Linux Audio

Check our new training course

Loading...
v4.17
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *	  2) Minimal run-time overhead:
  26 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *	     b) Small when syscall auditing is enabled and no audit record
  28 *		is generated (defer as much work as possible to record
  29 *		generation time):
  30 *		i) context is allocated,
  31 *		ii) names from getname are stored without a copy, and
  32 *		iii) inode information stored from path_lookup.
  33 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  34 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  35 *	     then a syscall record will be generated automatically for the
  36 *	     current syscall).
  37 *	  5) Netlink interface to user-space.
  38 *	  6) Support low-overhead kernel-based filtering to minimize the
  39 *	     information that must be passed to user-space.
  40 *
  41 * Audit userspace, documentation, tests, and bug/issue trackers:
  42 * 	https://github.com/linux-audit
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/file.h>
  48#include <linux/init.h>
  49#include <linux/types.h>
  50#include <linux/atomic.h>
  51#include <linux/mm.h>
  52#include <linux/export.h>
  53#include <linux/slab.h>
  54#include <linux/err.h>
  55#include <linux/kthread.h>
  56#include <linux/kernel.h>
  57#include <linux/syscalls.h>
  58#include <linux/spinlock.h>
  59#include <linux/rcupdate.h>
  60#include <linux/mutex.h>
  61#include <linux/gfp.h>
  62#include <linux/pid.h>
  63#include <linux/slab.h>
  64
  65#include <linux/audit.h>
  66
  67#include <net/sock.h>
  68#include <net/netlink.h>
  69#include <linux/skbuff.h>
  70#ifdef CONFIG_SECURITY
  71#include <linux/security.h>
  72#endif
  73#include <linux/freezer.h>
 
  74#include <linux/pid_namespace.h>
  75#include <net/netns/generic.h>
  76
  77#include "audit.h"
  78
  79/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  80 * (Initialization happens after skb_init is called.) */
  81#define AUDIT_DISABLED		-1
  82#define AUDIT_UNINITIALIZED	0
  83#define AUDIT_INITIALIZED	1
  84static int	audit_initialized;
  85
  86#define AUDIT_OFF	0
  87#define AUDIT_ON	1
  88#define AUDIT_LOCKED	2
  89u32		audit_enabled = AUDIT_OFF;
  90bool		audit_ever_enabled = !!AUDIT_OFF;
  91
  92EXPORT_SYMBOL_GPL(audit_enabled);
  93
  94/* Default state when kernel boots without any parameters. */
  95static u32	audit_default = AUDIT_OFF;
  96
  97/* If auditing cannot proceed, audit_failure selects what happens. */
  98static u32	audit_failure = AUDIT_FAIL_PRINTK;
  99
 100/* private audit network namespace index */
 101static unsigned int audit_net_id;
 102
 103/**
 104 * struct audit_net - audit private network namespace data
 105 * @sk: communication socket
 106 */
 107struct audit_net {
 108	struct sock *sk;
 109};
 110
 111/**
 112 * struct auditd_connection - kernel/auditd connection state
 113 * @pid: auditd PID
 114 * @portid: netlink portid
 115 * @net: the associated network namespace
 116 * @rcu: RCU head
 117 *
 118 * Description:
 119 * This struct is RCU protected; you must either hold the RCU lock for reading
 120 * or the associated spinlock for writing.
 121 */
 122static struct auditd_connection {
 123	struct pid *pid;
 124	u32 portid;
 125	struct net *net;
 126	struct rcu_head rcu;
 127} *auditd_conn = NULL;
 128static DEFINE_SPINLOCK(auditd_conn_lock);
 129
 130/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 131 * to that number per second.  This prevents DoS attacks, but results in
 132 * audit records being dropped. */
 133static u32	audit_rate_limit;
 134
 135/* Number of outstanding audit_buffers allowed.
 136 * When set to zero, this means unlimited. */
 137static u32	audit_backlog_limit = 64;
 138#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 139static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 
 140
 141/* The identity of the user shutting down the audit system. */
 142kuid_t		audit_sig_uid = INVALID_UID;
 143pid_t		audit_sig_pid = -1;
 144u32		audit_sig_sid = 0;
 145
 146/* Records can be lost in several ways:
 147   0) [suppressed in audit_alloc]
 148   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 149   2) out of memory in audit_log_move [alloc_skb]
 150   3) suppressed due to audit_rate_limit
 151   4) suppressed due to audit_backlog_limit
 152*/
 153static atomic_t	audit_lost = ATOMIC_INIT(0);
 
 
 
 
 154
 155/* Hash for inode-based rules */
 156struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 157
 158static struct kmem_cache *audit_buffer_cache;
 159
 160/* queue msgs to send via kauditd_task */
 161static struct sk_buff_head audit_queue;
 162/* queue msgs due to temporary unicast send problems */
 163static struct sk_buff_head audit_retry_queue;
 164/* queue msgs waiting for new auditd connection */
 165static struct sk_buff_head audit_hold_queue;
 166
 167/* queue servicing thread */
 168static struct task_struct *kauditd_task;
 169static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 170
 171/* waitqueue for callers who are blocked on the audit backlog */
 172static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 173
 174static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 175				   .mask = -1,
 176				   .features = 0,
 177				   .lock = 0,};
 178
 179static char *audit_feature_names[2] = {
 180	"only_unset_loginuid",
 181	"loginuid_immutable",
 182};
 183
 184/**
 185 * struct audit_ctl_mutex - serialize requests from userspace
 186 * @lock: the mutex used for locking
 187 * @owner: the task which owns the lock
 188 *
 189 * Description:
 190 * This is the lock struct used to ensure we only process userspace requests
 191 * in an orderly fashion.  We can't simply use a mutex/lock here because we
 192 * need to track lock ownership so we don't end up blocking the lock owner in
 193 * audit_log_start() or similar.
 194 */
 195static struct audit_ctl_mutex {
 196	struct mutex lock;
 197	void *owner;
 198} audit_cmd_mutex;
 199
 200/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 201 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 202 * should be at least that large. */
 203#define AUDIT_BUFSIZ 1024
 204
 
 
 
 
 205/* The audit_buffer is used when formatting an audit record.  The caller
 206 * locks briefly to get the record off the freelist or to allocate the
 207 * buffer, and locks briefly to send the buffer to the netlink layer or
 208 * to place it on a transmit queue.  Multiple audit_buffers can be in
 209 * use simultaneously. */
 210struct audit_buffer {
 
 211	struct sk_buff       *skb;	/* formatted skb ready to send */
 212	struct audit_context *ctx;	/* NULL or associated context */
 213	gfp_t		     gfp_mask;
 214};
 215
 216struct audit_reply {
 217	__u32 portid;
 218	struct net *net;
 219	struct sk_buff *skb;
 220};
 221
 222/**
 223 * auditd_test_task - Check to see if a given task is an audit daemon
 224 * @task: the task to check
 225 *
 226 * Description:
 227 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 228 */
 229int auditd_test_task(struct task_struct *task)
 230{
 231	int rc;
 232	struct auditd_connection *ac;
 233
 234	rcu_read_lock();
 235	ac = rcu_dereference(auditd_conn);
 236	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
 237	rcu_read_unlock();
 238
 239	return rc;
 240}
 241
 242/**
 243 * audit_ctl_lock - Take the audit control lock
 244 */
 245void audit_ctl_lock(void)
 246{
 247	mutex_lock(&audit_cmd_mutex.lock);
 248	audit_cmd_mutex.owner = current;
 249}
 250
 251/**
 252 * audit_ctl_unlock - Drop the audit control lock
 253 */
 254void audit_ctl_unlock(void)
 255{
 256	audit_cmd_mutex.owner = NULL;
 257	mutex_unlock(&audit_cmd_mutex.lock);
 258}
 259
 260/**
 261 * audit_ctl_owner_current - Test to see if the current task owns the lock
 262 *
 263 * Description:
 264 * Return true if the current task owns the audit control lock, false if it
 265 * doesn't own the lock.
 266 */
 267static bool audit_ctl_owner_current(void)
 268{
 269	return (current == audit_cmd_mutex.owner);
 270}
 271
 272/**
 273 * auditd_pid_vnr - Return the auditd PID relative to the namespace
 274 *
 275 * Description:
 276 * Returns the PID in relation to the namespace, 0 on failure.
 277 */
 278static pid_t auditd_pid_vnr(void)
 279{
 280	pid_t pid;
 281	const struct auditd_connection *ac;
 282
 283	rcu_read_lock();
 284	ac = rcu_dereference(auditd_conn);
 285	if (!ac || !ac->pid)
 286		pid = 0;
 287	else
 288		pid = pid_vnr(ac->pid);
 289	rcu_read_unlock();
 290
 291	return pid;
 292}
 293
 294/**
 295 * audit_get_sk - Return the audit socket for the given network namespace
 296 * @net: the destination network namespace
 297 *
 298 * Description:
 299 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 300 * that a reference is held for the network namespace while the sock is in use.
 301 */
 302static struct sock *audit_get_sk(const struct net *net)
 303{
 304	struct audit_net *aunet;
 305
 306	if (!net)
 307		return NULL;
 308
 309	aunet = net_generic(net, audit_net_id);
 310	return aunet->sk;
 311}
 312
 313void audit_panic(const char *message)
 314{
 315	switch (audit_failure) {
 316	case AUDIT_FAIL_SILENT:
 317		break;
 318	case AUDIT_FAIL_PRINTK:
 319		if (printk_ratelimit())
 320			pr_err("%s\n", message);
 321		break;
 322	case AUDIT_FAIL_PANIC:
 323		panic("audit: %s\n", message);
 
 
 324		break;
 325	}
 326}
 327
 328static inline int audit_rate_check(void)
 329{
 330	static unsigned long	last_check = 0;
 331	static int		messages   = 0;
 332	static DEFINE_SPINLOCK(lock);
 333	unsigned long		flags;
 334	unsigned long		now;
 335	unsigned long		elapsed;
 336	int			retval	   = 0;
 337
 338	if (!audit_rate_limit) return 1;
 339
 340	spin_lock_irqsave(&lock, flags);
 341	if (++messages < audit_rate_limit) {
 342		retval = 1;
 343	} else {
 344		now     = jiffies;
 345		elapsed = now - last_check;
 346		if (elapsed > HZ) {
 347			last_check = now;
 348			messages   = 0;
 349			retval     = 1;
 350		}
 351	}
 352	spin_unlock_irqrestore(&lock, flags);
 353
 354	return retval;
 355}
 356
 357/**
 358 * audit_log_lost - conditionally log lost audit message event
 359 * @message: the message stating reason for lost audit message
 360 *
 361 * Emit at least 1 message per second, even if audit_rate_check is
 362 * throttling.
 363 * Always increment the lost messages counter.
 364*/
 365void audit_log_lost(const char *message)
 366{
 367	static unsigned long	last_msg = 0;
 368	static DEFINE_SPINLOCK(lock);
 369	unsigned long		flags;
 370	unsigned long		now;
 371	int			print;
 372
 373	atomic_inc(&audit_lost);
 374
 375	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 376
 377	if (!print) {
 378		spin_lock_irqsave(&lock, flags);
 379		now = jiffies;
 380		if (now - last_msg > HZ) {
 381			print = 1;
 382			last_msg = now;
 383		}
 384		spin_unlock_irqrestore(&lock, flags);
 385	}
 386
 387	if (print) {
 388		if (printk_ratelimit())
 389			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 390				atomic_read(&audit_lost),
 391				audit_rate_limit,
 392				audit_backlog_limit);
 393		audit_panic(message);
 394	}
 395}
 396
 397static int audit_log_config_change(char *function_name, u32 new, u32 old,
 398				   int allow_changes)
 399{
 400	struct audit_buffer *ab;
 401	int rc = 0;
 402
 403	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 404	if (unlikely(!ab))
 405		return rc;
 406	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 407	audit_log_session_info(ab);
 408	rc = audit_log_task_context(ab);
 409	if (rc)
 410		allow_changes = 0; /* Something weird, deny request */
 411	audit_log_format(ab, " res=%d", allow_changes);
 412	audit_log_end(ab);
 413	return rc;
 414}
 415
 416static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 417{
 418	int allow_changes, rc = 0;
 419	u32 old = *to_change;
 420
 421	/* check if we are locked */
 422	if (audit_enabled == AUDIT_LOCKED)
 423		allow_changes = 0;
 424	else
 425		allow_changes = 1;
 426
 427	if (audit_enabled != AUDIT_OFF) {
 428		rc = audit_log_config_change(function_name, new, old, allow_changes);
 429		if (rc)
 430			allow_changes = 0;
 431	}
 432
 433	/* If we are allowed, make the change */
 434	if (allow_changes == 1)
 435		*to_change = new;
 436	/* Not allowed, update reason */
 437	else if (rc == 0)
 438		rc = -EPERM;
 439	return rc;
 440}
 441
 442static int audit_set_rate_limit(u32 limit)
 443{
 444	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 445}
 446
 447static int audit_set_backlog_limit(u32 limit)
 448{
 449	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 450}
 451
 452static int audit_set_backlog_wait_time(u32 timeout)
 453{
 454	return audit_do_config_change("audit_backlog_wait_time",
 455				      &audit_backlog_wait_time, timeout);
 456}
 457
 458static int audit_set_enabled(u32 state)
 459{
 460	int rc;
 461	if (state > AUDIT_LOCKED)
 462		return -EINVAL;
 463
 464	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 465	if (!rc)
 466		audit_ever_enabled |= !!state;
 467
 468	return rc;
 469}
 470
 471static int audit_set_failure(u32 state)
 472{
 473	if (state != AUDIT_FAIL_SILENT
 474	    && state != AUDIT_FAIL_PRINTK
 475	    && state != AUDIT_FAIL_PANIC)
 476		return -EINVAL;
 477
 478	return audit_do_config_change("audit_failure", &audit_failure, state);
 479}
 480
 481/**
 482 * auditd_conn_free - RCU helper to release an auditd connection struct
 483 * @rcu: RCU head
 484 *
 485 * Description:
 486 * Drop any references inside the auditd connection tracking struct and free
 487 * the memory.
 488 */
 489static void auditd_conn_free(struct rcu_head *rcu)
 490{
 491	struct auditd_connection *ac;
 492
 493	ac = container_of(rcu, struct auditd_connection, rcu);
 494	put_pid(ac->pid);
 495	put_net(ac->net);
 496	kfree(ac);
 497}
 498
 499/**
 500 * auditd_set - Set/Reset the auditd connection state
 501 * @pid: auditd PID
 502 * @portid: auditd netlink portid
 503 * @net: auditd network namespace pointer
 504 *
 505 * Description:
 506 * This function will obtain and drop network namespace references as
 507 * necessary.  Returns zero on success, negative values on failure.
 508 */
 509static int auditd_set(struct pid *pid, u32 portid, struct net *net)
 510{
 511	unsigned long flags;
 512	struct auditd_connection *ac_old, *ac_new;
 513
 514	if (!pid || !net)
 515		return -EINVAL;
 516
 517	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
 518	if (!ac_new)
 519		return -ENOMEM;
 520	ac_new->pid = get_pid(pid);
 521	ac_new->portid = portid;
 522	ac_new->net = get_net(net);
 523
 524	spin_lock_irqsave(&auditd_conn_lock, flags);
 525	ac_old = rcu_dereference_protected(auditd_conn,
 526					   lockdep_is_held(&auditd_conn_lock));
 527	rcu_assign_pointer(auditd_conn, ac_new);
 528	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 529
 530	if (ac_old)
 531		call_rcu(&ac_old->rcu, auditd_conn_free);
 532
 533	return 0;
 534}
 535
 536/**
 537 * kauditd_print_skb - Print the audit record to the ring buffer
 538 * @skb: audit record
 539 *
 540 * Whatever the reason, this packet may not make it to the auditd connection
 541 * so write it via printk so the information isn't completely lost.
 542 */
 543static void kauditd_printk_skb(struct sk_buff *skb)
 544{
 545	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 546	char *data = nlmsg_data(nlh);
 547
 548	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 549		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 550}
 551
 552/**
 553 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 554 * @skb: audit record
 555 *
 556 * Description:
 557 * This should only be used by the kauditd_thread when it fails to flush the
 558 * hold queue.
 559 */
 560static void kauditd_rehold_skb(struct sk_buff *skb)
 561{
 562	/* put the record back in the queue at the same place */
 563	skb_queue_head(&audit_hold_queue, skb);
 564}
 565
 566/**
 567 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 568 * @skb: audit record
 569 *
 570 * Description:
 571 * Queue the audit record, waiting for an instance of auditd.  When this
 572 * function is called we haven't given up yet on sending the record, but things
 573 * are not looking good.  The first thing we want to do is try to write the
 574 * record via printk and then see if we want to try and hold on to the record
 575 * and queue it, if we have room.  If we want to hold on to the record, but we
 576 * don't have room, record a record lost message.
 577 */
 578static void kauditd_hold_skb(struct sk_buff *skb)
 579{
 580	/* at this point it is uncertain if we will ever send this to auditd so
 581	 * try to send the message via printk before we go any further */
 582	kauditd_printk_skb(skb);
 583
 584	/* can we just silently drop the message? */
 585	if (!audit_default) {
 586		kfree_skb(skb);
 587		return;
 588	}
 589
 590	/* if we have room, queue the message */
 591	if (!audit_backlog_limit ||
 592	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 593		skb_queue_tail(&audit_hold_queue, skb);
 594		return;
 595	}
 596
 597	/* we have no other options - drop the message */
 598	audit_log_lost("kauditd hold queue overflow");
 599	kfree_skb(skb);
 600}
 601
 602/**
 603 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 604 * @skb: audit record
 605 *
 606 * Description:
 607 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 608 * but for some reason we are having problems sending it audit records so
 609 * queue the given record and attempt to resend.
 610 */
 611static void kauditd_retry_skb(struct sk_buff *skb)
 612{
 613	/* NOTE: because records should only live in the retry queue for a
 614	 * short period of time, before either being sent or moved to the hold
 615	 * queue, we don't currently enforce a limit on this queue */
 616	skb_queue_tail(&audit_retry_queue, skb);
 617}
 618
 619/**
 620 * auditd_reset - Disconnect the auditd connection
 621 * @ac: auditd connection state
 622 *
 623 * Description:
 624 * Break the auditd/kauditd connection and move all the queued records into the
 625 * hold queue in case auditd reconnects.  It is important to note that the @ac
 626 * pointer should never be dereferenced inside this function as it may be NULL
 627 * or invalid, you can only compare the memory address!  If @ac is NULL then
 628 * the connection will always be reset.
 629 */
 630static void auditd_reset(const struct auditd_connection *ac)
 631{
 632	unsigned long flags;
 633	struct sk_buff *skb;
 634	struct auditd_connection *ac_old;
 635
 636	/* if it isn't already broken, break the connection */
 637	spin_lock_irqsave(&auditd_conn_lock, flags);
 638	ac_old = rcu_dereference_protected(auditd_conn,
 639					   lockdep_is_held(&auditd_conn_lock));
 640	if (ac && ac != ac_old) {
 641		/* someone already registered a new auditd connection */
 642		spin_unlock_irqrestore(&auditd_conn_lock, flags);
 643		return;
 644	}
 645	rcu_assign_pointer(auditd_conn, NULL);
 646	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 647
 648	if (ac_old)
 649		call_rcu(&ac_old->rcu, auditd_conn_free);
 650
 651	/* flush the retry queue to the hold queue, but don't touch the main
 652	 * queue since we need to process that normally for multicast */
 653	while ((skb = skb_dequeue(&audit_retry_queue)))
 654		kauditd_hold_skb(skb);
 655}
 656
 657/**
 658 * auditd_send_unicast_skb - Send a record via unicast to auditd
 659 * @skb: audit record
 660 *
 661 * Description:
 662 * Send a skb to the audit daemon, returns positive/zero values on success and
 663 * negative values on failure; in all cases the skb will be consumed by this
 664 * function.  If the send results in -ECONNREFUSED the connection with auditd
 665 * will be reset.  This function may sleep so callers should not hold any locks
 666 * where this would cause a problem.
 667 */
 668static int auditd_send_unicast_skb(struct sk_buff *skb)
 669{
 670	int rc;
 671	u32 portid;
 672	struct net *net;
 673	struct sock *sk;
 674	struct auditd_connection *ac;
 675
 676	/* NOTE: we can't call netlink_unicast while in the RCU section so
 677	 *       take a reference to the network namespace and grab local
 678	 *       copies of the namespace, the sock, and the portid; the
 679	 *       namespace and sock aren't going to go away while we hold a
 680	 *       reference and if the portid does become invalid after the RCU
 681	 *       section netlink_unicast() should safely return an error */
 682
 683	rcu_read_lock();
 684	ac = rcu_dereference(auditd_conn);
 685	if (!ac) {
 686		rcu_read_unlock();
 687		kfree_skb(skb);
 688		rc = -ECONNREFUSED;
 689		goto err;
 690	}
 691	net = get_net(ac->net);
 692	sk = audit_get_sk(net);
 693	portid = ac->portid;
 694	rcu_read_unlock();
 695
 696	rc = netlink_unicast(sk, skb, portid, 0);
 697	put_net(net);
 698	if (rc < 0)
 699		goto err;
 700
 701	return rc;
 702
 703err:
 704	if (ac && rc == -ECONNREFUSED)
 705		auditd_reset(ac);
 706	return rc;
 707}
 708
 709/**
 710 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 711 * @sk: the sending sock
 712 * @portid: the netlink destination
 713 * @queue: the skb queue to process
 714 * @retry_limit: limit on number of netlink unicast failures
 715 * @skb_hook: per-skb hook for additional processing
 716 * @err_hook: hook called if the skb fails the netlink unicast send
 717 *
 718 * Description:
 719 * Run through the given queue and attempt to send the audit records to auditd,
 720 * returns zero on success, negative values on failure.  It is up to the caller
 721 * to ensure that the @sk is valid for the duration of this function.
 722 *
 723 */
 724static int kauditd_send_queue(struct sock *sk, u32 portid,
 725			      struct sk_buff_head *queue,
 726			      unsigned int retry_limit,
 727			      void (*skb_hook)(struct sk_buff *skb),
 728			      void (*err_hook)(struct sk_buff *skb))
 729{
 730	int rc = 0;
 731	struct sk_buff *skb;
 732	static unsigned int failed = 0;
 733
 734	/* NOTE: kauditd_thread takes care of all our locking, we just use
 735	 *       the netlink info passed to us (e.g. sk and portid) */
 736
 737	while ((skb = skb_dequeue(queue))) {
 738		/* call the skb_hook for each skb we touch */
 739		if (skb_hook)
 740			(*skb_hook)(skb);
 741
 742		/* can we send to anyone via unicast? */
 743		if (!sk) {
 744			if (err_hook)
 745				(*err_hook)(skb);
 746			continue;
 747		}
 748
 749		/* grab an extra skb reference in case of error */
 750		skb_get(skb);
 751		rc = netlink_unicast(sk, skb, portid, 0);
 752		if (rc < 0) {
 753			/* fatal failure for our queue flush attempt? */
 754			if (++failed >= retry_limit ||
 755			    rc == -ECONNREFUSED || rc == -EPERM) {
 756				/* yes - error processing for the queue */
 757				sk = NULL;
 758				if (err_hook)
 759					(*err_hook)(skb);
 760				if (!skb_hook)
 761					goto out;
 762				/* keep processing with the skb_hook */
 763				continue;
 764			} else
 765				/* no - requeue to preserve ordering */
 766				skb_queue_head(queue, skb);
 767		} else {
 768			/* it worked - drop the extra reference and continue */
 769			consume_skb(skb);
 770			failed = 0;
 771		}
 772	}
 773
 774out:
 775	return (rc >= 0 ? 0 : rc);
 
 776}
 777
 778/*
 779 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 780 * @skb: audit record
 781 *
 782 * Description:
 783 * Write a multicast message to anyone listening in the initial network
 784 * namespace.  This function doesn't consume an skb as might be expected since
 785 * it has to copy it anyways.
 
 
 
 
 
 
 
 786 */
 787static void kauditd_send_multicast_skb(struct sk_buff *skb)
 788{
 789	struct sk_buff *copy;
 790	struct sock *sock = audit_get_sk(&init_net);
 791	struct nlmsghdr *nlh;
 792
 793	/* NOTE: we are not taking an additional reference for init_net since
 794	 *       we don't have to worry about it going away */
 795
 796	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 
 797		return;
 798
 
 
 
 
 
 799	/*
 800	 * The seemingly wasteful skb_copy() rather than bumping the refcount
 801	 * using skb_get() is necessary because non-standard mods are made to
 802	 * the skb by the original kaudit unicast socket send routine.  The
 803	 * existing auditd daemon assumes this breakage.  Fixing this would
 804	 * require co-ordinating a change in the established protocol between
 805	 * the kaudit kernel subsystem and the auditd userspace code.  There is
 806	 * no reason for new multicast clients to continue with this
 807	 * non-compliance.
 808	 */
 809	copy = skb_copy(skb, GFP_KERNEL);
 810	if (!copy)
 811		return;
 812	nlh = nlmsg_hdr(copy);
 813	nlh->nlmsg_len = skb->len;
 814
 815	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 816}
 817
 818/**
 819 * kauditd_thread - Worker thread to send audit records to userspace
 820 * @dummy: unused
 821 */
 822static int kauditd_thread(void *dummy)
 823{
 824	int rc;
 825	u32 portid = 0;
 826	struct net *net = NULL;
 827	struct sock *sk = NULL;
 828	struct auditd_connection *ac;
 829
 830#define UNICAST_RETRIES 5
 831
 832	set_freezable();
 833	while (!kthread_should_stop()) {
 834		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
 835		rcu_read_lock();
 836		ac = rcu_dereference(auditd_conn);
 837		if (!ac) {
 838			rcu_read_unlock();
 839			goto main_queue;
 840		}
 841		net = get_net(ac->net);
 842		sk = audit_get_sk(net);
 843		portid = ac->portid;
 844		rcu_read_unlock();
 845
 846		/* attempt to flush the hold queue */
 847		rc = kauditd_send_queue(sk, portid,
 848					&audit_hold_queue, UNICAST_RETRIES,
 849					NULL, kauditd_rehold_skb);
 850		if (ac && rc < 0) {
 851			sk = NULL;
 852			auditd_reset(ac);
 853			goto main_queue;
 854		}
 855
 856		/* attempt to flush the retry queue */
 857		rc = kauditd_send_queue(sk, portid,
 858					&audit_retry_queue, UNICAST_RETRIES,
 859					NULL, kauditd_hold_skb);
 860		if (ac && rc < 0) {
 861			sk = NULL;
 862			auditd_reset(ac);
 863			goto main_queue;
 864		}
 865
 866main_queue:
 867		/* process the main queue - do the multicast send and attempt
 868		 * unicast, dump failed record sends to the retry queue; if
 869		 * sk == NULL due to previous failures we will just do the
 870		 * multicast send and move the record to the hold queue */
 871		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
 872					kauditd_send_multicast_skb,
 873					(sk ?
 874					 kauditd_retry_skb : kauditd_hold_skb));
 875		if (ac && rc < 0)
 876			auditd_reset(ac);
 877		sk = NULL;
 878
 879		/* drop our netns reference, no auditd sends past this line */
 880		if (net) {
 881			put_net(net);
 882			net = NULL;
 883		}
 
 
 884
 885		/* we have processed all the queues so wake everyone */
 886		wake_up(&audit_backlog_wait);
 
 
 887
 888		/* NOTE: we want to wake up if there is anything on the queue,
 889		 *       regardless of if an auditd is connected, as we need to
 890		 *       do the multicast send and rotate records from the
 891		 *       main queue to the retry/hold queues */
 892		wait_event_freezable(kauditd_wait,
 893				     (skb_queue_len(&audit_queue) ? 1 : 0));
 894	}
 895
 896	return 0;
 897}
 898
 899int audit_send_list(void *_dest)
 900{
 901	struct audit_netlink_list *dest = _dest;
 902	struct sk_buff *skb;
 903	struct sock *sk = audit_get_sk(dest->net);
 
 904
 905	/* wait for parent to finish and send an ACK */
 906	audit_ctl_lock();
 907	audit_ctl_unlock();
 908
 909	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 910		netlink_unicast(sk, skb, dest->portid, 0);
 911
 912	put_net(dest->net);
 913	kfree(dest);
 914
 915	return 0;
 916}
 917
 918struct sk_buff *audit_make_reply(int seq, int type, int done,
 919				 int multi, const void *payload, int size)
 920{
 921	struct sk_buff	*skb;
 922	struct nlmsghdr	*nlh;
 923	void		*data;
 924	int		flags = multi ? NLM_F_MULTI : 0;
 925	int		t     = done  ? NLMSG_DONE  : type;
 926
 927	skb = nlmsg_new(size, GFP_KERNEL);
 928	if (!skb)
 929		return NULL;
 930
 931	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
 932	if (!nlh)
 933		goto out_kfree_skb;
 934	data = nlmsg_data(nlh);
 935	memcpy(data, payload, size);
 936	return skb;
 937
 938out_kfree_skb:
 939	kfree_skb(skb);
 940	return NULL;
 941}
 942
 943static int audit_send_reply_thread(void *arg)
 944{
 945	struct audit_reply *reply = (struct audit_reply *)arg;
 946	struct sock *sk = audit_get_sk(reply->net);
 
 947
 948	audit_ctl_lock();
 949	audit_ctl_unlock();
 950
 951	/* Ignore failure. It'll only happen if the sender goes away,
 952	   because our timeout is set to infinite. */
 953	netlink_unicast(sk, reply->skb, reply->portid, 0);
 954	put_net(reply->net);
 955	kfree(reply);
 956	return 0;
 957}
 958
 959/**
 960 * audit_send_reply - send an audit reply message via netlink
 961 * @request_skb: skb of request we are replying to (used to target the reply)
 962 * @seq: sequence number
 963 * @type: audit message type
 964 * @done: done (last) flag
 965 * @multi: multi-part message flag
 966 * @payload: payload data
 967 * @size: payload size
 968 *
 969 * Allocates an skb, builds the netlink message, and sends it to the port id.
 970 * No failure notifications.
 971 */
 972static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 973			     int multi, const void *payload, int size)
 974{
 
 975	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 976	struct sk_buff *skb;
 977	struct task_struct *tsk;
 978	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 979					    GFP_KERNEL);
 980
 981	if (!reply)
 982		return;
 983
 984	skb = audit_make_reply(seq, type, done, multi, payload, size);
 985	if (!skb)
 986		goto out;
 987
 988	reply->net = get_net(net);
 989	reply->portid = NETLINK_CB(request_skb).portid;
 990	reply->skb = skb;
 991
 992	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 993	if (!IS_ERR(tsk))
 994		return;
 995	kfree_skb(skb);
 996out:
 997	kfree(reply);
 998}
 999
1000/*
1001 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1002 * control messages.
1003 */
1004static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1005{
1006	int err = 0;
1007
1008	/* Only support initial user namespace for now. */
1009	/*
1010	 * We return ECONNREFUSED because it tricks userspace into thinking
1011	 * that audit was not configured into the kernel.  Lots of users
1012	 * configure their PAM stack (because that's what the distro does)
1013	 * to reject login if unable to send messages to audit.  If we return
1014	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1015	 * configured in and will let login proceed.  If we return EPERM
1016	 * userspace will reject all logins.  This should be removed when we
1017	 * support non init namespaces!!
1018	 */
1019	if (current_user_ns() != &init_user_ns)
1020		return -ECONNREFUSED;
1021
1022	switch (msg_type) {
1023	case AUDIT_LIST:
1024	case AUDIT_ADD:
1025	case AUDIT_DEL:
1026		return -EOPNOTSUPP;
1027	case AUDIT_GET:
1028	case AUDIT_SET:
1029	case AUDIT_GET_FEATURE:
1030	case AUDIT_SET_FEATURE:
1031	case AUDIT_LIST_RULES:
1032	case AUDIT_ADD_RULE:
1033	case AUDIT_DEL_RULE:
1034	case AUDIT_SIGNAL_INFO:
1035	case AUDIT_TTY_GET:
1036	case AUDIT_TTY_SET:
1037	case AUDIT_TRIM:
1038	case AUDIT_MAKE_EQUIV:
1039		/* Only support auditd and auditctl in initial pid namespace
1040		 * for now. */
1041		if (task_active_pid_ns(current) != &init_pid_ns)
1042			return -EPERM;
1043
1044		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1045			err = -EPERM;
1046		break;
1047	case AUDIT_USER:
1048	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1049	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1050		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1051			err = -EPERM;
1052		break;
1053	default:  /* bad msg */
1054		err = -EINVAL;
1055	}
1056
1057	return err;
1058}
1059
1060static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1061{
 
1062	uid_t uid = from_kuid(&init_user_ns, current_uid());
1063	pid_t pid = task_tgid_nr(current);
1064
1065	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1066		*ab = NULL;
1067		return;
1068	}
1069
1070	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1071	if (unlikely(!*ab))
1072		return;
1073	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1074	audit_log_session_info(*ab);
1075	audit_log_task_context(*ab);
 
 
1076}
1077
1078int is_audit_feature_set(int i)
1079{
1080	return af.features & AUDIT_FEATURE_TO_MASK(i);
1081}
1082
1083
1084static int audit_get_feature(struct sk_buff *skb)
1085{
1086	u32 seq;
1087
1088	seq = nlmsg_hdr(skb)->nlmsg_seq;
1089
1090	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1091
1092	return 0;
1093}
1094
1095static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1096				     u32 old_lock, u32 new_lock, int res)
1097{
1098	struct audit_buffer *ab;
1099
1100	if (audit_enabled == AUDIT_OFF)
1101		return;
1102
1103	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1104	if (!ab)
1105		return;
1106	audit_log_task_info(ab, current);
1107	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1108			 audit_feature_names[which], !!old_feature, !!new_feature,
1109			 !!old_lock, !!new_lock, res);
1110	audit_log_end(ab);
1111}
1112
1113static int audit_set_feature(struct sk_buff *skb)
1114{
1115	struct audit_features *uaf;
1116	int i;
1117
1118	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1119	uaf = nlmsg_data(nlmsg_hdr(skb));
1120
1121	/* if there is ever a version 2 we should handle that here */
1122
1123	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1124		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1125		u32 old_feature, new_feature, old_lock, new_lock;
1126
1127		/* if we are not changing this feature, move along */
1128		if (!(feature & uaf->mask))
1129			continue;
1130
1131		old_feature = af.features & feature;
1132		new_feature = uaf->features & feature;
1133		new_lock = (uaf->lock | af.lock) & feature;
1134		old_lock = af.lock & feature;
1135
1136		/* are we changing a locked feature? */
1137		if (old_lock && (new_feature != old_feature)) {
1138			audit_log_feature_change(i, old_feature, new_feature,
1139						 old_lock, new_lock, 0);
1140			return -EPERM;
1141		}
1142	}
1143	/* nothing invalid, do the changes */
1144	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1145		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1146		u32 old_feature, new_feature, old_lock, new_lock;
1147
1148		/* if we are not changing this feature, move along */
1149		if (!(feature & uaf->mask))
1150			continue;
1151
1152		old_feature = af.features & feature;
1153		new_feature = uaf->features & feature;
1154		old_lock = af.lock & feature;
1155		new_lock = (uaf->lock | af.lock) & feature;
1156
1157		if (new_feature != old_feature)
1158			audit_log_feature_change(i, old_feature, new_feature,
1159						 old_lock, new_lock, 1);
1160
1161		if (new_feature)
1162			af.features |= feature;
1163		else
1164			af.features &= ~feature;
1165		af.lock |= new_lock;
1166	}
1167
1168	return 0;
1169}
1170
1171static int audit_replace(struct pid *pid)
1172{
1173	pid_t pvnr;
1174	struct sk_buff *skb;
1175
1176	pvnr = pid_vnr(pid);
1177	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1178	if (!skb)
1179		return -ENOMEM;
1180	return auditd_send_unicast_skb(skb);
1181}
1182
1183static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1184{
1185	u32			seq;
1186	void			*data;
1187	int			err;
1188	struct audit_buffer	*ab;
1189	u16			msg_type = nlh->nlmsg_type;
1190	struct audit_sig_info   *sig_data;
1191	char			*ctx = NULL;
1192	u32			len;
1193
1194	err = audit_netlink_ok(skb, msg_type);
1195	if (err)
1196		return err;
1197
 
 
 
 
 
 
 
 
 
 
1198	seq  = nlh->nlmsg_seq;
1199	data = nlmsg_data(nlh);
1200
1201	switch (msg_type) {
1202	case AUDIT_GET: {
1203		struct audit_status	s;
1204		memset(&s, 0, sizeof(s));
1205		s.enabled		= audit_enabled;
1206		s.failure		= audit_failure;
1207		/* NOTE: use pid_vnr() so the PID is relative to the current
1208		 *       namespace */
1209		s.pid			= auditd_pid_vnr();
1210		s.rate_limit		= audit_rate_limit;
1211		s.backlog_limit		= audit_backlog_limit;
1212		s.lost			= atomic_read(&audit_lost);
1213		s.backlog		= skb_queue_len(&audit_queue);
1214		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1215		s.backlog_wait_time	= audit_backlog_wait_time;
1216		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1217		break;
1218	}
1219	case AUDIT_SET: {
1220		struct audit_status	s;
1221		memset(&s, 0, sizeof(s));
1222		/* guard against past and future API changes */
1223		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1224		if (s.mask & AUDIT_STATUS_ENABLED) {
1225			err = audit_set_enabled(s.enabled);
1226			if (err < 0)
1227				return err;
1228		}
1229		if (s.mask & AUDIT_STATUS_FAILURE) {
1230			err = audit_set_failure(s.failure);
1231			if (err < 0)
1232				return err;
1233		}
1234		if (s.mask & AUDIT_STATUS_PID) {
1235			/* NOTE: we are using the vnr PID functions below
1236			 *       because the s.pid value is relative to the
1237			 *       namespace of the caller; at present this
1238			 *       doesn't matter much since you can really only
1239			 *       run auditd from the initial pid namespace, but
1240			 *       something to keep in mind if this changes */
1241			pid_t new_pid = s.pid;
1242			pid_t auditd_pid;
1243			struct pid *req_pid = task_tgid(current);
1244
1245			/* Sanity check - PID values must match. Setting
1246			 * pid to 0 is how auditd ends auditing. */
1247			if (new_pid && (new_pid != pid_vnr(req_pid)))
1248				return -EINVAL;
1249
1250			/* test the auditd connection */
1251			audit_replace(req_pid);
1252
1253			auditd_pid = auditd_pid_vnr();
1254			if (auditd_pid) {
1255				/* replacing a healthy auditd is not allowed */
1256				if (new_pid) {
1257					audit_log_config_change("audit_pid",
1258							new_pid, auditd_pid, 0);
1259					return -EEXIST;
1260				}
1261				/* only current auditd can unregister itself */
1262				if (pid_vnr(req_pid) != auditd_pid) {
1263					audit_log_config_change("audit_pid",
1264							new_pid, auditd_pid, 0);
1265					return -EACCES;
1266				}
1267			}
1268
1269			if (new_pid) {
1270				/* register a new auditd connection */
1271				err = auditd_set(req_pid,
1272						 NETLINK_CB(skb).portid,
1273						 sock_net(NETLINK_CB(skb).sk));
1274				if (audit_enabled != AUDIT_OFF)
1275					audit_log_config_change("audit_pid",
1276								new_pid,
1277								auditd_pid,
1278								err ? 0 : 1);
1279				if (err)
1280					return err;
1281
1282				/* try to process any backlog */
1283				wake_up_interruptible(&kauditd_wait);
1284			} else {
1285				if (audit_enabled != AUDIT_OFF)
1286					audit_log_config_change("audit_pid",
1287								new_pid,
1288								auditd_pid, 1);
1289
1290				/* unregister the auditd connection */
1291				auditd_reset(NULL);
1292			}
 
 
 
 
1293		}
1294		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1295			err = audit_set_rate_limit(s.rate_limit);
1296			if (err < 0)
1297				return err;
1298		}
1299		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1300			err = audit_set_backlog_limit(s.backlog_limit);
1301			if (err < 0)
1302				return err;
1303		}
1304		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1305			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1306				return -EINVAL;
1307			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 
1308				return -EINVAL;
1309			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1310			if (err < 0)
1311				return err;
1312		}
1313		if (s.mask == AUDIT_STATUS_LOST) {
1314			u32 lost = atomic_xchg(&audit_lost, 0);
1315
1316			audit_log_config_change("lost", 0, lost, 1);
1317			return lost;
1318		}
1319		break;
1320	}
1321	case AUDIT_GET_FEATURE:
1322		err = audit_get_feature(skb);
1323		if (err)
1324			return err;
1325		break;
1326	case AUDIT_SET_FEATURE:
1327		err = audit_set_feature(skb);
1328		if (err)
1329			return err;
1330		break;
1331	case AUDIT_USER:
1332	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1333	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1334		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1335			return 0;
1336
1337		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1338		if (err == 1) { /* match or error */
1339			err = 0;
1340			if (msg_type == AUDIT_USER_TTY) {
1341				err = tty_audit_push();
1342				if (err)
1343					break;
1344			}
 
1345			audit_log_common_recv_msg(&ab, msg_type);
1346			if (msg_type != AUDIT_USER_TTY)
1347				audit_log_format(ab, " msg='%.*s'",
1348						 AUDIT_MESSAGE_TEXT_MAX,
1349						 (char *)data);
1350			else {
1351				int size;
1352
1353				audit_log_format(ab, " data=");
1354				size = nlmsg_len(nlh);
1355				if (size > 0 &&
1356				    ((unsigned char *)data)[size - 1] == '\0')
1357					size--;
1358				audit_log_n_untrustedstring(ab, data, size);
1359			}
 
1360			audit_log_end(ab);
 
1361		}
1362		break;
1363	case AUDIT_ADD_RULE:
1364	case AUDIT_DEL_RULE:
1365		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1366			return -EINVAL;
1367		if (audit_enabled == AUDIT_LOCKED) {
1368			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1369			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1370			audit_log_end(ab);
1371			return -EPERM;
1372		}
1373		err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
 
1374		break;
1375	case AUDIT_LIST_RULES:
1376		err = audit_list_rules_send(skb, seq);
1377		break;
1378	case AUDIT_TRIM:
1379		audit_trim_trees();
1380		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1381		audit_log_format(ab, " op=trim res=1");
1382		audit_log_end(ab);
1383		break;
1384	case AUDIT_MAKE_EQUIV: {
1385		void *bufp = data;
1386		u32 sizes[2];
1387		size_t msglen = nlmsg_len(nlh);
1388		char *old, *new;
1389
1390		err = -EINVAL;
1391		if (msglen < 2 * sizeof(u32))
1392			break;
1393		memcpy(sizes, bufp, 2 * sizeof(u32));
1394		bufp += 2 * sizeof(u32);
1395		msglen -= 2 * sizeof(u32);
1396		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1397		if (IS_ERR(old)) {
1398			err = PTR_ERR(old);
1399			break;
1400		}
1401		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1402		if (IS_ERR(new)) {
1403			err = PTR_ERR(new);
1404			kfree(old);
1405			break;
1406		}
1407		/* OK, here comes... */
1408		err = audit_tag_tree(old, new);
1409
1410		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1411
1412		audit_log_format(ab, " op=make_equiv old=");
1413		audit_log_untrustedstring(ab, old);
1414		audit_log_format(ab, " new=");
1415		audit_log_untrustedstring(ab, new);
1416		audit_log_format(ab, " res=%d", !err);
1417		audit_log_end(ab);
1418		kfree(old);
1419		kfree(new);
1420		break;
1421	}
1422	case AUDIT_SIGNAL_INFO:
1423		len = 0;
1424		if (audit_sig_sid) {
1425			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1426			if (err)
1427				return err;
1428		}
1429		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1430		if (!sig_data) {
1431			if (audit_sig_sid)
1432				security_release_secctx(ctx, len);
1433			return -ENOMEM;
1434		}
1435		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1436		sig_data->pid = audit_sig_pid;
1437		if (audit_sig_sid) {
1438			memcpy(sig_data->ctx, ctx, len);
1439			security_release_secctx(ctx, len);
1440		}
1441		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1442				 sig_data, sizeof(*sig_data) + len);
1443		kfree(sig_data);
1444		break;
1445	case AUDIT_TTY_GET: {
1446		struct audit_tty_status s;
1447		unsigned int t;
1448
1449		t = READ_ONCE(current->signal->audit_tty);
1450		s.enabled = t & AUDIT_TTY_ENABLE;
1451		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
 
1452
1453		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1454		break;
1455	}
1456	case AUDIT_TTY_SET: {
1457		struct audit_tty_status s, old;
 
1458		struct audit_buffer	*ab;
1459		unsigned int t;
1460
1461		memset(&s, 0, sizeof(s));
1462		/* guard against past and future API changes */
1463		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1464		/* check if new data is valid */
1465		if ((s.enabled != 0 && s.enabled != 1) ||
1466		    (s.log_passwd != 0 && s.log_passwd != 1))
1467			err = -EINVAL;
1468
1469		if (err)
1470			t = READ_ONCE(current->signal->audit_tty);
1471		else {
1472			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1473			t = xchg(&current->signal->audit_tty, t);
 
1474		}
1475		old.enabled = t & AUDIT_TTY_ENABLE;
1476		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1477
1478		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1479		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1480				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1481				 old.enabled, s.enabled, old.log_passwd,
1482				 s.log_passwd, !err);
1483		audit_log_end(ab);
1484		break;
1485	}
1486	default:
1487		err = -EINVAL;
1488		break;
1489	}
1490
1491	return err < 0 ? err : 0;
1492}
1493
1494/**
1495 * audit_receive - receive messages from a netlink control socket
1496 * @skb: the message buffer
1497 *
1498 * Parse the provided skb and deal with any messages that may be present,
1499 * malformed skbs are discarded.
1500 */
1501static void audit_receive(struct sk_buff  *skb)
1502{
1503	struct nlmsghdr *nlh;
1504	/*
1505	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1506	 * if the nlmsg_len was not aligned
1507	 */
1508	int len;
1509	int err;
1510
1511	nlh = nlmsg_hdr(skb);
1512	len = skb->len;
1513
1514	audit_ctl_lock();
1515	while (nlmsg_ok(nlh, len)) {
1516		err = audit_receive_msg(skb, nlh);
1517		/* if err or if this message says it wants a response */
1518		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1519			netlink_ack(skb, nlh, err, NULL);
1520
1521		nlh = nlmsg_next(nlh, &len);
1522	}
1523	audit_ctl_unlock();
1524}
1525
1526/* Run custom bind function on netlink socket group connect or bind requests. */
1527static int audit_bind(struct net *net, int group)
1528{
1529	if (!capable(CAP_AUDIT_READ))
1530		return -EPERM;
1531
1532	return 0;
1533}
1534
1535static int __net_init audit_net_init(struct net *net)
1536{
1537	struct netlink_kernel_cfg cfg = {
1538		.input	= audit_receive,
1539		.bind	= audit_bind,
1540		.flags	= NL_CFG_F_NONROOT_RECV,
1541		.groups	= AUDIT_NLGRP_MAX,
1542	};
1543
1544	struct audit_net *aunet = net_generic(net, audit_net_id);
1545
1546	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1547	if (aunet->sk == NULL) {
1548		audit_panic("cannot initialize netlink socket in namespace");
1549		return -ENOMEM;
1550	}
1551	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1552
1553	return 0;
1554}
1555
1556static void __net_exit audit_net_exit(struct net *net)
1557{
1558	struct audit_net *aunet = net_generic(net, audit_net_id);
 
 
 
 
 
1559
1560	/* NOTE: you would think that we would want to check the auditd
1561	 * connection and potentially reset it here if it lives in this
1562	 * namespace, but since the auditd connection tracking struct holds a
1563	 * reference to this namespace (see auditd_set()) we are only ever
1564	 * going to get here after that connection has been released */
1565
1566	netlink_kernel_release(aunet->sk);
1567}
1568
1569static struct pernet_operations audit_net_ops __net_initdata = {
1570	.init = audit_net_init,
1571	.exit = audit_net_exit,
1572	.id = &audit_net_id,
1573	.size = sizeof(struct audit_net),
1574};
1575
1576/* Initialize audit support at boot time. */
1577static int __init audit_init(void)
1578{
1579	int i;
1580
1581	if (audit_initialized == AUDIT_DISABLED)
1582		return 0;
1583
1584	audit_buffer_cache = kmem_cache_create("audit_buffer",
1585					       sizeof(struct audit_buffer),
1586					       0, SLAB_PANIC, NULL);
1587
1588	skb_queue_head_init(&audit_queue);
1589	skb_queue_head_init(&audit_retry_queue);
1590	skb_queue_head_init(&audit_hold_queue);
1591
1592	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1593		INIT_LIST_HEAD(&audit_inode_hash[i]);
1594
1595	mutex_init(&audit_cmd_mutex.lock);
1596	audit_cmd_mutex.owner = NULL;
1597
1598	pr_info("initializing netlink subsys (%s)\n",
1599		audit_default ? "enabled" : "disabled");
1600	register_pernet_subsys(&audit_net_ops);
1601
 
 
1602	audit_initialized = AUDIT_INITIALIZED;
 
 
1603
1604	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1605	if (IS_ERR(kauditd_task)) {
1606		int err = PTR_ERR(kauditd_task);
1607		panic("audit: failed to start the kauditd thread (%d)\n", err);
1608	}
1609
1610	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1611		"state=initialized audit_enabled=%u res=1",
1612		 audit_enabled);
1613
1614	return 0;
1615}
1616postcore_initcall(audit_init);
1617
1618/*
1619 * Process kernel command-line parameter at boot time.
1620 * audit={0|off} or audit={1|on}.
1621 */
1622static int __init audit_enable(char *str)
1623{
1624	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1625		audit_default = AUDIT_OFF;
1626	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1627		audit_default = AUDIT_ON;
1628	else {
1629		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1630		audit_default = AUDIT_ON;
1631	}
1632
1633	if (audit_default == AUDIT_OFF)
1634		audit_initialized = AUDIT_DISABLED;
1635	if (audit_set_enabled(audit_default))
1636		pr_err("audit: error setting audit state (%d)\n",
1637		       audit_default);
1638
1639	pr_info("%s\n", audit_default ?
1640		"enabled (after initialization)" : "disabled (until reboot)");
1641
1642	return 1;
1643}
1644__setup("audit=", audit_enable);
1645
1646/* Process kernel command-line parameter at boot time.
1647 * audit_backlog_limit=<n> */
1648static int __init audit_backlog_limit_set(char *str)
1649{
1650	u32 audit_backlog_limit_arg;
1651
1652	pr_info("audit_backlog_limit: ");
1653	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1654		pr_cont("using default of %u, unable to parse %s\n",
1655			audit_backlog_limit, str);
1656		return 1;
1657	}
1658
1659	audit_backlog_limit = audit_backlog_limit_arg;
1660	pr_cont("%d\n", audit_backlog_limit);
1661
1662	return 1;
1663}
1664__setup("audit_backlog_limit=", audit_backlog_limit_set);
1665
1666static void audit_buffer_free(struct audit_buffer *ab)
1667{
 
 
1668	if (!ab)
1669		return;
1670
1671	kfree_skb(ab->skb);
1672	kmem_cache_free(audit_buffer_cache, ab);
 
 
 
 
 
 
 
 
 
1673}
1674
1675static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1676					       gfp_t gfp_mask, int type)
1677{
1678	struct audit_buffer *ab;
 
 
1679
1680	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1681	if (!ab)
1682		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683
1684	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1685	if (!ab->skb)
1686		goto err;
1687	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1688		goto err;
1689
1690	ab->ctx = ctx;
1691	ab->gfp_mask = gfp_mask;
 
1692
1693	return ab;
1694
 
 
 
1695err:
1696	audit_buffer_free(ab);
1697	return NULL;
1698}
1699
1700/**
1701 * audit_serial - compute a serial number for the audit record
1702 *
1703 * Compute a serial number for the audit record.  Audit records are
1704 * written to user-space as soon as they are generated, so a complete
1705 * audit record may be written in several pieces.  The timestamp of the
1706 * record and this serial number are used by the user-space tools to
1707 * determine which pieces belong to the same audit record.  The
1708 * (timestamp,serial) tuple is unique for each syscall and is live from
1709 * syscall entry to syscall exit.
1710 *
1711 * NOTE: Another possibility is to store the formatted records off the
1712 * audit context (for those records that have a context), and emit them
1713 * all at syscall exit.  However, this could delay the reporting of
1714 * significant errors until syscall exit (or never, if the system
1715 * halts).
1716 */
1717unsigned int audit_serial(void)
1718{
1719	static atomic_t serial = ATOMIC_INIT(0);
 
 
 
 
 
 
 
 
 
 
1720
1721	return atomic_add_return(1, &serial);
1722}
1723
1724static inline void audit_get_stamp(struct audit_context *ctx,
1725				   struct timespec64 *t, unsigned int *serial)
1726{
1727	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1728		*t = current_kernel_time64();
1729		*serial = audit_serial();
1730	}
1731}
1732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733/**
1734 * audit_log_start - obtain an audit buffer
1735 * @ctx: audit_context (may be NULL)
1736 * @gfp_mask: type of allocation
1737 * @type: audit message type
1738 *
1739 * Returns audit_buffer pointer on success or NULL on error.
1740 *
1741 * Obtain an audit buffer.  This routine does locking to obtain the
1742 * audit buffer, but then no locking is required for calls to
1743 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1744 * syscall, then the syscall is marked as auditable and an audit record
1745 * will be written at syscall exit.  If there is no associated task, then
1746 * task context (ctx) should be NULL.
1747 */
1748struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1749				     int type)
1750{
1751	struct audit_buffer *ab;
1752	struct timespec64 t;
1753	unsigned int uninitialized_var(serial);
 
 
 
1754
1755	if (audit_initialized != AUDIT_INITIALIZED)
1756		return NULL;
1757
1758	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1759		return NULL;
1760
1761	/* NOTE: don't ever fail/sleep on these two conditions:
1762	 * 1. auditd generated record - since we need auditd to drain the
1763	 *    queue; also, when we are checking for auditd, compare PIDs using
1764	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1765	 *    using a PID anchored in the caller's namespace
1766	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1767	 *    while holding the mutex */
1768	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1769		long stime = audit_backlog_wait_time;
1770
1771		while (audit_backlog_limit &&
1772		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1773			/* wake kauditd to try and flush the queue */
1774			wake_up_interruptible(&kauditd_wait);
1775
1776			/* sleep if we are allowed and we haven't exhausted our
1777			 * backlog wait limit */
1778			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1779				DECLARE_WAITQUEUE(wait, current);
1780
1781				add_wait_queue_exclusive(&audit_backlog_wait,
1782							 &wait);
1783				set_current_state(TASK_UNINTERRUPTIBLE);
1784				stime = schedule_timeout(stime);
1785				remove_wait_queue(&audit_backlog_wait, &wait);
1786			} else {
1787				if (audit_rate_check() && printk_ratelimit())
1788					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1789						skb_queue_len(&audit_queue),
1790						audit_backlog_limit);
1791				audit_log_lost("backlog limit exceeded");
1792				return NULL;
1793			}
1794		}
 
 
 
 
 
 
 
 
1795	}
1796
 
 
1797	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1798	if (!ab) {
1799		audit_log_lost("out of memory in audit_log_start");
1800		return NULL;
1801	}
1802
1803	audit_get_stamp(ab->ctx, &t, &serial);
1804	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1805			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1806
 
 
1807	return ab;
1808}
1809
1810/**
1811 * audit_expand - expand skb in the audit buffer
1812 * @ab: audit_buffer
1813 * @extra: space to add at tail of the skb
1814 *
1815 * Returns 0 (no space) on failed expansion, or available space if
1816 * successful.
1817 */
1818static inline int audit_expand(struct audit_buffer *ab, int extra)
1819{
1820	struct sk_buff *skb = ab->skb;
1821	int oldtail = skb_tailroom(skb);
1822	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1823	int newtail = skb_tailroom(skb);
1824
1825	if (ret < 0) {
1826		audit_log_lost("out of memory in audit_expand");
1827		return 0;
1828	}
1829
1830	skb->truesize += newtail - oldtail;
1831	return newtail;
1832}
1833
1834/*
1835 * Format an audit message into the audit buffer.  If there isn't enough
1836 * room in the audit buffer, more room will be allocated and vsnprint
1837 * will be called a second time.  Currently, we assume that a printk
1838 * can't format message larger than 1024 bytes, so we don't either.
1839 */
1840static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1841			      va_list args)
1842{
1843	int len, avail;
1844	struct sk_buff *skb;
1845	va_list args2;
1846
1847	if (!ab)
1848		return;
1849
1850	BUG_ON(!ab->skb);
1851	skb = ab->skb;
1852	avail = skb_tailroom(skb);
1853	if (avail == 0) {
1854		avail = audit_expand(ab, AUDIT_BUFSIZ);
1855		if (!avail)
1856			goto out;
1857	}
1858	va_copy(args2, args);
1859	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1860	if (len >= avail) {
1861		/* The printk buffer is 1024 bytes long, so if we get
1862		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1863		 * log everything that printk could have logged. */
1864		avail = audit_expand(ab,
1865			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1866		if (!avail)
1867			goto out_va_end;
1868		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1869	}
1870	if (len > 0)
1871		skb_put(skb, len);
1872out_va_end:
1873	va_end(args2);
1874out:
1875	return;
1876}
1877
1878/**
1879 * audit_log_format - format a message into the audit buffer.
1880 * @ab: audit_buffer
1881 * @fmt: format string
1882 * @...: optional parameters matching @fmt string
1883 *
1884 * All the work is done in audit_log_vformat.
1885 */
1886void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1887{
1888	va_list args;
1889
1890	if (!ab)
1891		return;
1892	va_start(args, fmt);
1893	audit_log_vformat(ab, fmt, args);
1894	va_end(args);
1895}
1896
1897/**
1898 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1899 * @ab: the audit_buffer
1900 * @buf: buffer to convert to hex
1901 * @len: length of @buf to be converted
1902 *
1903 * No return value; failure to expand is silently ignored.
1904 *
1905 * This function will take the passed buf and convert it into a string of
1906 * ascii hex digits. The new string is placed onto the skb.
1907 */
1908void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1909		size_t len)
1910{
1911	int i, avail, new_len;
1912	unsigned char *ptr;
1913	struct sk_buff *skb;
1914
1915	if (!ab)
1916		return;
1917
1918	BUG_ON(!ab->skb);
1919	skb = ab->skb;
1920	avail = skb_tailroom(skb);
1921	new_len = len<<1;
1922	if (new_len >= avail) {
1923		/* Round the buffer request up to the next multiple */
1924		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1925		avail = audit_expand(ab, new_len);
1926		if (!avail)
1927			return;
1928	}
1929
1930	ptr = skb_tail_pointer(skb);
1931	for (i = 0; i < len; i++)
1932		ptr = hex_byte_pack_upper(ptr, buf[i]);
1933	*ptr = 0;
1934	skb_put(skb, len << 1); /* new string is twice the old string */
1935}
1936
1937/*
1938 * Format a string of no more than slen characters into the audit buffer,
1939 * enclosed in quote marks.
1940 */
1941void audit_log_n_string(struct audit_buffer *ab, const char *string,
1942			size_t slen)
1943{
1944	int avail, new_len;
1945	unsigned char *ptr;
1946	struct sk_buff *skb;
1947
1948	if (!ab)
1949		return;
1950
1951	BUG_ON(!ab->skb);
1952	skb = ab->skb;
1953	avail = skb_tailroom(skb);
1954	new_len = slen + 3;	/* enclosing quotes + null terminator */
1955	if (new_len > avail) {
1956		avail = audit_expand(ab, new_len);
1957		if (!avail)
1958			return;
1959	}
1960	ptr = skb_tail_pointer(skb);
1961	*ptr++ = '"';
1962	memcpy(ptr, string, slen);
1963	ptr += slen;
1964	*ptr++ = '"';
1965	*ptr = 0;
1966	skb_put(skb, slen + 2);	/* don't include null terminator */
1967}
1968
1969/**
1970 * audit_string_contains_control - does a string need to be logged in hex
1971 * @string: string to be checked
1972 * @len: max length of the string to check
1973 */
1974bool audit_string_contains_control(const char *string, size_t len)
1975{
1976	const unsigned char *p;
1977	for (p = string; p < (const unsigned char *)string + len; p++) {
1978		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1979			return true;
1980	}
1981	return false;
1982}
1983
1984/**
1985 * audit_log_n_untrustedstring - log a string that may contain random characters
1986 * @ab: audit_buffer
1987 * @len: length of string (not including trailing null)
1988 * @string: string to be logged
1989 *
1990 * This code will escape a string that is passed to it if the string
1991 * contains a control character, unprintable character, double quote mark,
1992 * or a space. Unescaped strings will start and end with a double quote mark.
1993 * Strings that are escaped are printed in hex (2 digits per char).
1994 *
1995 * The caller specifies the number of characters in the string to log, which may
1996 * or may not be the entire string.
1997 */
1998void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1999				 size_t len)
2000{
2001	if (audit_string_contains_control(string, len))
2002		audit_log_n_hex(ab, string, len);
2003	else
2004		audit_log_n_string(ab, string, len);
2005}
2006
2007/**
2008 * audit_log_untrustedstring - log a string that may contain random characters
2009 * @ab: audit_buffer
2010 * @string: string to be logged
2011 *
2012 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2013 * determine string length.
2014 */
2015void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2016{
2017	audit_log_n_untrustedstring(ab, string, strlen(string));
2018}
2019
2020/* This is a helper-function to print the escaped d_path */
2021void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2022		      const struct path *path)
2023{
2024	char *p, *pathname;
2025
2026	if (prefix)
2027		audit_log_format(ab, "%s", prefix);
2028
2029	/* We will allow 11 spaces for ' (deleted)' to be appended */
2030	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2031	if (!pathname) {
2032		audit_log_string(ab, "<no_memory>");
2033		return;
2034	}
2035	p = d_path(path, pathname, PATH_MAX+11);
2036	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2037		/* FIXME: can we save some information here? */
2038		audit_log_string(ab, "<too_long>");
2039	} else
2040		audit_log_untrustedstring(ab, p);
2041	kfree(pathname);
2042}
2043
2044void audit_log_session_info(struct audit_buffer *ab)
2045{
2046	unsigned int sessionid = audit_get_sessionid(current);
2047	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2048
2049	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
2050}
2051
2052void audit_log_key(struct audit_buffer *ab, char *key)
2053{
2054	audit_log_format(ab, " key=");
2055	if (key)
2056		audit_log_untrustedstring(ab, key);
2057	else
2058		audit_log_format(ab, "(null)");
2059}
2060
2061void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2062{
2063	int i;
2064
2065	audit_log_format(ab, " %s=", prefix);
2066	CAP_FOR_EACH_U32(i) {
2067		audit_log_format(ab, "%08x",
2068				 cap->cap[CAP_LAST_U32 - i]);
2069	}
2070}
2071
2072static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2073{
2074	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2075	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2076	audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2077			 name->fcap.fE, name->fcap_ver);
 
 
 
 
 
 
 
 
 
 
 
 
2078}
2079
2080static inline int audit_copy_fcaps(struct audit_names *name,
2081				   const struct dentry *dentry)
2082{
2083	struct cpu_vfs_cap_data caps;
2084	int rc;
2085
2086	if (!dentry)
2087		return 0;
2088
2089	rc = get_vfs_caps_from_disk(dentry, &caps);
2090	if (rc)
2091		return rc;
2092
2093	name->fcap.permitted = caps.permitted;
2094	name->fcap.inheritable = caps.inheritable;
2095	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2096	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2097				VFS_CAP_REVISION_SHIFT;
2098
2099	return 0;
2100}
2101
2102/* Copy inode data into an audit_names. */
2103void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2104		      struct inode *inode)
2105{
2106	name->ino   = inode->i_ino;
2107	name->dev   = inode->i_sb->s_dev;
2108	name->mode  = inode->i_mode;
2109	name->uid   = inode->i_uid;
2110	name->gid   = inode->i_gid;
2111	name->rdev  = inode->i_rdev;
2112	security_inode_getsecid(inode, &name->osid);
2113	audit_copy_fcaps(name, dentry);
2114}
2115
2116/**
2117 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2118 * @context: audit_context for the task
2119 * @n: audit_names structure with reportable details
2120 * @path: optional path to report instead of audit_names->name
2121 * @record_num: record number to report when handling a list of names
2122 * @call_panic: optional pointer to int that will be updated if secid fails
2123 */
2124void audit_log_name(struct audit_context *context, struct audit_names *n,
2125		    const struct path *path, int record_num, int *call_panic)
2126{
2127	struct audit_buffer *ab;
2128	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2129	if (!ab)
2130		return;
2131
2132	audit_log_format(ab, "item=%d", record_num);
2133
2134	if (path)
2135		audit_log_d_path(ab, " name=", path);
2136	else if (n->name) {
2137		switch (n->name_len) {
2138		case AUDIT_NAME_FULL:
2139			/* log the full path */
2140			audit_log_format(ab, " name=");
2141			audit_log_untrustedstring(ab, n->name->name);
2142			break;
2143		case 0:
2144			/* name was specified as a relative path and the
2145			 * directory component is the cwd */
2146			audit_log_d_path(ab, " name=", &context->pwd);
2147			break;
2148		default:
2149			/* log the name's directory component */
2150			audit_log_format(ab, " name=");
2151			audit_log_n_untrustedstring(ab, n->name->name,
2152						    n->name_len);
2153		}
2154	} else
2155		audit_log_format(ab, " name=(null)");
2156
2157	if (n->ino != AUDIT_INO_UNSET)
2158		audit_log_format(ab, " inode=%lu"
2159				 " dev=%02x:%02x mode=%#ho"
2160				 " ouid=%u ogid=%u rdev=%02x:%02x",
2161				 n->ino,
2162				 MAJOR(n->dev),
2163				 MINOR(n->dev),
2164				 n->mode,
2165				 from_kuid(&init_user_ns, n->uid),
2166				 from_kgid(&init_user_ns, n->gid),
2167				 MAJOR(n->rdev),
2168				 MINOR(n->rdev));
 
2169	if (n->osid != 0) {
2170		char *ctx = NULL;
2171		u32 len;
2172		if (security_secid_to_secctx(
2173			n->osid, &ctx, &len)) {
2174			audit_log_format(ab, " osid=%u", n->osid);
2175			if (call_panic)
2176				*call_panic = 2;
2177		} else {
2178			audit_log_format(ab, " obj=%s", ctx);
2179			security_release_secctx(ctx, len);
2180		}
2181	}
2182
2183	/* log the audit_names record type */
2184	audit_log_format(ab, " nametype=");
2185	switch(n->type) {
2186	case AUDIT_TYPE_NORMAL:
2187		audit_log_format(ab, "NORMAL");
2188		break;
2189	case AUDIT_TYPE_PARENT:
2190		audit_log_format(ab, "PARENT");
2191		break;
2192	case AUDIT_TYPE_CHILD_DELETE:
2193		audit_log_format(ab, "DELETE");
2194		break;
2195	case AUDIT_TYPE_CHILD_CREATE:
2196		audit_log_format(ab, "CREATE");
2197		break;
2198	default:
2199		audit_log_format(ab, "UNKNOWN");
2200		break;
2201	}
2202
2203	audit_log_fcaps(ab, n);
2204	audit_log_end(ab);
2205}
2206
2207int audit_log_task_context(struct audit_buffer *ab)
2208{
2209	char *ctx = NULL;
2210	unsigned len;
2211	int error;
2212	u32 sid;
2213
2214	security_task_getsecid(current, &sid);
2215	if (!sid)
2216		return 0;
2217
2218	error = security_secid_to_secctx(sid, &ctx, &len);
2219	if (error) {
2220		if (error != -EINVAL)
2221			goto error_path;
2222		return 0;
2223	}
2224
2225	audit_log_format(ab, " subj=%s", ctx);
2226	security_release_secctx(ctx, len);
2227	return 0;
2228
2229error_path:
2230	audit_panic("error in audit_log_task_context");
2231	return error;
2232}
2233EXPORT_SYMBOL(audit_log_task_context);
2234
2235void audit_log_d_path_exe(struct audit_buffer *ab,
2236			  struct mm_struct *mm)
2237{
2238	struct file *exe_file;
2239
2240	if (!mm)
2241		goto out_null;
2242
2243	exe_file = get_mm_exe_file(mm);
2244	if (!exe_file)
2245		goto out_null;
2246
2247	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2248	fput(exe_file);
2249	return;
2250out_null:
2251	audit_log_format(ab, " exe=(null)");
2252}
2253
2254struct tty_struct *audit_get_tty(struct task_struct *tsk)
2255{
2256	struct tty_struct *tty = NULL;
2257	unsigned long flags;
2258
2259	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2260	if (tsk->signal)
2261		tty = tty_kref_get(tsk->signal->tty);
2262	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2263	return tty;
2264}
2265
2266void audit_put_tty(struct tty_struct *tty)
2267{
2268	tty_kref_put(tty);
2269}
2270
2271void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2272{
2273	const struct cred *cred;
2274	char comm[sizeof(tsk->comm)];
2275	struct tty_struct *tty;
 
2276
2277	if (!ab)
2278		return;
2279
2280	/* tsk == current */
2281	cred = current_cred();
2282	tty = audit_get_tty(tsk);
 
 
 
 
 
 
 
2283	audit_log_format(ab,
2284			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2285			 " euid=%u suid=%u fsuid=%u"
2286			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2287			 task_ppid_nr(tsk),
2288			 task_tgid_nr(tsk),
2289			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2290			 from_kuid(&init_user_ns, cred->uid),
2291			 from_kgid(&init_user_ns, cred->gid),
2292			 from_kuid(&init_user_ns, cred->euid),
2293			 from_kuid(&init_user_ns, cred->suid),
2294			 from_kuid(&init_user_ns, cred->fsuid),
2295			 from_kgid(&init_user_ns, cred->egid),
2296			 from_kgid(&init_user_ns, cred->sgid),
2297			 from_kgid(&init_user_ns, cred->fsgid),
2298			 tty ? tty_name(tty) : "(none)",
2299			 audit_get_sessionid(tsk));
2300	audit_put_tty(tty);
2301	audit_log_format(ab, " comm=");
2302	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2303	audit_log_d_path_exe(ab, tsk->mm);
 
 
 
 
 
 
 
2304	audit_log_task_context(ab);
2305}
2306EXPORT_SYMBOL(audit_log_task_info);
2307
2308/**
2309 * audit_log_link_denied - report a link restriction denial
2310 * @operation: specific link operation
 
2311 */
2312void audit_log_link_denied(const char *operation)
2313{
2314	struct audit_buffer *ab;
 
2315
2316	if (!audit_enabled || audit_dummy_context())
 
2317		return;
2318
2319	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2320	ab = audit_log_start(current->audit_context, GFP_KERNEL,
2321			     AUDIT_ANOM_LINK);
2322	if (!ab)
2323		return;
2324	audit_log_format(ab, "op=%s", operation);
2325	audit_log_task_info(ab, current);
2326	audit_log_format(ab, " res=0");
2327	audit_log_end(ab);
 
 
 
 
 
 
 
2328}
2329
2330/**
2331 * audit_log_end - end one audit record
2332 * @ab: the audit_buffer
2333 *
2334 * We can not do a netlink send inside an irq context because it blocks (last
2335 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2336 * queue and a tasklet is scheduled to remove them from the queue outside the
2337 * irq context.  May be called in any context.
2338 */
2339void audit_log_end(struct audit_buffer *ab)
2340{
2341	struct sk_buff *skb;
2342	struct nlmsghdr *nlh;
2343
2344	if (!ab)
2345		return;
2346
2347	if (audit_rate_check()) {
2348		skb = ab->skb;
2349		ab->skb = NULL;
2350
2351		/* setup the netlink header, see the comments in
2352		 * kauditd_send_multicast_skb() for length quirks */
2353		nlh = nlmsg_hdr(skb);
2354		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2355
2356		/* queue the netlink packet and poke the kauditd thread */
2357		skb_queue_tail(&audit_queue, skb);
2358		wake_up_interruptible(&kauditd_wait);
2359	} else
2360		audit_log_lost("rate limit exceeded");
 
 
 
2361
 
 
 
 
 
 
 
 
2362	audit_buffer_free(ab);
2363}
2364
2365/**
2366 * audit_log - Log an audit record
2367 * @ctx: audit context
2368 * @gfp_mask: type of allocation
2369 * @type: audit message type
2370 * @fmt: format string to use
2371 * @...: variable parameters matching the format string
2372 *
2373 * This is a convenience function that calls audit_log_start,
2374 * audit_log_vformat, and audit_log_end.  It may be called
2375 * in any context.
2376 */
2377void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2378	       const char *fmt, ...)
2379{
2380	struct audit_buffer *ab;
2381	va_list args;
2382
2383	ab = audit_log_start(ctx, gfp_mask, type);
2384	if (ab) {
2385		va_start(args, fmt);
2386		audit_log_vformat(ab, fmt, args);
2387		va_end(args);
2388		audit_log_end(ab);
2389	}
2390}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2391
2392EXPORT_SYMBOL(audit_log_start);
2393EXPORT_SYMBOL(audit_log_end);
2394EXPORT_SYMBOL(audit_log_format);
2395EXPORT_SYMBOL(audit_log);
v3.15
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *	  2) Minimal run-time overhead:
  26 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *	     b) Small when syscall auditing is enabled and no audit record
  28 *		is generated (defer as much work as possible to record
  29 *		generation time):
  30 *		i) context is allocated,
  31 *		ii) names from getname are stored without a copy, and
  32 *		iii) inode information stored from path_lookup.
  33 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  34 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  35 *	     then a syscall record will be generated automatically for the
  36 *	     current syscall).
  37 *	  5) Netlink interface to user-space.
  38 *	  6) Support low-overhead kernel-based filtering to minimize the
  39 *	     information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
 
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
 
  46#include <linux/init.h>
  47#include <asm/types.h>
  48#include <linux/atomic.h>
  49#include <linux/mm.h>
  50#include <linux/export.h>
  51#include <linux/slab.h>
  52#include <linux/err.h>
  53#include <linux/kthread.h>
  54#include <linux/kernel.h>
  55#include <linux/syscalls.h>
 
 
 
 
 
 
  56
  57#include <linux/audit.h>
  58
  59#include <net/sock.h>
  60#include <net/netlink.h>
  61#include <linux/skbuff.h>
  62#ifdef CONFIG_SECURITY
  63#include <linux/security.h>
  64#endif
  65#include <linux/freezer.h>
  66#include <linux/tty.h>
  67#include <linux/pid_namespace.h>
  68#include <net/netns/generic.h>
  69
  70#include "audit.h"
  71
  72/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  73 * (Initialization happens after skb_init is called.) */
  74#define AUDIT_DISABLED		-1
  75#define AUDIT_UNINITIALIZED	0
  76#define AUDIT_INITIALIZED	1
  77static int	audit_initialized;
  78
  79#define AUDIT_OFF	0
  80#define AUDIT_ON	1
  81#define AUDIT_LOCKED	2
  82u32		audit_enabled;
  83u32		audit_ever_enabled;
  84
  85EXPORT_SYMBOL_GPL(audit_enabled);
  86
  87/* Default state when kernel boots without any parameters. */
  88static u32	audit_default;
  89
  90/* If auditing cannot proceed, audit_failure selects what happens. */
  91static u32	audit_failure = AUDIT_FAIL_PRINTK;
  92
  93/*
  94 * If audit records are to be written to the netlink socket, audit_pid
  95 * contains the pid of the auditd process and audit_nlk_portid contains
  96 * the portid to use to send netlink messages to that process.
 
 
  97 */
  98int		audit_pid;
  99static __u32	audit_nlk_portid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 102 * to that number per second.  This prevents DoS attacks, but results in
 103 * audit records being dropped. */
 104static u32	audit_rate_limit;
 105
 106/* Number of outstanding audit_buffers allowed.
 107 * When set to zero, this means unlimited. */
 108static u32	audit_backlog_limit = 64;
 109#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 110static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 111static u32	audit_backlog_wait_overflow = 0;
 112
 113/* The identity of the user shutting down the audit system. */
 114kuid_t		audit_sig_uid = INVALID_UID;
 115pid_t		audit_sig_pid = -1;
 116u32		audit_sig_sid = 0;
 117
 118/* Records can be lost in several ways:
 119   0) [suppressed in audit_alloc]
 120   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 121   2) out of memory in audit_log_move [alloc_skb]
 122   3) suppressed due to audit_rate_limit
 123   4) suppressed due to audit_backlog_limit
 124*/
 125static atomic_t    audit_lost = ATOMIC_INIT(0);
 126
 127/* The netlink socket. */
 128static struct sock *audit_sock;
 129int audit_net_id;
 130
 131/* Hash for inode-based rules */
 132struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 133
 134/* The audit_freelist is a list of pre-allocated audit buffers (if more
 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 136 * being placed on the freelist). */
 137static DEFINE_SPINLOCK(audit_freelist_lock);
 138static int	   audit_freelist_count;
 139static LIST_HEAD(audit_freelist);
 140
 141static struct sk_buff_head audit_skb_queue;
 142/* queue of skbs to send to auditd when/if it comes back */
 143static struct sk_buff_head audit_skb_hold_queue;
 144static struct task_struct *kauditd_task;
 145static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 
 
 146static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 147
 148static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 149				   .mask = -1,
 150				   .features = 0,
 151				   .lock = 0,};
 152
 153static char *audit_feature_names[2] = {
 154	"only_unset_loginuid",
 155	"loginuid_immutable",
 156};
 157
 158
 159/* Serialize requests from userspace. */
 160DEFINE_MUTEX(audit_cmd_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 161
 162/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 163 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 164 * should be at least that large. */
 165#define AUDIT_BUFSIZ 1024
 166
 167/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 168 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 169#define AUDIT_MAXFREE  (2*NR_CPUS)
 170
 171/* The audit_buffer is used when formatting an audit record.  The caller
 172 * locks briefly to get the record off the freelist or to allocate the
 173 * buffer, and locks briefly to send the buffer to the netlink layer or
 174 * to place it on a transmit queue.  Multiple audit_buffers can be in
 175 * use simultaneously. */
 176struct audit_buffer {
 177	struct list_head     list;
 178	struct sk_buff       *skb;	/* formatted skb ready to send */
 179	struct audit_context *ctx;	/* NULL or associated context */
 180	gfp_t		     gfp_mask;
 181};
 182
 183struct audit_reply {
 184	__u32 portid;
 185	struct net *net;
 186	struct sk_buff *skb;
 187};
 188
 189static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190{
 191	if (ab) {
 192		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 193		nlh->nlmsg_pid = portid;
 194	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195}
 196
 197void audit_panic(const char *message)
 198{
 199	switch (audit_failure) {
 200	case AUDIT_FAIL_SILENT:
 201		break;
 202	case AUDIT_FAIL_PRINTK:
 203		if (printk_ratelimit())
 204			pr_err("%s\n", message);
 205		break;
 206	case AUDIT_FAIL_PANIC:
 207		/* test audit_pid since printk is always losey, why bother? */
 208		if (audit_pid)
 209			panic("audit: %s\n", message);
 210		break;
 211	}
 212}
 213
 214static inline int audit_rate_check(void)
 215{
 216	static unsigned long	last_check = 0;
 217	static int		messages   = 0;
 218	static DEFINE_SPINLOCK(lock);
 219	unsigned long		flags;
 220	unsigned long		now;
 221	unsigned long		elapsed;
 222	int			retval	   = 0;
 223
 224	if (!audit_rate_limit) return 1;
 225
 226	spin_lock_irqsave(&lock, flags);
 227	if (++messages < audit_rate_limit) {
 228		retval = 1;
 229	} else {
 230		now     = jiffies;
 231		elapsed = now - last_check;
 232		if (elapsed > HZ) {
 233			last_check = now;
 234			messages   = 0;
 235			retval     = 1;
 236		}
 237	}
 238	spin_unlock_irqrestore(&lock, flags);
 239
 240	return retval;
 241}
 242
 243/**
 244 * audit_log_lost - conditionally log lost audit message event
 245 * @message: the message stating reason for lost audit message
 246 *
 247 * Emit at least 1 message per second, even if audit_rate_check is
 248 * throttling.
 249 * Always increment the lost messages counter.
 250*/
 251void audit_log_lost(const char *message)
 252{
 253	static unsigned long	last_msg = 0;
 254	static DEFINE_SPINLOCK(lock);
 255	unsigned long		flags;
 256	unsigned long		now;
 257	int			print;
 258
 259	atomic_inc(&audit_lost);
 260
 261	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 262
 263	if (!print) {
 264		spin_lock_irqsave(&lock, flags);
 265		now = jiffies;
 266		if (now - last_msg > HZ) {
 267			print = 1;
 268			last_msg = now;
 269		}
 270		spin_unlock_irqrestore(&lock, flags);
 271	}
 272
 273	if (print) {
 274		if (printk_ratelimit())
 275			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 276				atomic_read(&audit_lost),
 277				audit_rate_limit,
 278				audit_backlog_limit);
 279		audit_panic(message);
 280	}
 281}
 282
 283static int audit_log_config_change(char *function_name, u32 new, u32 old,
 284				   int allow_changes)
 285{
 286	struct audit_buffer *ab;
 287	int rc = 0;
 288
 289	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 290	if (unlikely(!ab))
 291		return rc;
 292	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 293	audit_log_session_info(ab);
 294	rc = audit_log_task_context(ab);
 295	if (rc)
 296		allow_changes = 0; /* Something weird, deny request */
 297	audit_log_format(ab, " res=%d", allow_changes);
 298	audit_log_end(ab);
 299	return rc;
 300}
 301
 302static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 303{
 304	int allow_changes, rc = 0;
 305	u32 old = *to_change;
 306
 307	/* check if we are locked */
 308	if (audit_enabled == AUDIT_LOCKED)
 309		allow_changes = 0;
 310	else
 311		allow_changes = 1;
 312
 313	if (audit_enabled != AUDIT_OFF) {
 314		rc = audit_log_config_change(function_name, new, old, allow_changes);
 315		if (rc)
 316			allow_changes = 0;
 317	}
 318
 319	/* If we are allowed, make the change */
 320	if (allow_changes == 1)
 321		*to_change = new;
 322	/* Not allowed, update reason */
 323	else if (rc == 0)
 324		rc = -EPERM;
 325	return rc;
 326}
 327
 328static int audit_set_rate_limit(u32 limit)
 329{
 330	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 331}
 332
 333static int audit_set_backlog_limit(u32 limit)
 334{
 335	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 336}
 337
 338static int audit_set_backlog_wait_time(u32 timeout)
 339{
 340	return audit_do_config_change("audit_backlog_wait_time",
 341				      &audit_backlog_wait_time, timeout);
 342}
 343
 344static int audit_set_enabled(u32 state)
 345{
 346	int rc;
 347	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
 348		return -EINVAL;
 349
 350	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 351	if (!rc)
 352		audit_ever_enabled |= !!state;
 353
 354	return rc;
 355}
 356
 357static int audit_set_failure(u32 state)
 358{
 359	if (state != AUDIT_FAIL_SILENT
 360	    && state != AUDIT_FAIL_PRINTK
 361	    && state != AUDIT_FAIL_PANIC)
 362		return -EINVAL;
 363
 364	return audit_do_config_change("audit_failure", &audit_failure, state);
 365}
 366
 367/*
 368 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 369 * already have been sent via prink/syslog and so if these messages are dropped
 370 * it is not a huge concern since we already passed the audit_log_lost()
 371 * notification and stuff.  This is just nice to get audit messages during
 372 * boot before auditd is running or messages generated while auditd is stopped.
 373 * This only holds messages is audit_default is set, aka booting with audit=1
 374 * or building your kernel that way.
 375 */
 376static void audit_hold_skb(struct sk_buff *skb)
 377{
 378	if (audit_default &&
 379	    (!audit_backlog_limit ||
 380	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 381		skb_queue_tail(&audit_skb_hold_queue, skb);
 382	else
 383		kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384}
 385
 386/*
 387 * For one reason or another this nlh isn't getting delivered to the userspace
 388 * audit daemon, just send it to printk.
 
 
 
 389 */
 390static void audit_printk_skb(struct sk_buff *skb)
 391{
 392	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 393	char *data = nlmsg_data(nlh);
 394
 395	if (nlh->nlmsg_type != AUDIT_EOE) {
 396		if (printk_ratelimit())
 397			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 398		else
 399			audit_log_lost("printk limit exceeded");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400	}
 
 
 
 
 
 
 
 
 
 
 
 401
 402	audit_hold_skb(skb);
 
 
 
 403}
 404
 405static void kauditd_send_skb(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406{
 407	int err;
 408	/* take a reference in case we can't send it and we want to hold it */
 409	skb_get(skb);
 410	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 411	if (err < 0) {
 412		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
 413		if (audit_pid) {
 414			pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
 415			audit_log_lost("auditd disappeared");
 416			audit_pid = 0;
 417			audit_sock = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418		}
 419		/* we might get lucky and get this in the next auditd */
 420		audit_hold_skb(skb);
 421	} else
 422		/* drop the extra reference if sent ok */
 423		consume_skb(skb);
 424}
 425
 426/*
 427 * flush_hold_queue - empty the hold queue if auditd appears
 
 428 *
 429 * If auditd just started, drain the queue of messages already
 430 * sent to syslog/printk.  Remember loss here is ok.  We already
 431 * called audit_log_lost() if it didn't go out normally.  so the
 432 * race between the skb_dequeue and the next check for audit_pid
 433 * doesn't matter.
 434 *
 435 * If you ever find kauditd to be too slow we can get a perf win
 436 * by doing our own locking and keeping better track if there
 437 * are messages in this queue.  I don't see the need now, but
 438 * in 5 years when I want to play with this again I'll see this
 439 * note and still have no friggin idea what i'm thinking today.
 440 */
 441static void flush_hold_queue(void)
 442{
 443	struct sk_buff *skb;
 
 
 444
 445	if (!audit_default || !audit_pid)
 446		return;
 447
 448	skb = skb_dequeue(&audit_skb_hold_queue);
 449	if (likely(!skb))
 450		return;
 451
 452	while (skb && audit_pid) {
 453		kauditd_send_skb(skb);
 454		skb = skb_dequeue(&audit_skb_hold_queue);
 455	}
 456
 457	/*
 458	 * if auditd just disappeared but we
 459	 * dequeued an skb we need to drop ref
 
 
 
 
 
 
 460	 */
 461	if (skb)
 462		consume_skb(skb);
 
 
 
 
 
 463}
 464
 
 
 
 
 465static int kauditd_thread(void *dummy)
 466{
 
 
 
 
 
 
 
 
 467	set_freezable();
 468	while (!kthread_should_stop()) {
 469		struct sk_buff *skb;
 470		DECLARE_WAITQUEUE(wait, current);
 471
 472		flush_hold_queue();
 473
 474		skb = skb_dequeue(&audit_skb_queue);
 475
 476		if (skb) {
 477			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
 478				wake_up(&audit_backlog_wait);
 479			if (audit_pid)
 480				kauditd_send_skb(skb);
 481			else
 482				audit_printk_skb(skb);
 483			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484		}
 485		set_current_state(TASK_INTERRUPTIBLE);
 486		add_wait_queue(&kauditd_wait, &wait);
 487
 488		if (!skb_queue_len(&audit_skb_queue)) {
 489			try_to_freeze();
 490			schedule();
 491		}
 492
 493		__set_current_state(TASK_RUNNING);
 494		remove_wait_queue(&kauditd_wait, &wait);
 
 
 
 
 495	}
 
 496	return 0;
 497}
 498
 499int audit_send_list(void *_dest)
 500{
 501	struct audit_netlink_list *dest = _dest;
 502	struct sk_buff *skb;
 503	struct net *net = dest->net;
 504	struct audit_net *aunet = net_generic(net, audit_net_id);
 505
 506	/* wait for parent to finish and send an ACK */
 507	mutex_lock(&audit_cmd_mutex);
 508	mutex_unlock(&audit_cmd_mutex);
 509
 510	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 511		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 512
 513	put_net(net);
 514	kfree(dest);
 515
 516	return 0;
 517}
 518
 519struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 520				 int multi, const void *payload, int size)
 521{
 522	struct sk_buff	*skb;
 523	struct nlmsghdr	*nlh;
 524	void		*data;
 525	int		flags = multi ? NLM_F_MULTI : 0;
 526	int		t     = done  ? NLMSG_DONE  : type;
 527
 528	skb = nlmsg_new(size, GFP_KERNEL);
 529	if (!skb)
 530		return NULL;
 531
 532	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
 533	if (!nlh)
 534		goto out_kfree_skb;
 535	data = nlmsg_data(nlh);
 536	memcpy(data, payload, size);
 537	return skb;
 538
 539out_kfree_skb:
 540	kfree_skb(skb);
 541	return NULL;
 542}
 543
 544static int audit_send_reply_thread(void *arg)
 545{
 546	struct audit_reply *reply = (struct audit_reply *)arg;
 547	struct net *net = reply->net;
 548	struct audit_net *aunet = net_generic(net, audit_net_id);
 549
 550	mutex_lock(&audit_cmd_mutex);
 551	mutex_unlock(&audit_cmd_mutex);
 552
 553	/* Ignore failure. It'll only happen if the sender goes away,
 554	   because our timeout is set to infinite. */
 555	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 556	put_net(net);
 557	kfree(reply);
 558	return 0;
 559}
 
 560/**
 561 * audit_send_reply - send an audit reply message via netlink
 562 * @request_skb: skb of request we are replying to (used to target the reply)
 563 * @seq: sequence number
 564 * @type: audit message type
 565 * @done: done (last) flag
 566 * @multi: multi-part message flag
 567 * @payload: payload data
 568 * @size: payload size
 569 *
 570 * Allocates an skb, builds the netlink message, and sends it to the port id.
 571 * No failure notifications.
 572 */
 573static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 574			     int multi, const void *payload, int size)
 575{
 576	u32 portid = NETLINK_CB(request_skb).portid;
 577	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 578	struct sk_buff *skb;
 579	struct task_struct *tsk;
 580	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 581					    GFP_KERNEL);
 582
 583	if (!reply)
 584		return;
 585
 586	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 587	if (!skb)
 588		goto out;
 589
 590	reply->net = get_net(net);
 591	reply->portid = portid;
 592	reply->skb = skb;
 593
 594	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 595	if (!IS_ERR(tsk))
 596		return;
 597	kfree_skb(skb);
 598out:
 599	kfree(reply);
 600}
 601
 602/*
 603 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 604 * control messages.
 605 */
 606static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 607{
 608	int err = 0;
 609
 610	/* Only support initial user namespace for now. */
 611	/*
 612	 * We return ECONNREFUSED because it tricks userspace into thinking
 613	 * that audit was not configured into the kernel.  Lots of users
 614	 * configure their PAM stack (because that's what the distro does)
 615	 * to reject login if unable to send messages to audit.  If we return
 616	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 617	 * configured in and will let login proceed.  If we return EPERM
 618	 * userspace will reject all logins.  This should be removed when we
 619	 * support non init namespaces!!
 620	 */
 621	if (current_user_ns() != &init_user_ns)
 622		return -ECONNREFUSED;
 623
 624	switch (msg_type) {
 625	case AUDIT_LIST:
 626	case AUDIT_ADD:
 627	case AUDIT_DEL:
 628		return -EOPNOTSUPP;
 629	case AUDIT_GET:
 630	case AUDIT_SET:
 631	case AUDIT_GET_FEATURE:
 632	case AUDIT_SET_FEATURE:
 633	case AUDIT_LIST_RULES:
 634	case AUDIT_ADD_RULE:
 635	case AUDIT_DEL_RULE:
 636	case AUDIT_SIGNAL_INFO:
 637	case AUDIT_TTY_GET:
 638	case AUDIT_TTY_SET:
 639	case AUDIT_TRIM:
 640	case AUDIT_MAKE_EQUIV:
 641		/* Only support auditd and auditctl in initial pid namespace
 642		 * for now. */
 643		if ((task_active_pid_ns(current) != &init_pid_ns))
 644			return -EPERM;
 645
 646		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 647			err = -EPERM;
 648		break;
 649	case AUDIT_USER:
 650	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 651	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 652		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 653			err = -EPERM;
 654		break;
 655	default:  /* bad msg */
 656		err = -EINVAL;
 657	}
 658
 659	return err;
 660}
 661
 662static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 663{
 664	int rc = 0;
 665	uid_t uid = from_kuid(&init_user_ns, current_uid());
 666	pid_t pid = task_tgid_nr(current);
 667
 668	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 669		*ab = NULL;
 670		return rc;
 671	}
 672
 673	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 674	if (unlikely(!*ab))
 675		return rc;
 676	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 677	audit_log_session_info(*ab);
 678	audit_log_task_context(*ab);
 679
 680	return rc;
 681}
 682
 683int is_audit_feature_set(int i)
 684{
 685	return af.features & AUDIT_FEATURE_TO_MASK(i);
 686}
 687
 688
 689static int audit_get_feature(struct sk_buff *skb)
 690{
 691	u32 seq;
 692
 693	seq = nlmsg_hdr(skb)->nlmsg_seq;
 694
 695	audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af));
 696
 697	return 0;
 698}
 699
 700static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 701				     u32 old_lock, u32 new_lock, int res)
 702{
 703	struct audit_buffer *ab;
 704
 705	if (audit_enabled == AUDIT_OFF)
 706		return;
 707
 708	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 
 
 709	audit_log_task_info(ab, current);
 710	audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 711			 audit_feature_names[which], !!old_feature, !!new_feature,
 712			 !!old_lock, !!new_lock, res);
 713	audit_log_end(ab);
 714}
 715
 716static int audit_set_feature(struct sk_buff *skb)
 717{
 718	struct audit_features *uaf;
 719	int i;
 720
 721	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
 722	uaf = nlmsg_data(nlmsg_hdr(skb));
 723
 724	/* if there is ever a version 2 we should handle that here */
 725
 726	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 727		u32 feature = AUDIT_FEATURE_TO_MASK(i);
 728		u32 old_feature, new_feature, old_lock, new_lock;
 729
 730		/* if we are not changing this feature, move along */
 731		if (!(feature & uaf->mask))
 732			continue;
 733
 734		old_feature = af.features & feature;
 735		new_feature = uaf->features & feature;
 736		new_lock = (uaf->lock | af.lock) & feature;
 737		old_lock = af.lock & feature;
 738
 739		/* are we changing a locked feature? */
 740		if (old_lock && (new_feature != old_feature)) {
 741			audit_log_feature_change(i, old_feature, new_feature,
 742						 old_lock, new_lock, 0);
 743			return -EPERM;
 744		}
 745	}
 746	/* nothing invalid, do the changes */
 747	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 748		u32 feature = AUDIT_FEATURE_TO_MASK(i);
 749		u32 old_feature, new_feature, old_lock, new_lock;
 750
 751		/* if we are not changing this feature, move along */
 752		if (!(feature & uaf->mask))
 753			continue;
 754
 755		old_feature = af.features & feature;
 756		new_feature = uaf->features & feature;
 757		old_lock = af.lock & feature;
 758		new_lock = (uaf->lock | af.lock) & feature;
 759
 760		if (new_feature != old_feature)
 761			audit_log_feature_change(i, old_feature, new_feature,
 762						 old_lock, new_lock, 1);
 763
 764		if (new_feature)
 765			af.features |= feature;
 766		else
 767			af.features &= ~feature;
 768		af.lock |= new_lock;
 769	}
 770
 771	return 0;
 772}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 774static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 775{
 776	u32			seq;
 777	void			*data;
 778	int			err;
 779	struct audit_buffer	*ab;
 780	u16			msg_type = nlh->nlmsg_type;
 781	struct audit_sig_info   *sig_data;
 782	char			*ctx = NULL;
 783	u32			len;
 784
 785	err = audit_netlink_ok(skb, msg_type);
 786	if (err)
 787		return err;
 788
 789	/* As soon as there's any sign of userspace auditd,
 790	 * start kauditd to talk to it */
 791	if (!kauditd_task) {
 792		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 793		if (IS_ERR(kauditd_task)) {
 794			err = PTR_ERR(kauditd_task);
 795			kauditd_task = NULL;
 796			return err;
 797		}
 798	}
 799	seq  = nlh->nlmsg_seq;
 800	data = nlmsg_data(nlh);
 801
 802	switch (msg_type) {
 803	case AUDIT_GET: {
 804		struct audit_status	s;
 805		memset(&s, 0, sizeof(s));
 806		s.enabled		= audit_enabled;
 807		s.failure		= audit_failure;
 808		s.pid			= audit_pid;
 
 
 809		s.rate_limit		= audit_rate_limit;
 810		s.backlog_limit		= audit_backlog_limit;
 811		s.lost			= atomic_read(&audit_lost);
 812		s.backlog		= skb_queue_len(&audit_skb_queue);
 813		s.version		= AUDIT_VERSION_LATEST;
 814		s.backlog_wait_time	= audit_backlog_wait_time;
 815		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 816		break;
 817	}
 818	case AUDIT_SET: {
 819		struct audit_status	s;
 820		memset(&s, 0, sizeof(s));
 821		/* guard against past and future API changes */
 822		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 823		if (s.mask & AUDIT_STATUS_ENABLED) {
 824			err = audit_set_enabled(s.enabled);
 825			if (err < 0)
 826				return err;
 827		}
 828		if (s.mask & AUDIT_STATUS_FAILURE) {
 829			err = audit_set_failure(s.failure);
 830			if (err < 0)
 831				return err;
 832		}
 833		if (s.mask & AUDIT_STATUS_PID) {
 834			int new_pid = s.pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
 837				return -EACCES;
 838			if (audit_enabled != AUDIT_OFF)
 839				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 840			audit_pid = new_pid;
 841			audit_nlk_portid = NETLINK_CB(skb).portid;
 842			audit_sock = skb->sk;
 843		}
 844		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 845			err = audit_set_rate_limit(s.rate_limit);
 846			if (err < 0)
 847				return err;
 848		}
 849		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 850			err = audit_set_backlog_limit(s.backlog_limit);
 851			if (err < 0)
 852				return err;
 853		}
 854		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 855			if (sizeof(s) > (size_t)nlh->nlmsg_len)
 856				return -EINVAL;
 857			if (s.backlog_wait_time < 0 ||
 858			    s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 859				return -EINVAL;
 860			err = audit_set_backlog_wait_time(s.backlog_wait_time);
 861			if (err < 0)
 862				return err;
 863		}
 
 
 
 
 
 
 864		break;
 865	}
 866	case AUDIT_GET_FEATURE:
 867		err = audit_get_feature(skb);
 868		if (err)
 869			return err;
 870		break;
 871	case AUDIT_SET_FEATURE:
 872		err = audit_set_feature(skb);
 873		if (err)
 874			return err;
 875		break;
 876	case AUDIT_USER:
 877	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 878	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 879		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 880			return 0;
 881
 882		err = audit_filter_user(msg_type);
 883		if (err == 1) { /* match or error */
 884			err = 0;
 885			if (msg_type == AUDIT_USER_TTY) {
 886				err = tty_audit_push_current();
 887				if (err)
 888					break;
 889			}
 890			mutex_unlock(&audit_cmd_mutex);
 891			audit_log_common_recv_msg(&ab, msg_type);
 892			if (msg_type != AUDIT_USER_TTY)
 893				audit_log_format(ab, " msg='%.*s'",
 894						 AUDIT_MESSAGE_TEXT_MAX,
 895						 (char *)data);
 896			else {
 897				int size;
 898
 899				audit_log_format(ab, " data=");
 900				size = nlmsg_len(nlh);
 901				if (size > 0 &&
 902				    ((unsigned char *)data)[size - 1] == '\0')
 903					size--;
 904				audit_log_n_untrustedstring(ab, data, size);
 905			}
 906			audit_set_portid(ab, NETLINK_CB(skb).portid);
 907			audit_log_end(ab);
 908			mutex_lock(&audit_cmd_mutex);
 909		}
 910		break;
 911	case AUDIT_ADD_RULE:
 912	case AUDIT_DEL_RULE:
 913		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 914			return -EINVAL;
 915		if (audit_enabled == AUDIT_LOCKED) {
 916			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 917			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 918			audit_log_end(ab);
 919			return -EPERM;
 920		}
 921		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 922					   seq, data, nlmsg_len(nlh));
 923		break;
 924	case AUDIT_LIST_RULES:
 925		err = audit_list_rules_send(skb, seq);
 926		break;
 927	case AUDIT_TRIM:
 928		audit_trim_trees();
 929		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 930		audit_log_format(ab, " op=trim res=1");
 931		audit_log_end(ab);
 932		break;
 933	case AUDIT_MAKE_EQUIV: {
 934		void *bufp = data;
 935		u32 sizes[2];
 936		size_t msglen = nlmsg_len(nlh);
 937		char *old, *new;
 938
 939		err = -EINVAL;
 940		if (msglen < 2 * sizeof(u32))
 941			break;
 942		memcpy(sizes, bufp, 2 * sizeof(u32));
 943		bufp += 2 * sizeof(u32);
 944		msglen -= 2 * sizeof(u32);
 945		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
 946		if (IS_ERR(old)) {
 947			err = PTR_ERR(old);
 948			break;
 949		}
 950		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
 951		if (IS_ERR(new)) {
 952			err = PTR_ERR(new);
 953			kfree(old);
 954			break;
 955		}
 956		/* OK, here comes... */
 957		err = audit_tag_tree(old, new);
 958
 959		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 960
 961		audit_log_format(ab, " op=make_equiv old=");
 962		audit_log_untrustedstring(ab, old);
 963		audit_log_format(ab, " new=");
 964		audit_log_untrustedstring(ab, new);
 965		audit_log_format(ab, " res=%d", !err);
 966		audit_log_end(ab);
 967		kfree(old);
 968		kfree(new);
 969		break;
 970	}
 971	case AUDIT_SIGNAL_INFO:
 972		len = 0;
 973		if (audit_sig_sid) {
 974			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
 975			if (err)
 976				return err;
 977		}
 978		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
 979		if (!sig_data) {
 980			if (audit_sig_sid)
 981				security_release_secctx(ctx, len);
 982			return -ENOMEM;
 983		}
 984		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
 985		sig_data->pid = audit_sig_pid;
 986		if (audit_sig_sid) {
 987			memcpy(sig_data->ctx, ctx, len);
 988			security_release_secctx(ctx, len);
 989		}
 990		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
 991				 sig_data, sizeof(*sig_data) + len);
 992		kfree(sig_data);
 993		break;
 994	case AUDIT_TTY_GET: {
 995		struct audit_tty_status s;
 996		struct task_struct *tsk = current;
 997
 998		spin_lock(&tsk->sighand->siglock);
 999		s.enabled = tsk->signal->audit_tty;
1000		s.log_passwd = tsk->signal->audit_tty_log_passwd;
1001		spin_unlock(&tsk->sighand->siglock);
1002
1003		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1004		break;
1005	}
1006	case AUDIT_TTY_SET: {
1007		struct audit_tty_status s, old;
1008		struct task_struct *tsk = current;
1009		struct audit_buffer	*ab;
 
1010
1011		memset(&s, 0, sizeof(s));
1012		/* guard against past and future API changes */
1013		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1014		/* check if new data is valid */
1015		if ((s.enabled != 0 && s.enabled != 1) ||
1016		    (s.log_passwd != 0 && s.log_passwd != 1))
1017			err = -EINVAL;
1018
1019		spin_lock(&tsk->sighand->siglock);
1020		old.enabled = tsk->signal->audit_tty;
1021		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1022		if (!err) {
1023			tsk->signal->audit_tty = s.enabled;
1024			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1025		}
1026		spin_unlock(&tsk->sighand->siglock);
 
1027
1028		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1029		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1030				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1031				 old.enabled, s.enabled, old.log_passwd,
1032				 s.log_passwd, !err);
1033		audit_log_end(ab);
1034		break;
1035	}
1036	default:
1037		err = -EINVAL;
1038		break;
1039	}
1040
1041	return err < 0 ? err : 0;
1042}
1043
1044/*
1045 * Get message from skb.  Each message is processed by audit_receive_msg.
1046 * Malformed skbs with wrong length are discarded silently.
 
 
 
1047 */
1048static void audit_receive_skb(struct sk_buff *skb)
1049{
1050	struct nlmsghdr *nlh;
1051	/*
1052	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1053	 * if the nlmsg_len was not aligned
1054	 */
1055	int len;
1056	int err;
1057
1058	nlh = nlmsg_hdr(skb);
1059	len = skb->len;
1060
 
1061	while (nlmsg_ok(nlh, len)) {
1062		err = audit_receive_msg(skb, nlh);
1063		/* if err or if this message says it wants a response */
1064		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1065			netlink_ack(skb, nlh, err);
1066
1067		nlh = nlmsg_next(nlh, &len);
1068	}
 
1069}
1070
1071/* Receive messages from netlink socket. */
1072static void audit_receive(struct sk_buff  *skb)
1073{
1074	mutex_lock(&audit_cmd_mutex);
1075	audit_receive_skb(skb);
1076	mutex_unlock(&audit_cmd_mutex);
 
1077}
1078
1079static int __net_init audit_net_init(struct net *net)
1080{
1081	struct netlink_kernel_cfg cfg = {
1082		.input	= audit_receive,
 
 
 
1083	};
1084
1085	struct audit_net *aunet = net_generic(net, audit_net_id);
1086
1087	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1088	if (aunet->nlsk == NULL) {
1089		audit_panic("cannot initialize netlink socket in namespace");
1090		return -ENOMEM;
1091	}
1092	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 
1093	return 0;
1094}
1095
1096static void __net_exit audit_net_exit(struct net *net)
1097{
1098	struct audit_net *aunet = net_generic(net, audit_net_id);
1099	struct sock *sock = aunet->nlsk;
1100	if (sock == audit_sock) {
1101		audit_pid = 0;
1102		audit_sock = NULL;
1103	}
1104
1105	RCU_INIT_POINTER(aunet->nlsk, NULL);
1106	synchronize_net();
1107	netlink_kernel_release(sock);
 
 
 
 
1108}
1109
1110static struct pernet_operations audit_net_ops __net_initdata = {
1111	.init = audit_net_init,
1112	.exit = audit_net_exit,
1113	.id = &audit_net_id,
1114	.size = sizeof(struct audit_net),
1115};
1116
1117/* Initialize audit support at boot time. */
1118static int __init audit_init(void)
1119{
1120	int i;
1121
1122	if (audit_initialized == AUDIT_DISABLED)
1123		return 0;
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125	pr_info("initializing netlink subsys (%s)\n",
1126		audit_default ? "enabled" : "disabled");
1127	register_pernet_subsys(&audit_net_ops);
1128
1129	skb_queue_head_init(&audit_skb_queue);
1130	skb_queue_head_init(&audit_skb_hold_queue);
1131	audit_initialized = AUDIT_INITIALIZED;
1132	audit_enabled = audit_default;
1133	audit_ever_enabled |= !!audit_default;
1134
1135	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
 
 
 
 
1136
1137	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1138		INIT_LIST_HEAD(&audit_inode_hash[i]);
 
1139
1140	return 0;
1141}
1142__initcall(audit_init);
1143
1144/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
 
 
 
1145static int __init audit_enable(char *str)
1146{
1147	audit_default = !!simple_strtol(str, NULL, 0);
1148	if (!audit_default)
 
 
 
 
 
 
 
 
1149		audit_initialized = AUDIT_DISABLED;
 
 
 
1150
1151	pr_info("%s\n", audit_default ?
1152		"enabled (after initialization)" : "disabled (until reboot)");
1153
1154	return 1;
1155}
1156__setup("audit=", audit_enable);
1157
1158/* Process kernel command-line parameter at boot time.
1159 * audit_backlog_limit=<n> */
1160static int __init audit_backlog_limit_set(char *str)
1161{
1162	u32 audit_backlog_limit_arg;
1163
1164	pr_info("audit_backlog_limit: ");
1165	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1166		pr_cont("using default of %u, unable to parse %s\n",
1167			audit_backlog_limit, str);
1168		return 1;
1169	}
1170
1171	audit_backlog_limit = audit_backlog_limit_arg;
1172	pr_cont("%d\n", audit_backlog_limit);
1173
1174	return 1;
1175}
1176__setup("audit_backlog_limit=", audit_backlog_limit_set);
1177
1178static void audit_buffer_free(struct audit_buffer *ab)
1179{
1180	unsigned long flags;
1181
1182	if (!ab)
1183		return;
1184
1185	if (ab->skb)
1186		kfree_skb(ab->skb);
1187
1188	spin_lock_irqsave(&audit_freelist_lock, flags);
1189	if (audit_freelist_count > AUDIT_MAXFREE)
1190		kfree(ab);
1191	else {
1192		audit_freelist_count++;
1193		list_add(&ab->list, &audit_freelist);
1194	}
1195	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1196}
1197
1198static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1199						gfp_t gfp_mask, int type)
1200{
1201	unsigned long flags;
1202	struct audit_buffer *ab = NULL;
1203	struct nlmsghdr *nlh;
1204
1205	spin_lock_irqsave(&audit_freelist_lock, flags);
1206	if (!list_empty(&audit_freelist)) {
1207		ab = list_entry(audit_freelist.next,
1208				struct audit_buffer, list);
1209		list_del(&ab->list);
1210		--audit_freelist_count;
1211	}
1212	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1213
1214	if (!ab) {
1215		ab = kmalloc(sizeof(*ab), gfp_mask);
1216		if (!ab)
1217			goto err;
1218	}
1219
1220	ab->ctx = ctx;
1221	ab->gfp_mask = gfp_mask;
1222
1223	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1224	if (!ab->skb)
1225		goto err;
 
 
1226
1227	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1228	if (!nlh)
1229		goto out_kfree_skb;
1230
1231	return ab;
1232
1233out_kfree_skb:
1234	kfree_skb(ab->skb);
1235	ab->skb = NULL;
1236err:
1237	audit_buffer_free(ab);
1238	return NULL;
1239}
1240
1241/**
1242 * audit_serial - compute a serial number for the audit record
1243 *
1244 * Compute a serial number for the audit record.  Audit records are
1245 * written to user-space as soon as they are generated, so a complete
1246 * audit record may be written in several pieces.  The timestamp of the
1247 * record and this serial number are used by the user-space tools to
1248 * determine which pieces belong to the same audit record.  The
1249 * (timestamp,serial) tuple is unique for each syscall and is live from
1250 * syscall entry to syscall exit.
1251 *
1252 * NOTE: Another possibility is to store the formatted records off the
1253 * audit context (for those records that have a context), and emit them
1254 * all at syscall exit.  However, this could delay the reporting of
1255 * significant errors until syscall exit (or never, if the system
1256 * halts).
1257 */
1258unsigned int audit_serial(void)
1259{
1260	static DEFINE_SPINLOCK(serial_lock);
1261	static unsigned int serial = 0;
1262
1263	unsigned long flags;
1264	unsigned int ret;
1265
1266	spin_lock_irqsave(&serial_lock, flags);
1267	do {
1268		ret = ++serial;
1269	} while (unlikely(!ret));
1270	spin_unlock_irqrestore(&serial_lock, flags);
1271
1272	return ret;
1273}
1274
1275static inline void audit_get_stamp(struct audit_context *ctx,
1276				   struct timespec *t, unsigned int *serial)
1277{
1278	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1279		*t = CURRENT_TIME;
1280		*serial = audit_serial();
1281	}
1282}
1283
1284/*
1285 * Wait for auditd to drain the queue a little
1286 */
1287static long wait_for_auditd(long sleep_time)
1288{
1289	DECLARE_WAITQUEUE(wait, current);
1290	set_current_state(TASK_UNINTERRUPTIBLE);
1291	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1292
1293	if (audit_backlog_limit &&
1294	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1295		sleep_time = schedule_timeout(sleep_time);
1296
1297	__set_current_state(TASK_RUNNING);
1298	remove_wait_queue(&audit_backlog_wait, &wait);
1299
1300	return sleep_time;
1301}
1302
1303/**
1304 * audit_log_start - obtain an audit buffer
1305 * @ctx: audit_context (may be NULL)
1306 * @gfp_mask: type of allocation
1307 * @type: audit message type
1308 *
1309 * Returns audit_buffer pointer on success or NULL on error.
1310 *
1311 * Obtain an audit buffer.  This routine does locking to obtain the
1312 * audit buffer, but then no locking is required for calls to
1313 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1314 * syscall, then the syscall is marked as auditable and an audit record
1315 * will be written at syscall exit.  If there is no associated task, then
1316 * task context (ctx) should be NULL.
1317 */
1318struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1319				     int type)
1320{
1321	struct audit_buffer	*ab	= NULL;
1322	struct timespec		t;
1323	unsigned int		uninitialized_var(serial);
1324	int reserve = 5; /* Allow atomic callers to go up to five
1325			    entries over the normal backlog limit */
1326	unsigned long timeout_start = jiffies;
1327
1328	if (audit_initialized != AUDIT_INITIALIZED)
1329		return NULL;
1330
1331	if (unlikely(audit_filter_type(type)))
1332		return NULL;
1333
1334	if (gfp_mask & __GFP_WAIT) {
1335		if (audit_pid && audit_pid == current->pid)
1336			gfp_mask &= ~__GFP_WAIT;
1337		else
1338			reserve = 0;
1339	}
 
 
 
 
 
 
 
 
1340
1341	while (audit_backlog_limit
1342	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1343		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1344			long sleep_time;
1345
1346			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1347			if (sleep_time > 0) {
1348				sleep_time = wait_for_auditd(sleep_time);
1349				if (sleep_time > 0)
1350					continue;
 
 
 
 
 
 
 
1351			}
1352		}
1353		if (audit_rate_check() && printk_ratelimit())
1354			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1355				skb_queue_len(&audit_skb_queue),
1356				audit_backlog_limit);
1357		audit_log_lost("backlog limit exceeded");
1358		audit_backlog_wait_time = audit_backlog_wait_overflow;
1359		wake_up(&audit_backlog_wait);
1360		return NULL;
1361	}
1362
1363	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1364
1365	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1366	if (!ab) {
1367		audit_log_lost("out of memory in audit_log_start");
1368		return NULL;
1369	}
1370
1371	audit_get_stamp(ab->ctx, &t, &serial);
 
 
1372
1373	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1374			 t.tv_sec, t.tv_nsec/1000000, serial);
1375	return ab;
1376}
1377
1378/**
1379 * audit_expand - expand skb in the audit buffer
1380 * @ab: audit_buffer
1381 * @extra: space to add at tail of the skb
1382 *
1383 * Returns 0 (no space) on failed expansion, or available space if
1384 * successful.
1385 */
1386static inline int audit_expand(struct audit_buffer *ab, int extra)
1387{
1388	struct sk_buff *skb = ab->skb;
1389	int oldtail = skb_tailroom(skb);
1390	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1391	int newtail = skb_tailroom(skb);
1392
1393	if (ret < 0) {
1394		audit_log_lost("out of memory in audit_expand");
1395		return 0;
1396	}
1397
1398	skb->truesize += newtail - oldtail;
1399	return newtail;
1400}
1401
1402/*
1403 * Format an audit message into the audit buffer.  If there isn't enough
1404 * room in the audit buffer, more room will be allocated and vsnprint
1405 * will be called a second time.  Currently, we assume that a printk
1406 * can't format message larger than 1024 bytes, so we don't either.
1407 */
1408static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1409			      va_list args)
1410{
1411	int len, avail;
1412	struct sk_buff *skb;
1413	va_list args2;
1414
1415	if (!ab)
1416		return;
1417
1418	BUG_ON(!ab->skb);
1419	skb = ab->skb;
1420	avail = skb_tailroom(skb);
1421	if (avail == 0) {
1422		avail = audit_expand(ab, AUDIT_BUFSIZ);
1423		if (!avail)
1424			goto out;
1425	}
1426	va_copy(args2, args);
1427	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1428	if (len >= avail) {
1429		/* The printk buffer is 1024 bytes long, so if we get
1430		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1431		 * log everything that printk could have logged. */
1432		avail = audit_expand(ab,
1433			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1434		if (!avail)
1435			goto out_va_end;
1436		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1437	}
1438	if (len > 0)
1439		skb_put(skb, len);
1440out_va_end:
1441	va_end(args2);
1442out:
1443	return;
1444}
1445
1446/**
1447 * audit_log_format - format a message into the audit buffer.
1448 * @ab: audit_buffer
1449 * @fmt: format string
1450 * @...: optional parameters matching @fmt string
1451 *
1452 * All the work is done in audit_log_vformat.
1453 */
1454void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1455{
1456	va_list args;
1457
1458	if (!ab)
1459		return;
1460	va_start(args, fmt);
1461	audit_log_vformat(ab, fmt, args);
1462	va_end(args);
1463}
1464
1465/**
1466 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1467 * @ab: the audit_buffer
1468 * @buf: buffer to convert to hex
1469 * @len: length of @buf to be converted
1470 *
1471 * No return value; failure to expand is silently ignored.
1472 *
1473 * This function will take the passed buf and convert it into a string of
1474 * ascii hex digits. The new string is placed onto the skb.
1475 */
1476void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1477		size_t len)
1478{
1479	int i, avail, new_len;
1480	unsigned char *ptr;
1481	struct sk_buff *skb;
1482
1483	if (!ab)
1484		return;
1485
1486	BUG_ON(!ab->skb);
1487	skb = ab->skb;
1488	avail = skb_tailroom(skb);
1489	new_len = len<<1;
1490	if (new_len >= avail) {
1491		/* Round the buffer request up to the next multiple */
1492		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1493		avail = audit_expand(ab, new_len);
1494		if (!avail)
1495			return;
1496	}
1497
1498	ptr = skb_tail_pointer(skb);
1499	for (i = 0; i < len; i++)
1500		ptr = hex_byte_pack_upper(ptr, buf[i]);
1501	*ptr = 0;
1502	skb_put(skb, len << 1); /* new string is twice the old string */
1503}
1504
1505/*
1506 * Format a string of no more than slen characters into the audit buffer,
1507 * enclosed in quote marks.
1508 */
1509void audit_log_n_string(struct audit_buffer *ab, const char *string,
1510			size_t slen)
1511{
1512	int avail, new_len;
1513	unsigned char *ptr;
1514	struct sk_buff *skb;
1515
1516	if (!ab)
1517		return;
1518
1519	BUG_ON(!ab->skb);
1520	skb = ab->skb;
1521	avail = skb_tailroom(skb);
1522	new_len = slen + 3;	/* enclosing quotes + null terminator */
1523	if (new_len > avail) {
1524		avail = audit_expand(ab, new_len);
1525		if (!avail)
1526			return;
1527	}
1528	ptr = skb_tail_pointer(skb);
1529	*ptr++ = '"';
1530	memcpy(ptr, string, slen);
1531	ptr += slen;
1532	*ptr++ = '"';
1533	*ptr = 0;
1534	skb_put(skb, slen + 2);	/* don't include null terminator */
1535}
1536
1537/**
1538 * audit_string_contains_control - does a string need to be logged in hex
1539 * @string: string to be checked
1540 * @len: max length of the string to check
1541 */
1542int audit_string_contains_control(const char *string, size_t len)
1543{
1544	const unsigned char *p;
1545	for (p = string; p < (const unsigned char *)string + len; p++) {
1546		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1547			return 1;
1548	}
1549	return 0;
1550}
1551
1552/**
1553 * audit_log_n_untrustedstring - log a string that may contain random characters
1554 * @ab: audit_buffer
1555 * @len: length of string (not including trailing null)
1556 * @string: string to be logged
1557 *
1558 * This code will escape a string that is passed to it if the string
1559 * contains a control character, unprintable character, double quote mark,
1560 * or a space. Unescaped strings will start and end with a double quote mark.
1561 * Strings that are escaped are printed in hex (2 digits per char).
1562 *
1563 * The caller specifies the number of characters in the string to log, which may
1564 * or may not be the entire string.
1565 */
1566void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1567				 size_t len)
1568{
1569	if (audit_string_contains_control(string, len))
1570		audit_log_n_hex(ab, string, len);
1571	else
1572		audit_log_n_string(ab, string, len);
1573}
1574
1575/**
1576 * audit_log_untrustedstring - log a string that may contain random characters
1577 * @ab: audit_buffer
1578 * @string: string to be logged
1579 *
1580 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1581 * determine string length.
1582 */
1583void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1584{
1585	audit_log_n_untrustedstring(ab, string, strlen(string));
1586}
1587
1588/* This is a helper-function to print the escaped d_path */
1589void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1590		      const struct path *path)
1591{
1592	char *p, *pathname;
1593
1594	if (prefix)
1595		audit_log_format(ab, "%s", prefix);
1596
1597	/* We will allow 11 spaces for ' (deleted)' to be appended */
1598	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1599	if (!pathname) {
1600		audit_log_string(ab, "<no_memory>");
1601		return;
1602	}
1603	p = d_path(path, pathname, PATH_MAX+11);
1604	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1605		/* FIXME: can we save some information here? */
1606		audit_log_string(ab, "<too_long>");
1607	} else
1608		audit_log_untrustedstring(ab, p);
1609	kfree(pathname);
1610}
1611
1612void audit_log_session_info(struct audit_buffer *ab)
1613{
1614	unsigned int sessionid = audit_get_sessionid(current);
1615	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1616
1617	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1618}
1619
1620void audit_log_key(struct audit_buffer *ab, char *key)
1621{
1622	audit_log_format(ab, " key=");
1623	if (key)
1624		audit_log_untrustedstring(ab, key);
1625	else
1626		audit_log_format(ab, "(null)");
1627}
1628
1629void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1630{
1631	int i;
1632
1633	audit_log_format(ab, " %s=", prefix);
1634	CAP_FOR_EACH_U32(i) {
1635		audit_log_format(ab, "%08x",
1636				 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1637	}
1638}
1639
1640void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1641{
1642	kernel_cap_t *perm = &name->fcap.permitted;
1643	kernel_cap_t *inh = &name->fcap.inheritable;
1644	int log = 0;
1645
1646	if (!cap_isclear(*perm)) {
1647		audit_log_cap(ab, "cap_fp", perm);
1648		log = 1;
1649	}
1650	if (!cap_isclear(*inh)) {
1651		audit_log_cap(ab, "cap_fi", inh);
1652		log = 1;
1653	}
1654
1655	if (log)
1656		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1657				 name->fcap.fE, name->fcap_ver);
1658}
1659
1660static inline int audit_copy_fcaps(struct audit_names *name,
1661				   const struct dentry *dentry)
1662{
1663	struct cpu_vfs_cap_data caps;
1664	int rc;
1665
1666	if (!dentry)
1667		return 0;
1668
1669	rc = get_vfs_caps_from_disk(dentry, &caps);
1670	if (rc)
1671		return rc;
1672
1673	name->fcap.permitted = caps.permitted;
1674	name->fcap.inheritable = caps.inheritable;
1675	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1676	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1677				VFS_CAP_REVISION_SHIFT;
1678
1679	return 0;
1680}
1681
1682/* Copy inode data into an audit_names. */
1683void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1684		      const struct inode *inode)
1685{
1686	name->ino   = inode->i_ino;
1687	name->dev   = inode->i_sb->s_dev;
1688	name->mode  = inode->i_mode;
1689	name->uid   = inode->i_uid;
1690	name->gid   = inode->i_gid;
1691	name->rdev  = inode->i_rdev;
1692	security_inode_getsecid(inode, &name->osid);
1693	audit_copy_fcaps(name, dentry);
1694}
1695
1696/**
1697 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1698 * @context: audit_context for the task
1699 * @n: audit_names structure with reportable details
1700 * @path: optional path to report instead of audit_names->name
1701 * @record_num: record number to report when handling a list of names
1702 * @call_panic: optional pointer to int that will be updated if secid fails
1703 */
1704void audit_log_name(struct audit_context *context, struct audit_names *n,
1705		    struct path *path, int record_num, int *call_panic)
1706{
1707	struct audit_buffer *ab;
1708	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1709	if (!ab)
1710		return;
1711
1712	audit_log_format(ab, "item=%d", record_num);
1713
1714	if (path)
1715		audit_log_d_path(ab, " name=", path);
1716	else if (n->name) {
1717		switch (n->name_len) {
1718		case AUDIT_NAME_FULL:
1719			/* log the full path */
1720			audit_log_format(ab, " name=");
1721			audit_log_untrustedstring(ab, n->name->name);
1722			break;
1723		case 0:
1724			/* name was specified as a relative path and the
1725			 * directory component is the cwd */
1726			audit_log_d_path(ab, " name=", &context->pwd);
1727			break;
1728		default:
1729			/* log the name's directory component */
1730			audit_log_format(ab, " name=");
1731			audit_log_n_untrustedstring(ab, n->name->name,
1732						    n->name_len);
1733		}
1734	} else
1735		audit_log_format(ab, " name=(null)");
1736
1737	if (n->ino != (unsigned long)-1) {
1738		audit_log_format(ab, " inode=%lu"
1739				 " dev=%02x:%02x mode=%#ho"
1740				 " ouid=%u ogid=%u rdev=%02x:%02x",
1741				 n->ino,
1742				 MAJOR(n->dev),
1743				 MINOR(n->dev),
1744				 n->mode,
1745				 from_kuid(&init_user_ns, n->uid),
1746				 from_kgid(&init_user_ns, n->gid),
1747				 MAJOR(n->rdev),
1748				 MINOR(n->rdev));
1749	}
1750	if (n->osid != 0) {
1751		char *ctx = NULL;
1752		u32 len;
1753		if (security_secid_to_secctx(
1754			n->osid, &ctx, &len)) {
1755			audit_log_format(ab, " osid=%u", n->osid);
1756			if (call_panic)
1757				*call_panic = 2;
1758		} else {
1759			audit_log_format(ab, " obj=%s", ctx);
1760			security_release_secctx(ctx, len);
1761		}
1762	}
1763
1764	/* log the audit_names record type */
1765	audit_log_format(ab, " nametype=");
1766	switch(n->type) {
1767	case AUDIT_TYPE_NORMAL:
1768		audit_log_format(ab, "NORMAL");
1769		break;
1770	case AUDIT_TYPE_PARENT:
1771		audit_log_format(ab, "PARENT");
1772		break;
1773	case AUDIT_TYPE_CHILD_DELETE:
1774		audit_log_format(ab, "DELETE");
1775		break;
1776	case AUDIT_TYPE_CHILD_CREATE:
1777		audit_log_format(ab, "CREATE");
1778		break;
1779	default:
1780		audit_log_format(ab, "UNKNOWN");
1781		break;
1782	}
1783
1784	audit_log_fcaps(ab, n);
1785	audit_log_end(ab);
1786}
1787
1788int audit_log_task_context(struct audit_buffer *ab)
1789{
1790	char *ctx = NULL;
1791	unsigned len;
1792	int error;
1793	u32 sid;
1794
1795	security_task_getsecid(current, &sid);
1796	if (!sid)
1797		return 0;
1798
1799	error = security_secid_to_secctx(sid, &ctx, &len);
1800	if (error) {
1801		if (error != -EINVAL)
1802			goto error_path;
1803		return 0;
1804	}
1805
1806	audit_log_format(ab, " subj=%s", ctx);
1807	security_release_secctx(ctx, len);
1808	return 0;
1809
1810error_path:
1811	audit_panic("error in audit_log_task_context");
1812	return error;
1813}
1814EXPORT_SYMBOL(audit_log_task_context);
1815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1817{
1818	const struct cred *cred;
1819	char name[sizeof(tsk->comm)];
1820	struct mm_struct *mm = tsk->mm;
1821	char *tty;
1822
1823	if (!ab)
1824		return;
1825
1826	/* tsk == current */
1827	cred = current_cred();
1828
1829	spin_lock_irq(&tsk->sighand->siglock);
1830	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1831		tty = tsk->signal->tty->name;
1832	else
1833		tty = "(none)";
1834	spin_unlock_irq(&tsk->sighand->siglock);
1835
1836	audit_log_format(ab,
1837			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1838			 " euid=%u suid=%u fsuid=%u"
1839			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1840			 task_ppid_nr(tsk),
1841			 task_pid_nr(tsk),
1842			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1843			 from_kuid(&init_user_ns, cred->uid),
1844			 from_kgid(&init_user_ns, cred->gid),
1845			 from_kuid(&init_user_ns, cred->euid),
1846			 from_kuid(&init_user_ns, cred->suid),
1847			 from_kuid(&init_user_ns, cred->fsuid),
1848			 from_kgid(&init_user_ns, cred->egid),
1849			 from_kgid(&init_user_ns, cred->sgid),
1850			 from_kgid(&init_user_ns, cred->fsgid),
1851			 tty, audit_get_sessionid(tsk));
1852
1853	get_task_comm(name, tsk);
1854	audit_log_format(ab, " comm=");
1855	audit_log_untrustedstring(ab, name);
1856
1857	if (mm) {
1858		down_read(&mm->mmap_sem);
1859		if (mm->exe_file)
1860			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1861		up_read(&mm->mmap_sem);
1862	} else
1863		audit_log_format(ab, " exe=(null)");
1864	audit_log_task_context(ab);
1865}
1866EXPORT_SYMBOL(audit_log_task_info);
1867
1868/**
1869 * audit_log_link_denied - report a link restriction denial
1870 * @operation: specific link opreation
1871 * @link: the path that triggered the restriction
1872 */
1873void audit_log_link_denied(const char *operation, struct path *link)
1874{
1875	struct audit_buffer *ab;
1876	struct audit_names *name;
1877
1878	name = kzalloc(sizeof(*name), GFP_NOFS);
1879	if (!name)
1880		return;
1881
1882	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1883	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1884			     AUDIT_ANOM_LINK);
1885	if (!ab)
1886		goto out;
1887	audit_log_format(ab, "op=%s", operation);
1888	audit_log_task_info(ab, current);
1889	audit_log_format(ab, " res=0");
1890	audit_log_end(ab);
1891
1892	/* Generate AUDIT_PATH record with object. */
1893	name->type = AUDIT_TYPE_NORMAL;
1894	audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1895	audit_log_name(current->audit_context, name, link, 0, NULL);
1896out:
1897	kfree(name);
1898}
1899
1900/**
1901 * audit_log_end - end one audit record
1902 * @ab: the audit_buffer
1903 *
1904 * The netlink_* functions cannot be called inside an irq context, so
1905 * the audit buffer is placed on a queue and a tasklet is scheduled to
1906 * remove them from the queue outside the irq context.  May be called in
1907 * any context.
1908 */
1909void audit_log_end(struct audit_buffer *ab)
1910{
 
 
 
1911	if (!ab)
1912		return;
1913	if (!audit_rate_check()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1914		audit_log_lost("rate limit exceeded");
1915	} else {
1916		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1917		nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1918
1919		if (audit_pid) {
1920			skb_queue_tail(&audit_skb_queue, ab->skb);
1921			wake_up_interruptible(&kauditd_wait);
1922		} else {
1923			audit_printk_skb(ab->skb);
1924		}
1925		ab->skb = NULL;
1926	}
1927	audit_buffer_free(ab);
1928}
1929
1930/**
1931 * audit_log - Log an audit record
1932 * @ctx: audit context
1933 * @gfp_mask: type of allocation
1934 * @type: audit message type
1935 * @fmt: format string to use
1936 * @...: variable parameters matching the format string
1937 *
1938 * This is a convenience function that calls audit_log_start,
1939 * audit_log_vformat, and audit_log_end.  It may be called
1940 * in any context.
1941 */
1942void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1943	       const char *fmt, ...)
1944{
1945	struct audit_buffer *ab;
1946	va_list args;
1947
1948	ab = audit_log_start(ctx, gfp_mask, type);
1949	if (ab) {
1950		va_start(args, fmt);
1951		audit_log_vformat(ab, fmt, args);
1952		va_end(args);
1953		audit_log_end(ab);
1954	}
1955}
1956
1957#ifdef CONFIG_SECURITY
1958/**
1959 * audit_log_secctx - Converts and logs SELinux context
1960 * @ab: audit_buffer
1961 * @secid: security number
1962 *
1963 * This is a helper function that calls security_secid_to_secctx to convert
1964 * secid to secctx and then adds the (converted) SELinux context to the audit
1965 * log by calling audit_log_format, thus also preventing leak of internal secid
1966 * to userspace. If secid cannot be converted audit_panic is called.
1967 */
1968void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1969{
1970	u32 len;
1971	char *secctx;
1972
1973	if (security_secid_to_secctx(secid, &secctx, &len)) {
1974		audit_panic("Cannot convert secid to context");
1975	} else {
1976		audit_log_format(ab, " obj=%s", secctx);
1977		security_release_secctx(secctx, len);
1978	}
1979}
1980EXPORT_SYMBOL(audit_log_secctx);
1981#endif
1982
1983EXPORT_SYMBOL(audit_log_start);
1984EXPORT_SYMBOL(audit_log_end);
1985EXPORT_SYMBOL(audit_log_format);
1986EXPORT_SYMBOL(audit_log);