*pp = nskb->next;
5009		nskb->next = NULL;
5010		napi_gro_complete(nskb);
5011		napi->gro_count--;
5012	}
5013
5014	if (same_flow)
5015		goto ok;
5016
5017	if (NAPI_GRO_CB(skb)->flush)
5018		goto normal;
5019
5020	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5021		struct sk_buff *nskb = napi->gro_list;
5022
5023		/* locate the end of the list to select the 'oldest' flow */
5024		while (nskb->next) {
5025			pp = &nskb->next;
5026			nskb = *pp;
5027		}
5028		*pp = NULL;
5029		nskb->next = NULL;
5030		napi_gro_complete(nskb);
5031	} else {
5032		napi->gro_count++;
5033	}
5034	NAPI_GRO_CB(skb)->count = 1;
5035	NAPI_GRO_CB(skb)->age = jiffies;
5036	NAPI_GRO_CB(skb)->last = skb;
5037	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5038	skb->next = napi->gro_list;
5039	napi->gro_list = skb;
5040	ret = GRO_HELD;
5041
5042pull:
5043	grow = skb_gro_offset(skb) - skb_headlen(skb);
5044	if (grow > 0)
5045		gro_pull_from_frag0(skb, grow);
5046ok:
5047	return ret;
5048
5049normal:
5050	ret = GRO_NORMAL;
5051	goto pull;
5052}
5053
5054struct packet_offload *gro_find_receive_by_type(__be16 type)
5055{
5056	struct list_head *offload_head = &offload_base;
5057	struct packet_offload *ptype;
5058
5059	list_for_each_entry_rcu(ptype, offload_head, list) {
5060		if (ptype->type != type || !ptype->callbacks.gro_receive)
5061			continue;
5062		return ptype;
5063	}
5064	return NULL;
5065}
5066EXPORT_SYMBOL(gro_find_receive_by_type);
5067
5068struct packet_offload *gro_find_complete_by_type(__be16 type)
5069{
5070	struct list_head *offload_head = &offload_base;
5071	struct packet_offload *ptype;
5072
5073	list_for_each_entry_rcu(ptype, offload_head, list) {
5074		if (ptype->type != type || !ptype->callbacks.gro_complete)
5075			continue;
5076		return ptype;
5077	}
5078	return NULL;
5079}
5080EXPORT_SYMBOL(gro_find_complete_by_type);
5081
5082static void napi_skb_free_stolen_head(struct sk_buff *skb)
5083{
5084	skb_dst_drop(skb);
5085	secpath_reset(skb);
5086	kmem_cache_free(skbuff_head_cache, skb);
5087}
5088
5089static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5090{
5091	switch (ret) {
5092	case GRO_NORMAL:
5093		if (netif_receive_skb_internal(skb))
5094			ret = GRO_DROP;
5095		break;
5096
5097	case GRO_DROP:
5098		kfree_skb(skb);
5099		break;
5100
5101	case GRO_MERGED_FREE:
5102		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5103			napi_skb_free_stolen_head(skb);
5104		else
5105			__kfree_skb(skb);
5106		break;
5107
5108	case GRO_HELD:
5109	case GRO_MERGED:
5110	case GRO_CONSUMED:
5111		break;
5112	}
5113
5114	return ret;
5115}
5116
5117gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5118{
5119	skb_mark_napi_id(skb, napi);
5120	trace_napi_gro_receive_entry(skb);
5121
5122	skb_gro_reset_offset(skb);
5123
5124	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5125}
5126EXPORT_SYMBOL(napi_gro_receive);
5127
5128static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5129{
5130	if (unlikely(skb->pfmemalloc)) {
5131		consume_skb(skb);
5132		return;
5133	}
5134	__skb_pull(skb, skb_headlen(skb));
5135	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5136	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5137	skb->vlan_tci = 0;
5138	skb->dev = napi->dev;
5139	skb->skb_iif = 0;
5140	skb->encapsulation = 0;
5141	skb_shinfo(skb)->gso_type = 0;
5142	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5143	secpath_reset(skb);
5144
5145	napi->skb = skb;
5146}
5147
5148struct sk_buff *napi_get_frags(struct napi_struct *napi)
5149{
5150	struct sk_buff *skb = napi->skb;
5151
5152	if (!skb) {
5153		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5154		if (skb) {
5155			napi->skb = skb;
5156			skb_mark_napi_id(skb, napi);
5157		}
5158	}
5159	return skb;
5160}
5161EXPORT_SYMBOL(napi_get_frags);
5162
5163static gro_result_t napi_frags_finish(struct napi_struct *napi,
5164				      struct sk_buff *skb,
5165				      gro_result_t ret)
5166{
5167	switch (ret) {
5168	case GRO_NORMAL:
5169	case GRO_HELD:
5170		__skb_push(skb, ETH_HLEN);
5171		skb->protocol = eth_type_trans(skb, skb->dev);
5172		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5173			ret = GRO_DROP;
5174		break;
5175
5176	case GRO_DROP:
5177		napi_reuse_skb(napi, skb);
5178		break;
5179
5180	case GRO_MERGED_FREE:
5181		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5182			napi_skb_free_stolen_head(skb);
5183		else
5184			napi_reuse_skb(napi, skb);
5185		break;
5186
5187	case GRO_MERGED:
5188	case GRO_CONSUMED:
5189		break;
5190	}
5191
5192	return ret;
5193}
5194
5195/* Upper GRO stack assumes network header starts at gro_offset=0
5196 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5197 * We copy ethernet header into skb->data to have a common layout.
5198 */
5199static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5200{
5201	struct sk_buff *skb = napi->skb;
5202	const struct ethhdr *eth;
5203	unsigned int hlen = sizeof(*eth);
5204
5205	napi->skb = NULL;
5206
5207	skb_reset_mac_header(skb);
5208	skb_gro_reset_offset(skb);
5209
5210	eth = skb_gro_header_fast(skb, 0);
5211	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5212		eth = skb_gro_header_slow(skb, hlen, 0);
5213		if (unlikely(!eth)) {
5214			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5215					     __func__, napi->dev->name);
5216			napi_reuse_skb(napi, skb);
5217			return NULL;
5218		}
5219	} else {
5220		gro_pull_from_frag0(skb, hlen);
5221		NAPI_GRO_CB(skb)->frag0 += hlen;
5222		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5223	}
5224	__skb_pull(skb, hlen);
5225
5226	/*
5227	 * This works because the only protocols we care about don't require
5228	 * special handling.
5229	 * We'll fix it up properly in napi_frags_finish()
5230	 */
5231	skb->protocol = eth->h_proto;
5232
5233	return skb;
5234}
5235
5236gro_result_t napi_gro_frags(struct napi_struct *napi)
5237{
5238	struct sk_buff *skb = napi_frags_skb(napi);
5239
5240	if (!skb)
5241		return GRO_DROP;
5242
5243	trace_napi_gro_frags_entry(skb);
5244
5245	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5246}
5247EXPORT_SYMBOL(napi_gro_frags);
5248
5249/* Compute the checksum from gro_offset and return the folded value
5250 * after adding in any pseudo checksum.
5251 */
5252__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5253{
5254	__wsum wsum;
5255	__sum16 sum;
5256
5257	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5258
5259	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5260	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5261	if (likely(!sum)) {
5262		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5263		    !skb->csum_complete_sw)
5264			netdev_rx_csum_fault(skb->dev);
5265	}
5266
5267	NAPI_GRO_CB(skb)->csum = wsum;
5268	NAPI_GRO_CB(skb)->csum_valid = 1;
5269
5270	return sum;
5271}
5272EXPORT_SYMBOL(__skb_gro_checksum_complete);
5273
5274static void net_rps_send_ipi(struct softnet_data *remsd)
5275{
5276#ifdef CONFIG_RPS
5277	while (remsd) {
5278		struct softnet_data *next = remsd->rps_ipi_next;
5279
5280		if (cpu_online(remsd->cpu))
5281			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5282		remsd = next;
5283	}
5284#endif
5285}
5286
5287/*
5288 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5289 * Note: called with local irq disabled, but exits with local irq enabled.
5290 */
5291static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5292{
5293#ifdef CONFIG_RPS
5294	struct softnet_data *remsd = sd->rps_ipi_list;
5295
5296	if (remsd) {
5297		sd->rps_ipi_list = NULL;
5298
5299		local_irq_enable();
5300
5301		/* Send pending IPI's to kick RPS processing on remote cpus. */
5302		net_rps_send_ipi(remsd);
 
 
 
 
 
 
 
5303	} else
5304#endif
5305		local_irq_enable();
5306}
5307
5308static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5309{
5310#ifdef CONFIG_RPS
5311	return sd->rps_ipi_list != NULL;
5312#else
5313	return false;
5314#endif
5315}
5316
5317static int process_backlog(struct napi_struct *napi, int quota)
5318{
5319	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5320	bool again = true;
5321	int work = 0;
 
5322
 
5323	/* Check if we have pending ipi, its better to send them now,
5324	 * not waiting net_rx_action() end.
5325	 */
5326	if (sd_has_rps_ipi_waiting(sd)) {
5327		local_irq_disable();
5328		net_rps_action_and_irq_enable(sd);
5329	}
5330
5331	napi->weight = dev_rx_weight;
5332	while (again) {
 
5333		struct sk_buff *skb;
 
5334
5335		while ((skb = __skb_dequeue(&sd->process_queue))) {
5336			rcu_read_lock();
5337			__netif_receive_skb(skb);
5338			rcu_read_unlock();
5339			input_queue_head_incr(sd);
5340			if (++work >= quota)
 
5341				return work;
5342
5343		}
5344
5345		local_irq_disable();
5346		rps_lock(sd);
5347		if (skb_queue_empty(&sd->input_pkt_queue)) {
 
 
 
 
 
5348			/*
5349			 * Inline a custom version of __napi_complete().
5350			 * only current cpu owns and manipulates this napi,
5351			 * and NAPI_STATE_SCHED is the only possible flag set
5352			 * on backlog.
5353			 * We can use a plain write instead of clear_bit(),
5354			 * and we dont need an smp_mb() memory barrier.
5355			 */
 
5356			napi->state = 0;
5357			again = false;
5358		} else {
5359			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5360						   &sd->process_queue);
5361		}
5362		rps_unlock(sd);
5363		local_irq_enable();
5364	}
 
5365
5366	return work;
5367}
5368
5369/**
5370 * __napi_schedule - schedule for receive
5371 * @n: entry to schedule
5372 *
5373 * The entry's receive function will be scheduled to run.
5374 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5375 */
5376void __napi_schedule(struct napi_struct *n)
5377{
5378	unsigned long flags;
5379
5380	local_irq_save(flags);
5381	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5382	local_irq_restore(flags);
5383}
5384EXPORT_SYMBOL(__napi_schedule);
5385
5386/**
5387 *	napi_schedule_prep - check if napi can be scheduled
5388 *	@n: napi context
5389 *
5390 * Test if NAPI routine is already running, and if not mark
5391 * it as running.  This is used as a condition variable
5392 * insure only one NAPI poll instance runs.  We also make
5393 * sure there is no pending NAPI disable.
5394 */
5395bool napi_schedule_prep(struct napi_struct *n)
5396{
5397	unsigned long val, new;
5398
5399	do {
5400		val = READ_ONCE(n->state);
5401		if (unlikely(val & NAPIF_STATE_DISABLE))
5402			return false;
5403		new = val | NAPIF_STATE_SCHED;
5404
5405		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5406		 * This was suggested by Alexander Duyck, as compiler
5407		 * emits better code than :
5408		 * if (val & NAPIF_STATE_SCHED)
5409		 *     new |= NAPIF_STATE_MISSED;
5410		 */
5411		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5412						   NAPIF_STATE_MISSED;
5413	} while (cmpxchg(&n->state, val, new) != val);
5414
5415	return !(val & NAPIF_STATE_SCHED);
 
 
5416}
5417EXPORT_SYMBOL(napi_schedule_prep);
5418
5419/**
5420 * __napi_schedule_irqoff - schedule for receive
5421 * @n: entry to schedule
5422 *
5423 * Variant of __napi_schedule() assuming hard irqs are masked
5424 */
5425void __napi_schedule_irqoff(struct napi_struct *n)
5426{
5427	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5428}
5429EXPORT_SYMBOL(__napi_schedule_irqoff);
5430
5431bool napi_complete_done(struct napi_struct *n, int work_done)
5432{
5433	unsigned long flags, val, new;
5434
5435	/*
5436	 * 1) Don't let napi dequeue from the cpu poll list
5437	 *    just in case its running on a different cpu.
5438	 * 2) If we are busy polling, do nothing here, we have
5439	 *    the guarantee we will be called later.
5440	 */
5441	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5442				 NAPIF_STATE_IN_BUSY_POLL)))
5443		return false;
5444
5445	if (n->gro_list) {
5446		unsigned long timeout = 0;
5447
5448		if (work_done)
5449			timeout = n->dev->gro_flush_timeout;
5450
5451		if (timeout)
5452			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5453				      HRTIMER_MODE_REL_PINNED);
5454		else
5455			napi_gro_flush(n, false);
5456	}
5457	if (unlikely(!list_empty(&n->poll_list))) {
5458		/* If n->poll_list is not empty, we need to mask irqs */
5459		local_irq_save(flags);
5460		list_del_init(&n->poll_list);
5461		local_irq_restore(flags);
5462	}
5463
5464	do {
5465		val = READ_ONCE(n->state);
5466
5467		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5468
5469		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5470
5471		/* If STATE_MISSED was set, leave STATE_SCHED set,
5472		 * because we will call napi->poll() one more time.
5473		 * This C code was suggested by Alexander Duyck to help gcc.
5474		 */
5475		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5476						    NAPIF_STATE_SCHED;
5477	} while (cmpxchg(&n->state, val, new) != val);
5478
5479	if (unlikely(val & NAPIF_STATE_MISSED)) {
5480		__napi_schedule(n);
5481		return false;
5482	}
5483
5484	return true;
 
 
 
5485}
5486EXPORT_SYMBOL(napi_complete_done);
5487
5488/* must be called under rcu_read_lock(), as we dont take a reference */
5489static struct napi_struct *napi_by_id(unsigned int napi_id)
5490{
5491	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5492	struct napi_struct *napi;
5493
5494	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5495		if (napi->napi_id == napi_id)
5496			return napi;
5497
5498	return NULL;
5499}
 
5500
5501#if defined(CONFIG_NET_RX_BUSY_POLL)
5502
5503#define BUSY_POLL_BUDGET 8
5504
5505static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5506{
5507	int rc;
5508
5509	/* Busy polling means there is a high chance device driver hard irq
5510	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5511	 * set in napi_schedule_prep().
5512	 * Since we are about to call napi->poll() once more, we can safely
5513	 * clear NAPI_STATE_MISSED.
5514	 *
5515	 * Note: x86 could use a single "lock and ..." instruction
5516	 * to perform these two clear_bit()
5517	 */
5518	clear_bit(NAPI_STATE_MISSED, &napi->state);
5519	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5520
5521	local_bh_disable();
5522
5523	/* All we really want here is to re-enable device interrupts.
5524	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5525	 */
5526	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5527	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5528	netpoll_poll_unlock(have_poll_lock);
5529	if (rc == BUSY_POLL_BUDGET)
5530		__napi_schedule(napi);
5531	local_bh_enable();
5532}
5533
5534void napi_busy_loop(unsigned int napi_id,
5535		    bool (*loop_end)(void *, unsigned long),
5536		    void *loop_end_arg)
5537{
5538	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5539	int (*napi_poll)(struct napi_struct *napi, int budget);
5540	void *have_poll_lock = NULL;
5541	struct napi_struct *napi;
5542
5543restart:
5544	napi_poll = NULL;
5545
5546	rcu_read_lock();
5547
5548	napi = napi_by_id(napi_id);
5549	if (!napi)
5550		goto out;
5551
5552	preempt_disable();
5553	for (;;) {
5554		int work = 0;
5555
5556		local_bh_disable();
5557		if (!napi_poll) {
5558			unsigned long val = READ_ONCE(napi->state);
5559
5560			/* If multiple threads are competing for this napi,
5561			 * we avoid dirtying napi->state as much as we can.
5562			 */
5563			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5564				   NAPIF_STATE_IN_BUSY_POLL))
5565				goto count;
5566			if (cmpxchg(&napi->state, val,
5567				    val | NAPIF_STATE_IN_BUSY_POLL |
5568					  NAPIF_STATE_SCHED) != val)
5569				goto count;
5570			have_poll_lock = netpoll_poll_lock(napi);
5571			napi_poll = napi->poll;
5572		}
5573		work = napi_poll(napi, BUSY_POLL_BUDGET);
5574		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5575count:
5576		if (work > 0)
5577			__NET_ADD_STATS(dev_net(napi->dev),
5578					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5579		local_bh_enable();
5580
5581		if (!loop_end || loop_end(loop_end_arg, start_time))
5582			break;
5583
5584		if (unlikely(need_resched())) {
5585			if (napi_poll)
5586				busy_poll_stop(napi, have_poll_lock);
5587			preempt_enable();
5588			rcu_read_unlock();
5589			cond_resched();
5590			if (loop_end(loop_end_arg, start_time))
5591				return;
5592			goto restart;
5593		}
5594		cpu_relax();
5595	}
5596	if (napi_poll)
5597		busy_poll_stop(napi, have_poll_lock);
5598	preempt_enable();
5599out:
5600	rcu_read_unlock();
5601}
5602EXPORT_SYMBOL(napi_busy_loop);
5603
5604#endif /* CONFIG_NET_RX_BUSY_POLL */
5605
5606static void napi_hash_add(struct napi_struct *napi)
5607{
5608	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5609	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5610		return;
5611
5612	spin_lock(&napi_hash_lock);
5613
5614	/* 0..NR_CPUS range is reserved for sender_cpu use */
5615	do {
5616		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5617			napi_gen_id = MIN_NAPI_ID;
5618	} while (napi_by_id(napi_gen_id));
5619	napi->napi_id = napi_gen_id;
5620
5621	hlist_add_head_rcu(&napi->napi_hash_node,
5622			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5623
5624	spin_unlock(&napi_hash_lock);
5625}
 
5626
5627/* Warning : caller is responsible to make sure rcu grace period
5628 * is respected before freeing memory containing @napi
5629 */
5630bool napi_hash_del(struct napi_struct *napi)
5631{
5632	bool rcu_sync_needed = false;
5633
5634	spin_lock(&napi_hash_lock);
5635
5636	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5637		rcu_sync_needed = true;
5638		hlist_del_rcu(&napi->napi_hash_node);
5639	}
5640	spin_unlock(&napi_hash_lock);
5641	return rcu_sync_needed;
5642}
5643EXPORT_SYMBOL_GPL(napi_hash_del);
5644
5645static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5646{
5647	struct napi_struct *napi;
5648
5649	napi = container_of(timer, struct napi_struct, timer);
5650
5651	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5652	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5653	 */
5654	if (napi->gro_list && !napi_disable_pending(napi) &&
5655	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5656		__napi_schedule_irqoff(napi);
5657
5658	return HRTIMER_NORESTART;
5659}
5660
5661void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5662		    int (*poll)(struct napi_struct *, int), int weight)
5663{
5664	INIT_LIST_HEAD(&napi->poll_list);
5665	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5666	napi->timer.function = napi_watchdog;
5667	napi->gro_count = 0;
5668	napi->gro_list = NULL;
5669	napi->skb = NULL;
5670	napi->poll = poll;
5671	if (weight > NAPI_POLL_WEIGHT)
5672		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5673			    weight, dev->name);
5674	napi->weight = weight;
5675	list_add(&napi->dev_list, &dev->napi_list);
5676	napi->dev = dev;
5677#ifdef CONFIG_NETPOLL
 
5678	napi->poll_owner = -1;
5679#endif
5680	set_bit(NAPI_STATE_SCHED, &napi->state);
5681	napi_hash_add(napi);
5682}
5683EXPORT_SYMBOL(netif_napi_add);
5684
5685void napi_disable(struct napi_struct *n)
5686{
5687	might_sleep();
5688	set_bit(NAPI_STATE_DISABLE, &n->state);
5689
5690	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5691		msleep(1);
5692	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5693		msleep(1);
5694
5695	hrtimer_cancel(&n->timer);
5696
5697	clear_bit(NAPI_STATE_DISABLE, &n->state);
5698}
5699EXPORT_SYMBOL(napi_disable);
5700
5701/* Must be called in process context */
5702void netif_napi_del(struct napi_struct *napi)
5703{
5704	might_sleep();
5705	if (napi_hash_del(napi))
5706		synchronize_net();
5707	list_del_init(&napi->dev_list);
5708	napi_free_frags(napi);
5709
5710	kfree_skb_list(napi->gro_list);
5711	napi->gro_list = NULL;
5712	napi->gro_count = 0;
5713}
5714EXPORT_SYMBOL(netif_napi_del);
5715
5716static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5717{
 
 
 
5718	void *have;
5719	int work, weight;
5720
5721	list_del_init(&n->poll_list);
5722
5723	have = netpoll_poll_lock(n);
5724
5725	weight = n->weight;
5726
5727	/* This NAPI_STATE_SCHED test is for avoiding a race
5728	 * with netpoll's poll_napi().  Only the entity which
5729	 * obtains the lock and sees NAPI_STATE_SCHED set will
5730	 * actually make the ->poll() call.  Therefore we avoid
5731	 * accidentally calling ->poll() when NAPI is not scheduled.
5732	 */
5733	work = 0;
5734	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5735		work = n->poll(n, weight);
5736		trace_napi_poll(n, work, weight);
5737	}
5738
5739	WARN_ON_ONCE(work > weight);
5740
5741	if (likely(work < weight))
5742		goto out_unlock;
5743
5744	/* Drivers must not modify the NAPI state if they
5745	 * consume the entire weight.  In such cases this code
5746	 * still "owns" the NAPI instance and therefore can
5747	 * move the instance around on the list at-will.
5748	 */
5749	if (unlikely(napi_disable_pending(n))) {
5750		napi_complete(n);
5751		goto out_unlock;
5752	}
5753
5754	if (n->gro_list) {
5755		/* flush too old packets
5756		 * If HZ < 1000, flush all packets.
5757		 */
5758		napi_gro_flush(n, HZ >= 1000);
5759	}
5760
5761	/* Some drivers may have called napi_schedule
5762	 * prior to exhausting their budget.
5763	 */
5764	if (unlikely(!list_empty(&n->poll_list))) {
5765		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5766			     n->dev ? n->dev->name : "backlog");
5767		goto out_unlock;
5768	}
5769
5770	list_add_tail(&n->poll_list, repoll);
 
 
 
 
 
5771
5772out_unlock:
5773	netpoll_poll_unlock(have);
5774
5775	return work;
5776}
5777
5778static __latent_entropy void net_rx_action(struct softirq_action *h)
5779{
5780	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5781	unsigned long time_limit = jiffies +
5782		usecs_to_jiffies(netdev_budget_usecs);
5783	int budget = netdev_budget;
5784	LIST_HEAD(list);
5785	LIST_HEAD(repoll);
 
 
 
5786
5787	local_irq_disable();
5788	list_splice_init(&sd->poll_list, &list);
5789	local_irq_enable();
5790
5791	for (;;) {
5792		struct napi_struct *n;
5793
5794		if (list_empty(&list)) {
5795			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5796				goto out;
5797			break;
5798		}
5799
5800		n = list_first_entry(&list, struct napi_struct, poll_list);
5801		budget -= napi_poll(n, &repoll);
5802
5803		/* If softirq window is exhausted then punt.
5804		 * Allow this to run for 2 jiffies since which will allow
5805		 * an average latency of 1.5/HZ.
 
5806		 */
5807		if (unlikely(budget <= 0 ||
5808			     time_after_eq(jiffies, time_limit))) {
5809			sd->time_squeeze++;
5810			break;
 
 
 
 
 
 
 
 
 
 
 
 
5811		}
 
 
5812	}
 
 
5813
5814	local_irq_disable();
 
 
 
 
 
 
5815
5816	list_splice_tail_init(&sd->poll_list, &list);
5817	list_splice_tail(&repoll, &list);
5818	list_splice(&list, &sd->poll_list);
5819	if (!list_empty(&sd->poll_list))
5820		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5821
5822	net_rps_action_and_irq_enable(sd);
5823out:
5824	__kfree_skb_flush();
 
5825}
5826
5827struct netdev_adjacent {
5828	struct net_device *dev;
5829
5830	/* upper master flag, there can only be one master device per list */
5831	bool master;
5832
5833	/* counter for the number of times this device was added to us */
5834	u16 ref_nr;
5835
5836	/* private field for the users */
5837	void *private;
5838
5839	struct list_head list;
5840	struct rcu_head rcu;
5841};
5842
5843static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
 
5844						 struct list_head *adj_list)
5845{
5846	struct netdev_adjacent *adj;
5847
5848	list_for_each_entry(adj, adj_list, list) {
5849		if (adj->dev == adj_dev)
5850			return adj;
5851	}
5852	return NULL;
5853}
5854
5855static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5856{
5857	struct net_device *dev = data;
5858
5859	return upper_dev == dev;
5860}
5861
5862/**
5863 * netdev_has_upper_dev - Check if device is linked to an upper device
5864 * @dev: device
5865 * @upper_dev: upper device to check
5866 *
5867 * Find out if a device is linked to specified upper device and return true
5868 * in case it is. Note that this checks only immediate upper device,
5869 * not through a complete stack of devices. The caller must hold the RTNL lock.
5870 */
5871bool netdev_has_upper_dev(struct net_device *dev,
5872			  struct net_device *upper_dev)
5873{
5874	ASSERT_RTNL();
5875
5876	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5877					     upper_dev);
5878}
5879EXPORT_SYMBOL(netdev_has_upper_dev);
5880
5881/**
5882 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5883 * @dev: device
5884 * @upper_dev: upper device to check
5885 *
5886 * Find out if a device is linked to specified upper device and return true
5887 * in case it is. Note that this checks the entire upper device chain.
5888 * The caller must hold rcu lock.
5889 */
5890
5891bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5892				  struct net_device *upper_dev)
5893{
5894	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5895					       upper_dev);
5896}
5897EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5898
5899/**
5900 * netdev_has_any_upper_dev - Check if device is linked to some device
5901 * @dev: device
5902 *
5903 * Find out if a device is linked to an upper device and return true in case
5904 * it is. The caller must hold the RTNL lock.
5905 */
5906bool netdev_has_any_upper_dev(struct net_device *dev)
5907{
5908	ASSERT_RTNL();
5909
5910	return !list_empty(&dev->adj_list.upper);
5911}
5912EXPORT_SYMBOL(netdev_has_any_upper_dev);
5913
5914/**
5915 * netdev_master_upper_dev_get - Get master upper device
5916 * @dev: device
5917 *
5918 * Find a master upper device and return pointer to it or NULL in case
5919 * it's not there. The caller must hold the RTNL lock.
5920 */
5921struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5922{
5923	struct netdev_adjacent *upper;
5924
5925	ASSERT_RTNL();
5926
5927	if (list_empty(&dev->adj_list.upper))
5928		return NULL;
5929
5930	upper = list_first_entry(&dev->adj_list.upper,
5931				 struct netdev_adjacent, list);
5932	if (likely(upper->master))
5933		return upper->dev;
5934	return NULL;
5935}
5936EXPORT_SYMBOL(netdev_master_upper_dev_get);
5937
5938/**
5939 * netdev_has_any_lower_dev - Check if device is linked to some device
5940 * @dev: device
5941 *
5942 * Find out if a device is linked to a lower device and return true in case
5943 * it is. The caller must hold the RTNL lock.
5944 */
5945static bool netdev_has_any_lower_dev(struct net_device *dev)
5946{
5947	ASSERT_RTNL();
5948
5949	return !list_empty(&dev->adj_list.lower);
5950}
5951
5952void *netdev_adjacent_get_private(struct list_head *adj_list)
5953{
5954	struct netdev_adjacent *adj;
5955
5956	adj = list_entry(adj_list, struct netdev_adjacent, list);
5957
5958	return adj->private;
5959}
5960EXPORT_SYMBOL(netdev_adjacent_get_private);
5961
5962/**
5963 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5964 * @dev: device
5965 * @iter: list_head ** of the current position
5966 *
5967 * Gets the next device from the dev's upper list, starting from iter
5968 * position. The caller must hold RCU read lock.
5969 */
5970struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5971						 struct list_head **iter)
5972{
5973	struct netdev_adjacent *upper;
5974
5975	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5976
5977	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5978
5979	if (&upper->list == &dev->adj_list.upper)
5980		return NULL;
5981
5982	*iter = &upper->list;
5983
5984	return upper->dev;
5985}
5986EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5987
5988static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5989						    struct list_head **iter)
 
 
 
 
 
 
 
 
5990{
5991	struct netdev_adjacent *upper;
5992
5993	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5994
5995	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5996
5997	if (&upper->list == &dev->adj_list.upper)
5998		return NULL;
5999
6000	*iter = &upper->list;
6001
6002	return upper->dev;
6003}
6004
6005int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6006				  int (*fn)(struct net_device *dev,
6007					    void *data),
6008				  void *data)
6009{
6010	struct net_device *udev;
6011	struct list_head *iter;
6012	int ret;
6013
6014	for (iter = &dev->adj_list.upper,
6015	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6016	     udev;
6017	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6018		/* first is the upper device itself */
6019		ret = fn(udev, data);
6020		if (ret)
6021			return ret;
6022
6023		/* then look at all of its upper devices */
6024		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6025		if (ret)
6026			return ret;
6027	}
6028
6029	return 0;
6030}
6031EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6032
6033/**
6034 * netdev_lower_get_next_private - Get the next ->private from the
6035 *				   lower neighbour list
6036 * @dev: device
6037 * @iter: list_head ** of the current position
6038 *
6039 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6040 * list, starting from iter position. The caller must hold either hold the
6041 * RTNL lock or its own locking that guarantees that the neighbour lower
6042 * list will remain unchanged.
6043 */
6044void *netdev_lower_get_next_private(struct net_device *dev,
6045				    struct list_head **iter)
6046{
6047	struct netdev_adjacent *lower;
6048
6049	lower = list_entry(*iter, struct netdev_adjacent, list);
6050
6051	if (&lower->list == &dev->adj_list.lower)
6052		return NULL;
6053
6054	*iter = lower->list.next;
6055
6056	return lower->private;
6057}
6058EXPORT_SYMBOL(netdev_lower_get_next_private);
6059
6060/**
6061 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6062 *				       lower neighbour list, RCU
6063 *				       variant
6064 * @dev: device
6065 * @iter: list_head ** of the current position
6066 *
6067 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6068 * list, starting from iter position. The caller must hold RCU read lock.
6069 */
6070void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6071					struct list_head **iter)
6072{
6073	struct netdev_adjacent *lower;
6074
6075	WARN_ON_ONCE(!rcu_read_lock_held());
6076
6077	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6078
6079	if (&lower->list == &dev->adj_list.lower)
6080		return NULL;
6081
6082	*iter = &lower->list;
6083
6084	return lower->private;
6085}
6086EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6087
6088/**
6089 * netdev_lower_get_next - Get the next device from the lower neighbour
6090 *                         list
6091 * @dev: device
6092 * @iter: list_head ** of the current position
6093 *
6094 * Gets the next netdev_adjacent from the dev's lower neighbour
6095 * list, starting from iter position. The caller must hold RTNL lock or
6096 * its own locking that guarantees that the neighbour lower
6097 * list will remain unchanged.
6098 */
6099void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6100{
6101	struct netdev_adjacent *lower;
6102
6103	lower = list_entry(*iter, struct netdev_adjacent, list);
6104
6105	if (&lower->list == &dev->adj_list.lower)
6106		return NULL;
6107
6108	*iter = lower->list.next;
6109
6110	return lower->dev;
6111}
6112EXPORT_SYMBOL(netdev_lower_get_next);
6113
6114static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6115						struct list_head **iter)
6116{
6117	struct netdev_adjacent *lower;
6118
6119	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6120
6121	if (&lower->list == &dev->adj_list.lower)
6122		return NULL;
6123
6124	*iter = &lower->list;
6125
6126	return lower->dev;
6127}
6128
6129int netdev_walk_all_lower_dev(struct net_device *dev,
6130			      int (*fn)(struct net_device *dev,
6131					void *data),
6132			      void *data)
6133{
6134	struct net_device *ldev;
6135	struct list_head *iter;
6136	int ret;
6137
6138	for (iter = &dev->adj_list.lower,
6139	     ldev = netdev_next_lower_dev(dev, &iter);
6140	     ldev;
6141	     ldev = netdev_next_lower_dev(dev, &iter)) {
6142		/* first is the lower device itself */
6143		ret = fn(ldev, data);
6144		if (ret)
6145			return ret;
6146
6147		/* then look at all of its lower devices */
6148		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6149		if (ret)
6150			return ret;
6151	}
6152
6153	return 0;
6154}
6155EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6156
6157static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6158						    struct list_head **iter)
6159{
6160	struct netdev_adjacent *lower;
6161
6162	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6163	if (&lower->list == &dev->adj_list.lower)
6164		return NULL;
6165
6166	*iter = &lower->list;
6167
6168	return lower->dev;
6169}
6170
6171int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6172				  int (*fn)(struct net_device *dev,
6173					    void *data),
6174				  void *data)
6175{
6176	struct net_device *ldev;
6177	struct list_head *iter;
6178	int ret;
6179
6180	for (iter = &dev->adj_list.lower,
6181	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6182	     ldev;
6183	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6184		/* first is the lower device itself */
6185		ret = fn(ldev, data);
6186		if (ret)
6187			return ret;
6188
6189		/* then look at all of its lower devices */
6190		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6191		if (ret)
6192			return ret;
6193	}
6194
6195	return 0;
6196}
6197EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6198
6199/**
6200 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6201 *				       lower neighbour list, RCU
6202 *				       variant
6203 * @dev: device
6204 *
6205 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6206 * list. The caller must hold RCU read lock.
6207 */
6208void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6209{
6210	struct netdev_adjacent *lower;
6211
6212	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6213			struct netdev_adjacent, list);
6214	if (lower)
6215		return lower->private;
6216	return NULL;
6217}
6218EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6219
6220/**
6221 * netdev_master_upper_dev_get_rcu - Get master upper device
6222 * @dev: device
6223 *
6224 * Find a master upper device and return pointer to it or NULL in case
6225 * it's not there. The caller must hold the RCU read lock.
6226 */
6227struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6228{
6229	struct netdev_adjacent *upper;
6230
6231	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6232				       struct netdev_adjacent, list);
6233	if (upper && likely(upper->master))
6234		return upper->dev;
6235	return NULL;
6236}
6237EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6238
6239static int netdev_adjacent_sysfs_add(struct net_device *dev,
6240			      struct net_device *adj_dev,
6241			      struct list_head *dev_list)
6242{
6243	char linkname[IFNAMSIZ+7];
6244
6245	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6246		"upper_%s" : "lower_%s", adj_dev->name);
6247	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6248				 linkname);
6249}
6250static void netdev_adjacent_sysfs_del(struct net_device *dev,
6251			       char *name,
6252			       struct list_head *dev_list)
6253{
6254	char linkname[IFNAMSIZ+7];
6255
6256	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6257		"upper_%s" : "lower_%s", name);
6258	sysfs_remove_link(&(dev->dev.kobj), linkname);
6259}
6260
6261static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6262						 struct net_device *adj_dev,
6263						 struct list_head *dev_list)
6264{
6265	return (dev_list == &dev->adj_list.upper ||
6266		dev_list == &dev->adj_list.lower) &&
6267		net_eq(dev_net(dev), dev_net(adj_dev));
6268}
6269
6270static int __netdev_adjacent_dev_insert(struct net_device *dev,
6271					struct net_device *adj_dev,
6272					struct list_head *dev_list,
6273					void *private, bool master)
6274{
6275	struct netdev_adjacent *adj;
6276	int ret;
6277
6278	adj = __netdev_find_adj(adj_dev, dev_list);
6279
6280	if (adj) {
6281		adj->ref_nr += 1;
6282		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6283			 dev->name, adj_dev->name, adj->ref_nr);
6284
6285		return 0;
6286	}
6287
6288	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6289	if (!adj)
6290		return -ENOMEM;
6291
6292	adj->dev = adj_dev;
6293	adj->master = master;
6294	adj->ref_nr = 1;
6295	adj->private = private;
6296	dev_hold(adj_dev);
6297
6298	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6299		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6300
6301	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6302		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6303		if (ret)
6304			goto free_adj;
6305	}
6306
6307	/* Ensure that master link is always the first item in list. */
6308	if (master) {
6309		ret = sysfs_create_link(&(dev->dev.kobj),
6310					&(adj_dev->dev.kobj), "master");
6311		if (ret)
6312			goto remove_symlinks;
6313
6314		list_add_rcu(&adj->list, dev_list);
6315	} else {
6316		list_add_tail_rcu(&adj->list, dev_list);
6317	}
6318
6319	return 0;
6320
6321remove_symlinks:
6322	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6323		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6324free_adj:
6325	kfree(adj);
6326	dev_put(adj_dev);
6327
6328	return ret;
6329}
6330
6331static void __netdev_adjacent_dev_remove(struct net_device *dev,
6332					 struct net_device *adj_dev,
6333					 u16 ref_nr,
6334					 struct list_head *dev_list)
6335{
6336	struct netdev_adjacent *adj;
6337
6338	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6339		 dev->name, adj_dev->name, ref_nr);
6340
6341	adj = __netdev_find_adj(adj_dev, dev_list);
6342
6343	if (!adj) {
6344		pr_err("Adjacency does not exist for device %s from %s\n",
6345		       dev->name, adj_dev->name);
6346		WARN_ON(1);
6347		return;
6348	}
6349
6350	if (adj->ref_nr > ref_nr) {
6351		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6352			 dev->name, adj_dev->name, ref_nr,
6353			 adj->ref_nr - ref_nr);
6354		adj->ref_nr -= ref_nr;
6355		return;
6356	}
6357
6358	if (adj->master)
6359		sysfs_remove_link(&(dev->dev.kobj), "master");
6360
6361	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6362		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6363
6364	list_del_rcu(&adj->list);
6365	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6366		 adj_dev->name, dev->name, adj_dev->name);
6367	dev_put(adj_dev);
6368	kfree_rcu(adj, rcu);
6369}
6370
6371static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6372					    struct net_device *upper_dev,
6373					    struct list_head *up_list,
6374					    struct list_head *down_list,
6375					    void *private, bool master)
6376{
6377	int ret;
6378
6379	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6380					   private, master);
6381	if (ret)
6382		return ret;
6383
6384	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6385					   private, false);
6386	if (ret) {
6387		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6388		return ret;
6389	}
6390
6391	return 0;
6392}
6393
 
 
 
 
 
 
 
 
 
6394static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6395					       struct net_device *upper_dev,
6396					       u16 ref_nr,
6397					       struct list_head *up_list,
6398					       struct list_head *down_list)
6399{
6400	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6401	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
 
 
 
 
 
 
 
 
6402}
6403
6404static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6405						struct net_device *upper_dev,
6406						void *private, bool master)
6407{
6408	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6409						&dev->adj_list.upper,
6410						&upper_dev->adj_list.lower,
6411						private, master);
 
 
 
 
 
 
 
 
 
 
 
6412}
6413
6414static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6415						   struct net_device *upper_dev)
6416{
6417	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
 
6418					   &dev->adj_list.upper,
6419					   &upper_dev->adj_list.lower);
6420}
6421
6422static int __netdev_upper_dev_link(struct net_device *dev,
6423				   struct net_device *upper_dev, bool master,
6424				   void *upper_priv, void *upper_info,
6425				   struct netlink_ext_ack *extack)
6426{
6427	struct netdev_notifier_changeupper_info changeupper_info = {
6428		.info = {
6429			.dev = dev,
6430			.extack = extack,
6431		},
6432		.upper_dev = upper_dev,
6433		.master = master,
6434		.linking = true,
6435		.upper_info = upper_info,
6436	};
6437	struct net_device *master_dev;
6438	int ret = 0;
6439
6440	ASSERT_RTNL();
6441
6442	if (dev == upper_dev)
6443		return -EBUSY;
6444
6445	/* To prevent loops, check if dev is not upper device to upper_dev. */
6446	if (netdev_has_upper_dev(upper_dev, dev))
6447		return -EBUSY;
6448
6449	if (!master) {
6450		if (netdev_has_upper_dev(dev, upper_dev))
6451			return -EEXIST;
6452	} else {
6453		master_dev = netdev_master_upper_dev_get(dev);
6454		if (master_dev)
6455			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6456	}
6457
6458	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6459					    &changeupper_info.info);
6460	ret = notifier_to_errno(ret);
6461	if (ret)
6462		return ret;
6463
6464	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6465						   master);
6466	if (ret)
6467		return ret;
6468
6469	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6470					    &changeupper_info.info);
6471	ret = notifier_to_errno(ret);
6472	if (ret)
6473		goto rollback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6474
 
6475	return 0;
6476
6477rollback:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6478	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6479
6480	return ret;
6481}
6482
6483/**
6484 * netdev_upper_dev_link - Add a link to the upper device
6485 * @dev: device
6486 * @upper_dev: new upper device
6487 * @extack: netlink extended ack
6488 *
6489 * Adds a link to device which is upper to this one. The caller must hold
6490 * the RTNL lock. On a failure a negative errno code is returned.
6491 * On success the reference counts are adjusted and the function
6492 * returns zero.
6493 */
6494int netdev_upper_dev_link(struct net_device *dev,
6495			  struct net_device *upper_dev,
6496			  struct netlink_ext_ack *extack)
6497{
6498	return __netdev_upper_dev_link(dev, upper_dev, false,
6499				       NULL, NULL, extack);
6500}
6501EXPORT_SYMBOL(netdev_upper_dev_link);
6502
6503/**
6504 * netdev_master_upper_dev_link - Add a master link to the upper device
6505 * @dev: device
6506 * @upper_dev: new upper device
6507 * @upper_priv: upper device private
6508 * @upper_info: upper info to be passed down via notifier
6509 * @extack: netlink extended ack
6510 *
6511 * Adds a link to device which is upper to this one. In this case, only
6512 * one master upper device can be linked, although other non-master devices
6513 * might be linked as well. The caller must hold the RTNL lock.
6514 * On a failure a negative errno code is returned. On success the reference
6515 * counts are adjusted and the function returns zero.
6516 */
6517int netdev_master_upper_dev_link(struct net_device *dev,
6518				 struct net_device *upper_dev,
6519				 void *upper_priv, void *upper_info,
6520				 struct netlink_ext_ack *extack)
6521{
6522	return __netdev_upper_dev_link(dev, upper_dev, true,
6523				       upper_priv, upper_info, extack);
6524}
6525EXPORT_SYMBOL(netdev_master_upper_dev_link);
6526
 
 
 
 
 
 
 
 
6527/**
6528 * netdev_upper_dev_unlink - Removes a link to upper device
6529 * @dev: device
6530 * @upper_dev: new upper device
6531 *
6532 * Removes a link to device which is upper to this one. The caller must hold
6533 * the RTNL lock.
6534 */
6535void netdev_upper_dev_unlink(struct net_device *dev,
6536			     struct net_device *upper_dev)
6537{
6538	struct netdev_notifier_changeupper_info changeupper_info = {
6539		.info = {
6540			.dev = dev,
6541		},
6542		.upper_dev = upper_dev,
6543		.linking = false,
6544	};
6545
6546	ASSERT_RTNL();
6547
6548	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6549
6550	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6551				      &changeupper_info.info);
6552
6553	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6554
6555	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6556				      &changeupper_info.info);
6557}
6558EXPORT_SYMBOL(netdev_upper_dev_unlink);
6559
6560/**
6561 * netdev_bonding_info_change - Dispatch event about slave change
6562 * @dev: device
6563 * @bonding_info: info to dispatch
6564 *
6565 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6566 * The caller must hold the RTNL lock.
6567 */
6568void netdev_bonding_info_change(struct net_device *dev,
6569				struct netdev_bonding_info *bonding_info)
6570{
6571	struct netdev_notifier_bonding_info info = {
6572		.info.dev = dev,
6573	};
6574
6575	memcpy(&info.bonding_info, bonding_info,
6576	       sizeof(struct netdev_bonding_info));
6577	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6578				      &info.info);
6579}
6580EXPORT_SYMBOL(netdev_bonding_info_change);
6581
6582static void netdev_adjacent_add_links(struct net_device *dev)
6583{
6584	struct netdev_adjacent *iter;
6585
6586	struct net *net = dev_net(dev);
6587
6588	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6589		if (!net_eq(net, dev_net(iter->dev)))
6590			continue;
6591		netdev_adjacent_sysfs_add(iter->dev, dev,
6592					  &iter->dev->adj_list.lower);
6593		netdev_adjacent_sysfs_add(dev, iter->dev,
6594					  &dev->adj_list.upper);
6595	}
6596
6597	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6598		if (!net_eq(net, dev_net(iter->dev)))
6599			continue;
6600		netdev_adjacent_sysfs_add(iter->dev, dev,
6601					  &iter->dev->adj_list.upper);
6602		netdev_adjacent_sysfs_add(dev, iter->dev,
6603					  &dev->adj_list.lower);
6604	}
6605}
6606
6607static void netdev_adjacent_del_links(struct net_device *dev)
6608{
6609	struct netdev_adjacent *iter;
6610
6611	struct net *net = dev_net(dev);
 
 
 
 
6612
6613	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6614		if (!net_eq(net, dev_net(iter->dev)))
6615			continue;
6616		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6617					  &iter->dev->adj_list.lower);
6618		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6619					  &dev->adj_list.upper);
6620	}
6621
6622	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6623		if (!net_eq(net, dev_net(iter->dev)))
6624			continue;
6625		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6626					  &iter->dev->adj_list.upper);
6627		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6628					  &dev->adj_list.lower);
6629	}
6630}
 
6631
6632void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6633{
6634	struct netdev_adjacent *iter;
6635
6636	struct net *net = dev_net(dev);
6637
6638	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6639		if (!net_eq(net, dev_net(iter->dev)))
6640			continue;
6641		netdev_adjacent_sysfs_del(iter->dev, oldname,
6642					  &iter->dev->adj_list.lower);
6643		netdev_adjacent_sysfs_add(iter->dev, dev,
6644					  &iter->dev->adj_list.lower);
6645	}
6646
6647	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6648		if (!net_eq(net, dev_net(iter->dev)))
6649			continue;
6650		netdev_adjacent_sysfs_del(iter->dev, oldname,
6651					  &iter->dev->adj_list.upper);
6652		netdev_adjacent_sysfs_add(iter->dev, dev,
6653					  &iter->dev->adj_list.upper);
6654	}
6655}
6656
6657void *netdev_lower_dev_get_private(struct net_device *dev,
6658				   struct net_device *lower_dev)
6659{
6660	struct netdev_adjacent *lower;
6661
6662	if (!lower_dev)
6663		return NULL;
6664	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6665	if (!lower)
6666		return NULL;
6667
6668	return lower->private;
6669}
6670EXPORT_SYMBOL(netdev_lower_dev_get_private);
6671
6672
6673int dev_get_nest_level(struct net_device *dev)
 
6674{
6675	struct net_device *lower = NULL;
6676	struct list_head *iter;
6677	int max_nest = -1;
6678	int nest;
6679
6680	ASSERT_RTNL();
6681
6682	netdev_for_each_lower_dev(dev, lower, iter) {
6683		nest = dev_get_nest_level(lower);
6684		if (max_nest < nest)
6685			max_nest = nest;
6686	}
6687
6688	return max_nest + 1;
6689}
6690EXPORT_SYMBOL(dev_get_nest_level);
6691
6692/**
6693 * netdev_lower_change - Dispatch event about lower device state change
6694 * @lower_dev: device
6695 * @lower_state_info: state to dispatch
6696 *
6697 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6698 * The caller must hold the RTNL lock.
6699 */
6700void netdev_lower_state_changed(struct net_device *lower_dev,
6701				void *lower_state_info)
6702{
6703	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6704		.info.dev = lower_dev,
6705	};
6706
6707	ASSERT_RTNL();
6708	changelowerstate_info.lower_state_info = lower_state_info;
6709	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6710				      &changelowerstate_info.info);
6711}
6712EXPORT_SYMBOL(netdev_lower_state_changed);
6713
6714static void dev_change_rx_flags(struct net_device *dev, int flags)
6715{
6716	const struct net_device_ops *ops = dev->netdev_ops;
6717
6718	if (ops->ndo_change_rx_flags)
6719		ops->ndo_change_rx_flags(dev, flags);
6720}
6721
6722static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6723{
6724	unsigned int old_flags = dev->flags;
6725	kuid_t uid;
6726	kgid_t gid;
6727
6728	ASSERT_RTNL();
6729
6730	dev->flags |= IFF_PROMISC;
6731	dev->promiscuity += inc;
6732	if (dev->promiscuity == 0) {
6733		/*
6734		 * Avoid overflow.
6735		 * If inc causes overflow, untouch promisc and return error.
6736		 */
6737		if (inc < 0)
6738			dev->flags &= ~IFF_PROMISC;
6739		else {
6740			dev->promiscuity -= inc;
6741			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6742				dev->name);
6743			return -EOVERFLOW;
6744		}
6745	}
6746	if (dev->flags != old_flags) {
6747		pr_info("device %s %s promiscuous mode\n",
6748			dev->name,
6749			dev->flags & IFF_PROMISC ? "entered" : "left");
6750		if (audit_enabled) {
6751			current_uid_gid(&uid, &gid);
6752			audit_log(current->audit_context, GFP_ATOMIC,
6753				AUDIT_ANOM_PROMISCUOUS,
6754				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6755				dev->name, (dev->flags & IFF_PROMISC),
6756				(old_flags & IFF_PROMISC),
6757				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6758				from_kuid(&init_user_ns, uid),
6759				from_kgid(&init_user_ns, gid),
6760				audit_get_sessionid(current));
6761		}
6762
6763		dev_change_rx_flags(dev, IFF_PROMISC);
6764	}
6765	if (notify)
6766		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6767	return 0;
6768}
6769
6770/**
6771 *	dev_set_promiscuity	- update promiscuity count on a device
6772 *	@dev: device
6773 *	@inc: modifier
6774 *
6775 *	Add or remove promiscuity from a device. While the count in the device
6776 *	remains above zero the interface remains promiscuous. Once it hits zero
6777 *	the device reverts back to normal filtering operation. A negative inc
6778 *	value is used to drop promiscuity on the device.
6779 *	Return 0 if successful or a negative errno code on error.
6780 */
6781int dev_set_promiscuity(struct net_device *dev, int inc)
6782{
6783	unsigned int old_flags = dev->flags;
6784	int err;
6785
6786	err = __dev_set_promiscuity(dev, inc, true);
6787	if (err < 0)
6788		return err;
6789	if (dev->flags != old_flags)
6790		dev_set_rx_mode(dev);
6791	return err;
6792}
6793EXPORT_SYMBOL(dev_set_promiscuity);
6794
6795static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6796{
6797	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6798
6799	ASSERT_RTNL();
6800
6801	dev->flags |= IFF_ALLMULTI;
6802	dev->allmulti += inc;
6803	if (dev->allmulti == 0) {
6804		/*
6805		 * Avoid overflow.
6806		 * If inc causes overflow, untouch allmulti and return error.
6807		 */
6808		if (inc < 0)
6809			dev->flags &= ~IFF_ALLMULTI;
6810		else {
6811			dev->allmulti -= inc;
6812			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6813				dev->name);
6814			return -EOVERFLOW;
6815		}
6816	}
6817	if (dev->flags ^ old_flags) {
6818		dev_change_rx_flags(dev, IFF_ALLMULTI);
6819		dev_set_rx_mode(dev);
6820		if (notify)
6821			__dev_notify_flags(dev, old_flags,
6822					   dev->gflags ^ old_gflags);
6823	}
6824	return 0;
6825}
6826
6827/**
6828 *	dev_set_allmulti	- update allmulti count on a device
6829 *	@dev: device
6830 *	@inc: modifier
6831 *
6832 *	Add or remove reception of all multicast frames to a device. While the
6833 *	count in the device remains above zero the interface remains listening
6834 *	to all interfaces. Once it hits zero the device reverts back to normal
6835 *	filtering operation. A negative @inc value is used to drop the counter
6836 *	when releasing a resource needing all multicasts.
6837 *	Return 0 if successful or a negative errno code on error.
6838 */
6839
6840int dev_set_allmulti(struct net_device *dev, int inc)
6841{
6842	return __dev_set_allmulti(dev, inc, true);
6843}
6844EXPORT_SYMBOL(dev_set_allmulti);
6845
6846/*
6847 *	Upload unicast and multicast address lists to device and
6848 *	configure RX filtering. When the device doesn't support unicast
6849 *	filtering it is put in promiscuous mode while unicast addresses
6850 *	are present.
6851 */
6852void __dev_set_rx_mode(struct net_device *dev)
6853{
6854	const struct net_device_ops *ops = dev->netdev_ops;
6855
6856	/* dev_open will call this function so the list will stay sane. */
6857	if (!(dev->flags&IFF_UP))
6858		return;
6859
6860	if (!netif_device_present(dev))
6861		return;
6862
6863	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6864		/* Unicast addresses changes may only happen under the rtnl,
6865		 * therefore calling __dev_set_promiscuity here is safe.
6866		 */
6867		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6868			__dev_set_promiscuity(dev, 1, false);
6869			dev->uc_promisc = true;
6870		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6871			__dev_set_promiscuity(dev, -1, false);
6872			dev->uc_promisc = false;
6873		}
6874	}
6875
6876	if (ops->ndo_set_rx_mode)
6877		ops->ndo_set_rx_mode(dev);
6878}
6879
6880void dev_set_rx_mode(struct net_device *dev)
6881{
6882	netif_addr_lock_bh(dev);
6883	__dev_set_rx_mode(dev);
6884	netif_addr_unlock_bh(dev);
6885}
6886
6887/**
6888 *	dev_get_flags - get flags reported to userspace
6889 *	@dev: device
6890 *
6891 *	Get the combination of flag bits exported through APIs to userspace.
6892 */
6893unsigned int dev_get_flags(const struct net_device *dev)
6894{
6895	unsigned int flags;
6896
6897	flags = (dev->flags & ~(IFF_PROMISC |
6898				IFF_ALLMULTI |
6899				IFF_RUNNING |
6900				IFF_LOWER_UP |
6901				IFF_DORMANT)) |
6902		(dev->gflags & (IFF_PROMISC |
6903				IFF_ALLMULTI));
6904
6905	if (netif_running(dev)) {
6906		if (netif_oper_up(dev))
6907			flags |= IFF_RUNNING;
6908		if (netif_carrier_ok(dev))
6909			flags |= IFF_LOWER_UP;
6910		if (netif_dormant(dev))
6911			flags |= IFF_DORMANT;
6912	}
6913
6914	return flags;
6915}
6916EXPORT_SYMBOL(dev_get_flags);
6917
6918int __dev_change_flags(struct net_device *dev, unsigned int flags)
6919{
6920	unsigned int old_flags = dev->flags;
6921	int ret;
6922
6923	ASSERT_RTNL();
6924
6925	/*
6926	 *	Set the flags on our device.
6927	 */
6928
6929	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6930			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6931			       IFF_AUTOMEDIA)) |
6932		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6933				    IFF_ALLMULTI));
6934
6935	/*
6936	 *	Load in the correct multicast list now the flags have changed.
6937	 */
6938
6939	if ((old_flags ^ flags) & IFF_MULTICAST)
6940		dev_change_rx_flags(dev, IFF_MULTICAST);
6941
6942	dev_set_rx_mode(dev);
6943
6944	/*
6945	 *	Have we downed the interface. We handle IFF_UP ourselves
6946	 *	according to user attempts to set it, rather than blindly
6947	 *	setting it.
6948	 */
6949
6950	ret = 0;
6951	if ((old_flags ^ flags) & IFF_UP) {
6952		if (old_flags & IFF_UP)
6953			__dev_close(dev);
6954		else
6955			ret = __dev_open(dev);
6956	}
6957
6958	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6959		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6960		unsigned int old_flags = dev->flags;
6961
6962		dev->gflags ^= IFF_PROMISC;
6963
6964		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6965			if (dev->flags != old_flags)
6966				dev_set_rx_mode(dev);
6967	}
6968
6969	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6970	 * is important. Some (broken) drivers set IFF_PROMISC, when
6971	 * IFF_ALLMULTI is requested not asking us and not reporting.
6972	 */
6973	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6974		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6975
6976		dev->gflags ^= IFF_ALLMULTI;
6977		__dev_set_allmulti(dev, inc, false);
6978	}
6979
6980	return ret;
6981}
6982
6983void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6984			unsigned int gchanges)
6985{
6986	unsigned int changes = dev->flags ^ old_flags;
6987
6988	if (gchanges)
6989		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6990
6991	if (changes & IFF_UP) {
6992		if (dev->flags & IFF_UP)
6993			call_netdevice_notifiers(NETDEV_UP, dev);
6994		else
6995			call_netdevice_notifiers(NETDEV_DOWN, dev);
6996	}
6997
6998	if (dev->flags & IFF_UP &&
6999	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7000		struct netdev_notifier_change_info change_info = {
7001			.info = {
7002				.dev = dev,
7003			},
7004			.flags_changed = changes,
7005		};
7006
7007		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
 
 
7008	}
7009}
7010
7011/**
7012 *	dev_change_flags - change device settings
7013 *	@dev: device
7014 *	@flags: device state flags
7015 *
7016 *	Change settings on device based state flags. The flags are
7017 *	in the userspace exported format.
7018 */
7019int dev_change_flags(struct net_device *dev, unsigned int flags)
7020{
7021	int ret;
7022	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7023
7024	ret = __dev_change_flags(dev, flags);
7025	if (ret < 0)
7026		return ret;
7027
7028	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7029	__dev_notify_flags(dev, old_flags, changes);
7030	return ret;
7031}
7032EXPORT_SYMBOL(dev_change_flags);
7033
7034int __dev_set_mtu(struct net_device *dev, int new_mtu)
7035{
7036	const struct net_device_ops *ops = dev->netdev_ops;
7037
7038	if (ops->ndo_change_mtu)
7039		return ops->ndo_change_mtu(dev, new_mtu);
7040
7041	dev->mtu = new_mtu;
7042	return 0;
7043}
7044EXPORT_SYMBOL(__dev_set_mtu);
7045
7046/**
7047 *	dev_set_mtu - Change maximum transfer unit
7048 *	@dev: device
7049 *	@new_mtu: new transfer unit
7050 *
7051 *	Change the maximum transfer size of the network device.
7052 */
7053int dev_set_mtu(struct net_device *dev, int new_mtu)
7054{
7055	int err, orig_mtu;
7056
7057	if (new_mtu == dev->mtu)
7058		return 0;
7059
7060	/* MTU must be positive, and in range */
7061	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7062		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7063				    dev->name, new_mtu, dev->min_mtu);
7064		return -EINVAL;
7065	}
7066
7067	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7068		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7069				    dev->name, new_mtu, dev->max_mtu);
7070		return -EINVAL;
7071	}
7072
7073	if (!netif_device_present(dev))
7074		return -ENODEV;
7075
7076	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7077	err = notifier_to_errno(err);
7078	if (err)
7079		return err;
7080
7081	orig_mtu = dev->mtu;
7082	err = __dev_set_mtu(dev, new_mtu);
7083
7084	if (!err) {
7085		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7086		err = notifier_to_errno(err);
7087		if (err) {
7088			/* setting mtu back and notifying everyone again,
7089			 * so that they have a chance to revert changes.
7090			 */
7091			__dev_set_mtu(dev, orig_mtu);
7092			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7093		}
7094	}
7095	return err;
7096}
7097EXPORT_SYMBOL(dev_set_mtu);
7098
7099/**
7100 *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7101 *	@dev: device
7102 *	@new_len: new tx queue length
7103 */
7104int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7105{
7106	unsigned int orig_len = dev->tx_queue_len;
7107	int res;
7108
7109	if (new_len != (unsigned int)new_len)
7110		return -ERANGE;
7111
7112	if (new_len != orig_len) {
7113		dev->tx_queue_len = new_len;
7114		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7115		res = notifier_to_errno(res);
7116		if (res) {
7117			netdev_err(dev,
7118				   "refused to change device tx_queue_len\n");
7119			dev->tx_queue_len = orig_len;
7120			return res;
7121		}
7122		return dev_qdisc_change_tx_queue_len(dev);
7123	}
7124
7125	return 0;
7126}
7127
7128/**
7129 *	dev_set_group - Change group this device belongs to
7130 *	@dev: device
7131 *	@new_group: group this device should belong to
7132 */
7133void dev_set_group(struct net_device *dev, int new_group)
7134{
7135	dev->group = new_group;
7136}
7137EXPORT_SYMBOL(dev_set_group);
7138
7139/**
7140 *	dev_set_mac_address - Change Media Access Control Address
7141 *	@dev: device
7142 *	@sa: new address
7143 *
7144 *	Change the hardware (MAC) address of the device
7145 */
7146int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7147{
7148	const struct net_device_ops *ops = dev->netdev_ops;
7149	int err;
7150
7151	if (!ops->ndo_set_mac_address)
7152		return -EOPNOTSUPP;
7153	if (sa->sa_family != dev->type)
7154		return -EINVAL;
7155	if (!netif_device_present(dev))
7156		return -ENODEV;
7157	err = ops->ndo_set_mac_address(dev, sa);
7158	if (err)
7159		return err;
7160	dev->addr_assign_type = NET_ADDR_SET;
7161	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7162	add_device_randomness(dev->dev_addr, dev->addr_len);
7163	return 0;
7164}
7165EXPORT_SYMBOL(dev_set_mac_address);
7166
7167/**
7168 *	dev_change_carrier - Change device carrier
7169 *	@dev: device
7170 *	@new_carrier: new value
7171 *
7172 *	Change device carrier
7173 */
7174int dev_change_carrier(struct net_device *dev, bool new_carrier)
7175{
7176	const struct net_device_ops *ops = dev->netdev_ops;
7177
7178	if (!ops->ndo_change_carrier)
7179		return -EOPNOTSUPP;
7180	if (!netif_device_present(dev))
7181		return -ENODEV;
7182	return ops->ndo_change_carrier(dev, new_carrier);
7183}
7184EXPORT_SYMBOL(dev_change_carrier);
7185
7186/**
7187 *	dev_get_phys_port_id - Get device physical port ID
7188 *	@dev: device
7189 *	@ppid: port ID
7190 *
7191 *	Get device physical port ID
7192 */
7193int dev_get_phys_port_id(struct net_device *dev,
7194			 struct netdev_phys_item_id *ppid)
7195{
7196	const struct net_device_ops *ops = dev->netdev_ops;
7197
7198	if (!ops->ndo_get_phys_port_id)
7199		return -EOPNOTSUPP;
7200	return ops->ndo_get_phys_port_id(dev, ppid);
7201}
7202EXPORT_SYMBOL(dev_get_phys_port_id);
7203
7204/**
7205 *	dev_get_phys_port_name - Get device physical port name
7206 *	@dev: device
7207 *	@name: port name
7208 *	@len: limit of bytes to copy to name
7209 *
7210 *	Get device physical port name
7211 */
7212int dev_get_phys_port_name(struct net_device *dev,
7213			   char *name, size_t len)
7214{
7215	const struct net_device_ops *ops = dev->netdev_ops;
7216
7217	if (!ops->ndo_get_phys_port_name)
7218		return -EOPNOTSUPP;
7219	return ops->ndo_get_phys_port_name(dev, name, len);
7220}
7221EXPORT_SYMBOL(dev_get_phys_port_name);
7222
7223/**
7224 *	dev_change_proto_down - update protocol port state information
7225 *	@dev: device
7226 *	@proto_down: new value
7227 *
7228 *	This info can be used by switch drivers to set the phys state of the
7229 *	port.
7230 */
7231int dev_change_proto_down(struct net_device *dev, bool proto_down)
7232{
7233	const struct net_device_ops *ops = dev->netdev_ops;
7234
7235	if (!ops->ndo_change_proto_down)
7236		return -EOPNOTSUPP;
7237	if (!netif_device_present(dev))
7238		return -ENODEV;
7239	return ops->ndo_change_proto_down(dev, proto_down);
7240}
7241EXPORT_SYMBOL(dev_change_proto_down);
7242
7243void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7244		     struct netdev_bpf *xdp)
7245{
7246	memset(xdp, 0, sizeof(*xdp));
7247	xdp->command = XDP_QUERY_PROG;
7248
7249	/* Query must always succeed. */
7250	WARN_ON(bpf_op(dev, xdp) < 0);
7251}
7252
7253static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7254{
7255	struct netdev_bpf xdp;
7256
7257	__dev_xdp_query(dev, bpf_op, &xdp);
7258
7259	return xdp.prog_attached;
7260}
7261
7262static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7263			   struct netlink_ext_ack *extack, u32 flags,
7264			   struct bpf_prog *prog)
7265{
7266	struct netdev_bpf xdp;
7267
7268	memset(&xdp, 0, sizeof(xdp));
7269	if (flags & XDP_FLAGS_HW_MODE)
7270		xdp.command = XDP_SETUP_PROG_HW;
7271	else
7272		xdp.command = XDP_SETUP_PROG;
7273	xdp.extack = extack;
7274	xdp.flags = flags;
7275	xdp.prog = prog;
7276
7277	return bpf_op(dev, &xdp);
7278}
7279
7280static void dev_xdp_uninstall(struct net_device *dev)
7281{
7282	struct netdev_bpf xdp;
7283	bpf_op_t ndo_bpf;
7284
7285	/* Remove generic XDP */
7286	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7287
7288	/* Remove from the driver */
7289	ndo_bpf = dev->netdev_ops->ndo_bpf;
7290	if (!ndo_bpf)
7291		return;
7292
7293	__dev_xdp_query(dev, ndo_bpf, &xdp);
7294	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7295		return;
7296
7297	/* Program removal should always succeed */
7298	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7299}
7300
7301/**
7302 *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7303 *	@dev: device
7304 *	@extack: netlink extended ack
7305 *	@fd: new program fd or negative value to clear
7306 *	@flags: xdp-related flags
7307 *
7308 *	Set or clear a bpf program for a device
7309 */
7310int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7311		      int fd, u32 flags)
7312{
7313	const struct net_device_ops *ops = dev->netdev_ops;
7314	struct bpf_prog *prog = NULL;
7315	bpf_op_t bpf_op, bpf_chk;
7316	int err;
7317
7318	ASSERT_RTNL();
7319
7320	bpf_op = bpf_chk = ops->ndo_bpf;
7321	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7322		return -EOPNOTSUPP;
7323	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7324		bpf_op = generic_xdp_install;
7325	if (bpf_op == bpf_chk)
7326		bpf_chk = generic_xdp_install;
7327
7328	if (fd >= 0) {
7329		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7330			return -EEXIST;
7331		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7332		    __dev_xdp_attached(dev, bpf_op))
7333			return -EBUSY;
7334
7335		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7336					     bpf_op == ops->ndo_bpf);
7337		if (IS_ERR(prog))
7338			return PTR_ERR(prog);
7339
7340		if (!(flags & XDP_FLAGS_HW_MODE) &&
7341		    bpf_prog_is_dev_bound(prog->aux)) {
7342			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7343			bpf_prog_put(prog);
7344			return -EINVAL;
7345		}
7346	}
7347
7348	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7349	if (err < 0 && prog)
7350		bpf_prog_put(prog);
7351
7352	return err;
7353}
7354
7355/**
7356 *	dev_new_index	-	allocate an ifindex
7357 *	@net: the applicable net namespace
7358 *
7359 *	Returns a suitable unique value for a new device interface
7360 *	number.  The caller must hold the rtnl semaphore or the
7361 *	dev_base_lock to be sure it remains unique.
7362 */
7363static int dev_new_index(struct net *net)
7364{
7365	int ifindex = net->ifindex;
7366
7367	for (;;) {
7368		if (++ifindex <= 0)
7369			ifindex = 1;
7370		if (!__dev_get_by_index(net, ifindex))
7371			return net->ifindex = ifindex;
7372	}
7373}
7374
7375/* Delayed registration/unregisteration */
7376static LIST_HEAD(net_todo_list);
7377DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7378
7379static void net_set_todo(struct net_device *dev)
7380{
7381	list_add_tail(&dev->todo_list, &net_todo_list);
7382	dev_net(dev)->dev_unreg_count++;
7383}
7384
7385static void rollback_registered_many(struct list_head *head)
7386{
7387	struct net_device *dev, *tmp;
7388	LIST_HEAD(close_head);
7389
7390	BUG_ON(dev_boot_phase);
7391	ASSERT_RTNL();
7392
7393	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7394		/* Some devices call without registering
7395		 * for initialization unwind. Remove those
7396		 * devices and proceed with the remaining.
7397		 */
7398		if (dev->reg_state == NETREG_UNINITIALIZED) {
7399			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7400				 dev->name, dev);
7401
7402			WARN_ON(1);
7403			list_del(&dev->unreg_list);
7404			continue;
7405		}
7406		dev->dismantle = true;
7407		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7408	}
7409
7410	/* If device is running, close it first. */
7411	list_for_each_entry(dev, head, unreg_list)
7412		list_add_tail(&dev->close_list, &close_head);
7413	dev_close_many(&close_head, true);
7414
7415	list_for_each_entry(dev, head, unreg_list) {
7416		/* And unlink it from device chain. */
7417		unlist_netdevice(dev);
7418
7419		dev->reg_state = NETREG_UNREGISTERING;
7420	}
7421	flush_all_backlogs();
7422
7423	synchronize_net();
7424
7425	list_for_each_entry(dev, head, unreg_list) {
7426		struct sk_buff *skb = NULL;
7427
7428		/* Shutdown queueing discipline. */
7429		dev_shutdown(dev);
7430
7431		dev_xdp_uninstall(dev);
7432
7433		/* Notify protocols, that we are about to destroy
7434		 * this device. They should clean all the things.
7435		 */
7436		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7437
7438		if (!dev->rtnl_link_ops ||
7439		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7440			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7441						     GFP_KERNEL, NULL, 0);
7442
7443		/*
7444		 *	Flush the unicast and multicast chains
7445		 */
7446		dev_uc_flush(dev);
7447		dev_mc_flush(dev);
7448
7449		if (dev->netdev_ops->ndo_uninit)
7450			dev->netdev_ops->ndo_uninit(dev);
7451
7452		if (skb)
7453			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7454
7455		/* Notifier chain MUST detach us all upper devices. */
7456		WARN_ON(netdev_has_any_upper_dev(dev));
7457		WARN_ON(netdev_has_any_lower_dev(dev));
7458
7459		/* Remove entries from kobject tree */
7460		netdev_unregister_kobject(dev);
7461#ifdef CONFIG_XPS
7462		/* Remove XPS queueing entries */
7463		netif_reset_xps_queues_gt(dev, 0);
7464#endif
7465	}
7466
7467	synchronize_net();
7468
7469	list_for_each_entry(dev, head, unreg_list)
7470		dev_put(dev);
7471}
7472
7473static void rollback_registered(struct net_device *dev)
7474{
7475	LIST_HEAD(single);
7476
7477	list_add(&dev->unreg_list, &single);
7478	rollback_registered_many(&single);
7479	list_del(&single);
7480}
7481
7482static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7483	struct net_device *upper, netdev_features_t features)
7484{
7485	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7486	netdev_features_t feature;
7487	int feature_bit;
7488
7489	for_each_netdev_feature(&upper_disables, feature_bit) {
7490		feature = __NETIF_F_BIT(feature_bit);
7491		if (!(upper->wanted_features & feature)
7492		    && (features & feature)) {
7493			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7494				   &feature, upper->name);
7495			features &= ~feature;
7496		}
7497	}
7498
7499	return features;
7500}
7501
7502static void netdev_sync_lower_features(struct net_device *upper,
7503	struct net_device *lower, netdev_features_t features)
7504{
7505	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7506	netdev_features_t feature;
7507	int feature_bit;
7508
7509	for_each_netdev_feature(&upper_disables, feature_bit) {
7510		feature = __NETIF_F_BIT(feature_bit);
7511		if (!(features & feature) && (lower->features & feature)) {
7512			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7513				   &feature, lower->name);
7514			lower->wanted_features &= ~feature;
7515			netdev_update_features(lower);
7516
7517			if (unlikely(lower->features & feature))
7518				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7519					    &feature, lower->name);
7520		}
7521	}
7522}
7523
7524static netdev_features_t netdev_fix_features(struct net_device *dev,
7525	netdev_features_t features)
7526{
7527	/* Fix illegal checksum combinations */
7528	if ((features & NETIF_F_HW_CSUM) &&
7529	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7530		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7531		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7532	}
7533
7534	/* TSO requires that SG is present as well. */
7535	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7536		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7537		features &= ~NETIF_F_ALL_TSO;
7538	}
7539
7540	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7541					!(features & NETIF_F_IP_CSUM)) {
7542		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7543		features &= ~NETIF_F_TSO;
7544		features &= ~NETIF_F_TSO_ECN;
7545	}
7546
7547	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7548					 !(features & NETIF_F_IPV6_CSUM)) {
7549		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7550		features &= ~NETIF_F_TSO6;
7551	}
7552
7553	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7554	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7555		features &= ~NETIF_F_TSO_MANGLEID;
7556
7557	/* TSO ECN requires that TSO is present as well. */
7558	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7559		features &= ~NETIF_F_TSO_ECN;
7560
7561	/* Software GSO depends on SG. */
7562	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7563		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7564		features &= ~NETIF_F_GSO;
7565	}
7566
7567	/* GSO partial features require GSO partial be set */
7568	if ((features & dev->gso_partial_features) &&
7569	    !(features & NETIF_F_GSO_PARTIAL)) {
7570		netdev_dbg(dev,
7571			   "Dropping partially supported GSO features since no GSO partial.\n");
7572		features &= ~dev->gso_partial_features;
7573	}
7574
7575	if (!(features & NETIF_F_RXCSUM)) {
7576		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7577		 * successfully merged by hardware must also have the
7578		 * checksum verified by hardware.  If the user does not
7579		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7580		 */
7581		if (features & NETIF_F_GRO_HW) {
7582			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7583			features &= ~NETIF_F_GRO_HW;
7584		}
7585	}
7586
7587	/* LRO/HW-GRO features cannot be combined with RX-FCS */
7588	if (features & NETIF_F_RXFCS) {
7589		if (features & NETIF_F_LRO) {
7590			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7591			features &= ~NETIF_F_LRO;
7592		}
7593
7594		if (features & NETIF_F_GRO_HW) {
7595			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7596			features &= ~NETIF_F_GRO_HW;
7597		}
7598	}
7599
7600	return features;
7601}
7602
7603int __netdev_update_features(struct net_device *dev)
7604{
7605	struct net_device *upper, *lower;
7606	netdev_features_t features;
7607	struct list_head *iter;
7608	int err = -1;
7609
7610	ASSERT_RTNL();
7611
7612	features = netdev_get_wanted_features(dev);
7613
7614	if (dev->netdev_ops->ndo_fix_features)
7615		features = dev->netdev_ops->ndo_fix_features(dev, features);
7616
7617	/* driver might be less strict about feature dependencies */
7618	features = netdev_fix_features(dev, features);
7619
7620	/* some features can't be enabled if they're off an an upper device */
7621	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7622		features = netdev_sync_upper_features(dev, upper, features);
7623
7624	if (dev->features == features)
7625		goto sync_lower;
7626
7627	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7628		&dev->features, &features);
7629
7630	if (dev->netdev_ops->ndo_set_features)
7631		err = dev->netdev_ops->ndo_set_features(dev, features);
7632	else
7633		err = 0;
7634
7635	if (unlikely(err < 0)) {
7636		netdev_err(dev,
7637			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7638			err, &features, &dev->features);
7639		/* return non-0 since some features might have changed and
7640		 * it's better to fire a spurious notification than miss it
7641		 */
7642		return -1;
7643	}
7644
7645sync_lower:
7646	/* some features must be disabled on lower devices when disabled
7647	 * on an upper device (think: bonding master or bridge)
7648	 */
7649	netdev_for_each_lower_dev(dev, lower, iter)
7650		netdev_sync_lower_features(dev, lower, features);
7651
7652	if (!err) {
7653		netdev_features_t diff = features ^ dev->features;
7654
7655		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7656			/* udp_tunnel_{get,drop}_rx_info both need
7657			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7658			 * device, or they won't do anything.
7659			 * Thus we need to update dev->features
7660			 * *before* calling udp_tunnel_get_rx_info,
7661			 * but *after* calling udp_tunnel_drop_rx_info.
7662			 */
7663			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7664				dev->features = features;
7665				udp_tunnel_get_rx_info(dev);
7666			} else {
7667				udp_tunnel_drop_rx_info(dev);
7668			}
7669		}
7670
7671		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7672			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7673				dev->features = features;
7674				err |= vlan_get_rx_ctag_filter_info(dev);
7675			} else {
7676				vlan_drop_rx_ctag_filter_info(dev);
7677			}
7678		}
7679
7680		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7681			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7682				dev->features = features;
7683				err |= vlan_get_rx_stag_filter_info(dev);
7684			} else {
7685				vlan_drop_rx_stag_filter_info(dev);
7686			}
7687		}
7688
7689		dev->features = features;
7690	}
7691
7692	return err < 0 ? 0 : 1;
7693}
7694
7695/**
7696 *	netdev_update_features - recalculate device features
7697 *	@dev: the device to check
7698 *
7699 *	Recalculate dev->features set and send notifications if it
7700 *	has changed. Should be called after driver or hardware dependent
7701 *	conditions might have changed that influence the features.
7702 */
7703void netdev_update_features(struct net_device *dev)
7704{
7705	if (__netdev_update_features(dev))
7706		netdev_features_change(dev);
7707}
7708EXPORT_SYMBOL(netdev_update_features);
7709
7710/**
7711 *	netdev_change_features - recalculate device features
7712 *	@dev: the device to check
7713 *
7714 *	Recalculate dev->features set and send notifications even
7715 *	if they have not changed. Should be called instead of
7716 *	netdev_update_features() if also dev->vlan_features might
7717 *	have changed to allow the changes to be propagated to stacked
7718 *	VLAN devices.
7719 */
7720void netdev_change_features(struct net_device *dev)
7721{
7722	__netdev_update_features(dev);
7723	netdev_features_change(dev);
7724}
7725EXPORT_SYMBOL(netdev_change_features);
7726
7727/**
7728 *	netif_stacked_transfer_operstate -	transfer operstate
7729 *	@rootdev: the root or lower level device to transfer state from
7730 *	@dev: the device to transfer operstate to
7731 *
7732 *	Transfer operational state from root to device. This is normally
7733 *	called when a stacking relationship exists between the root
7734 *	device and the device(a leaf device).
7735 */
7736void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7737					struct net_device *dev)
7738{
7739	if (rootdev->operstate == IF_OPER_DORMANT)
7740		netif_dormant_on(dev);
7741	else
7742		netif_dormant_off(dev);
7743
7744	if (netif_carrier_ok(rootdev))
7745		netif_carrier_on(dev);
7746	else
7747		netif_carrier_off(dev);
 
 
 
7748}
7749EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7750
 
7751static int netif_alloc_rx_queues(struct net_device *dev)
7752{
7753	unsigned int i, count = dev->num_rx_queues;
7754	struct netdev_rx_queue *rx;
7755	size_t sz = count * sizeof(*rx);
7756	int err = 0;
7757
7758	BUG_ON(count < 1);
7759
7760	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7761	if (!rx)
7762		return -ENOMEM;
7763
7764	dev->_rx = rx;
7765
7766	for (i = 0; i < count; i++) {
7767		rx[i].dev = dev;
7768
7769		/* XDP RX-queue setup */
7770		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7771		if (err < 0)
7772			goto err_rxq_info;
7773	}
7774	return 0;
7775
7776err_rxq_info:
7777	/* Rollback successful reg's and free other resources */
7778	while (i--)
7779		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7780	kvfree(dev->_rx);
7781	dev->_rx = NULL;
7782	return err;
7783}
7784
7785static void netif_free_rx_queues(struct net_device *dev)
7786{
7787	unsigned int i, count = dev->num_rx_queues;
7788
7789	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7790	if (!dev->_rx)
7791		return;
7792
7793	for (i = 0; i < count; i++)
7794		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7795
7796	kvfree(dev->_rx);
7797}
 
7798
7799static void netdev_init_one_queue(struct net_device *dev,
7800				  struct netdev_queue *queue, void *_unused)
7801{
7802	/* Initialize queue lock */
7803	spin_lock_init(&queue->_xmit_lock);
7804	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7805	queue->xmit_lock_owner = -1;
7806	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7807	queue->dev = dev;
7808#ifdef CONFIG_BQL
7809	dql_init(&queue->dql, HZ);
7810#endif
7811}
7812
7813static void netif_free_tx_queues(struct net_device *dev)
7814{
7815	kvfree(dev->_tx);
 
 
 
7816}
7817
7818static int netif_alloc_netdev_queues(struct net_device *dev)
7819{
7820	unsigned int count = dev->num_tx_queues;
7821	struct netdev_queue *tx;
7822	size_t sz = count * sizeof(*tx);
7823
7824	if (count < 1 || count > 0xffff)
7825		return -EINVAL;
7826
7827	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7828	if (!tx)
7829		return -ENOMEM;
7830
 
 
 
 
 
 
7831	dev->_tx = tx;
7832
7833	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7834	spin_lock_init(&dev->tx_global_lock);
7835
7836	return 0;
7837}
7838
7839void netif_tx_stop_all_queues(struct net_device *dev)
7840{
7841	unsigned int i;
7842
7843	for (i = 0; i < dev->num_tx_queues; i++) {
7844		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7845
7846		netif_tx_stop_queue(txq);
7847	}
7848}
7849EXPORT_SYMBOL(netif_tx_stop_all_queues);
7850
7851/**
7852 *	register_netdevice	- register a network device
7853 *	@dev: device to register
7854 *
7855 *	Take a completed network device structure and add it to the kernel
7856 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7857 *	chain. 0 is returned on success. A negative errno code is returned
7858 *	on a failure to set up the device, or if the name is a duplicate.
7859 *
7860 *	Callers must hold the rtnl semaphore. You may want
7861 *	register_netdev() instead of this.
7862 *
7863 *	BUGS:
7864 *	The locking appears insufficient to guarantee two parallel registers
7865 *	will not get the same name.
7866 */
7867
7868int register_netdevice(struct net_device *dev)
7869{
7870	int ret;
7871	struct net *net = dev_net(dev);
7872
7873	BUG_ON(dev_boot_phase);
7874	ASSERT_RTNL();
7875
7876	might_sleep();
7877
7878	/* When net_device's are persistent, this will be fatal. */
7879	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7880	BUG_ON(!net);
7881
7882	spin_lock_init(&dev->addr_list_lock);
7883	netdev_set_addr_lockdep_class(dev);
7884
 
 
7885	ret = dev_get_valid_name(net, dev, dev->name);
7886	if (ret < 0)
7887		goto out;
7888
7889	/* Init, if this function is available */
7890	if (dev->netdev_ops->ndo_init) {
7891		ret = dev->netdev_ops->ndo_init(dev);
7892		if (ret) {
7893			if (ret > 0)
7894				ret = -EIO;
7895			goto out;
7896		}
7897	}
7898
7899	if (((dev->hw_features | dev->features) &
7900	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7901	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7902	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7903		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7904		ret = -EINVAL;
7905		goto err_uninit;
7906	}
7907
7908	ret = -EBUSY;
7909	if (!dev->ifindex)
7910		dev->ifindex = dev_new_index(net);
7911	else if (__dev_get_by_index(net, dev->ifindex))
7912		goto err_uninit;
7913
 
 
 
7914	/* Transfer changeable features to wanted_features and enable
7915	 * software offloads (GSO and GRO).
7916	 */
7917	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7918	dev->features |= NETIF_F_SOFT_FEATURES;
7919
7920	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7921		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7922		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7923	}
7924
7925	dev->wanted_features = dev->features & dev->hw_features;
7926
7927	if (!(dev->flags & IFF_LOOPBACK))
7928		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7929
7930	/* If IPv4 TCP segmentation offload is supported we should also
7931	 * allow the device to enable segmenting the frame with the option
7932	 * of ignoring a static IP ID value.  This doesn't enable the
7933	 * feature itself but allows the user to enable it later.
7934	 */
7935	if (dev->hw_features & NETIF_F_TSO)
7936		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7937	if (dev->vlan_features & NETIF_F_TSO)
7938		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7939	if (dev->mpls_features & NETIF_F_TSO)
7940		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7941	if (dev->hw_enc_features & NETIF_F_TSO)
7942		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7943
7944	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7945	 */
7946	dev->vlan_features |= NETIF_F_HIGHDMA;
7947
7948	/* Make NETIF_F_SG inheritable to tunnel devices.
7949	 */
7950	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7951
7952	/* Make NETIF_F_SG inheritable to MPLS.
7953	 */
7954	dev->mpls_features |= NETIF_F_SG;
7955
7956	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7957	ret = notifier_to_errno(ret);
7958	if (ret)
7959		goto err_uninit;
7960
7961	ret = netdev_register_kobject(dev);
7962	if (ret)
7963		goto err_uninit;
7964	dev->reg_state = NETREG_REGISTERED;
7965
7966	__netdev_update_features(dev);
7967
7968	/*
7969	 *	Default initial state at registry is that the
7970	 *	device is present.
7971	 */
7972
7973	set_bit(__LINK_STATE_PRESENT, &dev->state);
7974
7975	linkwatch_init_dev(dev);
7976
7977	dev_init_scheduler(dev);
7978	dev_hold(dev);
7979	list_netdevice(dev);
7980	add_device_randomness(dev->dev_addr, dev->addr_len);
7981
7982	/* If the device has permanent device address, driver should
7983	 * set dev_addr and also addr_assign_type should be set to
7984	 * NET_ADDR_PERM (default value).
7985	 */
7986	if (dev->addr_assign_type == NET_ADDR_PERM)
7987		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7988
7989	/* Notify protocols, that a new device appeared. */
7990	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7991	ret = notifier_to_errno(ret);
7992	if (ret) {
7993		rollback_registered(dev);
7994		dev->reg_state = NETREG_UNREGISTERED;
7995	}
7996	/*
7997	 *	Prevent userspace races by waiting until the network
7998	 *	device is fully setup before sending notifications.
7999	 */
8000	if (!dev->rtnl_link_ops ||
8001	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8002		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8003
8004out:
8005	return ret;
8006
8007err_uninit:
8008	if (dev->netdev_ops->ndo_uninit)
8009		dev->netdev_ops->ndo_uninit(dev);
8010	if (dev->priv_destructor)
8011		dev->priv_destructor(dev);
8012	goto out;
8013}
8014EXPORT_SYMBOL(register_netdevice);
8015
8016/**
8017 *	init_dummy_netdev	- init a dummy network device for NAPI
8018 *	@dev: device to init
8019 *
8020 *	This takes a network device structure and initialize the minimum
8021 *	amount of fields so it can be used to schedule NAPI polls without
8022 *	registering a full blown interface. This is to be used by drivers
8023 *	that need to tie several hardware interfaces to a single NAPI
8024 *	poll scheduler due to HW limitations.
8025 */
8026int init_dummy_netdev(struct net_device *dev)
8027{
8028	/* Clear everything. Note we don't initialize spinlocks
8029	 * are they aren't supposed to be taken by any of the
8030	 * NAPI code and this dummy netdev is supposed to be
8031	 * only ever used for NAPI polls
8032	 */
8033	memset(dev, 0, sizeof(struct net_device));
8034
8035	/* make sure we BUG if trying to hit standard
8036	 * register/unregister code path
8037	 */
8038	dev->reg_state = NETREG_DUMMY;
8039
8040	/* NAPI wants this */
8041	INIT_LIST_HEAD(&dev->napi_list);
8042
8043	/* a dummy interface is started by default */
8044	set_bit(__LINK_STATE_PRESENT, &dev->state);
8045	set_bit(__LINK_STATE_START, &dev->state);
8046
8047	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8048	 * because users of this 'device' dont need to change
8049	 * its refcount.
8050	 */
8051
8052	return 0;
8053}
8054EXPORT_SYMBOL_GPL(init_dummy_netdev);
8055
8056
8057/**
8058 *	register_netdev	- register a network device
8059 *	@dev: device to register
8060 *
8061 *	Take a completed network device structure and add it to the kernel
8062 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8063 *	chain. 0 is returned on success. A negative errno code is returned
8064 *	on a failure to set up the device, or if the name is a duplicate.
8065 *
8066 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8067 *	and expands the device name if you passed a format string to
8068 *	alloc_netdev.
8069 */
8070int register_netdev(struct net_device *dev)
8071{
8072	int err;
8073
8074	if (rtnl_lock_killable())
8075		return -EINTR;
8076	err = register_netdevice(dev);
8077	rtnl_unlock();
8078	return err;
8079}
8080EXPORT_SYMBOL(register_netdev);
8081
8082int netdev_refcnt_read(const struct net_device *dev)
8083{
8084	int i, refcnt = 0;
8085
8086	for_each_possible_cpu(i)
8087		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8088	return refcnt;
8089}
8090EXPORT_SYMBOL(netdev_refcnt_read);
8091
8092/**
8093 * netdev_wait_allrefs - wait until all references are gone.
8094 * @dev: target net_device
8095 *
8096 * This is called when unregistering network devices.
8097 *
8098 * Any protocol or device that holds a reference should register
8099 * for netdevice notification, and cleanup and put back the
8100 * reference if they receive an UNREGISTER event.
8101 * We can get stuck here if buggy protocols don't correctly
8102 * call dev_put.
8103 */
8104static void netdev_wait_allrefs(struct net_device *dev)
8105{
8106	unsigned long rebroadcast_time, warning_time;
8107	int refcnt;
8108
8109	linkwatch_forget_dev(dev);
8110
8111	rebroadcast_time = warning_time = jiffies;
8112	refcnt = netdev_refcnt_read(dev);
8113
8114	while (refcnt != 0) {
8115		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8116			rtnl_lock();
8117
8118			/* Rebroadcast unregister notification */
8119			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8120
8121			__rtnl_unlock();
8122			rcu_barrier();
8123			rtnl_lock();
8124
 
8125			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8126				     &dev->state)) {
8127				/* We must not have linkwatch events
8128				 * pending on unregister. If this
8129				 * happens, we simply run the queue
8130				 * unscheduled, resulting in a noop
8131				 * for this device.
8132				 */
8133				linkwatch_run_queue();
8134			}
8135
8136			__rtnl_unlock();
8137
8138			rebroadcast_time = jiffies;
8139		}
8140
8141		msleep(250);
8142
8143		refcnt = netdev_refcnt_read(dev);
8144
8145		if (time_after(jiffies, warning_time + 10 * HZ)) {
8146			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8147				 dev->name, refcnt);
8148			warning_time = jiffies;
8149		}
8150	}
8151}
8152
8153/* The sequence is:
8154 *
8155 *	rtnl_lock();
8156 *	...
8157 *	register_netdevice(x1);
8158 *	register_netdevice(x2);
8159 *	...
8160 *	unregister_netdevice(y1);
8161 *	unregister_netdevice(y2);
8162 *      ...
8163 *	rtnl_unlock();
8164 *	free_netdev(y1);
8165 *	free_netdev(y2);
8166 *
8167 * We are invoked by rtnl_unlock().
8168 * This allows us to deal with problems:
8169 * 1) We can delete sysfs objects which invoke hotplug
8170 *    without deadlocking with linkwatch via keventd.
8171 * 2) Since we run with the RTNL semaphore not held, we can sleep
8172 *    safely in order to wait for the netdev refcnt to drop to zero.
8173 *
8174 * We must not return until all unregister events added during
8175 * the interval the lock was held have been completed.
8176 */
8177void netdev_run_todo(void)
8178{
8179	struct list_head list;
8180
8181	/* Snapshot list, allow later requests */
8182	list_replace_init(&net_todo_list, &list);
8183
8184	__rtnl_unlock();
8185
8186
8187	/* Wait for rcu callbacks to finish before next phase */
8188	if (!list_empty(&list))
8189		rcu_barrier();
8190
8191	while (!list_empty(&list)) {
8192		struct net_device *dev
8193			= list_first_entry(&list, struct net_device, todo_list);
8194		list_del(&dev->todo_list);
8195
 
 
 
 
8196		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8197			pr_err("network todo '%s' but state %d\n",
8198			       dev->name, dev->reg_state);
8199			dump_stack();
8200			continue;
8201		}
8202
8203		dev->reg_state = NETREG_UNREGISTERED;
8204
 
 
8205		netdev_wait_allrefs(dev);
8206
8207		/* paranoia */
8208		BUG_ON(netdev_refcnt_read(dev));
8209		BUG_ON(!list_empty(&dev->ptype_all));
8210		BUG_ON(!list_empty(&dev->ptype_specific));
8211		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8212		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8213#if IS_ENABLED(CONFIG_DECNET)
8214		WARN_ON(dev->dn_ptr);
8215#endif
8216		if (dev->priv_destructor)
8217			dev->priv_destructor(dev);
8218		if (dev->needs_free_netdev)
8219			free_netdev(dev);
8220
8221		/* Report a network device has been unregistered */
8222		rtnl_lock();
8223		dev_net(dev)->dev_unreg_count--;
8224		__rtnl_unlock();
8225		wake_up(&netdev_unregistering_wq);
8226
8227		/* Free network device */
8228		kobject_put(&dev->dev.kobj);
8229	}
8230}
8231
8232/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8233 * all the same fields in the same order as net_device_stats, with only
8234 * the type differing, but rtnl_link_stats64 may have additional fields
8235 * at the end for newer counters.
8236 */
8237void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8238			     const struct net_device_stats *netdev_stats)
8239{
8240#if BITS_PER_LONG == 64
8241	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8242	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8243	/* zero out counters that only exist in rtnl_link_stats64 */
8244	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8245	       sizeof(*stats64) - sizeof(*netdev_stats));
8246#else
8247	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8248	const unsigned long *src = (const unsigned long *)netdev_stats;
8249	u64 *dst = (u64 *)stats64;
8250
8251	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
 
8252	for (i = 0; i < n; i++)
8253		dst[i] = src[i];
8254	/* zero out counters that only exist in rtnl_link_stats64 */
8255	memset((char *)stats64 + n * sizeof(u64), 0,
8256	       sizeof(*stats64) - n * sizeof(u64));
8257#endif
8258}
8259EXPORT_SYMBOL(netdev_stats_to_stats64);
8260
8261/**
8262 *	dev_get_stats	- get network device statistics
8263 *	@dev: device to get statistics from
8264 *	@storage: place to store stats
8265 *
8266 *	Get network statistics from device. Return @storage.
8267 *	The device driver may provide its own method by setting
8268 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8269 *	otherwise the internal statistics structure is used.
8270 */
8271struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8272					struct rtnl_link_stats64 *storage)
8273{
8274	const struct net_device_ops *ops = dev->netdev_ops;
8275
8276	if (ops->ndo_get_stats64) {
8277		memset(storage, 0, sizeof(*storage));
8278		ops->ndo_get_stats64(dev, storage);
8279	} else if (ops->ndo_get_stats) {
8280		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8281	} else {
8282		netdev_stats_to_stats64(storage, &dev->stats);
8283	}
8284	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8285	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8286	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8287	return storage;
8288}
8289EXPORT_SYMBOL(dev_get_stats);
8290
8291struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8292{
8293	struct netdev_queue *queue = dev_ingress_queue(dev);
8294
8295#ifdef CONFIG_NET_CLS_ACT
8296	if (queue)
8297		return queue;
8298	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8299	if (!queue)
8300		return NULL;
8301	netdev_init_one_queue(dev, queue, NULL);
8302	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8303	queue->qdisc_sleeping = &noop_qdisc;
8304	rcu_assign_pointer(dev->ingress_queue, queue);
8305#endif
8306	return queue;
8307}
8308
8309static const struct ethtool_ops default_ethtool_ops;
8310
8311void netdev_set_default_ethtool_ops(struct net_device *dev,
8312				    const struct ethtool_ops *ops)
8313{
8314	if (dev->ethtool_ops == &default_ethtool_ops)
8315		dev->ethtool_ops = ops;
8316}
8317EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8318
8319void netdev_freemem(struct net_device *dev)
8320{
8321	char *addr = (char *)dev - dev->padded;
8322
8323	kvfree(addr);
 
 
 
8324}
8325
8326/**
8327 * alloc_netdev_mqs - allocate network device
8328 * @sizeof_priv: size of private data to allocate space for
8329 * @name: device name format string
8330 * @name_assign_type: origin of device name
8331 * @setup: callback to initialize device
8332 * @txqs: the number of TX subqueues to allocate
8333 * @rxqs: the number of RX subqueues to allocate
8334 *
8335 * Allocates a struct net_device with private data area for driver use
8336 * and performs basic initialization.  Also allocates subqueue structs
8337 * for each queue on the device.
8338 */
8339struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8340		unsigned char name_assign_type,
8341		void (*setup)(struct net_device *),
8342		unsigned int txqs, unsigned int rxqs)
8343{
8344	struct net_device *dev;
8345	unsigned int alloc_size;
8346	struct net_device *p;
8347
8348	BUG_ON(strlen(name) >= sizeof(dev->name));
8349
8350	if (txqs < 1) {
8351		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8352		return NULL;
8353	}
8354
 
8355	if (rxqs < 1) {
8356		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8357		return NULL;
8358	}
 
8359
8360	alloc_size = sizeof(struct net_device);
8361	if (sizeof_priv) {
8362		/* ensure 32-byte alignment of private area */
8363		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8364		alloc_size += sizeof_priv;
8365	}
8366	/* ensure 32-byte alignment of whole construct */
8367	alloc_size += NETDEV_ALIGN - 1;
8368
8369	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 
 
8370	if (!p)
8371		return NULL;
8372
8373	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8374	dev->padded = (char *)dev - (char *)p;
8375
8376	dev->pcpu_refcnt = alloc_percpu(int);
8377	if (!dev->pcpu_refcnt)
8378		goto free_dev;
8379
8380	if (dev_addr_init(dev))
8381		goto free_pcpu;
8382
8383	dev_mc_init(dev);
8384	dev_uc_init(dev);
8385
8386	dev_net_set(dev, &init_net);
8387
8388	dev->gso_max_size = GSO_MAX_SIZE;
8389	dev->gso_max_segs = GSO_MAX_SEGS;
8390
8391	INIT_LIST_HEAD(&dev->napi_list);
8392	INIT_LIST_HEAD(&dev->unreg_list);
8393	INIT_LIST_HEAD(&dev->close_list);
8394	INIT_LIST_HEAD(&dev->link_watch_list);
8395	INIT_LIST_HEAD(&dev->adj_list.upper);
8396	INIT_LIST_HEAD(&dev->adj_list.lower);
8397	INIT_LIST_HEAD(&dev->ptype_all);
8398	INIT_LIST_HEAD(&dev->ptype_specific);
8399#ifdef CONFIG_NET_SCHED
8400	hash_init(dev->qdisc_hash);
8401#endif
8402	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8403	setup(dev);
8404
8405	if (!dev->tx_queue_len) {
8406		dev->priv_flags |= IFF_NO_QUEUE;
8407		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8408	}
8409
8410	dev->num_tx_queues = txqs;
8411	dev->real_num_tx_queues = txqs;
8412	if (netif_alloc_netdev_queues(dev))
8413		goto free_all;
8414
 
8415	dev->num_rx_queues = rxqs;
8416	dev->real_num_rx_queues = rxqs;
8417	if (netif_alloc_rx_queues(dev))
8418		goto free_all;
 
8419
8420	strcpy(dev->name, name);
8421	dev->name_assign_type = name_assign_type;
8422	dev->group = INIT_NETDEV_GROUP;
8423	if (!dev->ethtool_ops)
8424		dev->ethtool_ops = &default_ethtool_ops;
8425
8426	nf_hook_ingress_init(dev);
8427
8428	return dev;
8429
8430free_all:
8431	free_netdev(dev);
8432	return NULL;
8433
8434free_pcpu:
8435	free_percpu(dev->pcpu_refcnt);
 
 
 
 
 
8436free_dev:
8437	netdev_freemem(dev);
8438	return NULL;
8439}
8440EXPORT_SYMBOL(alloc_netdev_mqs);
8441
8442/**
8443 * free_netdev - free network device
8444 * @dev: device
8445 *
8446 * This function does the last stage of destroying an allocated device
8447 * interface. The reference to the device object is released. If this
8448 * is the last reference then it will be freed.Must be called in process
8449 * context.
8450 */
8451void free_netdev(struct net_device *dev)
8452{
8453	struct napi_struct *p, *n;
8454
8455	might_sleep();
 
8456	netif_free_tx_queues(dev);
8457	netif_free_rx_queues(dev);
 
 
8458
8459	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8460
8461	/* Flush device addresses */
8462	dev_addr_flush(dev);
8463
8464	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8465		netif_napi_del(p);
8466
8467	free_percpu(dev->pcpu_refcnt);
8468	dev->pcpu_refcnt = NULL;
8469
8470	/*  Compatibility with error handling in drivers */
8471	if (dev->reg_state == NETREG_UNINITIALIZED) {
8472		netdev_freemem(dev);
8473		return;
8474	}
8475
8476	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8477	dev->reg_state = NETREG_RELEASED;
8478
8479	/* will free via device release */
8480	put_device(&dev->dev);
8481}
8482EXPORT_SYMBOL(free_netdev);
8483
8484/**
8485 *	synchronize_net -  Synchronize with packet receive processing
8486 *
8487 *	Wait for packets currently being received to be done.
8488 *	Does not block later packets from starting.
8489 */
8490void synchronize_net(void)
8491{
8492	might_sleep();
8493	if (rtnl_is_locked())
8494		synchronize_rcu_expedited();
8495	else
8496		synchronize_rcu();
8497}
8498EXPORT_SYMBOL(synchronize_net);
8499
8500/**
8501 *	unregister_netdevice_queue - remove device from the kernel
8502 *	@dev: device
8503 *	@head: list
8504 *
8505 *	This function shuts down a device interface and removes it
8506 *	from the kernel tables.
8507 *	If head not NULL, device is queued to be unregistered later.
8508 *
8509 *	Callers must hold the rtnl semaphore.  You may want
8510 *	unregister_netdev() instead of this.
8511 */
8512
8513void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8514{
8515	ASSERT_RTNL();
8516
8517	if (head) {
8518		list_move_tail(&dev->unreg_list, head);
8519	} else {
8520		rollback_registered(dev);
8521		/* Finish processing unregister after unlock */
8522		net_set_todo(dev);
8523	}
8524}
8525EXPORT_SYMBOL(unregister_netdevice_queue);
8526
8527/**
8528 *	unregister_netdevice_many - unregister many devices
8529 *	@head: list of devices
8530 *
8531 *  Note: As most callers use a stack allocated list_head,
8532 *  we force a list_del() to make sure stack wont be corrupted later.
8533 */
8534void unregister_netdevice_many(struct list_head *head)
8535{
8536	struct net_device *dev;
8537
8538	if (!list_empty(head)) {
8539		rollback_registered_many(head);
8540		list_for_each_entry(dev, head, unreg_list)
8541			net_set_todo(dev);
8542		list_del(head);
8543	}
8544}
8545EXPORT_SYMBOL(unregister_netdevice_many);
8546
8547/**
8548 *	unregister_netdev - remove device from the kernel
8549 *	@dev: device
8550 *
8551 *	This function shuts down a device interface and removes it
8552 *	from the kernel tables.
8553 *
8554 *	This is just a wrapper for unregister_netdevice that takes
8555 *	the rtnl semaphore.  In general you want to use this and not
8556 *	unregister_netdevice.
8557 */
8558void unregister_netdev(struct net_device *dev)
8559{
8560	rtnl_lock();
8561	unregister_netdevice(dev);
8562	rtnl_unlock();
8563}
8564EXPORT_SYMBOL(unregister_netdev);
8565
8566/**
8567 *	dev_change_net_namespace - move device to different nethost namespace
8568 *	@dev: device
8569 *	@net: network namespace
8570 *	@pat: If not NULL name pattern to try if the current device name
8571 *	      is already taken in the destination network namespace.
8572 *
8573 *	This function shuts down a device interface and moves it
8574 *	to a new network namespace. On success 0 is returned, on
8575 *	a failure a netagive errno code is returned.
8576 *
8577 *	Callers must hold the rtnl semaphore.
8578 */
8579
8580int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8581{
8582	int err, new_nsid, new_ifindex;
8583
8584	ASSERT_RTNL();
8585
8586	/* Don't allow namespace local devices to be moved. */
8587	err = -EINVAL;
8588	if (dev->features & NETIF_F_NETNS_LOCAL)
8589		goto out;
8590
8591	/* Ensure the device has been registrered */
8592	if (dev->reg_state != NETREG_REGISTERED)
8593		goto out;
8594
8595	/* Get out if there is nothing todo */
8596	err = 0;
8597	if (net_eq(dev_net(dev), net))
8598		goto out;
8599
8600	/* Pick the destination device name, and ensure
8601	 * we can use it in the destination network namespace.
8602	 */
8603	err = -EEXIST;
8604	if (__dev_get_by_name(net, dev->name)) {
8605		/* We get here if we can't use the current device name */
8606		if (!pat)
8607			goto out;
8608		if (dev_get_valid_name(net, dev, pat) < 0)
8609			goto out;
8610	}
8611
8612	/*
8613	 * And now a mini version of register_netdevice unregister_netdevice.
8614	 */
8615
8616	/* If device is running close it first. */
8617	dev_close(dev);
8618
8619	/* And unlink it from device chain */
8620	err = -ENODEV;
8621	unlist_netdevice(dev);
8622
8623	synchronize_net();
8624
8625	/* Shutdown queueing discipline. */
8626	dev_shutdown(dev);
8627
8628	/* Notify protocols, that we are about to destroy
8629	 * this device. They should clean all the things.
8630	 *
8631	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8632	 * This is wanted because this way 8021q and macvlan know
8633	 * the device is just moving and can keep their slaves up.
8634	 */
8635	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8636	rcu_barrier();
8637
8638	new_nsid = peernet2id_alloc(dev_net(dev), net);
8639	/* If there is an ifindex conflict assign a new one */
8640	if (__dev_get_by_index(net, dev->ifindex))
8641		new_ifindex = dev_new_index(net);
8642	else
8643		new_ifindex = dev->ifindex;
8644
8645	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8646			    new_ifindex);
8647
8648	/*
8649	 *	Flush the unicast and multicast chains
8650	 */
8651	dev_uc_flush(dev);
8652	dev_mc_flush(dev);
8653
8654	/* Send a netdev-removed uevent to the old namespace */
8655	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8656	netdev_adjacent_del_links(dev);
8657
8658	/* Actually switch the network namespace */
8659	dev_net_set(dev, net);
8660	dev->ifindex = new_ifindex;
 
 
 
 
 
 
 
8661
8662	/* Send a netdev-add uevent to the new namespace */
8663	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8664	netdev_adjacent_add_links(dev);
8665
8666	/* Fixup kobjects */
8667	err = device_rename(&dev->dev, dev->name);
8668	WARN_ON(err);
8669
8670	/* Add the device back in the hashes */
8671	list_netdevice(dev);
8672
8673	/* Notify protocols, that a new device appeared. */
8674	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8675
8676	/*
8677	 *	Prevent userspace races by waiting until the network
8678	 *	device is fully setup before sending notifications.
8679	 */
8680	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8681
8682	synchronize_net();
8683	err = 0;
8684out:
8685	return err;
8686}
8687EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8688
8689static int dev_cpu_dead(unsigned int oldcpu)
 
 
8690{
8691	struct sk_buff **list_skb;
8692	struct sk_buff *skb;
8693	unsigned int cpu;
8694	struct softnet_data *sd, *oldsd, *remsd = NULL;
 
 
 
8695
8696	local_irq_disable();
8697	cpu = smp_processor_id();
8698	sd = &per_cpu(softnet_data, cpu);
8699	oldsd = &per_cpu(softnet_data, oldcpu);
8700
8701	/* Find end of our completion_queue. */
8702	list_skb = &sd->completion_queue;
8703	while (*list_skb)
8704		list_skb = &(*list_skb)->next;
8705	/* Append completion queue from offline CPU. */
8706	*list_skb = oldsd->completion_queue;
8707	oldsd->completion_queue = NULL;
8708
8709	/* Append output queue from offline CPU. */
8710	if (oldsd->output_queue) {
8711		*sd->output_queue_tailp = oldsd->output_queue;
8712		sd->output_queue_tailp = oldsd->output_queue_tailp;
8713		oldsd->output_queue = NULL;
8714		oldsd->output_queue_tailp = &oldsd->output_queue;
8715	}
8716	/* Append NAPI poll list from offline CPU, with one exception :
8717	 * process_backlog() must be called by cpu owning percpu backlog.
8718	 * We properly handle process_queue & input_pkt_queue later.
8719	 */
8720	while (!list_empty(&oldsd->poll_list)) {
8721		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8722							    struct napi_struct,
8723							    poll_list);
8724
8725		list_del_init(&napi->poll_list);
8726		if (napi->poll == process_backlog)
8727			napi->state = 0;
8728		else
8729			____napi_schedule(sd, napi);
8730	}
8731
8732	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8733	local_irq_enable();
8734
8735#ifdef CONFIG_RPS
8736	remsd = oldsd->rps_ipi_list;
8737	oldsd->rps_ipi_list = NULL;
8738#endif
8739	/* send out pending IPI's on offline CPU */
8740	net_rps_send_ipi(remsd);
8741
8742	/* Process offline CPU's input_pkt_queue */
8743	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8744		netif_rx_ni(skb);
8745		input_queue_head_incr(oldsd);
8746	}
8747	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8748		netif_rx_ni(skb);
8749		input_queue_head_incr(oldsd);
8750	}
8751
8752	return 0;
8753}
8754
 
8755/**
8756 *	netdev_increment_features - increment feature set by one
8757 *	@all: current feature set
8758 *	@one: new feature set
8759 *	@mask: mask feature set
8760 *
8761 *	Computes a new feature set after adding a device with feature set
8762 *	@one to the master device with current feature set @all.  Will not
8763 *	enable anything that is off in @mask. Returns the new feature set.
8764 */
8765netdev_features_t netdev_increment_features(netdev_features_t all,
8766	netdev_features_t one, netdev_features_t mask)
8767{
8768	if (mask & NETIF_F_HW_CSUM)
8769		mask |= NETIF_F_CSUM_MASK;
8770	mask |= NETIF_F_VLAN_CHALLENGED;
8771
8772	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8773	all &= one | ~NETIF_F_ALL_FOR_ALL;
8774
8775	/* If one device supports hw checksumming, set for all. */
8776	if (all & NETIF_F_HW_CSUM)
8777		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8778
8779	return all;
8780}
8781EXPORT_SYMBOL(netdev_increment_features);
8782
8783static struct hlist_head * __net_init netdev_create_hash(void)
8784{
8785	int i;
8786	struct hlist_head *hash;
8787
8788	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8789	if (hash != NULL)
8790		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8791			INIT_HLIST_HEAD(&hash[i]);
8792
8793	return hash;
8794}
8795
8796/* Initialize per network namespace state */
8797static int __net_init netdev_init(struct net *net)
8798{
8799	if (net != &init_net)
8800		INIT_LIST_HEAD(&net->dev_base_head);
8801
8802	net->dev_name_head = netdev_create_hash();
8803	if (net->dev_name_head == NULL)
8804		goto err_name;
8805
8806	net->dev_index_head = netdev_create_hash();
8807	if (net->dev_index_head == NULL)
8808		goto err_idx;
8809
8810	return 0;
8811
8812err_idx:
8813	kfree(net->dev_name_head);
8814err_name:
8815	return -ENOMEM;
8816}
8817
8818/**
8819 *	netdev_drivername - network driver for the device
8820 *	@dev: network device
8821 *
8822 *	Determine network driver for device.
8823 */
8824const char *netdev_drivername(const struct net_device *dev)
8825{
8826	const struct device_driver *driver;
8827	const struct device *parent;
8828	const char *empty = "";
8829
8830	parent = dev->dev.parent;
8831	if (!parent)
8832		return empty;
8833
8834	driver = parent->driver;
8835	if (driver && driver->name)
8836		return driver->name;
8837	return empty;
8838}
8839
8840static void __netdev_printk(const char *level, const struct net_device *dev,
8841			    struct va_format *vaf)
8842{
 
 
8843	if (dev && dev->dev.parent) {
8844		dev_printk_emit(level[1] - '0',
8845				dev->dev.parent,
8846				"%s %s %s%s: %pV",
8847				dev_driver_string(dev->dev.parent),
8848				dev_name(dev->dev.parent),
8849				netdev_name(dev), netdev_reg_state(dev),
8850				vaf);
8851	} else if (dev) {
8852		printk("%s%s%s: %pV",
8853		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8854	} else {
8855		printk("%s(NULL net_device): %pV", level, vaf);
8856	}
 
 
8857}
8858
8859void netdev_printk(const char *level, const struct net_device *dev,
8860		   const char *format, ...)
8861{
8862	struct va_format vaf;
8863	va_list args;
 
8864
8865	va_start(args, format);
8866
8867	vaf.fmt = format;
8868	vaf.va = &args;
8869
8870	__netdev_printk(level, dev, &vaf);
8871
8872	va_end(args);
 
 
8873}
8874EXPORT_SYMBOL(netdev_printk);
8875
8876#define define_netdev_printk_level(func, level)			\
8877void func(const struct net_device *dev, const char *fmt, ...)	\
8878{								\
 
8879	struct va_format vaf;					\
8880	va_list args;						\
8881								\
8882	va_start(args, fmt);					\
8883								\
8884	vaf.fmt = fmt;						\
8885	vaf.va = &args;						\
8886								\
8887	__netdev_printk(level, dev, &vaf);			\
8888								\
8889	va_end(args);						\
 
 
8890}								\
8891EXPORT_SYMBOL(func);
8892
8893define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8894define_netdev_printk_level(netdev_alert, KERN_ALERT);
8895define_netdev_printk_level(netdev_crit, KERN_CRIT);
8896define_netdev_printk_level(netdev_err, KERN_ERR);
8897define_netdev_printk_level(netdev_warn, KERN_WARNING);
8898define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8899define_netdev_printk_level(netdev_info, KERN_INFO);
8900
8901static void __net_exit netdev_exit(struct net *net)
8902{
8903	kfree(net->dev_name_head);
8904	kfree(net->dev_index_head);
8905	if (net != &init_net)
8906		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8907}
8908
8909static struct pernet_operations __net_initdata netdev_net_ops = {
8910	.init = netdev_init,
8911	.exit = netdev_exit,
8912};
8913
8914static void __net_exit default_device_exit(struct net *net)
8915{
8916	struct net_device *dev, *aux;
8917	/*
8918	 * Push all migratable network devices back to the
8919	 * initial network namespace
8920	 */
8921	rtnl_lock();
8922	for_each_netdev_safe(net, dev, aux) {
8923		int err;
8924		char fb_name[IFNAMSIZ];
8925
8926		/* Ignore unmoveable devices (i.e. loopback) */
8927		if (dev->features & NETIF_F_NETNS_LOCAL)
8928			continue;
8929
8930		/* Leave virtual devices for the generic cleanup */
8931		if (dev->rtnl_link_ops)
8932			continue;
8933
8934		/* Push remaining network devices to init_net */
8935		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8936		err = dev_change_net_namespace(dev, &init_net, fb_name);
8937		if (err) {
8938			pr_emerg("%s: failed to move %s to init_net: %d\n",
8939				 __func__, dev->name, err);
8940			BUG();
8941		}
8942	}
8943	rtnl_unlock();
8944}
8945
8946static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8947{
8948	/* Return with the rtnl_lock held when there are no network
8949	 * devices unregistering in any network namespace in net_list.
8950	 */
8951	struct net *net;
8952	bool unregistering;
8953	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8954
8955	add_wait_queue(&netdev_unregistering_wq, &wait);
8956	for (;;) {
 
 
8957		unregistering = false;
8958		rtnl_lock();
8959		list_for_each_entry(net, net_list, exit_list) {
8960			if (net->dev_unreg_count > 0) {
8961				unregistering = true;
8962				break;
8963			}
8964		}
8965		if (!unregistering)
8966			break;
8967		__rtnl_unlock();
8968
8969		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8970	}
8971	remove_wait_queue(&netdev_unregistering_wq, &wait);
8972}
8973
8974static void __net_exit default_device_exit_batch(struct list_head *net_list)
8975{
8976	/* At exit all network devices most be removed from a network
8977	 * namespace.  Do this in the reverse order of registration.
8978	 * Do this across as many network namespaces as possible to
8979	 * improve batching efficiency.
8980	 */
8981	struct net_device *dev;
8982	struct net *net;
8983	LIST_HEAD(dev_kill_list);
8984
8985	/* To prevent network device cleanup code from dereferencing
8986	 * loopback devices or network devices that have been freed
8987	 * wait here for all pending unregistrations to complete,
8988	 * before unregistring the loopback device and allowing the
8989	 * network namespace be freed.
8990	 *
8991	 * The netdev todo list containing all network devices
8992	 * unregistrations that happen in default_device_exit_batch
8993	 * will run in the rtnl_unlock() at the end of
8994	 * default_device_exit_batch.
8995	 */
8996	rtnl_lock_unregistering(net_list);
8997	list_for_each_entry(net, net_list, exit_list) {
8998		for_each_netdev_reverse(net, dev) {
8999			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9000				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9001			else
9002				unregister_netdevice_queue(dev, &dev_kill_list);
9003		}
9004	}
9005	unregister_netdevice_many(&dev_kill_list);
 
9006	rtnl_unlock();
9007}
9008
9009static struct pernet_operations __net_initdata default_device_ops = {
9010	.exit = default_device_exit,
9011	.exit_batch = default_device_exit_batch,
9012};
9013
9014/*
9015 *	Initialize the DEV module. At boot time this walks the device list and
9016 *	unhooks any devices that fail to initialise (normally hardware not
9017 *	present) and leaves us with a valid list of present and active devices.
9018 *
9019 */
9020
9021/*
9022 *       This is called single threaded during boot, so no need
9023 *       to take the rtnl semaphore.
9024 */
9025static int __init net_dev_init(void)
9026{
9027	int i, rc = -ENOMEM;
9028
9029	BUG_ON(!dev_boot_phase);
9030
9031	if (dev_proc_init())
9032		goto out;
9033
9034	if (netdev_kobject_init())
9035		goto out;
9036
9037	INIT_LIST_HEAD(&ptype_all);
9038	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9039		INIT_LIST_HEAD(&ptype_base[i]);
9040
9041	INIT_LIST_HEAD(&offload_base);
9042
9043	if (register_pernet_subsys(&netdev_net_ops))
9044		goto out;
9045
9046	/*
9047	 *	Initialise the packet receive queues.
9048	 */
9049
9050	for_each_possible_cpu(i) {
9051		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9052		struct softnet_data *sd = &per_cpu(softnet_data, i);
9053
9054		INIT_WORK(flush, flush_backlog);
9055
9056		skb_queue_head_init(&sd->input_pkt_queue);
9057		skb_queue_head_init(&sd->process_queue);
9058#ifdef CONFIG_XFRM_OFFLOAD
9059		skb_queue_head_init(&sd->xfrm_backlog);
9060#endif
9061		INIT_LIST_HEAD(&sd->poll_list);
9062		sd->output_queue_tailp = &sd->output_queue;
9063#ifdef CONFIG_RPS
9064		sd->csd.func = rps_trigger_softirq;
9065		sd->csd.info = sd;
9066		sd->cpu = i;
9067#endif
9068
9069		sd->backlog.poll = process_backlog;
9070		sd->backlog.weight = weight_p;
9071	}
9072
9073	dev_boot_phase = 0;
9074
9075	/* The loopback device is special if any other network devices
9076	 * is present in a network namespace the loopback device must
9077	 * be present. Since we now dynamically allocate and free the
9078	 * loopback device ensure this invariant is maintained by
9079	 * keeping the loopback device as the first device on the
9080	 * list of network devices.  Ensuring the loopback devices
9081	 * is the first device that appears and the last network device
9082	 * that disappears.
9083	 */
9084	if (register_pernet_device(&loopback_net_ops))
9085		goto out;
9086
9087	if (register_pernet_device(&default_device_ops))
9088		goto out;
9089
9090	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9091	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9092
9093	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9094				       NULL, dev_cpu_dead);
9095	WARN_ON(rc < 0);
9096	rc = 0;
9097out:
9098	return rc;
9099}
9100
9101subsys_initcall(net_dev_init);
v3.15
   1/*
   2 * 	NET3	Protocol independent device support routines.
   3 *
   4 *		This program is free software; you can redistribute it and/or
   5 *		modify it under the terms of the GNU General Public License
   6 *		as published by the Free Software Foundation; either version
   7 *		2 of the License, or (at your option) any later version.
   8 *
   9 *	Derived from the non IP parts of dev.c 1.0.19
  10 * 		Authors:	Ross Biro
  11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *	Additional Authors:
  15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *		David Hinds <dahinds@users.sourceforge.net>
  18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *		Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *	Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *              			to 2 if register_netdev gets called
  25 *              			before net_dev_init & also removed a
  26 *              			few lines of code in the process.
  27 *		Alan Cox	:	device private ioctl copies fields back.
  28 *		Alan Cox	:	Transmit queue code does relevant
  29 *					stunts to keep the queue safe.
  30 *		Alan Cox	:	Fixed double lock.
  31 *		Alan Cox	:	Fixed promisc NULL pointer trap
  32 *		????????	:	Support the full private ioctl range
  33 *		Alan Cox	:	Moved ioctl permission check into
  34 *					drivers
  35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
  36 *		Alan Cox	:	100 backlog just doesn't cut it when
  37 *					you start doing multicast video 8)
  38 *		Alan Cox	:	Rewrote net_bh and list manager.
  39 *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
  40 *		Alan Cox	:	Took out transmit every packet pass
  41 *					Saved a few bytes in the ioctl handler
  42 *		Alan Cox	:	Network driver sets packet type before
  43 *					calling netif_rx. Saves a function
  44 *					call a packet.
  45 *		Alan Cox	:	Hashed net_bh()
  46 *		Richard Kooijman:	Timestamp fixes.
  47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
  48 *		Alan Cox	:	Device lock protection.
  49 *		Alan Cox	: 	Fixed nasty side effect of device close
  50 *					changes.
  51 *		Rudi Cilibrasi	:	Pass the right thing to
  52 *					set_mac_address()
  53 *		Dave Miller	:	32bit quantity for the device lock to
  54 *					make it work out on a Sparc.
  55 *		Bjorn Ekwall	:	Added KERNELD hack.
  56 *		Alan Cox	:	Cleaned up the backlog initialise.
  57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
  58 *					1 device.
  59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
  60 *					is no device open function.
  61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
  62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
  63 *		Cyrus Durgin	:	Cleaned for KMOD
  64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
  65 *					A network device unload needs to purge
  66 *					the backlog queue.
  67 *	Paul Rusty Russell	:	SIOCSIFNAME
  68 *              Pekka Riikonen  :	Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *              			indefinitely on dev->refcnt
  71 * 		J Hadi Salim	:	- Backlog queue sampling
  72 *				        - netif_rx() feedback
  73 */
  74
  75#include <asm/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
 
  84#include <linux/mutex.h>
  85#include <linux/string.h>
  86#include <linux/mm.h>
  87#include <linux/socket.h>
  88#include <linux/sockios.h>
  89#include <linux/errno.h>
  90#include <linux/interrupt.h>
  91#include <linux/if_ether.h>
  92#include <linux/netdevice.h>
  93#include <linux/etherdevice.h>
  94#include <linux/ethtool.h>
  95#include <linux/notifier.h>
  96#include <linux/skbuff.h>
 
 
  97#include <net/net_namespace.h>
  98#include <net/sock.h>
 
  99#include <linux/rtnetlink.h>
 100#include <linux/stat.h>
 101#include <net/dst.h>
 
 102#include <net/pkt_sched.h>
 
 103#include <net/checksum.h>
 104#include <net/xfrm.h>
 105#include <linux/highmem.h>
 106#include <linux/init.h>
 107#include <linux/module.h>
 108#include <linux/netpoll.h>
 109#include <linux/rcupdate.h>
 110#include <linux/delay.h>
 111#include <net/iw_handler.h>
 112#include <asm/current.h>
 113#include <linux/audit.h>
 114#include <linux/dmaengine.h>
 115#include <linux/err.h>
 116#include <linux/ctype.h>
 117#include <linux/if_arp.h>
 118#include <linux/if_vlan.h>
 119#include <linux/ip.h>
 120#include <net/ip.h>
 
 121#include <linux/ipv6.h>
 122#include <linux/in.h>
 123#include <linux/jhash.h>
 124#include <linux/random.h>
 125#include <trace/events/napi.h>
 126#include <trace/events/net.h>
 127#include <trace/events/skb.h>
 128#include <linux/pci.h>
 129#include <linux/inetdevice.h>
 130#include <linux/cpu_rmap.h>
 131#include <linux/static_key.h>
 132#include <linux/hashtable.h>
 133#include <linux/vmalloc.h>
 134#include <linux/if_macvlan.h>
 
 
 
 
 
 
 
 135
 136#include "net-sysfs.h"
 137
 138/* Instead of increasing this, you should create a hash table. */
 139#define MAX_GRO_SKBS 8
 140
 141/* This should be increased if a protocol with a bigger head is added. */
 142#define GRO_MAX_HEAD (MAX_HEADER + 128)
 143
 144static DEFINE_SPINLOCK(ptype_lock);
 145static DEFINE_SPINLOCK(offload_lock);
 146struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 147struct list_head ptype_all __read_mostly;	/* Taps */
 148static struct list_head offload_base __read_mostly;
 149
 150static int netif_rx_internal(struct sk_buff *skb);
 
 
 
 151
 152/*
 153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 154 * semaphore.
 155 *
 156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 157 *
 158 * Writers must hold the rtnl semaphore while they loop through the
 159 * dev_base_head list, and hold dev_base_lock for writing when they do the
 160 * actual updates.  This allows pure readers to access the list even
 161 * while a writer is preparing to update it.
 162 *
 163 * To put it another way, dev_base_lock is held for writing only to
 164 * protect against pure readers; the rtnl semaphore provides the
 165 * protection against other writers.
 166 *
 167 * See, for example usages, register_netdevice() and
 168 * unregister_netdevice(), which must be called with the rtnl
 169 * semaphore held.
 170 */
 171DEFINE_RWLOCK(dev_base_lock);
 172EXPORT_SYMBOL(dev_base_lock);
 173
 
 
 174/* protects napi_hash addition/deletion and napi_gen_id */
 175static DEFINE_SPINLOCK(napi_hash_lock);
 176
 177static unsigned int napi_gen_id;
 178static DEFINE_HASHTABLE(napi_hash, 8);
 179
 180static seqcount_t devnet_rename_seq;
 181
 182static inline void dev_base_seq_inc(struct net *net)
 183{
 184	while (++net->dev_base_seq == 0);
 
 185}
 186
 187static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 188{
 189	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
 190
 191	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 192}
 193
 194static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 195{
 196	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 197}
 198
 199static inline void rps_lock(struct softnet_data *sd)
 200{
 201#ifdef CONFIG_RPS
 202	spin_lock(&sd->input_pkt_queue.lock);
 203#endif
 204}
 205
 206static inline void rps_unlock(struct softnet_data *sd)
 207{
 208#ifdef CONFIG_RPS
 209	spin_unlock(&sd->input_pkt_queue.lock);
 210#endif
 211}
 212
 213/* Device list insertion */
 214static void list_netdevice(struct net_device *dev)
 215{
 216	struct net *net = dev_net(dev);
 217
 218	ASSERT_RTNL();
 219
 220	write_lock_bh(&dev_base_lock);
 221	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 222	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 223	hlist_add_head_rcu(&dev->index_hlist,
 224			   dev_index_hash(net, dev->ifindex));
 225	write_unlock_bh(&dev_base_lock);
 226
 227	dev_base_seq_inc(net);
 228}
 229
 230/* Device list removal
 231 * caller must respect a RCU grace period before freeing/reusing dev
 232 */
 233static void unlist_netdevice(struct net_device *dev)
 234{
 235	ASSERT_RTNL();
 236
 237	/* Unlink dev from the device chain */
 238	write_lock_bh(&dev_base_lock);
 239	list_del_rcu(&dev->dev_list);
 240	hlist_del_rcu(&dev->name_hlist);
 241	hlist_del_rcu(&dev->index_hlist);
 242	write_unlock_bh(&dev_base_lock);
 243
 244	dev_base_seq_inc(dev_net(dev));
 245}
 246
 247/*
 248 *	Our notifier list
 249 */
 250
 251static RAW_NOTIFIER_HEAD(netdev_chain);
 252
 253/*
 254 *	Device drivers call our routines to queue packets here. We empty the
 255 *	queue in the local softnet handler.
 256 */
 257
 258DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 259EXPORT_PER_CPU_SYMBOL(softnet_data);
 260
 261#ifdef CONFIG_LOCKDEP
 262/*
 263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 264 * according to dev->type
 265 */
 266static const unsigned short netdev_lock_type[] =
 267	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 268	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 269	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 270	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 271	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 272	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 273	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 274	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 275	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 276	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 277	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 278	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 279	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 280	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 281	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 282
 283static const char *const netdev_lock_name[] =
 284	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 285	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 286	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 287	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 288	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 289	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 290	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 291	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 292	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 293	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 294	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 295	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 296	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 297	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 298	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 299
 300static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 301static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 302
 303static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 304{
 305	int i;
 306
 307	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 308		if (netdev_lock_type[i] == dev_type)
 309			return i;
 310	/* the last key is used by default */
 311	return ARRAY_SIZE(netdev_lock_type) - 1;
 312}
 313
 314static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 315						 unsigned short dev_type)
 316{
 317	int i;
 318
 319	i = netdev_lock_pos(dev_type);
 320	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 321				   netdev_lock_name[i]);
 322}
 323
 324static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 325{
 326	int i;
 327
 328	i = netdev_lock_pos(dev->type);
 329	lockdep_set_class_and_name(&dev->addr_list_lock,
 330				   &netdev_addr_lock_key[i],
 331				   netdev_lock_name[i]);
 332}
 333#else
 334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 335						 unsigned short dev_type)
 336{
 337}
 338static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 339{
 340}
 341#endif
 342
 343/*******************************************************************************
 
 
 
 
 344
 345		Protocol management and registration routines
 346
 347*******************************************************************************/
 348
 349/*
 350 *	Add a protocol ID to the list. Now that the input handler is
 351 *	smarter we can dispense with all the messy stuff that used to be
 352 *	here.
 353 *
 354 *	BEWARE!!! Protocol handlers, mangling input packets,
 355 *	MUST BE last in hash buckets and checking protocol handlers
 356 *	MUST start from promiscuous ptype_all chain in net_bh.
 357 *	It is true now, do not change it.
 358 *	Explanation follows: if protocol handler, mangling packet, will
 359 *	be the first on list, it is not able to sense, that packet
 360 *	is cloned and should be copied-on-write, so that it will
 361 *	change it and subsequent readers will get broken packet.
 362 *							--ANK (980803)
 363 */
 364
 365static inline struct list_head *ptype_head(const struct packet_type *pt)
 366{
 367	if (pt->type == htons(ETH_P_ALL))
 368		return &ptype_all;
 369	else
 370		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 
 371}
 372
 373/**
 374 *	dev_add_pack - add packet handler
 375 *	@pt: packet type declaration
 376 *
 377 *	Add a protocol handler to the networking stack. The passed &packet_type
 378 *	is linked into kernel lists and may not be freed until it has been
 379 *	removed from the kernel lists.
 380 *
 381 *	This call does not sleep therefore it can not
 382 *	guarantee all CPU's that are in middle of receiving packets
 383 *	will see the new packet type (until the next received packet).
 384 */
 385
 386void dev_add_pack(struct packet_type *pt)
 387{
 388	struct list_head *head = ptype_head(pt);
 389
 390	spin_lock(&ptype_lock);
 391	list_add_rcu(&pt->list, head);
 392	spin_unlock(&ptype_lock);
 393}
 394EXPORT_SYMBOL(dev_add_pack);
 395
 396/**
 397 *	__dev_remove_pack	 - remove packet handler
 398 *	@pt: packet type declaration
 399 *
 400 *	Remove a protocol handler that was previously added to the kernel
 401 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 402 *	from the kernel lists and can be freed or reused once this function
 403 *	returns.
 404 *
 405 *      The packet type might still be in use by receivers
 406 *	and must not be freed until after all the CPU's have gone
 407 *	through a quiescent state.
 408 */
 409void __dev_remove_pack(struct packet_type *pt)
 410{
 411	struct list_head *head = ptype_head(pt);
 412	struct packet_type *pt1;
 413
 414	spin_lock(&ptype_lock);
 415
 416	list_for_each_entry(pt1, head, list) {
 417		if (pt == pt1) {
 418			list_del_rcu(&pt->list);
 419			goto out;
 420		}
 421	}
 422
 423	pr_warn("dev_remove_pack: %p not found\n", pt);
 424out:
 425	spin_unlock(&ptype_lock);
 426}
 427EXPORT_SYMBOL(__dev_remove_pack);
 428
 429/**
 430 *	dev_remove_pack	 - remove packet handler
 431 *	@pt: packet type declaration
 432 *
 433 *	Remove a protocol handler that was previously added to the kernel
 434 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 435 *	from the kernel lists and can be freed or reused once this function
 436 *	returns.
 437 *
 438 *	This call sleeps to guarantee that no CPU is looking at the packet
 439 *	type after return.
 440 */
 441void dev_remove_pack(struct packet_type *pt)
 442{
 443	__dev_remove_pack(pt);
 444
 445	synchronize_net();
 446}
 447EXPORT_SYMBOL(dev_remove_pack);
 448
 449
 450/**
 451 *	dev_add_offload - register offload handlers
 452 *	@po: protocol offload declaration
 453 *
 454 *	Add protocol offload handlers to the networking stack. The passed
 455 *	&proto_offload is linked into kernel lists and may not be freed until
 456 *	it has been removed from the kernel lists.
 457 *
 458 *	This call does not sleep therefore it can not
 459 *	guarantee all CPU's that are in middle of receiving packets
 460 *	will see the new offload handlers (until the next received packet).
 461 */
 462void dev_add_offload(struct packet_offload *po)
 463{
 464	struct list_head *head = &offload_base;
 465
 466	spin_lock(&offload_lock);
 467	list_add_rcu(&po->list, head);
 
 
 
 
 468	spin_unlock(&offload_lock);
 469}
 470EXPORT_SYMBOL(dev_add_offload);
 471
 472/**
 473 *	__dev_remove_offload	 - remove offload handler
 474 *	@po: packet offload declaration
 475 *
 476 *	Remove a protocol offload handler that was previously added to the
 477 *	kernel offload handlers by dev_add_offload(). The passed &offload_type
 478 *	is removed from the kernel lists and can be freed or reused once this
 479 *	function returns.
 480 *
 481 *      The packet type might still be in use by receivers
 482 *	and must not be freed until after all the CPU's have gone
 483 *	through a quiescent state.
 484 */
 485static void __dev_remove_offload(struct packet_offload *po)
 486{
 487	struct list_head *head = &offload_base;
 488	struct packet_offload *po1;
 489
 490	spin_lock(&offload_lock);
 491
 492	list_for_each_entry(po1, head, list) {
 493		if (po == po1) {
 494			list_del_rcu(&po->list);
 495			goto out;
 496		}
 497	}
 498
 499	pr_warn("dev_remove_offload: %p not found\n", po);
 500out:
 501	spin_unlock(&offload_lock);
 502}
 503
 504/**
 505 *	dev_remove_offload	 - remove packet offload handler
 506 *	@po: packet offload declaration
 507 *
 508 *	Remove a packet offload handler that was previously added to the kernel
 509 *	offload handlers by dev_add_offload(). The passed &offload_type is
 510 *	removed from the kernel lists and can be freed or reused once this
 511 *	function returns.
 512 *
 513 *	This call sleeps to guarantee that no CPU is looking at the packet
 514 *	type after return.
 515 */
 516void dev_remove_offload(struct packet_offload *po)
 517{
 518	__dev_remove_offload(po);
 519
 520	synchronize_net();
 521}
 522EXPORT_SYMBOL(dev_remove_offload);
 523
 524/******************************************************************************
 525
 526		      Device Boot-time Settings Routines
 527
 528*******************************************************************************/
 529
 530/* Boot time configuration table */
 531static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 532
 533/**
 534 *	netdev_boot_setup_add	- add new setup entry
 535 *	@name: name of the device
 536 *	@map: configured settings for the device
 537 *
 538 *	Adds new setup entry to the dev_boot_setup list.  The function
 539 *	returns 0 on error and 1 on success.  This is a generic routine to
 540 *	all netdevices.
 541 */
 542static int netdev_boot_setup_add(char *name, struct ifmap *map)
 543{
 544	struct netdev_boot_setup *s;
 545	int i;
 546
 547	s = dev_boot_setup;
 548	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 549		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 550			memset(s[i].name, 0, sizeof(s[i].name));
 551			strlcpy(s[i].name, name, IFNAMSIZ);
 552			memcpy(&s[i].map, map, sizeof(s[i].map));
 553			break;
 554		}
 555	}
 556
 557	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 558}
 559
 560/**
 561 *	netdev_boot_setup_check	- check boot time settings
 562 *	@dev: the netdevice
 563 *
 564 * 	Check boot time settings for the device.
 565 *	The found settings are set for the device to be used
 566 *	later in the device probing.
 567 *	Returns 0 if no settings found, 1 if they are.
 568 */
 569int netdev_boot_setup_check(struct net_device *dev)
 570{
 571	struct netdev_boot_setup *s = dev_boot_setup;
 572	int i;
 573
 574	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 575		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 576		    !strcmp(dev->name, s[i].name)) {
 577			dev->irq 	= s[i].map.irq;
 578			dev->base_addr 	= s[i].map.base_addr;
 579			dev->mem_start 	= s[i].map.mem_start;
 580			dev->mem_end 	= s[i].map.mem_end;
 581			return 1;
 582		}
 583	}
 584	return 0;
 585}
 586EXPORT_SYMBOL(netdev_boot_setup_check);
 587
 588
 589/**
 590 *	netdev_boot_base	- get address from boot time settings
 591 *	@prefix: prefix for network device
 592 *	@unit: id for network device
 593 *
 594 * 	Check boot time settings for the base address of device.
 595 *	The found settings are set for the device to be used
 596 *	later in the device probing.
 597 *	Returns 0 if no settings found.
 598 */
 599unsigned long netdev_boot_base(const char *prefix, int unit)
 600{
 601	const struct netdev_boot_setup *s = dev_boot_setup;
 602	char name[IFNAMSIZ];
 603	int i;
 604
 605	sprintf(name, "%s%d", prefix, unit);
 606
 607	/*
 608	 * If device already registered then return base of 1
 609	 * to indicate not to probe for this interface
 610	 */
 611	if (__dev_get_by_name(&init_net, name))
 612		return 1;
 613
 614	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 615		if (!strcmp(name, s[i].name))
 616			return s[i].map.base_addr;
 617	return 0;
 618}
 619
 620/*
 621 * Saves at boot time configured settings for any netdevice.
 622 */
 623int __init netdev_boot_setup(char *str)
 624{
 625	int ints[5];
 626	struct ifmap map;
 627
 628	str = get_options(str, ARRAY_SIZE(ints), ints);
 629	if (!str || !*str)
 630		return 0;
 631
 632	/* Save settings */
 633	memset(&map, 0, sizeof(map));
 634	if (ints[0] > 0)
 635		map.irq = ints[1];
 636	if (ints[0] > 1)
 637		map.base_addr = ints[2];
 638	if (ints[0] > 2)
 639		map.mem_start = ints[3];
 640	if (ints[0] > 3)
 641		map.mem_end = ints[4];
 642
 643	/* Add new entry to the list */
 644	return netdev_boot_setup_add(str, &map);
 645}
 646
 647__setup("netdev=", netdev_boot_setup);
 648
 649/*******************************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650
 651			    Device Interface Subroutines
 
 
 
 
 
 
 
 652
 653*******************************************************************************/
 
 
 654
 655/**
 656 *	__dev_get_by_name	- find a device by its name
 657 *	@net: the applicable net namespace
 658 *	@name: name to find
 659 *
 660 *	Find an interface by name. Must be called under RTNL semaphore
 661 *	or @dev_base_lock. If the name is found a pointer to the device
 662 *	is returned. If the name is not found then %NULL is returned. The
 663 *	reference counters are not incremented so the caller must be
 664 *	careful with locks.
 665 */
 666
 667struct net_device *__dev_get_by_name(struct net *net, const char *name)
 668{
 669	struct net_device *dev;
 670	struct hlist_head *head = dev_name_hash(net, name);
 671
 672	hlist_for_each_entry(dev, head, name_hlist)
 673		if (!strncmp(dev->name, name, IFNAMSIZ))
 674			return dev;
 675
 676	return NULL;
 677}
 678EXPORT_SYMBOL(__dev_get_by_name);
 679
 680/**
 681 *	dev_get_by_name_rcu	- find a device by its name
 682 *	@net: the applicable net namespace
 683 *	@name: name to find
 684 *
 685 *	Find an interface by name.
 686 *	If the name is found a pointer to the device is returned.
 687 * 	If the name is not found then %NULL is returned.
 688 *	The reference counters are not incremented so the caller must be
 689 *	careful with locks. The caller must hold RCU lock.
 690 */
 691
 692struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 693{
 694	struct net_device *dev;
 695	struct hlist_head *head = dev_name_hash(net, name);
 696
 697	hlist_for_each_entry_rcu(dev, head, name_hlist)
 698		if (!strncmp(dev->name, name, IFNAMSIZ))
 699			return dev;
 700
 701	return NULL;
 702}
 703EXPORT_SYMBOL(dev_get_by_name_rcu);
 704
 705/**
 706 *	dev_get_by_name		- find a device by its name
 707 *	@net: the applicable net namespace
 708 *	@name: name to find
 709 *
 710 *	Find an interface by name. This can be called from any
 711 *	context and does its own locking. The returned handle has
 712 *	the usage count incremented and the caller must use dev_put() to
 713 *	release it when it is no longer needed. %NULL is returned if no
 714 *	matching device is found.
 715 */
 716
 717struct net_device *dev_get_by_name(struct net *net, const char *name)
 718{
 719	struct net_device *dev;
 720
 721	rcu_read_lock();
 722	dev = dev_get_by_name_rcu(net, name);
 723	if (dev)
 724		dev_hold(dev);
 725	rcu_read_unlock();
 726	return dev;
 727}
 728EXPORT_SYMBOL(dev_get_by_name);
 729
 730/**
 731 *	__dev_get_by_index - find a device by its ifindex
 732 *	@net: the applicable net namespace
 733 *	@ifindex: index of device
 734 *
 735 *	Search for an interface by index. Returns %NULL if the device
 736 *	is not found or a pointer to the device. The device has not
 737 *	had its reference counter increased so the caller must be careful
 738 *	about locking. The caller must hold either the RTNL semaphore
 739 *	or @dev_base_lock.
 740 */
 741
 742struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 743{
 744	struct net_device *dev;
 745	struct hlist_head *head = dev_index_hash(net, ifindex);
 746
 747	hlist_for_each_entry(dev, head, index_hlist)
 748		if (dev->ifindex == ifindex)
 749			return dev;
 750
 751	return NULL;
 752}
 753EXPORT_SYMBOL(__dev_get_by_index);
 754
 755/**
 756 *	dev_get_by_index_rcu - find a device by its ifindex
 757 *	@net: the applicable net namespace
 758 *	@ifindex: index of device
 759 *
 760 *	Search for an interface by index. Returns %NULL if the device
 761 *	is not found or a pointer to the device. The device has not
 762 *	had its reference counter increased so the caller must be careful
 763 *	about locking. The caller must hold RCU lock.
 764 */
 765
 766struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 767{
 768	struct net_device *dev;
 769	struct hlist_head *head = dev_index_hash(net, ifindex);
 770
 771	hlist_for_each_entry_rcu(dev, head, index_hlist)
 772		if (dev->ifindex == ifindex)
 773			return dev;
 774
 775	return NULL;
 776}
 777EXPORT_SYMBOL(dev_get_by_index_rcu);
 778
 779
 780/**
 781 *	dev_get_by_index - find a device by its ifindex
 782 *	@net: the applicable net namespace
 783 *	@ifindex: index of device
 784 *
 785 *	Search for an interface by index. Returns NULL if the device
 786 *	is not found or a pointer to the device. The device returned has
 787 *	had a reference added and the pointer is safe until the user calls
 788 *	dev_put to indicate they have finished with it.
 789 */
 790
 791struct net_device *dev_get_by_index(struct net *net, int ifindex)
 792{
 793	struct net_device *dev;
 794
 795	rcu_read_lock();
 796	dev = dev_get_by_index_rcu(net, ifindex);
 797	if (dev)
 798		dev_hold(dev);
 799	rcu_read_unlock();
 800	return dev;
 801}
 802EXPORT_SYMBOL(dev_get_by_index);
 803
 804/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805 *	netdev_get_name - get a netdevice name, knowing its ifindex.
 806 *	@net: network namespace
 807 *	@name: a pointer to the buffer where the name will be stored.
 808 *	@ifindex: the ifindex of the interface to get the name from.
 809 *
 810 *	The use of raw_seqcount_begin() and cond_resched() before
 811 *	retrying is required as we want to give the writers a chance
 812 *	to complete when CONFIG_PREEMPT is not set.
 813 */
 814int netdev_get_name(struct net *net, char *name, int ifindex)
 815{
 816	struct net_device *dev;
 817	unsigned int seq;
 818
 819retry:
 820	seq = raw_seqcount_begin(&devnet_rename_seq);
 821	rcu_read_lock();
 822	dev = dev_get_by_index_rcu(net, ifindex);
 823	if (!dev) {
 824		rcu_read_unlock();
 825		return -ENODEV;
 826	}
 827
 828	strcpy(name, dev->name);
 829	rcu_read_unlock();
 830	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 831		cond_resched();
 832		goto retry;
 833	}
 834
 835	return 0;
 836}
 837
 838/**
 839 *	dev_getbyhwaddr_rcu - find a device by its hardware address
 840 *	@net: the applicable net namespace
 841 *	@type: media type of device
 842 *	@ha: hardware address
 843 *
 844 *	Search for an interface by MAC address. Returns NULL if the device
 845 *	is not found or a pointer to the device.
 846 *	The caller must hold RCU or RTNL.
 847 *	The returned device has not had its ref count increased
 848 *	and the caller must therefore be careful about locking
 849 *
 850 */
 851
 852struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 853				       const char *ha)
 854{
 855	struct net_device *dev;
 856
 857	for_each_netdev_rcu(net, dev)
 858		if (dev->type == type &&
 859		    !memcmp(dev->dev_addr, ha, dev->addr_len))
 860			return dev;
 861
 862	return NULL;
 863}
 864EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 865
 866struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 867{
 868	struct net_device *dev;
 869
 870	ASSERT_RTNL();
 871	for_each_netdev(net, dev)
 872		if (dev->type == type)
 873			return dev;
 874
 875	return NULL;
 876}
 877EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 878
 879struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 880{
 881	struct net_device *dev, *ret = NULL;
 882
 883	rcu_read_lock();
 884	for_each_netdev_rcu(net, dev)
 885		if (dev->type == type) {
 886			dev_hold(dev);
 887			ret = dev;
 888			break;
 889		}
 890	rcu_read_unlock();
 891	return ret;
 892}
 893EXPORT_SYMBOL(dev_getfirstbyhwtype);
 894
 895/**
 896 *	dev_get_by_flags_rcu - find any device with given flags
 897 *	@net: the applicable net namespace
 898 *	@if_flags: IFF_* values
 899 *	@mask: bitmask of bits in if_flags to check
 900 *
 901 *	Search for any interface with the given flags. Returns NULL if a device
 902 *	is not found or a pointer to the device. Must be called inside
 903 *	rcu_read_lock(), and result refcount is unchanged.
 904 */
 905
 906struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
 907				    unsigned short mask)
 908{
 909	struct net_device *dev, *ret;
 910
 
 
 911	ret = NULL;
 912	for_each_netdev_rcu(net, dev) {
 913		if (((dev->flags ^ if_flags) & mask) == 0) {
 914			ret = dev;
 915			break;
 916		}
 917	}
 918	return ret;
 919}
 920EXPORT_SYMBOL(dev_get_by_flags_rcu);
 921
 922/**
 923 *	dev_valid_name - check if name is okay for network device
 924 *	@name: name string
 925 *
 926 *	Network device names need to be valid file names to
 927 *	to allow sysfs to work.  We also disallow any kind of
 928 *	whitespace.
 929 */
 930bool dev_valid_name(const char *name)
 931{
 932	if (*name == '\0')
 933		return false;
 934	if (strlen(name) >= IFNAMSIZ)
 935		return false;
 936	if (!strcmp(name, ".") || !strcmp(name, ".."))
 937		return false;
 938
 939	while (*name) {
 940		if (*name == '/' || isspace(*name))
 941			return false;
 942		name++;
 943	}
 944	return true;
 945}
 946EXPORT_SYMBOL(dev_valid_name);
 947
 948/**
 949 *	__dev_alloc_name - allocate a name for a device
 950 *	@net: network namespace to allocate the device name in
 951 *	@name: name format string
 952 *	@buf:  scratch buffer and result name string
 953 *
 954 *	Passed a format string - eg "lt%d" it will try and find a suitable
 955 *	id. It scans list of devices to build up a free map, then chooses
 956 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 957 *	while allocating the name and adding the device in order to avoid
 958 *	duplicates.
 959 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 960 *	Returns the number of the unit assigned or a negative errno code.
 961 */
 962
 963static int __dev_alloc_name(struct net *net, const char *name, char *buf)
 964{
 965	int i = 0;
 966	const char *p;
 967	const int max_netdevices = 8*PAGE_SIZE;
 968	unsigned long *inuse;
 969	struct net_device *d;
 970
 971	p = strnchr(name, IFNAMSIZ-1, '%');
 
 
 
 972	if (p) {
 973		/*
 974		 * Verify the string as this thing may have come from
 975		 * the user.  There must be either one "%d" and no other "%"
 976		 * characters.
 977		 */
 978		if (p[1] != 'd' || strchr(p + 2, '%'))
 979			return -EINVAL;
 980
 981		/* Use one page as a bit array of possible slots */
 982		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 983		if (!inuse)
 984			return -ENOMEM;
 985
 986		for_each_netdev(net, d) {
 987			if (!sscanf(d->name, name, &i))
 988				continue;
 989			if (i < 0 || i >= max_netdevices)
 990				continue;
 991
 992			/*  avoid cases where sscanf is not exact inverse of printf */
 993			snprintf(buf, IFNAMSIZ, name, i);
 994			if (!strncmp(buf, d->name, IFNAMSIZ))
 995				set_bit(i, inuse);
 996		}
 997
 998		i = find_first_zero_bit(inuse, max_netdevices);
 999		free_page((unsigned long) inuse);
1000	}
1001
1002	if (buf != name)
1003		snprintf(buf, IFNAMSIZ, name, i);
1004	if (!__dev_get_by_name(net, buf))
1005		return i;
1006
1007	/* It is possible to run out of possible slots
1008	 * when the name is long and there isn't enough space left
1009	 * for the digits, or if all bits are used.
1010	 */
1011	return -ENFILE;
1012}
1013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014/**
1015 *	dev_alloc_name - allocate a name for a device
1016 *	@dev: device
1017 *	@name: name format string
1018 *
1019 *	Passed a format string - eg "lt%d" it will try and find a suitable
1020 *	id. It scans list of devices to build up a free map, then chooses
1021 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022 *	while allocating the name and adding the device in order to avoid
1023 *	duplicates.
1024 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 *	Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028int dev_alloc_name(struct net_device *dev, const char *name)
1029{
1030	char buf[IFNAMSIZ];
1031	struct net *net;
1032	int ret;
1033
1034	BUG_ON(!dev_net(dev));
1035	net = dev_net(dev);
1036	ret = __dev_alloc_name(net, name, buf);
1037	if (ret >= 0)
1038		strlcpy(dev->name, buf, IFNAMSIZ);
1039	return ret;
1040}
1041EXPORT_SYMBOL(dev_alloc_name);
1042
1043static int dev_alloc_name_ns(struct net *net,
1044			     struct net_device *dev,
1045			     const char *name)
1046{
1047	char buf[IFNAMSIZ];
1048	int ret;
1049
1050	ret = __dev_alloc_name(net, name, buf);
1051	if (ret >= 0)
1052		strlcpy(dev->name, buf, IFNAMSIZ);
1053	return ret;
1054}
1055
1056static int dev_get_valid_name(struct net *net,
1057			      struct net_device *dev,
1058			      const char *name)
1059{
1060	BUG_ON(!net);
1061
1062	if (!dev_valid_name(name))
1063		return -EINVAL;
1064
1065	if (strchr(name, '%'))
1066		return dev_alloc_name_ns(net, dev, name);
1067	else if (__dev_get_by_name(net, name))
1068		return -EEXIST;
1069	else if (dev->name != name)
1070		strlcpy(dev->name, name, IFNAMSIZ);
1071
1072	return 0;
1073}
 
1074
1075/**
1076 *	dev_change_name - change name of a device
1077 *	@dev: device
1078 *	@newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 *	Change name of a device, can pass format strings "eth%d".
1081 *	for wildcarding.
1082 */
1083int dev_change_name(struct net_device *dev, const char *newname)
1084{
 
1085	char oldname[IFNAMSIZ];
1086	int err = 0;
1087	int ret;
1088	struct net *net;
1089
1090	ASSERT_RTNL();
1091	BUG_ON(!dev_net(dev));
1092
1093	net = dev_net(dev);
1094	if (dev->flags & IFF_UP)
1095		return -EBUSY;
1096
1097	write_seqcount_begin(&devnet_rename_seq);
1098
1099	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100		write_seqcount_end(&devnet_rename_seq);
1101		return 0;
1102	}
1103
1104	memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106	err = dev_get_valid_name(net, dev, newname);
1107	if (err < 0) {
1108		write_seqcount_end(&devnet_rename_seq);
1109		return err;
1110	}
1111
 
 
 
 
 
 
1112rollback:
1113	ret = device_rename(&dev->dev, dev->name);
1114	if (ret) {
1115		memcpy(dev->name, oldname, IFNAMSIZ);
 
1116		write_seqcount_end(&devnet_rename_seq);
1117		return ret;
1118	}
1119
1120	write_seqcount_end(&devnet_rename_seq);
1121
1122	netdev_adjacent_rename_links(dev, oldname);
1123
1124	write_lock_bh(&dev_base_lock);
1125	hlist_del_rcu(&dev->name_hlist);
1126	write_unlock_bh(&dev_base_lock);
1127
1128	synchronize_rcu();
1129
1130	write_lock_bh(&dev_base_lock);
1131	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132	write_unlock_bh(&dev_base_lock);
1133
1134	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135	ret = notifier_to_errno(ret);
1136
1137	if (ret) {
1138		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139		if (err >= 0) {
1140			err = ret;
1141			write_seqcount_begin(&devnet_rename_seq);
1142			memcpy(dev->name, oldname, IFNAMSIZ);
1143			memcpy(oldname, newname, IFNAMSIZ);
 
 
1144			goto rollback;
1145		} else {
1146			pr_err("%s: name change rollback failed: %d\n",
1147			       dev->name, ret);
1148		}
1149	}
1150
1151	return err;
1152}
1153
1154/**
1155 *	dev_set_alias - change ifalias of a device
1156 *	@dev: device
1157 *	@alias: name up to IFALIASZ
1158 *	@len: limit of bytes to copy from info
1159 *
1160 *	Set ifalias for a device,
1161 */
1162int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163{
1164	char *new_ifalias;
1165
1166	ASSERT_RTNL();
1167
1168	if (len >= IFALIASZ)
1169		return -EINVAL;
1170
1171	if (!len) {
1172		kfree(dev->ifalias);
1173		dev->ifalias = NULL;
1174		return 0;
 
 
 
1175	}
1176
1177	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178	if (!new_ifalias)
1179		return -ENOMEM;
1180	dev->ifalias = new_ifalias;
 
 
 
1181
1182	strlcpy(dev->ifalias, alias, len+1);
1183	return len;
1184}
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187/**
1188 *	netdev_features_change - device changes features
1189 *	@dev: device to cause notification
1190 *
1191 *	Called to indicate a device has changed features.
1192 */
1193void netdev_features_change(struct net_device *dev)
1194{
1195	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196}
1197EXPORT_SYMBOL(netdev_features_change);
1198
1199/**
1200 *	netdev_state_change - device changes state
1201 *	@dev: device to cause notification
1202 *
1203 *	Called to indicate a device has changed state. This function calls
1204 *	the notifier chains for netdev_chain and sends a NEWLINK message
1205 *	to the routing socket.
1206 */
1207void netdev_state_change(struct net_device *dev)
1208{
1209	if (dev->flags & IFF_UP) {
1210		call_netdevice_notifiers(NETDEV_CHANGE, dev);
 
 
 
 
 
1211		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212	}
1213}
1214EXPORT_SYMBOL(netdev_state_change);
1215
1216/**
1217 * 	netdev_notify_peers - notify network peers about existence of @dev
1218 * 	@dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226void netdev_notify_peers(struct net_device *dev)
1227{
1228	rtnl_lock();
1229	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
 
1230	rtnl_unlock();
1231}
1232EXPORT_SYMBOL(netdev_notify_peers);
1233
1234static int __dev_open(struct net_device *dev)
1235{
1236	const struct net_device_ops *ops = dev->netdev_ops;
1237	int ret;
1238
1239	ASSERT_RTNL();
1240
1241	if (!netif_device_present(dev))
1242		return -ENODEV;
1243
1244	/* Block netpoll from trying to do any rx path servicing.
1245	 * If we don't do this there is a chance ndo_poll_controller
1246	 * or ndo_poll may be running while we open the device
1247	 */
1248	netpoll_poll_disable(dev);
1249
1250	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251	ret = notifier_to_errno(ret);
1252	if (ret)
1253		return ret;
1254
1255	set_bit(__LINK_STATE_START, &dev->state);
1256
1257	if (ops->ndo_validate_addr)
1258		ret = ops->ndo_validate_addr(dev);
1259
1260	if (!ret && ops->ndo_open)
1261		ret = ops->ndo_open(dev);
1262
1263	netpoll_poll_enable(dev);
1264
1265	if (ret)
1266		clear_bit(__LINK_STATE_START, &dev->state);
1267	else {
1268		dev->flags |= IFF_UP;
1269		net_dmaengine_get();
1270		dev_set_rx_mode(dev);
1271		dev_activate(dev);
1272		add_device_randomness(dev->dev_addr, dev->addr_len);
1273	}
1274
1275	return ret;
1276}
1277
1278/**
1279 *	dev_open	- prepare an interface for use.
1280 *	@dev:	device to open
1281 *
1282 *	Takes a device from down to up state. The device's private open
1283 *	function is invoked and then the multicast lists are loaded. Finally
1284 *	the device is moved into the up state and a %NETDEV_UP message is
1285 *	sent to the netdev notifier chain.
1286 *
1287 *	Calling this function on an active interface is a nop. On a failure
1288 *	a negative errno code is returned.
1289 */
1290int dev_open(struct net_device *dev)
1291{
1292	int ret;
1293
1294	if (dev->flags & IFF_UP)
1295		return 0;
1296
1297	ret = __dev_open(dev);
1298	if (ret < 0)
1299		return ret;
1300
1301	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302	call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304	return ret;
1305}
1306EXPORT_SYMBOL(dev_open);
1307
1308static int __dev_close_many(struct list_head *head)
1309{
1310	struct net_device *dev;
1311
1312	ASSERT_RTNL();
1313	might_sleep();
1314
1315	list_for_each_entry(dev, head, close_list) {
1316		/* Temporarily disable netpoll until the interface is down */
1317		netpoll_poll_disable(dev);
1318
1319		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321		clear_bit(__LINK_STATE_START, &dev->state);
1322
1323		/* Synchronize to scheduled poll. We cannot touch poll list, it
1324		 * can be even on different cpu. So just clear netif_running().
1325		 *
1326		 * dev->stop() will invoke napi_disable() on all of it's
1327		 * napi_struct instances on this device.
1328		 */
1329		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1330	}
1331
1332	dev_deactivate_many(head);
1333
1334	list_for_each_entry(dev, head, close_list) {
1335		const struct net_device_ops *ops = dev->netdev_ops;
1336
1337		/*
1338		 *	Call the device specific close. This cannot fail.
1339		 *	Only if device is UP
1340		 *
1341		 *	We allow it to be called even after a DETACH hot-plug
1342		 *	event.
1343		 */
1344		if (ops->ndo_stop)
1345			ops->ndo_stop(dev);
1346
1347		dev->flags &= ~IFF_UP;
1348		net_dmaengine_put();
1349		netpoll_poll_enable(dev);
1350	}
1351
1352	return 0;
1353}
1354
1355static int __dev_close(struct net_device *dev)
1356{
1357	int retval;
1358	LIST_HEAD(single);
1359
1360	list_add(&dev->close_list, &single);
1361	retval = __dev_close_many(&single);
1362	list_del(&single);
1363
1364	return retval;
1365}
1366
1367static int dev_close_many(struct list_head *head)
1368{
1369	struct net_device *dev, *tmp;
1370
1371	/* Remove the devices that don't need to be closed */
1372	list_for_each_entry_safe(dev, tmp, head, close_list)
1373		if (!(dev->flags & IFF_UP))
1374			list_del_init(&dev->close_list);
1375
1376	__dev_close_many(head);
1377
1378	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381		list_del_init(&dev->close_list);
 
1382	}
1383
1384	return 0;
1385}
 
1386
1387/**
1388 *	dev_close - shutdown an interface.
1389 *	@dev: device to shutdown
1390 *
1391 *	This function moves an active device into down state. A
1392 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 *	chain.
1395 */
1396int dev_close(struct net_device *dev)
1397{
1398	if (dev->flags & IFF_UP) {
1399		LIST_HEAD(single);
1400
1401		list_add(&dev->close_list, &single);
1402		dev_close_many(&single);
1403		list_del(&single);
1404	}
1405	return 0;
1406}
1407EXPORT_SYMBOL(dev_close);
1408
1409
1410/**
1411 *	dev_disable_lro - disable Large Receive Offload on a device
1412 *	@dev: device
1413 *
1414 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1415 *	called under RTNL.  This is needed if received packets may be
1416 *	forwarded to another interface.
1417 */
1418void dev_disable_lro(struct net_device *dev)
1419{
1420	/*
1421	 * If we're trying to disable lro on a vlan device
1422	 * use the underlying physical device instead
1423	 */
1424	if (is_vlan_dev(dev))
1425		dev = vlan_dev_real_dev(dev);
1426
1427	/* the same for macvlan devices */
1428	if (netif_is_macvlan(dev))
1429		dev = macvlan_dev_real_dev(dev);
1430
1431	dev->wanted_features &= ~NETIF_F_LRO;
1432	netdev_update_features(dev);
1433
1434	if (unlikely(dev->features & NETIF_F_LRO))
1435		netdev_WARN(dev, "failed to disable LRO!\n");
 
 
 
1436}
1437EXPORT_SYMBOL(dev_disable_lro);
1438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440				   struct net_device *dev)
1441{
1442	struct netdev_notifier_info info;
 
 
1443
1444	netdev_notifier_info_init(&info, dev);
1445	return nb->notifier_call(nb, val, &info);
1446}
1447
1448static int dev_boot_phase = 1;
1449
1450/**
1451 *	register_netdevice_notifier - register a network notifier block
1452 *	@nb: notifier
1453 *
1454 *	Register a notifier to be called when network device events occur.
1455 *	The notifier passed is linked into the kernel structures and must
1456 *	not be reused until it has been unregistered. A negative errno code
1457 *	is returned on a failure.
1458 *
1459 * 	When registered all registration and up events are replayed
1460 *	to the new notifier to allow device to have a race free
1461 *	view of the network device list.
1462 */
1463
1464int register_netdevice_notifier(struct notifier_block *nb)
1465{
1466	struct net_device *dev;
1467	struct net_device *last;
1468	struct net *net;
1469	int err;
1470
 
 
1471	rtnl_lock();
1472	err = raw_notifier_chain_register(&netdev_chain, nb);
1473	if (err)
1474		goto unlock;
1475	if (dev_boot_phase)
1476		goto unlock;
1477	for_each_net(net) {
1478		for_each_netdev(net, dev) {
1479			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480			err = notifier_to_errno(err);
1481			if (err)
1482				goto rollback;
1483
1484			if (!(dev->flags & IFF_UP))
1485				continue;
1486
1487			call_netdevice_notifier(nb, NETDEV_UP, dev);
1488		}
1489	}
1490
1491unlock:
1492	rtnl_unlock();
 
1493	return err;
1494
1495rollback:
1496	last = dev;
1497	for_each_net(net) {
1498		for_each_netdev(net, dev) {
1499			if (dev == last)
1500				goto outroll;
1501
1502			if (dev->flags & IFF_UP) {
1503				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504							dev);
1505				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506			}
1507			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508		}
1509	}
1510
1511outroll:
1512	raw_notifier_chain_unregister(&netdev_chain, nb);
1513	goto unlock;
1514}
1515EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517/**
1518 *	unregister_netdevice_notifier - unregister a network notifier block
1519 *	@nb: notifier
1520 *
1521 *	Unregister a notifier previously registered by
1522 *	register_netdevice_notifier(). The notifier is unlinked into the
1523 *	kernel structures and may then be reused. A negative errno code
1524 *	is returned on a failure.
1525 *
1526 * 	After unregistering unregister and down device events are synthesized
1527 *	for all devices on the device list to the removed notifier to remove
1528 *	the need for special case cleanup code.
1529 */
1530
1531int unregister_netdevice_notifier(struct notifier_block *nb)
1532{
1533	struct net_device *dev;
1534	struct net *net;
1535	int err;
1536
 
 
1537	rtnl_lock();
1538	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539	if (err)
1540		goto unlock;
1541
1542	for_each_net(net) {
1543		for_each_netdev(net, dev) {
1544			if (dev->flags & IFF_UP) {
1545				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546							dev);
1547				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548			}
1549			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550		}
1551	}
1552unlock:
1553	rtnl_unlock();
 
1554	return err;
1555}
1556EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558/**
1559 *	call_netdevice_notifiers_info - call all network notifier blocks
1560 *	@val: value passed unmodified to notifier function
1561 *	@dev: net_device pointer passed unmodified to notifier function
1562 *	@info: notifier information data
1563 *
1564 *	Call all network notifier blocks.  Parameters and return value
1565 *	are as for raw_notifier_call_chain().
1566 */
1567
1568static int call_netdevice_notifiers_info(unsigned long val,
1569					 struct net_device *dev,
1570					 struct netdev_notifier_info *info)
1571{
1572	ASSERT_RTNL();
1573	netdev_notifier_info_init(info, dev);
1574	return raw_notifier_call_chain(&netdev_chain, val, info);
1575}
1576
1577/**
1578 *	call_netdevice_notifiers - call all network notifier blocks
1579 *      @val: value passed unmodified to notifier function
1580 *      @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 *	Call all network notifier blocks.  Parameters and return value
1583 *	are as for raw_notifier_call_chain().
1584 */
1585
1586int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587{
1588	struct netdev_notifier_info info;
 
 
1589
1590	return call_netdevice_notifiers_info(val, dev, &info);
1591}
1592EXPORT_SYMBOL(call_netdevice_notifiers);
1593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594static struct static_key netstamp_needed __read_mostly;
1595#ifdef HAVE_JUMP_LABEL
1596/* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600static atomic_t netstamp_needed_deferred;
 
 
 
 
 
 
 
 
 
 
 
 
 
1601#endif
1602
1603void net_enable_timestamp(void)
1604{
1605#ifdef HAVE_JUMP_LABEL
1606	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608	if (deferred) {
1609		while (--deferred)
1610			static_key_slow_dec(&netstamp_needed);
1611		return;
 
 
1612	}
 
 
 
 
1613#endif
1614	static_key_slow_inc(&netstamp_needed);
1615}
1616EXPORT_SYMBOL(net_enable_timestamp);
1617
1618void net_disable_timestamp(void)
1619{
1620#ifdef HAVE_JUMP_LABEL
1621	if (in_interrupt()) {
1622		atomic_inc(&netstamp_needed_deferred);
1623		return;
 
 
 
 
 
1624	}
 
 
 
 
1625#endif
1626	static_key_slow_dec(&netstamp_needed);
1627}
1628EXPORT_SYMBOL(net_disable_timestamp);
1629
1630static inline void net_timestamp_set(struct sk_buff *skb)
1631{
1632	skb->tstamp.tv64 = 0;
1633	if (static_key_false(&netstamp_needed))
1634		__net_timestamp(skb);
1635}
1636
1637#define net_timestamp_check(COND, SKB)			\
1638	if (static_key_false(&netstamp_needed)) {		\
1639		if ((COND) && !(SKB)->tstamp.tv64)	\
1640			__net_timestamp(SKB);		\
1641	}						\
1642
1643bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644{
1645	unsigned int len;
1646
1647	if (!(dev->flags & IFF_UP))
1648		return false;
1649
1650	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651	if (skb->len <= len)
1652		return true;
1653
1654	/* if TSO is enabled, we don't care about the length as the packet
1655	 * could be forwarded without being segmented before
1656	 */
1657	if (skb_is_gso(skb))
1658		return true;
1659
1660	return false;
1661}
1662EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
 
 
 
 
 
 
 
 
 
 
 
 
 
1664/**
1665 * dev_forward_skb - loopback an skb to another netif
1666 *
1667 * @dev: destination network device
1668 * @skb: buffer to forward
1669 *
1670 * return values:
1671 *	NET_RX_SUCCESS	(no congestion)
1672 *	NET_RX_DROP     (packet was dropped, but freed)
1673 *
1674 * dev_forward_skb can be used for injecting an skb from the
1675 * start_xmit function of one device into the receive queue
1676 * of another device.
1677 *
1678 * The receiving device may be in another namespace, so
1679 * we have to clear all information in the skb that could
1680 * impact namespace isolation.
1681 */
1682int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686			atomic_long_inc(&dev->rx_dropped);
1687			kfree_skb(skb);
1688			return NET_RX_DROP;
1689		}
1690	}
1691
1692	if (unlikely(!is_skb_forwardable(dev, skb))) {
1693		atomic_long_inc(&dev->rx_dropped);
1694		kfree_skb(skb);
1695		return NET_RX_DROP;
1696	}
1697
1698	skb_scrub_packet(skb, true);
1699	skb->protocol = eth_type_trans(skb, dev);
1700
1701	return netif_rx_internal(skb);
1702}
1703EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705static inline int deliver_skb(struct sk_buff *skb,
1706			      struct packet_type *pt_prev,
1707			      struct net_device *orig_dev)
1708{
1709	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710		return -ENOMEM;
1711	atomic_inc(&skb->users);
1712	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713}
1714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716{
1717	if (!ptype->af_packet_priv || !skb->sk)
1718		return false;
1719
1720	if (ptype->id_match)
1721		return ptype->id_match(ptype, skb->sk);
1722	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723		return true;
1724
1725	return false;
1726}
1727
1728/*
1729 *	Support routine. Sends outgoing frames to any network
1730 *	taps currently in use.
1731 */
1732
1733static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734{
1735	struct packet_type *ptype;
1736	struct sk_buff *skb2 = NULL;
1737	struct packet_type *pt_prev = NULL;
 
1738
1739	rcu_read_lock();
1740	list_for_each_entry_rcu(ptype, &ptype_all, list) {
 
1741		/* Never send packets back to the socket
1742		 * they originated from - MvS (miquels@drinkel.ow.org)
1743		 */
1744		if ((ptype->dev == dev || !ptype->dev) &&
1745		    (!skb_loop_sk(ptype, skb))) {
1746			if (pt_prev) {
1747				deliver_skb(skb2, pt_prev, skb->dev);
1748				pt_prev = ptype;
1749				continue;
1750			}
1751
1752			skb2 = skb_clone(skb, GFP_ATOMIC);
1753			if (!skb2)
1754				break;
 
 
1755
1756			net_timestamp_set(skb2);
 
 
 
 
 
 
 
 
 
 
 
1757
1758			/* skb->nh should be correctly
1759			   set by sender, so that the second statement is
1760			   just protection against buggy protocols.
1761			 */
1762			skb_reset_mac_header(skb2);
 
 
1763
1764			if (skb_network_header(skb2) < skb2->data ||
1765			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767						     ntohs(skb2->protocol),
1768						     dev->name);
1769				skb_reset_network_header(skb2);
1770			}
1771
1772			skb2->transport_header = skb2->network_header;
1773			skb2->pkt_type = PACKET_OUTGOING;
1774			pt_prev = ptype;
1775		}
 
 
 
 
 
 
1776	}
1777	if (pt_prev)
1778		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779	rcu_read_unlock();
1780}
 
1781
1782/**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
1795static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796{
1797	int i;
1798	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800	/* If TC0 is invalidated disable TC mapping */
1801	if (tc->offset + tc->count > txq) {
1802		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803		dev->num_tc = 0;
1804		return;
1805	}
1806
1807	/* Invalidated prio to tc mappings set to TC0 */
1808	for (i = 1; i < TC_BITMASK + 1; i++) {
1809		int q = netdev_get_prio_tc_map(dev, i);
1810
1811		tc = &dev->tc_to_txq[q];
1812		if (tc->offset + tc->count > txq) {
1813			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814				i, q);
1815			netdev_set_prio_tc_map(dev, i, 0);
1816		}
1817	}
1818}
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820#ifdef CONFIG_XPS
1821static DEFINE_MUTEX(xps_map_mutex);
1822#define xmap_dereference(P)		\
1823	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826					int cpu, u16 index)
1827{
1828	struct xps_map *map = NULL;
1829	int pos;
1830
1831	if (dev_maps)
1832		map = xmap_dereference(dev_maps->cpu_map[cpu]);
 
 
 
 
 
 
1833
1834	for (pos = 0; map && pos < map->len; pos++) {
1835		if (map->queues[pos] == index) {
1836			if (map->len > 1) {
1837				map->queues[pos] = map->queues[--map->len];
1838			} else {
1839				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840				kfree_rcu(map, rcu);
1841				map = NULL;
1842			}
1843			break;
1844		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845	}
1846
1847	return map;
1848}
1849
1850static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
 
1851{
1852	struct xps_dev_maps *dev_maps;
1853	int cpu, i;
1854	bool active = false;
1855
1856	mutex_lock(&xps_map_mutex);
1857	dev_maps = xmap_dereference(dev->xps_maps);
1858
1859	if (!dev_maps)
1860		goto out_no_maps;
1861
1862	for_each_possible_cpu(cpu) {
1863		for (i = index; i < dev->num_tx_queues; i++) {
1864			if (!remove_xps_queue(dev_maps, cpu, i))
1865				break;
1866		}
1867		if (i == dev->num_tx_queues)
1868			active = true;
1869	}
1870
1871	if (!active) {
1872		RCU_INIT_POINTER(dev->xps_maps, NULL);
1873		kfree_rcu(dev_maps, rcu);
1874	}
1875
1876	for (i = index; i < dev->num_tx_queues; i++)
1877		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878					     NUMA_NO_NODE);
1879
1880out_no_maps:
1881	mutex_unlock(&xps_map_mutex);
1882}
1883
 
 
 
 
 
1884static struct xps_map *expand_xps_map(struct xps_map *map,
1885				      int cpu, u16 index)
1886{
1887	struct xps_map *new_map;
1888	int alloc_len = XPS_MIN_MAP_ALLOC;
1889	int i, pos;
1890
1891	for (pos = 0; map && pos < map->len; pos++) {
1892		if (map->queues[pos] != index)
1893			continue;
1894		return map;
1895	}
1896
1897	/* Need to add queue to this CPU's existing map */
1898	if (map) {
1899		if (pos < map->alloc_len)
1900			return map;
1901
1902		alloc_len = map->alloc_len * 2;
1903	}
1904
1905	/* Need to allocate new map to store queue on this CPU's map */
1906	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907			       cpu_to_node(cpu));
1908	if (!new_map)
1909		return NULL;
1910
1911	for (i = 0; i < pos; i++)
1912		new_map->queues[i] = map->queues[i];
1913	new_map->alloc_len = alloc_len;
1914	new_map->len = pos;
1915
1916	return new_map;
1917}
1918
1919int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920			u16 index)
1921{
1922	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
 
 
1923	struct xps_map *map, *new_map;
1924	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925	int cpu, numa_node_id = -2;
1926	bool active = false;
1927
 
 
 
 
 
 
 
 
 
 
 
1928	mutex_lock(&xps_map_mutex);
1929
1930	dev_maps = xmap_dereference(dev->xps_maps);
1931
1932	/* allocate memory for queue storage */
1933	for_each_online_cpu(cpu) {
1934		if (!cpumask_test_cpu(cpu, mask))
1935			continue;
1936
1937		if (!new_dev_maps)
1938			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939		if (!new_dev_maps) {
1940			mutex_unlock(&xps_map_mutex);
1941			return -ENOMEM;
1942		}
1943
1944		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
 
1945				 NULL;
1946
1947		map = expand_xps_map(map, cpu, index);
1948		if (!map)
1949			goto error;
1950
1951		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952	}
1953
1954	if (!new_dev_maps)
1955		goto out_no_new_maps;
1956
1957	for_each_possible_cpu(cpu) {
 
 
 
 
 
 
 
 
 
 
 
 
1958		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959			/* add queue to CPU maps */
1960			int pos = 0;
1961
1962			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963			while ((pos < map->len) && (map->queues[pos] != index))
1964				pos++;
1965
1966			if (pos == map->len)
1967				map->queues[map->len++] = index;
1968#ifdef CONFIG_NUMA
1969			if (numa_node_id == -2)
1970				numa_node_id = cpu_to_node(cpu);
1971			else if (numa_node_id != cpu_to_node(cpu))
1972				numa_node_id = -1;
1973#endif
1974		} else if (dev_maps) {
1975			/* fill in the new device map from the old device map */
1976			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978		}
1979
 
 
 
 
 
 
1980	}
1981
1982	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984	/* Cleanup old maps */
1985	if (dev_maps) {
1986		for_each_possible_cpu(cpu) {
1987			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988			map = xmap_dereference(dev_maps->cpu_map[cpu]);
 
 
 
1989			if (map && map != new_map)
1990				kfree_rcu(map, rcu);
1991		}
 
1992
1993		kfree_rcu(dev_maps, rcu);
1994	}
1995
 
1996	dev_maps = new_dev_maps;
1997	active = true;
1998
1999out_no_new_maps:
2000	/* update Tx queue numa node */
2001	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002				     (numa_node_id >= 0) ? numa_node_id :
2003				     NUMA_NO_NODE);
2004
2005	if (!dev_maps)
2006		goto out_no_maps;
2007
2008	/* removes queue from unused CPUs */
2009	for_each_possible_cpu(cpu) {
2010		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011			continue;
2012
2013		if (remove_xps_queue(dev_maps, cpu, index))
2014			active = true;
 
2015	}
2016
2017	/* free map if not active */
2018	if (!active) {
2019		RCU_INIT_POINTER(dev->xps_maps, NULL);
2020		kfree_rcu(dev_maps, rcu);
2021	}
2022
2023out_no_maps:
2024	mutex_unlock(&xps_map_mutex);
2025
2026	return 0;
2027error:
2028	/* remove any maps that we added */
2029	for_each_possible_cpu(cpu) {
2030		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032				 NULL;
2033		if (new_map && new_map != map)
2034			kfree(new_map);
 
 
 
2035	}
2036
2037	mutex_unlock(&xps_map_mutex);
2038
2039	kfree(new_dev_maps);
2040	return -ENOMEM;
2041}
2042EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045/*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050{
 
2051	int rc;
2052
 
 
2053	if (txq < 1 || txq > dev->num_tx_queues)
2054		return -EINVAL;
2055
2056	if (dev->reg_state == NETREG_REGISTERED ||
2057	    dev->reg_state == NETREG_UNREGISTERING) {
2058		ASSERT_RTNL();
2059
2060		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061						  txq);
2062		if (rc)
2063			return rc;
2064
2065		if (dev->num_tc)
2066			netif_setup_tc(dev, txq);
2067
2068		if (txq < dev->real_num_tx_queues) {
 
 
 
2069			qdisc_reset_all_tx_gt(dev, txq);
2070#ifdef CONFIG_XPS
2071			netif_reset_xps_queues_gt(dev, txq);
2072#endif
2073		}
 
 
2074	}
2075
2076	dev->real_num_tx_queues = txq;
2077	return 0;
2078}
2079EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081#ifdef CONFIG_SYSFS
2082/**
2083 *	netif_set_real_num_rx_queues - set actual number of RX queues used
2084 *	@dev: Network device
2085 *	@rxq: Actual number of RX queues
2086 *
2087 *	This must be called either with the rtnl_lock held or before
2088 *	registration of the net device.  Returns 0 on success, or a
2089 *	negative error code.  If called before registration, it always
2090 *	succeeds.
2091 */
2092int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093{
2094	int rc;
2095
2096	if (rxq < 1 || rxq > dev->num_rx_queues)
2097		return -EINVAL;
2098
2099	if (dev->reg_state == NETREG_REGISTERED) {
2100		ASSERT_RTNL();
2101
2102		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103						  rxq);
2104		if (rc)
2105			return rc;
2106	}
2107
2108	dev->real_num_rx_queues = rxq;
2109	return 0;
2110}
2111EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112#endif
2113
2114/**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120int netif_get_num_default_rss_queues(void)
2121{
2122	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
 
2123}
2124EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126static inline void __netif_reschedule(struct Qdisc *q)
2127{
2128	struct softnet_data *sd;
2129	unsigned long flags;
2130
2131	local_irq_save(flags);
2132	sd = &__get_cpu_var(softnet_data);
2133	q->next_sched = NULL;
2134	*sd->output_queue_tailp = q;
2135	sd->output_queue_tailp = &q->next_sched;
2136	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137	local_irq_restore(flags);
2138}
2139
2140void __netif_schedule(struct Qdisc *q)
2141{
2142	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143		__netif_reschedule(q);
2144}
2145EXPORT_SYMBOL(__netif_schedule);
2146
2147struct dev_kfree_skb_cb {
2148	enum skb_free_reason reason;
2149};
2150
2151static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152{
2153	return (struct dev_kfree_skb_cb *)skb->cb;
2154}
2155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157{
2158	unsigned long flags;
2159
2160	if (likely(atomic_read(&skb->users) == 1)) {
 
 
 
2161		smp_rmb();
2162		atomic_set(&skb->users, 0);
2163	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2164		return;
2165	}
2166	get_kfree_skb_cb(skb)->reason = reason;
2167	local_irq_save(flags);
2168	skb->next = __this_cpu_read(softnet_data.completion_queue);
2169	__this_cpu_write(softnet_data.completion_queue, skb);
2170	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171	local_irq_restore(flags);
2172}
2173EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174
2175void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176{
2177	if (in_irq() || irqs_disabled())
2178		__dev_kfree_skb_irq(skb, reason);
2179	else
2180		dev_kfree_skb(skb);
2181}
2182EXPORT_SYMBOL(__dev_kfree_skb_any);
2183
2184
2185/**
2186 * netif_device_detach - mark device as removed
2187 * @dev: network device
2188 *
2189 * Mark device as removed from system and therefore no longer available.
2190 */
2191void netif_device_detach(struct net_device *dev)
2192{
2193	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194	    netif_running(dev)) {
2195		netif_tx_stop_all_queues(dev);
2196	}
2197}
2198EXPORT_SYMBOL(netif_device_detach);
2199
2200/**
2201 * netif_device_attach - mark device as attached
2202 * @dev: network device
2203 *
2204 * Mark device as attached from system and restart if needed.
2205 */
2206void netif_device_attach(struct net_device *dev)
2207{
2208	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209	    netif_running(dev)) {
2210		netif_tx_wake_all_queues(dev);
2211		__netdev_watchdog_up(dev);
2212	}
2213}
2214EXPORT_SYMBOL(netif_device_attach);
2215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216static void skb_warn_bad_offload(const struct sk_buff *skb)
2217{
2218	static const netdev_features_t null_features = 0;
2219	struct net_device *dev = skb->dev;
2220	const char *driver = "";
2221
2222	if (!net_ratelimit())
2223		return;
2224
2225	if (dev && dev->dev.parent)
2226		driver = dev_driver_string(dev->dev.parent);
2227
 
 
 
2228	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229	     "gso_type=%d ip_summed=%d\n",
2230	     driver, dev ? &dev->features : &null_features,
2231	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2234}
2235
2236/*
2237 * Invalidate hardware checksum when packet is to be mangled, and
2238 * complete checksum manually on outgoing path.
2239 */
2240int skb_checksum_help(struct sk_buff *skb)
2241{
2242	__wsum csum;
2243	int ret = 0, offset;
2244
2245	if (skb->ip_summed == CHECKSUM_COMPLETE)
2246		goto out_set_summed;
2247
2248	if (unlikely(skb_shinfo(skb)->gso_size)) {
2249		skb_warn_bad_offload(skb);
2250		return -EINVAL;
2251	}
2252
2253	/* Before computing a checksum, we should make sure no frag could
2254	 * be modified by an external entity : checksum could be wrong.
2255	 */
2256	if (skb_has_shared_frag(skb)) {
2257		ret = __skb_linearize(skb);
2258		if (ret)
2259			goto out;
2260	}
2261
2262	offset = skb_checksum_start_offset(skb);
2263	BUG_ON(offset >= skb_headlen(skb));
2264	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265
2266	offset += skb->csum_offset;
2267	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268
2269	if (skb_cloned(skb) &&
2270	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272		if (ret)
2273			goto out;
2274	}
2275
2276	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277out_set_summed:
2278	skb->ip_summed = CHECKSUM_NONE;
2279out:
2280	return ret;
2281}
2282EXPORT_SYMBOL(skb_checksum_help);
2283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285{
2286	unsigned int vlan_depth = skb->mac_len;
2287	__be16 type = skb->protocol;
2288
2289	/* Tunnel gso handlers can set protocol to ethernet. */
2290	if (type == htons(ETH_P_TEB)) {
2291		struct ethhdr *eth;
2292
2293		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294			return 0;
2295
2296		eth = (struct ethhdr *)skb_mac_header(skb);
2297		type = eth->h_proto;
2298	}
2299
2300	/* if skb->protocol is 802.1Q/AD then the header should already be
2301	 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2302	 * ETH_HLEN otherwise
2303	 */
2304	if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2305		if (vlan_depth) {
2306			if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2307				return 0;
2308			vlan_depth -= VLAN_HLEN;
2309		} else {
2310			vlan_depth = ETH_HLEN;
2311		}
2312		do {
2313			struct vlan_hdr *vh;
2314
2315			if (unlikely(!pskb_may_pull(skb,
2316						    vlan_depth + VLAN_HLEN)))
2317				return 0;
2318
2319			vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2320			type = vh->h_vlan_encapsulated_proto;
2321			vlan_depth += VLAN_HLEN;
2322		} while (type == htons(ETH_P_8021Q) ||
2323			 type == htons(ETH_P_8021AD));
2324	}
2325
2326	*depth = vlan_depth;
2327
2328	return type;
2329}
2330
2331/**
2332 *	skb_mac_gso_segment - mac layer segmentation handler.
2333 *	@skb: buffer to segment
2334 *	@features: features for the output path (see dev->features)
2335 */
2336struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2337				    netdev_features_t features)
2338{
2339	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2340	struct packet_offload *ptype;
2341	int vlan_depth = skb->mac_len;
2342	__be16 type = skb_network_protocol(skb, &vlan_depth);
2343
2344	if (unlikely(!type))
2345		return ERR_PTR(-EINVAL);
2346
2347	__skb_pull(skb, vlan_depth);
2348
2349	rcu_read_lock();
2350	list_for_each_entry_rcu(ptype, &offload_base, list) {
2351		if (ptype->type == type && ptype->callbacks.gso_segment) {
2352			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2353				int err;
2354
2355				err = ptype->callbacks.gso_send_check(skb);
2356				segs = ERR_PTR(err);
2357				if (err || skb_gso_ok(skb, features))
2358					break;
2359				__skb_push(skb, (skb->data -
2360						 skb_network_header(skb)));
2361			}
2362			segs = ptype->callbacks.gso_segment(skb, features);
2363			break;
2364		}
2365	}
2366	rcu_read_unlock();
2367
2368	__skb_push(skb, skb->data - skb_mac_header(skb));
2369
2370	return segs;
2371}
2372EXPORT_SYMBOL(skb_mac_gso_segment);
2373
2374
2375/* openvswitch calls this on rx path, so we need a different check.
2376 */
2377static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2378{
2379	if (tx_path)
2380		return skb->ip_summed != CHECKSUM_PARTIAL;
2381	else
2382		return skb->ip_summed == CHECKSUM_NONE;
 
2383}
2384
2385/**
2386 *	__skb_gso_segment - Perform segmentation on skb.
2387 *	@skb: buffer to segment
2388 *	@features: features for the output path (see dev->features)
2389 *	@tx_path: whether it is called in TX path
2390 *
2391 *	This function segments the given skb and returns a list of segments.
2392 *
2393 *	It may return NULL if the skb requires no segmentation.  This is
2394 *	only possible when GSO is used for verifying header integrity.
 
 
2395 */
2396struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2397				  netdev_features_t features, bool tx_path)
2398{
 
 
2399	if (unlikely(skb_needs_check(skb, tx_path))) {
2400		int err;
2401
2402		skb_warn_bad_offload(skb);
 
 
 
 
 
 
 
 
 
 
 
 
2403
2404		if (skb_header_cloned(skb) &&
2405		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2406			return ERR_PTR(err);
2407	}
2408
 
 
 
2409	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2410	SKB_GSO_CB(skb)->encap_level = 0;
2411
2412	skb_reset_mac_header(skb);
2413	skb_reset_mac_len(skb);
2414
2415	return skb_mac_gso_segment(skb, features);
 
 
 
 
 
2416}
2417EXPORT_SYMBOL(__skb_gso_segment);
2418
2419/* Take action when hardware reception checksum errors are detected. */
2420#ifdef CONFIG_BUG
2421void netdev_rx_csum_fault(struct net_device *dev)
2422{
2423	if (net_ratelimit()) {
2424		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2425		dump_stack();
2426	}
2427}
2428EXPORT_SYMBOL(netdev_rx_csum_fault);
2429#endif
2430
2431/* Actually, we should eliminate this check as soon as we know, that:
2432 * 1. IOMMU is present and allows to map all the memory.
2433 * 2. No high memory really exists on this machine.
2434 */
2435
2436static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2437{
2438#ifdef CONFIG_HIGHMEM
2439	int i;
 
2440	if (!(dev->features & NETIF_F_HIGHDMA)) {
2441		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2442			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
2443			if (PageHighMem(skb_frag_page(frag)))
2444				return 1;
2445		}
2446	}
2447
2448	if (PCI_DMA_BUS_IS_PHYS) {
2449		struct device *pdev = dev->dev.parent;
2450
2451		if (!pdev)
2452			return 0;
2453		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2454			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2455			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
 
2456			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2457				return 1;
2458		}
2459	}
2460#endif
2461	return 0;
2462}
2463
2464struct dev_gso_cb {
2465	void (*destructor)(struct sk_buff *skb);
2466};
 
 
 
 
 
 
 
2467
2468#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
 
 
 
 
 
 
 
 
 
2469
2470static void dev_gso_skb_destructor(struct sk_buff *skb)
 
2471{
2472	struct dev_gso_cb *cb;
 
 
 
 
2473
2474	kfree_skb_list(skb->next);
2475	skb->next = NULL;
 
 
 
 
2476
2477	cb = DEV_GSO_CB(skb);
2478	if (cb->destructor)
2479		cb->destructor(skb);
2480}
2481
2482/**
2483 *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2484 *	@skb: buffer to segment
2485 *	@features: device features as applicable to this skb
2486 *
2487 *	This function segments the given skb and stores the list of segments
2488 *	in skb->next.
2489 */
2490static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2491{
2492	struct sk_buff *segs;
 
 
2493
2494	segs = skb_gso_segment(skb, features);
 
 
 
 
 
2495
2496	/* Verifying header integrity only. */
2497	if (!segs)
2498		return 0;
 
 
2499
2500	if (IS_ERR(segs))
2501		return PTR_ERR(segs);
2502
2503	skb->next = segs;
2504	DEV_GSO_CB(skb)->destructor = skb->destructor;
2505	skb->destructor = dev_gso_skb_destructor;
 
 
 
 
 
2506
2507	return 0;
2508}
2509
2510static netdev_features_t harmonize_features(struct sk_buff *skb,
2511	netdev_features_t features)
2512{
2513	int tmp;
2514
2515	if (skb->ip_summed != CHECKSUM_NONE &&
2516	    !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2517		features &= ~NETIF_F_ALL_CSUM;
2518	} else if (illegal_highdma(skb->dev, skb)) {
2519		features &= ~NETIF_F_SG;
2520	}
2521
2522	return features;
2523}
2524
2525netdev_features_t netif_skb_features(struct sk_buff *skb)
2526{
2527	__be16 protocol = skb->protocol;
2528	netdev_features_t features = skb->dev->features;
2529
2530	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2531		features &= ~NETIF_F_GSO_MASK;
2532
2533	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2534		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2535		protocol = veh->h_vlan_encapsulated_proto;
2536	} else if (!vlan_tx_tag_present(skb)) {
2537		return harmonize_features(skb, features);
2538	}
2539
2540	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2541					       NETIF_F_HW_VLAN_STAG_TX);
2542
2543	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2544		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2545				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2546				NETIF_F_HW_VLAN_STAG_TX;
 
 
 
 
2547
2548	return harmonize_features(skb, features);
2549}
2550EXPORT_SYMBOL(netif_skb_features);
2551
2552int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2553			struct netdev_queue *txq)
2554{
2555	const struct net_device_ops *ops = dev->netdev_ops;
2556	int rc = NETDEV_TX_OK;
2557	unsigned int skb_len;
 
 
2558
2559	if (likely(!skb->next)) {
2560		netdev_features_t features;
 
 
2561
2562		/*
2563		 * If device doesn't need skb->dst, release it right now while
2564		 * its hot in this cpu cache
2565		 */
2566		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2567			skb_dst_drop(skb);
2568
2569		features = netif_skb_features(skb);
 
 
 
 
2570
2571		if (vlan_tx_tag_present(skb) &&
2572		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2573			skb = __vlan_put_tag(skb, skb->vlan_proto,
2574					     vlan_tx_tag_get(skb));
2575			if (unlikely(!skb))
2576				goto out;
2577
2578			skb->vlan_tci = 0;
 
 
 
 
2579		}
2580
2581		/* If encapsulation offload request, verify we are testing
2582		 * hardware encapsulation features instead of standard
2583		 * features for the netdev
2584		 */
2585		if (skb->encapsulation)
2586			features &= dev->hw_enc_features;
2587
2588		if (netif_needs_gso(skb, features)) {
2589			if (unlikely(dev_gso_segment(skb, features)))
2590				goto out_kfree_skb;
2591			if (skb->next)
2592				goto gso;
2593		} else {
2594			if (skb_needs_linearize(skb, features) &&
2595			    __skb_linearize(skb))
2596				goto out_kfree_skb;
2597
2598			/* If packet is not checksummed and device does not
2599			 * support checksumming for this protocol, complete
2600			 * checksumming here.
2601			 */
2602			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2603				if (skb->encapsulation)
2604					skb_set_inner_transport_header(skb,
2605						skb_checksum_start_offset(skb));
2606				else
2607					skb_set_transport_header(skb,
2608						skb_checksum_start_offset(skb));
2609				if (!(features & NETIF_F_ALL_CSUM) &&
2610				     skb_checksum_help(skb))
2611					goto out_kfree_skb;
2612			}
2613		}
 
2614
2615		if (!list_empty(&ptype_all))
2616			dev_queue_xmit_nit(skb, dev);
 
 
2617
2618		skb_len = skb->len;
2619		trace_net_dev_start_xmit(skb, dev);
2620		rc = ops->ndo_start_xmit(skb, dev);
2621		trace_net_dev_xmit(skb, rc, dev, skb_len);
2622		if (rc == NETDEV_TX_OK)
2623			txq_trans_update(txq);
2624		return rc;
2625	}
2626
2627gso:
2628	do {
2629		struct sk_buff *nskb = skb->next;
 
 
 
2630
2631		skb->next = nskb->next;
2632		nskb->next = NULL;
 
2633
2634		if (!list_empty(&ptype_all))
2635			dev_queue_xmit_nit(nskb, dev);
 
2636
2637		skb_len = nskb->len;
2638		trace_net_dev_start_xmit(nskb, dev);
2639		rc = ops->ndo_start_xmit(nskb, dev);
2640		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2641		if (unlikely(rc != NETDEV_TX_OK)) {
2642			if (rc & ~NETDEV_TX_MASK)
2643				goto out_kfree_gso_skb;
2644			nskb->next = skb->next;
2645			skb->next = nskb;
2646			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647		}
2648		txq_trans_update(txq);
2649		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2650			return NETDEV_TX_BUSY;
2651	} while (skb->next);
2652
2653out_kfree_gso_skb:
2654	if (likely(skb->next == NULL)) {
2655		skb->destructor = DEV_GSO_CB(skb)->destructor;
2656		consume_skb(skb);
2657		return rc;
2658	}
 
 
 
 
 
2659out_kfree_skb:
2660	kfree_skb(skb);
2661out:
2662	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663}
2664EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2665
2666static void qdisc_pkt_len_init(struct sk_buff *skb)
2667{
2668	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2669
2670	qdisc_skb_cb(skb)->pkt_len = skb->len;
2671
2672	/* To get more precise estimation of bytes sent on wire,
2673	 * we add to pkt_len the headers size of all segments
2674	 */
2675	if (shinfo->gso_size)  {
2676		unsigned int hdr_len;
2677		u16 gso_segs = shinfo->gso_segs;
2678
2679		/* mac layer + network layer */
2680		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2681
2682		/* + transport layer */
2683		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2684			hdr_len += tcp_hdrlen(skb);
2685		else
2686			hdr_len += sizeof(struct udphdr);
 
 
 
 
 
 
 
 
 
 
 
2687
2688		if (shinfo->gso_type & SKB_GSO_DODGY)
2689			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2690						shinfo->gso_size);
2691
2692		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2693	}
2694}
2695
2696static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2697				 struct net_device *dev,
2698				 struct netdev_queue *txq)
2699{
2700	spinlock_t *root_lock = qdisc_lock(q);
 
2701	bool contended;
2702	int rc;
2703
2704	qdisc_pkt_len_init(skb);
2705	qdisc_calculate_pkt_len(skb, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706	/*
2707	 * Heuristic to force contended enqueues to serialize on a
2708	 * separate lock before trying to get qdisc main lock.
2709	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2710	 * and dequeue packets faster.
2711	 */
2712	contended = qdisc_is_running(q);
2713	if (unlikely(contended))
2714		spin_lock(&q->busylock);
2715
2716	spin_lock(root_lock);
2717	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2718		kfree_skb(skb);
2719		rc = NET_XMIT_DROP;
2720	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2721		   qdisc_run_begin(q)) {
2722		/*
2723		 * This is a work-conserving queue; there are no old skbs
2724		 * waiting to be sent out; and the qdisc is not running -
2725		 * xmit the skb directly.
2726		 */
2727		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2728			skb_dst_force(skb);
2729
2730		qdisc_bstats_update(q, skb);
2731
2732		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2733			if (unlikely(contended)) {
2734				spin_unlock(&q->busylock);
2735				contended = false;
2736			}
2737			__qdisc_run(q);
2738		} else
2739			qdisc_run_end(q);
2740
 
2741		rc = NET_XMIT_SUCCESS;
2742	} else {
2743		skb_dst_force(skb);
2744		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2745		if (qdisc_run_begin(q)) {
2746			if (unlikely(contended)) {
2747				spin_unlock(&q->busylock);
2748				contended = false;
2749			}
2750			__qdisc_run(q);
 
2751		}
2752	}
2753	spin_unlock(root_lock);
 
 
2754	if (unlikely(contended))
2755		spin_unlock(&q->busylock);
2756	return rc;
2757}
2758
2759#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2760static void skb_update_prio(struct sk_buff *skb)
2761{
2762	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
 
 
 
 
 
 
 
 
 
 
 
2763
2764	if (!skb->priority && skb->sk && map) {
2765		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2766
2767		if (prioidx < map->priomap_len)
2768			skb->priority = map->priomap[prioidx];
2769	}
2770}
2771#else
2772#define skb_update_prio(skb)
2773#endif
2774
2775static DEFINE_PER_CPU(int, xmit_recursion);
2776#define RECURSION_LIMIT 10
2777
2778/**
2779 *	dev_loopback_xmit - loop back @skb
 
 
2780 *	@skb: buffer to transmit
2781 */
2782int dev_loopback_xmit(struct sk_buff *skb)
2783{
2784	skb_reset_mac_header(skb);
2785	__skb_pull(skb, skb_network_offset(skb));
2786	skb->pkt_type = PACKET_LOOPBACK;
2787	skb->ip_summed = CHECKSUM_UNNECESSARY;
2788	WARN_ON(!skb_dst(skb));
2789	skb_dst_force(skb);
2790	netif_rx_ni(skb);
2791	return 0;
2792}
2793EXPORT_SYMBOL(dev_loopback_xmit);
2794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2795/**
2796 *	__dev_queue_xmit - transmit a buffer
2797 *	@skb: buffer to transmit
2798 *	@accel_priv: private data used for L2 forwarding offload
2799 *
2800 *	Queue a buffer for transmission to a network device. The caller must
2801 *	have set the device and priority and built the buffer before calling
2802 *	this function. The function can be called from an interrupt.
2803 *
2804 *	A negative errno code is returned on a failure. A success does not
2805 *	guarantee the frame will be transmitted as it may be dropped due
2806 *	to congestion or traffic shaping.
2807 *
2808 * -----------------------------------------------------------------------------------
2809 *      I notice this method can also return errors from the queue disciplines,
2810 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2811 *      be positive.
2812 *
2813 *      Regardless of the return value, the skb is consumed, so it is currently
2814 *      difficult to retry a send to this method.  (You can bump the ref count
2815 *      before sending to hold a reference for retry if you are careful.)
2816 *
2817 *      When calling this method, interrupts MUST be enabled.  This is because
2818 *      the BH enable code must have IRQs enabled so that it will not deadlock.
2819 *          --BLG
2820 */
2821static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2822{
2823	struct net_device *dev = skb->dev;
2824	struct netdev_queue *txq;
2825	struct Qdisc *q;
2826	int rc = -ENOMEM;
 
2827
2828	skb_reset_mac_header(skb);
2829
 
 
 
2830	/* Disable soft irqs for various locks below. Also
2831	 * stops preemption for RCU.
2832	 */
2833	rcu_read_lock_bh();
2834
2835	skb_update_prio(skb);
2836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2837	txq = netdev_pick_tx(dev, skb, accel_priv);
2838	q = rcu_dereference_bh(txq->qdisc);
2839
2840#ifdef CONFIG_NET_CLS_ACT
2841	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2842#endif
2843	trace_net_dev_queue(skb);
2844	if (q->enqueue) {
2845		rc = __dev_xmit_skb(skb, q, dev, txq);
2846		goto out;
2847	}
2848
2849	/* The device has no queue. Common case for software devices:
2850	   loopback, all the sorts of tunnels...
2851
2852	   Really, it is unlikely that netif_tx_lock protection is necessary
2853	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2854	   counters.)
2855	   However, it is possible, that they rely on protection
2856	   made by us here.
2857
2858	   Check this and shot the lock. It is not prone from deadlocks.
2859	   Either shot noqueue qdisc, it is even simpler 8)
2860	 */
2861	if (dev->flags & IFF_UP) {
2862		int cpu = smp_processor_id(); /* ok because BHs are off */
2863
2864		if (txq->xmit_lock_owner != cpu) {
 
 
 
2865
2866			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2867				goto recursion_alert;
 
2868
2869			HARD_TX_LOCK(dev, txq, cpu);
2870
2871			if (!netif_xmit_stopped(txq)) {
2872				__this_cpu_inc(xmit_recursion);
2873				rc = dev_hard_start_xmit(skb, dev, txq);
2874				__this_cpu_dec(xmit_recursion);
2875				if (dev_xmit_complete(rc)) {
2876					HARD_TX_UNLOCK(dev, txq);
2877					goto out;
2878				}
2879			}
2880			HARD_TX_UNLOCK(dev, txq);
2881			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2882					     dev->name);
2883		} else {
2884			/* Recursion is detected! It is possible,
2885			 * unfortunately
2886			 */
2887recursion_alert:
2888			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2889					     dev->name);
2890		}
2891	}
2892
2893	rc = -ENETDOWN;
2894	rcu_read_unlock_bh();
2895
2896	atomic_long_inc(&dev->tx_dropped);
2897	kfree_skb(skb);
2898	return rc;
2899out:
2900	rcu_read_unlock_bh();
2901	return rc;
2902}
2903
2904int dev_queue_xmit(struct sk_buff *skb)
2905{
2906	return __dev_queue_xmit(skb, NULL);
2907}
2908EXPORT_SYMBOL(dev_queue_xmit);
2909
2910int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2911{
2912	return __dev_queue_xmit(skb, accel_priv);
2913}
2914EXPORT_SYMBOL(dev_queue_xmit_accel);
2915
2916
2917/*=======================================================================
2918			Receiver routines
2919  =======================================================================*/
2920
2921int netdev_max_backlog __read_mostly = 1000;
2922EXPORT_SYMBOL(netdev_max_backlog);
2923
2924int netdev_tstamp_prequeue __read_mostly = 1;
2925int netdev_budget __read_mostly = 300;
2926int weight_p __read_mostly = 64;            /* old backlog weight */
 
 
 
 
 
2927
2928/* Called with irq disabled */
2929static inline void ____napi_schedule(struct softnet_data *sd,
2930				     struct napi_struct *napi)
2931{
2932	list_add_tail(&napi->poll_list, &sd->poll_list);
2933	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2934}
2935
2936#ifdef CONFIG_RPS
2937
2938/* One global table that all flow-based protocols share. */
2939struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2940EXPORT_SYMBOL(rps_sock_flow_table);
 
 
2941
2942struct static_key rps_needed __read_mostly;
 
 
 
2943
2944static struct rps_dev_flow *
2945set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2946	    struct rps_dev_flow *rflow, u16 next_cpu)
2947{
2948	if (next_cpu != RPS_NO_CPU) {
2949#ifdef CONFIG_RFS_ACCEL
2950		struct netdev_rx_queue *rxqueue;
2951		struct rps_dev_flow_table *flow_table;
2952		struct rps_dev_flow *old_rflow;
2953		u32 flow_id;
2954		u16 rxq_index;
2955		int rc;
2956
2957		/* Should we steer this flow to a different hardware queue? */
2958		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2959		    !(dev->features & NETIF_F_NTUPLE))
2960			goto out;
2961		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2962		if (rxq_index == skb_get_rx_queue(skb))
2963			goto out;
2964
2965		rxqueue = dev->_rx + rxq_index;
2966		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2967		if (!flow_table)
2968			goto out;
2969		flow_id = skb_get_hash(skb) & flow_table->mask;
2970		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2971							rxq_index, flow_id);
2972		if (rc < 0)
2973			goto out;
2974		old_rflow = rflow;
2975		rflow = &flow_table->flows[flow_id];
2976		rflow->filter = rc;
2977		if (old_rflow->filter == rflow->filter)
2978			old_rflow->filter = RPS_NO_FILTER;
2979	out:
2980#endif
2981		rflow->last_qtail =
2982			per_cpu(softnet_data, next_cpu).input_queue_head;
2983	}
2984
2985	rflow->cpu = next_cpu;
2986	return rflow;
2987}
2988
2989/*
2990 * get_rps_cpu is called from netif_receive_skb and returns the target
2991 * CPU from the RPS map of the receiving queue for a given skb.
2992 * rcu_read_lock must be held on entry.
2993 */
2994static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2995		       struct rps_dev_flow **rflowp)
2996{
2997	struct netdev_rx_queue *rxqueue;
 
 
2998	struct rps_map *map;
2999	struct rps_dev_flow_table *flow_table;
3000	struct rps_sock_flow_table *sock_flow_table;
3001	int cpu = -1;
3002	u16 tcpu;
3003	u32 hash;
3004
3005	if (skb_rx_queue_recorded(skb)) {
3006		u16 index = skb_get_rx_queue(skb);
 
3007		if (unlikely(index >= dev->real_num_rx_queues)) {
3008			WARN_ONCE(dev->real_num_rx_queues > 1,
3009				  "%s received packet on queue %u, but number "
3010				  "of RX queues is %u\n",
3011				  dev->name, index, dev->real_num_rx_queues);
3012			goto done;
3013		}
3014		rxqueue = dev->_rx + index;
3015	} else
3016		rxqueue = dev->_rx;
 
3017
 
3018	map = rcu_dereference(rxqueue->rps_map);
3019	if (map) {
3020		if (map->len == 1 &&
3021		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3022			tcpu = map->cpus[0];
3023			if (cpu_online(tcpu))
3024				cpu = tcpu;
3025			goto done;
3026		}
3027	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3028		goto done;
3029	}
3030
3031	skb_reset_network_header(skb);
3032	hash = skb_get_hash(skb);
3033	if (!hash)
3034		goto done;
3035
3036	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3037	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3038	if (flow_table && sock_flow_table) {
3039		u16 next_cpu;
3040		struct rps_dev_flow *rflow;
 
 
 
 
 
 
 
3041
 
 
 
 
 
3042		rflow = &flow_table->flows[hash & flow_table->mask];
3043		tcpu = rflow->cpu;
3044
3045		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3046
3047		/*
3048		 * If the desired CPU (where last recvmsg was done) is
3049		 * different from current CPU (one in the rx-queue flow
3050		 * table entry), switch if one of the following holds:
3051		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3052		 *   - Current CPU is offline.
3053		 *   - The current CPU's queue tail has advanced beyond the
3054		 *     last packet that was enqueued using this table entry.
3055		 *     This guarantees that all previous packets for the flow
3056		 *     have been dequeued, thus preserving in order delivery.
3057		 */
3058		if (unlikely(tcpu != next_cpu) &&
3059		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3060		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3061		      rflow->last_qtail)) >= 0)) {
3062			tcpu = next_cpu;
3063			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3064		}
3065
3066		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3067			*rflowp = rflow;
3068			cpu = tcpu;
3069			goto done;
3070		}
3071	}
3072
 
 
3073	if (map) {
3074		tcpu = map->cpus[((u64) hash * map->len) >> 32];
3075
3076		if (cpu_online(tcpu)) {
3077			cpu = tcpu;
3078			goto done;
3079		}
3080	}
3081
3082done:
3083	return cpu;
3084}
3085
3086#ifdef CONFIG_RFS_ACCEL
3087
3088/**
3089 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3090 * @dev: Device on which the filter was set
3091 * @rxq_index: RX queue index
3092 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3093 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3094 *
3095 * Drivers that implement ndo_rx_flow_steer() should periodically call
3096 * this function for each installed filter and remove the filters for
3097 * which it returns %true.
3098 */
3099bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3100			 u32 flow_id, u16 filter_id)
3101{
3102	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3103	struct rps_dev_flow_table *flow_table;
3104	struct rps_dev_flow *rflow;
3105	bool expire = true;
3106	int cpu;
3107
3108	rcu_read_lock();
3109	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3110	if (flow_table && flow_id <= flow_table->mask) {
3111		rflow = &flow_table->flows[flow_id];
3112		cpu = ACCESS_ONCE(rflow->cpu);
3113		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3114		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3115			   rflow->last_qtail) <
3116		     (int)(10 * flow_table->mask)))
3117			expire = false;
3118	}
3119	rcu_read_unlock();
3120	return expire;
3121}
3122EXPORT_SYMBOL(rps_may_expire_flow);
3123
3124#endif /* CONFIG_RFS_ACCEL */
3125
3126/* Called from hardirq (IPI) context */
3127static void rps_trigger_softirq(void *data)
3128{
3129	struct softnet_data *sd = data;
3130
3131	____napi_schedule(sd, &sd->backlog);
3132	sd->received_rps++;
3133}
3134
3135#endif /* CONFIG_RPS */
3136
3137/*
3138 * Check if this softnet_data structure is another cpu one
3139 * If yes, queue it to our IPI list and return 1
3140 * If no, return 0
3141 */
3142static int rps_ipi_queued(struct softnet_data *sd)
3143{
3144#ifdef CONFIG_RPS
3145	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3146
3147	if (sd != mysd) {
3148		sd->rps_ipi_next = mysd->rps_ipi_list;
3149		mysd->rps_ipi_list = sd;
3150
3151		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3152		return 1;
3153	}
3154#endif /* CONFIG_RPS */
3155	return 0;
3156}
3157
3158#ifdef CONFIG_NET_FLOW_LIMIT
3159int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3160#endif
3161
3162static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3163{
3164#ifdef CONFIG_NET_FLOW_LIMIT
3165	struct sd_flow_limit *fl;
3166	struct softnet_data *sd;
3167	unsigned int old_flow, new_flow;
3168
3169	if (qlen < (netdev_max_backlog >> 1))
3170		return false;
3171
3172	sd = &__get_cpu_var(softnet_data);
3173
3174	rcu_read_lock();
3175	fl = rcu_dereference(sd->flow_limit);
3176	if (fl) {
3177		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3178		old_flow = fl->history[fl->history_head];
3179		fl->history[fl->history_head] = new_flow;
3180
3181		fl->history_head++;
3182		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3183
3184		if (likely(fl->buckets[old_flow]))
3185			fl->buckets[old_flow]--;
3186
3187		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3188			fl->count++;
3189			rcu_read_unlock();
3190			return true;
3191		}
3192	}
3193	rcu_read_unlock();
3194#endif
3195	return false;
3196}
3197
3198/*
3199 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3200 * queue (may be a remote CPU queue).
3201 */
3202static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3203			      unsigned int *qtail)
3204{
3205	struct softnet_data *sd;
3206	unsigned long flags;
3207	unsigned int qlen;
3208
3209	sd = &per_cpu(softnet_data, cpu);
3210
3211	local_irq_save(flags);
3212
3213	rps_lock(sd);
 
 
3214	qlen = skb_queue_len(&sd->input_pkt_queue);
3215	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3216		if (skb_queue_len(&sd->input_pkt_queue)) {
3217enqueue:
3218			__skb_queue_tail(&sd->input_pkt_queue, skb);
3219			input_queue_tail_incr_save(sd, qtail);
3220			rps_unlock(sd);
3221			local_irq_restore(flags);
3222			return NET_RX_SUCCESS;
3223		}
3224
3225		/* Schedule NAPI for backlog device
3226		 * We can use non atomic operation since we own the queue lock
3227		 */
3228		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3229			if (!rps_ipi_queued(sd))
3230				____napi_schedule(sd, &sd->backlog);
3231		}
3232		goto enqueue;
3233	}
3234
 
3235	sd->dropped++;
3236	rps_unlock(sd);
3237
3238	local_irq_restore(flags);
3239
3240	atomic_long_inc(&skb->dev->rx_dropped);
3241	kfree_skb(skb);
3242	return NET_RX_DROP;
3243}
3244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245static int netif_rx_internal(struct sk_buff *skb)
3246{
3247	int ret;
3248
3249	net_timestamp_check(netdev_tstamp_prequeue, skb);
3250
3251	trace_netif_rx(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3252#ifdef CONFIG_RPS
3253	if (static_key_false(&rps_needed)) {
3254		struct rps_dev_flow voidflow, *rflow = &voidflow;
3255		int cpu;
3256
3257		preempt_disable();
3258		rcu_read_lock();
3259
3260		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3261		if (cpu < 0)
3262			cpu = smp_processor_id();
3263
3264		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3265
3266		rcu_read_unlock();
3267		preempt_enable();
3268	} else
3269#endif
3270	{
3271		unsigned int qtail;
 
3272		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3273		put_cpu();
3274	}
3275	return ret;
3276}
3277
3278/**
3279 *	netif_rx	-	post buffer to the network code
3280 *	@skb: buffer to post
3281 *
3282 *	This function receives a packet from a device driver and queues it for
3283 *	the upper (protocol) levels to process.  It always succeeds. The buffer
3284 *	may be dropped during processing for congestion control or by the
3285 *	protocol layers.
3286 *
3287 *	return values:
3288 *	NET_RX_SUCCESS	(no congestion)
3289 *	NET_RX_DROP     (packet was dropped)
3290 *
3291 */
3292
3293int netif_rx(struct sk_buff *skb)
3294{
3295	trace_netif_rx_entry(skb);
3296
3297	return netif_rx_internal(skb);
3298}
3299EXPORT_SYMBOL(netif_rx);
3300
3301int netif_rx_ni(struct sk_buff *skb)
3302{
3303	int err;
3304
3305	trace_netif_rx_ni_entry(skb);
3306
3307	preempt_disable();
3308	err = netif_rx_internal(skb);
3309	if (local_softirq_pending())
3310		do_softirq();
3311	preempt_enable();
3312
3313	return err;
3314}
3315EXPORT_SYMBOL(netif_rx_ni);
3316
3317static void net_tx_action(struct softirq_action *h)
3318{
3319	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3320
3321	if (sd->completion_queue) {
3322		struct sk_buff *clist;
3323
3324		local_irq_disable();
3325		clist = sd->completion_queue;
3326		sd->completion_queue = NULL;
3327		local_irq_enable();
3328
3329		while (clist) {
3330			struct sk_buff *skb = clist;
 
3331			clist = clist->next;
3332
3333			WARN_ON(atomic_read(&skb->users));
3334			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3335				trace_consume_skb(skb);
3336			else
3337				trace_kfree_skb(skb, net_tx_action);
3338			__kfree_skb(skb);
 
 
 
 
3339		}
 
 
3340	}
3341
3342	if (sd->output_queue) {
3343		struct Qdisc *head;
3344
3345		local_irq_disable();
3346		head = sd->output_queue;
3347		sd->output_queue = NULL;
3348		sd->output_queue_tailp = &sd->output_queue;
3349		local_irq_enable();
3350
3351		while (head) {
3352			struct Qdisc *q = head;
3353			spinlock_t *root_lock;
3354
3355			head = head->next_sched;
3356
3357			root_lock = qdisc_lock(q);
3358			if (spin_trylock(root_lock)) {
3359				smp_mb__before_clear_bit();
3360				clear_bit(__QDISC_STATE_SCHED,
3361					  &q->state);
3362				qdisc_run(q);
 
 
 
 
 
3363				spin_unlock(root_lock);
3364			} else {
3365				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3366					      &q->state)) {
3367					__netif_reschedule(q);
3368				} else {
3369					smp_mb__before_clear_bit();
3370					clear_bit(__QDISC_STATE_SCHED,
3371						  &q->state);
3372				}
3373			}
3374		}
3375	}
 
 
3376}
3377
3378#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3379    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3380/* This hook is defined here for ATM LANE */
3381int (*br_fdb_test_addr_hook)(struct net_device *dev,
3382			     unsigned char *addr) __read_mostly;
3383EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3384#endif
3385
 
 
 
 
3386#ifdef CONFIG_NET_CLS_ACT
3387/* TODO: Maybe we should just force sch_ingress to be compiled in
3388 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3389 * a compare and 2 stores extra right now if we dont have it on
3390 * but have CONFIG_NET_CLS_ACT
3391 * NOTE: This doesn't stop any functionality; if you dont have
3392 * the ingress scheduler, you just can't add policies on ingress.
3393 *
3394 */
3395static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3396{
3397	struct net_device *dev = skb->dev;
3398	u32 ttl = G_TC_RTTL(skb->tc_verd);
3399	int result = TC_ACT_OK;
3400	struct Qdisc *q;
3401
3402	if (unlikely(MAX_RED_LOOP < ttl++)) {
3403		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3404				     skb->skb_iif, dev->ifindex);
3405		return TC_ACT_SHOT;
3406	}
3407
3408	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3409	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3410
3411	q = rxq->qdisc;
3412	if (q != &noop_qdisc) {
3413		spin_lock(qdisc_lock(q));
3414		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3415			result = qdisc_enqueue_root(skb, q);
3416		spin_unlock(qdisc_lock(q));
3417	}
3418
3419	return result;
3420}
3421
3422static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3423					 struct packet_type **pt_prev,
3424					 int *ret, struct net_device *orig_dev)
3425{
3426	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3427
3428	if (!rxq || rxq->qdisc == &noop_qdisc)
3429		goto out;
3430
3431	if (*pt_prev) {
3432		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3433		*pt_prev = NULL;
3434	}
3435
3436	switch (ing_filter(skb, rxq)) {
 
 
 
 
 
 
 
 
3437	case TC_ACT_SHOT:
 
 
 
3438	case TC_ACT_STOLEN:
3439		kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
3440		return NULL;
 
 
3441	}
 
 
 
3442
3443out:
3444	skb->tc_verd = 0;
3445	return skb;
 
 
 
 
 
 
 
 
 
 
3446}
3447#endif
3448
3449/**
3450 *	netdev_rx_handler_register - register receive handler
3451 *	@dev: device to register a handler for
3452 *	@rx_handler: receive handler to register
3453 *	@rx_handler_data: data pointer that is used by rx handler
3454 *
3455 *	Register a receive handler for a device. This handler will then be
3456 *	called from __netif_receive_skb. A negative errno code is returned
3457 *	on a failure.
3458 *
3459 *	The caller must hold the rtnl_mutex.
3460 *
3461 *	For a general description of rx_handler, see enum rx_handler_result.
3462 */
3463int netdev_rx_handler_register(struct net_device *dev,
3464			       rx_handler_func_t *rx_handler,
3465			       void *rx_handler_data)
3466{
3467	ASSERT_RTNL();
 
3468
3469	if (dev->rx_handler)
3470		return -EBUSY;
3471
3472	/* Note: rx_handler_data must be set before rx_handler */
3473	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3474	rcu_assign_pointer(dev->rx_handler, rx_handler);
3475
3476	return 0;
3477}
3478EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3479
3480/**
3481 *	netdev_rx_handler_unregister - unregister receive handler
3482 *	@dev: device to unregister a handler from
3483 *
3484 *	Unregister a receive handler from a device.
3485 *
3486 *	The caller must hold the rtnl_mutex.
3487 */
3488void netdev_rx_handler_unregister(struct net_device *dev)
3489{
3490
3491	ASSERT_RTNL();
3492	RCU_INIT_POINTER(dev->rx_handler, NULL);
3493	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3494	 * section has a guarantee to see a non NULL rx_handler_data
3495	 * as well.
3496	 */
3497	synchronize_net();
3498	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3499}
3500EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3501
3502/*
3503 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3504 * the special handling of PFMEMALLOC skbs.
3505 */
3506static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3507{
3508	switch (skb->protocol) {
3509	case htons(ETH_P_ARP):
3510	case htons(ETH_P_IP):
3511	case htons(ETH_P_IPV6):
3512	case htons(ETH_P_8021Q):
3513	case htons(ETH_P_8021AD):
3514		return true;
3515	default:
3516		return false;
3517	}
3518}
3519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3520static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3521{
3522	struct packet_type *ptype, *pt_prev;
3523	rx_handler_func_t *rx_handler;
3524	struct net_device *orig_dev;
3525	struct net_device *null_or_dev;
3526	bool deliver_exact = false;
3527	int ret = NET_RX_DROP;
3528	__be16 type;
3529
3530	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3531
3532	trace_netif_receive_skb(skb);
3533
3534	orig_dev = skb->dev;
3535
3536	skb_reset_network_header(skb);
3537	if (!skb_transport_header_was_set(skb))
3538		skb_reset_transport_header(skb);
3539	skb_reset_mac_len(skb);
3540
3541	pt_prev = NULL;
3542
3543	rcu_read_lock();
3544
3545another_round:
3546	skb->skb_iif = skb->dev->ifindex;
3547
3548	__this_cpu_inc(softnet_data.processed);
3549
3550	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3551	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3552		skb = vlan_untag(skb);
3553		if (unlikely(!skb))
3554			goto unlock;
3555	}
3556
3557#ifdef CONFIG_NET_CLS_ACT
3558	if (skb->tc_verd & TC_NCLS) {
3559		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3560		goto ncls;
3561	}
3562#endif
3563
3564	if (pfmemalloc)
3565		goto skip_taps;
3566
3567	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3568		if (!ptype->dev || ptype->dev == skb->dev) {
3569			if (pt_prev)
3570				ret = deliver_skb(skb, pt_prev, orig_dev);
3571			pt_prev = ptype;
3572		}
 
 
 
 
3573	}
3574
3575skip_taps:
3576#ifdef CONFIG_NET_CLS_ACT
3577	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3578	if (!skb)
3579		goto unlock;
3580ncls:
 
 
 
 
3581#endif
3582
 
3583	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3584		goto drop;
3585
3586	if (vlan_tx_tag_present(skb)) {
3587		if (pt_prev) {
3588			ret = deliver_skb(skb, pt_prev, orig_dev);
3589			pt_prev = NULL;
3590		}
3591		if (vlan_do_receive(&skb))
3592			goto another_round;
3593		else if (unlikely(!skb))
3594			goto unlock;
3595	}
3596
3597	rx_handler = rcu_dereference(skb->dev->rx_handler);
3598	if (rx_handler) {
3599		if (pt_prev) {
3600			ret = deliver_skb(skb, pt_prev, orig_dev);
3601			pt_prev = NULL;
3602		}
3603		switch (rx_handler(&skb)) {
3604		case RX_HANDLER_CONSUMED:
3605			ret = NET_RX_SUCCESS;
3606			goto unlock;
3607		case RX_HANDLER_ANOTHER:
3608			goto another_round;
3609		case RX_HANDLER_EXACT:
3610			deliver_exact = true;
3611		case RX_HANDLER_PASS:
3612			break;
3613		default:
3614			BUG();
3615		}
3616	}
3617
3618	if (unlikely(vlan_tx_tag_present(skb))) {
3619		if (vlan_tx_tag_get_id(skb))
3620			skb->pkt_type = PACKET_OTHERHOST;
3621		/* Note: we might in the future use prio bits
3622		 * and set skb->priority like in vlan_do_receive()
3623		 * For the time being, just ignore Priority Code Point
3624		 */
3625		skb->vlan_tci = 0;
3626	}
3627
 
 
3628	/* deliver only exact match when indicated */
3629	null_or_dev = deliver_exact ? skb->dev : NULL;
 
 
 
 
3630
3631	type = skb->protocol;
3632	list_for_each_entry_rcu(ptype,
3633			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3634		if (ptype->type == type &&
3635		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3636		     ptype->dev == orig_dev)) {
3637			if (pt_prev)
3638				ret = deliver_skb(skb, pt_prev, orig_dev);
3639			pt_prev = ptype;
3640		}
3641	}
3642
3643	if (pt_prev) {
3644		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3645			goto drop;
3646		else
3647			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3648	} else {
3649drop:
3650		atomic_long_inc(&skb->dev->rx_dropped);
 
 
 
3651		kfree_skb(skb);
3652		/* Jamal, now you will not able to escape explaining
3653		 * me how you were going to use this. :-)
3654		 */
3655		ret = NET_RX_DROP;
3656	}
3657
3658unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3659	rcu_read_unlock();
 
3660	return ret;
3661}
 
3662
3663static int __netif_receive_skb(struct sk_buff *skb)
3664{
3665	int ret;
3666
3667	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3668		unsigned long pflags = current->flags;
3669
3670		/*
3671		 * PFMEMALLOC skbs are special, they should
3672		 * - be delivered to SOCK_MEMALLOC sockets only
3673		 * - stay away from userspace
3674		 * - have bounded memory usage
3675		 *
3676		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3677		 * context down to all allocation sites.
3678		 */
3679		current->flags |= PF_MEMALLOC;
3680		ret = __netif_receive_skb_core(skb, true);
3681		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3682	} else
3683		ret = __netif_receive_skb_core(skb, false);
3684
3685	return ret;
3686}
3687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3688static int netif_receive_skb_internal(struct sk_buff *skb)
3689{
 
 
3690	net_timestamp_check(netdev_tstamp_prequeue, skb);
3691
3692	if (skb_defer_rx_timestamp(skb))
3693		return NET_RX_SUCCESS;
3694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3695#ifdef CONFIG_RPS
3696	if (static_key_false(&rps_needed)) {
3697		struct rps_dev_flow voidflow, *rflow = &voidflow;
3698		int cpu, ret;
3699
3700		rcu_read_lock();
3701
3702		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3703
3704		if (cpu >= 0) {
3705			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3706			rcu_read_unlock();
3707			return ret;
3708		}
3709		rcu_read_unlock();
3710	}
3711#endif
3712	return __netif_receive_skb(skb);
 
 
3713}
3714
3715/**
3716 *	netif_receive_skb - process receive buffer from network
3717 *	@skb: buffer to process
3718 *
3719 *	netif_receive_skb() is the main receive data processing function.
3720 *	It always succeeds. The buffer may be dropped during processing
3721 *	for congestion control or by the protocol layers.
3722 *
3723 *	This function may only be called from softirq context and interrupts
3724 *	should be enabled.
3725 *
3726 *	Return values (usually ignored):
3727 *	NET_RX_SUCCESS: no congestion
3728 *	NET_RX_DROP: packet was dropped
3729 */
3730int netif_receive_skb(struct sk_buff *skb)
3731{
3732	trace_netif_receive_skb_entry(skb);
3733
3734	return netif_receive_skb_internal(skb);
3735}
3736EXPORT_SYMBOL(netif_receive_skb);
3737
3738/* Network device is going away, flush any packets still pending
3739 * Called with irqs disabled.
3740 */
3741static void flush_backlog(void *arg)
3742{
3743	struct net_device *dev = arg;
3744	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3745	struct sk_buff *skb, *tmp;
 
 
 
 
3746
 
3747	rps_lock(sd);
3748	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3749		if (skb->dev == dev) {
3750			__skb_unlink(skb, &sd->input_pkt_queue);
3751			kfree_skb(skb);
3752			input_queue_head_incr(sd);
3753		}
3754	}
3755	rps_unlock(sd);
 
3756
3757	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3758		if (skb->dev == dev) {
3759			__skb_unlink(skb, &sd->process_queue);
3760			kfree_skb(skb);
3761			input_queue_head_incr(sd);
3762		}
3763	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3764}
3765
3766static int napi_gro_complete(struct sk_buff *skb)
3767{
3768	struct packet_offload *ptype;
3769	__be16 type = skb->protocol;
3770	struct list_head *head = &offload_base;
3771	int err = -ENOENT;
3772
3773	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3774
3775	if (NAPI_GRO_CB(skb)->count == 1) {
3776		skb_shinfo(skb)->gso_size = 0;
3777		goto out;
3778	}
3779
3780	rcu_read_lock();
3781	list_for_each_entry_rcu(ptype, head, list) {
3782		if (ptype->type != type || !ptype->callbacks.gro_complete)
3783			continue;
3784
3785		err = ptype->callbacks.gro_complete(skb, 0);
3786		break;
3787	}
3788	rcu_read_unlock();
3789
3790	if (err) {
3791		WARN_ON(&ptype->list == head);
3792		kfree_skb(skb);
3793		return NET_RX_SUCCESS;
3794	}
3795
3796out:
3797	return netif_receive_skb_internal(skb);
3798}
3799
3800/* napi->gro_list contains packets ordered by age.
3801 * youngest packets at the head of it.
3802 * Complete skbs in reverse order to reduce latencies.
3803 */
3804void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3805{
3806	struct sk_buff *skb, *prev = NULL;
3807
3808	/* scan list and build reverse chain */
3809	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3810		skb->prev = prev;
3811		prev = skb;
3812	}
3813
3814	for (skb = prev; skb; skb = prev) {
3815		skb->next = NULL;
3816
3817		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3818			return;
3819
3820		prev = skb->prev;
3821		napi_gro_complete(skb);
3822		napi->gro_count--;
3823	}
3824
3825	napi->gro_list = NULL;
3826}
3827EXPORT_SYMBOL(napi_gro_flush);
3828
3829static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3830{
3831	struct sk_buff *p;
3832	unsigned int maclen = skb->dev->hard_header_len;
3833	u32 hash = skb_get_hash_raw(skb);
3834
3835	for (p = napi->gro_list; p; p = p->next) {
3836		unsigned long diffs;
3837
3838		NAPI_GRO_CB(p)->flush = 0;
3839
3840		if (hash != skb_get_hash_raw(p)) {
3841			NAPI_GRO_CB(p)->same_flow = 0;
3842			continue;
3843		}
3844
3845		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3846		diffs |= p->vlan_tci ^ skb->vlan_tci;
 
 
3847		if (maclen == ETH_HLEN)
3848			diffs |= compare_ether_header(skb_mac_header(p),
3849						      skb_mac_header(skb));
3850		else if (!diffs)
3851			diffs = memcmp(skb_mac_header(p),
3852				       skb_mac_header(skb),
3853				       maclen);
3854		NAPI_GRO_CB(p)->same_flow = !diffs;
3855	}
3856}
3857
3858static void skb_gro_reset_offset(struct sk_buff *skb)
3859{
3860	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3861	const skb_frag_t *frag0 = &pinfo->frags[0];
3862
3863	NAPI_GRO_CB(skb)->data_offset = 0;
3864	NAPI_GRO_CB(skb)->frag0 = NULL;
3865	NAPI_GRO_CB(skb)->frag0_len = 0;
3866
3867	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3868	    pinfo->nr_frags &&
3869	    !PageHighMem(skb_frag_page(frag0))) {
3870		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3871		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
 
 
3872	}
3873}
3874
3875static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3876{
3877	struct skb_shared_info *pinfo = skb_shinfo(skb);
3878
3879	BUG_ON(skb->end - skb->tail < grow);
3880
3881	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3882
3883	skb->data_len -= grow;
3884	skb->tail += grow;
3885
3886	pinfo->frags[0].page_offset += grow;
3887	skb_frag_size_sub(&pinfo->frags[0], grow);
3888
3889	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3890		skb_frag_unref(skb, 0);
3891		memmove(pinfo->frags, pinfo->frags + 1,
3892			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3893	}
3894}
3895
3896static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3897{
3898	struct sk_buff **pp = NULL;
3899	struct packet_offload *ptype;
3900	__be16 type = skb->protocol;
3901	struct list_head *head = &offload_base;
3902	int same_flow;
3903	enum gro_result ret;
3904	int grow;
3905
3906	if (!(skb->dev->features & NETIF_F_GRO))
3907		goto normal;
3908
3909	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3910		goto normal;
3911
3912	gro_list_prepare(napi, skb);
3913	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3914
3915	rcu_read_lock();
3916	list_for_each_entry_rcu(ptype, head, list) {
3917		if (ptype->type != type || !ptype->callbacks.gro_receive)
3918			continue;
3919
3920		skb_set_network_header(skb, skb_gro_offset(skb));
3921		skb_reset_mac_len(skb);
3922		NAPI_GRO_CB(skb)->same_flow = 0;
3923		NAPI_GRO_CB(skb)->flush = 0;
3924		NAPI_GRO_CB(skb)->free = 0;
3925		NAPI_GRO_CB(skb)->udp_mark = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926
3927		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3928		break;
3929	}
3930	rcu_read_unlock();
3931
3932	if (&ptype->list == head)
3933		goto normal;
3934
 
 
 
 
 
3935	same_flow = NAPI_GRO_CB(skb)->same_flow;
3936	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3937
3938	if (pp) {
3939		struct sk_buff *nskb = *pp;
3940
3941		*pp = nskb->next;
3942		nskb->next = NULL;
3943		napi_gro_complete(nskb);
3944		napi->gro_count--;
3945	}
3946
3947	if (same_flow)
3948		goto ok;
3949
3950	if (NAPI_GRO_CB(skb)->flush)
3951		goto normal;
3952
3953	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3954		struct sk_buff *nskb = napi->gro_list;
3955
3956		/* locate the end of the list to select the 'oldest' flow */
3957		while (nskb->next) {
3958			pp = &nskb->next;
3959			nskb = *pp;
3960		}
3961		*pp = NULL;
3962		nskb->next = NULL;
3963		napi_gro_complete(nskb);
3964	} else {
3965		napi->gro_count++;
3966	}
3967	NAPI_GRO_CB(skb)->count = 1;
3968	NAPI_GRO_CB(skb)->age = jiffies;
3969	NAPI_GRO_CB(skb)->last = skb;
3970	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3971	skb->next = napi->gro_list;
3972	napi->gro_list = skb;
3973	ret = GRO_HELD;
3974
3975pull:
3976	grow = skb_gro_offset(skb) - skb_headlen(skb);
3977	if (grow > 0)
3978		gro_pull_from_frag0(skb, grow);
3979ok:
3980	return ret;
3981
3982normal:
3983	ret = GRO_NORMAL;
3984	goto pull;
3985}
3986
3987struct packet_offload *gro_find_receive_by_type(__be16 type)
3988{
3989	struct list_head *offload_head = &offload_base;
3990	struct packet_offload *ptype;
3991
3992	list_for_each_entry_rcu(ptype, offload_head, list) {
3993		if (ptype->type != type || !ptype->callbacks.gro_receive)
3994			continue;
3995		return ptype;
3996	}
3997	return NULL;
3998}
3999EXPORT_SYMBOL(gro_find_receive_by_type);
4000
4001struct packet_offload *gro_find_complete_by_type(__be16 type)
4002{
4003	struct list_head *offload_head = &offload_base;
4004	struct packet_offload *ptype;
4005
4006	list_for_each_entry_rcu(ptype, offload_head, list) {
4007		if (ptype->type != type || !ptype->callbacks.gro_complete)
4008			continue;
4009		return ptype;
4010	}
4011	return NULL;
4012}
4013EXPORT_SYMBOL(gro_find_complete_by_type);
4014
 
 
 
 
 
 
 
4015static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4016{
4017	switch (ret) {
4018	case GRO_NORMAL:
4019		if (netif_receive_skb_internal(skb))
4020			ret = GRO_DROP;
4021		break;
4022
4023	case GRO_DROP:
4024		kfree_skb(skb);
4025		break;
4026
4027	case GRO_MERGED_FREE:
4028		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4029			kmem_cache_free(skbuff_head_cache, skb);
4030		else
4031			__kfree_skb(skb);
4032		break;
4033
4034	case GRO_HELD:
4035	case GRO_MERGED:
 
4036		break;
4037	}
4038
4039	return ret;
4040}
4041
4042gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4043{
 
4044	trace_napi_gro_receive_entry(skb);
4045
4046	skb_gro_reset_offset(skb);
4047
4048	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4049}
4050EXPORT_SYMBOL(napi_gro_receive);
4051
4052static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4053{
 
 
 
 
4054	__skb_pull(skb, skb_headlen(skb));
4055	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4056	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4057	skb->vlan_tci = 0;
4058	skb->dev = napi->dev;
4059	skb->skb_iif = 0;
 
 
4060	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 
4061
4062	napi->skb = skb;
4063}
4064
4065struct sk_buff *napi_get_frags(struct napi_struct *napi)
4066{
4067	struct sk_buff *skb = napi->skb;
4068
4069	if (!skb) {
4070		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4071		napi->skb = skb;
 
 
 
4072	}
4073	return skb;
4074}
4075EXPORT_SYMBOL(napi_get_frags);
4076
4077static gro_result_t napi_frags_finish(struct napi_struct *napi,
4078				      struct sk_buff *skb,
4079				      gro_result_t ret)
4080{
4081	switch (ret) {
4082	case GRO_NORMAL:
4083	case GRO_HELD:
4084		__skb_push(skb, ETH_HLEN);
4085		skb->protocol = eth_type_trans(skb, skb->dev);
4086		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4087			ret = GRO_DROP;
4088		break;
4089
4090	case GRO_DROP:
 
 
 
4091	case GRO_MERGED_FREE:
4092		napi_reuse_skb(napi, skb);
 
 
 
4093		break;
4094
4095	case GRO_MERGED:
 
4096		break;
4097	}
4098
4099	return ret;
4100}
4101
4102/* Upper GRO stack assumes network header starts at gro_offset=0
4103 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4104 * We copy ethernet header into skb->data to have a common layout.
4105 */
4106static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4107{
4108	struct sk_buff *skb = napi->skb;
4109	const struct ethhdr *eth;
4110	unsigned int hlen = sizeof(*eth);
4111
4112	napi->skb = NULL;
4113
4114	skb_reset_mac_header(skb);
4115	skb_gro_reset_offset(skb);
4116
4117	eth = skb_gro_header_fast(skb, 0);
4118	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4119		eth = skb_gro_header_slow(skb, hlen, 0);
4120		if (unlikely(!eth)) {
 
 
4121			napi_reuse_skb(napi, skb);
4122			return NULL;
4123		}
4124	} else {
4125		gro_pull_from_frag0(skb, hlen);
4126		NAPI_GRO_CB(skb)->frag0 += hlen;
4127		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4128	}
4129	__skb_pull(skb, hlen);
4130
4131	/*
4132	 * This works because the only protocols we care about don't require
4133	 * special handling.
4134	 * We'll fix it up properly in napi_frags_finish()
4135	 */
4136	skb->protocol = eth->h_proto;
4137
4138	return skb;
4139}
4140
4141gro_result_t napi_gro_frags(struct napi_struct *napi)
4142{
4143	struct sk_buff *skb = napi_frags_skb(napi);
4144
4145	if (!skb)
4146		return GRO_DROP;
4147
4148	trace_napi_gro_frags_entry(skb);
4149
4150	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4151}
4152EXPORT_SYMBOL(napi_gro_frags);
4153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4154/*
4155 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4156 * Note: called with local irq disabled, but exits with local irq enabled.
4157 */
4158static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4159{
4160#ifdef CONFIG_RPS
4161	struct softnet_data *remsd = sd->rps_ipi_list;
4162
4163	if (remsd) {
4164		sd->rps_ipi_list = NULL;
4165
4166		local_irq_enable();
4167
4168		/* Send pending IPI's to kick RPS processing on remote cpus. */
4169		while (remsd) {
4170			struct softnet_data *next = remsd->rps_ipi_next;
4171
4172			if (cpu_online(remsd->cpu))
4173				smp_call_function_single_async(remsd->cpu,
4174							   &remsd->csd);
4175			remsd = next;
4176		}
4177	} else
4178#endif
4179		local_irq_enable();
4180}
4181
 
 
 
 
 
 
 
 
 
4182static int process_backlog(struct napi_struct *napi, int quota)
4183{
 
 
4184	int work = 0;
4185	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4186
4187#ifdef CONFIG_RPS
4188	/* Check if we have pending ipi, its better to send them now,
4189	 * not waiting net_rx_action() end.
4190	 */
4191	if (sd->rps_ipi_list) {
4192		local_irq_disable();
4193		net_rps_action_and_irq_enable(sd);
4194	}
4195#endif
4196	napi->weight = weight_p;
4197	local_irq_disable();
4198	while (work < quota) {
4199		struct sk_buff *skb;
4200		unsigned int qlen;
4201
4202		while ((skb = __skb_dequeue(&sd->process_queue))) {
4203			local_irq_enable();
4204			__netif_receive_skb(skb);
4205			local_irq_disable();
4206			input_queue_head_incr(sd);
4207			if (++work >= quota) {
4208				local_irq_enable();
4209				return work;
4210			}
4211		}
4212
 
4213		rps_lock(sd);
4214		qlen = skb_queue_len(&sd->input_pkt_queue);
4215		if (qlen)
4216			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4217						   &sd->process_queue);
4218
4219		if (qlen < quota - work) {
4220			/*
4221			 * Inline a custom version of __napi_complete().
4222			 * only current cpu owns and manipulates this napi,
4223			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4224			 * we can use a plain write instead of clear_bit(),
 
4225			 * and we dont need an smp_mb() memory barrier.
4226			 */
4227			list_del(&napi->poll_list);
4228			napi->state = 0;
4229
4230			quota = work + qlen;
 
 
4231		}
4232		rps_unlock(sd);
 
4233	}
4234	local_irq_enable();
4235
4236	return work;
4237}
4238
4239/**
4240 * __napi_schedule - schedule for receive
4241 * @n: entry to schedule
4242 *
4243 * The entry's receive function will be scheduled to run
 
4244 */
4245void __napi_schedule(struct napi_struct *n)
4246{
4247	unsigned long flags;
4248
4249	local_irq_save(flags);
4250	____napi_schedule(&__get_cpu_var(softnet_data), n);
4251	local_irq_restore(flags);
4252}
4253EXPORT_SYMBOL(__napi_schedule);
4254
4255void __napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
4256{
4257	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4258	BUG_ON(n->gro_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4259
4260	list_del(&n->poll_list);
4261	smp_mb__before_clear_bit();
4262	clear_bit(NAPI_STATE_SCHED, &n->state);
4263}
4264EXPORT_SYMBOL(__napi_complete);
4265
4266void napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
 
 
 
4267{
4268	unsigned long flags;
4269
4270	/*
4271	 * don't let napi dequeue from the cpu poll list
4272	 * just in case its running on a different cpu
 
 
4273	 */
4274	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4275		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4276
4277	napi_gro_flush(n, false);
4278	local_irq_save(flags);
4279	__napi_complete(n);
4280	local_irq_restore(flags);
4281}
4282EXPORT_SYMBOL(napi_complete);
4283
4284/* must be called under rcu_read_lock(), as we dont take a reference */
4285struct napi_struct *napi_by_id(unsigned int napi_id)
4286{
4287	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4288	struct napi_struct *napi;
4289
4290	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4291		if (napi->napi_id == napi_id)
4292			return napi;
4293
4294	return NULL;
4295}
4296EXPORT_SYMBOL_GPL(napi_by_id);
4297
4298void napi_hash_add(struct napi_struct *napi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4299{
4300	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4301
4302		spin_lock(&napi_hash_lock);
 
 
4303
4304		/* 0 is not a valid id, we also skip an id that is taken
4305		 * we expect both events to be extremely rare
4306		 */
4307		napi->napi_id = 0;
4308		while (!napi->napi_id) {
4309			napi->napi_id = ++napi_gen_id;
4310			if (napi_by_id(napi->napi_id))
4311				napi->napi_id = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312		}
 
 
 
 
 
 
 
 
 
 
 
4313
4314		hlist_add_head_rcu(&napi->napi_hash_node,
4315			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
 
 
 
 
 
 
 
 
 
 
 
 
4316
4317		spin_unlock(&napi_hash_lock);
4318	}
 
 
4319}
4320EXPORT_SYMBOL_GPL(napi_hash_add);
4321
4322/* Warning : caller is responsible to make sure rcu grace period
4323 * is respected before freeing memory containing @napi
4324 */
4325void napi_hash_del(struct napi_struct *napi)
4326{
 
 
4327	spin_lock(&napi_hash_lock);
4328
4329	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
 
4330		hlist_del_rcu(&napi->napi_hash_node);
4331
4332	spin_unlock(&napi_hash_lock);
 
4333}
4334EXPORT_SYMBOL_GPL(napi_hash_del);
4335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4336void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4337		    int (*poll)(struct napi_struct *, int), int weight)
4338{
4339	INIT_LIST_HEAD(&napi->poll_list);
 
 
4340	napi->gro_count = 0;
4341	napi->gro_list = NULL;
4342	napi->skb = NULL;
4343	napi->poll = poll;
4344	if (weight > NAPI_POLL_WEIGHT)
4345		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4346			    weight, dev->name);
4347	napi->weight = weight;
4348	list_add(&napi->dev_list, &dev->napi_list);
4349	napi->dev = dev;
4350#ifdef CONFIG_NETPOLL
4351	spin_lock_init(&napi->poll_lock);
4352	napi->poll_owner = -1;
4353#endif
4354	set_bit(NAPI_STATE_SCHED, &napi->state);
 
4355}
4356EXPORT_SYMBOL(netif_napi_add);
4357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4358void netif_napi_del(struct napi_struct *napi)
4359{
 
 
 
4360	list_del_init(&napi->dev_list);
4361	napi_free_frags(napi);
4362
4363	kfree_skb_list(napi->gro_list);
4364	napi->gro_list = NULL;
4365	napi->gro_count = 0;
4366}
4367EXPORT_SYMBOL(netif_napi_del);
4368
4369static void net_rx_action(struct softirq_action *h)
4370{
4371	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4372	unsigned long time_limit = jiffies + 2;
4373	int budget = netdev_budget;
4374	void *have;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375
4376	local_irq_disable();
 
4377
4378	while (!list_empty(&sd->poll_list)) {
4379		struct napi_struct *n;
4380		int work, weight;
 
 
 
 
 
 
4381
4382		/* If softirq window is exhuasted then punt.
4383		 * Allow this to run for 2 jiffies since which will allow
4384		 * an average latency of 1.5/HZ.
4385		 */
4386		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4387			goto softnet_break;
4388
4389		local_irq_enable();
 
 
 
 
 
 
 
4390
4391		/* Even though interrupts have been re-enabled, this
4392		 * access is safe because interrupts can only add new
4393		 * entries to the tail of this list, and only ->poll()
4394		 * calls can remove this head entry from the list.
4395		 */
4396		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4397
4398		have = netpoll_poll_lock(n);
 
4399
4400		weight = n->weight;
 
4401
4402		/* This NAPI_STATE_SCHED test is for avoiding a race
4403		 * with netpoll's poll_napi().  Only the entity which
4404		 * obtains the lock and sees NAPI_STATE_SCHED set will
4405		 * actually make the ->poll() call.  Therefore we avoid
4406		 * accidentally calling ->poll() when NAPI is not scheduled.
4407		 */
4408		work = 0;
4409		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4410			work = n->poll(n, weight);
4411			trace_napi_poll(n);
4412		}
4413
4414		WARN_ON_ONCE(work > weight);
 
 
4415
4416		budget -= work;
 
4417
4418		local_irq_disable();
 
 
 
 
 
 
 
4419
4420		/* Drivers must not modify the NAPI state if they
4421		 * consume the entire weight.  In such cases this code
4422		 * still "owns" the NAPI instance and therefore can
4423		 * move the instance around on the list at-will.
4424		 */
4425		if (unlikely(work == weight)) {
4426			if (unlikely(napi_disable_pending(n))) {
4427				local_irq_enable();
4428				napi_complete(n);
4429				local_irq_disable();
4430			} else {
4431				if (n->gro_list) {
4432					/* flush too old packets
4433					 * If HZ < 1000, flush all packets.
4434					 */
4435					local_irq_enable();
4436					napi_gro_flush(n, HZ >= 1000);
4437					local_irq_disable();
4438				}
4439				list_move_tail(&n->poll_list, &sd->poll_list);
4440			}
4441		}
4442
4443		netpoll_poll_unlock(have);
4444	}
4445out:
4446	net_rps_action_and_irq_enable(sd);
4447
4448#ifdef CONFIG_NET_DMA
4449	/*
4450	 * There may not be any more sk_buffs coming right now, so push
4451	 * any pending DMA copies to hardware
4452	 */
4453	dma_issue_pending_all();
4454#endif
4455
4456	return;
 
 
 
 
4457
4458softnet_break:
4459	sd->time_squeeze++;
4460	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4461	goto out;
4462}
4463
4464struct netdev_adjacent {
4465	struct net_device *dev;
4466
4467	/* upper master flag, there can only be one master device per list */
4468	bool master;
4469
4470	/* counter for the number of times this device was added to us */
4471	u16 ref_nr;
4472
4473	/* private field for the users */
4474	void *private;
4475
4476	struct list_head list;
4477	struct rcu_head rcu;
4478};
4479
4480static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4481						 struct net_device *adj_dev,
4482						 struct list_head *adj_list)
4483{
4484	struct netdev_adjacent *adj;
4485
4486	list_for_each_entry(adj, adj_list, list) {
4487		if (adj->dev == adj_dev)
4488			return adj;
4489	}
4490	return NULL;
4491}
4492
 
 
 
 
 
 
 
4493/**
4494 * netdev_has_upper_dev - Check if device is linked to an upper device
4495 * @dev: device
4496 * @upper_dev: upper device to check
4497 *
4498 * Find out if a device is linked to specified upper device and return true
4499 * in case it is. Note that this checks only immediate upper device,
4500 * not through a complete stack of devices. The caller must hold the RTNL lock.
4501 */
4502bool netdev_has_upper_dev(struct net_device *dev,
4503			  struct net_device *upper_dev)
4504{
4505	ASSERT_RTNL();
4506
4507	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
 
4508}
4509EXPORT_SYMBOL(netdev_has_upper_dev);
4510
4511/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512 * netdev_has_any_upper_dev - Check if device is linked to some device
4513 * @dev: device
4514 *
4515 * Find out if a device is linked to an upper device and return true in case
4516 * it is. The caller must hold the RTNL lock.
4517 */
4518static bool netdev_has_any_upper_dev(struct net_device *dev)
4519{
4520	ASSERT_RTNL();
4521
4522	return !list_empty(&dev->all_adj_list.upper);
4523}
 
4524
4525/**
4526 * netdev_master_upper_dev_get - Get master upper device
4527 * @dev: device
4528 *
4529 * Find a master upper device and return pointer to it or NULL in case
4530 * it's not there. The caller must hold the RTNL lock.
4531 */
4532struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4533{
4534	struct netdev_adjacent *upper;
4535
4536	ASSERT_RTNL();
4537
4538	if (list_empty(&dev->adj_list.upper))
4539		return NULL;
4540
4541	upper = list_first_entry(&dev->adj_list.upper,
4542				 struct netdev_adjacent, list);
4543	if (likely(upper->master))
4544		return upper->dev;
4545	return NULL;
4546}
4547EXPORT_SYMBOL(netdev_master_upper_dev_get);
4548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4549void *netdev_adjacent_get_private(struct list_head *adj_list)
4550{
4551	struct netdev_adjacent *adj;
4552
4553	adj = list_entry(adj_list, struct netdev_adjacent, list);
4554
4555	return adj->private;
4556}
4557EXPORT_SYMBOL(netdev_adjacent_get_private);
4558
4559/**
4560 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4561 * @dev: device
4562 * @iter: list_head ** of the current position
4563 *
4564 * Gets the next device from the dev's upper list, starting from iter
4565 * position. The caller must hold RCU read lock.
4566 */
4567struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4568						 struct list_head **iter)
4569{
4570	struct netdev_adjacent *upper;
4571
4572	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4573
4574	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4575
4576	if (&upper->list == &dev->adj_list.upper)
4577		return NULL;
4578
4579	*iter = &upper->list;
4580
4581	return upper->dev;
4582}
4583EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4584
4585/**
4586 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4587 * @dev: device
4588 * @iter: list_head ** of the current position
4589 *
4590 * Gets the next device from the dev's upper list, starting from iter
4591 * position. The caller must hold RCU read lock.
4592 */
4593struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4594						     struct list_head **iter)
4595{
4596	struct netdev_adjacent *upper;
4597
4598	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4599
4600	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4601
4602	if (&upper->list == &dev->all_adj_list.upper)
4603		return NULL;
4604
4605	*iter = &upper->list;
4606
4607	return upper->dev;
4608}
4609EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4610
4611/**
4612 * netdev_lower_get_next_private - Get the next ->private from the
4613 *				   lower neighbour list
4614 * @dev: device
4615 * @iter: list_head ** of the current position
4616 *
4617 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4618 * list, starting from iter position. The caller must hold either hold the
4619 * RTNL lock or its own locking that guarantees that the neighbour lower
4620 * list will remain unchainged.
4621 */
4622void *netdev_lower_get_next_private(struct net_device *dev,
4623				    struct list_head **iter)
4624{
4625	struct netdev_adjacent *lower;
4626
4627	lower = list_entry(*iter, struct netdev_adjacent, list);
4628
4629	if (&lower->list == &dev->adj_list.lower)
4630		return NULL;
4631
4632	*iter = lower->list.next;
4633
4634	return lower->private;
4635}
4636EXPORT_SYMBOL(netdev_lower_get_next_private);
4637
4638/**
4639 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4640 *				       lower neighbour list, RCU
4641 *				       variant
4642 * @dev: device
4643 * @iter: list_head ** of the current position
4644 *
4645 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4646 * list, starting from iter position. The caller must hold RCU read lock.
4647 */
4648void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4649					struct list_head **iter)
4650{
4651	struct netdev_adjacent *lower;
4652
4653	WARN_ON_ONCE(!rcu_read_lock_held());
4654
4655	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4656
4657	if (&lower->list == &dev->adj_list.lower)
4658		return NULL;
4659
4660	*iter = &lower->list;
4661
4662	return lower->private;
4663}
4664EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4665
4666/**
4667 * netdev_lower_get_next - Get the next device from the lower neighbour
4668 *                         list
4669 * @dev: device
4670 * @iter: list_head ** of the current position
4671 *
4672 * Gets the next netdev_adjacent from the dev's lower neighbour
4673 * list, starting from iter position. The caller must hold RTNL lock or
4674 * its own locking that guarantees that the neighbour lower
4675 * list will remain unchainged.
4676 */
4677void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4678{
4679	struct netdev_adjacent *lower;
4680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4681	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4682
4683	if (&lower->list == &dev->adj_list.lower)
4684		return NULL;
4685
4686	*iter = &lower->list;
4687
4688	return lower->dev;
4689}
4690EXPORT_SYMBOL(netdev_lower_get_next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4691
4692/**
4693 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4694 *				       lower neighbour list, RCU
4695 *				       variant
4696 * @dev: device
4697 *
4698 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4699 * list. The caller must hold RCU read lock.
4700 */
4701void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4702{
4703	struct netdev_adjacent *lower;
4704
4705	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4706			struct netdev_adjacent, list);
4707	if (lower)
4708		return lower->private;
4709	return NULL;
4710}
4711EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4712
4713/**
4714 * netdev_master_upper_dev_get_rcu - Get master upper device
4715 * @dev: device
4716 *
4717 * Find a master upper device and return pointer to it or NULL in case
4718 * it's not there. The caller must hold the RCU read lock.
4719 */
4720struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4721{
4722	struct netdev_adjacent *upper;
4723
4724	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4725				       struct netdev_adjacent, list);
4726	if (upper && likely(upper->master))
4727		return upper->dev;
4728	return NULL;
4729}
4730EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4731
4732static int netdev_adjacent_sysfs_add(struct net_device *dev,
4733			      struct net_device *adj_dev,
4734			      struct list_head *dev_list)
4735{
4736	char linkname[IFNAMSIZ+7];
 
4737	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4738		"upper_%s" : "lower_%s", adj_dev->name);
4739	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4740				 linkname);
4741}
4742static void netdev_adjacent_sysfs_del(struct net_device *dev,
4743			       char *name,
4744			       struct list_head *dev_list)
4745{
4746	char linkname[IFNAMSIZ+7];
 
4747	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4748		"upper_%s" : "lower_%s", name);
4749	sysfs_remove_link(&(dev->dev.kobj), linkname);
4750}
4751
4752#define netdev_adjacent_is_neigh_list(dev, dev_list) \
4753		(dev_list == &dev->adj_list.upper || \
4754		 dev_list == &dev->adj_list.lower)
 
 
 
 
 
4755
4756static int __netdev_adjacent_dev_insert(struct net_device *dev,
4757					struct net_device *adj_dev,
4758					struct list_head *dev_list,
4759					void *private, bool master)
4760{
4761	struct netdev_adjacent *adj;
4762	int ret;
4763
4764	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4765
4766	if (adj) {
4767		adj->ref_nr++;
 
 
 
4768		return 0;
4769	}
4770
4771	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4772	if (!adj)
4773		return -ENOMEM;
4774
4775	adj->dev = adj_dev;
4776	adj->master = master;
4777	adj->ref_nr = 1;
4778	adj->private = private;
4779	dev_hold(adj_dev);
4780
4781	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4782		 adj_dev->name, dev->name, adj_dev->name);
4783
4784	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4785		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4786		if (ret)
4787			goto free_adj;
4788	}
4789
4790	/* Ensure that master link is always the first item in list. */
4791	if (master) {
4792		ret = sysfs_create_link(&(dev->dev.kobj),
4793					&(adj_dev->dev.kobj), "master");
4794		if (ret)
4795			goto remove_symlinks;
4796
4797		list_add_rcu(&adj->list, dev_list);
4798	} else {
4799		list_add_tail_rcu(&adj->list, dev_list);
4800	}
4801
4802	return 0;
4803
4804remove_symlinks:
4805	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4806		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4807free_adj:
4808	kfree(adj);
4809	dev_put(adj_dev);
4810
4811	return ret;
4812}
4813
4814static void __netdev_adjacent_dev_remove(struct net_device *dev,
4815					 struct net_device *adj_dev,
 
4816					 struct list_head *dev_list)
4817{
4818	struct netdev_adjacent *adj;
4819
4820	adj = __netdev_find_adj(dev, adj_dev, dev_list);
 
 
 
4821
4822	if (!adj) {
4823		pr_err("tried to remove device %s from %s\n",
4824		       dev->name, adj_dev->name);
4825		BUG();
 
4826	}
4827
4828	if (adj->ref_nr > 1) {
4829		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4830			 adj->ref_nr-1);
4831		adj->ref_nr--;
 
4832		return;
4833	}
4834
4835	if (adj->master)
4836		sysfs_remove_link(&(dev->dev.kobj), "master");
4837
4838	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4839		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4840
4841	list_del_rcu(&adj->list);
4842	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4843		 adj_dev->name, dev->name, adj_dev->name);
4844	dev_put(adj_dev);
4845	kfree_rcu(adj, rcu);
4846}
4847
4848static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4849					    struct net_device *upper_dev,
4850					    struct list_head *up_list,
4851					    struct list_head *down_list,
4852					    void *private, bool master)
4853{
4854	int ret;
4855
4856	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4857					   master);
4858	if (ret)
4859		return ret;
4860
4861	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4862					   false);
4863	if (ret) {
4864		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4865		return ret;
4866	}
4867
4868	return 0;
4869}
4870
4871static int __netdev_adjacent_dev_link(struct net_device *dev,
4872				      struct net_device *upper_dev)
4873{
4874	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4875						&dev->all_adj_list.upper,
4876						&upper_dev->all_adj_list.lower,
4877						NULL, false);
4878}
4879
4880static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4881					       struct net_device *upper_dev,
 
4882					       struct list_head *up_list,
4883					       struct list_head *down_list)
4884{
4885	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4886	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4887}
4888
4889static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4890					 struct net_device *upper_dev)
4891{
4892	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4893					   &dev->all_adj_list.upper,
4894					   &upper_dev->all_adj_list.lower);
4895}
4896
4897static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4898						struct net_device *upper_dev,
4899						void *private, bool master)
4900{
4901	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4902
4903	if (ret)
4904		return ret;
4905
4906	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4907					       &dev->adj_list.upper,
4908					       &upper_dev->adj_list.lower,
4909					       private, master);
4910	if (ret) {
4911		__netdev_adjacent_dev_unlink(dev, upper_dev);
4912		return ret;
4913	}
4914
4915	return 0;
4916}
4917
4918static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4919						   struct net_device *upper_dev)
4920{
4921	__netdev_adjacent_dev_unlink(dev, upper_dev);
4922	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4923					   &dev->adj_list.upper,
4924					   &upper_dev->adj_list.lower);
4925}
4926
4927static int __netdev_upper_dev_link(struct net_device *dev,
4928				   struct net_device *upper_dev, bool master,
4929				   void *private)
 
4930{
4931	struct netdev_adjacent *i, *j, *to_i, *to_j;
 
 
 
 
 
 
 
 
 
 
4932	int ret = 0;
4933
4934	ASSERT_RTNL();
4935
4936	if (dev == upper_dev)
4937		return -EBUSY;
4938
4939	/* To prevent loops, check if dev is not upper device to upper_dev. */
4940	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4941		return -EBUSY;
4942
4943	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4944		return -EEXIST;
 
 
 
 
 
 
4945
4946	if (master && netdev_master_upper_dev_get(dev))
4947		return -EBUSY;
 
 
 
4948
4949	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4950						   master);
4951	if (ret)
4952		return ret;
4953
4954	/* Now that we linked these devs, make all the upper_dev's
4955	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4956	 * versa, and don't forget the devices itself. All of these
4957	 * links are non-neighbours.
4958	 */
4959	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4960		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4961			pr_debug("Interlinking %s with %s, non-neighbour\n",
4962				 i->dev->name, j->dev->name);
4963			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4964			if (ret)
4965				goto rollback_mesh;
4966		}
4967	}
4968
4969	/* add dev to every upper_dev's upper device */
4970	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4971		pr_debug("linking %s's upper device %s with %s\n",
4972			 upper_dev->name, i->dev->name, dev->name);
4973		ret = __netdev_adjacent_dev_link(dev, i->dev);
4974		if (ret)
4975			goto rollback_upper_mesh;
4976	}
4977
4978	/* add upper_dev to every dev's lower device */
4979	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4980		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4981			 i->dev->name, upper_dev->name);
4982		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4983		if (ret)
4984			goto rollback_lower_mesh;
4985	}
4986
4987	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4988	return 0;
4989
4990rollback_lower_mesh:
4991	to_i = i;
4992	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4993		if (i == to_i)
4994			break;
4995		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4996	}
4997
4998	i = NULL;
4999
5000rollback_upper_mesh:
5001	to_i = i;
5002	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5003		if (i == to_i)
5004			break;
5005		__netdev_adjacent_dev_unlink(dev, i->dev);
5006	}
5007
5008	i = j = NULL;
5009
5010rollback_mesh:
5011	to_i = i;
5012	to_j = j;
5013	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5014		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5015			if (i == to_i && j == to_j)
5016				break;
5017			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5018		}
5019		if (i == to_i)
5020			break;
5021	}
5022
5023	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5024
5025	return ret;
5026}
5027
5028/**
5029 * netdev_upper_dev_link - Add a link to the upper device
5030 * @dev: device
5031 * @upper_dev: new upper device
 
5032 *
5033 * Adds a link to device which is upper to this one. The caller must hold
5034 * the RTNL lock. On a failure a negative errno code is returned.
5035 * On success the reference counts are adjusted and the function
5036 * returns zero.
5037 */
5038int netdev_upper_dev_link(struct net_device *dev,
5039			  struct net_device *upper_dev)
 
5040{
5041	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
 
5042}
5043EXPORT_SYMBOL(netdev_upper_dev_link);
5044
5045/**
5046 * netdev_master_upper_dev_link - Add a master link to the upper device
5047 * @dev: device
5048 * @upper_dev: new upper device
 
 
 
5049 *
5050 * Adds a link to device which is upper to this one. In this case, only
5051 * one master upper device can be linked, although other non-master devices
5052 * might be linked as well. The caller must hold the RTNL lock.
5053 * On a failure a negative errno code is returned. On success the reference
5054 * counts are adjusted and the function returns zero.
5055 */
5056int netdev_master_upper_dev_link(struct net_device *dev,
5057				 struct net_device *upper_dev)
 
 
5058{
5059	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
 
5060}
5061EXPORT_SYMBOL(netdev_master_upper_dev_link);
5062
5063int netdev_master_upper_dev_link_private(struct net_device *dev,
5064					 struct net_device *upper_dev,
5065					 void *private)
5066{
5067	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5068}
5069EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5070
5071/**
5072 * netdev_upper_dev_unlink - Removes a link to upper device
5073 * @dev: device
5074 * @upper_dev: new upper device
5075 *
5076 * Removes a link to device which is upper to this one. The caller must hold
5077 * the RTNL lock.
5078 */
5079void netdev_upper_dev_unlink(struct net_device *dev,
5080			     struct net_device *upper_dev)
5081{
5082	struct netdev_adjacent *i, *j;
 
 
 
 
 
 
 
5083	ASSERT_RTNL();
5084
 
 
 
 
 
5085	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5086
5087	/* Here is the tricky part. We must remove all dev's lower
5088	 * devices from all upper_dev's upper devices and vice
5089	 * versa, to maintain the graph relationship.
5090	 */
5091	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5092		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5093			__netdev_adjacent_dev_unlink(i->dev, j->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5094
5095	/* remove also the devices itself from lower/upper device
5096	 * list
5097	 */
5098	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5099		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5100
5101	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5102		__netdev_adjacent_dev_unlink(dev, i->dev);
 
 
 
 
 
 
5103
5104	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
 
 
 
 
 
 
 
5105}
5106EXPORT_SYMBOL(netdev_upper_dev_unlink);
5107
5108void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5109{
5110	struct netdev_adjacent *iter;
5111
 
 
5112	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 
 
5113		netdev_adjacent_sysfs_del(iter->dev, oldname,
5114					  &iter->dev->adj_list.lower);
5115		netdev_adjacent_sysfs_add(iter->dev, dev,
5116					  &iter->dev->adj_list.lower);
5117	}
5118
5119	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 
 
5120		netdev_adjacent_sysfs_del(iter->dev, oldname,
5121					  &iter->dev->adj_list.upper);
5122		netdev_adjacent_sysfs_add(iter->dev, dev,
5123					  &iter->dev->adj_list.upper);
5124	}
5125}
5126
5127void *netdev_lower_dev_get_private(struct net_device *dev,
5128				   struct net_device *lower_dev)
5129{
5130	struct netdev_adjacent *lower;
5131
5132	if (!lower_dev)
5133		return NULL;
5134	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5135	if (!lower)
5136		return NULL;
5137
5138	return lower->private;
5139}
5140EXPORT_SYMBOL(netdev_lower_dev_get_private);
5141
5142
5143int dev_get_nest_level(struct net_device *dev,
5144		       bool (*type_check)(struct net_device *dev))
5145{
5146	struct net_device *lower = NULL;
5147	struct list_head *iter;
5148	int max_nest = -1;
5149	int nest;
5150
5151	ASSERT_RTNL();
5152
5153	netdev_for_each_lower_dev(dev, lower, iter) {
5154		nest = dev_get_nest_level(lower, type_check);
5155		if (max_nest < nest)
5156			max_nest = nest;
5157	}
5158
5159	if (type_check(dev))
5160		max_nest++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5161
5162	return max_nest;
 
 
 
5163}
5164EXPORT_SYMBOL(dev_get_nest_level);
5165
5166static void dev_change_rx_flags(struct net_device *dev, int flags)
5167{
5168	const struct net_device_ops *ops = dev->netdev_ops;
5169
5170	if (ops->ndo_change_rx_flags)
5171		ops->ndo_change_rx_flags(dev, flags);
5172}
5173
5174static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5175{
5176	unsigned int old_flags = dev->flags;
5177	kuid_t uid;
5178	kgid_t gid;
5179
5180	ASSERT_RTNL();
5181
5182	dev->flags |= IFF_PROMISC;
5183	dev->promiscuity += inc;
5184	if (dev->promiscuity == 0) {
5185		/*
5186		 * Avoid overflow.
5187		 * If inc causes overflow, untouch promisc and return error.
5188		 */
5189		if (inc < 0)
5190			dev->flags &= ~IFF_PROMISC;
5191		else {
5192			dev->promiscuity -= inc;
5193			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5194				dev->name);
5195			return -EOVERFLOW;
5196		}
5197	}
5198	if (dev->flags != old_flags) {
5199		pr_info("device %s %s promiscuous mode\n",
5200			dev->name,
5201			dev->flags & IFF_PROMISC ? "entered" : "left");
5202		if (audit_enabled) {
5203			current_uid_gid(&uid, &gid);
5204			audit_log(current->audit_context, GFP_ATOMIC,
5205				AUDIT_ANOM_PROMISCUOUS,
5206				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5207				dev->name, (dev->flags & IFF_PROMISC),
5208				(old_flags & IFF_PROMISC),
5209				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5210				from_kuid(&init_user_ns, uid),
5211				from_kgid(&init_user_ns, gid),
5212				audit_get_sessionid(current));
5213		}
5214
5215		dev_change_rx_flags(dev, IFF_PROMISC);
5216	}
5217	if (notify)
5218		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5219	return 0;
5220}
5221
5222/**
5223 *	dev_set_promiscuity	- update promiscuity count on a device
5224 *	@dev: device
5225 *	@inc: modifier
5226 *
5227 *	Add or remove promiscuity from a device. While the count in the device
5228 *	remains above zero the interface remains promiscuous. Once it hits zero
5229 *	the device reverts back to normal filtering operation. A negative inc
5230 *	value is used to drop promiscuity on the device.
5231 *	Return 0 if successful or a negative errno code on error.
5232 */
5233int dev_set_promiscuity(struct net_device *dev, int inc)
5234{
5235	unsigned int old_flags = dev->flags;
5236	int err;
5237
5238	err = __dev_set_promiscuity(dev, inc, true);
5239	if (err < 0)
5240		return err;
5241	if (dev->flags != old_flags)
5242		dev_set_rx_mode(dev);
5243	return err;
5244}
5245EXPORT_SYMBOL(dev_set_promiscuity);
5246
5247static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5248{
5249	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5250
5251	ASSERT_RTNL();
5252
5253	dev->flags |= IFF_ALLMULTI;
5254	dev->allmulti += inc;
5255	if (dev->allmulti == 0) {
5256		/*
5257		 * Avoid overflow.
5258		 * If inc causes overflow, untouch allmulti and return error.
5259		 */
5260		if (inc < 0)
5261			dev->flags &= ~IFF_ALLMULTI;
5262		else {
5263			dev->allmulti -= inc;
5264			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5265				dev->name);
5266			return -EOVERFLOW;
5267		}
5268	}
5269	if (dev->flags ^ old_flags) {
5270		dev_change_rx_flags(dev, IFF_ALLMULTI);
5271		dev_set_rx_mode(dev);
5272		if (notify)
5273			__dev_notify_flags(dev, old_flags,
5274					   dev->gflags ^ old_gflags);
5275	}
5276	return 0;
5277}
5278
5279/**
5280 *	dev_set_allmulti	- update allmulti count on a device
5281 *	@dev: device
5282 *	@inc: modifier
5283 *
5284 *	Add or remove reception of all multicast frames to a device. While the
5285 *	count in the device remains above zero the interface remains listening
5286 *	to all interfaces. Once it hits zero the device reverts back to normal
5287 *	filtering operation. A negative @inc value is used to drop the counter
5288 *	when releasing a resource needing all multicasts.
5289 *	Return 0 if successful or a negative errno code on error.
5290 */
5291
5292int dev_set_allmulti(struct net_device *dev, int inc)
5293{
5294	return __dev_set_allmulti(dev, inc, true);
5295}
5296EXPORT_SYMBOL(dev_set_allmulti);
5297
5298/*
5299 *	Upload unicast and multicast address lists to device and
5300 *	configure RX filtering. When the device doesn't support unicast
5301 *	filtering it is put in promiscuous mode while unicast addresses
5302 *	are present.
5303 */
5304void __dev_set_rx_mode(struct net_device *dev)
5305{
5306	const struct net_device_ops *ops = dev->netdev_ops;
5307
5308	/* dev_open will call this function so the list will stay sane. */
5309	if (!(dev->flags&IFF_UP))
5310		return;
5311
5312	if (!netif_device_present(dev))
5313		return;
5314
5315	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5316		/* Unicast addresses changes may only happen under the rtnl,
5317		 * therefore calling __dev_set_promiscuity here is safe.
5318		 */
5319		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5320			__dev_set_promiscuity(dev, 1, false);
5321			dev->uc_promisc = true;
5322		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5323			__dev_set_promiscuity(dev, -1, false);
5324			dev->uc_promisc = false;
5325		}
5326	}
5327
5328	if (ops->ndo_set_rx_mode)
5329		ops->ndo_set_rx_mode(dev);
5330}
5331
5332void dev_set_rx_mode(struct net_device *dev)
5333{
5334	netif_addr_lock_bh(dev);
5335	__dev_set_rx_mode(dev);
5336	netif_addr_unlock_bh(dev);
5337}
5338
5339/**
5340 *	dev_get_flags - get flags reported to userspace
5341 *	@dev: device
5342 *
5343 *	Get the combination of flag bits exported through APIs to userspace.
5344 */
5345unsigned int dev_get_flags(const struct net_device *dev)
5346{
5347	unsigned int flags;
5348
5349	flags = (dev->flags & ~(IFF_PROMISC |
5350				IFF_ALLMULTI |
5351				IFF_RUNNING |
5352				IFF_LOWER_UP |
5353				IFF_DORMANT)) |
5354		(dev->gflags & (IFF_PROMISC |
5355				IFF_ALLMULTI));
5356
5357	if (netif_running(dev)) {
5358		if (netif_oper_up(dev))
5359			flags |= IFF_RUNNING;
5360		if (netif_carrier_ok(dev))
5361			flags |= IFF_LOWER_UP;
5362		if (netif_dormant(dev))
5363			flags |= IFF_DORMANT;
5364	}
5365
5366	return flags;
5367}
5368EXPORT_SYMBOL(dev_get_flags);
5369
5370int __dev_change_flags(struct net_device *dev, unsigned int flags)
5371{
5372	unsigned int old_flags = dev->flags;
5373	int ret;
5374
5375	ASSERT_RTNL();
5376
5377	/*
5378	 *	Set the flags on our device.
5379	 */
5380
5381	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5382			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5383			       IFF_AUTOMEDIA)) |
5384		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5385				    IFF_ALLMULTI));
5386
5387	/*
5388	 *	Load in the correct multicast list now the flags have changed.
5389	 */
5390
5391	if ((old_flags ^ flags) & IFF_MULTICAST)
5392		dev_change_rx_flags(dev, IFF_MULTICAST);
5393
5394	dev_set_rx_mode(dev);
5395
5396	/*
5397	 *	Have we downed the interface. We handle IFF_UP ourselves
5398	 *	according to user attempts to set it, rather than blindly
5399	 *	setting it.
5400	 */
5401
5402	ret = 0;
5403	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5404		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5405
5406		if (!ret)
5407			dev_set_rx_mode(dev);
5408	}
5409
5410	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5411		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5412		unsigned int old_flags = dev->flags;
5413
5414		dev->gflags ^= IFF_PROMISC;
5415
5416		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5417			if (dev->flags != old_flags)
5418				dev_set_rx_mode(dev);
5419	}
5420
5421	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5422	   is important. Some (broken) drivers set IFF_PROMISC, when
5423	   IFF_ALLMULTI is requested not asking us and not reporting.
5424	 */
5425	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5426		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5427
5428		dev->gflags ^= IFF_ALLMULTI;
5429		__dev_set_allmulti(dev, inc, false);
5430	}
5431
5432	return ret;
5433}
5434
5435void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5436			unsigned int gchanges)
5437{
5438	unsigned int changes = dev->flags ^ old_flags;
5439
5440	if (gchanges)
5441		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5442
5443	if (changes & IFF_UP) {
5444		if (dev->flags & IFF_UP)
5445			call_netdevice_notifiers(NETDEV_UP, dev);
5446		else
5447			call_netdevice_notifiers(NETDEV_DOWN, dev);
5448	}
5449
5450	if (dev->flags & IFF_UP &&
5451	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5452		struct netdev_notifier_change_info change_info;
 
 
 
 
 
5453
5454		change_info.flags_changed = changes;
5455		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5456					      &change_info.info);
5457	}
5458}
5459
5460/**
5461 *	dev_change_flags - change device settings
5462 *	@dev: device
5463 *	@flags: device state flags
5464 *
5465 *	Change settings on device based state flags. The flags are
5466 *	in the userspace exported format.
5467 */
5468int dev_change_flags(struct net_device *dev, unsigned int flags)
5469{
5470	int ret;
5471	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5472
5473	ret = __dev_change_flags(dev, flags);
5474	if (ret < 0)
5475		return ret;
5476
5477	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5478	__dev_notify_flags(dev, old_flags, changes);
5479	return ret;
5480}
5481EXPORT_SYMBOL(dev_change_flags);
5482
5483static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5484{
5485	const struct net_device_ops *ops = dev->netdev_ops;
5486
5487	if (ops->ndo_change_mtu)
5488		return ops->ndo_change_mtu(dev, new_mtu);
5489
5490	dev->mtu = new_mtu;
5491	return 0;
5492}
 
5493
5494/**
5495 *	dev_set_mtu - Change maximum transfer unit
5496 *	@dev: device
5497 *	@new_mtu: new transfer unit
5498 *
5499 *	Change the maximum transfer size of the network device.
5500 */
5501int dev_set_mtu(struct net_device *dev, int new_mtu)
5502{
5503	int err, orig_mtu;
5504
5505	if (new_mtu == dev->mtu)
5506		return 0;
5507
5508	/*	MTU must be positive.	 */
5509	if (new_mtu < 0)
 
 
 
 
 
 
 
 
5510		return -EINVAL;
 
5511
5512	if (!netif_device_present(dev))
5513		return -ENODEV;
5514
5515	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5516	err = notifier_to_errno(err);
5517	if (err)
5518		return err;
5519
5520	orig_mtu = dev->mtu;
5521	err = __dev_set_mtu(dev, new_mtu);
5522
5523	if (!err) {
5524		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5525		err = notifier_to_errno(err);
5526		if (err) {
5527			/* setting mtu back and notifying everyone again,
5528			 * so that they have a chance to revert changes.
5529			 */
5530			__dev_set_mtu(dev, orig_mtu);
5531			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5532		}
5533	}
5534	return err;
5535}
5536EXPORT_SYMBOL(dev_set_mtu);
5537
5538/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5539 *	dev_set_group - Change group this device belongs to
5540 *	@dev: device
5541 *	@new_group: group this device should belong to
5542 */
5543void dev_set_group(struct net_device *dev, int new_group)
5544{
5545	dev->group = new_group;
5546}
5547EXPORT_SYMBOL(dev_set_group);
5548
5549/**
5550 *	dev_set_mac_address - Change Media Access Control Address
5551 *	@dev: device
5552 *	@sa: new address
5553 *
5554 *	Change the hardware (MAC) address of the device
5555 */
5556int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5557{
5558	const struct net_device_ops *ops = dev->netdev_ops;
5559	int err;
5560
5561	if (!ops->ndo_set_mac_address)
5562		return -EOPNOTSUPP;
5563	if (sa->sa_family != dev->type)
5564		return -EINVAL;
5565	if (!netif_device_present(dev))
5566		return -ENODEV;
5567	err = ops->ndo_set_mac_address(dev, sa);
5568	if (err)
5569		return err;
5570	dev->addr_assign_type = NET_ADDR_SET;
5571	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5572	add_device_randomness(dev->dev_addr, dev->addr_len);
5573	return 0;
5574}
5575EXPORT_SYMBOL(dev_set_mac_address);
5576
5577/**
5578 *	dev_change_carrier - Change device carrier
5579 *	@dev: device
5580 *	@new_carrier: new value
5581 *
5582 *	Change device carrier
5583 */
5584int dev_change_carrier(struct net_device *dev, bool new_carrier)
5585{
5586	const struct net_device_ops *ops = dev->netdev_ops;
5587
5588	if (!ops->ndo_change_carrier)
5589		return -EOPNOTSUPP;
5590	if (!netif_device_present(dev))
5591		return -ENODEV;
5592	return ops->ndo_change_carrier(dev, new_carrier);
5593}
5594EXPORT_SYMBOL(dev_change_carrier);
5595
5596/**
5597 *	dev_get_phys_port_id - Get device physical port ID
5598 *	@dev: device
5599 *	@ppid: port ID
5600 *
5601 *	Get device physical port ID
5602 */
5603int dev_get_phys_port_id(struct net_device *dev,
5604			 struct netdev_phys_port_id *ppid)
5605{
5606	const struct net_device_ops *ops = dev->netdev_ops;
5607
5608	if (!ops->ndo_get_phys_port_id)
5609		return -EOPNOTSUPP;
5610	return ops->ndo_get_phys_port_id(dev, ppid);
5611}
5612EXPORT_SYMBOL(dev_get_phys_port_id);
5613
5614/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5615 *	dev_new_index	-	allocate an ifindex
5616 *	@net: the applicable net namespace
5617 *
5618 *	Returns a suitable unique value for a new device interface
5619 *	number.  The caller must hold the rtnl semaphore or the
5620 *	dev_base_lock to be sure it remains unique.
5621 */
5622static int dev_new_index(struct net *net)
5623{
5624	int ifindex = net->ifindex;
 
5625	for (;;) {
5626		if (++ifindex <= 0)
5627			ifindex = 1;
5628		if (!__dev_get_by_index(net, ifindex))
5629			return net->ifindex = ifindex;
5630	}
5631}
5632
5633/* Delayed registration/unregisteration */
5634static LIST_HEAD(net_todo_list);
5635DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5636
5637static void net_set_todo(struct net_device *dev)
5638{
5639	list_add_tail(&dev->todo_list, &net_todo_list);
5640	dev_net(dev)->dev_unreg_count++;
5641}
5642
5643static void rollback_registered_many(struct list_head *head)
5644{
5645	struct net_device *dev, *tmp;
5646	LIST_HEAD(close_head);
5647
5648	BUG_ON(dev_boot_phase);
5649	ASSERT_RTNL();
5650
5651	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5652		/* Some devices call without registering
5653		 * for initialization unwind. Remove those
5654		 * devices and proceed with the remaining.
5655		 */
5656		if (dev->reg_state == NETREG_UNINITIALIZED) {
5657			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5658				 dev->name, dev);
5659
5660			WARN_ON(1);
5661			list_del(&dev->unreg_list);
5662			continue;
5663		}
5664		dev->dismantle = true;
5665		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5666	}
5667
5668	/* If device is running, close it first. */
5669	list_for_each_entry(dev, head, unreg_list)
5670		list_add_tail(&dev->close_list, &close_head);
5671	dev_close_many(&close_head);
5672
5673	list_for_each_entry(dev, head, unreg_list) {
5674		/* And unlink it from device chain. */
5675		unlist_netdevice(dev);
5676
5677		dev->reg_state = NETREG_UNREGISTERING;
5678	}
 
5679
5680	synchronize_net();
5681
5682	list_for_each_entry(dev, head, unreg_list) {
 
 
5683		/* Shutdown queueing discipline. */
5684		dev_shutdown(dev);
5685
 
5686
5687		/* Notify protocols, that we are about to destroy
5688		   this device. They should clean all the things.
5689		*/
5690		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5691
5692		if (!dev->rtnl_link_ops ||
5693		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5694			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
 
5695
5696		/*
5697		 *	Flush the unicast and multicast chains
5698		 */
5699		dev_uc_flush(dev);
5700		dev_mc_flush(dev);
5701
5702		if (dev->netdev_ops->ndo_uninit)
5703			dev->netdev_ops->ndo_uninit(dev);
5704
 
 
 
5705		/* Notifier chain MUST detach us all upper devices. */
5706		WARN_ON(netdev_has_any_upper_dev(dev));
 
5707
5708		/* Remove entries from kobject tree */
5709		netdev_unregister_kobject(dev);
5710#ifdef CONFIG_XPS
5711		/* Remove XPS queueing entries */
5712		netif_reset_xps_queues_gt(dev, 0);
5713#endif
5714	}
5715
5716	synchronize_net();
5717
5718	list_for_each_entry(dev, head, unreg_list)
5719		dev_put(dev);
5720}
5721
5722static void rollback_registered(struct net_device *dev)
5723{
5724	LIST_HEAD(single);
5725
5726	list_add(&dev->unreg_list, &single);
5727	rollback_registered_many(&single);
5728	list_del(&single);
5729}
5730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5731static netdev_features_t netdev_fix_features(struct net_device *dev,
5732	netdev_features_t features)
5733{
5734	/* Fix illegal checksum combinations */
5735	if ((features & NETIF_F_HW_CSUM) &&
5736	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5737		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5738		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5739	}
5740
5741	/* TSO requires that SG is present as well. */
5742	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5743		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5744		features &= ~NETIF_F_ALL_TSO;
5745	}
5746
5747	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5748					!(features & NETIF_F_IP_CSUM)) {
5749		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5750		features &= ~NETIF_F_TSO;
5751		features &= ~NETIF_F_TSO_ECN;
5752	}
5753
5754	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5755					 !(features & NETIF_F_IPV6_CSUM)) {
5756		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5757		features &= ~NETIF_F_TSO6;
5758	}
5759
 
 
 
 
5760	/* TSO ECN requires that TSO is present as well. */
5761	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5762		features &= ~NETIF_F_TSO_ECN;
5763
5764	/* Software GSO depends on SG. */
5765	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5766		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5767		features &= ~NETIF_F_GSO;
5768	}
5769
5770	/* UFO needs SG and checksumming */
5771	if (features & NETIF_F_UFO) {
5772		/* maybe split UFO into V4 and V6? */
5773		if (!((features & NETIF_F_GEN_CSUM) ||
5774		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5775			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5776			netdev_dbg(dev,
5777				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5778			features &= ~NETIF_F_UFO;
5779		}
5780
5781		if (!(features & NETIF_F_SG)) {
5782			netdev_dbg(dev,
5783				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5784			features &= ~NETIF_F_UFO;
 
 
5785		}
5786	}
5787
5788#ifdef CONFIG_NET_RX_BUSY_POLL
5789	if (dev->netdev_ops->ndo_busy_poll)
5790		features |= NETIF_F_BUSY_POLL;
5791	else
5792#endif
5793		features &= ~NETIF_F_BUSY_POLL;
 
 
 
 
 
 
5794
5795	return features;
5796}
5797
5798int __netdev_update_features(struct net_device *dev)
5799{
 
5800	netdev_features_t features;
5801	int err = 0;
 
5802
5803	ASSERT_RTNL();
5804
5805	features = netdev_get_wanted_features(dev);
5806
5807	if (dev->netdev_ops->ndo_fix_features)
5808		features = dev->netdev_ops->ndo_fix_features(dev, features);
5809
5810	/* driver might be less strict about feature dependencies */
5811	features = netdev_fix_features(dev, features);
5812
 
 
 
 
5813	if (dev->features == features)
5814		return 0;
5815
5816	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5817		&dev->features, &features);
5818
5819	if (dev->netdev_ops->ndo_set_features)
5820		err = dev->netdev_ops->ndo_set_features(dev, features);
 
 
5821
5822	if (unlikely(err < 0)) {
5823		netdev_err(dev,
5824			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5825			err, &features, &dev->features);
 
 
 
5826		return -1;
5827	}
5828
5829	if (!err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5830		dev->features = features;
 
5831
5832	return 1;
5833}
5834
5835/**
5836 *	netdev_update_features - recalculate device features
5837 *	@dev: the device to check
5838 *
5839 *	Recalculate dev->features set and send notifications if it
5840 *	has changed. Should be called after driver or hardware dependent
5841 *	conditions might have changed that influence the features.
5842 */
5843void netdev_update_features(struct net_device *dev)
5844{
5845	if (__netdev_update_features(dev))
5846		netdev_features_change(dev);
5847}
5848EXPORT_SYMBOL(netdev_update_features);
5849
5850/**
5851 *	netdev_change_features - recalculate device features
5852 *	@dev: the device to check
5853 *
5854 *	Recalculate dev->features set and send notifications even
5855 *	if they have not changed. Should be called instead of
5856 *	netdev_update_features() if also dev->vlan_features might
5857 *	have changed to allow the changes to be propagated to stacked
5858 *	VLAN devices.
5859 */
5860void netdev_change_features(struct net_device *dev)
5861{
5862	__netdev_update_features(dev);
5863	netdev_features_change(dev);
5864}
5865EXPORT_SYMBOL(netdev_change_features);
5866
5867/**
5868 *	netif_stacked_transfer_operstate -	transfer operstate
5869 *	@rootdev: the root or lower level device to transfer state from
5870 *	@dev: the device to transfer operstate to
5871 *
5872 *	Transfer operational state from root to device. This is normally
5873 *	called when a stacking relationship exists between the root
5874 *	device and the device(a leaf device).
5875 */
5876void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5877					struct net_device *dev)
5878{
5879	if (rootdev->operstate == IF_OPER_DORMANT)
5880		netif_dormant_on(dev);
5881	else
5882		netif_dormant_off(dev);
5883
5884	if (netif_carrier_ok(rootdev)) {
5885		if (!netif_carrier_ok(dev))
5886			netif_carrier_on(dev);
5887	} else {
5888		if (netif_carrier_ok(dev))
5889			netif_carrier_off(dev);
5890	}
5891}
5892EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5893
5894#ifdef CONFIG_SYSFS
5895static int netif_alloc_rx_queues(struct net_device *dev)
5896{
5897	unsigned int i, count = dev->num_rx_queues;
5898	struct netdev_rx_queue *rx;
 
 
5899
5900	BUG_ON(count < 1);
5901
5902	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5903	if (!rx)
5904		return -ENOMEM;
5905
5906	dev->_rx = rx;
5907
5908	for (i = 0; i < count; i++)
5909		rx[i].dev = dev;
 
 
 
 
 
 
5910	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5911}
5912#endif
5913
5914static void netdev_init_one_queue(struct net_device *dev,
5915				  struct netdev_queue *queue, void *_unused)
5916{
5917	/* Initialize queue lock */
5918	spin_lock_init(&queue->_xmit_lock);
5919	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5920	queue->xmit_lock_owner = -1;
5921	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5922	queue->dev = dev;
5923#ifdef CONFIG_BQL
5924	dql_init(&queue->dql, HZ);
5925#endif
5926}
5927
5928static void netif_free_tx_queues(struct net_device *dev)
5929{
5930	if (is_vmalloc_addr(dev->_tx))
5931		vfree(dev->_tx);
5932	else
5933		kfree(dev->_tx);
5934}
5935
5936static int netif_alloc_netdev_queues(struct net_device *dev)
5937{
5938	unsigned int count = dev->num_tx_queues;
5939	struct netdev_queue *tx;
5940	size_t sz = count * sizeof(*tx);
5941
5942	BUG_ON(count < 1 || count > 0xffff);
 
 
 
 
 
5943
5944	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5945	if (!tx) {
5946		tx = vzalloc(sz);
5947		if (!tx)
5948			return -ENOMEM;
5949	}
5950	dev->_tx = tx;
5951
5952	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5953	spin_lock_init(&dev->tx_global_lock);
5954
5955	return 0;
5956}
5957
 
 
 
 
 
 
 
 
 
 
 
 
5958/**
5959 *	register_netdevice	- register a network device
5960 *	@dev: device to register
5961 *
5962 *	Take a completed network device structure and add it to the kernel
5963 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5964 *	chain. 0 is returned on success. A negative errno code is returned
5965 *	on a failure to set up the device, or if the name is a duplicate.
5966 *
5967 *	Callers must hold the rtnl semaphore. You may want
5968 *	register_netdev() instead of this.
5969 *
5970 *	BUGS:
5971 *	The locking appears insufficient to guarantee two parallel registers
5972 *	will not get the same name.
5973 */
5974
5975int register_netdevice(struct net_device *dev)
5976{
5977	int ret;
5978	struct net *net = dev_net(dev);
5979
5980	BUG_ON(dev_boot_phase);
5981	ASSERT_RTNL();
5982
5983	might_sleep();
5984
5985	/* When net_device's are persistent, this will be fatal. */
5986	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5987	BUG_ON(!net);
5988
5989	spin_lock_init(&dev->addr_list_lock);
5990	netdev_set_addr_lockdep_class(dev);
5991
5992	dev->iflink = -1;
5993
5994	ret = dev_get_valid_name(net, dev, dev->name);
5995	if (ret < 0)
5996		goto out;
5997
5998	/* Init, if this function is available */
5999	if (dev->netdev_ops->ndo_init) {
6000		ret = dev->netdev_ops->ndo_init(dev);
6001		if (ret) {
6002			if (ret > 0)
6003				ret = -EIO;
6004			goto out;
6005		}
6006	}
6007
6008	if (((dev->hw_features | dev->features) &
6009	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6010	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6011	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6012		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6013		ret = -EINVAL;
6014		goto err_uninit;
6015	}
6016
6017	ret = -EBUSY;
6018	if (!dev->ifindex)
6019		dev->ifindex = dev_new_index(net);
6020	else if (__dev_get_by_index(net, dev->ifindex))
6021		goto err_uninit;
6022
6023	if (dev->iflink == -1)
6024		dev->iflink = dev->ifindex;
6025
6026	/* Transfer changeable features to wanted_features and enable
6027	 * software offloads (GSO and GRO).
6028	 */
6029	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6030	dev->features |= NETIF_F_SOFT_FEATURES;
 
 
 
 
 
 
6031	dev->wanted_features = dev->features & dev->hw_features;
6032
6033	if (!(dev->flags & IFF_LOOPBACK)) {
6034		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6035	}
 
 
 
 
 
 
 
 
 
 
 
 
 
6036
6037	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6038	 */
6039	dev->vlan_features |= NETIF_F_HIGHDMA;
6040
6041	/* Make NETIF_F_SG inheritable to tunnel devices.
6042	 */
6043	dev->hw_enc_features |= NETIF_F_SG;
6044
6045	/* Make NETIF_F_SG inheritable to MPLS.
6046	 */
6047	dev->mpls_features |= NETIF_F_SG;
6048
6049	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6050	ret = notifier_to_errno(ret);
6051	if (ret)
6052		goto err_uninit;
6053
6054	ret = netdev_register_kobject(dev);
6055	if (ret)
6056		goto err_uninit;
6057	dev->reg_state = NETREG_REGISTERED;
6058
6059	__netdev_update_features(dev);
6060
6061	/*
6062	 *	Default initial state at registry is that the
6063	 *	device is present.
6064	 */
6065
6066	set_bit(__LINK_STATE_PRESENT, &dev->state);
6067
6068	linkwatch_init_dev(dev);
6069
6070	dev_init_scheduler(dev);
6071	dev_hold(dev);
6072	list_netdevice(dev);
6073	add_device_randomness(dev->dev_addr, dev->addr_len);
6074
6075	/* If the device has permanent device address, driver should
6076	 * set dev_addr and also addr_assign_type should be set to
6077	 * NET_ADDR_PERM (default value).
6078	 */
6079	if (dev->addr_assign_type == NET_ADDR_PERM)
6080		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6081
6082	/* Notify protocols, that a new device appeared. */
6083	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6084	ret = notifier_to_errno(ret);
6085	if (ret) {
6086		rollback_registered(dev);
6087		dev->reg_state = NETREG_UNREGISTERED;
6088	}
6089	/*
6090	 *	Prevent userspace races by waiting until the network
6091	 *	device is fully setup before sending notifications.
6092	 */
6093	if (!dev->rtnl_link_ops ||
6094	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6095		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6096
6097out:
6098	return ret;
6099
6100err_uninit:
6101	if (dev->netdev_ops->ndo_uninit)
6102		dev->netdev_ops->ndo_uninit(dev);
 
 
6103	goto out;
6104}
6105EXPORT_SYMBOL(register_netdevice);
6106
6107/**
6108 *	init_dummy_netdev	- init a dummy network device for NAPI
6109 *	@dev: device to init
6110 *
6111 *	This takes a network device structure and initialize the minimum
6112 *	amount of fields so it can be used to schedule NAPI polls without
6113 *	registering a full blown interface. This is to be used by drivers
6114 *	that need to tie several hardware interfaces to a single NAPI
6115 *	poll scheduler due to HW limitations.
6116 */
6117int init_dummy_netdev(struct net_device *dev)
6118{
6119	/* Clear everything. Note we don't initialize spinlocks
6120	 * are they aren't supposed to be taken by any of the
6121	 * NAPI code and this dummy netdev is supposed to be
6122	 * only ever used for NAPI polls
6123	 */
6124	memset(dev, 0, sizeof(struct net_device));
6125
6126	/* make sure we BUG if trying to hit standard
6127	 * register/unregister code path
6128	 */
6129	dev->reg_state = NETREG_DUMMY;
6130
6131	/* NAPI wants this */
6132	INIT_LIST_HEAD(&dev->napi_list);
6133
6134	/* a dummy interface is started by default */
6135	set_bit(__LINK_STATE_PRESENT, &dev->state);
6136	set_bit(__LINK_STATE_START, &dev->state);
6137
6138	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6139	 * because users of this 'device' dont need to change
6140	 * its refcount.
6141	 */
6142
6143	return 0;
6144}
6145EXPORT_SYMBOL_GPL(init_dummy_netdev);
6146
6147
6148/**
6149 *	register_netdev	- register a network device
6150 *	@dev: device to register
6151 *
6152 *	Take a completed network device structure and add it to the kernel
6153 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6154 *	chain. 0 is returned on success. A negative errno code is returned
6155 *	on a failure to set up the device, or if the name is a duplicate.
6156 *
6157 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6158 *	and expands the device name if you passed a format string to
6159 *	alloc_netdev.
6160 */
6161int register_netdev(struct net_device *dev)
6162{
6163	int err;
6164
6165	rtnl_lock();
 
6166	err = register_netdevice(dev);
6167	rtnl_unlock();
6168	return err;
6169}
6170EXPORT_SYMBOL(register_netdev);
6171
6172int netdev_refcnt_read(const struct net_device *dev)
6173{
6174	int i, refcnt = 0;
6175
6176	for_each_possible_cpu(i)
6177		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6178	return refcnt;
6179}
6180EXPORT_SYMBOL(netdev_refcnt_read);
6181
6182/**
6183 * netdev_wait_allrefs - wait until all references are gone.
6184 * @dev: target net_device
6185 *
6186 * This is called when unregistering network devices.
6187 *
6188 * Any protocol or device that holds a reference should register
6189 * for netdevice notification, and cleanup and put back the
6190 * reference if they receive an UNREGISTER event.
6191 * We can get stuck here if buggy protocols don't correctly
6192 * call dev_put.
6193 */
6194static void netdev_wait_allrefs(struct net_device *dev)
6195{
6196	unsigned long rebroadcast_time, warning_time;
6197	int refcnt;
6198
6199	linkwatch_forget_dev(dev);
6200
6201	rebroadcast_time = warning_time = jiffies;
6202	refcnt = netdev_refcnt_read(dev);
6203
6204	while (refcnt != 0) {
6205		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6206			rtnl_lock();
6207
6208			/* Rebroadcast unregister notification */
6209			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6210
6211			__rtnl_unlock();
6212			rcu_barrier();
6213			rtnl_lock();
6214
6215			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6216			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6217				     &dev->state)) {
6218				/* We must not have linkwatch events
6219				 * pending on unregister. If this
6220				 * happens, we simply run the queue
6221				 * unscheduled, resulting in a noop
6222				 * for this device.
6223				 */
6224				linkwatch_run_queue();
6225			}
6226
6227			__rtnl_unlock();
6228
6229			rebroadcast_time = jiffies;
6230		}
6231
6232		msleep(250);
6233
6234		refcnt = netdev_refcnt_read(dev);
6235
6236		if (time_after(jiffies, warning_time + 10 * HZ)) {
6237			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6238				 dev->name, refcnt);
6239			warning_time = jiffies;
6240		}
6241	}
6242}
6243
6244/* The sequence is:
6245 *
6246 *	rtnl_lock();
6247 *	...
6248 *	register_netdevice(x1);
6249 *	register_netdevice(x2);
6250 *	...
6251 *	unregister_netdevice(y1);
6252 *	unregister_netdevice(y2);
6253 *      ...
6254 *	rtnl_unlock();
6255 *	free_netdev(y1);
6256 *	free_netdev(y2);
6257 *
6258 * We are invoked by rtnl_unlock().
6259 * This allows us to deal with problems:
6260 * 1) We can delete sysfs objects which invoke hotplug
6261 *    without deadlocking with linkwatch via keventd.
6262 * 2) Since we run with the RTNL semaphore not held, we can sleep
6263 *    safely in order to wait for the netdev refcnt to drop to zero.
6264 *
6265 * We must not return until all unregister events added during
6266 * the interval the lock was held have been completed.
6267 */
6268void netdev_run_todo(void)
6269{
6270	struct list_head list;
6271
6272	/* Snapshot list, allow later requests */
6273	list_replace_init(&net_todo_list, &list);
6274
6275	__rtnl_unlock();
6276
6277
6278	/* Wait for rcu callbacks to finish before next phase */
6279	if (!list_empty(&list))
6280		rcu_barrier();
6281
6282	while (!list_empty(&list)) {
6283		struct net_device *dev
6284			= list_first_entry(&list, struct net_device, todo_list);
6285		list_del(&dev->todo_list);
6286
6287		rtnl_lock();
6288		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6289		__rtnl_unlock();
6290
6291		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6292			pr_err("network todo '%s' but state %d\n",
6293			       dev->name, dev->reg_state);
6294			dump_stack();
6295			continue;
6296		}
6297
6298		dev->reg_state = NETREG_UNREGISTERED;
6299
6300		on_each_cpu(flush_backlog, dev, 1);
6301
6302		netdev_wait_allrefs(dev);
6303
6304		/* paranoia */
6305		BUG_ON(netdev_refcnt_read(dev));
 
 
6306		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6307		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
 
6308		WARN_ON(dev->dn_ptr);
6309
6310		if (dev->destructor)
6311			dev->destructor(dev);
 
 
6312
6313		/* Report a network device has been unregistered */
6314		rtnl_lock();
6315		dev_net(dev)->dev_unreg_count--;
6316		__rtnl_unlock();
6317		wake_up(&netdev_unregistering_wq);
6318
6319		/* Free network device */
6320		kobject_put(&dev->dev.kobj);
6321	}
6322}
6323
6324/* Convert net_device_stats to rtnl_link_stats64.  They have the same
6325 * fields in the same order, with only the type differing.
 
 
6326 */
6327void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6328			     const struct net_device_stats *netdev_stats)
6329{
6330#if BITS_PER_LONG == 64
6331	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6332	memcpy(stats64, netdev_stats, sizeof(*stats64));
 
 
 
6333#else
6334	size_t i, n = sizeof(*stats64) / sizeof(u64);
6335	const unsigned long *src = (const unsigned long *)netdev_stats;
6336	u64 *dst = (u64 *)stats64;
6337
6338	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6339		     sizeof(*stats64) / sizeof(u64));
6340	for (i = 0; i < n; i++)
6341		dst[i] = src[i];
 
 
 
6342#endif
6343}
6344EXPORT_SYMBOL(netdev_stats_to_stats64);
6345
6346/**
6347 *	dev_get_stats	- get network device statistics
6348 *	@dev: device to get statistics from
6349 *	@storage: place to store stats
6350 *
6351 *	Get network statistics from device. Return @storage.
6352 *	The device driver may provide its own method by setting
6353 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6354 *	otherwise the internal statistics structure is used.
6355 */
6356struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6357					struct rtnl_link_stats64 *storage)
6358{
6359	const struct net_device_ops *ops = dev->netdev_ops;
6360
6361	if (ops->ndo_get_stats64) {
6362		memset(storage, 0, sizeof(*storage));
6363		ops->ndo_get_stats64(dev, storage);
6364	} else if (ops->ndo_get_stats) {
6365		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6366	} else {
6367		netdev_stats_to_stats64(storage, &dev->stats);
6368	}
6369	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6370	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
 
6371	return storage;
6372}
6373EXPORT_SYMBOL(dev_get_stats);
6374
6375struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6376{
6377	struct netdev_queue *queue = dev_ingress_queue(dev);
6378
6379#ifdef CONFIG_NET_CLS_ACT
6380	if (queue)
6381		return queue;
6382	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6383	if (!queue)
6384		return NULL;
6385	netdev_init_one_queue(dev, queue, NULL);
6386	queue->qdisc = &noop_qdisc;
6387	queue->qdisc_sleeping = &noop_qdisc;
6388	rcu_assign_pointer(dev->ingress_queue, queue);
6389#endif
6390	return queue;
6391}
6392
6393static const struct ethtool_ops default_ethtool_ops;
6394
6395void netdev_set_default_ethtool_ops(struct net_device *dev,
6396				    const struct ethtool_ops *ops)
6397{
6398	if (dev->ethtool_ops == &default_ethtool_ops)
6399		dev->ethtool_ops = ops;
6400}
6401EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6402
6403void netdev_freemem(struct net_device *dev)
6404{
6405	char *addr = (char *)dev - dev->padded;
6406
6407	if (is_vmalloc_addr(addr))
6408		vfree(addr);
6409	else
6410		kfree(addr);
6411}
6412
6413/**
6414 *	alloc_netdev_mqs - allocate network device
6415 *	@sizeof_priv:	size of private data to allocate space for
6416 *	@name:		device name format string
6417 *	@setup:		callback to initialize device
6418 *	@txqs:		the number of TX subqueues to allocate
6419 *	@rxqs:		the number of RX subqueues to allocate
 
6420 *
6421 *	Allocates a struct net_device with private data area for driver use
6422 *	and performs basic initialization.  Also allocates subqueue structs
6423 *	for each queue on the device.
6424 */
6425struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
 
6426		void (*setup)(struct net_device *),
6427		unsigned int txqs, unsigned int rxqs)
6428{
6429	struct net_device *dev;
6430	size_t alloc_size;
6431	struct net_device *p;
6432
6433	BUG_ON(strlen(name) >= sizeof(dev->name));
6434
6435	if (txqs < 1) {
6436		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6437		return NULL;
6438	}
6439
6440#ifdef CONFIG_SYSFS
6441	if (rxqs < 1) {
6442		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6443		return NULL;
6444	}
6445#endif
6446
6447	alloc_size = sizeof(struct net_device);
6448	if (sizeof_priv) {
6449		/* ensure 32-byte alignment of private area */
6450		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6451		alloc_size += sizeof_priv;
6452	}
6453	/* ensure 32-byte alignment of whole construct */
6454	alloc_size += NETDEV_ALIGN - 1;
6455
6456	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6457	if (!p)
6458		p = vzalloc(alloc_size);
6459	if (!p)
6460		return NULL;
6461
6462	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6463	dev->padded = (char *)dev - (char *)p;
6464
6465	dev->pcpu_refcnt = alloc_percpu(int);
6466	if (!dev->pcpu_refcnt)
6467		goto free_dev;
6468
6469	if (dev_addr_init(dev))
6470		goto free_pcpu;
6471
6472	dev_mc_init(dev);
6473	dev_uc_init(dev);
6474
6475	dev_net_set(dev, &init_net);
6476
6477	dev->gso_max_size = GSO_MAX_SIZE;
6478	dev->gso_max_segs = GSO_MAX_SEGS;
6479
6480	INIT_LIST_HEAD(&dev->napi_list);
6481	INIT_LIST_HEAD(&dev->unreg_list);
6482	INIT_LIST_HEAD(&dev->close_list);
6483	INIT_LIST_HEAD(&dev->link_watch_list);
6484	INIT_LIST_HEAD(&dev->adj_list.upper);
6485	INIT_LIST_HEAD(&dev->adj_list.lower);
6486	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6487	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6488	dev->priv_flags = IFF_XMIT_DST_RELEASE;
 
 
 
6489	setup(dev);
6490
 
 
 
 
 
6491	dev->num_tx_queues = txqs;
6492	dev->real_num_tx_queues = txqs;
6493	if (netif_alloc_netdev_queues(dev))
6494		goto free_all;
6495
6496#ifdef CONFIG_SYSFS
6497	dev->num_rx_queues = rxqs;
6498	dev->real_num_rx_queues = rxqs;
6499	if (netif_alloc_rx_queues(dev))
6500		goto free_all;
6501#endif
6502
6503	strcpy(dev->name, name);
 
6504	dev->group = INIT_NETDEV_GROUP;
6505	if (!dev->ethtool_ops)
6506		dev->ethtool_ops = &default_ethtool_ops;
 
 
 
6507	return dev;
6508
6509free_all:
6510	free_netdev(dev);
6511	return NULL;
6512
6513free_pcpu:
6514	free_percpu(dev->pcpu_refcnt);
6515	netif_free_tx_queues(dev);
6516#ifdef CONFIG_SYSFS
6517	kfree(dev->_rx);
6518#endif
6519
6520free_dev:
6521	netdev_freemem(dev);
6522	return NULL;
6523}
6524EXPORT_SYMBOL(alloc_netdev_mqs);
6525
6526/**
6527 *	free_netdev - free network device
6528 *	@dev: device
6529 *
6530 *	This function does the last stage of destroying an allocated device
6531 * 	interface. The reference to the device object is released.
6532 *	If this is the last reference then it will be freed.
 
6533 */
6534void free_netdev(struct net_device *dev)
6535{
6536	struct napi_struct *p, *n;
6537
6538	release_net(dev_net(dev));
6539
6540	netif_free_tx_queues(dev);
6541#ifdef CONFIG_SYSFS
6542	kfree(dev->_rx);
6543#endif
6544
6545	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6546
6547	/* Flush device addresses */
6548	dev_addr_flush(dev);
6549
6550	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6551		netif_napi_del(p);
6552
6553	free_percpu(dev->pcpu_refcnt);
6554	dev->pcpu_refcnt = NULL;
6555
6556	/*  Compatibility with error handling in drivers */
6557	if (dev->reg_state == NETREG_UNINITIALIZED) {
6558		netdev_freemem(dev);
6559		return;
6560	}
6561
6562	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6563	dev->reg_state = NETREG_RELEASED;
6564
6565	/* will free via device release */
6566	put_device(&dev->dev);
6567}
6568EXPORT_SYMBOL(free_netdev);
6569
6570/**
6571 *	synchronize_net -  Synchronize with packet receive processing
6572 *
6573 *	Wait for packets currently being received to be done.
6574 *	Does not block later packets from starting.
6575 */
6576void synchronize_net(void)
6577{
6578	might_sleep();
6579	if (rtnl_is_locked())
6580		synchronize_rcu_expedited();
6581	else
6582		synchronize_rcu();
6583}
6584EXPORT_SYMBOL(synchronize_net);
6585
6586/**
6587 *	unregister_netdevice_queue - remove device from the kernel
6588 *	@dev: device
6589 *	@head: list
6590 *
6591 *	This function shuts down a device interface and removes it
6592 *	from the kernel tables.
6593 *	If head not NULL, device is queued to be unregistered later.
6594 *
6595 *	Callers must hold the rtnl semaphore.  You may want
6596 *	unregister_netdev() instead of this.
6597 */
6598
6599void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6600{
6601	ASSERT_RTNL();
6602
6603	if (head) {
6604		list_move_tail(&dev->unreg_list, head);
6605	} else {
6606		rollback_registered(dev);
6607		/* Finish processing unregister after unlock */
6608		net_set_todo(dev);
6609	}
6610}
6611EXPORT_SYMBOL(unregister_netdevice_queue);
6612
6613/**
6614 *	unregister_netdevice_many - unregister many devices
6615 *	@head: list of devices
 
 
 
6616 */
6617void unregister_netdevice_many(struct list_head *head)
6618{
6619	struct net_device *dev;
6620
6621	if (!list_empty(head)) {
6622		rollback_registered_many(head);
6623		list_for_each_entry(dev, head, unreg_list)
6624			net_set_todo(dev);
 
6625	}
6626}
6627EXPORT_SYMBOL(unregister_netdevice_many);
6628
6629/**
6630 *	unregister_netdev - remove device from the kernel
6631 *	@dev: device
6632 *
6633 *	This function shuts down a device interface and removes it
6634 *	from the kernel tables.
6635 *
6636 *	This is just a wrapper for unregister_netdevice that takes
6637 *	the rtnl semaphore.  In general you want to use this and not
6638 *	unregister_netdevice.
6639 */
6640void unregister_netdev(struct net_device *dev)
6641{
6642	rtnl_lock();
6643	unregister_netdevice(dev);
6644	rtnl_unlock();
6645}
6646EXPORT_SYMBOL(unregister_netdev);
6647
6648/**
6649 *	dev_change_net_namespace - move device to different nethost namespace
6650 *	@dev: device
6651 *	@net: network namespace
6652 *	@pat: If not NULL name pattern to try if the current device name
6653 *	      is already taken in the destination network namespace.
6654 *
6655 *	This function shuts down a device interface and moves it
6656 *	to a new network namespace. On success 0 is returned, on
6657 *	a failure a netagive errno code is returned.
6658 *
6659 *	Callers must hold the rtnl semaphore.
6660 */
6661
6662int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6663{
6664	int err;
6665
6666	ASSERT_RTNL();
6667
6668	/* Don't allow namespace local devices to be moved. */
6669	err = -EINVAL;
6670	if (dev->features & NETIF_F_NETNS_LOCAL)
6671		goto out;
6672
6673	/* Ensure the device has been registrered */
6674	if (dev->reg_state != NETREG_REGISTERED)
6675		goto out;
6676
6677	/* Get out if there is nothing todo */
6678	err = 0;
6679	if (net_eq(dev_net(dev), net))
6680		goto out;
6681
6682	/* Pick the destination device name, and ensure
6683	 * we can use it in the destination network namespace.
6684	 */
6685	err = -EEXIST;
6686	if (__dev_get_by_name(net, dev->name)) {
6687		/* We get here if we can't use the current device name */
6688		if (!pat)
6689			goto out;
6690		if (dev_get_valid_name(net, dev, pat) < 0)
6691			goto out;
6692	}
6693
6694	/*
6695	 * And now a mini version of register_netdevice unregister_netdevice.
6696	 */
6697
6698	/* If device is running close it first. */
6699	dev_close(dev);
6700
6701	/* And unlink it from device chain */
6702	err = -ENODEV;
6703	unlist_netdevice(dev);
6704
6705	synchronize_net();
6706
6707	/* Shutdown queueing discipline. */
6708	dev_shutdown(dev);
6709
6710	/* Notify protocols, that we are about to destroy
6711	   this device. They should clean all the things.
6712
6713	   Note that dev->reg_state stays at NETREG_REGISTERED.
6714	   This is wanted because this way 8021q and macvlan know
6715	   the device is just moving and can keep their slaves up.
6716	*/
6717	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6718	rcu_barrier();
6719	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6720	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
 
 
 
 
 
 
 
 
6721
6722	/*
6723	 *	Flush the unicast and multicast chains
6724	 */
6725	dev_uc_flush(dev);
6726	dev_mc_flush(dev);
6727
6728	/* Send a netdev-removed uevent to the old namespace */
6729	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
 
6730
6731	/* Actually switch the network namespace */
6732	dev_net_set(dev, net);
6733
6734	/* If there is an ifindex conflict assign a new one */
6735	if (__dev_get_by_index(net, dev->ifindex)) {
6736		int iflink = (dev->iflink == dev->ifindex);
6737		dev->ifindex = dev_new_index(net);
6738		if (iflink)
6739			dev->iflink = dev->ifindex;
6740	}
6741
6742	/* Send a netdev-add uevent to the new namespace */
6743	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
 
6744
6745	/* Fixup kobjects */
6746	err = device_rename(&dev->dev, dev->name);
6747	WARN_ON(err);
6748
6749	/* Add the device back in the hashes */
6750	list_netdevice(dev);
6751
6752	/* Notify protocols, that a new device appeared. */
6753	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6754
6755	/*
6756	 *	Prevent userspace races by waiting until the network
6757	 *	device is fully setup before sending notifications.
6758	 */
6759	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6760
6761	synchronize_net();
6762	err = 0;
6763out:
6764	return err;
6765}
6766EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6767
6768static int dev_cpu_callback(struct notifier_block *nfb,
6769			    unsigned long action,
6770			    void *ocpu)
6771{
6772	struct sk_buff **list_skb;
6773	struct sk_buff *skb;
6774	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6775	struct softnet_data *sd, *oldsd;
6776
6777	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6778		return NOTIFY_OK;
6779
6780	local_irq_disable();
6781	cpu = smp_processor_id();
6782	sd = &per_cpu(softnet_data, cpu);
6783	oldsd = &per_cpu(softnet_data, oldcpu);
6784
6785	/* Find end of our completion_queue. */
6786	list_skb = &sd->completion_queue;
6787	while (*list_skb)
6788		list_skb = &(*list_skb)->next;
6789	/* Append completion queue from offline CPU. */
6790	*list_skb = oldsd->completion_queue;
6791	oldsd->completion_queue = NULL;
6792
6793	/* Append output queue from offline CPU. */
6794	if (oldsd->output_queue) {
6795		*sd->output_queue_tailp = oldsd->output_queue;
6796		sd->output_queue_tailp = oldsd->output_queue_tailp;
6797		oldsd->output_queue = NULL;
6798		oldsd->output_queue_tailp = &oldsd->output_queue;
6799	}
6800	/* Append NAPI poll list from offline CPU. */
6801	if (!list_empty(&oldsd->poll_list)) {
6802		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6803		raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 
 
 
 
 
 
 
6804	}
6805
6806	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6807	local_irq_enable();
6808
 
 
 
 
 
 
 
6809	/* Process offline CPU's input_pkt_queue */
6810	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6811		netif_rx_internal(skb);
6812		input_queue_head_incr(oldsd);
6813	}
6814	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6815		netif_rx_internal(skb);
6816		input_queue_head_incr(oldsd);
6817	}
6818
6819	return NOTIFY_OK;
6820}
6821
6822
6823/**
6824 *	netdev_increment_features - increment feature set by one
6825 *	@all: current feature set
6826 *	@one: new feature set
6827 *	@mask: mask feature set
6828 *
6829 *	Computes a new feature set after adding a device with feature set
6830 *	@one to the master device with current feature set @all.  Will not
6831 *	enable anything that is off in @mask. Returns the new feature set.
6832 */
6833netdev_features_t netdev_increment_features(netdev_features_t all,
6834	netdev_features_t one, netdev_features_t mask)
6835{
6836	if (mask & NETIF_F_GEN_CSUM)
6837		mask |= NETIF_F_ALL_CSUM;
6838	mask |= NETIF_F_VLAN_CHALLENGED;
6839
6840	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6841	all &= one | ~NETIF_F_ALL_FOR_ALL;
6842
6843	/* If one device supports hw checksumming, set for all. */
6844	if (all & NETIF_F_GEN_CSUM)
6845		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6846
6847	return all;
6848}
6849EXPORT_SYMBOL(netdev_increment_features);
6850
6851static struct hlist_head * __net_init netdev_create_hash(void)
6852{
6853	int i;
6854	struct hlist_head *hash;
6855
6856	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6857	if (hash != NULL)
6858		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6859			INIT_HLIST_HEAD(&hash[i]);
6860
6861	return hash;
6862}
6863
6864/* Initialize per network namespace state */
6865static int __net_init netdev_init(struct net *net)
6866{
6867	if (net != &init_net)
6868		INIT_LIST_HEAD(&net->dev_base_head);
6869
6870	net->dev_name_head = netdev_create_hash();
6871	if (net->dev_name_head == NULL)
6872		goto err_name;
6873
6874	net->dev_index_head = netdev_create_hash();
6875	if (net->dev_index_head == NULL)
6876		goto err_idx;
6877
6878	return 0;
6879
6880err_idx:
6881	kfree(net->dev_name_head);
6882err_name:
6883	return -ENOMEM;
6884}
6885
6886/**
6887 *	netdev_drivername - network driver for the device
6888 *	@dev: network device
6889 *
6890 *	Determine network driver for device.
6891 */
6892const char *netdev_drivername(const struct net_device *dev)
6893{
6894	const struct device_driver *driver;
6895	const struct device *parent;
6896	const char *empty = "";
6897
6898	parent = dev->dev.parent;
6899	if (!parent)
6900		return empty;
6901
6902	driver = parent->driver;
6903	if (driver && driver->name)
6904		return driver->name;
6905	return empty;
6906}
6907
6908static int __netdev_printk(const char *level, const struct net_device *dev,
6909			   struct va_format *vaf)
6910{
6911	int r;
6912
6913	if (dev && dev->dev.parent) {
6914		r = dev_printk_emit(level[1] - '0',
6915				    dev->dev.parent,
6916				    "%s %s %s: %pV",
6917				    dev_driver_string(dev->dev.parent),
6918				    dev_name(dev->dev.parent),
6919				    netdev_name(dev), vaf);
 
6920	} else if (dev) {
6921		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
 
6922	} else {
6923		r = printk("%s(NULL net_device): %pV", level, vaf);
6924	}
6925
6926	return r;
6927}
6928
6929int netdev_printk(const char *level, const struct net_device *dev,
6930		  const char *format, ...)
6931{
6932	struct va_format vaf;
6933	va_list args;
6934	int r;
6935
6936	va_start(args, format);
6937
6938	vaf.fmt = format;
6939	vaf.va = &args;
6940
6941	r = __netdev_printk(level, dev, &vaf);
6942
6943	va_end(args);
6944
6945	return r;
6946}
6947EXPORT_SYMBOL(netdev_printk);
6948
6949#define define_netdev_printk_level(func, level)			\
6950int func(const struct net_device *dev, const char *fmt, ...)	\
6951{								\
6952	int r;							\
6953	struct va_format vaf;					\
6954	va_list args;						\
6955								\
6956	va_start(args, fmt);					\
6957								\
6958	vaf.fmt = fmt;						\
6959	vaf.va = &args;						\
6960								\
6961	r = __netdev_printk(level, dev, &vaf);			\
6962								\
6963	va_end(args);						\
6964								\
6965	return r;						\
6966}								\
6967EXPORT_SYMBOL(func);
6968
6969define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6970define_netdev_printk_level(netdev_alert, KERN_ALERT);
6971define_netdev_printk_level(netdev_crit, KERN_CRIT);
6972define_netdev_printk_level(netdev_err, KERN_ERR);
6973define_netdev_printk_level(netdev_warn, KERN_WARNING);
6974define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6975define_netdev_printk_level(netdev_info, KERN_INFO);
6976
6977static void __net_exit netdev_exit(struct net *net)
6978{
6979	kfree(net->dev_name_head);
6980	kfree(net->dev_index_head);
 
 
6981}
6982
6983static struct pernet_operations __net_initdata netdev_net_ops = {
6984	.init = netdev_init,
6985	.exit = netdev_exit,
6986};
6987
6988static void __net_exit default_device_exit(struct net *net)
6989{
6990	struct net_device *dev, *aux;
6991	/*
6992	 * Push all migratable network devices back to the
6993	 * initial network namespace
6994	 */
6995	rtnl_lock();
6996	for_each_netdev_safe(net, dev, aux) {
6997		int err;
6998		char fb_name[IFNAMSIZ];
6999
7000		/* Ignore unmoveable devices (i.e. loopback) */
7001		if (dev->features & NETIF_F_NETNS_LOCAL)
7002			continue;
7003
7004		/* Leave virtual devices for the generic cleanup */
7005		if (dev->rtnl_link_ops)
7006			continue;
7007
7008		/* Push remaining network devices to init_net */
7009		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7010		err = dev_change_net_namespace(dev, &init_net, fb_name);
7011		if (err) {
7012			pr_emerg("%s: failed to move %s to init_net: %d\n",
7013				 __func__, dev->name, err);
7014			BUG();
7015		}
7016	}
7017	rtnl_unlock();
7018}
7019
7020static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7021{
7022	/* Return with the rtnl_lock held when there are no network
7023	 * devices unregistering in any network namespace in net_list.
7024	 */
7025	struct net *net;
7026	bool unregistering;
7027	DEFINE_WAIT(wait);
7028
 
7029	for (;;) {
7030		prepare_to_wait(&netdev_unregistering_wq, &wait,
7031				TASK_UNINTERRUPTIBLE);
7032		unregistering = false;
7033		rtnl_lock();
7034		list_for_each_entry(net, net_list, exit_list) {
7035			if (net->dev_unreg_count > 0) {
7036				unregistering = true;
7037				break;
7038			}
7039		}
7040		if (!unregistering)
7041			break;
7042		__rtnl_unlock();
7043		schedule();
 
7044	}
7045	finish_wait(&netdev_unregistering_wq, &wait);
7046}
7047
7048static void __net_exit default_device_exit_batch(struct list_head *net_list)
7049{
7050	/* At exit all network devices most be removed from a network
7051	 * namespace.  Do this in the reverse order of registration.
7052	 * Do this across as many network namespaces as possible to
7053	 * improve batching efficiency.
7054	 */
7055	struct net_device *dev;
7056	struct net *net;
7057	LIST_HEAD(dev_kill_list);
7058
7059	/* To prevent network device cleanup code from dereferencing
7060	 * loopback devices or network devices that have been freed
7061	 * wait here for all pending unregistrations to complete,
7062	 * before unregistring the loopback device and allowing the
7063	 * network namespace be freed.
7064	 *
7065	 * The netdev todo list containing all network devices
7066	 * unregistrations that happen in default_device_exit_batch
7067	 * will run in the rtnl_unlock() at the end of
7068	 * default_device_exit_batch.
7069	 */
7070	rtnl_lock_unregistering(net_list);
7071	list_for_each_entry(net, net_list, exit_list) {
7072		for_each_netdev_reverse(net, dev) {
7073			if (dev->rtnl_link_ops)
7074				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7075			else
7076				unregister_netdevice_queue(dev, &dev_kill_list);
7077		}
7078	}
7079	unregister_netdevice_many(&dev_kill_list);
7080	list_del(&dev_kill_list);
7081	rtnl_unlock();
7082}
7083
7084static struct pernet_operations __net_initdata default_device_ops = {
7085	.exit = default_device_exit,
7086	.exit_batch = default_device_exit_batch,
7087};
7088
7089/*
7090 *	Initialize the DEV module. At boot time this walks the device list and
7091 *	unhooks any devices that fail to initialise (normally hardware not
7092 *	present) and leaves us with a valid list of present and active devices.
7093 *
7094 */
7095
7096/*
7097 *       This is called single threaded during boot, so no need
7098 *       to take the rtnl semaphore.
7099 */
7100static int __init net_dev_init(void)
7101{
7102	int i, rc = -ENOMEM;
7103
7104	BUG_ON(!dev_boot_phase);
7105
7106	if (dev_proc_init())
7107		goto out;
7108
7109	if (netdev_kobject_init())
7110		goto out;
7111
7112	INIT_LIST_HEAD(&ptype_all);
7113	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7114		INIT_LIST_HEAD(&ptype_base[i]);
7115
7116	INIT_LIST_HEAD(&offload_base);
7117
7118	if (register_pernet_subsys(&netdev_net_ops))
7119		goto out;
7120
7121	/*
7122	 *	Initialise the packet receive queues.
7123	 */
7124
7125	for_each_possible_cpu(i) {
 
7126		struct softnet_data *sd = &per_cpu(softnet_data, i);
7127
 
 
7128		skb_queue_head_init(&sd->input_pkt_queue);
7129		skb_queue_head_init(&sd->process_queue);
 
 
 
7130		INIT_LIST_HEAD(&sd->poll_list);
7131		sd->output_queue_tailp = &sd->output_queue;
7132#ifdef CONFIG_RPS
7133		sd->csd.func = rps_trigger_softirq;
7134		sd->csd.info = sd;
7135		sd->cpu = i;
7136#endif
7137
7138		sd->backlog.poll = process_backlog;
7139		sd->backlog.weight = weight_p;
7140	}
7141
7142	dev_boot_phase = 0;
7143
7144	/* The loopback device is special if any other network devices
7145	 * is present in a network namespace the loopback device must
7146	 * be present. Since we now dynamically allocate and free the
7147	 * loopback device ensure this invariant is maintained by
7148	 * keeping the loopback device as the first device on the
7149	 * list of network devices.  Ensuring the loopback devices
7150	 * is the first device that appears and the last network device
7151	 * that disappears.
7152	 */
7153	if (register_pernet_device(&loopback_net_ops))
7154		goto out;
7155
7156	if (register_pernet_device(&default_device_ops))
7157		goto out;
7158
7159	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7160	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7161
7162	hotcpu_notifier(dev_cpu_callback, 0);
7163	dst_init();
 
7164	rc = 0;
7165out:
7166	return rc;
7167}
7168
7169subsys_initcall(net_dev_init);