Loading...
1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/errno.h>
24#include <linux/interrupt.h>
25#include <linux/platform_device.h>
26#include <linux/io.h>
27#include <linux/clk.h>
28#include <linux/dmaengine.h>
29#include <linux/dma-mapping.h>
30#include <linux/of_device.h>
31#include <linux/pm_runtime.h>
32#include <linux/sh_dma.h>
33#include <linux/spi/spi.h>
34#include <linux/spi/rspi.h>
35
36#define RSPI_SPCR 0x00 /* Control Register */
37#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38#define RSPI_SPPCR 0x02 /* Pin Control Register */
39#define RSPI_SPSR 0x03 /* Status Register */
40#define RSPI_SPDR 0x04 /* Data Register */
41#define RSPI_SPSCR 0x08 /* Sequence Control Register */
42#define RSPI_SPSSR 0x09 /* Sequence Status Register */
43#define RSPI_SPBR 0x0a /* Bit Rate Register */
44#define RSPI_SPDCR 0x0b /* Data Control Register */
45#define RSPI_SPCKD 0x0c /* Clock Delay Register */
46#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47#define RSPI_SPND 0x0e /* Next-Access Delay Register */
48#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49#define RSPI_SPCMD0 0x10 /* Command Register 0 */
50#define RSPI_SPCMD1 0x12 /* Command Register 1 */
51#define RSPI_SPCMD2 0x14 /* Command Register 2 */
52#define RSPI_SPCMD3 0x16 /* Command Register 3 */
53#define RSPI_SPCMD4 0x18 /* Command Register 4 */
54#define RSPI_SPCMD5 0x1a /* Command Register 5 */
55#define RSPI_SPCMD6 0x1c /* Command Register 6 */
56#define RSPI_SPCMD7 0x1e /* Command Register 7 */
57#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58#define RSPI_NUM_SPCMD 8
59#define RSPI_RZ_NUM_SPCMD 4
60#define QSPI_NUM_SPCMD 4
61
62/* RSPI on RZ only */
63#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
65
66/* QSPI only */
67#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
74
75/* SPCR - Control Register */
76#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77#define SPCR_SPE 0x40 /* Function Enable */
78#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
82/* RSPI on SH only */
83#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85/* QSPI on R-Car Gen2 only */
86#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
88
89/* SSLP - Slave Select Polarity Register */
90#define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91#define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
92
93/* SPPCR - Pin Control Register */
94#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96#define SPPCR_SPOM 0x04
97#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
99
100#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103/* SPSR - Status Register */
104#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105#define SPSR_TEND 0x40 /* Transmit End */
106#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107#define SPSR_PERF 0x08 /* Parity Error Flag */
108#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
111
112/* SPSCR - Sequence Control Register */
113#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
114
115/* SPSSR - Sequence Status Register */
116#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
118
119/* SPDCR - Data Control Register */
120#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124#define SPDCR_SPLWORD SPDCR_SPLW1
125#define SPDCR_SPLBYTE SPDCR_SPLW0
126#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128#define SPDCR_SLSEL1 0x08
129#define SPDCR_SLSEL0 0x04
130#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131#define SPDCR_SPFC1 0x02
132#define SPDCR_SPFC0 0x01
133#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
134
135/* SPCKD - Clock Delay Register */
136#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
137
138/* SSLND - Slave Select Negation Delay Register */
139#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
140
141/* SPND - Next-Access Delay Register */
142#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
143
144/* SPCR2 - Control Register 2 */
145#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148#define SPCR2_SPPE 0x01 /* Parity Enable */
149
150/* SPCMDn - Command Registers */
151#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154#define SPCMD_LSBF 0x1000 /* LSB First */
155#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158#define SPCMD_SPB_16BIT 0x0100
159#define SPCMD_SPB_20BIT 0x0000
160#define SPCMD_SPB_24BIT 0x0100
161#define SPCMD_SPB_32BIT 0x0200
162#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164#define SPCMD_SPIMOD1 0x0040
165#define SPCMD_SPIMOD0 0x0020
166#define SPCMD_SPIMOD_SINGLE 0
167#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170#define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
174
175/* SPBFCR - Buffer Control Register */
176#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
180/* QSPI on R-Car Gen2 */
181#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
182#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
183#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
184#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
185
186#define QSPI_BUFFER_SIZE 32u
187
188struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 unsigned dma_callbacked:1;
201 unsigned byte_access:1;
202};
203
204static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205{
206 iowrite8(data, rspi->addr + offset);
207}
208
209static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210{
211 iowrite16(data, rspi->addr + offset);
212}
213
214static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215{
216 iowrite32(data, rspi->addr + offset);
217}
218
219static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220{
221 return ioread8(rspi->addr + offset);
222}
223
224static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225{
226 return ioread16(rspi->addr + offset);
227}
228
229static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230{
231 if (rspi->byte_access)
232 rspi_write8(rspi, data, RSPI_SPDR);
233 else /* 16 bit */
234 rspi_write16(rspi, data, RSPI_SPDR);
235}
236
237static u16 rspi_read_data(const struct rspi_data *rspi)
238{
239 if (rspi->byte_access)
240 return rspi_read8(rspi, RSPI_SPDR);
241 else /* 16 bit */
242 return rspi_read16(rspi, RSPI_SPDR);
243}
244
245/* optional functions */
246struct spi_ops {
247 int (*set_config_register)(struct rspi_data *rspi, int access_size);
248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249 struct spi_transfer *xfer);
250 u16 mode_bits;
251 u16 flags;
252 u16 fifo_size;
253};
254
255/*
256 * functions for RSPI on legacy SH
257 */
258static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259{
260 int spbr;
261
262 /* Sets output mode, MOSI signal, and (optionally) loopback */
263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265 /* Sets transfer bit rate */
266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267 2 * rspi->max_speed_hz) - 1;
268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270 /* Disable dummy transmission, set 16-bit word access, 1 frame */
271 rspi_write8(rspi, 0, RSPI_SPDCR);
272 rspi->byte_access = 0;
273
274 /* Sets RSPCK, SSL, next-access delay value */
275 rspi_write8(rspi, 0x00, RSPI_SPCKD);
276 rspi_write8(rspi, 0x00, RSPI_SSLND);
277 rspi_write8(rspi, 0x00, RSPI_SPND);
278
279 /* Sets parity, interrupt mask */
280 rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282 /* Sets SPCMD */
283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286 /* Sets RSPI mode */
287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289 return 0;
290}
291
292/*
293 * functions for RSPI on RZ
294 */
295static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296{
297 int spbr;
298 int div = 0;
299 unsigned long clksrc;
300
301 /* Sets output mode, MOSI signal, and (optionally) loopback */
302 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303
304 clksrc = clk_get_rate(rspi->clk);
305 while (div < 3) {
306 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
307 break;
308 div++;
309 clksrc /= 2;
310 }
311
312 /* Sets transfer bit rate */
313 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
314 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
315 rspi->spcmd |= div << 2;
316
317 /* Disable dummy transmission, set byte access */
318 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
319 rspi->byte_access = 1;
320
321 /* Sets RSPCK, SSL, next-access delay value */
322 rspi_write8(rspi, 0x00, RSPI_SPCKD);
323 rspi_write8(rspi, 0x00, RSPI_SSLND);
324 rspi_write8(rspi, 0x00, RSPI_SPND);
325
326 /* Sets SPCMD */
327 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
328 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329
330 /* Sets RSPI mode */
331 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332
333 return 0;
334}
335
336/*
337 * functions for QSPI
338 */
339static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340{
341 int spbr;
342
343 /* Sets output mode, MOSI signal, and (optionally) loopback */
344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345
346 /* Sets transfer bit rate */
347 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
348 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
349
350 /* Disable dummy transmission, set byte access */
351 rspi_write8(rspi, 0, RSPI_SPDCR);
352 rspi->byte_access = 1;
353
354 /* Sets RSPCK, SSL, next-access delay value */
355 rspi_write8(rspi, 0x00, RSPI_SPCKD);
356 rspi_write8(rspi, 0x00, RSPI_SSLND);
357 rspi_write8(rspi, 0x00, RSPI_SPND);
358
359 /* Data Length Setting */
360 if (access_size == 8)
361 rspi->spcmd |= SPCMD_SPB_8BIT;
362 else if (access_size == 16)
363 rspi->spcmd |= SPCMD_SPB_16BIT;
364 else
365 rspi->spcmd |= SPCMD_SPB_32BIT;
366
367 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
368
369 /* Resets transfer data length */
370 rspi_write32(rspi, 0, QSPI_SPBMUL0);
371
372 /* Resets transmit and receive buffer */
373 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
374 /* Sets buffer to allow normal operation */
375 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
376
377 /* Sets SPCMD */
378 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
379
380 /* Sets RSPI mode */
381 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
382
383 return 0;
384}
385
386static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
387{
388 u8 data;
389
390 data = rspi_read8(rspi, reg);
391 data &= ~mask;
392 data |= (val & mask);
393 rspi_write8(rspi, data, reg);
394}
395
396static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
397 unsigned int len)
398{
399 unsigned int n;
400
401 n = min(len, QSPI_BUFFER_SIZE);
402
403 if (len >= QSPI_BUFFER_SIZE) {
404 /* sets triggering number to 32 bytes */
405 qspi_update(rspi, SPBFCR_TXTRG_MASK,
406 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
407 } else {
408 /* sets triggering number to 1 byte */
409 qspi_update(rspi, SPBFCR_TXTRG_MASK,
410 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
411 }
412
413 return n;
414}
415
416static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
417{
418 unsigned int n;
419
420 n = min(len, QSPI_BUFFER_SIZE);
421
422 if (len >= QSPI_BUFFER_SIZE) {
423 /* sets triggering number to 32 bytes */
424 qspi_update(rspi, SPBFCR_RXTRG_MASK,
425 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
426 } else {
427 /* sets triggering number to 1 byte */
428 qspi_update(rspi, SPBFCR_RXTRG_MASK,
429 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
430 }
431 return n;
432}
433
434#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
435
436static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
437{
438 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
439}
440
441static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
442{
443 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
444}
445
446static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
447 u8 enable_bit)
448{
449 int ret;
450
451 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
452 if (rspi->spsr & wait_mask)
453 return 0;
454
455 rspi_enable_irq(rspi, enable_bit);
456 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
457 if (ret == 0 && !(rspi->spsr & wait_mask))
458 return -ETIMEDOUT;
459
460 return 0;
461}
462
463static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
464{
465 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
466}
467
468static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
469{
470 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
471}
472
473static int rspi_data_out(struct rspi_data *rspi, u8 data)
474{
475 int error = rspi_wait_for_tx_empty(rspi);
476 if (error < 0) {
477 dev_err(&rspi->master->dev, "transmit timeout\n");
478 return error;
479 }
480 rspi_write_data(rspi, data);
481 return 0;
482}
483
484static int rspi_data_in(struct rspi_data *rspi)
485{
486 int error;
487 u8 data;
488
489 error = rspi_wait_for_rx_full(rspi);
490 if (error < 0) {
491 dev_err(&rspi->master->dev, "receive timeout\n");
492 return error;
493 }
494 data = rspi_read_data(rspi);
495 return data;
496}
497
498static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
499 unsigned int n)
500{
501 while (n-- > 0) {
502 if (tx) {
503 int ret = rspi_data_out(rspi, *tx++);
504 if (ret < 0)
505 return ret;
506 }
507 if (rx) {
508 int ret = rspi_data_in(rspi);
509 if (ret < 0)
510 return ret;
511 *rx++ = ret;
512 }
513 }
514
515 return 0;
516}
517
518static void rspi_dma_complete(void *arg)
519{
520 struct rspi_data *rspi = arg;
521
522 rspi->dma_callbacked = 1;
523 wake_up_interruptible(&rspi->wait);
524}
525
526static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
527 struct sg_table *rx)
528{
529 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
530 u8 irq_mask = 0;
531 unsigned int other_irq = 0;
532 dma_cookie_t cookie;
533 int ret;
534
535 /* First prepare and submit the DMA request(s), as this may fail */
536 if (rx) {
537 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
538 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
539 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
540 if (!desc_rx) {
541 ret = -EAGAIN;
542 goto no_dma_rx;
543 }
544
545 desc_rx->callback = rspi_dma_complete;
546 desc_rx->callback_param = rspi;
547 cookie = dmaengine_submit(desc_rx);
548 if (dma_submit_error(cookie)) {
549 ret = cookie;
550 goto no_dma_rx;
551 }
552
553 irq_mask |= SPCR_SPRIE;
554 }
555
556 if (tx) {
557 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
558 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
559 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
560 if (!desc_tx) {
561 ret = -EAGAIN;
562 goto no_dma_tx;
563 }
564
565 if (rx) {
566 /* No callback */
567 desc_tx->callback = NULL;
568 } else {
569 desc_tx->callback = rspi_dma_complete;
570 desc_tx->callback_param = rspi;
571 }
572 cookie = dmaengine_submit(desc_tx);
573 if (dma_submit_error(cookie)) {
574 ret = cookie;
575 goto no_dma_tx;
576 }
577
578 irq_mask |= SPCR_SPTIE;
579 }
580
581 /*
582 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
583 * called. So, this driver disables the IRQ while DMA transfer.
584 */
585 if (tx)
586 disable_irq(other_irq = rspi->tx_irq);
587 if (rx && rspi->rx_irq != other_irq)
588 disable_irq(rspi->rx_irq);
589
590 rspi_enable_irq(rspi, irq_mask);
591 rspi->dma_callbacked = 0;
592
593 /* Now start DMA */
594 if (rx)
595 dma_async_issue_pending(rspi->master->dma_rx);
596 if (tx)
597 dma_async_issue_pending(rspi->master->dma_tx);
598
599 ret = wait_event_interruptible_timeout(rspi->wait,
600 rspi->dma_callbacked, HZ);
601 if (ret > 0 && rspi->dma_callbacked)
602 ret = 0;
603 else if (!ret) {
604 dev_err(&rspi->master->dev, "DMA timeout\n");
605 ret = -ETIMEDOUT;
606 if (tx)
607 dmaengine_terminate_all(rspi->master->dma_tx);
608 if (rx)
609 dmaengine_terminate_all(rspi->master->dma_rx);
610 }
611
612 rspi_disable_irq(rspi, irq_mask);
613
614 if (tx)
615 enable_irq(rspi->tx_irq);
616 if (rx && rspi->rx_irq != other_irq)
617 enable_irq(rspi->rx_irq);
618
619 return ret;
620
621no_dma_tx:
622 if (rx)
623 dmaengine_terminate_all(rspi->master->dma_rx);
624no_dma_rx:
625 if (ret == -EAGAIN) {
626 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
627 dev_driver_string(&rspi->master->dev),
628 dev_name(&rspi->master->dev));
629 }
630 return ret;
631}
632
633static void rspi_receive_init(const struct rspi_data *rspi)
634{
635 u8 spsr;
636
637 spsr = rspi_read8(rspi, RSPI_SPSR);
638 if (spsr & SPSR_SPRF)
639 rspi_read_data(rspi); /* dummy read */
640 if (spsr & SPSR_OVRF)
641 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
642 RSPI_SPSR);
643}
644
645static void rspi_rz_receive_init(const struct rspi_data *rspi)
646{
647 rspi_receive_init(rspi);
648 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
649 rspi_write8(rspi, 0, RSPI_SPBFCR);
650}
651
652static void qspi_receive_init(const struct rspi_data *rspi)
653{
654 u8 spsr;
655
656 spsr = rspi_read8(rspi, RSPI_SPSR);
657 if (spsr & SPSR_SPRF)
658 rspi_read_data(rspi); /* dummy read */
659 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
660 rspi_write8(rspi, 0, QSPI_SPBFCR);
661}
662
663static bool __rspi_can_dma(const struct rspi_data *rspi,
664 const struct spi_transfer *xfer)
665{
666 return xfer->len > rspi->ops->fifo_size;
667}
668
669static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
670 struct spi_transfer *xfer)
671{
672 struct rspi_data *rspi = spi_master_get_devdata(master);
673
674 return __rspi_can_dma(rspi, xfer);
675}
676
677static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
678 struct spi_transfer *xfer)
679{
680 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
681 return -EAGAIN;
682
683 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
684 return rspi_dma_transfer(rspi, &xfer->tx_sg,
685 xfer->rx_buf ? &xfer->rx_sg : NULL);
686}
687
688static int rspi_common_transfer(struct rspi_data *rspi,
689 struct spi_transfer *xfer)
690{
691 int ret;
692
693 ret = rspi_dma_check_then_transfer(rspi, xfer);
694 if (ret != -EAGAIN)
695 return ret;
696
697 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
698 if (ret < 0)
699 return ret;
700
701 /* Wait for the last transmission */
702 rspi_wait_for_tx_empty(rspi);
703
704 return 0;
705}
706
707static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
708 struct spi_transfer *xfer)
709{
710 struct rspi_data *rspi = spi_master_get_devdata(master);
711 u8 spcr;
712
713 spcr = rspi_read8(rspi, RSPI_SPCR);
714 if (xfer->rx_buf) {
715 rspi_receive_init(rspi);
716 spcr &= ~SPCR_TXMD;
717 } else {
718 spcr |= SPCR_TXMD;
719 }
720 rspi_write8(rspi, spcr, RSPI_SPCR);
721
722 return rspi_common_transfer(rspi, xfer);
723}
724
725static int rspi_rz_transfer_one(struct spi_master *master,
726 struct spi_device *spi,
727 struct spi_transfer *xfer)
728{
729 struct rspi_data *rspi = spi_master_get_devdata(master);
730
731 rspi_rz_receive_init(rspi);
732
733 return rspi_common_transfer(rspi, xfer);
734}
735
736static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
737 u8 *rx, unsigned int len)
738{
739 unsigned int i, n;
740 int ret;
741
742 while (len > 0) {
743 n = qspi_set_send_trigger(rspi, len);
744 qspi_set_receive_trigger(rspi, len);
745 if (n == QSPI_BUFFER_SIZE) {
746 ret = rspi_wait_for_tx_empty(rspi);
747 if (ret < 0) {
748 dev_err(&rspi->master->dev, "transmit timeout\n");
749 return ret;
750 }
751 for (i = 0; i < n; i++)
752 rspi_write_data(rspi, *tx++);
753
754 ret = rspi_wait_for_rx_full(rspi);
755 if (ret < 0) {
756 dev_err(&rspi->master->dev, "receive timeout\n");
757 return ret;
758 }
759 for (i = 0; i < n; i++)
760 *rx++ = rspi_read_data(rspi);
761 } else {
762 ret = rspi_pio_transfer(rspi, tx, rx, n);
763 if (ret < 0)
764 return ret;
765 }
766 len -= n;
767 }
768
769 return 0;
770}
771
772static int qspi_transfer_out_in(struct rspi_data *rspi,
773 struct spi_transfer *xfer)
774{
775 int ret;
776
777 qspi_receive_init(rspi);
778
779 ret = rspi_dma_check_then_transfer(rspi, xfer);
780 if (ret != -EAGAIN)
781 return ret;
782
783 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
784 xfer->rx_buf, xfer->len);
785}
786
787static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
788{
789 const u8 *tx = xfer->tx_buf;
790 unsigned int n = xfer->len;
791 unsigned int i, len;
792 int ret;
793
794 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
795 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
796 if (ret != -EAGAIN)
797 return ret;
798 }
799
800 while (n > 0) {
801 len = qspi_set_send_trigger(rspi, n);
802 if (len == QSPI_BUFFER_SIZE) {
803 ret = rspi_wait_for_tx_empty(rspi);
804 if (ret < 0) {
805 dev_err(&rspi->master->dev, "transmit timeout\n");
806 return ret;
807 }
808 for (i = 0; i < len; i++)
809 rspi_write_data(rspi, *tx++);
810 } else {
811 ret = rspi_pio_transfer(rspi, tx, NULL, len);
812 if (ret < 0)
813 return ret;
814 }
815 n -= len;
816 }
817
818 /* Wait for the last transmission */
819 rspi_wait_for_tx_empty(rspi);
820
821 return 0;
822}
823
824static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
825{
826 u8 *rx = xfer->rx_buf;
827 unsigned int n = xfer->len;
828 unsigned int i, len;
829 int ret;
830
831 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
832 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
833 if (ret != -EAGAIN)
834 return ret;
835 }
836
837 while (n > 0) {
838 len = qspi_set_receive_trigger(rspi, n);
839 if (len == QSPI_BUFFER_SIZE) {
840 ret = rspi_wait_for_rx_full(rspi);
841 if (ret < 0) {
842 dev_err(&rspi->master->dev, "receive timeout\n");
843 return ret;
844 }
845 for (i = 0; i < len; i++)
846 *rx++ = rspi_read_data(rspi);
847 } else {
848 ret = rspi_pio_transfer(rspi, NULL, rx, len);
849 if (ret < 0)
850 return ret;
851 }
852 n -= len;
853 }
854
855 return 0;
856}
857
858static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
859 struct spi_transfer *xfer)
860{
861 struct rspi_data *rspi = spi_master_get_devdata(master);
862
863 if (spi->mode & SPI_LOOP) {
864 return qspi_transfer_out_in(rspi, xfer);
865 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
866 /* Quad or Dual SPI Write */
867 return qspi_transfer_out(rspi, xfer);
868 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
869 /* Quad or Dual SPI Read */
870 return qspi_transfer_in(rspi, xfer);
871 } else {
872 /* Single SPI Transfer */
873 return qspi_transfer_out_in(rspi, xfer);
874 }
875}
876
877static int rspi_setup(struct spi_device *spi)
878{
879 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
880
881 rspi->max_speed_hz = spi->max_speed_hz;
882
883 rspi->spcmd = SPCMD_SSLKP;
884 if (spi->mode & SPI_CPOL)
885 rspi->spcmd |= SPCMD_CPOL;
886 if (spi->mode & SPI_CPHA)
887 rspi->spcmd |= SPCMD_CPHA;
888
889 /* CMOS output mode and MOSI signal from previous transfer */
890 rspi->sppcr = 0;
891 if (spi->mode & SPI_LOOP)
892 rspi->sppcr |= SPPCR_SPLP;
893
894 set_config_register(rspi, 8);
895
896 return 0;
897}
898
899static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
900{
901 if (xfer->tx_buf)
902 switch (xfer->tx_nbits) {
903 case SPI_NBITS_QUAD:
904 return SPCMD_SPIMOD_QUAD;
905 case SPI_NBITS_DUAL:
906 return SPCMD_SPIMOD_DUAL;
907 default:
908 return 0;
909 }
910 if (xfer->rx_buf)
911 switch (xfer->rx_nbits) {
912 case SPI_NBITS_QUAD:
913 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
914 case SPI_NBITS_DUAL:
915 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
916 default:
917 return 0;
918 }
919
920 return 0;
921}
922
923static int qspi_setup_sequencer(struct rspi_data *rspi,
924 const struct spi_message *msg)
925{
926 const struct spi_transfer *xfer;
927 unsigned int i = 0, len = 0;
928 u16 current_mode = 0xffff, mode;
929
930 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 mode = qspi_transfer_mode(xfer);
932 if (mode == current_mode) {
933 len += xfer->len;
934 continue;
935 }
936
937 /* Transfer mode change */
938 if (i) {
939 /* Set transfer data length of previous transfer */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941 }
942
943 if (i >= QSPI_NUM_SPCMD) {
944 dev_err(&msg->spi->dev,
945 "Too many different transfer modes");
946 return -EINVAL;
947 }
948
949 /* Program transfer mode for this transfer */
950 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
951 current_mode = mode;
952 len = xfer->len;
953 i++;
954 }
955 if (i) {
956 /* Set final transfer data length and sequence length */
957 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
958 rspi_write8(rspi, i - 1, RSPI_SPSCR);
959 }
960
961 return 0;
962}
963
964static int rspi_prepare_message(struct spi_master *master,
965 struct spi_message *msg)
966{
967 struct rspi_data *rspi = spi_master_get_devdata(master);
968 int ret;
969
970 if (msg->spi->mode &
971 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
972 /* Setup sequencer for messages with multiple transfer modes */
973 ret = qspi_setup_sequencer(rspi, msg);
974 if (ret < 0)
975 return ret;
976 }
977
978 /* Enable SPI function in master mode */
979 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
980 return 0;
981}
982
983static int rspi_unprepare_message(struct spi_master *master,
984 struct spi_message *msg)
985{
986 struct rspi_data *rspi = spi_master_get_devdata(master);
987
988 /* Disable SPI function */
989 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
990
991 /* Reset sequencer for Single SPI Transfers */
992 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
993 rspi_write8(rspi, 0, RSPI_SPSCR);
994 return 0;
995}
996
997static irqreturn_t rspi_irq_mux(int irq, void *_sr)
998{
999 struct rspi_data *rspi = _sr;
1000 u8 spsr;
1001 irqreturn_t ret = IRQ_NONE;
1002 u8 disable_irq = 0;
1003
1004 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1005 if (spsr & SPSR_SPRF)
1006 disable_irq |= SPCR_SPRIE;
1007 if (spsr & SPSR_SPTEF)
1008 disable_irq |= SPCR_SPTIE;
1009
1010 if (disable_irq) {
1011 ret = IRQ_HANDLED;
1012 rspi_disable_irq(rspi, disable_irq);
1013 wake_up(&rspi->wait);
1014 }
1015
1016 return ret;
1017}
1018
1019static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1020{
1021 struct rspi_data *rspi = _sr;
1022 u8 spsr;
1023
1024 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1025 if (spsr & SPSR_SPRF) {
1026 rspi_disable_irq(rspi, SPCR_SPRIE);
1027 wake_up(&rspi->wait);
1028 return IRQ_HANDLED;
1029 }
1030
1031 return 0;
1032}
1033
1034static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1035{
1036 struct rspi_data *rspi = _sr;
1037 u8 spsr;
1038
1039 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1040 if (spsr & SPSR_SPTEF) {
1041 rspi_disable_irq(rspi, SPCR_SPTIE);
1042 wake_up(&rspi->wait);
1043 return IRQ_HANDLED;
1044 }
1045
1046 return 0;
1047}
1048
1049static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1050 enum dma_transfer_direction dir,
1051 unsigned int id,
1052 dma_addr_t port_addr)
1053{
1054 dma_cap_mask_t mask;
1055 struct dma_chan *chan;
1056 struct dma_slave_config cfg;
1057 int ret;
1058
1059 dma_cap_zero(mask);
1060 dma_cap_set(DMA_SLAVE, mask);
1061
1062 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1063 (void *)(unsigned long)id, dev,
1064 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1065 if (!chan) {
1066 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1067 return NULL;
1068 }
1069
1070 memset(&cfg, 0, sizeof(cfg));
1071 cfg.direction = dir;
1072 if (dir == DMA_MEM_TO_DEV) {
1073 cfg.dst_addr = port_addr;
1074 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1075 } else {
1076 cfg.src_addr = port_addr;
1077 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1078 }
1079
1080 ret = dmaengine_slave_config(chan, &cfg);
1081 if (ret) {
1082 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1083 dma_release_channel(chan);
1084 return NULL;
1085 }
1086
1087 return chan;
1088}
1089
1090static int rspi_request_dma(struct device *dev, struct spi_master *master,
1091 const struct resource *res)
1092{
1093 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1094 unsigned int dma_tx_id, dma_rx_id;
1095
1096 if (dev->of_node) {
1097 /* In the OF case we will get the slave IDs from the DT */
1098 dma_tx_id = 0;
1099 dma_rx_id = 0;
1100 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1101 dma_tx_id = rspi_pd->dma_tx_id;
1102 dma_rx_id = rspi_pd->dma_rx_id;
1103 } else {
1104 /* The driver assumes no error. */
1105 return 0;
1106 }
1107
1108 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1109 res->start + RSPI_SPDR);
1110 if (!master->dma_tx)
1111 return -ENODEV;
1112
1113 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1114 res->start + RSPI_SPDR);
1115 if (!master->dma_rx) {
1116 dma_release_channel(master->dma_tx);
1117 master->dma_tx = NULL;
1118 return -ENODEV;
1119 }
1120
1121 master->can_dma = rspi_can_dma;
1122 dev_info(dev, "DMA available");
1123 return 0;
1124}
1125
1126static void rspi_release_dma(struct spi_master *master)
1127{
1128 if (master->dma_tx)
1129 dma_release_channel(master->dma_tx);
1130 if (master->dma_rx)
1131 dma_release_channel(master->dma_rx);
1132}
1133
1134static int rspi_remove(struct platform_device *pdev)
1135{
1136 struct rspi_data *rspi = platform_get_drvdata(pdev);
1137
1138 rspi_release_dma(rspi->master);
1139 pm_runtime_disable(&pdev->dev);
1140
1141 return 0;
1142}
1143
1144static const struct spi_ops rspi_ops = {
1145 .set_config_register = rspi_set_config_register,
1146 .transfer_one = rspi_transfer_one,
1147 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1148 .flags = SPI_MASTER_MUST_TX,
1149 .fifo_size = 8,
1150};
1151
1152static const struct spi_ops rspi_rz_ops = {
1153 .set_config_register = rspi_rz_set_config_register,
1154 .transfer_one = rspi_rz_transfer_one,
1155 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1156 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1157 .fifo_size = 8, /* 8 for TX, 32 for RX */
1158};
1159
1160static const struct spi_ops qspi_ops = {
1161 .set_config_register = qspi_set_config_register,
1162 .transfer_one = qspi_transfer_one,
1163 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1164 SPI_TX_DUAL | SPI_TX_QUAD |
1165 SPI_RX_DUAL | SPI_RX_QUAD,
1166 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1167 .fifo_size = 32,
1168};
1169
1170#ifdef CONFIG_OF
1171static const struct of_device_id rspi_of_match[] = {
1172 /* RSPI on legacy SH */
1173 { .compatible = "renesas,rspi", .data = &rspi_ops },
1174 /* RSPI on RZ/A1H */
1175 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1176 /* QSPI on R-Car Gen2 */
1177 { .compatible = "renesas,qspi", .data = &qspi_ops },
1178 { /* sentinel */ }
1179};
1180
1181MODULE_DEVICE_TABLE(of, rspi_of_match);
1182
1183static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1184{
1185 u32 num_cs;
1186 int error;
1187
1188 /* Parse DT properties */
1189 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1190 if (error) {
1191 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1192 return error;
1193 }
1194
1195 master->num_chipselect = num_cs;
1196 return 0;
1197}
1198#else
1199#define rspi_of_match NULL
1200static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1201{
1202 return -EINVAL;
1203}
1204#endif /* CONFIG_OF */
1205
1206static int rspi_request_irq(struct device *dev, unsigned int irq,
1207 irq_handler_t handler, const char *suffix,
1208 void *dev_id)
1209{
1210 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1211 dev_name(dev), suffix);
1212 if (!name)
1213 return -ENOMEM;
1214
1215 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1216}
1217
1218static int rspi_probe(struct platform_device *pdev)
1219{
1220 struct resource *res;
1221 struct spi_master *master;
1222 struct rspi_data *rspi;
1223 int ret;
1224 const struct rspi_plat_data *rspi_pd;
1225 const struct spi_ops *ops;
1226
1227 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1228 if (master == NULL)
1229 return -ENOMEM;
1230
1231 ops = of_device_get_match_data(&pdev->dev);
1232 if (ops) {
1233 ret = rspi_parse_dt(&pdev->dev, master);
1234 if (ret)
1235 goto error1;
1236 } else {
1237 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1238 rspi_pd = dev_get_platdata(&pdev->dev);
1239 if (rspi_pd && rspi_pd->num_chipselect)
1240 master->num_chipselect = rspi_pd->num_chipselect;
1241 else
1242 master->num_chipselect = 2; /* default */
1243 }
1244
1245 /* ops parameter check */
1246 if (!ops->set_config_register) {
1247 dev_err(&pdev->dev, "there is no set_config_register\n");
1248 ret = -ENODEV;
1249 goto error1;
1250 }
1251
1252 rspi = spi_master_get_devdata(master);
1253 platform_set_drvdata(pdev, rspi);
1254 rspi->ops = ops;
1255 rspi->master = master;
1256
1257 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1258 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1259 if (IS_ERR(rspi->addr)) {
1260 ret = PTR_ERR(rspi->addr);
1261 goto error1;
1262 }
1263
1264 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1265 if (IS_ERR(rspi->clk)) {
1266 dev_err(&pdev->dev, "cannot get clock\n");
1267 ret = PTR_ERR(rspi->clk);
1268 goto error1;
1269 }
1270
1271 pm_runtime_enable(&pdev->dev);
1272
1273 init_waitqueue_head(&rspi->wait);
1274
1275 master->bus_num = pdev->id;
1276 master->setup = rspi_setup;
1277 master->auto_runtime_pm = true;
1278 master->transfer_one = ops->transfer_one;
1279 master->prepare_message = rspi_prepare_message;
1280 master->unprepare_message = rspi_unprepare_message;
1281 master->mode_bits = ops->mode_bits;
1282 master->flags = ops->flags;
1283 master->dev.of_node = pdev->dev.of_node;
1284
1285 ret = platform_get_irq_byname(pdev, "rx");
1286 if (ret < 0) {
1287 ret = platform_get_irq_byname(pdev, "mux");
1288 if (ret < 0)
1289 ret = platform_get_irq(pdev, 0);
1290 if (ret >= 0)
1291 rspi->rx_irq = rspi->tx_irq = ret;
1292 } else {
1293 rspi->rx_irq = ret;
1294 ret = platform_get_irq_byname(pdev, "tx");
1295 if (ret >= 0)
1296 rspi->tx_irq = ret;
1297 }
1298 if (ret < 0) {
1299 dev_err(&pdev->dev, "platform_get_irq error\n");
1300 goto error2;
1301 }
1302
1303 if (rspi->rx_irq == rspi->tx_irq) {
1304 /* Single multiplexed interrupt */
1305 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1306 "mux", rspi);
1307 } else {
1308 /* Multi-interrupt mode, only SPRI and SPTI are used */
1309 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1310 "rx", rspi);
1311 if (!ret)
1312 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1313 rspi_irq_tx, "tx", rspi);
1314 }
1315 if (ret < 0) {
1316 dev_err(&pdev->dev, "request_irq error\n");
1317 goto error2;
1318 }
1319
1320 ret = rspi_request_dma(&pdev->dev, master, res);
1321 if (ret < 0)
1322 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1323
1324 ret = devm_spi_register_master(&pdev->dev, master);
1325 if (ret < 0) {
1326 dev_err(&pdev->dev, "spi_register_master error.\n");
1327 goto error3;
1328 }
1329
1330 dev_info(&pdev->dev, "probed\n");
1331
1332 return 0;
1333
1334error3:
1335 rspi_release_dma(master);
1336error2:
1337 pm_runtime_disable(&pdev->dev);
1338error1:
1339 spi_master_put(master);
1340
1341 return ret;
1342}
1343
1344static const struct platform_device_id spi_driver_ids[] = {
1345 { "rspi", (kernel_ulong_t)&rspi_ops },
1346 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1347 { "qspi", (kernel_ulong_t)&qspi_ops },
1348 {},
1349};
1350
1351MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1352
1353static struct platform_driver rspi_driver = {
1354 .probe = rspi_probe,
1355 .remove = rspi_remove,
1356 .id_table = spi_driver_ids,
1357 .driver = {
1358 .name = "renesas_spi",
1359 .of_match_table = of_match_ptr(rspi_of_match),
1360 },
1361};
1362module_platform_driver(rspi_driver);
1363
1364MODULE_DESCRIPTION("Renesas RSPI bus driver");
1365MODULE_LICENSE("GPL v2");
1366MODULE_AUTHOR("Yoshihiro Shimoda");
1367MODULE_ALIAS("platform:rspi");
1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/sched.h>
28#include <linux/errno.h>
29#include <linux/interrupt.h>
30#include <linux/platform_device.h>
31#include <linux/io.h>
32#include <linux/clk.h>
33#include <linux/dmaengine.h>
34#include <linux/dma-mapping.h>
35#include <linux/of_device.h>
36#include <linux/pm_runtime.h>
37#include <linux/sh_dma.h>
38#include <linux/spi/spi.h>
39#include <linux/spi/rspi.h>
40
41#define RSPI_SPCR 0x00 /* Control Register */
42#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
43#define RSPI_SPPCR 0x02 /* Pin Control Register */
44#define RSPI_SPSR 0x03 /* Status Register */
45#define RSPI_SPDR 0x04 /* Data Register */
46#define RSPI_SPSCR 0x08 /* Sequence Control Register */
47#define RSPI_SPSSR 0x09 /* Sequence Status Register */
48#define RSPI_SPBR 0x0a /* Bit Rate Register */
49#define RSPI_SPDCR 0x0b /* Data Control Register */
50#define RSPI_SPCKD 0x0c /* Clock Delay Register */
51#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
52#define RSPI_SPND 0x0e /* Next-Access Delay Register */
53#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
54#define RSPI_SPCMD0 0x10 /* Command Register 0 */
55#define RSPI_SPCMD1 0x12 /* Command Register 1 */
56#define RSPI_SPCMD2 0x14 /* Command Register 2 */
57#define RSPI_SPCMD3 0x16 /* Command Register 3 */
58#define RSPI_SPCMD4 0x18 /* Command Register 4 */
59#define RSPI_SPCMD5 0x1a /* Command Register 5 */
60#define RSPI_SPCMD6 0x1c /* Command Register 6 */
61#define RSPI_SPCMD7 0x1e /* Command Register 7 */
62#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
63#define RSPI_NUM_SPCMD 8
64#define RSPI_RZ_NUM_SPCMD 4
65#define QSPI_NUM_SPCMD 4
66
67/* RSPI on RZ only */
68#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
69#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
70
71/* QSPI only */
72#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
73#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
74#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
75#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
76#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
77#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
78#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
79
80/* SPCR - Control Register */
81#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
82#define SPCR_SPE 0x40 /* Function Enable */
83#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
84#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
85#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
86#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
87/* RSPI on SH only */
88#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
89#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
90/* QSPI on R-Car M2 only */
91#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
92#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
93
94/* SSLP - Slave Select Polarity Register */
95#define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
96#define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
97
98/* SPPCR - Pin Control Register */
99#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
100#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
101#define SPPCR_SPOM 0x04
102#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
103#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
104
105#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
107
108/* SPSR - Status Register */
109#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
110#define SPSR_TEND 0x40 /* Transmit End */
111#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
112#define SPSR_PERF 0x08 /* Parity Error Flag */
113#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
114#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
115#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
116
117/* SPSCR - Sequence Control Register */
118#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
119
120/* SPSSR - Sequence Status Register */
121#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
122#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
123
124/* SPDCR - Data Control Register */
125#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
126#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
127#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
128#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
129#define SPDCR_SPLWORD SPDCR_SPLW1
130#define SPDCR_SPLBYTE SPDCR_SPLW0
131#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
132#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
133#define SPDCR_SLSEL1 0x08
134#define SPDCR_SLSEL0 0x04
135#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
136#define SPDCR_SPFC1 0x02
137#define SPDCR_SPFC0 0x01
138#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
139
140/* SPCKD - Clock Delay Register */
141#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
142
143/* SSLND - Slave Select Negation Delay Register */
144#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
145
146/* SPND - Next-Access Delay Register */
147#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
148
149/* SPCR2 - Control Register 2 */
150#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
151#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
152#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
153#define SPCR2_SPPE 0x01 /* Parity Enable */
154
155/* SPCMDn - Command Registers */
156#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
157#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
158#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
159#define SPCMD_LSBF 0x1000 /* LSB First */
160#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
161#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
162#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
163#define SPCMD_SPB_16BIT 0x0100
164#define SPCMD_SPB_20BIT 0x0000
165#define SPCMD_SPB_24BIT 0x0100
166#define SPCMD_SPB_32BIT 0x0200
167#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
168#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
169#define SPCMD_SPIMOD1 0x0040
170#define SPCMD_SPIMOD0 0x0020
171#define SPCMD_SPIMOD_SINGLE 0
172#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
173#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
174#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
175#define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
176#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
177#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
178#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
179
180/* SPBFCR - Buffer Control Register */
181#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
182#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
183#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
184#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
185
186#define DUMMY_DATA 0x00
187
188struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 /* for dmaengine */
201 struct dma_chan *chan_tx;
202 struct dma_chan *chan_rx;
203
204 unsigned dma_width_16bit:1;
205 unsigned dma_callbacked:1;
206 unsigned byte_access:1;
207};
208
209static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
210{
211 iowrite8(data, rspi->addr + offset);
212}
213
214static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
215{
216 iowrite16(data, rspi->addr + offset);
217}
218
219static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
220{
221 iowrite32(data, rspi->addr + offset);
222}
223
224static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
225{
226 return ioread8(rspi->addr + offset);
227}
228
229static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
230{
231 return ioread16(rspi->addr + offset);
232}
233
234static void rspi_write_data(const struct rspi_data *rspi, u16 data)
235{
236 if (rspi->byte_access)
237 rspi_write8(rspi, data, RSPI_SPDR);
238 else /* 16 bit */
239 rspi_write16(rspi, data, RSPI_SPDR);
240}
241
242static u16 rspi_read_data(const struct rspi_data *rspi)
243{
244 if (rspi->byte_access)
245 return rspi_read8(rspi, RSPI_SPDR);
246 else /* 16 bit */
247 return rspi_read16(rspi, RSPI_SPDR);
248}
249
250/* optional functions */
251struct spi_ops {
252 int (*set_config_register)(struct rspi_data *rspi, int access_size);
253 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
254 struct spi_transfer *xfer);
255 u16 mode_bits;
256};
257
258/*
259 * functions for RSPI on legacy SH
260 */
261static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
262{
263 int spbr;
264
265 /* Sets output mode, MOSI signal, and (optionally) loopback */
266 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
267
268 /* Sets transfer bit rate */
269 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
270 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
271
272 /* Disable dummy transmission, set 16-bit word access, 1 frame */
273 rspi_write8(rspi, 0, RSPI_SPDCR);
274 rspi->byte_access = 0;
275
276 /* Sets RSPCK, SSL, next-access delay value */
277 rspi_write8(rspi, 0x00, RSPI_SPCKD);
278 rspi_write8(rspi, 0x00, RSPI_SSLND);
279 rspi_write8(rspi, 0x00, RSPI_SPND);
280
281 /* Sets parity, interrupt mask */
282 rspi_write8(rspi, 0x00, RSPI_SPCR2);
283
284 /* Sets SPCMD */
285 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
286 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
287
288 /* Sets RSPI mode */
289 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
290
291 return 0;
292}
293
294/*
295 * functions for RSPI on RZ
296 */
297static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
298{
299 int spbr;
300
301 /* Sets output mode, MOSI signal, and (optionally) loopback */
302 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303
304 /* Sets transfer bit rate */
305 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
306 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
307
308 /* Disable dummy transmission, set byte access */
309 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
310 rspi->byte_access = 1;
311
312 /* Sets RSPCK, SSL, next-access delay value */
313 rspi_write8(rspi, 0x00, RSPI_SPCKD);
314 rspi_write8(rspi, 0x00, RSPI_SSLND);
315 rspi_write8(rspi, 0x00, RSPI_SPND);
316
317 /* Sets SPCMD */
318 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
319 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
320
321 /* Sets RSPI mode */
322 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
323
324 return 0;
325}
326
327/*
328 * functions for QSPI
329 */
330static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
331{
332 int spbr;
333
334 /* Sets output mode, MOSI signal, and (optionally) loopback */
335 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
336
337 /* Sets transfer bit rate */
338 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
339 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
340
341 /* Disable dummy transmission, set byte access */
342 rspi_write8(rspi, 0, RSPI_SPDCR);
343 rspi->byte_access = 1;
344
345 /* Sets RSPCK, SSL, next-access delay value */
346 rspi_write8(rspi, 0x00, RSPI_SPCKD);
347 rspi_write8(rspi, 0x00, RSPI_SSLND);
348 rspi_write8(rspi, 0x00, RSPI_SPND);
349
350 /* Data Length Setting */
351 if (access_size == 8)
352 rspi->spcmd |= SPCMD_SPB_8BIT;
353 else if (access_size == 16)
354 rspi->spcmd |= SPCMD_SPB_16BIT;
355 else
356 rspi->spcmd |= SPCMD_SPB_32BIT;
357
358 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
359
360 /* Resets transfer data length */
361 rspi_write32(rspi, 0, QSPI_SPBMUL0);
362
363 /* Resets transmit and receive buffer */
364 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
365 /* Sets buffer to allow normal operation */
366 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
367
368 /* Sets SPCMD */
369 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
370
371 /* Enables SPI function in master mode */
372 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
373
374 return 0;
375}
376
377#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
378
379static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
380{
381 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
382}
383
384static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
385{
386 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
387}
388
389static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
390 u8 enable_bit)
391{
392 int ret;
393
394 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
395 if (rspi->spsr & wait_mask)
396 return 0;
397
398 rspi_enable_irq(rspi, enable_bit);
399 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
400 if (ret == 0 && !(rspi->spsr & wait_mask))
401 return -ETIMEDOUT;
402
403 return 0;
404}
405
406static int rspi_data_out(struct rspi_data *rspi, u8 data)
407{
408 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
409 dev_err(&rspi->master->dev, "transmit timeout\n");
410 return -ETIMEDOUT;
411 }
412 rspi_write_data(rspi, data);
413 return 0;
414}
415
416static int rspi_data_in(struct rspi_data *rspi)
417{
418 u8 data;
419
420 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
421 dev_err(&rspi->master->dev, "receive timeout\n");
422 return -ETIMEDOUT;
423 }
424 data = rspi_read_data(rspi);
425 return data;
426}
427
428static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
429{
430 int ret;
431
432 ret = rspi_data_out(rspi, data);
433 if (ret < 0)
434 return ret;
435
436 return rspi_data_in(rspi);
437}
438
439static void rspi_dma_complete(void *arg)
440{
441 struct rspi_data *rspi = arg;
442
443 rspi->dma_callbacked = 1;
444 wake_up_interruptible(&rspi->wait);
445}
446
447static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
448 unsigned len, struct dma_chan *chan,
449 enum dma_transfer_direction dir)
450{
451 sg_init_table(sg, 1);
452 sg_set_buf(sg, buf, len);
453 sg_dma_len(sg) = len;
454 return dma_map_sg(chan->device->dev, sg, 1, dir);
455}
456
457static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
458 enum dma_transfer_direction dir)
459{
460 dma_unmap_sg(chan->device->dev, sg, 1, dir);
461}
462
463static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
464{
465 u16 *dst = buf;
466 const u8 *src = data;
467
468 while (len) {
469 *dst++ = (u16)(*src++);
470 len--;
471 }
472}
473
474static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
475{
476 u8 *dst = buf;
477 const u16 *src = data;
478
479 while (len) {
480 *dst++ = (u8)*src++;
481 len--;
482 }
483}
484
485static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
486{
487 struct scatterlist sg;
488 const void *buf = NULL;
489 struct dma_async_tx_descriptor *desc;
490 unsigned int len;
491 int ret = 0;
492
493 if (rspi->dma_width_16bit) {
494 void *tmp;
495 /*
496 * If DMAC bus width is 16-bit, the driver allocates a dummy
497 * buffer. And, the driver converts original data into the
498 * DMAC data as the following format:
499 * original data: 1st byte, 2nd byte ...
500 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
501 */
502 len = t->len * 2;
503 tmp = kmalloc(len, GFP_KERNEL);
504 if (!tmp)
505 return -ENOMEM;
506 rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
507 buf = tmp;
508 } else {
509 len = t->len;
510 buf = t->tx_buf;
511 }
512
513 if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
514 ret = -EFAULT;
515 goto end_nomap;
516 }
517 desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
518 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
519 if (!desc) {
520 ret = -EIO;
521 goto end;
522 }
523
524 /*
525 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
526 * called. So, this driver disables the IRQ while DMA transfer.
527 */
528 disable_irq(rspi->tx_irq);
529
530 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
531 rspi_enable_irq(rspi, SPCR_SPTIE);
532 rspi->dma_callbacked = 0;
533
534 desc->callback = rspi_dma_complete;
535 desc->callback_param = rspi;
536 dmaengine_submit(desc);
537 dma_async_issue_pending(rspi->chan_tx);
538
539 ret = wait_event_interruptible_timeout(rspi->wait,
540 rspi->dma_callbacked, HZ);
541 if (ret > 0 && rspi->dma_callbacked)
542 ret = 0;
543 else if (!ret)
544 ret = -ETIMEDOUT;
545 rspi_disable_irq(rspi, SPCR_SPTIE);
546
547 enable_irq(rspi->tx_irq);
548
549end:
550 rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
551end_nomap:
552 if (rspi->dma_width_16bit)
553 kfree(buf);
554
555 return ret;
556}
557
558static void rspi_receive_init(const struct rspi_data *rspi)
559{
560 u8 spsr;
561
562 spsr = rspi_read8(rspi, RSPI_SPSR);
563 if (spsr & SPSR_SPRF)
564 rspi_read_data(rspi); /* dummy read */
565 if (spsr & SPSR_OVRF)
566 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
567 RSPI_SPSR);
568}
569
570static void rspi_rz_receive_init(const struct rspi_data *rspi)
571{
572 rspi_receive_init(rspi);
573 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
574 rspi_write8(rspi, 0, RSPI_SPBFCR);
575}
576
577static void qspi_receive_init(const struct rspi_data *rspi)
578{
579 u8 spsr;
580
581 spsr = rspi_read8(rspi, RSPI_SPSR);
582 if (spsr & SPSR_SPRF)
583 rspi_read_data(rspi); /* dummy read */
584 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
585 rspi_write8(rspi, 0, QSPI_SPBFCR);
586}
587
588static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
589{
590 struct scatterlist sg, sg_dummy;
591 void *dummy = NULL, *rx_buf = NULL;
592 struct dma_async_tx_descriptor *desc, *desc_dummy;
593 unsigned int len;
594 int ret = 0;
595
596 if (rspi->dma_width_16bit) {
597 /*
598 * If DMAC bus width is 16-bit, the driver allocates a dummy
599 * buffer. And, finally the driver converts the DMAC data into
600 * actual data as the following format:
601 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
602 * actual data: 1st byte, 2nd byte ...
603 */
604 len = t->len * 2;
605 rx_buf = kmalloc(len, GFP_KERNEL);
606 if (!rx_buf)
607 return -ENOMEM;
608 } else {
609 len = t->len;
610 rx_buf = t->rx_buf;
611 }
612
613 /* prepare dummy transfer to generate SPI clocks */
614 dummy = kzalloc(len, GFP_KERNEL);
615 if (!dummy) {
616 ret = -ENOMEM;
617 goto end_nomap;
618 }
619 if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
620 DMA_TO_DEVICE)) {
621 ret = -EFAULT;
622 goto end_nomap;
623 }
624 desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
625 DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
626 if (!desc_dummy) {
627 ret = -EIO;
628 goto end_dummy_mapped;
629 }
630
631 /* prepare receive transfer */
632 if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
633 DMA_FROM_DEVICE)) {
634 ret = -EFAULT;
635 goto end_dummy_mapped;
636
637 }
638 desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
639 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
640 if (!desc) {
641 ret = -EIO;
642 goto end;
643 }
644
645 rspi_receive_init(rspi);
646
647 /*
648 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
649 * called. So, this driver disables the IRQ while DMA transfer.
650 */
651 disable_irq(rspi->tx_irq);
652 if (rspi->rx_irq != rspi->tx_irq)
653 disable_irq(rspi->rx_irq);
654
655 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
656 rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
657 rspi->dma_callbacked = 0;
658
659 desc->callback = rspi_dma_complete;
660 desc->callback_param = rspi;
661 dmaengine_submit(desc);
662 dma_async_issue_pending(rspi->chan_rx);
663
664 desc_dummy->callback = NULL; /* No callback */
665 dmaengine_submit(desc_dummy);
666 dma_async_issue_pending(rspi->chan_tx);
667
668 ret = wait_event_interruptible_timeout(rspi->wait,
669 rspi->dma_callbacked, HZ);
670 if (ret > 0 && rspi->dma_callbacked)
671 ret = 0;
672 else if (!ret)
673 ret = -ETIMEDOUT;
674 rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
675
676 enable_irq(rspi->tx_irq);
677 if (rspi->rx_irq != rspi->tx_irq)
678 enable_irq(rspi->rx_irq);
679
680end:
681 rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
682end_dummy_mapped:
683 rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
684end_nomap:
685 if (rspi->dma_width_16bit) {
686 if (!ret)
687 rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
688 kfree(rx_buf);
689 }
690 kfree(dummy);
691
692 return ret;
693}
694
695static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
696{
697 if (t->tx_buf && rspi->chan_tx)
698 return 1;
699 /* If the module receives data by DMAC, it also needs TX DMAC */
700 if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
701 return 1;
702
703 return 0;
704}
705
706static int rspi_transfer_out_in(struct rspi_data *rspi,
707 struct spi_transfer *xfer)
708{
709 int remain = xfer->len, ret;
710 const u8 *tx_buf = xfer->tx_buf;
711 u8 *rx_buf = xfer->rx_buf;
712 u8 spcr, data;
713
714 rspi_receive_init(rspi);
715
716 spcr = rspi_read8(rspi, RSPI_SPCR);
717 if (rx_buf)
718 spcr &= ~SPCR_TXMD;
719 else
720 spcr |= SPCR_TXMD;
721 rspi_write8(rspi, spcr, RSPI_SPCR);
722
723 while (remain > 0) {
724 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
725 ret = rspi_data_out(rspi, data);
726 if (ret < 0)
727 return ret;
728 if (rx_buf) {
729 ret = rspi_data_in(rspi);
730 if (ret < 0)
731 return ret;
732 *rx_buf++ = ret;
733 }
734 remain--;
735 }
736
737 /* Wait for the last transmission */
738 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
739
740 return 0;
741}
742
743static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
744 struct spi_transfer *xfer)
745{
746 struct rspi_data *rspi = spi_master_get_devdata(master);
747 int ret;
748
749 if (!rspi_is_dma(rspi, xfer))
750 return rspi_transfer_out_in(rspi, xfer);
751
752 if (xfer->tx_buf) {
753 ret = rspi_send_dma(rspi, xfer);
754 if (ret < 0)
755 return ret;
756 }
757 if (xfer->rx_buf)
758 return rspi_receive_dma(rspi, xfer);
759
760 return 0;
761}
762
763static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
764 struct spi_transfer *xfer)
765{
766 int remain = xfer->len, ret;
767 const u8 *tx_buf = xfer->tx_buf;
768 u8 *rx_buf = xfer->rx_buf;
769 u8 data;
770
771 rspi_rz_receive_init(rspi);
772
773 while (remain > 0) {
774 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
775 ret = rspi_data_out_in(rspi, data);
776 if (ret < 0)
777 return ret;
778 if (rx_buf)
779 *rx_buf++ = ret;
780 remain--;
781 }
782
783 /* Wait for the last transmission */
784 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
785
786 return 0;
787}
788
789static int rspi_rz_transfer_one(struct spi_master *master,
790 struct spi_device *spi,
791 struct spi_transfer *xfer)
792{
793 struct rspi_data *rspi = spi_master_get_devdata(master);
794
795 return rspi_rz_transfer_out_in(rspi, xfer);
796}
797
798static int qspi_transfer_out_in(struct rspi_data *rspi,
799 struct spi_transfer *xfer)
800{
801 int remain = xfer->len, ret;
802 const u8 *tx_buf = xfer->tx_buf;
803 u8 *rx_buf = xfer->rx_buf;
804 u8 data;
805
806 qspi_receive_init(rspi);
807
808 while (remain > 0) {
809 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
810 ret = rspi_data_out_in(rspi, data);
811 if (ret < 0)
812 return ret;
813 if (rx_buf)
814 *rx_buf++ = ret;
815 remain--;
816 }
817
818 /* Wait for the last transmission */
819 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
820
821 return 0;
822}
823
824static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
825{
826 const u8 *buf = xfer->tx_buf;
827 unsigned int i;
828 int ret;
829
830 for (i = 0; i < xfer->len; i++) {
831 ret = rspi_data_out(rspi, *buf++);
832 if (ret < 0)
833 return ret;
834 }
835
836 /* Wait for the last transmission */
837 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
838
839 return 0;
840}
841
842static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
843{
844 u8 *buf = xfer->rx_buf;
845 unsigned int i;
846 int ret;
847
848 for (i = 0; i < xfer->len; i++) {
849 ret = rspi_data_in(rspi);
850 if (ret < 0)
851 return ret;
852 *buf++ = ret;
853 }
854
855 return 0;
856}
857
858static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
859 struct spi_transfer *xfer)
860{
861 struct rspi_data *rspi = spi_master_get_devdata(master);
862
863 if (spi->mode & SPI_LOOP) {
864 return qspi_transfer_out_in(rspi, xfer);
865 } else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
866 /* Quad or Dual SPI Write */
867 return qspi_transfer_out(rspi, xfer);
868 } else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
869 /* Quad or Dual SPI Read */
870 return qspi_transfer_in(rspi, xfer);
871 } else {
872 /* Single SPI Transfer */
873 return qspi_transfer_out_in(rspi, xfer);
874 }
875}
876
877static int rspi_setup(struct spi_device *spi)
878{
879 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
880
881 rspi->max_speed_hz = spi->max_speed_hz;
882
883 rspi->spcmd = SPCMD_SSLKP;
884 if (spi->mode & SPI_CPOL)
885 rspi->spcmd |= SPCMD_CPOL;
886 if (spi->mode & SPI_CPHA)
887 rspi->spcmd |= SPCMD_CPHA;
888
889 /* CMOS output mode and MOSI signal from previous transfer */
890 rspi->sppcr = 0;
891 if (spi->mode & SPI_LOOP)
892 rspi->sppcr |= SPPCR_SPLP;
893
894 set_config_register(rspi, 8);
895
896 return 0;
897}
898
899static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
900{
901 if (xfer->tx_buf)
902 switch (xfer->tx_nbits) {
903 case SPI_NBITS_QUAD:
904 return SPCMD_SPIMOD_QUAD;
905 case SPI_NBITS_DUAL:
906 return SPCMD_SPIMOD_DUAL;
907 default:
908 return 0;
909 }
910 if (xfer->rx_buf)
911 switch (xfer->rx_nbits) {
912 case SPI_NBITS_QUAD:
913 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
914 case SPI_NBITS_DUAL:
915 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
916 default:
917 return 0;
918 }
919
920 return 0;
921}
922
923static int qspi_setup_sequencer(struct rspi_data *rspi,
924 const struct spi_message *msg)
925{
926 const struct spi_transfer *xfer;
927 unsigned int i = 0, len = 0;
928 u16 current_mode = 0xffff, mode;
929
930 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 mode = qspi_transfer_mode(xfer);
932 if (mode == current_mode) {
933 len += xfer->len;
934 continue;
935 }
936
937 /* Transfer mode change */
938 if (i) {
939 /* Set transfer data length of previous transfer */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941 }
942
943 if (i >= QSPI_NUM_SPCMD) {
944 dev_err(&msg->spi->dev,
945 "Too many different transfer modes");
946 return -EINVAL;
947 }
948
949 /* Program transfer mode for this transfer */
950 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
951 current_mode = mode;
952 len = xfer->len;
953 i++;
954 }
955 if (i) {
956 /* Set final transfer data length and sequence length */
957 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
958 rspi_write8(rspi, i - 1, RSPI_SPSCR);
959 }
960
961 return 0;
962}
963
964static int rspi_prepare_message(struct spi_master *master,
965 struct spi_message *msg)
966{
967 struct rspi_data *rspi = spi_master_get_devdata(master);
968 int ret;
969
970 if (msg->spi->mode &
971 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
972 /* Setup sequencer for messages with multiple transfer modes */
973 ret = qspi_setup_sequencer(rspi, msg);
974 if (ret < 0)
975 return ret;
976 }
977
978 /* Enable SPI function in master mode */
979 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
980 return 0;
981}
982
983static int rspi_unprepare_message(struct spi_master *master,
984 struct spi_message *msg)
985{
986 struct rspi_data *rspi = spi_master_get_devdata(master);
987
988 /* Disable SPI function */
989 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
990
991 /* Reset sequencer for Single SPI Transfers */
992 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
993 rspi_write8(rspi, 0, RSPI_SPSCR);
994 return 0;
995}
996
997static irqreturn_t rspi_irq_mux(int irq, void *_sr)
998{
999 struct rspi_data *rspi = _sr;
1000 u8 spsr;
1001 irqreturn_t ret = IRQ_NONE;
1002 u8 disable_irq = 0;
1003
1004 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1005 if (spsr & SPSR_SPRF)
1006 disable_irq |= SPCR_SPRIE;
1007 if (spsr & SPSR_SPTEF)
1008 disable_irq |= SPCR_SPTIE;
1009
1010 if (disable_irq) {
1011 ret = IRQ_HANDLED;
1012 rspi_disable_irq(rspi, disable_irq);
1013 wake_up(&rspi->wait);
1014 }
1015
1016 return ret;
1017}
1018
1019static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1020{
1021 struct rspi_data *rspi = _sr;
1022 u8 spsr;
1023
1024 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1025 if (spsr & SPSR_SPRF) {
1026 rspi_disable_irq(rspi, SPCR_SPRIE);
1027 wake_up(&rspi->wait);
1028 return IRQ_HANDLED;
1029 }
1030
1031 return 0;
1032}
1033
1034static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1035{
1036 struct rspi_data *rspi = _sr;
1037 u8 spsr;
1038
1039 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1040 if (spsr & SPSR_SPTEF) {
1041 rspi_disable_irq(rspi, SPCR_SPTIE);
1042 wake_up(&rspi->wait);
1043 return IRQ_HANDLED;
1044 }
1045
1046 return 0;
1047}
1048
1049static int rspi_request_dma(struct rspi_data *rspi,
1050 struct platform_device *pdev)
1051{
1052 const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
1053 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 dma_cap_mask_t mask;
1055 struct dma_slave_config cfg;
1056 int ret;
1057
1058 if (!res || !rspi_pd)
1059 return 0; /* The driver assumes no error. */
1060
1061 rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
1062
1063 /* If the module receives data by DMAC, it also needs TX DMAC */
1064 if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
1065 dma_cap_zero(mask);
1066 dma_cap_set(DMA_SLAVE, mask);
1067 rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
1068 (void *)rspi_pd->dma_rx_id);
1069 if (rspi->chan_rx) {
1070 cfg.slave_id = rspi_pd->dma_rx_id;
1071 cfg.direction = DMA_DEV_TO_MEM;
1072 cfg.dst_addr = 0;
1073 cfg.src_addr = res->start + RSPI_SPDR;
1074 ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
1075 if (!ret)
1076 dev_info(&pdev->dev, "Use DMA when rx.\n");
1077 else
1078 return ret;
1079 }
1080 }
1081 if (rspi_pd->dma_tx_id) {
1082 dma_cap_zero(mask);
1083 dma_cap_set(DMA_SLAVE, mask);
1084 rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
1085 (void *)rspi_pd->dma_tx_id);
1086 if (rspi->chan_tx) {
1087 cfg.slave_id = rspi_pd->dma_tx_id;
1088 cfg.direction = DMA_MEM_TO_DEV;
1089 cfg.dst_addr = res->start + RSPI_SPDR;
1090 cfg.src_addr = 0;
1091 ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
1092 if (!ret)
1093 dev_info(&pdev->dev, "Use DMA when tx\n");
1094 else
1095 return ret;
1096 }
1097 }
1098
1099 return 0;
1100}
1101
1102static void rspi_release_dma(struct rspi_data *rspi)
1103{
1104 if (rspi->chan_tx)
1105 dma_release_channel(rspi->chan_tx);
1106 if (rspi->chan_rx)
1107 dma_release_channel(rspi->chan_rx);
1108}
1109
1110static int rspi_remove(struct platform_device *pdev)
1111{
1112 struct rspi_data *rspi = platform_get_drvdata(pdev);
1113
1114 rspi_release_dma(rspi);
1115 pm_runtime_disable(&pdev->dev);
1116
1117 return 0;
1118}
1119
1120static const struct spi_ops rspi_ops = {
1121 .set_config_register = rspi_set_config_register,
1122 .transfer_one = rspi_transfer_one,
1123 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124};
1125
1126static const struct spi_ops rspi_rz_ops = {
1127 .set_config_register = rspi_rz_set_config_register,
1128 .transfer_one = rspi_rz_transfer_one,
1129 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1130};
1131
1132static const struct spi_ops qspi_ops = {
1133 .set_config_register = qspi_set_config_register,
1134 .transfer_one = qspi_transfer_one,
1135 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1136 SPI_TX_DUAL | SPI_TX_QUAD |
1137 SPI_RX_DUAL | SPI_RX_QUAD,
1138};
1139
1140#ifdef CONFIG_OF
1141static const struct of_device_id rspi_of_match[] = {
1142 /* RSPI on legacy SH */
1143 { .compatible = "renesas,rspi", .data = &rspi_ops },
1144 /* RSPI on RZ/A1H */
1145 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1146 /* QSPI on R-Car Gen2 */
1147 { .compatible = "renesas,qspi", .data = &qspi_ops },
1148 { /* sentinel */ }
1149};
1150
1151MODULE_DEVICE_TABLE(of, rspi_of_match);
1152
1153static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1154{
1155 u32 num_cs;
1156 int error;
1157
1158 /* Parse DT properties */
1159 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1160 if (error) {
1161 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1162 return error;
1163 }
1164
1165 master->num_chipselect = num_cs;
1166 return 0;
1167}
1168#else
1169#define rspi_of_match NULL
1170static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1171{
1172 return -EINVAL;
1173}
1174#endif /* CONFIG_OF */
1175
1176static int rspi_request_irq(struct device *dev, unsigned int irq,
1177 irq_handler_t handler, const char *suffix,
1178 void *dev_id)
1179{
1180 const char *base = dev_name(dev);
1181 size_t len = strlen(base) + strlen(suffix) + 2;
1182 char *name = devm_kzalloc(dev, len, GFP_KERNEL);
1183 if (!name)
1184 return -ENOMEM;
1185 snprintf(name, len, "%s:%s", base, suffix);
1186 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1187}
1188
1189static int rspi_probe(struct platform_device *pdev)
1190{
1191 struct resource *res;
1192 struct spi_master *master;
1193 struct rspi_data *rspi;
1194 int ret;
1195 const struct of_device_id *of_id;
1196 const struct rspi_plat_data *rspi_pd;
1197 const struct spi_ops *ops;
1198
1199 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1200 if (master == NULL) {
1201 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1202 return -ENOMEM;
1203 }
1204
1205 of_id = of_match_device(rspi_of_match, &pdev->dev);
1206 if (of_id) {
1207 ops = of_id->data;
1208 ret = rspi_parse_dt(&pdev->dev, master);
1209 if (ret)
1210 goto error1;
1211 } else {
1212 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1213 rspi_pd = dev_get_platdata(&pdev->dev);
1214 if (rspi_pd && rspi_pd->num_chipselect)
1215 master->num_chipselect = rspi_pd->num_chipselect;
1216 else
1217 master->num_chipselect = 2; /* default */
1218 };
1219
1220 /* ops parameter check */
1221 if (!ops->set_config_register) {
1222 dev_err(&pdev->dev, "there is no set_config_register\n");
1223 ret = -ENODEV;
1224 goto error1;
1225 }
1226
1227 rspi = spi_master_get_devdata(master);
1228 platform_set_drvdata(pdev, rspi);
1229 rspi->ops = ops;
1230 rspi->master = master;
1231
1232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1234 if (IS_ERR(rspi->addr)) {
1235 ret = PTR_ERR(rspi->addr);
1236 goto error1;
1237 }
1238
1239 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1240 if (IS_ERR(rspi->clk)) {
1241 dev_err(&pdev->dev, "cannot get clock\n");
1242 ret = PTR_ERR(rspi->clk);
1243 goto error1;
1244 }
1245
1246 pm_runtime_enable(&pdev->dev);
1247
1248 init_waitqueue_head(&rspi->wait);
1249
1250 master->bus_num = pdev->id;
1251 master->setup = rspi_setup;
1252 master->auto_runtime_pm = true;
1253 master->transfer_one = ops->transfer_one;
1254 master->prepare_message = rspi_prepare_message;
1255 master->unprepare_message = rspi_unprepare_message;
1256 master->mode_bits = ops->mode_bits;
1257 master->dev.of_node = pdev->dev.of_node;
1258
1259 ret = platform_get_irq_byname(pdev, "rx");
1260 if (ret < 0) {
1261 ret = platform_get_irq_byname(pdev, "mux");
1262 if (ret < 0)
1263 ret = platform_get_irq(pdev, 0);
1264 if (ret >= 0)
1265 rspi->rx_irq = rspi->tx_irq = ret;
1266 } else {
1267 rspi->rx_irq = ret;
1268 ret = platform_get_irq_byname(pdev, "tx");
1269 if (ret >= 0)
1270 rspi->tx_irq = ret;
1271 }
1272 if (ret < 0) {
1273 dev_err(&pdev->dev, "platform_get_irq error\n");
1274 goto error2;
1275 }
1276
1277 if (rspi->rx_irq == rspi->tx_irq) {
1278 /* Single multiplexed interrupt */
1279 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1280 "mux", rspi);
1281 } else {
1282 /* Multi-interrupt mode, only SPRI and SPTI are used */
1283 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1284 "rx", rspi);
1285 if (!ret)
1286 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1287 rspi_irq_tx, "tx", rspi);
1288 }
1289 if (ret < 0) {
1290 dev_err(&pdev->dev, "request_irq error\n");
1291 goto error2;
1292 }
1293
1294 ret = rspi_request_dma(rspi, pdev);
1295 if (ret < 0) {
1296 dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1297 goto error3;
1298 }
1299
1300 ret = devm_spi_register_master(&pdev->dev, master);
1301 if (ret < 0) {
1302 dev_err(&pdev->dev, "spi_register_master error.\n");
1303 goto error3;
1304 }
1305
1306 dev_info(&pdev->dev, "probed\n");
1307
1308 return 0;
1309
1310error3:
1311 rspi_release_dma(rspi);
1312error2:
1313 pm_runtime_disable(&pdev->dev);
1314error1:
1315 spi_master_put(master);
1316
1317 return ret;
1318}
1319
1320static struct platform_device_id spi_driver_ids[] = {
1321 { "rspi", (kernel_ulong_t)&rspi_ops },
1322 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1323 { "qspi", (kernel_ulong_t)&qspi_ops },
1324 {},
1325};
1326
1327MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1328
1329static struct platform_driver rspi_driver = {
1330 .probe = rspi_probe,
1331 .remove = rspi_remove,
1332 .id_table = spi_driver_ids,
1333 .driver = {
1334 .name = "renesas_spi",
1335 .owner = THIS_MODULE,
1336 .of_match_table = of_match_ptr(rspi_of_match),
1337 },
1338};
1339module_platform_driver(rspi_driver);
1340
1341MODULE_DESCRIPTION("Renesas RSPI bus driver");
1342MODULE_LICENSE("GPL v2");
1343MODULE_AUTHOR("Yoshihiro Shimoda");
1344MODULE_ALIAS("platform:rspi");