Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * fs/kernfs/file.c - kernfs file implementation
   3 *
   4 * Copyright (c) 2001-3 Patrick Mochel
   5 * Copyright (c) 2007 SUSE Linux Products GmbH
   6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   7 *
   8 * This file is released under the GPLv2.
   9 */
  10
  11#include <linux/fs.h>
  12#include <linux/seq_file.h>
  13#include <linux/slab.h>
  14#include <linux/poll.h>
  15#include <linux/pagemap.h>
  16#include <linux/sched/mm.h>
  17#include <linux/fsnotify.h>
  18
  19#include "kernfs-internal.h"
  20
  21/*
  22 * There's one kernfs_open_file for each open file and one kernfs_open_node
  23 * for each kernfs_node with one or more open files.
  24 *
  25 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
  26 * protected by kernfs_open_node_lock.
  27 *
  28 * filp->private_data points to seq_file whose ->private points to
  29 * kernfs_open_file.  kernfs_open_files are chained at
  30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
  31 */
  32static DEFINE_SPINLOCK(kernfs_open_node_lock);
  33static DEFINE_MUTEX(kernfs_open_file_mutex);
  34
  35struct kernfs_open_node {
  36	atomic_t		refcnt;
  37	atomic_t		event;
  38	wait_queue_head_t	poll;
  39	struct list_head	files; /* goes through kernfs_open_file.list */
  40};
  41
  42/*
  43 * kernfs_notify() may be called from any context and bounces notifications
  44 * through a work item.  To minimize space overhead in kernfs_node, the
  45 * pending queue is implemented as a singly linked list of kernfs_nodes.
  46 * The list is terminated with the self pointer so that whether a
  47 * kernfs_node is on the list or not can be determined by testing the next
  48 * pointer for NULL.
  49 */
  50#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
  51
  52static DEFINE_SPINLOCK(kernfs_notify_lock);
  53static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  54
  55static struct kernfs_open_file *kernfs_of(struct file *file)
  56{
  57	return ((struct seq_file *)file->private_data)->private;
  58}
  59
  60/*
  61 * Determine the kernfs_ops for the given kernfs_node.  This function must
  62 * be called while holding an active reference.
  63 */
  64static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
  65{
  66	if (kn->flags & KERNFS_LOCKDEP)
  67		lockdep_assert_held(kn);
  68	return kn->attr.ops;
  69}
  70
  71/*
  72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
  73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
  74 * a seq_file iteration which is fully initialized with an active reference
  75 * or an aborted kernfs_seq_start() due to get_active failure.  The
  76 * position pointer is the only context for each seq_file iteration and
  77 * thus the stop condition should be encoded in it.  As the return value is
  78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
  79 * choice to indicate get_active failure.
  80 *
  81 * Unfortunately, this is complicated due to the optional custom seq_file
  82 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
  83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
  84 * custom seq_file operations and thus can't decide whether put_active
  85 * should be performed or not only on ERR_PTR(-ENODEV).
  86 *
  87 * This is worked around by factoring out the custom seq_stop() and
  88 * put_active part into kernfs_seq_stop_active(), skipping it from
  89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
  90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
  91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
  92 */
  93static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
  94{
  95	struct kernfs_open_file *of = sf->private;
  96	const struct kernfs_ops *ops = kernfs_ops(of->kn);
  97
  98	if (ops->seq_stop)
  99		ops->seq_stop(sf, v);
 100	kernfs_put_active(of->kn);
 101}
 102
 103static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 104{
 105	struct kernfs_open_file *of = sf->private;
 106	const struct kernfs_ops *ops;
 107
 108	/*
 109	 * @of->mutex nests outside active ref and is primarily to ensure that
 110	 * the ops aren't called concurrently for the same open file.
 111	 */
 112	mutex_lock(&of->mutex);
 113	if (!kernfs_get_active(of->kn))
 114		return ERR_PTR(-ENODEV);
 115
 116	ops = kernfs_ops(of->kn);
 117	if (ops->seq_start) {
 118		void *next = ops->seq_start(sf, ppos);
 119		/* see the comment above kernfs_seq_stop_active() */
 120		if (next == ERR_PTR(-ENODEV))
 121			kernfs_seq_stop_active(sf, next);
 122		return next;
 123	} else {
 124		/*
 125		 * The same behavior and code as single_open().  Returns
 126		 * !NULL if pos is at the beginning; otherwise, NULL.
 127		 */
 128		return NULL + !*ppos;
 129	}
 130}
 131
 132static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 133{
 134	struct kernfs_open_file *of = sf->private;
 135	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 136
 137	if (ops->seq_next) {
 138		void *next = ops->seq_next(sf, v, ppos);
 139		/* see the comment above kernfs_seq_stop_active() */
 140		if (next == ERR_PTR(-ENODEV))
 141			kernfs_seq_stop_active(sf, next);
 142		return next;
 143	} else {
 144		/*
 145		 * The same behavior and code as single_open(), always
 146		 * terminate after the initial read.
 147		 */
 148		++*ppos;
 149		return NULL;
 150	}
 151}
 152
 153static void kernfs_seq_stop(struct seq_file *sf, void *v)
 154{
 155	struct kernfs_open_file *of = sf->private;
 156
 157	if (v != ERR_PTR(-ENODEV))
 158		kernfs_seq_stop_active(sf, v);
 159	mutex_unlock(&of->mutex);
 160}
 161
 162static int kernfs_seq_show(struct seq_file *sf, void *v)
 163{
 164	struct kernfs_open_file *of = sf->private;
 165
 166	of->event = atomic_read(&of->kn->attr.open->event);
 167
 168	return of->kn->attr.ops->seq_show(sf, v);
 169}
 170
 171static const struct seq_operations kernfs_seq_ops = {
 172	.start = kernfs_seq_start,
 173	.next = kernfs_seq_next,
 174	.stop = kernfs_seq_stop,
 175	.show = kernfs_seq_show,
 176};
 177
 178/*
 179 * As reading a bin file can have side-effects, the exact offset and bytes
 180 * specified in read(2) call should be passed to the read callback making
 181 * it difficult to use seq_file.  Implement simplistic custom buffering for
 182 * bin files.
 183 */
 184static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
 185				       char __user *user_buf, size_t count,
 186				       loff_t *ppos)
 187{
 188	ssize_t len = min_t(size_t, count, PAGE_SIZE);
 189	const struct kernfs_ops *ops;
 190	char *buf;
 191
 192	buf = of->prealloc_buf;
 193	if (buf)
 194		mutex_lock(&of->prealloc_mutex);
 195	else
 196		buf = kmalloc(len, GFP_KERNEL);
 197	if (!buf)
 198		return -ENOMEM;
 199
 200	/*
 201	 * @of->mutex nests outside active ref and is used both to ensure that
 202	 * the ops aren't called concurrently for the same open file.
 203	 */
 204	mutex_lock(&of->mutex);
 205	if (!kernfs_get_active(of->kn)) {
 206		len = -ENODEV;
 207		mutex_unlock(&of->mutex);
 208		goto out_free;
 209	}
 210
 211	of->event = atomic_read(&of->kn->attr.open->event);
 212	ops = kernfs_ops(of->kn);
 213	if (ops->read)
 214		len = ops->read(of, buf, len, *ppos);
 215	else
 216		len = -EINVAL;
 217
 218	kernfs_put_active(of->kn);
 219	mutex_unlock(&of->mutex);
 220
 221	if (len < 0)
 222		goto out_free;
 223
 224	if (copy_to_user(user_buf, buf, len)) {
 225		len = -EFAULT;
 226		goto out_free;
 227	}
 228
 229	*ppos += len;
 230
 231 out_free:
 232	if (buf == of->prealloc_buf)
 233		mutex_unlock(&of->prealloc_mutex);
 234	else
 235		kfree(buf);
 236	return len;
 237}
 238
 239/**
 240 * kernfs_fop_read - kernfs vfs read callback
 241 * @file: file pointer
 242 * @user_buf: data to write
 243 * @count: number of bytes
 244 * @ppos: starting offset
 245 */
 246static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
 247			       size_t count, loff_t *ppos)
 248{
 249	struct kernfs_open_file *of = kernfs_of(file);
 250
 251	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
 252		return seq_read(file, user_buf, count, ppos);
 253	else
 254		return kernfs_file_direct_read(of, user_buf, count, ppos);
 255}
 256
 257/**
 258 * kernfs_fop_write - kernfs vfs write callback
 259 * @file: file pointer
 260 * @user_buf: data to write
 261 * @count: number of bytes
 262 * @ppos: starting offset
 263 *
 264 * Copy data in from userland and pass it to the matching kernfs write
 265 * operation.
 266 *
 267 * There is no easy way for us to know if userspace is only doing a partial
 268 * write, so we don't support them. We expect the entire buffer to come on
 269 * the first write.  Hint: if you're writing a value, first read the file,
 270 * modify only the the value you're changing, then write entire buffer
 271 * back.
 272 */
 273static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
 274				size_t count, loff_t *ppos)
 275{
 276	struct kernfs_open_file *of = kernfs_of(file);
 277	const struct kernfs_ops *ops;
 278	ssize_t len;
 279	char *buf;
 280
 281	if (of->atomic_write_len) {
 282		len = count;
 283		if (len > of->atomic_write_len)
 284			return -E2BIG;
 285	} else {
 286		len = min_t(size_t, count, PAGE_SIZE);
 287	}
 288
 289	buf = of->prealloc_buf;
 290	if (buf)
 291		mutex_lock(&of->prealloc_mutex);
 292	else
 293		buf = kmalloc(len + 1, GFP_KERNEL);
 294	if (!buf)
 295		return -ENOMEM;
 296
 297	if (copy_from_user(buf, user_buf, len)) {
 298		len = -EFAULT;
 299		goto out_free;
 300	}
 301	buf[len] = '\0';	/* guarantee string termination */
 302
 303	/*
 304	 * @of->mutex nests outside active ref and is used both to ensure that
 305	 * the ops aren't called concurrently for the same open file.
 306	 */
 307	mutex_lock(&of->mutex);
 308	if (!kernfs_get_active(of->kn)) {
 309		mutex_unlock(&of->mutex);
 310		len = -ENODEV;
 311		goto out_free;
 312	}
 313
 314	ops = kernfs_ops(of->kn);
 315	if (ops->write)
 316		len = ops->write(of, buf, len, *ppos);
 317	else
 318		len = -EINVAL;
 319
 320	kernfs_put_active(of->kn);
 321	mutex_unlock(&of->mutex);
 322
 323	if (len > 0)
 324		*ppos += len;
 325
 326out_free:
 327	if (buf == of->prealloc_buf)
 328		mutex_unlock(&of->prealloc_mutex);
 329	else
 330		kfree(buf);
 331	return len;
 332}
 333
 334static void kernfs_vma_open(struct vm_area_struct *vma)
 335{
 336	struct file *file = vma->vm_file;
 337	struct kernfs_open_file *of = kernfs_of(file);
 338
 339	if (!of->vm_ops)
 340		return;
 341
 342	if (!kernfs_get_active(of->kn))
 343		return;
 344
 345	if (of->vm_ops->open)
 346		of->vm_ops->open(vma);
 347
 348	kernfs_put_active(of->kn);
 349}
 350
 351static int kernfs_vma_fault(struct vm_fault *vmf)
 352{
 353	struct file *file = vmf->vma->vm_file;
 354	struct kernfs_open_file *of = kernfs_of(file);
 355	int ret;
 356
 357	if (!of->vm_ops)
 358		return VM_FAULT_SIGBUS;
 359
 360	if (!kernfs_get_active(of->kn))
 361		return VM_FAULT_SIGBUS;
 362
 363	ret = VM_FAULT_SIGBUS;
 364	if (of->vm_ops->fault)
 365		ret = of->vm_ops->fault(vmf);
 366
 367	kernfs_put_active(of->kn);
 368	return ret;
 369}
 370
 371static int kernfs_vma_page_mkwrite(struct vm_fault *vmf)
 
 372{
 373	struct file *file = vmf->vma->vm_file;
 374	struct kernfs_open_file *of = kernfs_of(file);
 375	int ret;
 376
 377	if (!of->vm_ops)
 378		return VM_FAULT_SIGBUS;
 379
 380	if (!kernfs_get_active(of->kn))
 381		return VM_FAULT_SIGBUS;
 382
 383	ret = 0;
 384	if (of->vm_ops->page_mkwrite)
 385		ret = of->vm_ops->page_mkwrite(vmf);
 386	else
 387		file_update_time(file);
 388
 389	kernfs_put_active(of->kn);
 390	return ret;
 391}
 392
 393static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 394			     void *buf, int len, int write)
 395{
 396	struct file *file = vma->vm_file;
 397	struct kernfs_open_file *of = kernfs_of(file);
 398	int ret;
 399
 400	if (!of->vm_ops)
 401		return -EINVAL;
 402
 403	if (!kernfs_get_active(of->kn))
 404		return -EINVAL;
 405
 406	ret = -EINVAL;
 407	if (of->vm_ops->access)
 408		ret = of->vm_ops->access(vma, addr, buf, len, write);
 409
 410	kernfs_put_active(of->kn);
 411	return ret;
 412}
 413
 414#ifdef CONFIG_NUMA
 415static int kernfs_vma_set_policy(struct vm_area_struct *vma,
 416				 struct mempolicy *new)
 417{
 418	struct file *file = vma->vm_file;
 419	struct kernfs_open_file *of = kernfs_of(file);
 420	int ret;
 421
 422	if (!of->vm_ops)
 423		return 0;
 424
 425	if (!kernfs_get_active(of->kn))
 426		return -EINVAL;
 427
 428	ret = 0;
 429	if (of->vm_ops->set_policy)
 430		ret = of->vm_ops->set_policy(vma, new);
 431
 432	kernfs_put_active(of->kn);
 433	return ret;
 434}
 435
 436static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
 437					       unsigned long addr)
 438{
 439	struct file *file = vma->vm_file;
 440	struct kernfs_open_file *of = kernfs_of(file);
 441	struct mempolicy *pol;
 442
 443	if (!of->vm_ops)
 444		return vma->vm_policy;
 445
 446	if (!kernfs_get_active(of->kn))
 447		return vma->vm_policy;
 448
 449	pol = vma->vm_policy;
 450	if (of->vm_ops->get_policy)
 451		pol = of->vm_ops->get_policy(vma, addr);
 452
 453	kernfs_put_active(of->kn);
 454	return pol;
 455}
 456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457#endif
 458
 459static const struct vm_operations_struct kernfs_vm_ops = {
 460	.open		= kernfs_vma_open,
 461	.fault		= kernfs_vma_fault,
 462	.page_mkwrite	= kernfs_vma_page_mkwrite,
 463	.access		= kernfs_vma_access,
 464#ifdef CONFIG_NUMA
 465	.set_policy	= kernfs_vma_set_policy,
 466	.get_policy	= kernfs_vma_get_policy,
 
 467#endif
 468};
 469
 470static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 471{
 472	struct kernfs_open_file *of = kernfs_of(file);
 473	const struct kernfs_ops *ops;
 474	int rc;
 475
 476	/*
 477	 * mmap path and of->mutex are prone to triggering spurious lockdep
 478	 * warnings and we don't want to add spurious locking dependency
 479	 * between the two.  Check whether mmap is actually implemented
 480	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 481	 * comment in kernfs_file_open() for more details.
 482	 */
 483	if (!(of->kn->flags & KERNFS_HAS_MMAP))
 484		return -ENODEV;
 485
 486	mutex_lock(&of->mutex);
 487
 488	rc = -ENODEV;
 489	if (!kernfs_get_active(of->kn))
 490		goto out_unlock;
 491
 492	ops = kernfs_ops(of->kn);
 493	rc = ops->mmap(of, vma);
 494	if (rc)
 495		goto out_put;
 496
 497	/*
 498	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 499	 * to satisfy versions of X which crash if the mmap fails: that
 500	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
 501	 */
 502	if (vma->vm_file != file)
 503		goto out_put;
 504
 505	rc = -EINVAL;
 506	if (of->mmapped && of->vm_ops != vma->vm_ops)
 507		goto out_put;
 508
 509	/*
 510	 * It is not possible to successfully wrap close.
 511	 * So error if someone is trying to use close.
 512	 */
 513	rc = -EINVAL;
 514	if (vma->vm_ops && vma->vm_ops->close)
 515		goto out_put;
 516
 517	rc = 0;
 518	of->mmapped = true;
 519	of->vm_ops = vma->vm_ops;
 520	vma->vm_ops = &kernfs_vm_ops;
 521out_put:
 522	kernfs_put_active(of->kn);
 523out_unlock:
 524	mutex_unlock(&of->mutex);
 525
 526	return rc;
 527}
 528
 529/**
 530 *	kernfs_get_open_node - get or create kernfs_open_node
 531 *	@kn: target kernfs_node
 532 *	@of: kernfs_open_file for this instance of open
 533 *
 534 *	If @kn->attr.open exists, increment its reference count; otherwise,
 535 *	create one.  @of is chained to the files list.
 536 *
 537 *	LOCKING:
 538 *	Kernel thread context (may sleep).
 539 *
 540 *	RETURNS:
 541 *	0 on success, -errno on failure.
 542 */
 543static int kernfs_get_open_node(struct kernfs_node *kn,
 544				struct kernfs_open_file *of)
 545{
 546	struct kernfs_open_node *on, *new_on = NULL;
 547
 548 retry:
 549	mutex_lock(&kernfs_open_file_mutex);
 550	spin_lock_irq(&kernfs_open_node_lock);
 551
 552	if (!kn->attr.open && new_on) {
 553		kn->attr.open = new_on;
 554		new_on = NULL;
 555	}
 556
 557	on = kn->attr.open;
 558	if (on) {
 559		atomic_inc(&on->refcnt);
 560		list_add_tail(&of->list, &on->files);
 561	}
 562
 563	spin_unlock_irq(&kernfs_open_node_lock);
 564	mutex_unlock(&kernfs_open_file_mutex);
 565
 566	if (on) {
 567		kfree(new_on);
 568		return 0;
 569	}
 570
 571	/* not there, initialize a new one and retry */
 572	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
 573	if (!new_on)
 574		return -ENOMEM;
 575
 576	atomic_set(&new_on->refcnt, 0);
 577	atomic_set(&new_on->event, 1);
 578	init_waitqueue_head(&new_on->poll);
 579	INIT_LIST_HEAD(&new_on->files);
 580	goto retry;
 581}
 582
 583/**
 584 *	kernfs_put_open_node - put kernfs_open_node
 585 *	@kn: target kernfs_nodet
 586 *	@of: associated kernfs_open_file
 587 *
 588 *	Put @kn->attr.open and unlink @of from the files list.  If
 589 *	reference count reaches zero, disassociate and free it.
 590 *
 591 *	LOCKING:
 592 *	None.
 593 */
 594static void kernfs_put_open_node(struct kernfs_node *kn,
 595				 struct kernfs_open_file *of)
 596{
 597	struct kernfs_open_node *on = kn->attr.open;
 598	unsigned long flags;
 599
 600	mutex_lock(&kernfs_open_file_mutex);
 601	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 602
 603	if (of)
 604		list_del(&of->list);
 605
 606	if (atomic_dec_and_test(&on->refcnt))
 607		kn->attr.open = NULL;
 608	else
 609		on = NULL;
 610
 611	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 612	mutex_unlock(&kernfs_open_file_mutex);
 613
 614	kfree(on);
 615}
 616
 617static int kernfs_fop_open(struct inode *inode, struct file *file)
 618{
 619	struct kernfs_node *kn = inode->i_private;
 620	struct kernfs_root *root = kernfs_root(kn);
 621	const struct kernfs_ops *ops;
 622	struct kernfs_open_file *of;
 623	bool has_read, has_write, has_mmap;
 624	int error = -EACCES;
 625
 626	if (!kernfs_get_active(kn))
 627		return -ENODEV;
 628
 629	ops = kernfs_ops(kn);
 630
 631	has_read = ops->seq_show || ops->read || ops->mmap;
 632	has_write = ops->write || ops->mmap;
 633	has_mmap = ops->mmap;
 634
 635	/* see the flag definition for details */
 636	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 637		if ((file->f_mode & FMODE_WRITE) &&
 638		    (!(inode->i_mode & S_IWUGO) || !has_write))
 639			goto err_out;
 640
 641		if ((file->f_mode & FMODE_READ) &&
 642		    (!(inode->i_mode & S_IRUGO) || !has_read))
 643			goto err_out;
 644	}
 645
 646	/* allocate a kernfs_open_file for the file */
 647	error = -ENOMEM;
 648	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 649	if (!of)
 650		goto err_out;
 651
 652	/*
 653	 * The following is done to give a different lockdep key to
 654	 * @of->mutex for files which implement mmap.  This is a rather
 655	 * crude way to avoid false positive lockdep warning around
 656	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
 657	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 658	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
 659	 * open file has a separate mutex, it's okay as long as those don't
 660	 * happen on the same file.  At this point, we can't easily give
 661	 * each file a separate locking class.  Let's differentiate on
 662	 * whether the file has mmap or not for now.
 663	 *
 664	 * Both paths of the branch look the same.  They're supposed to
 665	 * look that way and give @of->mutex different static lockdep keys.
 666	 */
 667	if (has_mmap)
 668		mutex_init(&of->mutex);
 669	else
 670		mutex_init(&of->mutex);
 671
 672	of->kn = kn;
 673	of->file = file;
 674
 675	/*
 676	 * Write path needs to atomic_write_len outside active reference.
 677	 * Cache it in open_file.  See kernfs_fop_write() for details.
 678	 */
 679	of->atomic_write_len = ops->atomic_write_len;
 680
 681	error = -EINVAL;
 682	/*
 683	 * ->seq_show is incompatible with ->prealloc,
 684	 * as seq_read does its own allocation.
 685	 * ->read must be used instead.
 686	 */
 687	if (ops->prealloc && ops->seq_show)
 688		goto err_free;
 689	if (ops->prealloc) {
 690		int len = of->atomic_write_len ?: PAGE_SIZE;
 691		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 692		error = -ENOMEM;
 693		if (!of->prealloc_buf)
 694			goto err_free;
 695		mutex_init(&of->prealloc_mutex);
 696	}
 697
 698	/*
 699	 * Always instantiate seq_file even if read access doesn't use
 700	 * seq_file or is not requested.  This unifies private data access
 701	 * and readable regular files are the vast majority anyway.
 702	 */
 703	if (ops->seq_show)
 704		error = seq_open(file, &kernfs_seq_ops);
 705	else
 706		error = seq_open(file, NULL);
 707	if (error)
 708		goto err_free;
 709
 710	of->seq_file = file->private_data;
 711	of->seq_file->private = of;
 712
 713	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
 714	if (file->f_mode & FMODE_WRITE)
 715		file->f_mode |= FMODE_PWRITE;
 716
 717	/* make sure we have open node struct */
 718	error = kernfs_get_open_node(kn, of);
 719	if (error)
 720		goto err_seq_release;
 721
 722	if (ops->open) {
 723		/* nobody has access to @of yet, skip @of->mutex */
 724		error = ops->open(of);
 725		if (error)
 726			goto err_put_node;
 727	}
 728
 729	/* open succeeded, put active references */
 730	kernfs_put_active(kn);
 731	return 0;
 732
 733err_put_node:
 734	kernfs_put_open_node(kn, of);
 735err_seq_release:
 736	seq_release(inode, file);
 737err_free:
 738	kfree(of->prealloc_buf);
 739	kfree(of);
 740err_out:
 741	kernfs_put_active(kn);
 742	return error;
 743}
 744
 745/* used from release/drain to ensure that ->release() is called exactly once */
 746static void kernfs_release_file(struct kernfs_node *kn,
 747				struct kernfs_open_file *of)
 748{
 749	/*
 750	 * @of is guaranteed to have no other file operations in flight and
 751	 * we just want to synchronize release and drain paths.
 752	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
 753	 * here because drain path may be called from places which can
 754	 * cause circular dependency.
 755	 */
 756	lockdep_assert_held(&kernfs_open_file_mutex);
 757
 758	if (!of->released) {
 759		/*
 760		 * A file is never detached without being released and we
 761		 * need to be able to release files which are deactivated
 762		 * and being drained.  Don't use kernfs_ops().
 763		 */
 764		kn->attr.ops->release(of);
 765		of->released = true;
 766	}
 767}
 768
 769static int kernfs_fop_release(struct inode *inode, struct file *filp)
 770{
 771	struct kernfs_node *kn = inode->i_private;
 772	struct kernfs_open_file *of = kernfs_of(filp);
 773
 774	if (kn->flags & KERNFS_HAS_RELEASE) {
 775		mutex_lock(&kernfs_open_file_mutex);
 776		kernfs_release_file(kn, of);
 777		mutex_unlock(&kernfs_open_file_mutex);
 778	}
 779
 780	kernfs_put_open_node(kn, of);
 781	seq_release(inode, filp);
 782	kfree(of->prealloc_buf);
 783	kfree(of);
 784
 785	return 0;
 786}
 787
 788void kernfs_drain_open_files(struct kernfs_node *kn)
 789{
 790	struct kernfs_open_node *on;
 791	struct kernfs_open_file *of;
 792
 793	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
 794		return;
 795
 796	spin_lock_irq(&kernfs_open_node_lock);
 797	on = kn->attr.open;
 798	if (on)
 799		atomic_inc(&on->refcnt);
 800	spin_unlock_irq(&kernfs_open_node_lock);
 801	if (!on)
 802		return;
 803
 804	mutex_lock(&kernfs_open_file_mutex);
 805
 806	list_for_each_entry(of, &on->files, list) {
 807		struct inode *inode = file_inode(of->file);
 808
 809		if (kn->flags & KERNFS_HAS_MMAP)
 810			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 811
 812		if (kn->flags & KERNFS_HAS_RELEASE)
 813			kernfs_release_file(kn, of);
 814	}
 815
 816	mutex_unlock(&kernfs_open_file_mutex);
 817
 818	kernfs_put_open_node(kn, NULL);
 819}
 820
 821/*
 822 * Kernfs attribute files are pollable.  The idea is that you read
 823 * the content and then you use 'poll' or 'select' to wait for
 824 * the content to change.  When the content changes (assuming the
 825 * manager for the kobject supports notification), poll will
 826 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
 827 * it is waiting for read, write, or exceptions.
 828 * Once poll/select indicates that the value has changed, you
 829 * need to close and re-open the file, or seek to 0 and read again.
 830 * Reminder: this only works for attributes which actively support
 831 * it, and it is not possible to test an attribute from userspace
 832 * to see if it supports poll (Neither 'poll' nor 'select' return
 833 * an appropriate error code).  When in doubt, set a suitable timeout value.
 834 */
 835static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
 836{
 837	struct kernfs_open_file *of = kernfs_of(filp);
 838	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
 839	struct kernfs_open_node *on = kn->attr.open;
 840
 
 841	if (!kernfs_get_active(kn))
 842		goto trigger;
 843
 844	poll_wait(filp, &on->poll, wait);
 845
 846	kernfs_put_active(kn);
 847
 848	if (of->event != atomic_read(&on->event))
 849		goto trigger;
 850
 851	return DEFAULT_POLLMASK;
 852
 853 trigger:
 854	return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 855}
 856
 857static void kernfs_notify_workfn(struct work_struct *work)
 858{
 859	struct kernfs_node *kn;
 860	struct kernfs_open_node *on;
 861	struct kernfs_super_info *info;
 862repeat:
 863	/* pop one off the notify_list */
 864	spin_lock_irq(&kernfs_notify_lock);
 865	kn = kernfs_notify_list;
 866	if (kn == KERNFS_NOTIFY_EOL) {
 867		spin_unlock_irq(&kernfs_notify_lock);
 868		return;
 869	}
 870	kernfs_notify_list = kn->attr.notify_next;
 871	kn->attr.notify_next = NULL;
 872	spin_unlock_irq(&kernfs_notify_lock);
 873
 874	/* kick poll */
 875	spin_lock_irq(&kernfs_open_node_lock);
 876
 877	on = kn->attr.open;
 878	if (on) {
 879		atomic_inc(&on->event);
 880		wake_up_interruptible(&on->poll);
 881	}
 882
 883	spin_unlock_irq(&kernfs_open_node_lock);
 884
 885	/* kick fsnotify */
 886	mutex_lock(&kernfs_mutex);
 887
 888	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 889		struct kernfs_node *parent;
 890		struct inode *inode;
 891
 892		/*
 893		 * We want fsnotify_modify() on @kn but as the
 894		 * modifications aren't originating from userland don't
 895		 * have the matching @file available.  Look up the inodes
 896		 * and generate the events manually.
 897		 */
 898		inode = ilookup(info->sb, kn->id.ino);
 899		if (!inode)
 900			continue;
 901
 902		parent = kernfs_get_parent(kn);
 903		if (parent) {
 904			struct inode *p_inode;
 905
 906			p_inode = ilookup(info->sb, parent->id.ino);
 907			if (p_inode) {
 908				fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
 909					 inode, FSNOTIFY_EVENT_INODE, kn->name, 0);
 910				iput(p_inode);
 911			}
 912
 913			kernfs_put(parent);
 914		}
 915
 916		fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
 917			 kn->name, 0);
 918		iput(inode);
 919	}
 920
 921	mutex_unlock(&kernfs_mutex);
 922	kernfs_put(kn);
 923	goto repeat;
 924}
 925
 926/**
 927 * kernfs_notify - notify a kernfs file
 928 * @kn: file to notify
 929 *
 930 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 931 * context.
 932 */
 933void kernfs_notify(struct kernfs_node *kn)
 934{
 935	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 936	unsigned long flags;
 937
 938	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 939		return;
 940
 941	spin_lock_irqsave(&kernfs_notify_lock, flags);
 942	if (!kn->attr.notify_next) {
 943		kernfs_get(kn);
 944		kn->attr.notify_next = kernfs_notify_list;
 945		kernfs_notify_list = kn;
 946		schedule_work(&kernfs_notify_work);
 947	}
 948	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 
 949}
 950EXPORT_SYMBOL_GPL(kernfs_notify);
 951
 952const struct file_operations kernfs_file_fops = {
 953	.read		= kernfs_fop_read,
 954	.write		= kernfs_fop_write,
 955	.llseek		= generic_file_llseek,
 956	.mmap		= kernfs_fop_mmap,
 957	.open		= kernfs_fop_open,
 958	.release	= kernfs_fop_release,
 959	.poll		= kernfs_fop_poll,
 960	.fsync		= noop_fsync,
 961};
 962
 963/**
 964 * __kernfs_create_file - kernfs internal function to create a file
 965 * @parent: directory to create the file in
 966 * @name: name of the file
 967 * @mode: mode of the file
 968 * @size: size of the file
 969 * @ops: kernfs operations for the file
 970 * @priv: private data for the file
 971 * @ns: optional namespace tag of the file
 
 972 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
 973 *
 974 * Returns the created node on success, ERR_PTR() value on error.
 975 */
 976struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
 977					 const char *name,
 978					 umode_t mode, loff_t size,
 979					 const struct kernfs_ops *ops,
 980					 void *priv, const void *ns,
 
 981					 struct lock_class_key *key)
 982{
 983	struct kernfs_node *kn;
 984	unsigned flags;
 985	int rc;
 986
 987	flags = KERNFS_FILE;
 
 
 988
 989	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
 990	if (!kn)
 991		return ERR_PTR(-ENOMEM);
 992
 993	kn->attr.ops = ops;
 994	kn->attr.size = size;
 995	kn->ns = ns;
 996	kn->priv = priv;
 997
 998#ifdef CONFIG_DEBUG_LOCK_ALLOC
 999	if (key) {
1000		lockdep_init_map(&kn->dep_map, "kn->count", key, 0);
1001		kn->flags |= KERNFS_LOCKDEP;
1002	}
1003#endif
1004
1005	/*
1006	 * kn->attr.ops is accesible only while holding active ref.  We
1007	 * need to know whether some ops are implemented outside active
1008	 * ref.  Cache their existence in flags.
1009	 */
1010	if (ops->seq_show)
1011		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1012	if (ops->mmap)
1013		kn->flags |= KERNFS_HAS_MMAP;
1014	if (ops->release)
1015		kn->flags |= KERNFS_HAS_RELEASE;
1016
1017	rc = kernfs_add_one(kn);
1018	if (rc) {
1019		kernfs_put(kn);
1020		return ERR_PTR(rc);
1021	}
1022	return kn;
1023}
v3.15
  1/*
  2 * fs/kernfs/file.c - kernfs file implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/seq_file.h>
 13#include <linux/slab.h>
 14#include <linux/poll.h>
 15#include <linux/pagemap.h>
 16#include <linux/sched.h>
 
 17
 18#include "kernfs-internal.h"
 19
 20/*
 21 * There's one kernfs_open_file for each open file and one kernfs_open_node
 22 * for each kernfs_node with one or more open files.
 23 *
 24 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
 25 * protected by kernfs_open_node_lock.
 26 *
 27 * filp->private_data points to seq_file whose ->private points to
 28 * kernfs_open_file.  kernfs_open_files are chained at
 29 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
 30 */
 31static DEFINE_SPINLOCK(kernfs_open_node_lock);
 32static DEFINE_MUTEX(kernfs_open_file_mutex);
 33
 34struct kernfs_open_node {
 35	atomic_t		refcnt;
 36	atomic_t		event;
 37	wait_queue_head_t	poll;
 38	struct list_head	files; /* goes through kernfs_open_file.list */
 39};
 40
 
 
 
 
 
 
 
 
 
 
 
 
 
 41static struct kernfs_open_file *kernfs_of(struct file *file)
 42{
 43	return ((struct seq_file *)file->private_data)->private;
 44}
 45
 46/*
 47 * Determine the kernfs_ops for the given kernfs_node.  This function must
 48 * be called while holding an active reference.
 49 */
 50static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
 51{
 52	if (kn->flags & KERNFS_LOCKDEP)
 53		lockdep_assert_held(kn);
 54	return kn->attr.ops;
 55}
 56
 57/*
 58 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
 59 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
 60 * a seq_file iteration which is fully initialized with an active reference
 61 * or an aborted kernfs_seq_start() due to get_active failure.  The
 62 * position pointer is the only context for each seq_file iteration and
 63 * thus the stop condition should be encoded in it.  As the return value is
 64 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
 65 * choice to indicate get_active failure.
 66 *
 67 * Unfortunately, this is complicated due to the optional custom seq_file
 68 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
 69 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
 70 * custom seq_file operations and thus can't decide whether put_active
 71 * should be performed or not only on ERR_PTR(-ENODEV).
 72 *
 73 * This is worked around by factoring out the custom seq_stop() and
 74 * put_active part into kernfs_seq_stop_active(), skipping it from
 75 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
 76 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
 77 * that kernfs_seq_stop_active() is skipped only after get_active failure.
 78 */
 79static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
 80{
 81	struct kernfs_open_file *of = sf->private;
 82	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 83
 84	if (ops->seq_stop)
 85		ops->seq_stop(sf, v);
 86	kernfs_put_active(of->kn);
 87}
 88
 89static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 90{
 91	struct kernfs_open_file *of = sf->private;
 92	const struct kernfs_ops *ops;
 93
 94	/*
 95	 * @of->mutex nests outside active ref and is just to ensure that
 96	 * the ops aren't called concurrently for the same open file.
 97	 */
 98	mutex_lock(&of->mutex);
 99	if (!kernfs_get_active(of->kn))
100		return ERR_PTR(-ENODEV);
101
102	ops = kernfs_ops(of->kn);
103	if (ops->seq_start) {
104		void *next = ops->seq_start(sf, ppos);
105		/* see the comment above kernfs_seq_stop_active() */
106		if (next == ERR_PTR(-ENODEV))
107			kernfs_seq_stop_active(sf, next);
108		return next;
109	} else {
110		/*
111		 * The same behavior and code as single_open().  Returns
112		 * !NULL if pos is at the beginning; otherwise, NULL.
113		 */
114		return NULL + !*ppos;
115	}
116}
117
118static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
119{
120	struct kernfs_open_file *of = sf->private;
121	const struct kernfs_ops *ops = kernfs_ops(of->kn);
122
123	if (ops->seq_next) {
124		void *next = ops->seq_next(sf, v, ppos);
125		/* see the comment above kernfs_seq_stop_active() */
126		if (next == ERR_PTR(-ENODEV))
127			kernfs_seq_stop_active(sf, next);
128		return next;
129	} else {
130		/*
131		 * The same behavior and code as single_open(), always
132		 * terminate after the initial read.
133		 */
134		++*ppos;
135		return NULL;
136	}
137}
138
139static void kernfs_seq_stop(struct seq_file *sf, void *v)
140{
141	struct kernfs_open_file *of = sf->private;
142
143	if (v != ERR_PTR(-ENODEV))
144		kernfs_seq_stop_active(sf, v);
145	mutex_unlock(&of->mutex);
146}
147
148static int kernfs_seq_show(struct seq_file *sf, void *v)
149{
150	struct kernfs_open_file *of = sf->private;
151
152	of->event = atomic_read(&of->kn->attr.open->event);
153
154	return of->kn->attr.ops->seq_show(sf, v);
155}
156
157static const struct seq_operations kernfs_seq_ops = {
158	.start = kernfs_seq_start,
159	.next = kernfs_seq_next,
160	.stop = kernfs_seq_stop,
161	.show = kernfs_seq_show,
162};
163
164/*
165 * As reading a bin file can have side-effects, the exact offset and bytes
166 * specified in read(2) call should be passed to the read callback making
167 * it difficult to use seq_file.  Implement simplistic custom buffering for
168 * bin files.
169 */
170static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
171				       char __user *user_buf, size_t count,
172				       loff_t *ppos)
173{
174	ssize_t len = min_t(size_t, count, PAGE_SIZE);
175	const struct kernfs_ops *ops;
176	char *buf;
177
178	buf = kmalloc(len, GFP_KERNEL);
 
 
 
 
179	if (!buf)
180		return -ENOMEM;
181
182	/*
183	 * @of->mutex nests outside active ref and is just to ensure that
184	 * the ops aren't called concurrently for the same open file.
185	 */
186	mutex_lock(&of->mutex);
187	if (!kernfs_get_active(of->kn)) {
188		len = -ENODEV;
189		mutex_unlock(&of->mutex);
190		goto out_free;
191	}
192
 
193	ops = kernfs_ops(of->kn);
194	if (ops->read)
195		len = ops->read(of, buf, len, *ppos);
196	else
197		len = -EINVAL;
198
199	kernfs_put_active(of->kn);
200	mutex_unlock(&of->mutex);
201
202	if (len < 0)
203		goto out_free;
204
205	if (copy_to_user(user_buf, buf, len)) {
206		len = -EFAULT;
207		goto out_free;
208	}
209
210	*ppos += len;
211
212 out_free:
213	kfree(buf);
 
 
 
214	return len;
215}
216
217/**
218 * kernfs_fop_read - kernfs vfs read callback
219 * @file: file pointer
220 * @user_buf: data to write
221 * @count: number of bytes
222 * @ppos: starting offset
223 */
224static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
225			       size_t count, loff_t *ppos)
226{
227	struct kernfs_open_file *of = kernfs_of(file);
228
229	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
230		return seq_read(file, user_buf, count, ppos);
231	else
232		return kernfs_file_direct_read(of, user_buf, count, ppos);
233}
234
235/**
236 * kernfs_fop_write - kernfs vfs write callback
237 * @file: file pointer
238 * @user_buf: data to write
239 * @count: number of bytes
240 * @ppos: starting offset
241 *
242 * Copy data in from userland and pass it to the matching kernfs write
243 * operation.
244 *
245 * There is no easy way for us to know if userspace is only doing a partial
246 * write, so we don't support them. We expect the entire buffer to come on
247 * the first write.  Hint: if you're writing a value, first read the file,
248 * modify only the the value you're changing, then write entire buffer
249 * back.
250 */
251static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
252				size_t count, loff_t *ppos)
253{
254	struct kernfs_open_file *of = kernfs_of(file);
255	const struct kernfs_ops *ops;
256	size_t len;
257	char *buf;
258
259	if (of->atomic_write_len) {
260		len = count;
261		if (len > of->atomic_write_len)
262			return -E2BIG;
263	} else {
264		len = min_t(size_t, count, PAGE_SIZE);
265	}
266
267	buf = kmalloc(len + 1, GFP_KERNEL);
 
 
 
 
268	if (!buf)
269		return -ENOMEM;
270
271	if (copy_from_user(buf, user_buf, len)) {
272		len = -EFAULT;
273		goto out_free;
274	}
275	buf[len] = '\0';	/* guarantee string termination */
276
277	/*
278	 * @of->mutex nests outside active ref and is just to ensure that
279	 * the ops aren't called concurrently for the same open file.
280	 */
281	mutex_lock(&of->mutex);
282	if (!kernfs_get_active(of->kn)) {
283		mutex_unlock(&of->mutex);
284		len = -ENODEV;
285		goto out_free;
286	}
287
288	ops = kernfs_ops(of->kn);
289	if (ops->write)
290		len = ops->write(of, buf, len, *ppos);
291	else
292		len = -EINVAL;
293
294	kernfs_put_active(of->kn);
295	mutex_unlock(&of->mutex);
296
297	if (len > 0)
298		*ppos += len;
 
299out_free:
300	kfree(buf);
 
 
 
301	return len;
302}
303
304static void kernfs_vma_open(struct vm_area_struct *vma)
305{
306	struct file *file = vma->vm_file;
307	struct kernfs_open_file *of = kernfs_of(file);
308
309	if (!of->vm_ops)
310		return;
311
312	if (!kernfs_get_active(of->kn))
313		return;
314
315	if (of->vm_ops->open)
316		of->vm_ops->open(vma);
317
318	kernfs_put_active(of->kn);
319}
320
321static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
322{
323	struct file *file = vma->vm_file;
324	struct kernfs_open_file *of = kernfs_of(file);
325	int ret;
326
327	if (!of->vm_ops)
328		return VM_FAULT_SIGBUS;
329
330	if (!kernfs_get_active(of->kn))
331		return VM_FAULT_SIGBUS;
332
333	ret = VM_FAULT_SIGBUS;
334	if (of->vm_ops->fault)
335		ret = of->vm_ops->fault(vma, vmf);
336
337	kernfs_put_active(of->kn);
338	return ret;
339}
340
341static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
342				   struct vm_fault *vmf)
343{
344	struct file *file = vma->vm_file;
345	struct kernfs_open_file *of = kernfs_of(file);
346	int ret;
347
348	if (!of->vm_ops)
349		return VM_FAULT_SIGBUS;
350
351	if (!kernfs_get_active(of->kn))
352		return VM_FAULT_SIGBUS;
353
354	ret = 0;
355	if (of->vm_ops->page_mkwrite)
356		ret = of->vm_ops->page_mkwrite(vma, vmf);
357	else
358		file_update_time(file);
359
360	kernfs_put_active(of->kn);
361	return ret;
362}
363
364static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
365			     void *buf, int len, int write)
366{
367	struct file *file = vma->vm_file;
368	struct kernfs_open_file *of = kernfs_of(file);
369	int ret;
370
371	if (!of->vm_ops)
372		return -EINVAL;
373
374	if (!kernfs_get_active(of->kn))
375		return -EINVAL;
376
377	ret = -EINVAL;
378	if (of->vm_ops->access)
379		ret = of->vm_ops->access(vma, addr, buf, len, write);
380
381	kernfs_put_active(of->kn);
382	return ret;
383}
384
385#ifdef CONFIG_NUMA
386static int kernfs_vma_set_policy(struct vm_area_struct *vma,
387				 struct mempolicy *new)
388{
389	struct file *file = vma->vm_file;
390	struct kernfs_open_file *of = kernfs_of(file);
391	int ret;
392
393	if (!of->vm_ops)
394		return 0;
395
396	if (!kernfs_get_active(of->kn))
397		return -EINVAL;
398
399	ret = 0;
400	if (of->vm_ops->set_policy)
401		ret = of->vm_ops->set_policy(vma, new);
402
403	kernfs_put_active(of->kn);
404	return ret;
405}
406
407static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
408					       unsigned long addr)
409{
410	struct file *file = vma->vm_file;
411	struct kernfs_open_file *of = kernfs_of(file);
412	struct mempolicy *pol;
413
414	if (!of->vm_ops)
415		return vma->vm_policy;
416
417	if (!kernfs_get_active(of->kn))
418		return vma->vm_policy;
419
420	pol = vma->vm_policy;
421	if (of->vm_ops->get_policy)
422		pol = of->vm_ops->get_policy(vma, addr);
423
424	kernfs_put_active(of->kn);
425	return pol;
426}
427
428static int kernfs_vma_migrate(struct vm_area_struct *vma,
429			      const nodemask_t *from, const nodemask_t *to,
430			      unsigned long flags)
431{
432	struct file *file = vma->vm_file;
433	struct kernfs_open_file *of = kernfs_of(file);
434	int ret;
435
436	if (!of->vm_ops)
437		return 0;
438
439	if (!kernfs_get_active(of->kn))
440		return 0;
441
442	ret = 0;
443	if (of->vm_ops->migrate)
444		ret = of->vm_ops->migrate(vma, from, to, flags);
445
446	kernfs_put_active(of->kn);
447	return ret;
448}
449#endif
450
451static const struct vm_operations_struct kernfs_vm_ops = {
452	.open		= kernfs_vma_open,
453	.fault		= kernfs_vma_fault,
454	.page_mkwrite	= kernfs_vma_page_mkwrite,
455	.access		= kernfs_vma_access,
456#ifdef CONFIG_NUMA
457	.set_policy	= kernfs_vma_set_policy,
458	.get_policy	= kernfs_vma_get_policy,
459	.migrate	= kernfs_vma_migrate,
460#endif
461};
462
463static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
464{
465	struct kernfs_open_file *of = kernfs_of(file);
466	const struct kernfs_ops *ops;
467	int rc;
468
469	/*
470	 * mmap path and of->mutex are prone to triggering spurious lockdep
471	 * warnings and we don't want to add spurious locking dependency
472	 * between the two.  Check whether mmap is actually implemented
473	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
474	 * comment in kernfs_file_open() for more details.
475	 */
476	if (!(of->kn->flags & KERNFS_HAS_MMAP))
477		return -ENODEV;
478
479	mutex_lock(&of->mutex);
480
481	rc = -ENODEV;
482	if (!kernfs_get_active(of->kn))
483		goto out_unlock;
484
485	ops = kernfs_ops(of->kn);
486	rc = ops->mmap(of, vma);
487	if (rc)
488		goto out_put;
489
490	/*
491	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
492	 * to satisfy versions of X which crash if the mmap fails: that
493	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
494	 */
495	if (vma->vm_file != file)
496		goto out_put;
497
498	rc = -EINVAL;
499	if (of->mmapped && of->vm_ops != vma->vm_ops)
500		goto out_put;
501
502	/*
503	 * It is not possible to successfully wrap close.
504	 * So error if someone is trying to use close.
505	 */
506	rc = -EINVAL;
507	if (vma->vm_ops && vma->vm_ops->close)
508		goto out_put;
509
510	rc = 0;
511	of->mmapped = 1;
512	of->vm_ops = vma->vm_ops;
513	vma->vm_ops = &kernfs_vm_ops;
514out_put:
515	kernfs_put_active(of->kn);
516out_unlock:
517	mutex_unlock(&of->mutex);
518
519	return rc;
520}
521
522/**
523 *	kernfs_get_open_node - get or create kernfs_open_node
524 *	@kn: target kernfs_node
525 *	@of: kernfs_open_file for this instance of open
526 *
527 *	If @kn->attr.open exists, increment its reference count; otherwise,
528 *	create one.  @of is chained to the files list.
529 *
530 *	LOCKING:
531 *	Kernel thread context (may sleep).
532 *
533 *	RETURNS:
534 *	0 on success, -errno on failure.
535 */
536static int kernfs_get_open_node(struct kernfs_node *kn,
537				struct kernfs_open_file *of)
538{
539	struct kernfs_open_node *on, *new_on = NULL;
540
541 retry:
542	mutex_lock(&kernfs_open_file_mutex);
543	spin_lock_irq(&kernfs_open_node_lock);
544
545	if (!kn->attr.open && new_on) {
546		kn->attr.open = new_on;
547		new_on = NULL;
548	}
549
550	on = kn->attr.open;
551	if (on) {
552		atomic_inc(&on->refcnt);
553		list_add_tail(&of->list, &on->files);
554	}
555
556	spin_unlock_irq(&kernfs_open_node_lock);
557	mutex_unlock(&kernfs_open_file_mutex);
558
559	if (on) {
560		kfree(new_on);
561		return 0;
562	}
563
564	/* not there, initialize a new one and retry */
565	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
566	if (!new_on)
567		return -ENOMEM;
568
569	atomic_set(&new_on->refcnt, 0);
570	atomic_set(&new_on->event, 1);
571	init_waitqueue_head(&new_on->poll);
572	INIT_LIST_HEAD(&new_on->files);
573	goto retry;
574}
575
576/**
577 *	kernfs_put_open_node - put kernfs_open_node
578 *	@kn: target kernfs_nodet
579 *	@of: associated kernfs_open_file
580 *
581 *	Put @kn->attr.open and unlink @of from the files list.  If
582 *	reference count reaches zero, disassociate and free it.
583 *
584 *	LOCKING:
585 *	None.
586 */
587static void kernfs_put_open_node(struct kernfs_node *kn,
588				 struct kernfs_open_file *of)
589{
590	struct kernfs_open_node *on = kn->attr.open;
591	unsigned long flags;
592
593	mutex_lock(&kernfs_open_file_mutex);
594	spin_lock_irqsave(&kernfs_open_node_lock, flags);
595
596	if (of)
597		list_del(&of->list);
598
599	if (atomic_dec_and_test(&on->refcnt))
600		kn->attr.open = NULL;
601	else
602		on = NULL;
603
604	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
605	mutex_unlock(&kernfs_open_file_mutex);
606
607	kfree(on);
608}
609
610static int kernfs_fop_open(struct inode *inode, struct file *file)
611{
612	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
613	struct kernfs_root *root = kernfs_root(kn);
614	const struct kernfs_ops *ops;
615	struct kernfs_open_file *of;
616	bool has_read, has_write, has_mmap;
617	int error = -EACCES;
618
619	if (!kernfs_get_active(kn))
620		return -ENODEV;
621
622	ops = kernfs_ops(kn);
623
624	has_read = ops->seq_show || ops->read || ops->mmap;
625	has_write = ops->write || ops->mmap;
626	has_mmap = ops->mmap;
627
628	/* see the flag definition for details */
629	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
630		if ((file->f_mode & FMODE_WRITE) &&
631		    (!(inode->i_mode & S_IWUGO) || !has_write))
632			goto err_out;
633
634		if ((file->f_mode & FMODE_READ) &&
635		    (!(inode->i_mode & S_IRUGO) || !has_read))
636			goto err_out;
637	}
638
639	/* allocate a kernfs_open_file for the file */
640	error = -ENOMEM;
641	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
642	if (!of)
643		goto err_out;
644
645	/*
646	 * The following is done to give a different lockdep key to
647	 * @of->mutex for files which implement mmap.  This is a rather
648	 * crude way to avoid false positive lockdep warning around
649	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
650	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
651	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
652	 * open file has a separate mutex, it's okay as long as those don't
653	 * happen on the same file.  At this point, we can't easily give
654	 * each file a separate locking class.  Let's differentiate on
655	 * whether the file has mmap or not for now.
656	 *
657	 * Both paths of the branch look the same.  They're supposed to
658	 * look that way and give @of->mutex different static lockdep keys.
659	 */
660	if (has_mmap)
661		mutex_init(&of->mutex);
662	else
663		mutex_init(&of->mutex);
664
665	of->kn = kn;
666	of->file = file;
667
668	/*
669	 * Write path needs to atomic_write_len outside active reference.
670	 * Cache it in open_file.  See kernfs_fop_write() for details.
671	 */
672	of->atomic_write_len = ops->atomic_write_len;
673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674	/*
675	 * Always instantiate seq_file even if read access doesn't use
676	 * seq_file or is not requested.  This unifies private data access
677	 * and readable regular files are the vast majority anyway.
678	 */
679	if (ops->seq_show)
680		error = seq_open(file, &kernfs_seq_ops);
681	else
682		error = seq_open(file, NULL);
683	if (error)
684		goto err_free;
685
686	((struct seq_file *)file->private_data)->private = of;
 
687
688	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
689	if (file->f_mode & FMODE_WRITE)
690		file->f_mode |= FMODE_PWRITE;
691
692	/* make sure we have open node struct */
693	error = kernfs_get_open_node(kn, of);
694	if (error)
695		goto err_close;
 
 
 
 
 
 
 
696
697	/* open succeeded, put active references */
698	kernfs_put_active(kn);
699	return 0;
700
701err_close:
 
 
702	seq_release(inode, file);
703err_free:
 
704	kfree(of);
705err_out:
706	kernfs_put_active(kn);
707	return error;
708}
709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710static int kernfs_fop_release(struct inode *inode, struct file *filp)
711{
712	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
713	struct kernfs_open_file *of = kernfs_of(filp);
714
 
 
 
 
 
 
715	kernfs_put_open_node(kn, of);
716	seq_release(inode, filp);
 
717	kfree(of);
718
719	return 0;
720}
721
722void kernfs_unmap_bin_file(struct kernfs_node *kn)
723{
724	struct kernfs_open_node *on;
725	struct kernfs_open_file *of;
726
727	if (!(kn->flags & KERNFS_HAS_MMAP))
728		return;
729
730	spin_lock_irq(&kernfs_open_node_lock);
731	on = kn->attr.open;
732	if (on)
733		atomic_inc(&on->refcnt);
734	spin_unlock_irq(&kernfs_open_node_lock);
735	if (!on)
736		return;
737
738	mutex_lock(&kernfs_open_file_mutex);
 
739	list_for_each_entry(of, &on->files, list) {
740		struct inode *inode = file_inode(of->file);
741		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 
 
 
 
 
742	}
 
743	mutex_unlock(&kernfs_open_file_mutex);
744
745	kernfs_put_open_node(kn, NULL);
746}
747
748/*
749 * Kernfs attribute files are pollable.  The idea is that you read
750 * the content and then you use 'poll' or 'select' to wait for
751 * the content to change.  When the content changes (assuming the
752 * manager for the kobject supports notification), poll will
753 * return POLLERR|POLLPRI, and select will return the fd whether
754 * it is waiting for read, write, or exceptions.
755 * Once poll/select indicates that the value has changed, you
756 * need to close and re-open the file, or seek to 0 and read again.
757 * Reminder: this only works for attributes which actively support
758 * it, and it is not possible to test an attribute from userspace
759 * to see if it supports poll (Neither 'poll' nor 'select' return
760 * an appropriate error code).  When in doubt, set a suitable timeout value.
761 */
762static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
763{
764	struct kernfs_open_file *of = kernfs_of(filp);
765	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
766	struct kernfs_open_node *on = kn->attr.open;
767
768	/* need parent for the kobj, grab both */
769	if (!kernfs_get_active(kn))
770		goto trigger;
771
772	poll_wait(filp, &on->poll, wait);
773
774	kernfs_put_active(kn);
775
776	if (of->event != atomic_read(&on->event))
777		goto trigger;
778
779	return DEFAULT_POLLMASK;
780
781 trigger:
782	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783}
784
785/**
786 * kernfs_notify - notify a kernfs file
787 * @kn: file to notify
788 *
789 * Notify @kn such that poll(2) on @kn wakes up.
 
790 */
791void kernfs_notify(struct kernfs_node *kn)
792{
793	struct kernfs_open_node *on;
794	unsigned long flags;
795
796	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 
797
798	if (!WARN_ON(kernfs_type(kn) != KERNFS_FILE)) {
799		on = kn->attr.open;
800		if (on) {
801			atomic_inc(&on->event);
802			wake_up_interruptible(&on->poll);
803		}
804	}
805
806	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
807}
808EXPORT_SYMBOL_GPL(kernfs_notify);
809
810const struct file_operations kernfs_file_fops = {
811	.read		= kernfs_fop_read,
812	.write		= kernfs_fop_write,
813	.llseek		= generic_file_llseek,
814	.mmap		= kernfs_fop_mmap,
815	.open		= kernfs_fop_open,
816	.release	= kernfs_fop_release,
817	.poll		= kernfs_fop_poll,
 
818};
819
820/**
821 * __kernfs_create_file - kernfs internal function to create a file
822 * @parent: directory to create the file in
823 * @name: name of the file
824 * @mode: mode of the file
825 * @size: size of the file
826 * @ops: kernfs operations for the file
827 * @priv: private data for the file
828 * @ns: optional namespace tag of the file
829 * @static_name: don't copy file name
830 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
831 *
832 * Returns the created node on success, ERR_PTR() value on error.
833 */
834struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
835					 const char *name,
836					 umode_t mode, loff_t size,
837					 const struct kernfs_ops *ops,
838					 void *priv, const void *ns,
839					 bool name_is_static,
840					 struct lock_class_key *key)
841{
842	struct kernfs_node *kn;
843	unsigned flags;
844	int rc;
845
846	flags = KERNFS_FILE;
847	if (name_is_static)
848		flags |= KERNFS_STATIC_NAME;
849
850	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
851	if (!kn)
852		return ERR_PTR(-ENOMEM);
853
854	kn->attr.ops = ops;
855	kn->attr.size = size;
856	kn->ns = ns;
857	kn->priv = priv;
858
859#ifdef CONFIG_DEBUG_LOCK_ALLOC
860	if (key) {
861		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
862		kn->flags |= KERNFS_LOCKDEP;
863	}
864#endif
865
866	/*
867	 * kn->attr.ops is accesible only while holding active ref.  We
868	 * need to know whether some ops are implemented outside active
869	 * ref.  Cache their existence in flags.
870	 */
871	if (ops->seq_show)
872		kn->flags |= KERNFS_HAS_SEQ_SHOW;
873	if (ops->mmap)
874		kn->flags |= KERNFS_HAS_MMAP;
 
 
875
876	rc = kernfs_add_one(kn);
877	if (rc) {
878		kernfs_put(kn);
879		return ERR_PTR(rc);
880	}
881	return kn;
882}