Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 
 
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to readpage,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 
 
 
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p = NULL;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 308		if (p)
 309			kunmap(bh_result->b_page);
 310		if (result == IO_ERROR)
 311			return -EIO;
 312		/*
 313		 * We do not return -ENOENT if there is a hole but page is
 314		 * uptodate, because it means that there is some MMAPED data
 315		 * associated with it that is yet to be written to disk.
 316		 */
 317		if ((args & GET_BLOCK_NO_HOLE)
 318		    && !PageUptodate(bh_result->b_page)) {
 319			return -ENOENT;
 320		}
 321		return 0;
 322	}
 323
 324	bh = get_last_bh(&path);
 325	ih = tp_item_head(&path);
 326	if (is_indirect_le_ih(ih)) {
 327		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 328
 329		/*
 330		 * FIXME: here we could cache indirect item or part of it in
 331		 * the inode to avoid search_by_key in case of subsequent
 332		 * access to file
 333		 */
 334		blocknr = get_block_num(ind_item, path.pos_in_item);
 335		ret = 0;
 336		if (blocknr) {
 337			map_bh(bh_result, inode->i_sb, blocknr);
 338			if (path.pos_in_item ==
 339			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 340				set_buffer_boundary(bh_result);
 341			}
 342		} else
 343			/*
 344			 * We do not return -ENOENT if there is a hole but
 345			 * page is uptodate, because it means that there is
 346			 * some MMAPED data associated with it that is
 347			 * yet to be written to disk.
 348			 */
 349		if ((args & GET_BLOCK_NO_HOLE)
 350			    && !PageUptodate(bh_result->b_page)) {
 351			ret = -ENOENT;
 352		}
 353
 354		pathrelse(&path);
 355		if (p)
 356			kunmap(bh_result->b_page);
 357		return ret;
 358	}
 359	/* requested data are in direct item(s) */
 360	if (!(args & GET_BLOCK_READ_DIRECT)) {
 361		/*
 362		 * we are called by bmap. FIXME: we can not map block of file
 363		 * when it is stored in direct item(s)
 364		 */
 365		pathrelse(&path);
 366		if (p)
 367			kunmap(bh_result->b_page);
 368		return -ENOENT;
 369	}
 370
 371	/*
 372	 * if we've got a direct item, and the buffer or page was uptodate,
 373	 * we don't want to pull data off disk again.  skip to the
 374	 * end, where we map the buffer and return
 375	 */
 376	if (buffer_uptodate(bh_result)) {
 377		goto finished;
 378	} else
 379		/*
 380		 * grab_tail_page can trigger calls to reiserfs_get_block on
 381		 * up to date pages without any buffers.  If the page is up
 382		 * to date, we don't want read old data off disk.  Set the up
 383		 * to date bit on the buffer instead and jump to the end
 384		 */
 385	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 386		set_buffer_uptodate(bh_result);
 387		goto finished;
 388	}
 389	/* read file tail into part of page */
 390	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 391	copy_item_head(&tmp_ih, ih);
 392
 393	/*
 394	 * we only want to kmap if we are reading the tail into the page.
 395	 * this is not the common case, so we don't kmap until we are
 396	 * sure we need to.  But, this means the item might move if
 397	 * kmap schedules
 398	 */
 399	if (!p)
 400		p = (char *)kmap(bh_result->b_page);
 401
 402	p += offset;
 403	memset(p, 0, inode->i_sb->s_blocksize);
 404	do {
 405		if (!is_direct_le_ih(ih)) {
 406			BUG();
 407		}
 408		/*
 409		 * make sure we don't read more bytes than actually exist in
 410		 * the file.  This can happen in odd cases where i_size isn't
 411		 * correct, and when direct item padding results in a few
 412		 * extra bytes at the end of the direct item
 413		 */
 414		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 415			break;
 416		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 417			chars =
 418			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 419			    path.pos_in_item;
 420			done = 1;
 421		} else {
 422			chars = ih_item_len(ih) - path.pos_in_item;
 423		}
 424		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 425
 426		if (done)
 427			break;
 428
 429		p += chars;
 430
 431		/*
 432		 * we done, if read direct item is not the last item of
 433		 * node FIXME: we could try to check right delimiting key
 434		 * to see whether direct item continues in the right
 435		 * neighbor or rely on i_size
 436		 */
 437		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 
 
 
 
 438			break;
 439
 440		/* update key to look for the next piece */
 441		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 442		result = search_for_position_by_key(inode->i_sb, &key, &path);
 443		if (result != POSITION_FOUND)
 444			/* i/o error most likely */
 445			break;
 446		bh = get_last_bh(&path);
 447		ih = tp_item_head(&path);
 448	} while (1);
 449
 450	flush_dcache_page(bh_result->b_page);
 451	kunmap(bh_result->b_page);
 452
 453finished:
 454	pathrelse(&path);
 455
 456	if (result == IO_ERROR)
 457		return -EIO;
 458
 459	/*
 460	 * this buffer has valid data, but isn't valid for io.  mapping it to
 461	 * block #0 tells the rest of reiserfs it just has a tail in it
 462	 */
 463	map_bh(bh_result, inode->i_sb, 0);
 464	set_buffer_uptodate(bh_result);
 465	return 0;
 466}
 467
 468/*
 469 * this is called to create file map. So, _get_block_create_0 will not
 470 * read direct item
 471 */
 472static int reiserfs_bmap(struct inode *inode, sector_t block,
 473			 struct buffer_head *bh_result, int create)
 474{
 475	if (!file_capable(inode, block))
 476		return -EFBIG;
 477
 478	reiserfs_write_lock(inode->i_sb);
 479	/* do not read the direct item */
 480	_get_block_create_0(inode, block, bh_result, 0);
 481	reiserfs_write_unlock(inode->i_sb);
 482	return 0;
 483}
 484
 485/*
 486 * special version of get_block that is only used by grab_tail_page right
 487 * now.  It is sent to __block_write_begin, and when you try to get a
 488 * block past the end of the file (or a block from a hole) it returns
 489 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 490 * be able to do i/o on the buffers returned, unless an error value
 491 * is also returned.
 492 *
 493 * So, this allows __block_write_begin to be used for reading a single block
 494 * in a page.  Where it does not produce a valid page for holes, or past the
 495 * end of the file.  This turns out to be exactly what we need for reading
 496 * tails for conversion.
 497 *
 498 * The point of the wrapper is forcing a certain value for create, even
 499 * though the VFS layer is calling this function with create==1.  If you
 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 501 * don't use this function.
 502*/
 503static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 504				       struct buffer_head *bh_result,
 505				       int create)
 506{
 507	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 508}
 509
 510/*
 511 * This is special helper for reiserfs_get_block in case we are executing
 512 * direct_IO request.
 513 */
 514static int reiserfs_get_blocks_direct_io(struct inode *inode,
 515					 sector_t iblock,
 516					 struct buffer_head *bh_result,
 517					 int create)
 518{
 519	int ret;
 520
 521	bh_result->b_page = NULL;
 522
 523	/*
 524	 * We set the b_size before reiserfs_get_block call since it is
 525	 * referenced in convert_tail_for_hole() that may be called from
 526	 * reiserfs_get_block()
 527	 */
 528	bh_result->b_size = i_blocksize(inode);
 529
 530	ret = reiserfs_get_block(inode, iblock, bh_result,
 531				 create | GET_BLOCK_NO_DANGLE);
 532	if (ret)
 533		goto out;
 534
 535	/* don't allow direct io onto tail pages */
 536	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 537		/*
 538		 * make sure future calls to the direct io funcs for this
 539		 * offset in the file fail by unmapping the buffer
 540		 */
 541		clear_buffer_mapped(bh_result);
 542		ret = -EINVAL;
 543	}
 544
 545	/*
 546	 * Possible unpacked tail. Flush the data before pages have
 547	 * disappeared
 548	 */
 549	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 550		int err;
 551
 552		reiserfs_write_lock(inode->i_sb);
 553
 554		err = reiserfs_commit_for_inode(inode);
 555		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 556
 557		reiserfs_write_unlock(inode->i_sb);
 558
 559		if (err < 0)
 560			ret = err;
 561	}
 562out:
 563	return ret;
 564}
 565
 566/*
 567 * helper function for when reiserfs_get_block is called for a hole
 568 * but the file tail is still in a direct item
 569 * bh_result is the buffer head for the hole
 570 * tail_offset is the offset of the start of the tail in the file
 571 *
 572 * This calls prepare_write, which will start a new transaction
 573 * you should not be in a transaction, or have any paths held when you
 574 * call this.
 575 */
 576static int convert_tail_for_hole(struct inode *inode,
 577				 struct buffer_head *bh_result,
 578				 loff_t tail_offset)
 579{
 580	unsigned long index;
 581	unsigned long tail_end;
 582	unsigned long tail_start;
 583	struct page *tail_page;
 584	struct page *hole_page = bh_result->b_page;
 585	int retval = 0;
 586
 587	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 588		return -EIO;
 589
 590	/* always try to read until the end of the block */
 591	tail_start = tail_offset & (PAGE_SIZE - 1);
 592	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 593
 594	index = tail_offset >> PAGE_SHIFT;
 595	/*
 596	 * hole_page can be zero in case of direct_io, we are sure
 597	 * that we cannot get here if we write with O_DIRECT into tail page
 598	 */
 599	if (!hole_page || index != hole_page->index) {
 600		tail_page = grab_cache_page(inode->i_mapping, index);
 601		retval = -ENOMEM;
 602		if (!tail_page) {
 603			goto out;
 604		}
 605	} else {
 606		tail_page = hole_page;
 607	}
 608
 609	/*
 610	 * we don't have to make sure the conversion did not happen while
 611	 * we were locking the page because anyone that could convert
 612	 * must first take i_mutex.
 613	 *
 614	 * We must fix the tail page for writing because it might have buffers
 615	 * that are mapped, but have a block number of 0.  This indicates tail
 616	 * data that has been read directly into the page, and
 617	 * __block_write_begin won't trigger a get_block in this case.
 618	 */
 619	fix_tail_page_for_writing(tail_page);
 620	retval = __reiserfs_write_begin(tail_page, tail_start,
 621				      tail_end - tail_start);
 622	if (retval)
 623		goto unlock;
 624
 625	/* tail conversion might change the data in the page */
 626	flush_dcache_page(tail_page);
 627
 628	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 629
 630unlock:
 631	if (tail_page != hole_page) {
 632		unlock_page(tail_page);
 633		put_page(tail_page);
 634	}
 635out:
 636	return retval;
 637}
 638
 639static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 640				  sector_t block,
 641				  struct inode *inode,
 642				  b_blocknr_t * allocated_block_nr,
 643				  struct treepath *path, int flags)
 644{
 645	BUG_ON(!th->t_trans_id);
 646
 647#ifdef REISERFS_PREALLOCATE
 648	if (!(flags & GET_BLOCK_NO_IMUX)) {
 649		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 650						  path, block);
 651	}
 652#endif
 653	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 654					 block);
 655}
 656
 657int reiserfs_get_block(struct inode *inode, sector_t block,
 658		       struct buffer_head *bh_result, int create)
 659{
 660	int repeat, retval = 0;
 661	/* b_blocknr_t is (unsigned) 32 bit int*/
 662	b_blocknr_t allocated_block_nr = 0;
 663	INITIALIZE_PATH(path);
 664	int pos_in_item;
 665	struct cpu_key key;
 666	struct buffer_head *bh, *unbh = NULL;
 667	struct item_head *ih, tmp_ih;
 668	__le32 *item;
 669	int done;
 670	int fs_gen;
 671	struct reiserfs_transaction_handle *th = NULL;
 672	/*
 673	 * space reserved in transaction batch:
 674	 * . 3 balancings in direct->indirect conversion
 675	 * . 1 block involved into reiserfs_update_sd()
 676	 * XXX in practically impossible worst case direct2indirect()
 677	 * can incur (much) more than 3 balancings.
 678	 * quota update for user, group
 679	 */
 680	int jbegin_count =
 681	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 682	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 683	int version;
 684	int dangle = 1;
 685	loff_t new_offset =
 686	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 687
 688	reiserfs_write_lock(inode->i_sb);
 689	version = get_inode_item_key_version(inode);
 690
 691	if (!file_capable(inode, block)) {
 692		reiserfs_write_unlock(inode->i_sb);
 693		return -EFBIG;
 694	}
 695
 696	/*
 697	 * if !create, we aren't changing the FS, so we don't need to
 698	 * log anything, so we don't need to start a transaction
 699	 */
 700	if (!(create & GET_BLOCK_CREATE)) {
 701		int ret;
 702		/* find number of block-th logical block of the file */
 703		ret = _get_block_create_0(inode, block, bh_result,
 704					  create | GET_BLOCK_READ_DIRECT);
 705		reiserfs_write_unlock(inode->i_sb);
 706		return ret;
 707	}
 708
 709	/*
 710	 * if we're already in a transaction, make sure to close
 711	 * any new transactions we start in this func
 712	 */
 713	if ((create & GET_BLOCK_NO_DANGLE) ||
 714	    reiserfs_transaction_running(inode->i_sb))
 715		dangle = 0;
 716
 717	/*
 718	 * If file is of such a size, that it might have a tail and
 719	 * tails are enabled  we should mark it as possibly needing
 720	 * tail packing on close
 721	 */
 722	if ((have_large_tails(inode->i_sb)
 723	     && inode->i_size < i_block_size(inode) * 4)
 724	    || (have_small_tails(inode->i_sb)
 725		&& inode->i_size < i_block_size(inode)))
 726		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 727
 728	/* set the key of the first byte in the 'block'-th block of file */
 729	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 730	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 731start_trans:
 732		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 733		if (!th) {
 734			retval = -ENOMEM;
 735			goto failure;
 736		}
 737		reiserfs_update_inode_transaction(inode);
 738	}
 739research:
 740
 741	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 742	if (retval == IO_ERROR) {
 743		retval = -EIO;
 744		goto failure;
 745	}
 746
 747	bh = get_last_bh(&path);
 748	ih = tp_item_head(&path);
 749	item = tp_item_body(&path);
 750	pos_in_item = path.pos_in_item;
 751
 752	fs_gen = get_generation(inode->i_sb);
 753	copy_item_head(&tmp_ih, ih);
 754
 755	if (allocation_needed
 756	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 757		/* we have to allocate block for the unformatted node */
 758		if (!th) {
 759			pathrelse(&path);
 760			goto start_trans;
 761		}
 762
 763		repeat =
 764		    _allocate_block(th, block, inode, &allocated_block_nr,
 765				    &path, create);
 766
 767		/*
 768		 * restart the transaction to give the journal a chance to free
 769		 * some blocks.  releases the path, so we have to go back to
 770		 * research if we succeed on the second try
 771		 */
 772		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 
 
 
 
 773			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 774			retval = restart_transaction(th, inode, &path);
 775			if (retval)
 776				goto failure;
 777			repeat =
 778			    _allocate_block(th, block, inode,
 779					    &allocated_block_nr, NULL, create);
 780
 781			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 782				goto research;
 783			}
 784			if (repeat == QUOTA_EXCEEDED)
 785				retval = -EDQUOT;
 786			else
 787				retval = -ENOSPC;
 788			goto failure;
 789		}
 790
 791		if (fs_changed(fs_gen, inode->i_sb)
 792		    && item_moved(&tmp_ih, &path)) {
 793			goto research;
 794		}
 795	}
 796
 797	if (indirect_item_found(retval, ih)) {
 798		b_blocknr_t unfm_ptr;
 799		/*
 800		 * 'block'-th block is in the file already (there is
 801		 * corresponding cell in some indirect item). But it may be
 802		 * zero unformatted node pointer (hole)
 803		 */
 804		unfm_ptr = get_block_num(item, pos_in_item);
 805		if (unfm_ptr == 0) {
 806			/* use allocated block to plug the hole */
 807			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 808			if (fs_changed(fs_gen, inode->i_sb)
 809			    && item_moved(&tmp_ih, &path)) {
 810				reiserfs_restore_prepared_buffer(inode->i_sb,
 811								 bh);
 812				goto research;
 813			}
 814			set_buffer_new(bh_result);
 815			if (buffer_dirty(bh_result)
 816			    && reiserfs_data_ordered(inode->i_sb))
 817				reiserfs_add_ordered_list(inode, bh_result);
 818			put_block_num(item, pos_in_item, allocated_block_nr);
 819			unfm_ptr = allocated_block_nr;
 820			journal_mark_dirty(th, bh);
 821			reiserfs_update_sd(th, inode);
 822		}
 823		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 824		pathrelse(&path);
 825		retval = 0;
 826		if (!dangle && th)
 827			retval = reiserfs_end_persistent_transaction(th);
 828
 829		reiserfs_write_unlock(inode->i_sb);
 830
 831		/*
 832		 * the item was found, so new blocks were not added to the file
 833		 * there is no need to make sure the inode is updated with this
 834		 * transaction
 835		 */
 836		return retval;
 837	}
 838
 839	if (!th) {
 840		pathrelse(&path);
 841		goto start_trans;
 842	}
 843
 844	/*
 845	 * desired position is not found or is in the direct item. We have
 846	 * to append file with holes up to 'block'-th block converting
 847	 * direct items to indirect one if necessary
 848	 */
 849	done = 0;
 850	do {
 851		if (is_statdata_le_ih(ih)) {
 852			__le32 unp = 0;
 853			struct cpu_key tmp_key;
 854
 855			/* indirect item has to be inserted */
 856			make_le_item_head(&tmp_ih, &key, version, 1,
 857					  TYPE_INDIRECT, UNFM_P_SIZE,
 858					  0 /* free_space */ );
 859
 860			/*
 861			 * we are going to add 'block'-th block to the file.
 862			 * Use allocated block for that
 863			 */
 864			if (cpu_key_k_offset(&key) == 1) {
 
 
 865				unp = cpu_to_le32(allocated_block_nr);
 866				set_block_dev_mapped(bh_result,
 867						     allocated_block_nr, inode);
 868				set_buffer_new(bh_result);
 869				done = 1;
 870			}
 871			tmp_key = key;	/* ;) */
 872			set_cpu_key_k_offset(&tmp_key, 1);
 873			PATH_LAST_POSITION(&path)++;
 874
 875			retval =
 876			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 877						 inode, (char *)&unp);
 878			if (retval) {
 879				reiserfs_free_block(th, inode,
 880						    allocated_block_nr, 1);
 881				/*
 882				 * retval == -ENOSPC, -EDQUOT or -EIO
 883				 * or -EEXIST
 884				 */
 885				goto failure;
 886			}
 
 887		} else if (is_direct_le_ih(ih)) {
 888			/* direct item has to be converted */
 889			loff_t tail_offset;
 890
 891			tail_offset =
 892			    ((le_ih_k_offset(ih) -
 893			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 894
 895			/*
 896			 * direct item we just found fits into block we have
 897			 * to map. Convert it into unformatted node: use
 898			 * bh_result for the conversion
 899			 */
 900			if (tail_offset == cpu_key_k_offset(&key)) {
 
 
 
 901				set_block_dev_mapped(bh_result,
 902						     allocated_block_nr, inode);
 903				unbh = bh_result;
 904				done = 1;
 905			} else {
 906				/*
 907				 * we have to pad file tail stored in direct
 908				 * item(s) up to block size and convert it
 909				 * to unformatted node. FIXME: this should
 910				 * also get into page cache
 911				 */
 912
 913				pathrelse(&path);
 914				/*
 915				 * ugly, but we can only end the transaction if
 916				 * we aren't nested
 917				 */
 918				BUG_ON(!th->t_refcount);
 919				if (th->t_refcount == 1) {
 920					retval =
 921					    reiserfs_end_persistent_transaction
 922					    (th);
 923					th = NULL;
 924					if (retval)
 925						goto failure;
 926				}
 927
 928				retval =
 929				    convert_tail_for_hole(inode, bh_result,
 930							  tail_offset);
 931				if (retval) {
 932					if (retval != -ENOSPC)
 933						reiserfs_error(inode->i_sb,
 934							"clm-6004",
 935							"convert tail failed "
 936							"inode %lu, error %d",
 937							inode->i_ino,
 938							retval);
 939					if (allocated_block_nr) {
 940						/*
 941						 * the bitmap, the super,
 942						 * and the stat data == 3
 943						 */
 944						if (!th)
 945							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 946						if (th)
 947							reiserfs_free_block(th,
 948									    inode,
 949									    allocated_block_nr,
 950									    1);
 951					}
 952					goto failure;
 953				}
 954				goto research;
 955			}
 956			retval =
 957			    direct2indirect(th, inode, &path, unbh,
 958					    tail_offset);
 959			if (retval) {
 960				reiserfs_unmap_buffer(unbh);
 961				reiserfs_free_block(th, inode,
 962						    allocated_block_nr, 1);
 963				goto failure;
 964			}
 965			/*
 966			 * it is important the set_buffer_uptodate is done
 967			 * after the direct2indirect.  The buffer might
 968			 * contain valid data newer than the data on disk
 969			 * (read by readpage, changed, and then sent here by
 970			 * writepage).  direct2indirect needs to know if unbh
 971			 * was already up to date, so it can decide if the
 972			 * data in unbh needs to be replaced with data from
 973			 * the disk
 974			 */
 975			set_buffer_uptodate(unbh);
 976
 977			/*
 978			 * unbh->b_page == NULL in case of DIRECT_IO request,
 979			 * this means buffer will disappear shortly, so it
 980			 * should not be added to
 981			 */
 982			if (unbh->b_page) {
 983				/*
 984				 * we've converted the tail, so we must
 985				 * flush unbh before the transaction commits
 986				 */
 987				reiserfs_add_tail_list(inode, unbh);
 988
 989				/*
 990				 * mark it dirty now to prevent commit_write
 991				 * from adding this buffer to the inode's
 992				 * dirty buffer list
 993				 */
 994				/*
 995				 * AKPM: changed __mark_buffer_dirty to
 996				 * mark_buffer_dirty().  It's still atomic,
 997				 * but it sets the page dirty too, which makes
 998				 * it eligible for writeback at any time by the
 999				 * VM (which was also the case with
1000				 * __mark_buffer_dirty())
1001				 */
1002				mark_buffer_dirty(unbh);
1003			}
1004		} else {
1005			/*
1006			 * append indirect item with holes if needed, when
1007			 * appending pointer to 'block'-th block use block,
1008			 * which is already allocated
1009			 */
1010			struct cpu_key tmp_key;
1011			/*
1012			 * We use this in case we need to allocate
1013			 * only one block which is a fastpath
1014			 */
1015			unp_t unf_single = 0;
1016			unp_t *un;
1017			__u64 max_to_insert =
1018			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019			    UNFM_P_SIZE;
1020			__u64 blocks_needed;
1021
1022			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023			       "vs-804: invalid position for append");
1024			/*
1025			 * indirect item has to be appended,
1026			 * set up key of that position
1027			 * (key type is unimportant)
1028			 */
1029			make_cpu_key(&tmp_key, inode,
1030				     le_key_k_offset(version,
1031						     &ih->ih_key) +
1032				     op_bytes_number(ih,
1033						     inode->i_sb->s_blocksize),
1034				     TYPE_INDIRECT, 3);
 
1035
1036			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037			       "green-805: invalid offset");
1038			blocks_needed =
1039			    1 +
1040			    ((cpu_key_k_offset(&key) -
1041			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042			     s_blocksize_bits);
1043
1044			if (blocks_needed == 1) {
1045				un = &unf_single;
1046			} else {
1047				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
1048				if (!un) {
1049					un = &unf_single;
1050					blocks_needed = 1;
1051					max_to_insert = 0;
1052				}
1053			}
1054			if (blocks_needed <= max_to_insert) {
1055				/*
1056				 * we are going to add target block to
1057				 * the file. Use allocated block for that
1058				 */
1059				un[blocks_needed - 1] =
1060				    cpu_to_le32(allocated_block_nr);
1061				set_block_dev_mapped(bh_result,
1062						     allocated_block_nr, inode);
1063				set_buffer_new(bh_result);
1064				done = 1;
1065			} else {
1066				/* paste hole to the indirect item */
1067				/*
1068				 * If kmalloc failed, max_to_insert becomes
1069				 * zero and it means we only have space for
1070				 * one block
1071				 */
1072				blocks_needed =
1073				    max_to_insert ? max_to_insert : 1;
1074			}
1075			retval =
1076			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1077						     (char *)un,
1078						     UNFM_P_SIZE *
1079						     blocks_needed);
1080
1081			if (blocks_needed != 1)
1082				kfree(un);
1083
1084			if (retval) {
1085				reiserfs_free_block(th, inode,
1086						    allocated_block_nr, 1);
1087				goto failure;
1088			}
1089			if (!done) {
1090				/*
1091				 * We need to mark new file size in case
1092				 * this function will be interrupted/aborted
1093				 * later on. And we may do this only for
1094				 * holes.
1095				 */
1096				inode->i_size +=
1097				    inode->i_sb->s_blocksize * blocks_needed;
1098			}
1099		}
1100
1101		if (done == 1)
1102			break;
1103
1104		/*
1105		 * this loop could log more blocks than we had originally
1106		 * asked for.  So, we have to allow the transaction to end
1107		 * if it is too big or too full.  Update the inode so things
1108		 * are consistent if we crash before the function returns
1109		 * release the path so that anybody waiting on the path before
1110		 * ending their transaction will be able to continue.
1111		 */
1112		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1113			retval = restart_transaction(th, inode, &path);
1114			if (retval)
1115				goto failure;
1116		}
1117		/*
1118		 * inserting indirect pointers for a hole can take a
1119		 * long time.  reschedule if needed and also release the write
1120		 * lock for others.
1121		 */
1122		reiserfs_cond_resched(inode->i_sb);
1123
1124		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1125		if (retval == IO_ERROR) {
1126			retval = -EIO;
1127			goto failure;
1128		}
1129		if (retval == POSITION_FOUND) {
1130			reiserfs_warning(inode->i_sb, "vs-825",
1131					 "%K should not be found", &key);
1132			retval = -EEXIST;
1133			if (allocated_block_nr)
1134				reiserfs_free_block(th, inode,
1135						    allocated_block_nr, 1);
1136			pathrelse(&path);
1137			goto failure;
1138		}
1139		bh = get_last_bh(&path);
1140		ih = tp_item_head(&path);
1141		item = tp_item_body(&path);
1142		pos_in_item = path.pos_in_item;
1143	} while (1);
1144
1145	retval = 0;
1146
1147failure:
1148	if (th && (!dangle || (retval && !th->t_trans_id))) {
1149		int err;
1150		if (th->t_trans_id)
1151			reiserfs_update_sd(th, inode);
1152		err = reiserfs_end_persistent_transaction(th);
1153		if (err)
1154			retval = err;
1155	}
1156
1157	reiserfs_write_unlock(inode->i_sb);
1158	reiserfs_check_path(&path);
1159	return retval;
1160}
1161
1162static int
1163reiserfs_readpages(struct file *file, struct address_space *mapping,
1164		   struct list_head *pages, unsigned nr_pages)
1165{
1166	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1167}
1168
1169/*
1170 * Compute real number of used bytes by file
1171 * Following three functions can go away when we'll have enough space in
1172 * stat item
1173 */
1174static int real_space_diff(struct inode *inode, int sd_size)
1175{
1176	int bytes;
1177	loff_t blocksize = inode->i_sb->s_blocksize;
1178
1179	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1180		return sd_size;
1181
1182	/*
1183	 * End of file is also in full block with indirect reference, so round
1184	 * up to the next block.
1185	 *
1186	 * there is just no way to know if the tail is actually packed
1187	 * on the file, so we have to assume it isn't.  When we pack the
1188	 * tail, we add 4 bytes to pretend there really is an unformatted
1189	 * node pointer
1190	 */
1191	bytes =
1192	    ((inode->i_size +
1193	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1194	    sd_size;
1195	return bytes;
1196}
1197
1198static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1199					int sd_size)
1200{
1201	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1202		return inode->i_size +
1203		    (loff_t) (real_space_diff(inode, sd_size));
1204	}
1205	return ((loff_t) real_space_diff(inode, sd_size)) +
1206	    (((loff_t) blocks) << 9);
1207}
1208
1209/* Compute number of blocks used by file in ReiserFS counting */
1210static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1211{
1212	loff_t bytes = inode_get_bytes(inode);
1213	loff_t real_space = real_space_diff(inode, sd_size);
1214
1215	/* keeps fsck and non-quota versions of reiserfs happy */
1216	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1217		bytes += (loff_t) 511;
1218	}
1219
1220	/*
1221	 * files from before the quota patch might i_blocks such that
1222	 * bytes < real_space.  Deal with that here to prevent it from
1223	 * going negative.
1224	 */
1225	if (bytes < real_space)
1226		return 0;
1227	return (bytes - real_space) >> 9;
1228}
1229
1230/*
1231 * BAD: new directories have stat data of new type and all other items
1232 * of old type. Version stored in the inode says about body items, so
1233 * in update_stat_data we can not rely on inode, but have to check
1234 * item version directly
1235 */
1236
1237/* called by read_locked_inode */
1238static void init_inode(struct inode *inode, struct treepath *path)
1239{
1240	struct buffer_head *bh;
1241	struct item_head *ih;
1242	__u32 rdev;
 
1243
1244	bh = PATH_PLAST_BUFFER(path);
1245	ih = tp_item_head(path);
1246
1247	copy_key(INODE_PKEY(inode), &ih->ih_key);
1248
1249	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1250	REISERFS_I(inode)->i_flags = 0;
1251	REISERFS_I(inode)->i_prealloc_block = 0;
1252	REISERFS_I(inode)->i_prealloc_count = 0;
1253	REISERFS_I(inode)->i_trans_id = 0;
1254	REISERFS_I(inode)->i_jl = NULL;
1255	reiserfs_init_xattr_rwsem(inode);
1256
1257	if (stat_data_v1(ih)) {
1258		struct stat_data_v1 *sd =
1259		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1260		unsigned long blocks;
1261
1262		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1263		set_inode_sd_version(inode, STAT_DATA_V1);
1264		inode->i_mode = sd_v1_mode(sd);
1265		set_nlink(inode, sd_v1_nlink(sd));
1266		i_uid_write(inode, sd_v1_uid(sd));
1267		i_gid_write(inode, sd_v1_gid(sd));
1268		inode->i_size = sd_v1_size(sd);
1269		inode->i_atime.tv_sec = sd_v1_atime(sd);
1270		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1271		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1272		inode->i_atime.tv_nsec = 0;
1273		inode->i_ctime.tv_nsec = 0;
1274		inode->i_mtime.tv_nsec = 0;
1275
1276		inode->i_blocks = sd_v1_blocks(sd);
1277		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1278		blocks = (inode->i_size + 511) >> 9;
1279		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1280
1281		/*
1282		 * there was a bug in <=3.5.23 when i_blocks could take
1283		 * negative values. Starting from 3.5.17 this value could
1284		 * even be stored in stat data. For such files we set
1285		 * i_blocks based on file size. Just 2 notes: this can be
1286		 * wrong for sparse files. On-disk value will be only
1287		 * updated if file's inode will ever change
1288		 */
1289		if (inode->i_blocks > blocks) {
 
 
 
 
 
1290			inode->i_blocks = blocks;
1291		}
1292
1293		rdev = sd_v1_rdev(sd);
1294		REISERFS_I(inode)->i_first_direct_byte =
1295		    sd_v1_first_direct_byte(sd);
1296
1297		/*
1298		 * an early bug in the quota code can give us an odd
1299		 * number for the block count.  This is incorrect, fix it here.
1300		 */
1301		if (inode->i_blocks & 1) {
1302			inode->i_blocks++;
1303		}
1304		inode_set_bytes(inode,
1305				to_real_used_space(inode, inode->i_blocks,
1306						   SD_V1_SIZE));
1307		/*
1308		 * nopack is initially zero for v1 objects. For v2 objects,
1309		 * nopack is initialised from sd_attrs
1310		 */
1311		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1312	} else {
1313		/*
1314		 * new stat data found, but object may have old items
1315		 * (directories and symlinks)
1316		 */
1317		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1318
1319		inode->i_mode = sd_v2_mode(sd);
1320		set_nlink(inode, sd_v2_nlink(sd));
1321		i_uid_write(inode, sd_v2_uid(sd));
1322		inode->i_size = sd_v2_size(sd);
1323		i_gid_write(inode, sd_v2_gid(sd));
1324		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1325		inode->i_atime.tv_sec = sd_v2_atime(sd);
1326		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1327		inode->i_ctime.tv_nsec = 0;
1328		inode->i_mtime.tv_nsec = 0;
1329		inode->i_atime.tv_nsec = 0;
1330		inode->i_blocks = sd_v2_blocks(sd);
1331		rdev = sd_v2_rdev(sd);
1332		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1333			inode->i_generation =
1334			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1335		else
1336			inode->i_generation = sd_v2_generation(sd);
1337
1338		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1339			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1340		else
1341			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1342		REISERFS_I(inode)->i_first_direct_byte = 0;
1343		set_inode_sd_version(inode, STAT_DATA_V2);
1344		inode_set_bytes(inode,
1345				to_real_used_space(inode, inode->i_blocks,
1346						   SD_V2_SIZE));
1347		/*
1348		 * read persistent inode attributes from sd and initialise
1349		 * generic inode flags from them
1350		 */
1351		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1352		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1353	}
1354
1355	pathrelse(path);
1356	if (S_ISREG(inode->i_mode)) {
1357		inode->i_op = &reiserfs_file_inode_operations;
1358		inode->i_fop = &reiserfs_file_operations;
1359		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1360	} else if (S_ISDIR(inode->i_mode)) {
1361		inode->i_op = &reiserfs_dir_inode_operations;
1362		inode->i_fop = &reiserfs_dir_operations;
1363	} else if (S_ISLNK(inode->i_mode)) {
1364		inode->i_op = &reiserfs_symlink_inode_operations;
1365		inode_nohighmem(inode);
1366		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1367	} else {
1368		inode->i_blocks = 0;
1369		inode->i_op = &reiserfs_special_inode_operations;
1370		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1371	}
1372}
1373
1374/* update new stat data with inode fields */
1375static void inode2sd(void *sd, struct inode *inode, loff_t size)
1376{
1377	struct stat_data *sd_v2 = (struct stat_data *)sd;
 
1378
1379	set_sd_v2_mode(sd_v2, inode->i_mode);
1380	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1381	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1382	set_sd_v2_size(sd_v2, size);
1383	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1384	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1385	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1386	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1387	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1388	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1389		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1390	else
1391		set_sd_v2_generation(sd_v2, inode->i_generation);
1392	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
 
 
1393}
1394
1395/* used to copy inode's fields to old stat data */
1396static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1397{
1398	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1399
1400	set_sd_v1_mode(sd_v1, inode->i_mode);
1401	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1402	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1403	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1404	set_sd_v1_size(sd_v1, size);
1405	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1406	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1407	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1408
1409	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1410		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1411	else
1412		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1413
1414	/* Sigh. i_first_direct_byte is back */
1415	set_sd_v1_first_direct_byte(sd_v1,
1416				    REISERFS_I(inode)->i_first_direct_byte);
1417}
1418
1419/*
1420 * NOTE, you must prepare the buffer head before sending it here,
1421 * and then log it after the call
1422 */
1423static void update_stat_data(struct treepath *path, struct inode *inode,
1424			     loff_t size)
1425{
1426	struct buffer_head *bh;
1427	struct item_head *ih;
1428
1429	bh = PATH_PLAST_BUFFER(path);
1430	ih = tp_item_head(path);
1431
1432	if (!is_statdata_le_ih(ih))
1433		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1434			       INODE_PKEY(inode), ih);
1435
1436	/* path points to old stat data */
1437	if (stat_data_v1(ih)) {
1438		inode2sd_v1(ih_item_body(bh, ih), inode, size);
 
1439	} else {
1440		inode2sd(ih_item_body(bh, ih), inode, size);
1441	}
1442
1443	return;
1444}
1445
1446void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1447			     struct inode *inode, loff_t size)
1448{
1449	struct cpu_key key;
1450	INITIALIZE_PATH(path);
1451	struct buffer_head *bh;
1452	int fs_gen;
1453	struct item_head *ih, tmp_ih;
1454	int retval;
1455
1456	BUG_ON(!th->t_trans_id);
1457
1458	/* key type is unimportant */
1459	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1460
1461	for (;;) {
1462		int pos;
1463		/* look for the object's stat data */
1464		retval = search_item(inode->i_sb, &key, &path);
1465		if (retval == IO_ERROR) {
1466			reiserfs_error(inode->i_sb, "vs-13050",
1467				       "i/o failure occurred trying to "
1468				       "update %K stat data", &key);
1469			return;
1470		}
1471		if (retval == ITEM_NOT_FOUND) {
1472			pos = PATH_LAST_POSITION(&path);
1473			pathrelse(&path);
1474			if (inode->i_nlink == 0) {
1475				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1476				return;
1477			}
1478			reiserfs_warning(inode->i_sb, "vs-13060",
1479					 "stat data of object %k (nlink == %d) "
1480					 "not found (pos %d)",
1481					 INODE_PKEY(inode), inode->i_nlink,
1482					 pos);
1483			reiserfs_check_path(&path);
1484			return;
1485		}
1486
1487		/*
1488		 * sigh, prepare_for_journal might schedule.  When it
1489		 * schedules the FS might change.  We have to detect that,
1490		 * and loop back to the search if the stat data item has moved
1491		 */
1492		bh = get_last_bh(&path);
1493		ih = tp_item_head(&path);
1494		copy_item_head(&tmp_ih, ih);
1495		fs_gen = get_generation(inode->i_sb);
1496		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1497
1498		/* Stat_data item has been moved after scheduling. */
1499		if (fs_changed(fs_gen, inode->i_sb)
1500		    && item_moved(&tmp_ih, &path)) {
1501			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1502			continue;
1503		}
1504		break;
1505	}
1506	update_stat_data(&path, inode, size);
1507	journal_mark_dirty(th, bh);
1508	pathrelse(&path);
1509	return;
1510}
1511
1512/*
1513 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1514 * does a make_bad_inode when things go wrong.  But, we need to make sure
1515 * and clear the key in the private portion of the inode, otherwise a
1516 * corresponding iput might try to delete whatever object the inode last
1517 * represented.
1518 */
1519static void reiserfs_make_bad_inode(struct inode *inode)
1520{
1521	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1522	make_bad_inode(inode);
1523}
1524
1525/*
1526 * initially this function was derived from minix or ext2's analog and
1527 * evolved as the prototype did
1528 */
 
1529int reiserfs_init_locked_inode(struct inode *inode, void *p)
1530{
1531	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1532	inode->i_ino = args->objectid;
1533	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1534	return 0;
1535}
1536
1537/*
1538 * looks for stat data in the tree, and fills up the fields of in-core
1539 * inode stat data fields
1540 */
1541void reiserfs_read_locked_inode(struct inode *inode,
1542				struct reiserfs_iget_args *args)
1543{
1544	INITIALIZE_PATH(path_to_sd);
1545	struct cpu_key key;
1546	unsigned long dirino;
1547	int retval;
1548
1549	dirino = args->dirid;
1550
1551	/*
1552	 * set version 1, version 2 could be used too, because stat data
1553	 * key is the same in both versions
1554	 */
1555	key.version = KEY_FORMAT_3_5;
1556	key.on_disk_key.k_dir_id = dirino;
1557	key.on_disk_key.k_objectid = inode->i_ino;
1558	key.on_disk_key.k_offset = 0;
1559	key.on_disk_key.k_type = 0;
1560
1561	/* look for the object's stat data */
1562	retval = search_item(inode->i_sb, &key, &path_to_sd);
1563	if (retval == IO_ERROR) {
1564		reiserfs_error(inode->i_sb, "vs-13070",
1565			       "i/o failure occurred trying to find "
1566			       "stat data of %K", &key);
1567		reiserfs_make_bad_inode(inode);
1568		return;
1569	}
1570
1571	/* a stale NFS handle can trigger this without it being an error */
1572	if (retval != ITEM_FOUND) {
 
1573		pathrelse(&path_to_sd);
1574		reiserfs_make_bad_inode(inode);
1575		clear_nlink(inode);
1576		return;
1577	}
1578
1579	init_inode(inode, &path_to_sd);
1580
1581	/*
1582	 * It is possible that knfsd is trying to access inode of a file
1583	 * that is being removed from the disk by some other thread. As we
1584	 * update sd on unlink all that is required is to check for nlink
1585	 * here. This bug was first found by Sizif when debugging
1586	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1587	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1588
1589	 * More logical fix would require changes in fs/inode.c:iput() to
1590	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1591	 * in iget() to return NULL if I_FREEING inode is found in
1592	 * hash-table.
1593	 */
1594
1595	/*
1596	 * Currently there is one place where it's ok to meet inode with
1597	 * nlink==0: processing of open-unlinked and half-truncated files
1598	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1599	 */
1600	if ((inode->i_nlink == 0) &&
1601	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1602		reiserfs_warning(inode->i_sb, "vs-13075",
1603				 "dead inode read from disk %K. "
1604				 "This is likely to be race with knfsd. Ignore",
1605				 &key);
1606		reiserfs_make_bad_inode(inode);
1607	}
1608
1609	/* init inode should be relsing */
1610	reiserfs_check_path(&path_to_sd);
1611
1612	/*
1613	 * Stat data v1 doesn't support ACLs.
1614	 */
1615	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1616		cache_no_acl(inode);
1617}
1618
1619/*
1620 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1621 *
1622 * @inode:    inode from hash table to check
1623 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1624 *
1625 * This function is called by iget5_locked() to distinguish reiserfs inodes
1626 * having the same inode numbers. Such inodes can only exist due to some
1627 * error condition. One of them should be bad. Inodes with identical
1628 * inode numbers (objectids) are distinguished by parent directory ids.
1629 *
1630 */
1631int reiserfs_find_actor(struct inode *inode, void *opaque)
1632{
1633	struct reiserfs_iget_args *args;
1634
1635	args = opaque;
1636	/* args is already in CPU order */
1637	return (inode->i_ino == args->objectid) &&
1638	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1639}
1640
1641struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1642{
1643	struct inode *inode;
1644	struct reiserfs_iget_args args;
1645	int depth;
1646
1647	args.objectid = key->on_disk_key.k_objectid;
1648	args.dirid = key->on_disk_key.k_dir_id;
1649	depth = reiserfs_write_unlock_nested(s);
1650	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1651			     reiserfs_find_actor, reiserfs_init_locked_inode,
1652			     (void *)(&args));
1653	reiserfs_write_lock_nested(s, depth);
1654	if (!inode)
1655		return ERR_PTR(-ENOMEM);
1656
1657	if (inode->i_state & I_NEW) {
1658		reiserfs_read_locked_inode(inode, &args);
1659		unlock_new_inode(inode);
1660	}
1661
1662	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1663		/* either due to i/o error or a stale NFS handle */
1664		iput(inode);
1665		inode = NULL;
1666	}
1667	return inode;
1668}
1669
1670static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1671	u32 objectid, u32 dir_id, u32 generation)
1672
1673{
1674	struct cpu_key key;
1675	struct inode *inode;
1676
1677	key.on_disk_key.k_objectid = objectid;
1678	key.on_disk_key.k_dir_id = dir_id;
1679	reiserfs_write_lock(sb);
1680	inode = reiserfs_iget(sb, &key);
1681	if (inode && !IS_ERR(inode) && generation != 0 &&
1682	    generation != inode->i_generation) {
1683		iput(inode);
1684		inode = NULL;
1685	}
1686	reiserfs_write_unlock(sb);
1687
1688	return d_obtain_alias(inode);
1689}
1690
1691struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1692		int fh_len, int fh_type)
1693{
1694	/*
1695	 * fhtype happens to reflect the number of u32s encoded.
1696	 * due to a bug in earlier code, fhtype might indicate there
1697	 * are more u32s then actually fitted.
1698	 * so if fhtype seems to be more than len, reduce fhtype.
1699	 * Valid types are:
1700	 *   2 - objectid + dir_id - legacy support
1701	 *   3 - objectid + dir_id + generation
1702	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1703	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1704	 *   6 - as above plus generation of directory
1705	 * 6 does not fit in NFSv2 handles
1706	 */
1707	if (fh_type > fh_len) {
1708		if (fh_type != 6 || fh_len != 5)
1709			reiserfs_warning(sb, "reiserfs-13077",
1710				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1711				fh_type, fh_len);
1712		fh_type = fh_len;
1713	}
1714	if (fh_len < 2)
1715		return NULL;
1716
1717	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1718		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1719}
1720
1721struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1722		int fh_len, int fh_type)
1723{
1724	if (fh_type > fh_len)
1725		fh_type = fh_len;
1726	if (fh_type < 4)
1727		return NULL;
1728
1729	return reiserfs_get_dentry(sb,
1730		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1731		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1732		(fh_type == 6) ? fid->raw[5] : 0);
1733}
1734
1735int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1736		       struct inode *parent)
1737{
1738	int maxlen = *lenp;
1739
1740	if (parent && (maxlen < 5)) {
1741		*lenp = 5;
1742		return FILEID_INVALID;
1743	} else if (maxlen < 3) {
1744		*lenp = 3;
1745		return FILEID_INVALID;
1746	}
1747
1748	data[0] = inode->i_ino;
1749	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1750	data[2] = inode->i_generation;
1751	*lenp = 3;
1752	if (parent) {
1753		data[3] = parent->i_ino;
1754		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1755		*lenp = 5;
1756		if (maxlen >= 6) {
1757			data[5] = parent->i_generation;
1758			*lenp = 6;
1759		}
1760	}
1761	return *lenp;
1762}
1763
1764/*
1765 * looks for stat data, then copies fields to it, marks the buffer
1766 * containing stat data as dirty
1767 */
1768/*
1769 * reiserfs inodes are never really dirty, since the dirty inode call
1770 * always logs them.  This call allows the VFS inode marking routines
1771 * to properly mark inodes for datasync and such, but only actually
1772 * does something when called for a synchronous update.
1773 */
1774int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1775{
1776	struct reiserfs_transaction_handle th;
1777	int jbegin_count = 1;
1778
1779	if (sb_rdonly(inode->i_sb))
1780		return -EROFS;
1781	/*
1782	 * memory pressure can sometimes initiate write_inode calls with
1783	 * sync == 1,
1784	 * these cases are just when the system needs ram, not when the
1785	 * inode needs to reach disk for safety, and they can safely be
1786	 * ignored because the altered inode has already been logged.
1787	 */
1788	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1789		reiserfs_write_lock(inode->i_sb);
1790		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1791			reiserfs_update_sd(&th, inode);
1792			journal_end_sync(&th);
1793		}
1794		reiserfs_write_unlock(inode->i_sb);
1795	}
1796	return 0;
1797}
1798
1799/*
1800 * stat data of new object is inserted already, this inserts the item
1801 * containing "." and ".." entries
1802 */
1803static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1804				  struct inode *inode,
1805				  struct item_head *ih, struct treepath *path,
1806				  struct inode *dir)
1807{
1808	struct super_block *sb = th->t_super;
1809	char empty_dir[EMPTY_DIR_SIZE];
1810	char *body = empty_dir;
1811	struct cpu_key key;
1812	int retval;
1813
1814	BUG_ON(!th->t_trans_id);
1815
1816	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1817		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1818		      TYPE_DIRENTRY, 3 /*key length */ );
1819
1820	/*
1821	 * compose item head for new item. Directories consist of items of
1822	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1823	 * is done by reiserfs_new_inode
1824	 */
1825	if (old_format_only(sb)) {
1826		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1827				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1828
1829		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1830				       ih->ih_key.k_objectid,
1831				       INODE_PKEY(dir)->k_dir_id,
1832				       INODE_PKEY(dir)->k_objectid);
1833	} else {
1834		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1835				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1836
1837		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1838				    ih->ih_key.k_objectid,
1839				    INODE_PKEY(dir)->k_dir_id,
1840				    INODE_PKEY(dir)->k_objectid);
1841	}
1842
1843	/* look for place in the tree for new item */
1844	retval = search_item(sb, &key, path);
1845	if (retval == IO_ERROR) {
1846		reiserfs_error(sb, "vs-13080",
1847			       "i/o failure occurred creating new directory");
1848		return -EIO;
1849	}
1850	if (retval == ITEM_FOUND) {
1851		pathrelse(path);
1852		reiserfs_warning(sb, "vs-13070",
1853				 "object with this key exists (%k)",
1854				 &(ih->ih_key));
1855		return -EEXIST;
1856	}
1857
1858	/* insert item, that is empty directory item */
1859	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1860}
1861
1862/*
1863 * stat data of object has been inserted, this inserts the item
1864 * containing the body of symlink
1865 */
1866static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1867				struct inode *inode,
1868				struct item_head *ih,
1869				struct treepath *path, const char *symname,
1870				int item_len)
1871{
1872	struct super_block *sb = th->t_super;
1873	struct cpu_key key;
1874	int retval;
1875
1876	BUG_ON(!th->t_trans_id);
1877
1878	_make_cpu_key(&key, KEY_FORMAT_3_5,
1879		      le32_to_cpu(ih->ih_key.k_dir_id),
1880		      le32_to_cpu(ih->ih_key.k_objectid),
1881		      1, TYPE_DIRECT, 3 /*key length */ );
1882
1883	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1884			  0 /*free_space */ );
1885
1886	/* look for place in the tree for new item */
1887	retval = search_item(sb, &key, path);
1888	if (retval == IO_ERROR) {
1889		reiserfs_error(sb, "vs-13080",
1890			       "i/o failure occurred creating new symlink");
1891		return -EIO;
1892	}
1893	if (retval == ITEM_FOUND) {
1894		pathrelse(path);
1895		reiserfs_warning(sb, "vs-13080",
1896				 "object with this key exists (%k)",
1897				 &(ih->ih_key));
1898		return -EEXIST;
1899	}
1900
1901	/* insert item, that is body of symlink */
1902	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1903}
1904
1905/*
1906 * inserts the stat data into the tree, and then calls
1907 * reiserfs_new_directory (to insert ".", ".." item if new object is
1908 * directory) or reiserfs_new_symlink (to insert symlink body if new
1909 * object is symlink) or nothing (if new object is regular file)
1910
1911 * NOTE! uid and gid must already be set in the inode.  If we return
1912 * non-zero due to an error, we have to drop the quota previously allocated
1913 * for the fresh inode.  This can only be done outside a transaction, so
1914 * if we return non-zero, we also end the transaction.
1915 *
1916 * @th: active transaction handle
1917 * @dir: parent directory for new inode
1918 * @mode: mode of new inode
1919 * @symname: symlink contents if inode is symlink
1920 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1921 *         symlinks
1922 * @inode: inode to be filled
1923 * @security: optional security context to associate with this inode
1924 */
1925int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1926		       struct inode *dir, umode_t mode, const char *symname,
1927		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1928		          strlen (symname) for symlinks) */
1929		       loff_t i_size, struct dentry *dentry,
1930		       struct inode *inode,
1931		       struct reiserfs_security_handle *security)
1932{
1933	struct super_block *sb = dir->i_sb;
1934	struct reiserfs_iget_args args;
1935	INITIALIZE_PATH(path_to_key);
1936	struct cpu_key key;
1937	struct item_head ih;
1938	struct stat_data sd;
1939	int retval;
1940	int err;
1941	int depth;
1942
1943	BUG_ON(!th->t_trans_id);
1944
1945	depth = reiserfs_write_unlock_nested(sb);
1946	err = dquot_alloc_inode(inode);
1947	reiserfs_write_lock_nested(sb, depth);
1948	if (err)
1949		goto out_end_trans;
1950	if (!dir->i_nlink) {
1951		err = -EPERM;
1952		goto out_bad_inode;
1953	}
1954
1955	/* item head of new item */
1956	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1957	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1958	if (!ih.ih_key.k_objectid) {
1959		err = -ENOMEM;
1960		goto out_bad_inode;
1961	}
1962	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1963	if (old_format_only(sb))
1964		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1965				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1966	else
1967		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1968				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1969	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1970	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1971
1972	depth = reiserfs_write_unlock_nested(inode->i_sb);
1973	err = insert_inode_locked4(inode, args.objectid,
1974			     reiserfs_find_actor, &args);
1975	reiserfs_write_lock_nested(inode->i_sb, depth);
1976	if (err) {
1977		err = -EINVAL;
1978		goto out_bad_inode;
1979	}
1980
1981	if (old_format_only(sb))
1982		/*
1983		 * not a perfect generation count, as object ids can be reused,
1984		 * but this is as good as reiserfs can do right now.
1985		 * note that the private part of inode isn't filled in yet,
1986		 * we have to use the directory.
1987		 */
1988		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1989	else
1990#if defined( USE_INODE_GENERATION_COUNTER )
1991		inode->i_generation =
1992		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1993#else
1994		inode->i_generation = ++event;
1995#endif
1996
1997	/* fill stat data */
1998	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1999
2000	/* uid and gid must already be set by the caller for quota init */
2001
2002	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
 
 
 
 
2003	inode->i_size = i_size;
2004	inode->i_blocks = 0;
2005	inode->i_bytes = 0;
2006	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2007	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2008
2009	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2010	REISERFS_I(inode)->i_flags = 0;
2011	REISERFS_I(inode)->i_prealloc_block = 0;
2012	REISERFS_I(inode)->i_prealloc_count = 0;
2013	REISERFS_I(inode)->i_trans_id = 0;
2014	REISERFS_I(inode)->i_jl = NULL;
2015	REISERFS_I(inode)->i_attrs =
2016	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2017	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2018	reiserfs_init_xattr_rwsem(inode);
2019
2020	/* key to search for correct place for new stat data */
2021	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2022		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2023		      TYPE_STAT_DATA, 3 /*key length */ );
2024
2025	/* find proper place for inserting of stat data */
2026	retval = search_item(sb, &key, &path_to_key);
2027	if (retval == IO_ERROR) {
2028		err = -EIO;
2029		goto out_bad_inode;
2030	}
2031	if (retval == ITEM_FOUND) {
2032		pathrelse(&path_to_key);
2033		err = -EEXIST;
2034		goto out_bad_inode;
2035	}
2036	if (old_format_only(sb)) {
2037		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2038		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2039			pathrelse(&path_to_key);
 
2040			err = -EINVAL;
2041			goto out_bad_inode;
2042		}
2043		inode2sd_v1(&sd, inode, inode->i_size);
2044	} else {
2045		inode2sd(&sd, inode, inode->i_size);
2046	}
2047	/*
2048	 * store in in-core inode the key of stat data and version all
2049	 * object items will have (directory items will have old offset
2050	 * format, other new objects will consist of new items)
2051	 */
2052	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2053		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2054	else
2055		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2056	if (old_format_only(sb))
2057		set_inode_sd_version(inode, STAT_DATA_V1);
2058	else
2059		set_inode_sd_version(inode, STAT_DATA_V2);
2060
2061	/* insert the stat data into the tree */
2062#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2063	if (REISERFS_I(dir)->new_packing_locality)
2064		th->displace_new_blocks = 1;
2065#endif
2066	retval =
2067	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2068				 (char *)(&sd));
2069	if (retval) {
2070		err = retval;
2071		reiserfs_check_path(&path_to_key);
2072		goto out_bad_inode;
2073	}
2074#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2075	if (!th->displace_new_blocks)
2076		REISERFS_I(dir)->new_packing_locality = 0;
2077#endif
2078	if (S_ISDIR(mode)) {
2079		/* insert item with "." and ".." */
2080		retval =
2081		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2082	}
2083
2084	if (S_ISLNK(mode)) {
2085		/* insert body of symlink */
2086		if (!old_format_only(sb))
2087			i_size = ROUND_UP(i_size);
2088		retval =
2089		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2090					 i_size);
2091	}
2092	if (retval) {
2093		err = retval;
2094		reiserfs_check_path(&path_to_key);
2095		journal_end(th);
2096		goto out_inserted_sd;
2097	}
2098
2099	if (reiserfs_posixacl(inode->i_sb)) {
2100		reiserfs_write_unlock(inode->i_sb);
2101		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2102		reiserfs_write_lock(inode->i_sb);
2103		if (retval) {
2104			err = retval;
2105			reiserfs_check_path(&path_to_key);
2106			journal_end(th);
2107			goto out_inserted_sd;
2108		}
2109	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2110		reiserfs_warning(inode->i_sb, "jdm-13090",
2111				 "ACLs aren't enabled in the fs, "
2112				 "but vfs thinks they are!");
2113	} else if (IS_PRIVATE(dir))
2114		inode->i_flags |= S_PRIVATE;
2115
2116	if (security->name) {
2117		reiserfs_write_unlock(inode->i_sb);
2118		retval = reiserfs_security_write(th, inode, security);
2119		reiserfs_write_lock(inode->i_sb);
2120		if (retval) {
2121			err = retval;
2122			reiserfs_check_path(&path_to_key);
2123			retval = journal_end(th);
 
2124			if (retval)
2125				err = retval;
2126			goto out_inserted_sd;
2127		}
2128	}
2129
2130	reiserfs_update_sd(th, inode);
2131	reiserfs_check_path(&path_to_key);
2132
2133	return 0;
2134
2135out_bad_inode:
 
 
 
 
2136	/* Invalidate the object, nothing was inserted yet */
2137	INODE_PKEY(inode)->k_objectid = 0;
2138
2139	/* Quota change must be inside a transaction for journaling */
2140	depth = reiserfs_write_unlock_nested(inode->i_sb);
2141	dquot_free_inode(inode);
2142	reiserfs_write_lock_nested(inode->i_sb, depth);
2143
2144out_end_trans:
2145	journal_end(th);
2146	/*
2147	 * Drop can be outside and it needs more credits so it's better
2148	 * to have it outside
2149	 */
2150	depth = reiserfs_write_unlock_nested(inode->i_sb);
2151	dquot_drop(inode);
2152	reiserfs_write_lock_nested(inode->i_sb, depth);
2153	inode->i_flags |= S_NOQUOTA;
2154	make_bad_inode(inode);
2155
2156out_inserted_sd:
2157	clear_nlink(inode);
2158	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2159	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2160	iput(inode);
2161	return err;
2162}
2163
2164/*
2165 * finds the tail page in the page cache,
2166 * reads the last block in.
2167 *
2168 * On success, page_result is set to a locked, pinned page, and bh_result
2169 * is set to an up to date buffer for the last block in the file.  returns 0.
2170 *
2171 * tail conversion is not done, so bh_result might not be valid for writing
2172 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2173 * trying to write the block.
2174 *
2175 * on failure, nonzero is returned, page_result and bh_result are untouched.
2176 */
2177static int grab_tail_page(struct inode *inode,
2178			  struct page **page_result,
2179			  struct buffer_head **bh_result)
2180{
2181
2182	/*
2183	 * we want the page with the last byte in the file,
2184	 * not the page that will hold the next byte for appending
2185	 */
2186	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2187	unsigned long pos = 0;
2188	unsigned long start = 0;
2189	unsigned long blocksize = inode->i_sb->s_blocksize;
2190	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2191	struct buffer_head *bh;
2192	struct buffer_head *head;
2193	struct page *page;
2194	int error;
2195
2196	/*
2197	 * we know that we are only called with inode->i_size > 0.
2198	 * we also know that a file tail can never be as big as a block
2199	 * If i_size % blocksize == 0, our file is currently block aligned
2200	 * and it won't need converting or zeroing after a truncate.
2201	 */
2202	if ((offset & (blocksize - 1)) == 0) {
2203		return -ENOENT;
2204	}
2205	page = grab_cache_page(inode->i_mapping, index);
2206	error = -ENOMEM;
2207	if (!page) {
2208		goto out;
2209	}
2210	/* start within the page of the last block in the file */
2211	start = (offset / blocksize) * blocksize;
2212
2213	error = __block_write_begin(page, start, offset - start,
2214				    reiserfs_get_block_create_0);
2215	if (error)
2216		goto unlock;
2217
2218	head = page_buffers(page);
2219	bh = head;
2220	do {
2221		if (pos >= start) {
2222			break;
2223		}
2224		bh = bh->b_this_page;
2225		pos += blocksize;
2226	} while (bh != head);
2227
2228	if (!buffer_uptodate(bh)) {
2229		/*
2230		 * note, this should never happen, prepare_write should be
2231		 * taking care of this for us.  If the buffer isn't up to
2232		 * date, I've screwed up the code to find the buffer, or the
2233		 * code to call prepare_write
2234		 */
2235		reiserfs_error(inode->i_sb, "clm-6000",
2236			       "error reading block %lu", bh->b_blocknr);
2237		error = -EIO;
2238		goto unlock;
2239	}
2240	*bh_result = bh;
2241	*page_result = page;
2242
2243out:
2244	return error;
2245
2246unlock:
2247	unlock_page(page);
2248	put_page(page);
2249	return error;
2250}
2251
2252/*
2253 * vfs version of truncate file.  Must NOT be called with
2254 * a transaction already started.
2255 *
2256 * some code taken from block_truncate_page
2257 */
2258int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2259{
2260	struct reiserfs_transaction_handle th;
2261	/* we want the offset for the first byte after the end of the file */
2262	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2263	unsigned blocksize = inode->i_sb->s_blocksize;
2264	unsigned length;
2265	struct page *page = NULL;
2266	int error;
2267	struct buffer_head *bh = NULL;
2268	int err2;
2269
2270	reiserfs_write_lock(inode->i_sb);
2271
2272	if (inode->i_size > 0) {
2273		error = grab_tail_page(inode, &page, &bh);
2274		if (error) {
2275			/*
2276			 * -ENOENT means we truncated past the end of the
2277			 * file, and get_block_create_0 could not find a
2278			 * block to read in, which is ok.
2279			 */
2280			if (error != -ENOENT)
2281				reiserfs_error(inode->i_sb, "clm-6001",
2282					       "grab_tail_page failed %d",
2283					       error);
2284			page = NULL;
2285			bh = NULL;
2286		}
2287	}
2288
2289	/*
2290	 * so, if page != NULL, we have a buffer head for the offset at
2291	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2292	 * then we have an unformatted node.  Otherwise, we have a direct item,
2293	 * and no zeroing is required on disk.  We zero after the truncate,
2294	 * because the truncate might pack the item anyway
2295	 * (it will unmap bh if it packs).
2296	 *
2297	 * it is enough to reserve space in transaction for 2 balancings:
2298	 * one for "save" link adding and another for the first
2299	 * cut_from_item. 1 is for update_sd
2300	 */
2301	error = journal_begin(&th, inode->i_sb,
2302			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2303	if (error)
2304		goto out;
2305	reiserfs_update_inode_transaction(inode);
2306	if (update_timestamps)
2307		/*
2308		 * we are doing real truncate: if the system crashes
2309		 * before the last transaction of truncating gets committed
2310		 * - on reboot the file either appears truncated properly
2311		 * or not truncated at all
2312		 */
2313		add_save_link(&th, inode, 1);
2314	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2315	error = journal_end(&th);
 
2316	if (error)
2317		goto out;
2318
2319	/* check reiserfs_do_truncate after ending the transaction */
2320	if (err2) {
2321		error = err2;
2322  		goto out;
2323	}
2324	
2325	if (update_timestamps) {
2326		error = remove_save_link(inode, 1 /* truncate */);
2327		if (error)
2328			goto out;
2329	}
2330
2331	if (page) {
2332		length = offset & (blocksize - 1);
2333		/* if we are not on a block boundary */
2334		if (length) {
2335			length = blocksize - length;
2336			zero_user(page, offset, length);
2337			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2338				mark_buffer_dirty(bh);
2339			}
2340		}
2341		unlock_page(page);
2342		put_page(page);
2343	}
2344
2345	reiserfs_write_unlock(inode->i_sb);
2346
2347	return 0;
2348out:
2349	if (page) {
2350		unlock_page(page);
2351		put_page(page);
2352	}
2353
2354	reiserfs_write_unlock(inode->i_sb);
2355
2356	return error;
2357}
2358
2359static int map_block_for_writepage(struct inode *inode,
2360				   struct buffer_head *bh_result,
2361				   unsigned long block)
2362{
2363	struct reiserfs_transaction_handle th;
2364	int fs_gen;
2365	struct item_head tmp_ih;
2366	struct item_head *ih;
2367	struct buffer_head *bh;
2368	__le32 *item;
2369	struct cpu_key key;
2370	INITIALIZE_PATH(path);
2371	int pos_in_item;
2372	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2373	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2374	int retval;
2375	int use_get_block = 0;
2376	int bytes_copied = 0;
2377	int copy_size;
2378	int trans_running = 0;
2379
2380	/*
2381	 * catch places below that try to log something without
2382	 * starting a trans
2383	 */
2384	th.t_trans_id = 0;
2385
2386	if (!buffer_uptodate(bh_result)) {
2387		return -EIO;
2388	}
2389
2390	kmap(bh_result->b_page);
2391start_over:
2392	reiserfs_write_lock(inode->i_sb);
2393	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2394
2395research:
2396	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2397	if (retval != POSITION_FOUND) {
2398		use_get_block = 1;
2399		goto out;
2400	}
2401
2402	bh = get_last_bh(&path);
2403	ih = tp_item_head(&path);
2404	item = tp_item_body(&path);
2405	pos_in_item = path.pos_in_item;
2406
2407	/* we've found an unformatted node */
2408	if (indirect_item_found(retval, ih)) {
2409		if (bytes_copied > 0) {
2410			reiserfs_warning(inode->i_sb, "clm-6002",
2411					 "bytes_copied %d", bytes_copied);
2412		}
2413		if (!get_block_num(item, pos_in_item)) {
2414			/* crap, we are writing to a hole */
2415			use_get_block = 1;
2416			goto out;
2417		}
2418		set_block_dev_mapped(bh_result,
2419				     get_block_num(item, pos_in_item), inode);
2420	} else if (is_direct_le_ih(ih)) {
2421		char *p;
2422		p = page_address(bh_result->b_page);
2423		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2424		copy_size = ih_item_len(ih) - pos_in_item;
2425
2426		fs_gen = get_generation(inode->i_sb);
2427		copy_item_head(&tmp_ih, ih);
2428
2429		if (!trans_running) {
2430			/* vs-3050 is gone, no need to drop the path */
2431			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2432			if (retval)
2433				goto out;
2434			reiserfs_update_inode_transaction(inode);
2435			trans_running = 1;
2436			if (fs_changed(fs_gen, inode->i_sb)
2437			    && item_moved(&tmp_ih, &path)) {
2438				reiserfs_restore_prepared_buffer(inode->i_sb,
2439								 bh);
2440				goto research;
2441			}
2442		}
2443
2444		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2445
2446		if (fs_changed(fs_gen, inode->i_sb)
2447		    && item_moved(&tmp_ih, &path)) {
2448			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2449			goto research;
2450		}
2451
2452		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2453		       copy_size);
2454
2455		journal_mark_dirty(&th, bh);
2456		bytes_copied += copy_size;
2457		set_block_dev_mapped(bh_result, 0, inode);
2458
2459		/* are there still bytes left? */
2460		if (bytes_copied < bh_result->b_size &&
2461		    (byte_offset + bytes_copied) < inode->i_size) {
2462			set_cpu_key_k_offset(&key,
2463					     cpu_key_k_offset(&key) +
2464					     copy_size);
2465			goto research;
2466		}
2467	} else {
2468		reiserfs_warning(inode->i_sb, "clm-6003",
2469				 "bad item inode %lu", inode->i_ino);
2470		retval = -EIO;
2471		goto out;
2472	}
2473	retval = 0;
2474
2475out:
2476	pathrelse(&path);
2477	if (trans_running) {
2478		int err = journal_end(&th);
2479		if (err)
2480			retval = err;
2481		trans_running = 0;
2482	}
2483	reiserfs_write_unlock(inode->i_sb);
2484
2485	/* this is where we fill in holes in the file. */
2486	if (use_get_block) {
2487		retval = reiserfs_get_block(inode, block, bh_result,
2488					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2489					    | GET_BLOCK_NO_DANGLE);
2490		if (!retval) {
2491			if (!buffer_mapped(bh_result)
2492			    || bh_result->b_blocknr == 0) {
2493				/* get_block failed to find a mapped unformatted node. */
2494				use_get_block = 0;
2495				goto start_over;
2496			}
2497		}
2498	}
2499	kunmap(bh_result->b_page);
2500
2501	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2502		/*
2503		 * we've copied data from the page into the direct item, so the
2504		 * buffer in the page is now clean, mark it to reflect that.
2505		 */
2506		lock_buffer(bh_result);
2507		clear_buffer_dirty(bh_result);
2508		unlock_buffer(bh_result);
2509	}
2510	return retval;
2511}
2512
2513/*
2514 * mason@suse.com: updated in 2.5.54 to follow the same general io
2515 * start/recovery path as __block_write_full_page, along with special
2516 * code to handle reiserfs tails.
2517 */
2518static int reiserfs_write_full_page(struct page *page,
2519				    struct writeback_control *wbc)
2520{
2521	struct inode *inode = page->mapping->host;
2522	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2523	int error = 0;
2524	unsigned long block;
2525	sector_t last_block;
2526	struct buffer_head *head, *bh;
2527	int partial = 0;
2528	int nr = 0;
2529	int checked = PageChecked(page);
2530	struct reiserfs_transaction_handle th;
2531	struct super_block *s = inode->i_sb;
2532	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2533	th.t_trans_id = 0;
2534
2535	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2536	if (checked && (current->flags & PF_MEMALLOC)) {
2537		redirty_page_for_writepage(wbc, page);
2538		unlock_page(page);
2539		return 0;
2540	}
2541
2542	/*
2543	 * The page dirty bit is cleared before writepage is called, which
2544	 * means we have to tell create_empty_buffers to make dirty buffers
2545	 * The page really should be up to date at this point, so tossing
2546	 * in the BH_Uptodate is just a sanity check.
2547	 */
2548	if (!page_has_buffers(page)) {
2549		create_empty_buffers(page, s->s_blocksize,
2550				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2551	}
2552	head = page_buffers(page);
2553
2554	/*
2555	 * last page in the file, zero out any contents past the
2556	 * last byte in the file
2557	 */
2558	if (page->index >= end_index) {
2559		unsigned last_offset;
2560
2561		last_offset = inode->i_size & (PAGE_SIZE - 1);
2562		/* no file contents in this page */
2563		if (page->index >= end_index + 1 || !last_offset) {
2564			unlock_page(page);
2565			return 0;
2566		}
2567		zero_user_segment(page, last_offset, PAGE_SIZE);
2568	}
2569	bh = head;
2570	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2571	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2572	/* first map all the buffers, logging any direct items we find */
2573	do {
2574		if (block > last_block) {
2575			/*
2576			 * This can happen when the block size is less than
2577			 * the page size.  The corresponding bytes in the page
2578			 * were zero filled above
2579			 */
2580			clear_buffer_dirty(bh);
2581			set_buffer_uptodate(bh);
2582		} else if ((checked || buffer_dirty(bh)) &&
2583		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2584						       && bh->b_blocknr ==
2585						       0))) {
2586			/*
2587			 * not mapped yet, or it points to a direct item, search
2588			 * the btree for the mapping info, and log any direct
2589			 * items found
2590			 */
2591			if ((error = map_block_for_writepage(inode, bh, block))) {
2592				goto fail;
2593			}
2594		}
2595		bh = bh->b_this_page;
2596		block++;
2597	} while (bh != head);
2598
2599	/*
2600	 * we start the transaction after map_block_for_writepage,
2601	 * because it can create holes in the file (an unbounded operation).
2602	 * starting it here, we can make a reliable estimate for how many
2603	 * blocks we're going to log
2604	 */
2605	if (checked) {
2606		ClearPageChecked(page);
2607		reiserfs_write_lock(s);
2608		error = journal_begin(&th, s, bh_per_page + 1);
2609		if (error) {
2610			reiserfs_write_unlock(s);
2611			goto fail;
2612		}
2613		reiserfs_update_inode_transaction(inode);
2614	}
2615	/* now go through and lock any dirty buffers on the page */
2616	do {
2617		get_bh(bh);
2618		if (!buffer_mapped(bh))
2619			continue;
2620		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2621			continue;
2622
2623		if (checked) {
2624			reiserfs_prepare_for_journal(s, bh, 1);
2625			journal_mark_dirty(&th, bh);
2626			continue;
2627		}
2628		/*
2629		 * from this point on, we know the buffer is mapped to a
2630		 * real block and not a direct item
2631		 */
2632		if (wbc->sync_mode != WB_SYNC_NONE) {
2633			lock_buffer(bh);
2634		} else {
2635			if (!trylock_buffer(bh)) {
2636				redirty_page_for_writepage(wbc, page);
2637				continue;
2638			}
2639		}
2640		if (test_clear_buffer_dirty(bh)) {
2641			mark_buffer_async_write(bh);
2642		} else {
2643			unlock_buffer(bh);
2644		}
2645	} while ((bh = bh->b_this_page) != head);
2646
2647	if (checked) {
2648		error = journal_end(&th);
2649		reiserfs_write_unlock(s);
2650		if (error)
2651			goto fail;
2652	}
2653	BUG_ON(PageWriteback(page));
2654	set_page_writeback(page);
2655	unlock_page(page);
2656
2657	/*
2658	 * since any buffer might be the only dirty buffer on the page,
2659	 * the first submit_bh can bring the page out of writeback.
2660	 * be careful with the buffers.
2661	 */
2662	do {
2663		struct buffer_head *next = bh->b_this_page;
2664		if (buffer_async_write(bh)) {
2665			submit_bh(REQ_OP_WRITE, 0, bh);
2666			nr++;
2667		}
2668		put_bh(bh);
2669		bh = next;
2670	} while (bh != head);
2671
2672	error = 0;
2673done:
2674	if (nr == 0) {
2675		/*
2676		 * if this page only had a direct item, it is very possible for
2677		 * no io to be required without there being an error.  Or,
2678		 * someone else could have locked them and sent them down the
2679		 * pipe without locking the page
2680		 */
2681		bh = head;
2682		do {
2683			if (!buffer_uptodate(bh)) {
2684				partial = 1;
2685				break;
2686			}
2687			bh = bh->b_this_page;
2688		} while (bh != head);
2689		if (!partial)
2690			SetPageUptodate(page);
2691		end_page_writeback(page);
2692	}
2693	return error;
2694
2695fail:
2696	/*
2697	 * catches various errors, we need to make sure any valid dirty blocks
2698	 * get to the media.  The page is currently locked and not marked for
2699	 * writeback
2700	 */
2701	ClearPageUptodate(page);
2702	bh = head;
2703	do {
2704		get_bh(bh);
2705		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2706			lock_buffer(bh);
2707			mark_buffer_async_write(bh);
2708		} else {
2709			/*
2710			 * clear any dirty bits that might have come from
2711			 * getting attached to a dirty page
2712			 */
2713			clear_buffer_dirty(bh);
2714		}
2715		bh = bh->b_this_page;
2716	} while (bh != head);
2717	SetPageError(page);
2718	BUG_ON(PageWriteback(page));
2719	set_page_writeback(page);
2720	unlock_page(page);
2721	do {
2722		struct buffer_head *next = bh->b_this_page;
2723		if (buffer_async_write(bh)) {
2724			clear_buffer_dirty(bh);
2725			submit_bh(REQ_OP_WRITE, 0, bh);
2726			nr++;
2727		}
2728		put_bh(bh);
2729		bh = next;
2730	} while (bh != head);
2731	goto done;
2732}
2733
2734static int reiserfs_readpage(struct file *f, struct page *page)
2735{
2736	return block_read_full_page(page, reiserfs_get_block);
2737}
2738
2739static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2740{
2741	struct inode *inode = page->mapping->host;
2742	reiserfs_wait_on_write_block(inode->i_sb);
2743	return reiserfs_write_full_page(page, wbc);
2744}
2745
2746static void reiserfs_truncate_failed_write(struct inode *inode)
2747{
2748	truncate_inode_pages(inode->i_mapping, inode->i_size);
2749	reiserfs_truncate_file(inode, 0);
2750}
2751
2752static int reiserfs_write_begin(struct file *file,
2753				struct address_space *mapping,
2754				loff_t pos, unsigned len, unsigned flags,
2755				struct page **pagep, void **fsdata)
2756{
2757	struct inode *inode;
2758	struct page *page;
2759	pgoff_t index;
2760	int ret;
2761	int old_ref = 0;
2762
2763 	inode = mapping->host;
2764	*fsdata = NULL;
2765 	if (flags & AOP_FLAG_CONT_EXPAND &&
2766 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2767 		pos ++;
2768		*fsdata = (void *)(unsigned long)flags;
2769	}
2770
2771	index = pos >> PAGE_SHIFT;
2772	page = grab_cache_page_write_begin(mapping, index, flags);
2773	if (!page)
2774		return -ENOMEM;
2775	*pagep = page;
2776
2777	reiserfs_wait_on_write_block(inode->i_sb);
2778	fix_tail_page_for_writing(page);
2779	if (reiserfs_transaction_running(inode->i_sb)) {
2780		struct reiserfs_transaction_handle *th;
2781		th = (struct reiserfs_transaction_handle *)current->
2782		    journal_info;
2783		BUG_ON(!th->t_refcount);
2784		BUG_ON(!th->t_trans_id);
2785		old_ref = th->t_refcount;
2786		th->t_refcount++;
2787	}
2788	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2789	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2790		struct reiserfs_transaction_handle *th = current->journal_info;
2791		/*
2792		 * this gets a little ugly.  If reiserfs_get_block returned an
2793		 * error and left a transacstion running, we've got to close
2794		 * it, and we've got to free handle if it was a persistent
2795		 * transaction.
2796		 *
2797		 * But, if we had nested into an existing transaction, we need
2798		 * to just drop the ref count on the handle.
2799		 *
2800		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2801		 * and it was a persistent trans.  Otherwise, it was nested
2802		 * above.
2803		 */
2804		if (th->t_refcount > old_ref) {
2805			if (old_ref)
2806				th->t_refcount--;
2807			else {
2808				int err;
2809				reiserfs_write_lock(inode->i_sb);
2810				err = reiserfs_end_persistent_transaction(th);
2811				reiserfs_write_unlock(inode->i_sb);
2812				if (err)
2813					ret = err;
2814			}
2815		}
2816	}
2817	if (ret) {
2818		unlock_page(page);
2819		put_page(page);
2820		/* Truncate allocated blocks */
2821		reiserfs_truncate_failed_write(inode);
2822	}
2823	return ret;
2824}
2825
2826int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2827{
2828	struct inode *inode = page->mapping->host;
2829	int ret;
2830	int old_ref = 0;
2831	int depth;
2832
2833	depth = reiserfs_write_unlock_nested(inode->i_sb);
2834	reiserfs_wait_on_write_block(inode->i_sb);
2835	reiserfs_write_lock_nested(inode->i_sb, depth);
2836
2837	fix_tail_page_for_writing(page);
2838	if (reiserfs_transaction_running(inode->i_sb)) {
2839		struct reiserfs_transaction_handle *th;
2840		th = (struct reiserfs_transaction_handle *)current->
2841		    journal_info;
2842		BUG_ON(!th->t_refcount);
2843		BUG_ON(!th->t_trans_id);
2844		old_ref = th->t_refcount;
2845		th->t_refcount++;
2846	}
2847
2848	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2849	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2850		struct reiserfs_transaction_handle *th = current->journal_info;
2851		/*
2852		 * this gets a little ugly.  If reiserfs_get_block returned an
2853		 * error and left a transacstion running, we've got to close
2854		 * it, and we've got to free handle if it was a persistent
2855		 * transaction.
2856		 *
2857		 * But, if we had nested into an existing transaction, we need
2858		 * to just drop the ref count on the handle.
2859		 *
2860		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2861		 * and it was a persistent trans.  Otherwise, it was nested
2862		 * above.
2863		 */
2864		if (th->t_refcount > old_ref) {
2865			if (old_ref)
2866				th->t_refcount--;
2867			else {
2868				int err;
2869				reiserfs_write_lock(inode->i_sb);
2870				err = reiserfs_end_persistent_transaction(th);
2871				reiserfs_write_unlock(inode->i_sb);
2872				if (err)
2873					ret = err;
2874			}
2875		}
2876	}
2877	return ret;
2878
2879}
2880
2881static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2882{
2883	return generic_block_bmap(as, block, reiserfs_bmap);
2884}
2885
2886static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2887			      loff_t pos, unsigned len, unsigned copied,
2888			      struct page *page, void *fsdata)
2889{
2890	struct inode *inode = page->mapping->host;
2891	int ret = 0;
2892	int update_sd = 0;
2893	struct reiserfs_transaction_handle *th;
2894	unsigned start;
2895	bool locked = false;
2896
2897	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2898		pos ++;
2899
2900	reiserfs_wait_on_write_block(inode->i_sb);
2901	if (reiserfs_transaction_running(inode->i_sb))
2902		th = current->journal_info;
2903	else
2904		th = NULL;
2905
2906	start = pos & (PAGE_SIZE - 1);
2907	if (unlikely(copied < len)) {
2908		if (!PageUptodate(page))
2909			copied = 0;
2910
2911		page_zero_new_buffers(page, start + copied, start + len);
2912	}
2913	flush_dcache_page(page);
2914
2915	reiserfs_commit_page(inode, page, start, start + copied);
2916
2917	/*
2918	 * generic_commit_write does this for us, but does not update the
2919	 * transaction tracking stuff when the size changes.  So, we have
2920	 * to do the i_size updates here.
2921	 */
2922	if (pos + copied > inode->i_size) {
2923		struct reiserfs_transaction_handle myth;
2924		reiserfs_write_lock(inode->i_sb);
2925		locked = true;
2926		/*
2927		 * If the file have grown beyond the border where it
2928		 * can have a tail, unmark it as needing a tail
2929		 * packing
2930		 */
2931		if ((have_large_tails(inode->i_sb)
2932		     && inode->i_size > i_block_size(inode) * 4)
2933		    || (have_small_tails(inode->i_sb)
2934			&& inode->i_size > i_block_size(inode)))
2935			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2936
2937		ret = journal_begin(&myth, inode->i_sb, 1);
2938		if (ret)
2939			goto journal_error;
2940
2941		reiserfs_update_inode_transaction(inode);
2942		inode->i_size = pos + copied;
2943		/*
2944		 * this will just nest into our transaction.  It's important
2945		 * to use mark_inode_dirty so the inode gets pushed around on
2946		 * the dirty lists, and so that O_SYNC works as expected
2947		 */
2948		mark_inode_dirty(inode);
2949		reiserfs_update_sd(&myth, inode);
2950		update_sd = 1;
2951		ret = journal_end(&myth);
2952		if (ret)
2953			goto journal_error;
2954	}
2955	if (th) {
2956		if (!locked) {
2957			reiserfs_write_lock(inode->i_sb);
2958			locked = true;
2959		}
2960		if (!update_sd)
2961			mark_inode_dirty(inode);
2962		ret = reiserfs_end_persistent_transaction(th);
2963		if (ret)
2964			goto out;
2965	}
2966
2967out:
2968	if (locked)
2969		reiserfs_write_unlock(inode->i_sb);
2970	unlock_page(page);
2971	put_page(page);
2972
2973	if (pos + len > inode->i_size)
2974		reiserfs_truncate_failed_write(inode);
2975
2976	return ret == 0 ? copied : ret;
2977
2978journal_error:
2979	reiserfs_write_unlock(inode->i_sb);
2980	locked = false;
2981	if (th) {
2982		if (!update_sd)
2983			reiserfs_update_sd(th, inode);
2984		ret = reiserfs_end_persistent_transaction(th);
2985	}
2986	goto out;
2987}
2988
2989int reiserfs_commit_write(struct file *f, struct page *page,
2990			  unsigned from, unsigned to)
2991{
2992	struct inode *inode = page->mapping->host;
2993	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2994	int ret = 0;
2995	int update_sd = 0;
2996	struct reiserfs_transaction_handle *th = NULL;
2997	int depth;
2998
2999	depth = reiserfs_write_unlock_nested(inode->i_sb);
3000	reiserfs_wait_on_write_block(inode->i_sb);
3001	reiserfs_write_lock_nested(inode->i_sb, depth);
3002
3003	if (reiserfs_transaction_running(inode->i_sb)) {
3004		th = current->journal_info;
3005	}
3006	reiserfs_commit_page(inode, page, from, to);
3007
3008	/*
3009	 * generic_commit_write does this for us, but does not update the
3010	 * transaction tracking stuff when the size changes.  So, we have
3011	 * to do the i_size updates here.
3012	 */
3013	if (pos > inode->i_size) {
3014		struct reiserfs_transaction_handle myth;
3015		/*
3016		 * If the file have grown beyond the border where it
3017		 * can have a tail, unmark it as needing a tail
3018		 * packing
3019		 */
3020		if ((have_large_tails(inode->i_sb)
3021		     && inode->i_size > i_block_size(inode) * 4)
3022		    || (have_small_tails(inode->i_sb)
3023			&& inode->i_size > i_block_size(inode)))
3024			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3025
3026		ret = journal_begin(&myth, inode->i_sb, 1);
3027		if (ret)
3028			goto journal_error;
3029
3030		reiserfs_update_inode_transaction(inode);
3031		inode->i_size = pos;
3032		/*
3033		 * this will just nest into our transaction.  It's important
3034		 * to use mark_inode_dirty so the inode gets pushed around
3035		 * on the dirty lists, and so that O_SYNC works as expected
3036		 */
3037		mark_inode_dirty(inode);
3038		reiserfs_update_sd(&myth, inode);
3039		update_sd = 1;
3040		ret = journal_end(&myth);
3041		if (ret)
3042			goto journal_error;
3043	}
3044	if (th) {
3045		if (!update_sd)
3046			mark_inode_dirty(inode);
3047		ret = reiserfs_end_persistent_transaction(th);
3048		if (ret)
3049			goto out;
3050	}
3051
3052out:
3053	return ret;
3054
3055journal_error:
3056	if (th) {
3057		if (!update_sd)
3058			reiserfs_update_sd(th, inode);
3059		ret = reiserfs_end_persistent_transaction(th);
3060	}
3061
3062	return ret;
3063}
3064
3065void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3066{
3067	if (reiserfs_attrs(inode->i_sb)) {
3068		if (sd_attrs & REISERFS_SYNC_FL)
3069			inode->i_flags |= S_SYNC;
3070		else
3071			inode->i_flags &= ~S_SYNC;
3072		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3073			inode->i_flags |= S_IMMUTABLE;
3074		else
3075			inode->i_flags &= ~S_IMMUTABLE;
3076		if (sd_attrs & REISERFS_APPEND_FL)
3077			inode->i_flags |= S_APPEND;
3078		else
3079			inode->i_flags &= ~S_APPEND;
3080		if (sd_attrs & REISERFS_NOATIME_FL)
3081			inode->i_flags |= S_NOATIME;
3082		else
3083			inode->i_flags &= ~S_NOATIME;
3084		if (sd_attrs & REISERFS_NOTAIL_FL)
3085			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3086		else
3087			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3088	}
3089}
3090
3091/*
3092 * decide if this buffer needs to stay around for data logging or ordered
3093 * write purposes
3094 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3096{
3097	int ret = 1;
3098	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3099
3100	lock_buffer(bh);
3101	spin_lock(&j->j_dirty_buffers_lock);
3102	if (!buffer_mapped(bh)) {
3103		goto free_jh;
3104	}
3105	/*
3106	 * the page is locked, and the only places that log a data buffer
3107	 * also lock the page.
3108	 */
3109	if (reiserfs_file_data_log(inode)) {
3110		/*
3111		 * very conservative, leave the buffer pinned if
3112		 * anyone might need it.
3113		 */
3114		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3115			ret = 0;
3116		}
3117	} else  if (buffer_dirty(bh)) {
3118		struct reiserfs_journal_list *jl;
3119		struct reiserfs_jh *jh = bh->b_private;
3120
3121		/*
3122		 * why is this safe?
3123		 * reiserfs_setattr updates i_size in the on disk
3124		 * stat data before allowing vmtruncate to be called.
3125		 *
3126		 * If buffer was put onto the ordered list for this
3127		 * transaction, we know for sure either this transaction
3128		 * or an older one already has updated i_size on disk,
3129		 * and this ordered data won't be referenced in the file
3130		 * if we crash.
3131		 *
3132		 * if the buffer was put onto the ordered list for an older
3133		 * transaction, we need to leave it around
3134		 */
3135		if (jh && (jl = jh->jl)
3136		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3137			ret = 0;
3138	}
3139free_jh:
3140	if (ret && bh->b_private) {
3141		reiserfs_free_jh(bh);
3142	}
3143	spin_unlock(&j->j_dirty_buffers_lock);
3144	unlock_buffer(bh);
3145	return ret;
3146}
3147
3148/* clm -- taken from fs/buffer.c:block_invalidate_page */
3149static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3150				    unsigned int length)
3151{
3152	struct buffer_head *head, *bh, *next;
3153	struct inode *inode = page->mapping->host;
3154	unsigned int curr_off = 0;
3155	unsigned int stop = offset + length;
3156	int partial_page = (offset || length < PAGE_SIZE);
3157	int ret = 1;
3158
3159	BUG_ON(!PageLocked(page));
3160
3161	if (!partial_page)
3162		ClearPageChecked(page);
3163
3164	if (!page_has_buffers(page))
3165		goto out;
3166
3167	head = page_buffers(page);
3168	bh = head;
3169	do {
3170		unsigned int next_off = curr_off + bh->b_size;
3171		next = bh->b_this_page;
3172
3173		if (next_off > stop)
3174			goto out;
3175
3176		/*
3177		 * is this block fully invalidated?
3178		 */
3179		if (offset <= curr_off) {
3180			if (invalidatepage_can_drop(inode, bh))
3181				reiserfs_unmap_buffer(bh);
3182			else
3183				ret = 0;
3184		}
3185		curr_off = next_off;
3186		bh = next;
3187	} while (bh != head);
3188
3189	/*
3190	 * We release buffers only if the entire page is being invalidated.
3191	 * The get_block cached value has been unconditionally invalidated,
3192	 * so real IO is not possible anymore.
3193	 */
3194	if (!partial_page && ret) {
3195		ret = try_to_release_page(page, 0);
3196		/* maybe should BUG_ON(!ret); - neilb */
3197	}
3198out:
3199	return;
3200}
3201
3202static int reiserfs_set_page_dirty(struct page *page)
3203{
3204	struct inode *inode = page->mapping->host;
3205	if (reiserfs_file_data_log(inode)) {
3206		SetPageChecked(page);
3207		return __set_page_dirty_nobuffers(page);
3208	}
3209	return __set_page_dirty_buffers(page);
3210}
3211
3212/*
3213 * Returns 1 if the page's buffers were dropped.  The page is locked.
3214 *
3215 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3216 * in the buffers at page_buffers(page).
3217 *
3218 * even in -o notail mode, we can't be sure an old mount without -o notail
3219 * didn't create files with tails.
3220 */
3221static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3222{
3223	struct inode *inode = page->mapping->host;
3224	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3225	struct buffer_head *head;
3226	struct buffer_head *bh;
3227	int ret = 1;
3228
3229	WARN_ON(PageChecked(page));
3230	spin_lock(&j->j_dirty_buffers_lock);
3231	head = page_buffers(page);
3232	bh = head;
3233	do {
3234		if (bh->b_private) {
3235			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3236				reiserfs_free_jh(bh);
3237			} else {
3238				ret = 0;
3239				break;
3240			}
3241		}
3242		bh = bh->b_this_page;
3243	} while (bh != head);
3244	if (ret)
3245		ret = try_to_free_buffers(page);
3246	spin_unlock(&j->j_dirty_buffers_lock);
3247	return ret;
3248}
3249
3250/*
3251 * We thank Mingming Cao for helping us understand in great detail what
3252 * to do in this section of the code.
3253 */
3254static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3255{
3256	struct file *file = iocb->ki_filp;
3257	struct inode *inode = file->f_mapping->host;
3258	size_t count = iov_iter_count(iter);
3259	ssize_t ret;
3260
3261	ret = blockdev_direct_IO(iocb, inode, iter,
3262				 reiserfs_get_blocks_direct_io);
3263
3264	/*
3265	 * In case of error extending write may have instantiated a few
3266	 * blocks outside i_size. Trim these off again.
3267	 */
3268	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3269		loff_t isize = i_size_read(inode);
3270		loff_t end = iocb->ki_pos + count;
3271
3272		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3273			truncate_setsize(inode, isize);
3274			reiserfs_vfs_truncate_file(inode);
3275		}
3276	}
3277
3278	return ret;
3279}
3280
3281int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3282{
3283	struct inode *inode = d_inode(dentry);
3284	unsigned int ia_valid;
3285	int error;
3286
3287	error = setattr_prepare(dentry, attr);
3288	if (error)
3289		return error;
3290
3291	/* must be turned off for recursive notify_change calls */
3292	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3293
3294	if (is_quota_modification(inode, attr)) {
3295		error = dquot_initialize(inode);
3296		if (error)
3297			return error;
3298	}
3299	reiserfs_write_lock(inode->i_sb);
3300	if (attr->ia_valid & ATTR_SIZE) {
3301		/*
3302		 * version 2 items will be caught by the s_maxbytes check
3303		 * done for us in vmtruncate
3304		 */
3305		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3306		    attr->ia_size > MAX_NON_LFS) {
3307			reiserfs_write_unlock(inode->i_sb);
3308			error = -EFBIG;
3309			goto out;
3310		}
3311
3312		inode_dio_wait(inode);
3313
3314		/* fill in hole pointers in the expanding truncate case. */
3315		if (attr->ia_size > inode->i_size) {
3316			error = generic_cont_expand_simple(inode, attr->ia_size);
3317			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3318				int err;
3319				struct reiserfs_transaction_handle th;
3320				/* we're changing at most 2 bitmaps, inode + super */
3321				err = journal_begin(&th, inode->i_sb, 4);
3322				if (!err) {
3323					reiserfs_discard_prealloc(&th, inode);
3324					err = journal_end(&th);
3325				}
3326				if (err)
3327					error = err;
3328			}
3329			if (error) {
3330				reiserfs_write_unlock(inode->i_sb);
3331				goto out;
3332			}
3333			/*
3334			 * file size is changed, ctime and mtime are
3335			 * to be updated
3336			 */
3337			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3338		}
3339	}
3340	reiserfs_write_unlock(inode->i_sb);
3341
3342	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3343	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3344	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3345		/* stat data of format v3.5 has 16 bit uid and gid */
3346		error = -EINVAL;
3347		goto out;
3348	}
3349
3350	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3351	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3352		struct reiserfs_transaction_handle th;
3353		int jbegin_count =
3354		    2 *
3355		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3356		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3357		    2;
3358
3359		error = reiserfs_chown_xattrs(inode, attr);
3360
3361		if (error)
3362			return error;
3363
3364		/*
3365		 * (user+group)*(old+new) structure - we count quota
3366		 * info and , inode write (sb, inode)
3367		 */
3368		reiserfs_write_lock(inode->i_sb);
3369		error = journal_begin(&th, inode->i_sb, jbegin_count);
3370		reiserfs_write_unlock(inode->i_sb);
3371		if (error)
3372			goto out;
3373		error = dquot_transfer(inode, attr);
3374		reiserfs_write_lock(inode->i_sb);
3375		if (error) {
3376			journal_end(&th);
3377			reiserfs_write_unlock(inode->i_sb);
3378			goto out;
3379		}
3380
3381		/*
3382		 * Update corresponding info in inode so that everything
3383		 * is in one transaction
3384		 */
3385		if (attr->ia_valid & ATTR_UID)
3386			inode->i_uid = attr->ia_uid;
3387		if (attr->ia_valid & ATTR_GID)
3388			inode->i_gid = attr->ia_gid;
3389		mark_inode_dirty(inode);
3390		error = journal_end(&th);
3391		reiserfs_write_unlock(inode->i_sb);
3392		if (error)
3393			goto out;
3394	}
3395
3396	if ((attr->ia_valid & ATTR_SIZE) &&
3397	    attr->ia_size != i_size_read(inode)) {
3398		error = inode_newsize_ok(inode, attr->ia_size);
3399		if (!error) {
3400			/*
3401			 * Could race against reiserfs_file_release
3402			 * if called from NFS, so take tailpack mutex.
3403			 */
3404			mutex_lock(&REISERFS_I(inode)->tailpack);
3405			truncate_setsize(inode, attr->ia_size);
3406			reiserfs_truncate_file(inode, 1);
3407			mutex_unlock(&REISERFS_I(inode)->tailpack);
3408		}
3409	}
3410
3411	if (!error) {
3412		setattr_copy(inode, attr);
3413		mark_inode_dirty(inode);
3414	}
3415
3416	if (!error && reiserfs_posixacl(inode->i_sb)) {
3417		if (attr->ia_valid & ATTR_MODE)
3418			error = reiserfs_acl_chmod(inode);
3419	}
3420
3421out:
3422	return error;
3423}
3424
3425const struct address_space_operations reiserfs_address_space_operations = {
3426	.writepage = reiserfs_writepage,
3427	.readpage = reiserfs_readpage,
3428	.readpages = reiserfs_readpages,
3429	.releasepage = reiserfs_releasepage,
3430	.invalidatepage = reiserfs_invalidatepage,
3431	.write_begin = reiserfs_write_begin,
3432	.write_end = reiserfs_write_end,
3433	.bmap = reiserfs_aop_bmap,
3434	.direct_IO = reiserfs_direct_IO,
3435	.set_page_dirty = reiserfs_set_page_dirty,
3436};
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <asm/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/aio.h>
 
  22
  23int reiserfs_commit_write(struct file *f, struct page *page,
  24			  unsigned from, unsigned to);
  25
  26void reiserfs_evict_inode(struct inode *inode)
  27{
  28	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
 
 
 
  29	int jbegin_count =
  30	    JOURNAL_PER_BALANCE_CNT * 2 +
  31	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  32	struct reiserfs_transaction_handle th;
  33	int err;
  34
  35	if (!inode->i_nlink && !is_bad_inode(inode))
  36		dquot_initialize(inode);
  37
  38	truncate_inode_pages_final(&inode->i_data);
  39	if (inode->i_nlink)
  40		goto no_delete;
  41
  42	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
  43	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
 
 
 
 
  44
  45		reiserfs_delete_xattrs(inode);
  46
  47		reiserfs_write_lock(inode->i_sb);
  48
  49		if (journal_begin(&th, inode->i_sb, jbegin_count))
  50			goto out;
  51		reiserfs_update_inode_transaction(inode);
  52
  53		reiserfs_discard_prealloc(&th, inode);
  54
  55		err = reiserfs_delete_object(&th, inode);
  56
  57		/* Do quota update inside a transaction for journaled quotas. We must do that
  58		 * after delete_object so that quota updates go into the same transaction as
  59		 * stat data deletion */
 
 
  60		if (!err) {
  61			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  62			dquot_free_inode(inode);
  63			reiserfs_write_lock_nested(inode->i_sb, depth);
  64		}
  65
  66		if (journal_end(&th, inode->i_sb, jbegin_count))
  67			goto out;
  68
  69		/* check return value from reiserfs_delete_object after
 
  70		 * ending the transaction
  71		 */
  72		if (err)
  73		    goto out;
  74
  75		/* all items of file are deleted, so we can remove "save" link */
  76		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
  77								 * about an error here */
 
 
 
  78out:
  79		reiserfs_write_unlock(inode->i_sb);
  80	} else {
  81		/* no object items are in the tree */
  82		;
  83	}
  84	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
 
 
 
  85	dquot_drop(inode);
  86	inode->i_blocks = 0;
  87	return;
  88
  89no_delete:
  90	clear_inode(inode);
  91	dquot_drop(inode);
  92}
  93
  94static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
  95			  __u32 objectid, loff_t offset, int type, int length)
  96{
  97	key->version = version;
  98
  99	key->on_disk_key.k_dir_id = dirid;
 100	key->on_disk_key.k_objectid = objectid;
 101	set_cpu_key_k_offset(key, offset);
 102	set_cpu_key_k_type(key, type);
 103	key->key_length = length;
 104}
 105
 106/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
 107   offset and type of key */
 
 
 108void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 109		  int type, int length)
 110{
 111	_make_cpu_key(key, get_inode_item_key_version(inode),
 112		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 113		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 114		      length);
 115}
 116
 117//
 118// when key is 0, do not set version and short key
 119//
 120inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 121			      int version,
 122			      loff_t offset, int type, int length,
 123			      int entry_count /*or ih_free_space */ )
 124{
 125	if (key) {
 126		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 127		ih->ih_key.k_objectid =
 128		    cpu_to_le32(key->on_disk_key.k_objectid);
 129	}
 130	put_ih_version(ih, version);
 131	set_le_ih_k_offset(ih, offset);
 132	set_le_ih_k_type(ih, type);
 133	put_ih_item_len(ih, length);
 134	/*    set_ih_free_space (ih, 0); */
 135	// for directory items it is entry count, for directs and stat
 136	// datas - 0xffff, for indirects - 0
 
 
 137	put_ih_entry_count(ih, entry_count);
 138}
 139
 140//
 141// FIXME: we might cache recently accessed indirect item
 
 
 
 
 142
 143// Ugh.  Not too eager for that....
 144//  I cut the code until such time as I see a convincing argument (benchmark).
 145// I don't want a bloated inode struct..., and I don't like code complexity....
 146
 147/* cutting the code is fine, since it really isn't in use yet and is easy
 148** to add back in.  But, Vladimir has a really good idea here.  Think
 149** about what happens for reading a file.  For each page,
 150** The VFS layer calls reiserfs_readpage, who searches the tree to find
 151** an indirect item.  This indirect item has X number of pointers, where
 152** X is a big number if we've done the block allocation right.  But,
 153** we only use one or two of these pointers during each call to readpage,
 154** needlessly researching again later on.
 155**
 156** The size of the cache could be dynamic based on the size of the file.
 157**
 158** I'd also like to see us cache the location the stat data item, since
 159** we are needlessly researching for that frequently.
 160**
 161** --chris
 162*/
 163
 164/* If this page has a file tail in it, and
 165** it was read in by get_block_create_0, the page data is valid,
 166** but tail is still sitting in a direct item, and we can't write to
 167** it.  So, look through this page, and check all the mapped buffers
 168** to make sure they have valid block numbers.  Any that don't need
 169** to be unmapped, so that __block_write_begin will correctly call
 170** reiserfs_get_block to convert the tail into an unformatted node
 171*/
 
 172static inline void fix_tail_page_for_writing(struct page *page)
 173{
 174	struct buffer_head *head, *next, *bh;
 175
 176	if (page && page_has_buffers(page)) {
 177		head = page_buffers(page);
 178		bh = head;
 179		do {
 180			next = bh->b_this_page;
 181			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 182				reiserfs_unmap_buffer(bh);
 183			}
 184			bh = next;
 185		} while (bh != head);
 186	}
 187}
 188
 189/* reiserfs_get_block does not need to allocate a block only if it has been
 190   done already or non-hole position has been found in the indirect item */
 
 
 191static inline int allocation_needed(int retval, b_blocknr_t allocated,
 192				    struct item_head *ih,
 193				    __le32 * item, int pos_in_item)
 194{
 195	if (allocated)
 196		return 0;
 197	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 198	    get_block_num(item, pos_in_item))
 199		return 0;
 200	return 1;
 201}
 202
 203static inline int indirect_item_found(int retval, struct item_head *ih)
 204{
 205	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 206}
 207
 208static inline void set_block_dev_mapped(struct buffer_head *bh,
 209					b_blocknr_t block, struct inode *inode)
 210{
 211	map_bh(bh, inode->i_sb, block);
 212}
 213
 214//
 215// files which were created in the earlier version can not be longer,
 216// than 2 gb
 217//
 218static int file_capable(struct inode *inode, sector_t block)
 219{
 220	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
 221	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
 
 
 222		return 1;
 223
 224	return 0;
 225}
 226
 227static int restart_transaction(struct reiserfs_transaction_handle *th,
 228			       struct inode *inode, struct treepath *path)
 229{
 230	struct super_block *s = th->t_super;
 231	int len = th->t_blocks_allocated;
 232	int err;
 233
 234	BUG_ON(!th->t_trans_id);
 235	BUG_ON(!th->t_refcount);
 236
 237	pathrelse(path);
 238
 239	/* we cannot restart while nested */
 240	if (th->t_refcount > 1) {
 241		return 0;
 242	}
 243	reiserfs_update_sd(th, inode);
 244	err = journal_end(th, s, len);
 245	if (!err) {
 246		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 247		if (!err)
 248			reiserfs_update_inode_transaction(inode);
 249	}
 250	return err;
 251}
 252
 253// it is called by get_block when create == 0. Returns block number
 254// for 'block'-th logical block of file. When it hits direct item it
 255// returns 0 (being called from bmap) or read direct item into piece
 256// of page (bh_result)
 257
 258// Please improve the english/clarity in the comment above, as it is
 259// hard to understand.
 260
 261static int _get_block_create_0(struct inode *inode, sector_t block,
 262			       struct buffer_head *bh_result, int args)
 263{
 264	INITIALIZE_PATH(path);
 265	struct cpu_key key;
 266	struct buffer_head *bh;
 267	struct item_head *ih, tmp_ih;
 268	b_blocknr_t blocknr;
 269	char *p = NULL;
 270	int chars;
 271	int ret;
 272	int result;
 273	int done = 0;
 274	unsigned long offset;
 275
 276	// prepare the key to look for the 'block'-th block of file
 277	make_cpu_key(&key, inode,
 278		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 279		     3);
 280
 281	result = search_for_position_by_key(inode->i_sb, &key, &path);
 282	if (result != POSITION_FOUND) {
 283		pathrelse(&path);
 284		if (p)
 285			kunmap(bh_result->b_page);
 286		if (result == IO_ERROR)
 287			return -EIO;
 288		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 289		// That there is some MMAPED data associated with it that is yet to be written to disk.
 
 
 
 290		if ((args & GET_BLOCK_NO_HOLE)
 291		    && !PageUptodate(bh_result->b_page)) {
 292			return -ENOENT;
 293		}
 294		return 0;
 295	}
 296	//
 297	bh = get_last_bh(&path);
 298	ih = get_ih(&path);
 299	if (is_indirect_le_ih(ih)) {
 300		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
 301
 302		/* FIXME: here we could cache indirect item or part of it in
 303		   the inode to avoid search_by_key in case of subsequent
 304		   access to file */
 
 
 305		blocknr = get_block_num(ind_item, path.pos_in_item);
 306		ret = 0;
 307		if (blocknr) {
 308			map_bh(bh_result, inode->i_sb, blocknr);
 309			if (path.pos_in_item ==
 310			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 311				set_buffer_boundary(bh_result);
 312			}
 313		} else
 314			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 315			// That there is some MMAPED data associated with it that is yet to  be written to disk.
 
 
 
 
 316		if ((args & GET_BLOCK_NO_HOLE)
 317			    && !PageUptodate(bh_result->b_page)) {
 318			ret = -ENOENT;
 319		}
 320
 321		pathrelse(&path);
 322		if (p)
 323			kunmap(bh_result->b_page);
 324		return ret;
 325	}
 326	// requested data are in direct item(s)
 327	if (!(args & GET_BLOCK_READ_DIRECT)) {
 328		// we are called by bmap. FIXME: we can not map block of file
 329		// when it is stored in direct item(s)
 
 
 330		pathrelse(&path);
 331		if (p)
 332			kunmap(bh_result->b_page);
 333		return -ENOENT;
 334	}
 335
 336	/* if we've got a direct item, and the buffer or page was uptodate,
 337	 ** we don't want to pull data off disk again.  skip to the
 338	 ** end, where we map the buffer and return
 
 339	 */
 340	if (buffer_uptodate(bh_result)) {
 341		goto finished;
 342	} else
 343		/*
 344		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
 345		 ** pages without any buffers.  If the page is up to date, we don't want
 346		 ** read old data off disk.  Set the up to date bit on the buffer instead
 347		 ** and jump to the end
 348		 */
 349	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 350		set_buffer_uptodate(bh_result);
 351		goto finished;
 352	}
 353	// read file tail into part of page
 354	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
 355	copy_item_head(&tmp_ih, ih);
 356
 357	/* we only want to kmap if we are reading the tail into the page.
 358	 ** this is not the common case, so we don't kmap until we are
 359	 ** sure we need to.  But, this means the item might move if
 360	 ** kmap schedules
 
 361	 */
 362	if (!p)
 363		p = (char *)kmap(bh_result->b_page);
 364
 365	p += offset;
 366	memset(p, 0, inode->i_sb->s_blocksize);
 367	do {
 368		if (!is_direct_le_ih(ih)) {
 369			BUG();
 370		}
 371		/* make sure we don't read more bytes than actually exist in
 372		 ** the file.  This can happen in odd cases where i_size isn't
 373		 ** correct, and when direct item padding results in a few
 374		 ** extra bytes at the end of the direct item
 
 375		 */
 376		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 377			break;
 378		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 379			chars =
 380			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 381			    path.pos_in_item;
 382			done = 1;
 383		} else {
 384			chars = ih_item_len(ih) - path.pos_in_item;
 385		}
 386		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
 387
 388		if (done)
 389			break;
 390
 391		p += chars;
 392
 
 
 
 
 
 
 393		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 394			// we done, if read direct item is not the last item of
 395			// node FIXME: we could try to check right delimiting key
 396			// to see whether direct item continues in the right
 397			// neighbor or rely on i_size
 398			break;
 399
 400		// update key to look for the next piece
 401		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 402		result = search_for_position_by_key(inode->i_sb, &key, &path);
 403		if (result != POSITION_FOUND)
 404			// i/o error most likely
 405			break;
 406		bh = get_last_bh(&path);
 407		ih = get_ih(&path);
 408	} while (1);
 409
 410	flush_dcache_page(bh_result->b_page);
 411	kunmap(bh_result->b_page);
 412
 413      finished:
 414	pathrelse(&path);
 415
 416	if (result == IO_ERROR)
 417		return -EIO;
 418
 419	/* this buffer has valid data, but isn't valid for io.  mapping it to
 
 420	 * block #0 tells the rest of reiserfs it just has a tail in it
 421	 */
 422	map_bh(bh_result, inode->i_sb, 0);
 423	set_buffer_uptodate(bh_result);
 424	return 0;
 425}
 426
 427// this is called to create file map. So, _get_block_create_0 will not
 428// read direct item
 
 
 429static int reiserfs_bmap(struct inode *inode, sector_t block,
 430			 struct buffer_head *bh_result, int create)
 431{
 432	if (!file_capable(inode, block))
 433		return -EFBIG;
 434
 435	reiserfs_write_lock(inode->i_sb);
 436	/* do not read the direct item */
 437	_get_block_create_0(inode, block, bh_result, 0);
 438	reiserfs_write_unlock(inode->i_sb);
 439	return 0;
 440}
 441
 442/* special version of get_block that is only used by grab_tail_page right
 443** now.  It is sent to __block_write_begin, and when you try to get a
 444** block past the end of the file (or a block from a hole) it returns
 445** -ENOENT instead of a valid buffer.  __block_write_begin expects to
 446** be able to do i/o on the buffers returned, unless an error value
 447** is also returned.
 448**
 449** So, this allows __block_write_begin to be used for reading a single block
 450** in a page.  Where it does not produce a valid page for holes, or past the
 451** end of the file.  This turns out to be exactly what we need for reading
 452** tails for conversion.
 453**
 454** The point of the wrapper is forcing a certain value for create, even
 455** though the VFS layer is calling this function with create==1.  If you
 456** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 457** don't use this function.
 
 458*/
 459static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 460				       struct buffer_head *bh_result,
 461				       int create)
 462{
 463	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 464}
 465
 466/* This is special helper for reiserfs_get_block in case we are executing
 467   direct_IO request. */
 
 
 468static int reiserfs_get_blocks_direct_io(struct inode *inode,
 469					 sector_t iblock,
 470					 struct buffer_head *bh_result,
 471					 int create)
 472{
 473	int ret;
 474
 475	bh_result->b_page = NULL;
 476
 477	/* We set the b_size before reiserfs_get_block call since it is
 478	   referenced in convert_tail_for_hole() that may be called from
 479	   reiserfs_get_block() */
 480	bh_result->b_size = (1 << inode->i_blkbits);
 
 
 481
 482	ret = reiserfs_get_block(inode, iblock, bh_result,
 483				 create | GET_BLOCK_NO_DANGLE);
 484	if (ret)
 485		goto out;
 486
 487	/* don't allow direct io onto tail pages */
 488	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 489		/* make sure future calls to the direct io funcs for this offset
 490		 ** in the file fail by unmapping the buffer
 
 491		 */
 492		clear_buffer_mapped(bh_result);
 493		ret = -EINVAL;
 494	}
 495	/* Possible unpacked tail. Flush the data before pages have
 496	   disappeared */
 
 
 
 497	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 498		int err;
 499
 500		reiserfs_write_lock(inode->i_sb);
 501
 502		err = reiserfs_commit_for_inode(inode);
 503		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 504
 505		reiserfs_write_unlock(inode->i_sb);
 506
 507		if (err < 0)
 508			ret = err;
 509	}
 510      out:
 511	return ret;
 512}
 513
 514/*
 515** helper function for when reiserfs_get_block is called for a hole
 516** but the file tail is still in a direct item
 517** bh_result is the buffer head for the hole
 518** tail_offset is the offset of the start of the tail in the file
 519**
 520** This calls prepare_write, which will start a new transaction
 521** you should not be in a transaction, or have any paths held when you
 522** call this.
 523*/
 524static int convert_tail_for_hole(struct inode *inode,
 525				 struct buffer_head *bh_result,
 526				 loff_t tail_offset)
 527{
 528	unsigned long index;
 529	unsigned long tail_end;
 530	unsigned long tail_start;
 531	struct page *tail_page;
 532	struct page *hole_page = bh_result->b_page;
 533	int retval = 0;
 534
 535	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 536		return -EIO;
 537
 538	/* always try to read until the end of the block */
 539	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
 540	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 541
 542	index = tail_offset >> PAGE_CACHE_SHIFT;
 543	/* hole_page can be zero in case of direct_io, we are sure
 544	   that we cannot get here if we write with O_DIRECT into
 545	   tail page */
 
 546	if (!hole_page || index != hole_page->index) {
 547		tail_page = grab_cache_page(inode->i_mapping, index);
 548		retval = -ENOMEM;
 549		if (!tail_page) {
 550			goto out;
 551		}
 552	} else {
 553		tail_page = hole_page;
 554	}
 555
 556	/* we don't have to make sure the conversion did not happen while
 557	 ** we were locking the page because anyone that could convert
 558	 ** must first take i_mutex.
 559	 **
 560	 ** We must fix the tail page for writing because it might have buffers
 561	 ** that are mapped, but have a block number of 0.  This indicates tail
 562	 ** data that has been read directly into the page, and
 563	 ** __block_write_begin won't trigger a get_block in this case.
 
 564	 */
 565	fix_tail_page_for_writing(tail_page);
 566	retval = __reiserfs_write_begin(tail_page, tail_start,
 567				      tail_end - tail_start);
 568	if (retval)
 569		goto unlock;
 570
 571	/* tail conversion might change the data in the page */
 572	flush_dcache_page(tail_page);
 573
 574	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 575
 576      unlock:
 577	if (tail_page != hole_page) {
 578		unlock_page(tail_page);
 579		page_cache_release(tail_page);
 580	}
 581      out:
 582	return retval;
 583}
 584
 585static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 586				  sector_t block,
 587				  struct inode *inode,
 588				  b_blocknr_t * allocated_block_nr,
 589				  struct treepath *path, int flags)
 590{
 591	BUG_ON(!th->t_trans_id);
 592
 593#ifdef REISERFS_PREALLOCATE
 594	if (!(flags & GET_BLOCK_NO_IMUX)) {
 595		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 596						  path, block);
 597	}
 598#endif
 599	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 600					 block);
 601}
 602
 603int reiserfs_get_block(struct inode *inode, sector_t block,
 604		       struct buffer_head *bh_result, int create)
 605{
 606	int repeat, retval = 0;
 607	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
 
 608	INITIALIZE_PATH(path);
 609	int pos_in_item;
 610	struct cpu_key key;
 611	struct buffer_head *bh, *unbh = NULL;
 612	struct item_head *ih, tmp_ih;
 613	__le32 *item;
 614	int done;
 615	int fs_gen;
 616	struct reiserfs_transaction_handle *th = NULL;
 617	/* space reserved in transaction batch:
 618	   . 3 balancings in direct->indirect conversion
 619	   . 1 block involved into reiserfs_update_sd()
 620	   XXX in practically impossible worst case direct2indirect()
 621	   can incur (much) more than 3 balancings.
 622	   quota update for user, group */
 
 
 623	int jbegin_count =
 624	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 625	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 626	int version;
 627	int dangle = 1;
 628	loff_t new_offset =
 629	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 630
 631	reiserfs_write_lock(inode->i_sb);
 632	version = get_inode_item_key_version(inode);
 633
 634	if (!file_capable(inode, block)) {
 635		reiserfs_write_unlock(inode->i_sb);
 636		return -EFBIG;
 637	}
 638
 639	/* if !create, we aren't changing the FS, so we don't need to
 640	 ** log anything, so we don't need to start a transaction
 
 641	 */
 642	if (!(create & GET_BLOCK_CREATE)) {
 643		int ret;
 644		/* find number of block-th logical block of the file */
 645		ret = _get_block_create_0(inode, block, bh_result,
 646					  create | GET_BLOCK_READ_DIRECT);
 647		reiserfs_write_unlock(inode->i_sb);
 648		return ret;
 649	}
 
 650	/*
 651	 * if we're already in a transaction, make sure to close
 652	 * any new transactions we start in this func
 653	 */
 654	if ((create & GET_BLOCK_NO_DANGLE) ||
 655	    reiserfs_transaction_running(inode->i_sb))
 656		dangle = 0;
 657
 658	/* If file is of such a size, that it might have a tail and tails are enabled
 659	 ** we should mark it as possibly needing tail packing on close
 
 
 660	 */
 661	if ((have_large_tails(inode->i_sb)
 662	     && inode->i_size < i_block_size(inode) * 4)
 663	    || (have_small_tails(inode->i_sb)
 664		&& inode->i_size < i_block_size(inode)))
 665		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 666
 667	/* set the key of the first byte in the 'block'-th block of file */
 668	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 669	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 670	      start_trans:
 671		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 672		if (!th) {
 673			retval = -ENOMEM;
 674			goto failure;
 675		}
 676		reiserfs_update_inode_transaction(inode);
 677	}
 678      research:
 679
 680	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 681	if (retval == IO_ERROR) {
 682		retval = -EIO;
 683		goto failure;
 684	}
 685
 686	bh = get_last_bh(&path);
 687	ih = get_ih(&path);
 688	item = get_item(&path);
 689	pos_in_item = path.pos_in_item;
 690
 691	fs_gen = get_generation(inode->i_sb);
 692	copy_item_head(&tmp_ih, ih);
 693
 694	if (allocation_needed
 695	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 696		/* we have to allocate block for the unformatted node */
 697		if (!th) {
 698			pathrelse(&path);
 699			goto start_trans;
 700		}
 701
 702		repeat =
 703		    _allocate_block(th, block, inode, &allocated_block_nr,
 704				    &path, create);
 705
 
 
 
 
 
 706		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 707			/* restart the transaction to give the journal a chance to free
 708			 ** some blocks.  releases the path, so we have to go back to
 709			 ** research if we succeed on the second try
 710			 */
 711			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 712			retval = restart_transaction(th, inode, &path);
 713			if (retval)
 714				goto failure;
 715			repeat =
 716			    _allocate_block(th, block, inode,
 717					    &allocated_block_nr, NULL, create);
 718
 719			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 720				goto research;
 721			}
 722			if (repeat == QUOTA_EXCEEDED)
 723				retval = -EDQUOT;
 724			else
 725				retval = -ENOSPC;
 726			goto failure;
 727		}
 728
 729		if (fs_changed(fs_gen, inode->i_sb)
 730		    && item_moved(&tmp_ih, &path)) {
 731			goto research;
 732		}
 733	}
 734
 735	if (indirect_item_found(retval, ih)) {
 736		b_blocknr_t unfm_ptr;
 737		/* 'block'-th block is in the file already (there is
 738		   corresponding cell in some indirect item). But it may be
 739		   zero unformatted node pointer (hole) */
 
 
 740		unfm_ptr = get_block_num(item, pos_in_item);
 741		if (unfm_ptr == 0) {
 742			/* use allocated block to plug the hole */
 743			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 744			if (fs_changed(fs_gen, inode->i_sb)
 745			    && item_moved(&tmp_ih, &path)) {
 746				reiserfs_restore_prepared_buffer(inode->i_sb,
 747								 bh);
 748				goto research;
 749			}
 750			set_buffer_new(bh_result);
 751			if (buffer_dirty(bh_result)
 752			    && reiserfs_data_ordered(inode->i_sb))
 753				reiserfs_add_ordered_list(inode, bh_result);
 754			put_block_num(item, pos_in_item, allocated_block_nr);
 755			unfm_ptr = allocated_block_nr;
 756			journal_mark_dirty(th, inode->i_sb, bh);
 757			reiserfs_update_sd(th, inode);
 758		}
 759		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 760		pathrelse(&path);
 761		retval = 0;
 762		if (!dangle && th)
 763			retval = reiserfs_end_persistent_transaction(th);
 764
 765		reiserfs_write_unlock(inode->i_sb);
 766
 767		/* the item was found, so new blocks were not added to the file
 768		 ** there is no need to make sure the inode is updated with this
 769		 ** transaction
 
 770		 */
 771		return retval;
 772	}
 773
 774	if (!th) {
 775		pathrelse(&path);
 776		goto start_trans;
 777	}
 778
 779	/* desired position is not found or is in the direct item. We have
 780	   to append file with holes up to 'block'-th block converting
 781	   direct items to indirect one if necessary */
 
 
 782	done = 0;
 783	do {
 784		if (is_statdata_le_ih(ih)) {
 785			__le32 unp = 0;
 786			struct cpu_key tmp_key;
 787
 788			/* indirect item has to be inserted */
 789			make_le_item_head(&tmp_ih, &key, version, 1,
 790					  TYPE_INDIRECT, UNFM_P_SIZE,
 791					  0 /* free_space */ );
 792
 
 
 
 
 793			if (cpu_key_k_offset(&key) == 1) {
 794				/* we are going to add 'block'-th block to the file. Use
 795				   allocated block for that */
 796				unp = cpu_to_le32(allocated_block_nr);
 797				set_block_dev_mapped(bh_result,
 798						     allocated_block_nr, inode);
 799				set_buffer_new(bh_result);
 800				done = 1;
 801			}
 802			tmp_key = key;	// ;)
 803			set_cpu_key_k_offset(&tmp_key, 1);
 804			PATH_LAST_POSITION(&path)++;
 805
 806			retval =
 807			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 808						 inode, (char *)&unp);
 809			if (retval) {
 810				reiserfs_free_block(th, inode,
 811						    allocated_block_nr, 1);
 812				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
 
 
 
 
 813			}
 814			//mark_tail_converted (inode);
 815		} else if (is_direct_le_ih(ih)) {
 816			/* direct item has to be converted */
 817			loff_t tail_offset;
 818
 819			tail_offset =
 820			    ((le_ih_k_offset(ih) -
 821			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 
 
 
 
 
 
 822			if (tail_offset == cpu_key_k_offset(&key)) {
 823				/* direct item we just found fits into block we have
 824				   to map. Convert it into unformatted node: use
 825				   bh_result for the conversion */
 826				set_block_dev_mapped(bh_result,
 827						     allocated_block_nr, inode);
 828				unbh = bh_result;
 829				done = 1;
 830			} else {
 831				/* we have to padd file tail stored in direct item(s)
 832				   up to block size and convert it to unformatted
 833				   node. FIXME: this should also get into page cache */
 
 
 
 834
 835				pathrelse(&path);
 836				/*
 837				 * ugly, but we can only end the transaction if
 838				 * we aren't nested
 839				 */
 840				BUG_ON(!th->t_refcount);
 841				if (th->t_refcount == 1) {
 842					retval =
 843					    reiserfs_end_persistent_transaction
 844					    (th);
 845					th = NULL;
 846					if (retval)
 847						goto failure;
 848				}
 849
 850				retval =
 851				    convert_tail_for_hole(inode, bh_result,
 852							  tail_offset);
 853				if (retval) {
 854					if (retval != -ENOSPC)
 855						reiserfs_error(inode->i_sb,
 856							"clm-6004",
 857							"convert tail failed "
 858							"inode %lu, error %d",
 859							inode->i_ino,
 860							retval);
 861					if (allocated_block_nr) {
 862						/* the bitmap, the super, and the stat data == 3 */
 
 
 
 863						if (!th)
 864							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 865						if (th)
 866							reiserfs_free_block(th,
 867									    inode,
 868									    allocated_block_nr,
 869									    1);
 870					}
 871					goto failure;
 872				}
 873				goto research;
 874			}
 875			retval =
 876			    direct2indirect(th, inode, &path, unbh,
 877					    tail_offset);
 878			if (retval) {
 879				reiserfs_unmap_buffer(unbh);
 880				reiserfs_free_block(th, inode,
 881						    allocated_block_nr, 1);
 882				goto failure;
 883			}
 884			/* it is important the set_buffer_uptodate is done after
 885			 ** the direct2indirect.  The buffer might contain valid
 886			 ** data newer than the data on disk (read by readpage, changed,
 887			 ** and then sent here by writepage).  direct2indirect needs
 888			 ** to know if unbh was already up to date, so it can decide
 889			 ** if the data in unbh needs to be replaced with data from
 890			 ** the disk
 
 
 891			 */
 892			set_buffer_uptodate(unbh);
 893
 894			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
 895			   buffer will disappear shortly, so it should not be added to
 
 
 896			 */
 897			if (unbh->b_page) {
 898				/* we've converted the tail, so we must
 899				 ** flush unbh before the transaction commits
 
 900				 */
 901				reiserfs_add_tail_list(inode, unbh);
 902
 903				/* mark it dirty now to prevent commit_write from adding
 904				 ** this buffer to the inode's dirty buffer list
 
 
 905				 */
 906				/*
 907				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
 908				 * It's still atomic, but it sets the page dirty too,
 909				 * which makes it eligible for writeback at any time by the
 910				 * VM (which was also the case with __mark_buffer_dirty())
 
 
 911				 */
 912				mark_buffer_dirty(unbh);
 913			}
 914		} else {
 915			/* append indirect item with holes if needed, when appending
 916			   pointer to 'block'-th block use block, which is already
 917			   allocated */
 
 
 918			struct cpu_key tmp_key;
 919			unp_t unf_single = 0;	// We use this in case we need to allocate only
 920			// one block which is a fastpath
 
 
 
 921			unp_t *un;
 922			__u64 max_to_insert =
 923			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
 924			    UNFM_P_SIZE;
 925			__u64 blocks_needed;
 926
 927			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
 928			       "vs-804: invalid position for append");
 929			/* indirect item has to be appended, set up key of that position */
 
 
 
 
 930			make_cpu_key(&tmp_key, inode,
 931				     le_key_k_offset(version,
 932						     &(ih->ih_key)) +
 933				     op_bytes_number(ih,
 934						     inode->i_sb->s_blocksize),
 935				     //pos_in_item * inode->i_sb->s_blocksize,
 936				     TYPE_INDIRECT, 3);	// key type is unimportant
 937
 938			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
 939			       "green-805: invalid offset");
 940			blocks_needed =
 941			    1 +
 942			    ((cpu_key_k_offset(&key) -
 943			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
 944			     s_blocksize_bits);
 945
 946			if (blocks_needed == 1) {
 947				un = &unf_single;
 948			} else {
 949				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
 950				if (!un) {
 951					un = &unf_single;
 952					blocks_needed = 1;
 953					max_to_insert = 0;
 954				}
 955			}
 956			if (blocks_needed <= max_to_insert) {
 957				/* we are going to add target block to the file. Use allocated
 958				   block for that */
 
 
 959				un[blocks_needed - 1] =
 960				    cpu_to_le32(allocated_block_nr);
 961				set_block_dev_mapped(bh_result,
 962						     allocated_block_nr, inode);
 963				set_buffer_new(bh_result);
 964				done = 1;
 965			} else {
 966				/* paste hole to the indirect item */
 967				/* If kmalloc failed, max_to_insert becomes zero and it means we
 968				   only have space for one block */
 
 
 
 969				blocks_needed =
 970				    max_to_insert ? max_to_insert : 1;
 971			}
 972			retval =
 973			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
 974						     (char *)un,
 975						     UNFM_P_SIZE *
 976						     blocks_needed);
 977
 978			if (blocks_needed != 1)
 979				kfree(un);
 980
 981			if (retval) {
 982				reiserfs_free_block(th, inode,
 983						    allocated_block_nr, 1);
 984				goto failure;
 985			}
 986			if (!done) {
 987				/* We need to mark new file size in case this function will be
 988				   interrupted/aborted later on. And we may do this only for
 989				   holes. */
 
 
 
 990				inode->i_size +=
 991				    inode->i_sb->s_blocksize * blocks_needed;
 992			}
 993		}
 994
 995		if (done == 1)
 996			break;
 997
 998		/* this loop could log more blocks than we had originally asked
 999		 ** for.  So, we have to allow the transaction to end if it is
1000		 ** too big or too full.  Update the inode so things are
1001		 ** consistent if we crash before the function returns
1002		 **
1003		 ** release the path so that anybody waiting on the path before
1004		 ** ending their transaction will be able to continue.
1005		 */
1006		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1007			retval = restart_transaction(th, inode, &path);
1008			if (retval)
1009				goto failure;
1010		}
1011		/*
1012		 * inserting indirect pointers for a hole can take a
1013		 * long time.  reschedule if needed and also release the write
1014		 * lock for others.
1015		 */
1016		reiserfs_cond_resched(inode->i_sb);
1017
1018		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1019		if (retval == IO_ERROR) {
1020			retval = -EIO;
1021			goto failure;
1022		}
1023		if (retval == POSITION_FOUND) {
1024			reiserfs_warning(inode->i_sb, "vs-825",
1025					 "%K should not be found", &key);
1026			retval = -EEXIST;
1027			if (allocated_block_nr)
1028				reiserfs_free_block(th, inode,
1029						    allocated_block_nr, 1);
1030			pathrelse(&path);
1031			goto failure;
1032		}
1033		bh = get_last_bh(&path);
1034		ih = get_ih(&path);
1035		item = get_item(&path);
1036		pos_in_item = path.pos_in_item;
1037	} while (1);
1038
1039	retval = 0;
1040
1041      failure:
1042	if (th && (!dangle || (retval && !th->t_trans_id))) {
1043		int err;
1044		if (th->t_trans_id)
1045			reiserfs_update_sd(th, inode);
1046		err = reiserfs_end_persistent_transaction(th);
1047		if (err)
1048			retval = err;
1049	}
1050
1051	reiserfs_write_unlock(inode->i_sb);
1052	reiserfs_check_path(&path);
1053	return retval;
1054}
1055
1056static int
1057reiserfs_readpages(struct file *file, struct address_space *mapping,
1058		   struct list_head *pages, unsigned nr_pages)
1059{
1060	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1061}
1062
1063/* Compute real number of used bytes by file
1064 * Following three functions can go away when we'll have enough space in stat item
 
 
1065 */
1066static int real_space_diff(struct inode *inode, int sd_size)
1067{
1068	int bytes;
1069	loff_t blocksize = inode->i_sb->s_blocksize;
1070
1071	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1072		return sd_size;
1073
1074	/* End of file is also in full block with indirect reference, so round
1075	 ** up to the next block.
1076	 **
1077	 ** there is just no way to know if the tail is actually packed
1078	 ** on the file, so we have to assume it isn't.  When we pack the
1079	 ** tail, we add 4 bytes to pretend there really is an unformatted
1080	 ** node pointer
 
1081	 */
1082	bytes =
1083	    ((inode->i_size +
1084	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1085	    sd_size;
1086	return bytes;
1087}
1088
1089static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1090					int sd_size)
1091{
1092	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1093		return inode->i_size +
1094		    (loff_t) (real_space_diff(inode, sd_size));
1095	}
1096	return ((loff_t) real_space_diff(inode, sd_size)) +
1097	    (((loff_t) blocks) << 9);
1098}
1099
1100/* Compute number of blocks used by file in ReiserFS counting */
1101static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1102{
1103	loff_t bytes = inode_get_bytes(inode);
1104	loff_t real_space = real_space_diff(inode, sd_size);
1105
1106	/* keeps fsck and non-quota versions of reiserfs happy */
1107	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1108		bytes += (loff_t) 511;
1109	}
1110
1111	/* files from before the quota patch might i_blocks such that
1112	 ** bytes < real_space.  Deal with that here to prevent it from
1113	 ** going negative.
 
1114	 */
1115	if (bytes < real_space)
1116		return 0;
1117	return (bytes - real_space) >> 9;
1118}
1119
1120//
1121// BAD: new directories have stat data of new type and all other items
1122// of old type. Version stored in the inode says about body items, so
1123// in update_stat_data we can not rely on inode, but have to check
1124// item version directly
1125//
1126
1127// called by read_locked_inode
1128static void init_inode(struct inode *inode, struct treepath *path)
1129{
1130	struct buffer_head *bh;
1131	struct item_head *ih;
1132	__u32 rdev;
1133	//int version = ITEM_VERSION_1;
1134
1135	bh = PATH_PLAST_BUFFER(path);
1136	ih = PATH_PITEM_HEAD(path);
1137
1138	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1139
1140	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1141	REISERFS_I(inode)->i_flags = 0;
1142	REISERFS_I(inode)->i_prealloc_block = 0;
1143	REISERFS_I(inode)->i_prealloc_count = 0;
1144	REISERFS_I(inode)->i_trans_id = 0;
1145	REISERFS_I(inode)->i_jl = NULL;
1146	reiserfs_init_xattr_rwsem(inode);
1147
1148	if (stat_data_v1(ih)) {
1149		struct stat_data_v1 *sd =
1150		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1151		unsigned long blocks;
1152
1153		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1154		set_inode_sd_version(inode, STAT_DATA_V1);
1155		inode->i_mode = sd_v1_mode(sd);
1156		set_nlink(inode, sd_v1_nlink(sd));
1157		i_uid_write(inode, sd_v1_uid(sd));
1158		i_gid_write(inode, sd_v1_gid(sd));
1159		inode->i_size = sd_v1_size(sd);
1160		inode->i_atime.tv_sec = sd_v1_atime(sd);
1161		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1162		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1163		inode->i_atime.tv_nsec = 0;
1164		inode->i_ctime.tv_nsec = 0;
1165		inode->i_mtime.tv_nsec = 0;
1166
1167		inode->i_blocks = sd_v1_blocks(sd);
1168		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1169		blocks = (inode->i_size + 511) >> 9;
1170		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
 
 
 
 
 
 
 
 
 
1171		if (inode->i_blocks > blocks) {
1172			// there was a bug in <=3.5.23 when i_blocks could take negative
1173			// values. Starting from 3.5.17 this value could even be stored in
1174			// stat data. For such files we set i_blocks based on file
1175			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1176			// only updated if file's inode will ever change
1177			inode->i_blocks = blocks;
1178		}
1179
1180		rdev = sd_v1_rdev(sd);
1181		REISERFS_I(inode)->i_first_direct_byte =
1182		    sd_v1_first_direct_byte(sd);
1183		/* an early bug in the quota code can give us an odd number for the
1184		 ** block count.  This is incorrect, fix it here.
 
 
1185		 */
1186		if (inode->i_blocks & 1) {
1187			inode->i_blocks++;
1188		}
1189		inode_set_bytes(inode,
1190				to_real_used_space(inode, inode->i_blocks,
1191						   SD_V1_SIZE));
1192		/* nopack is initially zero for v1 objects. For v2 objects,
1193		   nopack is initialised from sd_attrs */
 
 
1194		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1195	} else {
1196		// new stat data found, but object may have old items
1197		// (directories and symlinks)
1198		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
 
 
1199
1200		inode->i_mode = sd_v2_mode(sd);
1201		set_nlink(inode, sd_v2_nlink(sd));
1202		i_uid_write(inode, sd_v2_uid(sd));
1203		inode->i_size = sd_v2_size(sd);
1204		i_gid_write(inode, sd_v2_gid(sd));
1205		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1206		inode->i_atime.tv_sec = sd_v2_atime(sd);
1207		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1208		inode->i_ctime.tv_nsec = 0;
1209		inode->i_mtime.tv_nsec = 0;
1210		inode->i_atime.tv_nsec = 0;
1211		inode->i_blocks = sd_v2_blocks(sd);
1212		rdev = sd_v2_rdev(sd);
1213		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1214			inode->i_generation =
1215			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1216		else
1217			inode->i_generation = sd_v2_generation(sd);
1218
1219		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1220			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1221		else
1222			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1223		REISERFS_I(inode)->i_first_direct_byte = 0;
1224		set_inode_sd_version(inode, STAT_DATA_V2);
1225		inode_set_bytes(inode,
1226				to_real_used_space(inode, inode->i_blocks,
1227						   SD_V2_SIZE));
1228		/* read persistent inode attributes from sd and initialise
1229		   generic inode flags from them */
 
 
1230		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1231		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1232	}
1233
1234	pathrelse(path);
1235	if (S_ISREG(inode->i_mode)) {
1236		inode->i_op = &reiserfs_file_inode_operations;
1237		inode->i_fop = &reiserfs_file_operations;
1238		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1239	} else if (S_ISDIR(inode->i_mode)) {
1240		inode->i_op = &reiserfs_dir_inode_operations;
1241		inode->i_fop = &reiserfs_dir_operations;
1242	} else if (S_ISLNK(inode->i_mode)) {
1243		inode->i_op = &reiserfs_symlink_inode_operations;
 
1244		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1245	} else {
1246		inode->i_blocks = 0;
1247		inode->i_op = &reiserfs_special_inode_operations;
1248		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1249	}
1250}
1251
1252// update new stat data with inode fields
1253static void inode2sd(void *sd, struct inode *inode, loff_t size)
1254{
1255	struct stat_data *sd_v2 = (struct stat_data *)sd;
1256	__u16 flags;
1257
1258	set_sd_v2_mode(sd_v2, inode->i_mode);
1259	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1260	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1261	set_sd_v2_size(sd_v2, size);
1262	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1263	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1264	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1265	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1266	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1267	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1268		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1269	else
1270		set_sd_v2_generation(sd_v2, inode->i_generation);
1271	flags = REISERFS_I(inode)->i_attrs;
1272	i_attrs_to_sd_attrs(inode, &flags);
1273	set_sd_v2_attrs(sd_v2, flags);
1274}
1275
1276// used to copy inode's fields to old stat data
1277static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1278{
1279	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1280
1281	set_sd_v1_mode(sd_v1, inode->i_mode);
1282	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1283	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1284	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1285	set_sd_v1_size(sd_v1, size);
1286	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1287	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1288	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1289
1290	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1291		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1292	else
1293		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1294
1295	// Sigh. i_first_direct_byte is back
1296	set_sd_v1_first_direct_byte(sd_v1,
1297				    REISERFS_I(inode)->i_first_direct_byte);
1298}
1299
1300/* NOTE, you must prepare the buffer head before sending it here,
1301** and then log it after the call
1302*/
 
1303static void update_stat_data(struct treepath *path, struct inode *inode,
1304			     loff_t size)
1305{
1306	struct buffer_head *bh;
1307	struct item_head *ih;
1308
1309	bh = PATH_PLAST_BUFFER(path);
1310	ih = PATH_PITEM_HEAD(path);
1311
1312	if (!is_statdata_le_ih(ih))
1313		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1314			       INODE_PKEY(inode), ih);
1315
 
1316	if (stat_data_v1(ih)) {
1317		// path points to old stat data
1318		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1319	} else {
1320		inode2sd(B_I_PITEM(bh, ih), inode, size);
1321	}
1322
1323	return;
1324}
1325
1326void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1327			     struct inode *inode, loff_t size)
1328{
1329	struct cpu_key key;
1330	INITIALIZE_PATH(path);
1331	struct buffer_head *bh;
1332	int fs_gen;
1333	struct item_head *ih, tmp_ih;
1334	int retval;
1335
1336	BUG_ON(!th->t_trans_id);
1337
1338	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
 
1339
1340	for (;;) {
1341		int pos;
1342		/* look for the object's stat data */
1343		retval = search_item(inode->i_sb, &key, &path);
1344		if (retval == IO_ERROR) {
1345			reiserfs_error(inode->i_sb, "vs-13050",
1346				       "i/o failure occurred trying to "
1347				       "update %K stat data", &key);
1348			return;
1349		}
1350		if (retval == ITEM_NOT_FOUND) {
1351			pos = PATH_LAST_POSITION(&path);
1352			pathrelse(&path);
1353			if (inode->i_nlink == 0) {
1354				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1355				return;
1356			}
1357			reiserfs_warning(inode->i_sb, "vs-13060",
1358					 "stat data of object %k (nlink == %d) "
1359					 "not found (pos %d)",
1360					 INODE_PKEY(inode), inode->i_nlink,
1361					 pos);
1362			reiserfs_check_path(&path);
1363			return;
1364		}
1365
1366		/* sigh, prepare_for_journal might schedule.  When it schedules the
1367		 ** FS might change.  We have to detect that, and loop back to the
1368		 ** search if the stat data item has moved
 
1369		 */
1370		bh = get_last_bh(&path);
1371		ih = get_ih(&path);
1372		copy_item_head(&tmp_ih, ih);
1373		fs_gen = get_generation(inode->i_sb);
1374		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 
 
1375		if (fs_changed(fs_gen, inode->i_sb)
1376		    && item_moved(&tmp_ih, &path)) {
1377			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1378			continue;	/* Stat_data item has been moved after scheduling. */
1379		}
1380		break;
1381	}
1382	update_stat_data(&path, inode, size);
1383	journal_mark_dirty(th, th->t_super, bh);
1384	pathrelse(&path);
1385	return;
1386}
1387
1388/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1389** does a make_bad_inode when things go wrong.  But, we need to make sure
1390** and clear the key in the private portion of the inode, otherwise a
1391** corresponding iput might try to delete whatever object the inode last
1392** represented.
1393*/
 
1394static void reiserfs_make_bad_inode(struct inode *inode)
1395{
1396	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1397	make_bad_inode(inode);
1398}
1399
1400//
1401// initially this function was derived from minix or ext2's analog and
1402// evolved as the prototype did
1403//
1404
1405int reiserfs_init_locked_inode(struct inode *inode, void *p)
1406{
1407	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1408	inode->i_ino = args->objectid;
1409	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1410	return 0;
1411}
1412
1413/* looks for stat data in the tree, and fills up the fields of in-core
1414   inode stat data fields */
 
 
1415void reiserfs_read_locked_inode(struct inode *inode,
1416				struct reiserfs_iget_args *args)
1417{
1418	INITIALIZE_PATH(path_to_sd);
1419	struct cpu_key key;
1420	unsigned long dirino;
1421	int retval;
1422
1423	dirino = args->dirid;
1424
1425	/* set version 1, version 2 could be used too, because stat data
1426	   key is the same in both versions */
 
 
1427	key.version = KEY_FORMAT_3_5;
1428	key.on_disk_key.k_dir_id = dirino;
1429	key.on_disk_key.k_objectid = inode->i_ino;
1430	key.on_disk_key.k_offset = 0;
1431	key.on_disk_key.k_type = 0;
1432
1433	/* look for the object's stat data */
1434	retval = search_item(inode->i_sb, &key, &path_to_sd);
1435	if (retval == IO_ERROR) {
1436		reiserfs_error(inode->i_sb, "vs-13070",
1437			       "i/o failure occurred trying to find "
1438			       "stat data of %K", &key);
1439		reiserfs_make_bad_inode(inode);
1440		return;
1441	}
 
 
1442	if (retval != ITEM_FOUND) {
1443		/* a stale NFS handle can trigger this without it being an error */
1444		pathrelse(&path_to_sd);
1445		reiserfs_make_bad_inode(inode);
1446		clear_nlink(inode);
1447		return;
1448	}
1449
1450	init_inode(inode, &path_to_sd);
1451
1452	/* It is possible that knfsd is trying to access inode of a file
1453	   that is being removed from the disk by some other thread. As we
1454	   update sd on unlink all that is required is to check for nlink
1455	   here. This bug was first found by Sizif when debugging
1456	   SquidNG/Butterfly, forgotten, and found again after Philippe
1457	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1458
1459	   More logical fix would require changes in fs/inode.c:iput() to
1460	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1461	   in iget() to return NULL if I_FREEING inode is found in
1462	   hash-table. */
1463	/* Currently there is one place where it's ok to meet inode with
1464	   nlink==0: processing of open-unlinked and half-truncated files
1465	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
 
 
 
 
 
1466	if ((inode->i_nlink == 0) &&
1467	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1468		reiserfs_warning(inode->i_sb, "vs-13075",
1469				 "dead inode read from disk %K. "
1470				 "This is likely to be race with knfsd. Ignore",
1471				 &key);
1472		reiserfs_make_bad_inode(inode);
1473	}
1474
1475	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
 
1476
1477	/*
1478	 * Stat data v1 doesn't support ACLs.
1479	 */
1480	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1481		cache_no_acl(inode);
1482}
1483
1484/**
1485 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1486 *
1487 * @inode:    inode from hash table to check
1488 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1489 *
1490 * This function is called by iget5_locked() to distinguish reiserfs inodes
1491 * having the same inode numbers. Such inodes can only exist due to some
1492 * error condition. One of them should be bad. Inodes with identical
1493 * inode numbers (objectids) are distinguished by parent directory ids.
1494 *
1495 */
1496int reiserfs_find_actor(struct inode *inode, void *opaque)
1497{
1498	struct reiserfs_iget_args *args;
1499
1500	args = opaque;
1501	/* args is already in CPU order */
1502	return (inode->i_ino == args->objectid) &&
1503	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1504}
1505
1506struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1507{
1508	struct inode *inode;
1509	struct reiserfs_iget_args args;
1510	int depth;
1511
1512	args.objectid = key->on_disk_key.k_objectid;
1513	args.dirid = key->on_disk_key.k_dir_id;
1514	depth = reiserfs_write_unlock_nested(s);
1515	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517			     (void *)(&args));
1518	reiserfs_write_lock_nested(s, depth);
1519	if (!inode)
1520		return ERR_PTR(-ENOMEM);
1521
1522	if (inode->i_state & I_NEW) {
1523		reiserfs_read_locked_inode(inode, &args);
1524		unlock_new_inode(inode);
1525	}
1526
1527	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528		/* either due to i/o error or a stale NFS handle */
1529		iput(inode);
1530		inode = NULL;
1531	}
1532	return inode;
1533}
1534
1535static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536	u32 objectid, u32 dir_id, u32 generation)
1537
1538{
1539	struct cpu_key key;
1540	struct inode *inode;
1541
1542	key.on_disk_key.k_objectid = objectid;
1543	key.on_disk_key.k_dir_id = dir_id;
1544	reiserfs_write_lock(sb);
1545	inode = reiserfs_iget(sb, &key);
1546	if (inode && !IS_ERR(inode) && generation != 0 &&
1547	    generation != inode->i_generation) {
1548		iput(inode);
1549		inode = NULL;
1550	}
1551	reiserfs_write_unlock(sb);
1552
1553	return d_obtain_alias(inode);
1554}
1555
1556struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557		int fh_len, int fh_type)
1558{
1559	/* fhtype happens to reflect the number of u32s encoded.
 
1560	 * due to a bug in earlier code, fhtype might indicate there
1561	 * are more u32s then actually fitted.
1562	 * so if fhtype seems to be more than len, reduce fhtype.
1563	 * Valid types are:
1564	 *   2 - objectid + dir_id - legacy support
1565	 *   3 - objectid + dir_id + generation
1566	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568	 *   6 - as above plus generation of directory
1569	 * 6 does not fit in NFSv2 handles
1570	 */
1571	if (fh_type > fh_len) {
1572		if (fh_type != 6 || fh_len != 5)
1573			reiserfs_warning(sb, "reiserfs-13077",
1574				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575				fh_type, fh_len);
1576		fh_type = fh_len;
1577	}
1578	if (fh_len < 2)
1579		return NULL;
1580
1581	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1583}
1584
1585struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586		int fh_len, int fh_type)
1587{
1588	if (fh_type > fh_len)
1589		fh_type = fh_len;
1590	if (fh_type < 4)
1591		return NULL;
1592
1593	return reiserfs_get_dentry(sb,
1594		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596		(fh_type == 6) ? fid->raw[5] : 0);
1597}
1598
1599int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1600		       struct inode *parent)
1601{
1602	int maxlen = *lenp;
1603
1604	if (parent && (maxlen < 5)) {
1605		*lenp = 5;
1606		return FILEID_INVALID;
1607	} else if (maxlen < 3) {
1608		*lenp = 3;
1609		return FILEID_INVALID;
1610	}
1611
1612	data[0] = inode->i_ino;
1613	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614	data[2] = inode->i_generation;
1615	*lenp = 3;
1616	if (parent) {
1617		data[3] = parent->i_ino;
1618		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1619		*lenp = 5;
1620		if (maxlen >= 6) {
1621			data[5] = parent->i_generation;
1622			*lenp = 6;
1623		}
1624	}
1625	return *lenp;
1626}
1627
1628/* looks for stat data, then copies fields to it, marks the buffer
1629   containing stat data as dirty */
1630/* reiserfs inodes are never really dirty, since the dirty inode call
1631** always logs them.  This call allows the VFS inode marking routines
1632** to properly mark inodes for datasync and such, but only actually
1633** does something when called for a synchronous update.
1634*/
 
 
 
1635int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1636{
1637	struct reiserfs_transaction_handle th;
1638	int jbegin_count = 1;
1639
1640	if (inode->i_sb->s_flags & MS_RDONLY)
1641		return -EROFS;
1642	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1643	 ** these cases are just when the system needs ram, not when the
1644	 ** inode needs to reach disk for safety, and they can safely be
1645	 ** ignored because the altered inode has already been logged.
 
 
1646	 */
1647	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1648		reiserfs_write_lock(inode->i_sb);
1649		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1650			reiserfs_update_sd(&th, inode);
1651			journal_end_sync(&th, inode->i_sb, jbegin_count);
1652		}
1653		reiserfs_write_unlock(inode->i_sb);
1654	}
1655	return 0;
1656}
1657
1658/* stat data of new object is inserted already, this inserts the item
1659   containing "." and ".." entries */
 
 
1660static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1661				  struct inode *inode,
1662				  struct item_head *ih, struct treepath *path,
1663				  struct inode *dir)
1664{
1665	struct super_block *sb = th->t_super;
1666	char empty_dir[EMPTY_DIR_SIZE];
1667	char *body = empty_dir;
1668	struct cpu_key key;
1669	int retval;
1670
1671	BUG_ON(!th->t_trans_id);
1672
1673	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1674		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1675		      TYPE_DIRENTRY, 3 /*key length */ );
1676
1677	/* compose item head for new item. Directories consist of items of
1678	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1679	   is done by reiserfs_new_inode */
 
 
1680	if (old_format_only(sb)) {
1681		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1682				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1683
1684		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1685				       ih->ih_key.k_objectid,
1686				       INODE_PKEY(dir)->k_dir_id,
1687				       INODE_PKEY(dir)->k_objectid);
1688	} else {
1689		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1690				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1691
1692		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1693				    ih->ih_key.k_objectid,
1694				    INODE_PKEY(dir)->k_dir_id,
1695				    INODE_PKEY(dir)->k_objectid);
1696	}
1697
1698	/* look for place in the tree for new item */
1699	retval = search_item(sb, &key, path);
1700	if (retval == IO_ERROR) {
1701		reiserfs_error(sb, "vs-13080",
1702			       "i/o failure occurred creating new directory");
1703		return -EIO;
1704	}
1705	if (retval == ITEM_FOUND) {
1706		pathrelse(path);
1707		reiserfs_warning(sb, "vs-13070",
1708				 "object with this key exists (%k)",
1709				 &(ih->ih_key));
1710		return -EEXIST;
1711	}
1712
1713	/* insert item, that is empty directory item */
1714	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1715}
1716
1717/* stat data of object has been inserted, this inserts the item
1718   containing the body of symlink */
1719static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
 
 
 
1720				struct item_head *ih,
1721				struct treepath *path, const char *symname,
1722				int item_len)
1723{
1724	struct super_block *sb = th->t_super;
1725	struct cpu_key key;
1726	int retval;
1727
1728	BUG_ON(!th->t_trans_id);
1729
1730	_make_cpu_key(&key, KEY_FORMAT_3_5,
1731		      le32_to_cpu(ih->ih_key.k_dir_id),
1732		      le32_to_cpu(ih->ih_key.k_objectid),
1733		      1, TYPE_DIRECT, 3 /*key length */ );
1734
1735	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1736			  0 /*free_space */ );
1737
1738	/* look for place in the tree for new item */
1739	retval = search_item(sb, &key, path);
1740	if (retval == IO_ERROR) {
1741		reiserfs_error(sb, "vs-13080",
1742			       "i/o failure occurred creating new symlink");
1743		return -EIO;
1744	}
1745	if (retval == ITEM_FOUND) {
1746		pathrelse(path);
1747		reiserfs_warning(sb, "vs-13080",
1748				 "object with this key exists (%k)",
1749				 &(ih->ih_key));
1750		return -EEXIST;
1751	}
1752
1753	/* insert item, that is body of symlink */
1754	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1755}
1756
1757/* inserts the stat data into the tree, and then calls
1758   reiserfs_new_directory (to insert ".", ".." item if new object is
1759   directory) or reiserfs_new_symlink (to insert symlink body if new
1760   object is symlink) or nothing (if new object is regular file)
1761
1762   NOTE! uid and gid must already be set in the inode.  If we return
1763   non-zero due to an error, we have to drop the quota previously allocated
1764   for the fresh inode.  This can only be done outside a transaction, so
1765   if we return non-zero, we also end the transaction.  */
 
 
 
 
 
 
 
 
 
 
 
1766int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1767		       struct inode *dir, umode_t mode, const char *symname,
1768		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1769		          strlen (symname) for symlinks) */
1770		       loff_t i_size, struct dentry *dentry,
1771		       struct inode *inode,
1772		       struct reiserfs_security_handle *security)
1773{
1774	struct super_block *sb = dir->i_sb;
1775	struct reiserfs_iget_args args;
1776	INITIALIZE_PATH(path_to_key);
1777	struct cpu_key key;
1778	struct item_head ih;
1779	struct stat_data sd;
1780	int retval;
1781	int err;
1782	int depth;
1783
1784	BUG_ON(!th->t_trans_id);
1785
1786	depth = reiserfs_write_unlock_nested(sb);
1787	err = dquot_alloc_inode(inode);
1788	reiserfs_write_lock_nested(sb, depth);
1789	if (err)
1790		goto out_end_trans;
1791	if (!dir->i_nlink) {
1792		err = -EPERM;
1793		goto out_bad_inode;
1794	}
1795
1796	/* item head of new item */
1797	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1798	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1799	if (!ih.ih_key.k_objectid) {
1800		err = -ENOMEM;
1801		goto out_bad_inode;
1802	}
1803	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1804	if (old_format_only(sb))
1805		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1806				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1807	else
1808		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1809				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1810	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1811	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1812
1813	depth = reiserfs_write_unlock_nested(inode->i_sb);
1814	err = insert_inode_locked4(inode, args.objectid,
1815			     reiserfs_find_actor, &args);
1816	reiserfs_write_lock_nested(inode->i_sb, depth);
1817	if (err) {
1818		err = -EINVAL;
1819		goto out_bad_inode;
1820	}
1821
1822	if (old_format_only(sb))
1823		/* not a perfect generation count, as object ids can be reused, but
1824		 ** this is as good as reiserfs can do right now.
1825		 ** note that the private part of inode isn't filled in yet, we have
1826		 ** to use the directory.
 
1827		 */
1828		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1829	else
1830#if defined( USE_INODE_GENERATION_COUNTER )
1831		inode->i_generation =
1832		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1833#else
1834		inode->i_generation = ++event;
1835#endif
1836
1837	/* fill stat data */
1838	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1839
1840	/* uid and gid must already be set by the caller for quota init */
1841
1842	/* symlink cannot be immutable or append only, right? */
1843	if (S_ISLNK(inode->i_mode))
1844		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1845
1846	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1847	inode->i_size = i_size;
1848	inode->i_blocks = 0;
1849	inode->i_bytes = 0;
1850	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1851	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1852
1853	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1854	REISERFS_I(inode)->i_flags = 0;
1855	REISERFS_I(inode)->i_prealloc_block = 0;
1856	REISERFS_I(inode)->i_prealloc_count = 0;
1857	REISERFS_I(inode)->i_trans_id = 0;
1858	REISERFS_I(inode)->i_jl = NULL;
1859	REISERFS_I(inode)->i_attrs =
1860	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1861	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1862	reiserfs_init_xattr_rwsem(inode);
1863
1864	/* key to search for correct place for new stat data */
1865	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1866		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1867		      TYPE_STAT_DATA, 3 /*key length */ );
1868
1869	/* find proper place for inserting of stat data */
1870	retval = search_item(sb, &key, &path_to_key);
1871	if (retval == IO_ERROR) {
1872		err = -EIO;
1873		goto out_bad_inode;
1874	}
1875	if (retval == ITEM_FOUND) {
1876		pathrelse(&path_to_key);
1877		err = -EEXIST;
1878		goto out_bad_inode;
1879	}
1880	if (old_format_only(sb)) {
 
1881		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1882			pathrelse(&path_to_key);
1883			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1884			err = -EINVAL;
1885			goto out_bad_inode;
1886		}
1887		inode2sd_v1(&sd, inode, inode->i_size);
1888	} else {
1889		inode2sd(&sd, inode, inode->i_size);
1890	}
1891	// store in in-core inode the key of stat data and version all
1892	// object items will have (directory items will have old offset
1893	// format, other new objects will consist of new items)
 
 
1894	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1895		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1896	else
1897		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1898	if (old_format_only(sb))
1899		set_inode_sd_version(inode, STAT_DATA_V1);
1900	else
1901		set_inode_sd_version(inode, STAT_DATA_V2);
1902
1903	/* insert the stat data into the tree */
1904#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905	if (REISERFS_I(dir)->new_packing_locality)
1906		th->displace_new_blocks = 1;
1907#endif
1908	retval =
1909	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1910				 (char *)(&sd));
1911	if (retval) {
1912		err = retval;
1913		reiserfs_check_path(&path_to_key);
1914		goto out_bad_inode;
1915	}
1916#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1917	if (!th->displace_new_blocks)
1918		REISERFS_I(dir)->new_packing_locality = 0;
1919#endif
1920	if (S_ISDIR(mode)) {
1921		/* insert item with "." and ".." */
1922		retval =
1923		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1924	}
1925
1926	if (S_ISLNK(mode)) {
1927		/* insert body of symlink */
1928		if (!old_format_only(sb))
1929			i_size = ROUND_UP(i_size);
1930		retval =
1931		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1932					 i_size);
1933	}
1934	if (retval) {
1935		err = retval;
1936		reiserfs_check_path(&path_to_key);
1937		journal_end(th, th->t_super, th->t_blocks_allocated);
1938		goto out_inserted_sd;
1939	}
1940
1941	if (reiserfs_posixacl(inode->i_sb)) {
1942		reiserfs_write_unlock(inode->i_sb);
1943		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1944		reiserfs_write_lock(inode->i_sb);
1945		if (retval) {
1946			err = retval;
1947			reiserfs_check_path(&path_to_key);
1948			journal_end(th, th->t_super, th->t_blocks_allocated);
1949			goto out_inserted_sd;
1950		}
1951	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1952		reiserfs_warning(inode->i_sb, "jdm-13090",
1953				 "ACLs aren't enabled in the fs, "
1954				 "but vfs thinks they are!");
1955	} else if (IS_PRIVATE(dir))
1956		inode->i_flags |= S_PRIVATE;
1957
1958	if (security->name) {
1959		reiserfs_write_unlock(inode->i_sb);
1960		retval = reiserfs_security_write(th, inode, security);
1961		reiserfs_write_lock(inode->i_sb);
1962		if (retval) {
1963			err = retval;
1964			reiserfs_check_path(&path_to_key);
1965			retval = journal_end(th, th->t_super,
1966					     th->t_blocks_allocated);
1967			if (retval)
1968				err = retval;
1969			goto out_inserted_sd;
1970		}
1971	}
1972
1973	reiserfs_update_sd(th, inode);
1974	reiserfs_check_path(&path_to_key);
1975
1976	return 0;
1977
1978/* it looks like you can easily compress these two goto targets into
1979 * one.  Keeping it like this doesn't actually hurt anything, and they
1980 * are place holders for what the quota code actually needs.
1981 */
1982      out_bad_inode:
1983	/* Invalidate the object, nothing was inserted yet */
1984	INODE_PKEY(inode)->k_objectid = 0;
1985
1986	/* Quota change must be inside a transaction for journaling */
1987	depth = reiserfs_write_unlock_nested(inode->i_sb);
1988	dquot_free_inode(inode);
1989	reiserfs_write_lock_nested(inode->i_sb, depth);
1990
1991      out_end_trans:
1992	journal_end(th, th->t_super, th->t_blocks_allocated);
1993	/* Drop can be outside and it needs more credits so it's better to have it outside */
 
 
 
1994	depth = reiserfs_write_unlock_nested(inode->i_sb);
1995	dquot_drop(inode);
1996	reiserfs_write_lock_nested(inode->i_sb, depth);
1997	inode->i_flags |= S_NOQUOTA;
1998	make_bad_inode(inode);
1999
2000      out_inserted_sd:
2001	clear_nlink(inode);
2002	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2003	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2004	iput(inode);
2005	return err;
2006}
2007
2008/*
2009** finds the tail page in the page cache,
2010** reads the last block in.
2011**
2012** On success, page_result is set to a locked, pinned page, and bh_result
2013** is set to an up to date buffer for the last block in the file.  returns 0.
2014**
2015** tail conversion is not done, so bh_result might not be valid for writing
2016** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2017** trying to write the block.
2018**
2019** on failure, nonzero is returned, page_result and bh_result are untouched.
2020*/
2021static int grab_tail_page(struct inode *inode,
2022			  struct page **page_result,
2023			  struct buffer_head **bh_result)
2024{
2025
2026	/* we want the page with the last byte in the file,
2027	 ** not the page that will hold the next byte for appending
 
2028	 */
2029	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2030	unsigned long pos = 0;
2031	unsigned long start = 0;
2032	unsigned long blocksize = inode->i_sb->s_blocksize;
2033	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2034	struct buffer_head *bh;
2035	struct buffer_head *head;
2036	struct page *page;
2037	int error;
2038
2039	/* we know that we are only called with inode->i_size > 0.
2040	 ** we also know that a file tail can never be as big as a block
2041	 ** If i_size % blocksize == 0, our file is currently block aligned
2042	 ** and it won't need converting or zeroing after a truncate.
 
2043	 */
2044	if ((offset & (blocksize - 1)) == 0) {
2045		return -ENOENT;
2046	}
2047	page = grab_cache_page(inode->i_mapping, index);
2048	error = -ENOMEM;
2049	if (!page) {
2050		goto out;
2051	}
2052	/* start within the page of the last block in the file */
2053	start = (offset / blocksize) * blocksize;
2054
2055	error = __block_write_begin(page, start, offset - start,
2056				    reiserfs_get_block_create_0);
2057	if (error)
2058		goto unlock;
2059
2060	head = page_buffers(page);
2061	bh = head;
2062	do {
2063		if (pos >= start) {
2064			break;
2065		}
2066		bh = bh->b_this_page;
2067		pos += blocksize;
2068	} while (bh != head);
2069
2070	if (!buffer_uptodate(bh)) {
2071		/* note, this should never happen, prepare_write should
2072		 ** be taking care of this for us.  If the buffer isn't up to date,
2073		 ** I've screwed up the code to find the buffer, or the code to
2074		 ** call prepare_write
 
2075		 */
2076		reiserfs_error(inode->i_sb, "clm-6000",
2077			       "error reading block %lu", bh->b_blocknr);
2078		error = -EIO;
2079		goto unlock;
2080	}
2081	*bh_result = bh;
2082	*page_result = page;
2083
2084      out:
2085	return error;
2086
2087      unlock:
2088	unlock_page(page);
2089	page_cache_release(page);
2090	return error;
2091}
2092
2093/*
2094** vfs version of truncate file.  Must NOT be called with
2095** a transaction already started.
2096**
2097** some code taken from block_truncate_page
2098*/
2099int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2100{
2101	struct reiserfs_transaction_handle th;
2102	/* we want the offset for the first byte after the end of the file */
2103	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2104	unsigned blocksize = inode->i_sb->s_blocksize;
2105	unsigned length;
2106	struct page *page = NULL;
2107	int error;
2108	struct buffer_head *bh = NULL;
2109	int err2;
2110
2111	reiserfs_write_lock(inode->i_sb);
2112
2113	if (inode->i_size > 0) {
2114		error = grab_tail_page(inode, &page, &bh);
2115		if (error) {
2116			// -ENOENT means we truncated past the end of the file,
2117			// and get_block_create_0 could not find a block to read in,
2118			// which is ok.
 
 
2119			if (error != -ENOENT)
2120				reiserfs_error(inode->i_sb, "clm-6001",
2121					       "grab_tail_page failed %d",
2122					       error);
2123			page = NULL;
2124			bh = NULL;
2125		}
2126	}
2127
2128	/* so, if page != NULL, we have a buffer head for the offset at
2129	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2130	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2131	 ** and no zeroing is required on disk.  We zero after the truncate,
2132	 ** because the truncate might pack the item anyway
2133	 ** (it will unmap bh if it packs).
2134	 */
2135	/* it is enough to reserve space in transaction for 2 balancings:
2136	   one for "save" link adding and another for the first
2137	   cut_from_item. 1 is for update_sd */
 
 
2138	error = journal_begin(&th, inode->i_sb,
2139			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2140	if (error)
2141		goto out;
2142	reiserfs_update_inode_transaction(inode);
2143	if (update_timestamps)
2144		/* we are doing real truncate: if the system crashes before the last
2145		   transaction of truncating gets committed - on reboot the file
2146		   either appears truncated properly or not truncated at all */
 
 
 
2147		add_save_link(&th, inode, 1);
2148	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2149	error =
2150	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2151	if (error)
2152		goto out;
2153
2154	/* check reiserfs_do_truncate after ending the transaction */
2155	if (err2) {
2156		error = err2;
2157  		goto out;
2158	}
2159	
2160	if (update_timestamps) {
2161		error = remove_save_link(inode, 1 /* truncate */);
2162		if (error)
2163			goto out;
2164	}
2165
2166	if (page) {
2167		length = offset & (blocksize - 1);
2168		/* if we are not on a block boundary */
2169		if (length) {
2170			length = blocksize - length;
2171			zero_user(page, offset, length);
2172			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2173				mark_buffer_dirty(bh);
2174			}
2175		}
2176		unlock_page(page);
2177		page_cache_release(page);
2178	}
2179
2180	reiserfs_write_unlock(inode->i_sb);
2181
2182	return 0;
2183      out:
2184	if (page) {
2185		unlock_page(page);
2186		page_cache_release(page);
2187	}
2188
2189	reiserfs_write_unlock(inode->i_sb);
2190
2191	return error;
2192}
2193
2194static int map_block_for_writepage(struct inode *inode,
2195				   struct buffer_head *bh_result,
2196				   unsigned long block)
2197{
2198	struct reiserfs_transaction_handle th;
2199	int fs_gen;
2200	struct item_head tmp_ih;
2201	struct item_head *ih;
2202	struct buffer_head *bh;
2203	__le32 *item;
2204	struct cpu_key key;
2205	INITIALIZE_PATH(path);
2206	int pos_in_item;
2207	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2208	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2209	int retval;
2210	int use_get_block = 0;
2211	int bytes_copied = 0;
2212	int copy_size;
2213	int trans_running = 0;
2214
2215	/* catch places below that try to log something without starting a trans */
 
 
 
2216	th.t_trans_id = 0;
2217
2218	if (!buffer_uptodate(bh_result)) {
2219		return -EIO;
2220	}
2221
2222	kmap(bh_result->b_page);
2223      start_over:
2224	reiserfs_write_lock(inode->i_sb);
2225	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2226
2227      research:
2228	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2229	if (retval != POSITION_FOUND) {
2230		use_get_block = 1;
2231		goto out;
2232	}
2233
2234	bh = get_last_bh(&path);
2235	ih = get_ih(&path);
2236	item = get_item(&path);
2237	pos_in_item = path.pos_in_item;
2238
2239	/* we've found an unformatted node */
2240	if (indirect_item_found(retval, ih)) {
2241		if (bytes_copied > 0) {
2242			reiserfs_warning(inode->i_sb, "clm-6002",
2243					 "bytes_copied %d", bytes_copied);
2244		}
2245		if (!get_block_num(item, pos_in_item)) {
2246			/* crap, we are writing to a hole */
2247			use_get_block = 1;
2248			goto out;
2249		}
2250		set_block_dev_mapped(bh_result,
2251				     get_block_num(item, pos_in_item), inode);
2252	} else if (is_direct_le_ih(ih)) {
2253		char *p;
2254		p = page_address(bh_result->b_page);
2255		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2256		copy_size = ih_item_len(ih) - pos_in_item;
2257
2258		fs_gen = get_generation(inode->i_sb);
2259		copy_item_head(&tmp_ih, ih);
2260
2261		if (!trans_running) {
2262			/* vs-3050 is gone, no need to drop the path */
2263			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2264			if (retval)
2265				goto out;
2266			reiserfs_update_inode_transaction(inode);
2267			trans_running = 1;
2268			if (fs_changed(fs_gen, inode->i_sb)
2269			    && item_moved(&tmp_ih, &path)) {
2270				reiserfs_restore_prepared_buffer(inode->i_sb,
2271								 bh);
2272				goto research;
2273			}
2274		}
2275
2276		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2277
2278		if (fs_changed(fs_gen, inode->i_sb)
2279		    && item_moved(&tmp_ih, &path)) {
2280			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2281			goto research;
2282		}
2283
2284		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2285		       copy_size);
2286
2287		journal_mark_dirty(&th, inode->i_sb, bh);
2288		bytes_copied += copy_size;
2289		set_block_dev_mapped(bh_result, 0, inode);
2290
2291		/* are there still bytes left? */
2292		if (bytes_copied < bh_result->b_size &&
2293		    (byte_offset + bytes_copied) < inode->i_size) {
2294			set_cpu_key_k_offset(&key,
2295					     cpu_key_k_offset(&key) +
2296					     copy_size);
2297			goto research;
2298		}
2299	} else {
2300		reiserfs_warning(inode->i_sb, "clm-6003",
2301				 "bad item inode %lu", inode->i_ino);
2302		retval = -EIO;
2303		goto out;
2304	}
2305	retval = 0;
2306
2307      out:
2308	pathrelse(&path);
2309	if (trans_running) {
2310		int err = journal_end(&th, inode->i_sb, jbegin_count);
2311		if (err)
2312			retval = err;
2313		trans_running = 0;
2314	}
2315	reiserfs_write_unlock(inode->i_sb);
2316
2317	/* this is where we fill in holes in the file. */
2318	if (use_get_block) {
2319		retval = reiserfs_get_block(inode, block, bh_result,
2320					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2321					    | GET_BLOCK_NO_DANGLE);
2322		if (!retval) {
2323			if (!buffer_mapped(bh_result)
2324			    || bh_result->b_blocknr == 0) {
2325				/* get_block failed to find a mapped unformatted node. */
2326				use_get_block = 0;
2327				goto start_over;
2328			}
2329		}
2330	}
2331	kunmap(bh_result->b_page);
2332
2333	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2334		/* we've copied data from the page into the direct item, so the
 
2335		 * buffer in the page is now clean, mark it to reflect that.
2336		 */
2337		lock_buffer(bh_result);
2338		clear_buffer_dirty(bh_result);
2339		unlock_buffer(bh_result);
2340	}
2341	return retval;
2342}
2343
2344/*
2345 * mason@suse.com: updated in 2.5.54 to follow the same general io
2346 * start/recovery path as __block_write_full_page, along with special
2347 * code to handle reiserfs tails.
2348 */
2349static int reiserfs_write_full_page(struct page *page,
2350				    struct writeback_control *wbc)
2351{
2352	struct inode *inode = page->mapping->host;
2353	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2354	int error = 0;
2355	unsigned long block;
2356	sector_t last_block;
2357	struct buffer_head *head, *bh;
2358	int partial = 0;
2359	int nr = 0;
2360	int checked = PageChecked(page);
2361	struct reiserfs_transaction_handle th;
2362	struct super_block *s = inode->i_sb;
2363	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2364	th.t_trans_id = 0;
2365
2366	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2367	if (checked && (current->flags & PF_MEMALLOC)) {
2368		redirty_page_for_writepage(wbc, page);
2369		unlock_page(page);
2370		return 0;
2371	}
2372
2373	/* The page dirty bit is cleared before writepage is called, which
 
2374	 * means we have to tell create_empty_buffers to make dirty buffers
2375	 * The page really should be up to date at this point, so tossing
2376	 * in the BH_Uptodate is just a sanity check.
2377	 */
2378	if (!page_has_buffers(page)) {
2379		create_empty_buffers(page, s->s_blocksize,
2380				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2381	}
2382	head = page_buffers(page);
2383
2384	/* last page in the file, zero out any contents past the
2385	 ** last byte in the file
 
2386	 */
2387	if (page->index >= end_index) {
2388		unsigned last_offset;
2389
2390		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2391		/* no file contents in this page */
2392		if (page->index >= end_index + 1 || !last_offset) {
2393			unlock_page(page);
2394			return 0;
2395		}
2396		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2397	}
2398	bh = head;
2399	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2400	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2401	/* first map all the buffers, logging any direct items we find */
2402	do {
2403		if (block > last_block) {
2404			/*
2405			 * This can happen when the block size is less than
2406			 * the page size.  The corresponding bytes in the page
2407			 * were zero filled above
2408			 */
2409			clear_buffer_dirty(bh);
2410			set_buffer_uptodate(bh);
2411		} else if ((checked || buffer_dirty(bh)) &&
2412		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2413						       && bh->b_blocknr ==
2414						       0))) {
2415			/* not mapped yet, or it points to a direct item, search
 
2416			 * the btree for the mapping info, and log any direct
2417			 * items found
2418			 */
2419			if ((error = map_block_for_writepage(inode, bh, block))) {
2420				goto fail;
2421			}
2422		}
2423		bh = bh->b_this_page;
2424		block++;
2425	} while (bh != head);
2426
2427	/*
2428	 * we start the transaction after map_block_for_writepage,
2429	 * because it can create holes in the file (an unbounded operation).
2430	 * starting it here, we can make a reliable estimate for how many
2431	 * blocks we're going to log
2432	 */
2433	if (checked) {
2434		ClearPageChecked(page);
2435		reiserfs_write_lock(s);
2436		error = journal_begin(&th, s, bh_per_page + 1);
2437		if (error) {
2438			reiserfs_write_unlock(s);
2439			goto fail;
2440		}
2441		reiserfs_update_inode_transaction(inode);
2442	}
2443	/* now go through and lock any dirty buffers on the page */
2444	do {
2445		get_bh(bh);
2446		if (!buffer_mapped(bh))
2447			continue;
2448		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2449			continue;
2450
2451		if (checked) {
2452			reiserfs_prepare_for_journal(s, bh, 1);
2453			journal_mark_dirty(&th, s, bh);
2454			continue;
2455		}
2456		/* from this point on, we know the buffer is mapped to a
 
2457		 * real block and not a direct item
2458		 */
2459		if (wbc->sync_mode != WB_SYNC_NONE) {
2460			lock_buffer(bh);
2461		} else {
2462			if (!trylock_buffer(bh)) {
2463				redirty_page_for_writepage(wbc, page);
2464				continue;
2465			}
2466		}
2467		if (test_clear_buffer_dirty(bh)) {
2468			mark_buffer_async_write(bh);
2469		} else {
2470			unlock_buffer(bh);
2471		}
2472	} while ((bh = bh->b_this_page) != head);
2473
2474	if (checked) {
2475		error = journal_end(&th, s, bh_per_page + 1);
2476		reiserfs_write_unlock(s);
2477		if (error)
2478			goto fail;
2479	}
2480	BUG_ON(PageWriteback(page));
2481	set_page_writeback(page);
2482	unlock_page(page);
2483
2484	/*
2485	 * since any buffer might be the only dirty buffer on the page,
2486	 * the first submit_bh can bring the page out of writeback.
2487	 * be careful with the buffers.
2488	 */
2489	do {
2490		struct buffer_head *next = bh->b_this_page;
2491		if (buffer_async_write(bh)) {
2492			submit_bh(WRITE, bh);
2493			nr++;
2494		}
2495		put_bh(bh);
2496		bh = next;
2497	} while (bh != head);
2498
2499	error = 0;
2500      done:
2501	if (nr == 0) {
2502		/*
2503		 * if this page only had a direct item, it is very possible for
2504		 * no io to be required without there being an error.  Or,
2505		 * someone else could have locked them and sent them down the
2506		 * pipe without locking the page
2507		 */
2508		bh = head;
2509		do {
2510			if (!buffer_uptodate(bh)) {
2511				partial = 1;
2512				break;
2513			}
2514			bh = bh->b_this_page;
2515		} while (bh != head);
2516		if (!partial)
2517			SetPageUptodate(page);
2518		end_page_writeback(page);
2519	}
2520	return error;
2521
2522      fail:
2523	/* catches various errors, we need to make sure any valid dirty blocks
 
2524	 * get to the media.  The page is currently locked and not marked for
2525	 * writeback
2526	 */
2527	ClearPageUptodate(page);
2528	bh = head;
2529	do {
2530		get_bh(bh);
2531		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2532			lock_buffer(bh);
2533			mark_buffer_async_write(bh);
2534		} else {
2535			/*
2536			 * clear any dirty bits that might have come from getting
2537			 * attached to a dirty page
2538			 */
2539			clear_buffer_dirty(bh);
2540		}
2541		bh = bh->b_this_page;
2542	} while (bh != head);
2543	SetPageError(page);
2544	BUG_ON(PageWriteback(page));
2545	set_page_writeback(page);
2546	unlock_page(page);
2547	do {
2548		struct buffer_head *next = bh->b_this_page;
2549		if (buffer_async_write(bh)) {
2550			clear_buffer_dirty(bh);
2551			submit_bh(WRITE, bh);
2552			nr++;
2553		}
2554		put_bh(bh);
2555		bh = next;
2556	} while (bh != head);
2557	goto done;
2558}
2559
2560static int reiserfs_readpage(struct file *f, struct page *page)
2561{
2562	return block_read_full_page(page, reiserfs_get_block);
2563}
2564
2565static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2566{
2567	struct inode *inode = page->mapping->host;
2568	reiserfs_wait_on_write_block(inode->i_sb);
2569	return reiserfs_write_full_page(page, wbc);
2570}
2571
2572static void reiserfs_truncate_failed_write(struct inode *inode)
2573{
2574	truncate_inode_pages(inode->i_mapping, inode->i_size);
2575	reiserfs_truncate_file(inode, 0);
2576}
2577
2578static int reiserfs_write_begin(struct file *file,
2579				struct address_space *mapping,
2580				loff_t pos, unsigned len, unsigned flags,
2581				struct page **pagep, void **fsdata)
2582{
2583	struct inode *inode;
2584	struct page *page;
2585	pgoff_t index;
2586	int ret;
2587	int old_ref = 0;
2588
2589 	inode = mapping->host;
2590	*fsdata = 0;
2591 	if (flags & AOP_FLAG_CONT_EXPAND &&
2592 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2593 		pos ++;
2594		*fsdata = (void *)(unsigned long)flags;
2595	}
2596
2597	index = pos >> PAGE_CACHE_SHIFT;
2598	page = grab_cache_page_write_begin(mapping, index, flags);
2599	if (!page)
2600		return -ENOMEM;
2601	*pagep = page;
2602
2603	reiserfs_wait_on_write_block(inode->i_sb);
2604	fix_tail_page_for_writing(page);
2605	if (reiserfs_transaction_running(inode->i_sb)) {
2606		struct reiserfs_transaction_handle *th;
2607		th = (struct reiserfs_transaction_handle *)current->
2608		    journal_info;
2609		BUG_ON(!th->t_refcount);
2610		BUG_ON(!th->t_trans_id);
2611		old_ref = th->t_refcount;
2612		th->t_refcount++;
2613	}
2614	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2615	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2616		struct reiserfs_transaction_handle *th = current->journal_info;
2617		/* this gets a little ugly.  If reiserfs_get_block returned an
2618		 * error and left a transacstion running, we've got to close it,
2619		 * and we've got to free handle if it was a persistent transaction.
 
 
2620		 *
2621		 * But, if we had nested into an existing transaction, we need
2622		 * to just drop the ref count on the handle.
2623		 *
2624		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2625		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2626		 */
2627		if (th->t_refcount > old_ref) {
2628			if (old_ref)
2629				th->t_refcount--;
2630			else {
2631				int err;
2632				reiserfs_write_lock(inode->i_sb);
2633				err = reiserfs_end_persistent_transaction(th);
2634				reiserfs_write_unlock(inode->i_sb);
2635				if (err)
2636					ret = err;
2637			}
2638		}
2639	}
2640	if (ret) {
2641		unlock_page(page);
2642		page_cache_release(page);
2643		/* Truncate allocated blocks */
2644		reiserfs_truncate_failed_write(inode);
2645	}
2646	return ret;
2647}
2648
2649int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2650{
2651	struct inode *inode = page->mapping->host;
2652	int ret;
2653	int old_ref = 0;
2654	int depth;
2655
2656	depth = reiserfs_write_unlock_nested(inode->i_sb);
2657	reiserfs_wait_on_write_block(inode->i_sb);
2658	reiserfs_write_lock_nested(inode->i_sb, depth);
2659
2660	fix_tail_page_for_writing(page);
2661	if (reiserfs_transaction_running(inode->i_sb)) {
2662		struct reiserfs_transaction_handle *th;
2663		th = (struct reiserfs_transaction_handle *)current->
2664		    journal_info;
2665		BUG_ON(!th->t_refcount);
2666		BUG_ON(!th->t_trans_id);
2667		old_ref = th->t_refcount;
2668		th->t_refcount++;
2669	}
2670
2671	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2672	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2673		struct reiserfs_transaction_handle *th = current->journal_info;
2674		/* this gets a little ugly.  If reiserfs_get_block returned an
2675		 * error and left a transacstion running, we've got to close it,
2676		 * and we've got to free handle if it was a persistent transaction.
 
 
2677		 *
2678		 * But, if we had nested into an existing transaction, we need
2679		 * to just drop the ref count on the handle.
2680		 *
2681		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2682		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2683		 */
2684		if (th->t_refcount > old_ref) {
2685			if (old_ref)
2686				th->t_refcount--;
2687			else {
2688				int err;
2689				reiserfs_write_lock(inode->i_sb);
2690				err = reiserfs_end_persistent_transaction(th);
2691				reiserfs_write_unlock(inode->i_sb);
2692				if (err)
2693					ret = err;
2694			}
2695		}
2696	}
2697	return ret;
2698
2699}
2700
2701static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2702{
2703	return generic_block_bmap(as, block, reiserfs_bmap);
2704}
2705
2706static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2707			      loff_t pos, unsigned len, unsigned copied,
2708			      struct page *page, void *fsdata)
2709{
2710	struct inode *inode = page->mapping->host;
2711	int ret = 0;
2712	int update_sd = 0;
2713	struct reiserfs_transaction_handle *th;
2714	unsigned start;
2715	bool locked = false;
2716
2717	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2718		pos ++;
2719
2720	reiserfs_wait_on_write_block(inode->i_sb);
2721	if (reiserfs_transaction_running(inode->i_sb))
2722		th = current->journal_info;
2723	else
2724		th = NULL;
2725
2726	start = pos & (PAGE_CACHE_SIZE - 1);
2727	if (unlikely(copied < len)) {
2728		if (!PageUptodate(page))
2729			copied = 0;
2730
2731		page_zero_new_buffers(page, start + copied, start + len);
2732	}
2733	flush_dcache_page(page);
2734
2735	reiserfs_commit_page(inode, page, start, start + copied);
2736
2737	/* generic_commit_write does this for us, but does not update the
2738	 ** transaction tracking stuff when the size changes.  So, we have
2739	 ** to do the i_size updates here.
 
2740	 */
2741	if (pos + copied > inode->i_size) {
2742		struct reiserfs_transaction_handle myth;
2743		reiserfs_write_lock(inode->i_sb);
2744		locked = true;
2745		/* If the file have grown beyond the border where it
2746		   can have a tail, unmark it as needing a tail
2747		   packing */
 
 
2748		if ((have_large_tails(inode->i_sb)
2749		     && inode->i_size > i_block_size(inode) * 4)
2750		    || (have_small_tails(inode->i_sb)
2751			&& inode->i_size > i_block_size(inode)))
2752			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2753
2754		ret = journal_begin(&myth, inode->i_sb, 1);
2755		if (ret)
2756			goto journal_error;
2757
2758		reiserfs_update_inode_transaction(inode);
2759		inode->i_size = pos + copied;
2760		/*
2761		 * this will just nest into our transaction.  It's important
2762		 * to use mark_inode_dirty so the inode gets pushed around on the
2763		 * dirty lists, and so that O_SYNC works as expected
2764		 */
2765		mark_inode_dirty(inode);
2766		reiserfs_update_sd(&myth, inode);
2767		update_sd = 1;
2768		ret = journal_end(&myth, inode->i_sb, 1);
2769		if (ret)
2770			goto journal_error;
2771	}
2772	if (th) {
2773		if (!locked) {
2774			reiserfs_write_lock(inode->i_sb);
2775			locked = true;
2776		}
2777		if (!update_sd)
2778			mark_inode_dirty(inode);
2779		ret = reiserfs_end_persistent_transaction(th);
2780		if (ret)
2781			goto out;
2782	}
2783
2784      out:
2785	if (locked)
2786		reiserfs_write_unlock(inode->i_sb);
2787	unlock_page(page);
2788	page_cache_release(page);
2789
2790	if (pos + len > inode->i_size)
2791		reiserfs_truncate_failed_write(inode);
2792
2793	return ret == 0 ? copied : ret;
2794
2795      journal_error:
2796	reiserfs_write_unlock(inode->i_sb);
2797	locked = false;
2798	if (th) {
2799		if (!update_sd)
2800			reiserfs_update_sd(th, inode);
2801		ret = reiserfs_end_persistent_transaction(th);
2802	}
2803	goto out;
2804}
2805
2806int reiserfs_commit_write(struct file *f, struct page *page,
2807			  unsigned from, unsigned to)
2808{
2809	struct inode *inode = page->mapping->host;
2810	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2811	int ret = 0;
2812	int update_sd = 0;
2813	struct reiserfs_transaction_handle *th = NULL;
2814	int depth;
2815
2816	depth = reiserfs_write_unlock_nested(inode->i_sb);
2817	reiserfs_wait_on_write_block(inode->i_sb);
2818	reiserfs_write_lock_nested(inode->i_sb, depth);
2819
2820	if (reiserfs_transaction_running(inode->i_sb)) {
2821		th = current->journal_info;
2822	}
2823	reiserfs_commit_page(inode, page, from, to);
2824
2825	/* generic_commit_write does this for us, but does not update the
2826	 ** transaction tracking stuff when the size changes.  So, we have
2827	 ** to do the i_size updates here.
 
2828	 */
2829	if (pos > inode->i_size) {
2830		struct reiserfs_transaction_handle myth;
2831		/* If the file have grown beyond the border where it
2832		   can have a tail, unmark it as needing a tail
2833		   packing */
 
 
2834		if ((have_large_tails(inode->i_sb)
2835		     && inode->i_size > i_block_size(inode) * 4)
2836		    || (have_small_tails(inode->i_sb)
2837			&& inode->i_size > i_block_size(inode)))
2838			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2839
2840		ret = journal_begin(&myth, inode->i_sb, 1);
2841		if (ret)
2842			goto journal_error;
2843
2844		reiserfs_update_inode_transaction(inode);
2845		inode->i_size = pos;
2846		/*
2847		 * this will just nest into our transaction.  It's important
2848		 * to use mark_inode_dirty so the inode gets pushed around on the
2849		 * dirty lists, and so that O_SYNC works as expected
2850		 */
2851		mark_inode_dirty(inode);
2852		reiserfs_update_sd(&myth, inode);
2853		update_sd = 1;
2854		ret = journal_end(&myth, inode->i_sb, 1);
2855		if (ret)
2856			goto journal_error;
2857	}
2858	if (th) {
2859		if (!update_sd)
2860			mark_inode_dirty(inode);
2861		ret = reiserfs_end_persistent_transaction(th);
2862		if (ret)
2863			goto out;
2864	}
2865
2866      out:
2867	return ret;
2868
2869      journal_error:
2870	if (th) {
2871		if (!update_sd)
2872			reiserfs_update_sd(th, inode);
2873		ret = reiserfs_end_persistent_transaction(th);
2874	}
2875
2876	return ret;
2877}
2878
2879void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2880{
2881	if (reiserfs_attrs(inode->i_sb)) {
2882		if (sd_attrs & REISERFS_SYNC_FL)
2883			inode->i_flags |= S_SYNC;
2884		else
2885			inode->i_flags &= ~S_SYNC;
2886		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2887			inode->i_flags |= S_IMMUTABLE;
2888		else
2889			inode->i_flags &= ~S_IMMUTABLE;
2890		if (sd_attrs & REISERFS_APPEND_FL)
2891			inode->i_flags |= S_APPEND;
2892		else
2893			inode->i_flags &= ~S_APPEND;
2894		if (sd_attrs & REISERFS_NOATIME_FL)
2895			inode->i_flags |= S_NOATIME;
2896		else
2897			inode->i_flags &= ~S_NOATIME;
2898		if (sd_attrs & REISERFS_NOTAIL_FL)
2899			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2900		else
2901			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2902	}
2903}
2904
2905void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2906{
2907	if (reiserfs_attrs(inode->i_sb)) {
2908		if (inode->i_flags & S_IMMUTABLE)
2909			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2910		else
2911			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2912		if (inode->i_flags & S_SYNC)
2913			*sd_attrs |= REISERFS_SYNC_FL;
2914		else
2915			*sd_attrs &= ~REISERFS_SYNC_FL;
2916		if (inode->i_flags & S_NOATIME)
2917			*sd_attrs |= REISERFS_NOATIME_FL;
2918		else
2919			*sd_attrs &= ~REISERFS_NOATIME_FL;
2920		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2921			*sd_attrs |= REISERFS_NOTAIL_FL;
2922		else
2923			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2924	}
2925}
2926
2927/* decide if this buffer needs to stay around for data logging or ordered
2928** write purposes
2929*/
2930static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2931{
2932	int ret = 1;
2933	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2934
2935	lock_buffer(bh);
2936	spin_lock(&j->j_dirty_buffers_lock);
2937	if (!buffer_mapped(bh)) {
2938		goto free_jh;
2939	}
2940	/* the page is locked, and the only places that log a data buffer
 
2941	 * also lock the page.
2942	 */
2943	if (reiserfs_file_data_log(inode)) {
2944		/*
2945		 * very conservative, leave the buffer pinned if
2946		 * anyone might need it.
2947		 */
2948		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2949			ret = 0;
2950		}
2951	} else  if (buffer_dirty(bh)) {
2952		struct reiserfs_journal_list *jl;
2953		struct reiserfs_jh *jh = bh->b_private;
2954
2955		/* why is this safe?
 
2956		 * reiserfs_setattr updates i_size in the on disk
2957		 * stat data before allowing vmtruncate to be called.
2958		 *
2959		 * If buffer was put onto the ordered list for this
2960		 * transaction, we know for sure either this transaction
2961		 * or an older one already has updated i_size on disk,
2962		 * and this ordered data won't be referenced in the file
2963		 * if we crash.
2964		 *
2965		 * if the buffer was put onto the ordered list for an older
2966		 * transaction, we need to leave it around
2967		 */
2968		if (jh && (jl = jh->jl)
2969		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2970			ret = 0;
2971	}
2972      free_jh:
2973	if (ret && bh->b_private) {
2974		reiserfs_free_jh(bh);
2975	}
2976	spin_unlock(&j->j_dirty_buffers_lock);
2977	unlock_buffer(bh);
2978	return ret;
2979}
2980
2981/* clm -- taken from fs/buffer.c:block_invalidate_page */
2982static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
2983				    unsigned int length)
2984{
2985	struct buffer_head *head, *bh, *next;
2986	struct inode *inode = page->mapping->host;
2987	unsigned int curr_off = 0;
2988	unsigned int stop = offset + length;
2989	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2990	int ret = 1;
2991
2992	BUG_ON(!PageLocked(page));
2993
2994	if (!partial_page)
2995		ClearPageChecked(page);
2996
2997	if (!page_has_buffers(page))
2998		goto out;
2999
3000	head = page_buffers(page);
3001	bh = head;
3002	do {
3003		unsigned int next_off = curr_off + bh->b_size;
3004		next = bh->b_this_page;
3005
3006		if (next_off > stop)
3007			goto out;
3008
3009		/*
3010		 * is this block fully invalidated?
3011		 */
3012		if (offset <= curr_off) {
3013			if (invalidatepage_can_drop(inode, bh))
3014				reiserfs_unmap_buffer(bh);
3015			else
3016				ret = 0;
3017		}
3018		curr_off = next_off;
3019		bh = next;
3020	} while (bh != head);
3021
3022	/*
3023	 * We release buffers only if the entire page is being invalidated.
3024	 * The get_block cached value has been unconditionally invalidated,
3025	 * so real IO is not possible anymore.
3026	 */
3027	if (!partial_page && ret) {
3028		ret = try_to_release_page(page, 0);
3029		/* maybe should BUG_ON(!ret); - neilb */
3030	}
3031      out:
3032	return;
3033}
3034
3035static int reiserfs_set_page_dirty(struct page *page)
3036{
3037	struct inode *inode = page->mapping->host;
3038	if (reiserfs_file_data_log(inode)) {
3039		SetPageChecked(page);
3040		return __set_page_dirty_nobuffers(page);
3041	}
3042	return __set_page_dirty_buffers(page);
3043}
3044
3045/*
3046 * Returns 1 if the page's buffers were dropped.  The page is locked.
3047 *
3048 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3049 * in the buffers at page_buffers(page).
3050 *
3051 * even in -o notail mode, we can't be sure an old mount without -o notail
3052 * didn't create files with tails.
3053 */
3054static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3055{
3056	struct inode *inode = page->mapping->host;
3057	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3058	struct buffer_head *head;
3059	struct buffer_head *bh;
3060	int ret = 1;
3061
3062	WARN_ON(PageChecked(page));
3063	spin_lock(&j->j_dirty_buffers_lock);
3064	head = page_buffers(page);
3065	bh = head;
3066	do {
3067		if (bh->b_private) {
3068			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3069				reiserfs_free_jh(bh);
3070			} else {
3071				ret = 0;
3072				break;
3073			}
3074		}
3075		bh = bh->b_this_page;
3076	} while (bh != head);
3077	if (ret)
3078		ret = try_to_free_buffers(page);
3079	spin_unlock(&j->j_dirty_buffers_lock);
3080	return ret;
3081}
3082
3083/* We thank Mingming Cao for helping us understand in great detail what
3084   to do in this section of the code. */
3085static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3086				  const struct iovec *iov, loff_t offset,
3087				  unsigned long nr_segs)
3088{
3089	struct file *file = iocb->ki_filp;
3090	struct inode *inode = file->f_mapping->host;
 
3091	ssize_t ret;
3092
3093	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3094				  reiserfs_get_blocks_direct_io);
3095
3096	/*
3097	 * In case of error extending write may have instantiated a few
3098	 * blocks outside i_size. Trim these off again.
3099	 */
3100	if (unlikely((rw & WRITE) && ret < 0)) {
3101		loff_t isize = i_size_read(inode);
3102		loff_t end = offset + iov_length(iov, nr_segs);
3103
3104		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3105			truncate_setsize(inode, isize);
3106			reiserfs_vfs_truncate_file(inode);
3107		}
3108	}
3109
3110	return ret;
3111}
3112
3113int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3114{
3115	struct inode *inode = dentry->d_inode;
3116	unsigned int ia_valid;
3117	int error;
3118
3119	error = inode_change_ok(inode, attr);
3120	if (error)
3121		return error;
3122
3123	/* must be turned off for recursive notify_change calls */
3124	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3125
3126	if (is_quota_modification(inode, attr))
3127		dquot_initialize(inode);
 
 
 
3128	reiserfs_write_lock(inode->i_sb);
3129	if (attr->ia_valid & ATTR_SIZE) {
3130		/* version 2 items will be caught by the s_maxbytes check
3131		 ** done for us in vmtruncate
 
3132		 */
3133		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3134		    attr->ia_size > MAX_NON_LFS) {
3135			reiserfs_write_unlock(inode->i_sb);
3136			error = -EFBIG;
3137			goto out;
3138		}
3139
3140		inode_dio_wait(inode);
3141
3142		/* fill in hole pointers in the expanding truncate case. */
3143		if (attr->ia_size > inode->i_size) {
3144			error = generic_cont_expand_simple(inode, attr->ia_size);
3145			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3146				int err;
3147				struct reiserfs_transaction_handle th;
3148				/* we're changing at most 2 bitmaps, inode + super */
3149				err = journal_begin(&th, inode->i_sb, 4);
3150				if (!err) {
3151					reiserfs_discard_prealloc(&th, inode);
3152					err = journal_end(&th, inode->i_sb, 4);
3153				}
3154				if (err)
3155					error = err;
3156			}
3157			if (error) {
3158				reiserfs_write_unlock(inode->i_sb);
3159				goto out;
3160			}
3161			/*
3162			 * file size is changed, ctime and mtime are
3163			 * to be updated
3164			 */
3165			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3166		}
3167	}
3168	reiserfs_write_unlock(inode->i_sb);
3169
3170	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3171	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3172	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3173		/* stat data of format v3.5 has 16 bit uid and gid */
3174		error = -EINVAL;
3175		goto out;
3176	}
3177
3178	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3179	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3180		struct reiserfs_transaction_handle th;
3181		int jbegin_count =
3182		    2 *
3183		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3184		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3185		    2;
3186
3187		error = reiserfs_chown_xattrs(inode, attr);
3188
3189		if (error)
3190			return error;
3191
3192		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
 
 
 
3193		reiserfs_write_lock(inode->i_sb);
3194		error = journal_begin(&th, inode->i_sb, jbegin_count);
3195		reiserfs_write_unlock(inode->i_sb);
3196		if (error)
3197			goto out;
3198		error = dquot_transfer(inode, attr);
3199		reiserfs_write_lock(inode->i_sb);
3200		if (error) {
3201			journal_end(&th, inode->i_sb, jbegin_count);
3202			reiserfs_write_unlock(inode->i_sb);
3203			goto out;
3204		}
3205
3206		/* Update corresponding info in inode so that everything is in
3207		 * one transaction */
 
 
3208		if (attr->ia_valid & ATTR_UID)
3209			inode->i_uid = attr->ia_uid;
3210		if (attr->ia_valid & ATTR_GID)
3211			inode->i_gid = attr->ia_gid;
3212		mark_inode_dirty(inode);
3213		error = journal_end(&th, inode->i_sb, jbegin_count);
3214		reiserfs_write_unlock(inode->i_sb);
3215		if (error)
3216			goto out;
3217	}
3218
3219	if ((attr->ia_valid & ATTR_SIZE) &&
3220	    attr->ia_size != i_size_read(inode)) {
3221		error = inode_newsize_ok(inode, attr->ia_size);
3222		if (!error) {
 
 
 
 
 
3223			truncate_setsize(inode, attr->ia_size);
3224			reiserfs_vfs_truncate_file(inode);
 
3225		}
3226	}
3227
3228	if (!error) {
3229		setattr_copy(inode, attr);
3230		mark_inode_dirty(inode);
3231	}
3232
3233	if (!error && reiserfs_posixacl(inode->i_sb)) {
3234		if (attr->ia_valid & ATTR_MODE)
3235			error = reiserfs_acl_chmod(inode);
3236	}
3237
3238out:
3239	return error;
3240}
3241
3242const struct address_space_operations reiserfs_address_space_operations = {
3243	.writepage = reiserfs_writepage,
3244	.readpage = reiserfs_readpage,
3245	.readpages = reiserfs_readpages,
3246	.releasepage = reiserfs_releasepage,
3247	.invalidatepage = reiserfs_invalidatepage,
3248	.write_begin = reiserfs_write_begin,
3249	.write_end = reiserfs_write_end,
3250	.bmap = reiserfs_aop_bmap,
3251	.direct_IO = reiserfs_direct_IO,
3252	.set_page_dirty = reiserfs_set_page_dirty,
3253};