Loading...
1/*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15#include <linux/module.h>
16#include <linux/uaccess.h>
17#include <linux/bitops.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/in.h>
22#include <linux/tty.h>
23#include <linux/errno.h>
24#include <linux/netdevice.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <net/ax25.h>
28#include <linux/etherdevice.h>
29#include <linux/skbuff.h>
30#include <linux/rtnetlink.h>
31#include <linux/spinlock.h>
32#include <linux/if_arp.h>
33#include <linux/init.h>
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/semaphore.h>
37#include <linux/compat.h>
38#include <linux/refcount.h>
39
40#define SIXPACK_VERSION "Revision: 0.3.0"
41
42/* sixpack priority commands */
43#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
44#define SIXP_TX_URUN 0x48 /* transmit overrun */
45#define SIXP_RX_ORUN 0x50 /* receive overrun */
46#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
47
48#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
49
50/* masks to get certain bits out of the status bytes sent by the TNC */
51
52#define SIXP_CMD_MASK 0xC0
53#define SIXP_CHN_MASK 0x07
54#define SIXP_PRIO_CMD_MASK 0x80
55#define SIXP_STD_CMD_MASK 0x40
56#define SIXP_PRIO_DATA_MASK 0x38
57#define SIXP_TX_MASK 0x20
58#define SIXP_RX_MASK 0x10
59#define SIXP_RX_DCD_MASK 0x18
60#define SIXP_LEDS_ON 0x78
61#define SIXP_LEDS_OFF 0x60
62#define SIXP_CON 0x08
63#define SIXP_STA 0x10
64
65#define SIXP_FOUND_TNC 0xe9
66#define SIXP_CON_ON 0x68
67#define SIXP_DCD_MASK 0x08
68#define SIXP_DAMA_OFF 0
69
70/* default level 2 parameters */
71#define SIXP_TXDELAY (HZ/4) /* in 1 s */
72#define SIXP_PERSIST 50 /* in 256ths */
73#define SIXP_SLOTTIME (HZ/10) /* in 1 s */
74#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
75#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
76
77/* 6pack configuration. */
78#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
79#define SIXP_MTU 256 /* Default MTU */
80
81enum sixpack_flags {
82 SIXPF_ERROR, /* Parity, etc. error */
83};
84
85struct sixpack {
86 /* Various fields. */
87 struct tty_struct *tty; /* ptr to TTY structure */
88 struct net_device *dev; /* easy for intr handling */
89
90 /* These are pointers to the malloc()ed frame buffers. */
91 unsigned char *rbuff; /* receiver buffer */
92 int rcount; /* received chars counter */
93 unsigned char *xbuff; /* transmitter buffer */
94 unsigned char *xhead; /* next byte to XMIT */
95 int xleft; /* bytes left in XMIT queue */
96
97 unsigned char raw_buf[4];
98 unsigned char cooked_buf[400];
99
100 unsigned int rx_count;
101 unsigned int rx_count_cooked;
102
103 int mtu; /* Our mtu (to spot changes!) */
104 int buffsize; /* Max buffers sizes */
105
106 unsigned long flags; /* Flag values/ mode etc */
107 unsigned char mode; /* 6pack mode */
108
109 /* 6pack stuff */
110 unsigned char tx_delay;
111 unsigned char persistence;
112 unsigned char slottime;
113 unsigned char duplex;
114 unsigned char led_state;
115 unsigned char status;
116 unsigned char status1;
117 unsigned char status2;
118 unsigned char tx_enable;
119 unsigned char tnc_state;
120
121 struct timer_list tx_t;
122 struct timer_list resync_t;
123 refcount_t refcnt;
124 struct semaphore dead_sem;
125 spinlock_t lock;
126};
127
128#define AX25_6PACK_HEADER_LEN 0
129
130static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133/*
134 * Perform the persistence/slottime algorithm for CSMA access. If the
135 * persistence check was successful, write the data to the serial driver.
136 * Note that in case of DAMA operation, the data is not sent here.
137 */
138
139static void sp_xmit_on_air(struct timer_list *t)
140{
141 struct sixpack *sp = from_timer(sp, t, tx_t);
142 int actual, when = sp->slottime;
143 static unsigned char random;
144
145 random = random * 17 + 41;
146
147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 sp->led_state = 0x70;
149 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 sp->tx_enable = 1;
151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 sp->xleft -= actual;
153 sp->xhead += actual;
154 sp->led_state = 0x60;
155 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 sp->status2 = 0;
157 } else
158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159}
160
161/* ----> 6pack timer interrupt handler and friends. <---- */
162
163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165{
166 unsigned char *msg, *p = icp;
167 int actual, count;
168
169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 msg = "oversized transmit packet!";
171 goto out_drop;
172 }
173
174 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 msg = "oversized transmit packet!";
176 goto out_drop;
177 }
178
179 if (p[0] > 5) {
180 msg = "invalid KISS command";
181 goto out_drop;
182 }
183
184 if ((p[0] != 0) && (len > 2)) {
185 msg = "KISS control packet too long";
186 goto out_drop;
187 }
188
189 if ((p[0] == 0) && (len < 15)) {
190 msg = "bad AX.25 packet to transmit";
191 goto out_drop;
192 }
193
194 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196
197 switch (p[0]) {
198 case 1: sp->tx_delay = p[1];
199 return;
200 case 2: sp->persistence = p[1];
201 return;
202 case 3: sp->slottime = p[1];
203 return;
204 case 4: /* ignored */
205 return;
206 case 5: sp->duplex = p[1];
207 return;
208 }
209
210 if (p[0] != 0)
211 return;
212
213 /*
214 * In case of fullduplex or DAMA operation, we don't take care about the
215 * state of the DCD or of any timers, as the determination of the
216 * correct time to send is the job of the AX.25 layer. We send
217 * immediately after data has arrived.
218 */
219 if (sp->duplex == 1) {
220 sp->led_state = 0x70;
221 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 sp->tx_enable = 1;
223 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 sp->xleft = count - actual;
225 sp->xhead = sp->xbuff + actual;
226 sp->led_state = 0x60;
227 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 } else {
229 sp->xleft = count;
230 sp->xhead = sp->xbuff;
231 sp->status2 = count;
232 sp_xmit_on_air(&sp->tx_t);
233 }
234
235 return;
236
237out_drop:
238 sp->dev->stats.tx_dropped++;
239 netif_start_queue(sp->dev);
240 if (net_ratelimit())
241 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242}
243
244/* Encapsulate an IP datagram and kick it into a TTY queue. */
245
246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247{
248 struct sixpack *sp = netdev_priv(dev);
249
250 if (skb->protocol == htons(ETH_P_IP))
251 return ax25_ip_xmit(skb);
252
253 spin_lock_bh(&sp->lock);
254 /* We were not busy, so we are now... :-) */
255 netif_stop_queue(dev);
256 dev->stats.tx_bytes += skb->len;
257 sp_encaps(sp, skb->data, skb->len);
258 spin_unlock_bh(&sp->lock);
259
260 dev_kfree_skb(skb);
261
262 return NETDEV_TX_OK;
263}
264
265static int sp_open_dev(struct net_device *dev)
266{
267 struct sixpack *sp = netdev_priv(dev);
268
269 if (sp->tty == NULL)
270 return -ENODEV;
271 return 0;
272}
273
274/* Close the low-level part of the 6pack channel. */
275static int sp_close(struct net_device *dev)
276{
277 struct sixpack *sp = netdev_priv(dev);
278
279 spin_lock_bh(&sp->lock);
280 if (sp->tty) {
281 /* TTY discipline is running. */
282 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283 }
284 netif_stop_queue(dev);
285 spin_unlock_bh(&sp->lock);
286
287 return 0;
288}
289
290static int sp_set_mac_address(struct net_device *dev, void *addr)
291{
292 struct sockaddr_ax25 *sa = addr;
293
294 netif_tx_lock_bh(dev);
295 netif_addr_lock(dev);
296 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297 netif_addr_unlock(dev);
298 netif_tx_unlock_bh(dev);
299
300 return 0;
301}
302
303static const struct net_device_ops sp_netdev_ops = {
304 .ndo_open = sp_open_dev,
305 .ndo_stop = sp_close,
306 .ndo_start_xmit = sp_xmit,
307 .ndo_set_mac_address = sp_set_mac_address,
308};
309
310static void sp_setup(struct net_device *dev)
311{
312 /* Finish setting up the DEVICE info. */
313 dev->netdev_ops = &sp_netdev_ops;
314 dev->needs_free_netdev = true;
315 dev->mtu = SIXP_MTU;
316 dev->hard_header_len = AX25_MAX_HEADER_LEN;
317 dev->header_ops = &ax25_header_ops;
318
319 dev->addr_len = AX25_ADDR_LEN;
320 dev->type = ARPHRD_AX25;
321 dev->tx_queue_len = 10;
322
323 /* Only activated in AX.25 mode */
324 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326
327 dev->flags = 0;
328}
329
330/* Send one completely decapsulated IP datagram to the IP layer. */
331
332/*
333 * This is the routine that sends the received data to the kernel AX.25.
334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
335 */
336
337static void sp_bump(struct sixpack *sp, char cmd)
338{
339 struct sk_buff *skb;
340 int count;
341 unsigned char *ptr;
342
343 count = sp->rcount + 1;
344
345 sp->dev->stats.rx_bytes += count;
346
347 if ((skb = dev_alloc_skb(count)) == NULL)
348 goto out_mem;
349
350 ptr = skb_put(skb, count);
351 *ptr++ = cmd; /* KISS command */
352
353 memcpy(ptr, sp->cooked_buf + 1, count);
354 skb->protocol = ax25_type_trans(skb, sp->dev);
355 netif_rx(skb);
356 sp->dev->stats.rx_packets++;
357
358 return;
359
360out_mem:
361 sp->dev->stats.rx_dropped++;
362}
363
364
365/* ----------------------------------------------------------------------- */
366
367/*
368 * We have a potential race on dereferencing tty->disc_data, because the tty
369 * layer provides no locking at all - thus one cpu could be running
370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
371 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
372 * best way to fix this is to use a rwlock in the tty struct, but for now we
373 * use a single global rwlock for all ttys in ppp line discipline.
374 */
375static DEFINE_RWLOCK(disc_data_lock);
376
377static struct sixpack *sp_get(struct tty_struct *tty)
378{
379 struct sixpack *sp;
380
381 read_lock(&disc_data_lock);
382 sp = tty->disc_data;
383 if (sp)
384 refcount_inc(&sp->refcnt);
385 read_unlock(&disc_data_lock);
386
387 return sp;
388}
389
390static void sp_put(struct sixpack *sp)
391{
392 if (refcount_dec_and_test(&sp->refcnt))
393 up(&sp->dead_sem);
394}
395
396/*
397 * Called by the TTY driver when there's room for more data. If we have
398 * more packets to send, we send them here.
399 */
400static void sixpack_write_wakeup(struct tty_struct *tty)
401{
402 struct sixpack *sp = sp_get(tty);
403 int actual;
404
405 if (!sp)
406 return;
407 if (sp->xleft <= 0) {
408 /* Now serial buffer is almost free & we can start
409 * transmission of another packet */
410 sp->dev->stats.tx_packets++;
411 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412 sp->tx_enable = 0;
413 netif_wake_queue(sp->dev);
414 goto out;
415 }
416
417 if (sp->tx_enable) {
418 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419 sp->xleft -= actual;
420 sp->xhead += actual;
421 }
422
423out:
424 sp_put(sp);
425}
426
427/* ----------------------------------------------------------------------- */
428
429/*
430 * Handle the 'receiver data ready' interrupt.
431 * This function is called by the tty module in the kernel when
432 * a block of 6pack data has been received, which can now be decapsulated
433 * and sent on to some IP layer for further processing.
434 */
435static void sixpack_receive_buf(struct tty_struct *tty,
436 const unsigned char *cp, char *fp, int count)
437{
438 struct sixpack *sp;
439 int count1;
440
441 if (!count)
442 return;
443
444 sp = sp_get(tty);
445 if (!sp)
446 return;
447
448 /* Read the characters out of the buffer */
449 count1 = count;
450 while (count) {
451 count--;
452 if (fp && *fp++) {
453 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
454 sp->dev->stats.rx_errors++;
455 continue;
456 }
457 }
458 sixpack_decode(sp, cp, count1);
459
460 sp_put(sp);
461 tty_unthrottle(tty);
462}
463
464/*
465 * Try to resync the TNC. Called by the resync timer defined in
466 * decode_prio_command
467 */
468
469#define TNC_UNINITIALIZED 0
470#define TNC_UNSYNC_STARTUP 1
471#define TNC_UNSYNCED 2
472#define TNC_IN_SYNC 3
473
474static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
475{
476 char *msg;
477
478 switch (new_tnc_state) {
479 default: /* gcc oh piece-o-crap ... */
480 case TNC_UNSYNC_STARTUP:
481 msg = "Synchronizing with TNC";
482 break;
483 case TNC_UNSYNCED:
484 msg = "Lost synchronization with TNC\n";
485 break;
486 case TNC_IN_SYNC:
487 msg = "Found TNC";
488 break;
489 }
490
491 sp->tnc_state = new_tnc_state;
492 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
493}
494
495static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
496{
497 int old_tnc_state = sp->tnc_state;
498
499 if (old_tnc_state != new_tnc_state)
500 __tnc_set_sync_state(sp, new_tnc_state);
501}
502
503static void resync_tnc(struct timer_list *t)
504{
505 struct sixpack *sp = from_timer(sp, t, resync_t);
506 static char resync_cmd = 0xe8;
507
508 /* clear any data that might have been received */
509
510 sp->rx_count = 0;
511 sp->rx_count_cooked = 0;
512
513 /* reset state machine */
514
515 sp->status = 1;
516 sp->status1 = 1;
517 sp->status2 = 0;
518
519 /* resync the TNC */
520
521 sp->led_state = 0x60;
522 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
523 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
524
525
526 /* Start resync timer again -- the TNC might be still absent */
527
528 del_timer(&sp->resync_t);
529 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
530 add_timer(&sp->resync_t);
531}
532
533static inline int tnc_init(struct sixpack *sp)
534{
535 unsigned char inbyte = 0xe8;
536
537 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
538
539 sp->tty->ops->write(sp->tty, &inbyte, 1);
540
541 del_timer(&sp->resync_t);
542 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
543 add_timer(&sp->resync_t);
544
545 return 0;
546}
547
548/*
549 * Open the high-level part of the 6pack channel.
550 * This function is called by the TTY module when the
551 * 6pack line discipline is called for. Because we are
552 * sure the tty line exists, we only have to link it to
553 * a free 6pcack channel...
554 */
555static int sixpack_open(struct tty_struct *tty)
556{
557 char *rbuff = NULL, *xbuff = NULL;
558 struct net_device *dev;
559 struct sixpack *sp;
560 unsigned long len;
561 int err = 0;
562
563 if (!capable(CAP_NET_ADMIN))
564 return -EPERM;
565 if (tty->ops->write == NULL)
566 return -EOPNOTSUPP;
567
568 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
569 sp_setup);
570 if (!dev) {
571 err = -ENOMEM;
572 goto out;
573 }
574
575 sp = netdev_priv(dev);
576 sp->dev = dev;
577
578 spin_lock_init(&sp->lock);
579 refcount_set(&sp->refcnt, 1);
580 sema_init(&sp->dead_sem, 0);
581
582 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
583
584 len = dev->mtu * 2;
585
586 rbuff = kmalloc(len + 4, GFP_KERNEL);
587 xbuff = kmalloc(len + 4, GFP_KERNEL);
588
589 if (rbuff == NULL || xbuff == NULL) {
590 err = -ENOBUFS;
591 goto out_free;
592 }
593
594 spin_lock_bh(&sp->lock);
595
596 sp->tty = tty;
597
598 sp->rbuff = rbuff;
599 sp->xbuff = xbuff;
600
601 sp->mtu = AX25_MTU + 73;
602 sp->buffsize = len;
603 sp->rcount = 0;
604 sp->rx_count = 0;
605 sp->rx_count_cooked = 0;
606 sp->xleft = 0;
607
608 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
609
610 sp->duplex = 0;
611 sp->tx_delay = SIXP_TXDELAY;
612 sp->persistence = SIXP_PERSIST;
613 sp->slottime = SIXP_SLOTTIME;
614 sp->led_state = 0x60;
615 sp->status = 1;
616 sp->status1 = 1;
617 sp->status2 = 0;
618 sp->tx_enable = 0;
619
620 netif_start_queue(dev);
621
622 timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
623
624 timer_setup(&sp->resync_t, resync_tnc, 0);
625
626 spin_unlock_bh(&sp->lock);
627
628 /* Done. We have linked the TTY line to a channel. */
629 tty->disc_data = sp;
630 tty->receive_room = 65536;
631
632 /* Now we're ready to register. */
633 err = register_netdev(dev);
634 if (err)
635 goto out_free;
636
637 tnc_init(sp);
638
639 return 0;
640
641out_free:
642 kfree(xbuff);
643 kfree(rbuff);
644
645 free_netdev(dev);
646
647out:
648 return err;
649}
650
651
652/*
653 * Close down a 6pack channel.
654 * This means flushing out any pending queues, and then restoring the
655 * TTY line discipline to what it was before it got hooked to 6pack
656 * (which usually is TTY again).
657 */
658static void sixpack_close(struct tty_struct *tty)
659{
660 struct sixpack *sp;
661
662 write_lock_bh(&disc_data_lock);
663 sp = tty->disc_data;
664 tty->disc_data = NULL;
665 write_unlock_bh(&disc_data_lock);
666 if (!sp)
667 return;
668
669 /*
670 * We have now ensured that nobody can start using ap from now on, but
671 * we have to wait for all existing users to finish.
672 */
673 if (!refcount_dec_and_test(&sp->refcnt))
674 down(&sp->dead_sem);
675
676 /* We must stop the queue to avoid potentially scribbling
677 * on the free buffers. The sp->dead_sem is not sufficient
678 * to protect us from sp->xbuff access.
679 */
680 netif_stop_queue(sp->dev);
681
682 del_timer_sync(&sp->tx_t);
683 del_timer_sync(&sp->resync_t);
684
685 /* Free all 6pack frame buffers. */
686 kfree(sp->rbuff);
687 kfree(sp->xbuff);
688
689 unregister_netdev(sp->dev);
690}
691
692/* Perform I/O control on an active 6pack channel. */
693static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
694 unsigned int cmd, unsigned long arg)
695{
696 struct sixpack *sp = sp_get(tty);
697 struct net_device *dev;
698 unsigned int tmp, err;
699
700 if (!sp)
701 return -ENXIO;
702 dev = sp->dev;
703
704 switch(cmd) {
705 case SIOCGIFNAME:
706 err = copy_to_user((void __user *) arg, dev->name,
707 strlen(dev->name) + 1) ? -EFAULT : 0;
708 break;
709
710 case SIOCGIFENCAP:
711 err = put_user(0, (int __user *) arg);
712 break;
713
714 case SIOCSIFENCAP:
715 if (get_user(tmp, (int __user *) arg)) {
716 err = -EFAULT;
717 break;
718 }
719
720 sp->mode = tmp;
721 dev->addr_len = AX25_ADDR_LEN;
722 dev->hard_header_len = AX25_KISS_HEADER_LEN +
723 AX25_MAX_HEADER_LEN + 3;
724 dev->type = ARPHRD_AX25;
725
726 err = 0;
727 break;
728
729 case SIOCSIFHWADDR: {
730 char addr[AX25_ADDR_LEN];
731
732 if (copy_from_user(&addr,
733 (void __user *) arg, AX25_ADDR_LEN)) {
734 err = -EFAULT;
735 break;
736 }
737
738 netif_tx_lock_bh(dev);
739 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
740 netif_tx_unlock_bh(dev);
741
742 err = 0;
743 break;
744 }
745
746 default:
747 err = tty_mode_ioctl(tty, file, cmd, arg);
748 }
749
750 sp_put(sp);
751
752 return err;
753}
754
755#ifdef CONFIG_COMPAT
756static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
757 unsigned int cmd, unsigned long arg)
758{
759 switch (cmd) {
760 case SIOCGIFNAME:
761 case SIOCGIFENCAP:
762 case SIOCSIFENCAP:
763 case SIOCSIFHWADDR:
764 return sixpack_ioctl(tty, file, cmd,
765 (unsigned long)compat_ptr(arg));
766 }
767
768 return -ENOIOCTLCMD;
769}
770#endif
771
772static struct tty_ldisc_ops sp_ldisc = {
773 .owner = THIS_MODULE,
774 .magic = TTY_LDISC_MAGIC,
775 .name = "6pack",
776 .open = sixpack_open,
777 .close = sixpack_close,
778 .ioctl = sixpack_ioctl,
779#ifdef CONFIG_COMPAT
780 .compat_ioctl = sixpack_compat_ioctl,
781#endif
782 .receive_buf = sixpack_receive_buf,
783 .write_wakeup = sixpack_write_wakeup,
784};
785
786/* Initialize 6pack control device -- register 6pack line discipline */
787
788static const char msg_banner[] __initconst = KERN_INFO \
789 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
790static const char msg_regfail[] __initconst = KERN_ERR \
791 "6pack: can't register line discipline (err = %d)\n";
792
793static int __init sixpack_init_driver(void)
794{
795 int status;
796
797 printk(msg_banner);
798
799 /* Register the provided line protocol discipline */
800 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
801 printk(msg_regfail, status);
802
803 return status;
804}
805
806static const char msg_unregfail[] = KERN_ERR \
807 "6pack: can't unregister line discipline (err = %d)\n";
808
809static void __exit sixpack_exit_driver(void)
810{
811 int ret;
812
813 if ((ret = tty_unregister_ldisc(N_6PACK)))
814 printk(msg_unregfail, ret);
815}
816
817/* encode an AX.25 packet into 6pack */
818
819static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
820 int length, unsigned char tx_delay)
821{
822 int count = 0;
823 unsigned char checksum = 0, buf[400];
824 int raw_count = 0;
825
826 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
827 tx_buf_raw[raw_count++] = SIXP_SEOF;
828
829 buf[0] = tx_delay;
830 for (count = 1; count < length; count++)
831 buf[count] = tx_buf[count];
832
833 for (count = 0; count < length; count++)
834 checksum += buf[count];
835 buf[length] = (unsigned char) 0xff - checksum;
836
837 for (count = 0; count <= length; count++) {
838 if ((count % 3) == 0) {
839 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
840 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
841 } else if ((count % 3) == 1) {
842 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
843 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
844 } else {
845 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
846 tx_buf_raw[raw_count++] = (buf[count] >> 2);
847 }
848 }
849 if ((length % 3) != 2)
850 raw_count++;
851 tx_buf_raw[raw_count++] = SIXP_SEOF;
852 return raw_count;
853}
854
855/* decode 4 sixpack-encoded bytes into 3 data bytes */
856
857static void decode_data(struct sixpack *sp, unsigned char inbyte)
858{
859 unsigned char *buf;
860
861 if (sp->rx_count != 3) {
862 sp->raw_buf[sp->rx_count++] = inbyte;
863
864 return;
865 }
866
867 buf = sp->raw_buf;
868 sp->cooked_buf[sp->rx_count_cooked++] =
869 buf[0] | ((buf[1] << 2) & 0xc0);
870 sp->cooked_buf[sp->rx_count_cooked++] =
871 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
872 sp->cooked_buf[sp->rx_count_cooked++] =
873 (buf[2] & 0x03) | (inbyte << 2);
874 sp->rx_count = 0;
875}
876
877/* identify and execute a 6pack priority command byte */
878
879static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
880{
881 unsigned char channel;
882 int actual;
883
884 channel = cmd & SIXP_CHN_MASK;
885 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
886
887 /* RX and DCD flags can only be set in the same prio command,
888 if the DCD flag has been set without the RX flag in the previous
889 prio command. If DCD has not been set before, something in the
890 transmission has gone wrong. In this case, RX and DCD are
891 cleared in order to prevent the decode_data routine from
892 reading further data that might be corrupt. */
893
894 if (((sp->status & SIXP_DCD_MASK) == 0) &&
895 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
896 if (sp->status != 1)
897 printk(KERN_DEBUG "6pack: protocol violation\n");
898 else
899 sp->status = 0;
900 cmd &= ~SIXP_RX_DCD_MASK;
901 }
902 sp->status = cmd & SIXP_PRIO_DATA_MASK;
903 } else { /* output watchdog char if idle */
904 if ((sp->status2 != 0) && (sp->duplex == 1)) {
905 sp->led_state = 0x70;
906 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
907 sp->tx_enable = 1;
908 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
909 sp->xleft -= actual;
910 sp->xhead += actual;
911 sp->led_state = 0x60;
912 sp->status2 = 0;
913
914 }
915 }
916
917 /* needed to trigger the TNC watchdog */
918 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
919
920 /* if the state byte has been received, the TNC is present,
921 so the resync timer can be reset. */
922
923 if (sp->tnc_state == TNC_IN_SYNC) {
924 del_timer(&sp->resync_t);
925 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
926 add_timer(&sp->resync_t);
927 }
928
929 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
930}
931
932/* identify and execute a standard 6pack command byte */
933
934static void decode_std_command(struct sixpack *sp, unsigned char cmd)
935{
936 unsigned char checksum = 0, rest = 0, channel;
937 short i;
938
939 channel = cmd & SIXP_CHN_MASK;
940 switch (cmd & SIXP_CMD_MASK) { /* normal command */
941 case SIXP_SEOF:
942 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
943 if ((sp->status & SIXP_RX_DCD_MASK) ==
944 SIXP_RX_DCD_MASK) {
945 sp->led_state = 0x68;
946 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
947 }
948 } else {
949 sp->led_state = 0x60;
950 /* fill trailing bytes with zeroes */
951 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
952 rest = sp->rx_count;
953 if (rest != 0)
954 for (i = rest; i <= 3; i++)
955 decode_data(sp, 0);
956 if (rest == 2)
957 sp->rx_count_cooked -= 2;
958 else if (rest == 3)
959 sp->rx_count_cooked -= 1;
960 for (i = 0; i < sp->rx_count_cooked; i++)
961 checksum += sp->cooked_buf[i];
962 if (checksum != SIXP_CHKSUM) {
963 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
964 } else {
965 sp->rcount = sp->rx_count_cooked-2;
966 sp_bump(sp, 0);
967 }
968 sp->rx_count_cooked = 0;
969 }
970 break;
971 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
972 break;
973 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
974 break;
975 case SIXP_RX_BUF_OVL:
976 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
977 }
978}
979
980/* decode a 6pack packet */
981
982static void
983sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
984{
985 unsigned char inbyte;
986 int count1;
987
988 for (count1 = 0; count1 < count; count1++) {
989 inbyte = pre_rbuff[count1];
990 if (inbyte == SIXP_FOUND_TNC) {
991 tnc_set_sync_state(sp, TNC_IN_SYNC);
992 del_timer(&sp->resync_t);
993 }
994 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
995 decode_prio_command(sp, inbyte);
996 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
997 decode_std_command(sp, inbyte);
998 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
999 decode_data(sp, inbyte);
1000 }
1001}
1002
1003MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1004MODULE_DESCRIPTION("6pack driver for AX.25");
1005MODULE_LICENSE("GPL");
1006MODULE_ALIAS_LDISC(N_6PACK);
1007
1008module_init(sixpack_init_driver);
1009module_exit(sixpack_exit_driver);
1/*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15#include <linux/module.h>
16#include <asm/uaccess.h>
17#include <linux/bitops.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/in.h>
22#include <linux/tty.h>
23#include <linux/errno.h>
24#include <linux/netdevice.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <net/ax25.h>
28#include <linux/etherdevice.h>
29#include <linux/skbuff.h>
30#include <linux/rtnetlink.h>
31#include <linux/spinlock.h>
32#include <linux/if_arp.h>
33#include <linux/init.h>
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/semaphore.h>
37#include <linux/compat.h>
38#include <linux/atomic.h>
39
40#define SIXPACK_VERSION "Revision: 0.3.0"
41
42/* sixpack priority commands */
43#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
44#define SIXP_TX_URUN 0x48 /* transmit overrun */
45#define SIXP_RX_ORUN 0x50 /* receive overrun */
46#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
47
48#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
49
50/* masks to get certain bits out of the status bytes sent by the TNC */
51
52#define SIXP_CMD_MASK 0xC0
53#define SIXP_CHN_MASK 0x07
54#define SIXP_PRIO_CMD_MASK 0x80
55#define SIXP_STD_CMD_MASK 0x40
56#define SIXP_PRIO_DATA_MASK 0x38
57#define SIXP_TX_MASK 0x20
58#define SIXP_RX_MASK 0x10
59#define SIXP_RX_DCD_MASK 0x18
60#define SIXP_LEDS_ON 0x78
61#define SIXP_LEDS_OFF 0x60
62#define SIXP_CON 0x08
63#define SIXP_STA 0x10
64
65#define SIXP_FOUND_TNC 0xe9
66#define SIXP_CON_ON 0x68
67#define SIXP_DCD_MASK 0x08
68#define SIXP_DAMA_OFF 0
69
70/* default level 2 parameters */
71#define SIXP_TXDELAY (HZ/4) /* in 1 s */
72#define SIXP_PERSIST 50 /* in 256ths */
73#define SIXP_SLOTTIME (HZ/10) /* in 1 s */
74#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
75#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
76
77/* 6pack configuration. */
78#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
79#define SIXP_MTU 256 /* Default MTU */
80
81enum sixpack_flags {
82 SIXPF_ERROR, /* Parity, etc. error */
83};
84
85struct sixpack {
86 /* Various fields. */
87 struct tty_struct *tty; /* ptr to TTY structure */
88 struct net_device *dev; /* easy for intr handling */
89
90 /* These are pointers to the malloc()ed frame buffers. */
91 unsigned char *rbuff; /* receiver buffer */
92 int rcount; /* received chars counter */
93 unsigned char *xbuff; /* transmitter buffer */
94 unsigned char *xhead; /* next byte to XMIT */
95 int xleft; /* bytes left in XMIT queue */
96
97 unsigned char raw_buf[4];
98 unsigned char cooked_buf[400];
99
100 unsigned int rx_count;
101 unsigned int rx_count_cooked;
102
103 int mtu; /* Our mtu (to spot changes!) */
104 int buffsize; /* Max buffers sizes */
105
106 unsigned long flags; /* Flag values/ mode etc */
107 unsigned char mode; /* 6pack mode */
108
109 /* 6pack stuff */
110 unsigned char tx_delay;
111 unsigned char persistence;
112 unsigned char slottime;
113 unsigned char duplex;
114 unsigned char led_state;
115 unsigned char status;
116 unsigned char status1;
117 unsigned char status2;
118 unsigned char tx_enable;
119 unsigned char tnc_state;
120
121 struct timer_list tx_t;
122 struct timer_list resync_t;
123 atomic_t refcnt;
124 struct semaphore dead_sem;
125 spinlock_t lock;
126};
127
128#define AX25_6PACK_HEADER_LEN 0
129
130static void sixpack_decode(struct sixpack *, unsigned char[], int);
131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133/*
134 * Perform the persistence/slottime algorithm for CSMA access. If the
135 * persistence check was successful, write the data to the serial driver.
136 * Note that in case of DAMA operation, the data is not sent here.
137 */
138
139static void sp_xmit_on_air(unsigned long channel)
140{
141 struct sixpack *sp = (struct sixpack *) channel;
142 int actual, when = sp->slottime;
143 static unsigned char random;
144
145 random = random * 17 + 41;
146
147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 sp->led_state = 0x70;
149 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 sp->tx_enable = 1;
151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 sp->xleft -= actual;
153 sp->xhead += actual;
154 sp->led_state = 0x60;
155 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 sp->status2 = 0;
157 } else
158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159}
160
161/* ----> 6pack timer interrupt handler and friends. <---- */
162
163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165{
166 unsigned char *msg, *p = icp;
167 int actual, count;
168
169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 msg = "oversized transmit packet!";
171 goto out_drop;
172 }
173
174 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 msg = "oversized transmit packet!";
176 goto out_drop;
177 }
178
179 if (p[0] > 5) {
180 msg = "invalid KISS command";
181 goto out_drop;
182 }
183
184 if ((p[0] != 0) && (len > 2)) {
185 msg = "KISS control packet too long";
186 goto out_drop;
187 }
188
189 if ((p[0] == 0) && (len < 15)) {
190 msg = "bad AX.25 packet to transmit";
191 goto out_drop;
192 }
193
194 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196
197 switch (p[0]) {
198 case 1: sp->tx_delay = p[1];
199 return;
200 case 2: sp->persistence = p[1];
201 return;
202 case 3: sp->slottime = p[1];
203 return;
204 case 4: /* ignored */
205 return;
206 case 5: sp->duplex = p[1];
207 return;
208 }
209
210 if (p[0] != 0)
211 return;
212
213 /*
214 * In case of fullduplex or DAMA operation, we don't take care about the
215 * state of the DCD or of any timers, as the determination of the
216 * correct time to send is the job of the AX.25 layer. We send
217 * immediately after data has arrived.
218 */
219 if (sp->duplex == 1) {
220 sp->led_state = 0x70;
221 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 sp->tx_enable = 1;
223 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 sp->xleft = count - actual;
225 sp->xhead = sp->xbuff + actual;
226 sp->led_state = 0x60;
227 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 } else {
229 sp->xleft = count;
230 sp->xhead = sp->xbuff;
231 sp->status2 = count;
232 sp_xmit_on_air((unsigned long)sp);
233 }
234
235 return;
236
237out_drop:
238 sp->dev->stats.tx_dropped++;
239 netif_start_queue(sp->dev);
240 if (net_ratelimit())
241 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242}
243
244/* Encapsulate an IP datagram and kick it into a TTY queue. */
245
246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247{
248 struct sixpack *sp = netdev_priv(dev);
249
250 spin_lock_bh(&sp->lock);
251 /* We were not busy, so we are now... :-) */
252 netif_stop_queue(dev);
253 dev->stats.tx_bytes += skb->len;
254 sp_encaps(sp, skb->data, skb->len);
255 spin_unlock_bh(&sp->lock);
256
257 dev_kfree_skb(skb);
258
259 return NETDEV_TX_OK;
260}
261
262static int sp_open_dev(struct net_device *dev)
263{
264 struct sixpack *sp = netdev_priv(dev);
265
266 if (sp->tty == NULL)
267 return -ENODEV;
268 return 0;
269}
270
271/* Close the low-level part of the 6pack channel. */
272static int sp_close(struct net_device *dev)
273{
274 struct sixpack *sp = netdev_priv(dev);
275
276 spin_lock_bh(&sp->lock);
277 if (sp->tty) {
278 /* TTY discipline is running. */
279 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
280 }
281 netif_stop_queue(dev);
282 spin_unlock_bh(&sp->lock);
283
284 return 0;
285}
286
287/* Return the frame type ID */
288static int sp_header(struct sk_buff *skb, struct net_device *dev,
289 unsigned short type, const void *daddr,
290 const void *saddr, unsigned len)
291{
292#ifdef CONFIG_INET
293 if (type != ETH_P_AX25)
294 return ax25_hard_header(skb, dev, type, daddr, saddr, len);
295#endif
296 return 0;
297}
298
299static int sp_set_mac_address(struct net_device *dev, void *addr)
300{
301 struct sockaddr_ax25 *sa = addr;
302
303 netif_tx_lock_bh(dev);
304 netif_addr_lock(dev);
305 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
306 netif_addr_unlock(dev);
307 netif_tx_unlock_bh(dev);
308
309 return 0;
310}
311
312static int sp_rebuild_header(struct sk_buff *skb)
313{
314#ifdef CONFIG_INET
315 return ax25_rebuild_header(skb);
316#else
317 return 0;
318#endif
319}
320
321static const struct header_ops sp_header_ops = {
322 .create = sp_header,
323 .rebuild = sp_rebuild_header,
324};
325
326static const struct net_device_ops sp_netdev_ops = {
327 .ndo_open = sp_open_dev,
328 .ndo_stop = sp_close,
329 .ndo_start_xmit = sp_xmit,
330 .ndo_set_mac_address = sp_set_mac_address,
331};
332
333static void sp_setup(struct net_device *dev)
334{
335 /* Finish setting up the DEVICE info. */
336 dev->netdev_ops = &sp_netdev_ops;
337 dev->destructor = free_netdev;
338 dev->mtu = SIXP_MTU;
339 dev->hard_header_len = AX25_MAX_HEADER_LEN;
340 dev->header_ops = &sp_header_ops;
341
342 dev->addr_len = AX25_ADDR_LEN;
343 dev->type = ARPHRD_AX25;
344 dev->tx_queue_len = 10;
345
346 /* Only activated in AX.25 mode */
347 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
348 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
349
350 dev->flags = 0;
351}
352
353/* Send one completely decapsulated IP datagram to the IP layer. */
354
355/*
356 * This is the routine that sends the received data to the kernel AX.25.
357 * 'cmd' is the KISS command. For AX.25 data, it is zero.
358 */
359
360static void sp_bump(struct sixpack *sp, char cmd)
361{
362 struct sk_buff *skb;
363 int count;
364 unsigned char *ptr;
365
366 count = sp->rcount + 1;
367
368 sp->dev->stats.rx_bytes += count;
369
370 if ((skb = dev_alloc_skb(count)) == NULL)
371 goto out_mem;
372
373 ptr = skb_put(skb, count);
374 *ptr++ = cmd; /* KISS command */
375
376 memcpy(ptr, sp->cooked_buf + 1, count);
377 skb->protocol = ax25_type_trans(skb, sp->dev);
378 netif_rx(skb);
379 sp->dev->stats.rx_packets++;
380
381 return;
382
383out_mem:
384 sp->dev->stats.rx_dropped++;
385}
386
387
388/* ----------------------------------------------------------------------- */
389
390/*
391 * We have a potential race on dereferencing tty->disc_data, because the tty
392 * layer provides no locking at all - thus one cpu could be running
393 * sixpack_receive_buf while another calls sixpack_close, which zeroes
394 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
395 * best way to fix this is to use a rwlock in the tty struct, but for now we
396 * use a single global rwlock for all ttys in ppp line discipline.
397 */
398static DEFINE_RWLOCK(disc_data_lock);
399
400static struct sixpack *sp_get(struct tty_struct *tty)
401{
402 struct sixpack *sp;
403
404 read_lock(&disc_data_lock);
405 sp = tty->disc_data;
406 if (sp)
407 atomic_inc(&sp->refcnt);
408 read_unlock(&disc_data_lock);
409
410 return sp;
411}
412
413static void sp_put(struct sixpack *sp)
414{
415 if (atomic_dec_and_test(&sp->refcnt))
416 up(&sp->dead_sem);
417}
418
419/*
420 * Called by the TTY driver when there's room for more data. If we have
421 * more packets to send, we send them here.
422 */
423static void sixpack_write_wakeup(struct tty_struct *tty)
424{
425 struct sixpack *sp = sp_get(tty);
426 int actual;
427
428 if (!sp)
429 return;
430 if (sp->xleft <= 0) {
431 /* Now serial buffer is almost free & we can start
432 * transmission of another packet */
433 sp->dev->stats.tx_packets++;
434 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
435 sp->tx_enable = 0;
436 netif_wake_queue(sp->dev);
437 goto out;
438 }
439
440 if (sp->tx_enable) {
441 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
442 sp->xleft -= actual;
443 sp->xhead += actual;
444 }
445
446out:
447 sp_put(sp);
448}
449
450/* ----------------------------------------------------------------------- */
451
452/*
453 * Handle the 'receiver data ready' interrupt.
454 * This function is called by the 'tty_io' module in the kernel when
455 * a block of 6pack data has been received, which can now be decapsulated
456 * and sent on to some IP layer for further processing.
457 */
458static void sixpack_receive_buf(struct tty_struct *tty,
459 const unsigned char *cp, char *fp, int count)
460{
461 struct sixpack *sp;
462 unsigned char buf[512];
463 int count1;
464
465 if (!count)
466 return;
467
468 sp = sp_get(tty);
469 if (!sp)
470 return;
471
472 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
473
474 /* Read the characters out of the buffer */
475
476 count1 = count;
477 while (count) {
478 count--;
479 if (fp && *fp++) {
480 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
481 sp->dev->stats.rx_errors++;
482 continue;
483 }
484 }
485 sixpack_decode(sp, buf, count1);
486
487 sp_put(sp);
488 tty_unthrottle(tty);
489}
490
491/*
492 * Try to resync the TNC. Called by the resync timer defined in
493 * decode_prio_command
494 */
495
496#define TNC_UNINITIALIZED 0
497#define TNC_UNSYNC_STARTUP 1
498#define TNC_UNSYNCED 2
499#define TNC_IN_SYNC 3
500
501static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
502{
503 char *msg;
504
505 switch (new_tnc_state) {
506 default: /* gcc oh piece-o-crap ... */
507 case TNC_UNSYNC_STARTUP:
508 msg = "Synchronizing with TNC";
509 break;
510 case TNC_UNSYNCED:
511 msg = "Lost synchronization with TNC\n";
512 break;
513 case TNC_IN_SYNC:
514 msg = "Found TNC";
515 break;
516 }
517
518 sp->tnc_state = new_tnc_state;
519 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
520}
521
522static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
523{
524 int old_tnc_state = sp->tnc_state;
525
526 if (old_tnc_state != new_tnc_state)
527 __tnc_set_sync_state(sp, new_tnc_state);
528}
529
530static void resync_tnc(unsigned long channel)
531{
532 struct sixpack *sp = (struct sixpack *) channel;
533 static char resync_cmd = 0xe8;
534
535 /* clear any data that might have been received */
536
537 sp->rx_count = 0;
538 sp->rx_count_cooked = 0;
539
540 /* reset state machine */
541
542 sp->status = 1;
543 sp->status1 = 1;
544 sp->status2 = 0;
545
546 /* resync the TNC */
547
548 sp->led_state = 0x60;
549 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
550 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
551
552
553 /* Start resync timer again -- the TNC might be still absent */
554
555 del_timer(&sp->resync_t);
556 sp->resync_t.data = (unsigned long) sp;
557 sp->resync_t.function = resync_tnc;
558 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
559 add_timer(&sp->resync_t);
560}
561
562static inline int tnc_init(struct sixpack *sp)
563{
564 unsigned char inbyte = 0xe8;
565
566 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
567
568 sp->tty->ops->write(sp->tty, &inbyte, 1);
569
570 del_timer(&sp->resync_t);
571 sp->resync_t.data = (unsigned long) sp;
572 sp->resync_t.function = resync_tnc;
573 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
574 add_timer(&sp->resync_t);
575
576 return 0;
577}
578
579/*
580 * Open the high-level part of the 6pack channel.
581 * This function is called by the TTY module when the
582 * 6pack line discipline is called for. Because we are
583 * sure the tty line exists, we only have to link it to
584 * a free 6pcack channel...
585 */
586static int sixpack_open(struct tty_struct *tty)
587{
588 char *rbuff = NULL, *xbuff = NULL;
589 struct net_device *dev;
590 struct sixpack *sp;
591 unsigned long len;
592 int err = 0;
593
594 if (!capable(CAP_NET_ADMIN))
595 return -EPERM;
596 if (tty->ops->write == NULL)
597 return -EOPNOTSUPP;
598
599 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
600 if (!dev) {
601 err = -ENOMEM;
602 goto out;
603 }
604
605 sp = netdev_priv(dev);
606 sp->dev = dev;
607
608 spin_lock_init(&sp->lock);
609 atomic_set(&sp->refcnt, 1);
610 sema_init(&sp->dead_sem, 0);
611
612 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
613
614 len = dev->mtu * 2;
615
616 rbuff = kmalloc(len + 4, GFP_KERNEL);
617 xbuff = kmalloc(len + 4, GFP_KERNEL);
618
619 if (rbuff == NULL || xbuff == NULL) {
620 err = -ENOBUFS;
621 goto out_free;
622 }
623
624 spin_lock_bh(&sp->lock);
625
626 sp->tty = tty;
627
628 sp->rbuff = rbuff;
629 sp->xbuff = xbuff;
630
631 sp->mtu = AX25_MTU + 73;
632 sp->buffsize = len;
633 sp->rcount = 0;
634 sp->rx_count = 0;
635 sp->rx_count_cooked = 0;
636 sp->xleft = 0;
637
638 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
639
640 sp->duplex = 0;
641 sp->tx_delay = SIXP_TXDELAY;
642 sp->persistence = SIXP_PERSIST;
643 sp->slottime = SIXP_SLOTTIME;
644 sp->led_state = 0x60;
645 sp->status = 1;
646 sp->status1 = 1;
647 sp->status2 = 0;
648 sp->tx_enable = 0;
649
650 netif_start_queue(dev);
651
652 init_timer(&sp->tx_t);
653 sp->tx_t.function = sp_xmit_on_air;
654 sp->tx_t.data = (unsigned long) sp;
655
656 init_timer(&sp->resync_t);
657
658 spin_unlock_bh(&sp->lock);
659
660 /* Done. We have linked the TTY line to a channel. */
661 tty->disc_data = sp;
662 tty->receive_room = 65536;
663
664 /* Now we're ready to register. */
665 err = register_netdev(dev);
666 if (err)
667 goto out_free;
668
669 tnc_init(sp);
670
671 return 0;
672
673out_free:
674 kfree(xbuff);
675 kfree(rbuff);
676
677 if (dev)
678 free_netdev(dev);
679
680out:
681 return err;
682}
683
684
685/*
686 * Close down a 6pack channel.
687 * This means flushing out any pending queues, and then restoring the
688 * TTY line discipline to what it was before it got hooked to 6pack
689 * (which usually is TTY again).
690 */
691static void sixpack_close(struct tty_struct *tty)
692{
693 struct sixpack *sp;
694
695 write_lock_bh(&disc_data_lock);
696 sp = tty->disc_data;
697 tty->disc_data = NULL;
698 write_unlock_bh(&disc_data_lock);
699 if (!sp)
700 return;
701
702 /*
703 * We have now ensured that nobody can start using ap from now on, but
704 * we have to wait for all existing users to finish.
705 */
706 if (!atomic_dec_and_test(&sp->refcnt))
707 down(&sp->dead_sem);
708
709 unregister_netdev(sp->dev);
710
711 del_timer(&sp->tx_t);
712 del_timer(&sp->resync_t);
713
714 /* Free all 6pack frame buffers. */
715 kfree(sp->rbuff);
716 kfree(sp->xbuff);
717}
718
719/* Perform I/O control on an active 6pack channel. */
720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
721 unsigned int cmd, unsigned long arg)
722{
723 struct sixpack *sp = sp_get(tty);
724 struct net_device *dev;
725 unsigned int tmp, err;
726
727 if (!sp)
728 return -ENXIO;
729 dev = sp->dev;
730
731 switch(cmd) {
732 case SIOCGIFNAME:
733 err = copy_to_user((void __user *) arg, dev->name,
734 strlen(dev->name) + 1) ? -EFAULT : 0;
735 break;
736
737 case SIOCGIFENCAP:
738 err = put_user(0, (int __user *) arg);
739 break;
740
741 case SIOCSIFENCAP:
742 if (get_user(tmp, (int __user *) arg)) {
743 err = -EFAULT;
744 break;
745 }
746
747 sp->mode = tmp;
748 dev->addr_len = AX25_ADDR_LEN;
749 dev->hard_header_len = AX25_KISS_HEADER_LEN +
750 AX25_MAX_HEADER_LEN + 3;
751 dev->type = ARPHRD_AX25;
752
753 err = 0;
754 break;
755
756 case SIOCSIFHWADDR: {
757 char addr[AX25_ADDR_LEN];
758
759 if (copy_from_user(&addr,
760 (void __user *) arg, AX25_ADDR_LEN)) {
761 err = -EFAULT;
762 break;
763 }
764
765 netif_tx_lock_bh(dev);
766 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
767 netif_tx_unlock_bh(dev);
768
769 err = 0;
770 break;
771 }
772
773 default:
774 err = tty_mode_ioctl(tty, file, cmd, arg);
775 }
776
777 sp_put(sp);
778
779 return err;
780}
781
782#ifdef CONFIG_COMPAT
783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
784 unsigned int cmd, unsigned long arg)
785{
786 switch (cmd) {
787 case SIOCGIFNAME:
788 case SIOCGIFENCAP:
789 case SIOCSIFENCAP:
790 case SIOCSIFHWADDR:
791 return sixpack_ioctl(tty, file, cmd,
792 (unsigned long)compat_ptr(arg));
793 }
794
795 return -ENOIOCTLCMD;
796}
797#endif
798
799static struct tty_ldisc_ops sp_ldisc = {
800 .owner = THIS_MODULE,
801 .magic = TTY_LDISC_MAGIC,
802 .name = "6pack",
803 .open = sixpack_open,
804 .close = sixpack_close,
805 .ioctl = sixpack_ioctl,
806#ifdef CONFIG_COMPAT
807 .compat_ioctl = sixpack_compat_ioctl,
808#endif
809 .receive_buf = sixpack_receive_buf,
810 .write_wakeup = sixpack_write_wakeup,
811};
812
813/* Initialize 6pack control device -- register 6pack line discipline */
814
815static const char msg_banner[] __initconst = KERN_INFO \
816 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
817static const char msg_regfail[] __initconst = KERN_ERR \
818 "6pack: can't register line discipline (err = %d)\n";
819
820static int __init sixpack_init_driver(void)
821{
822 int status;
823
824 printk(msg_banner);
825
826 /* Register the provided line protocol discipline */
827 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
828 printk(msg_regfail, status);
829
830 return status;
831}
832
833static const char msg_unregfail[] = KERN_ERR \
834 "6pack: can't unregister line discipline (err = %d)\n";
835
836static void __exit sixpack_exit_driver(void)
837{
838 int ret;
839
840 if ((ret = tty_unregister_ldisc(N_6PACK)))
841 printk(msg_unregfail, ret);
842}
843
844/* encode an AX.25 packet into 6pack */
845
846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
847 int length, unsigned char tx_delay)
848{
849 int count = 0;
850 unsigned char checksum = 0, buf[400];
851 int raw_count = 0;
852
853 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
854 tx_buf_raw[raw_count++] = SIXP_SEOF;
855
856 buf[0] = tx_delay;
857 for (count = 1; count < length; count++)
858 buf[count] = tx_buf[count];
859
860 for (count = 0; count < length; count++)
861 checksum += buf[count];
862 buf[length] = (unsigned char) 0xff - checksum;
863
864 for (count = 0; count <= length; count++) {
865 if ((count % 3) == 0) {
866 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
867 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
868 } else if ((count % 3) == 1) {
869 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
870 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
871 } else {
872 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
873 tx_buf_raw[raw_count++] = (buf[count] >> 2);
874 }
875 }
876 if ((length % 3) != 2)
877 raw_count++;
878 tx_buf_raw[raw_count++] = SIXP_SEOF;
879 return raw_count;
880}
881
882/* decode 4 sixpack-encoded bytes into 3 data bytes */
883
884static void decode_data(struct sixpack *sp, unsigned char inbyte)
885{
886 unsigned char *buf;
887
888 if (sp->rx_count != 3) {
889 sp->raw_buf[sp->rx_count++] = inbyte;
890
891 return;
892 }
893
894 buf = sp->raw_buf;
895 sp->cooked_buf[sp->rx_count_cooked++] =
896 buf[0] | ((buf[1] << 2) & 0xc0);
897 sp->cooked_buf[sp->rx_count_cooked++] =
898 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
899 sp->cooked_buf[sp->rx_count_cooked++] =
900 (buf[2] & 0x03) | (inbyte << 2);
901 sp->rx_count = 0;
902}
903
904/* identify and execute a 6pack priority command byte */
905
906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
907{
908 unsigned char channel;
909 int actual;
910
911 channel = cmd & SIXP_CHN_MASK;
912 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
913
914 /* RX and DCD flags can only be set in the same prio command,
915 if the DCD flag has been set without the RX flag in the previous
916 prio command. If DCD has not been set before, something in the
917 transmission has gone wrong. In this case, RX and DCD are
918 cleared in order to prevent the decode_data routine from
919 reading further data that might be corrupt. */
920
921 if (((sp->status & SIXP_DCD_MASK) == 0) &&
922 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
923 if (sp->status != 1)
924 printk(KERN_DEBUG "6pack: protocol violation\n");
925 else
926 sp->status = 0;
927 cmd &= ~SIXP_RX_DCD_MASK;
928 }
929 sp->status = cmd & SIXP_PRIO_DATA_MASK;
930 } else { /* output watchdog char if idle */
931 if ((sp->status2 != 0) && (sp->duplex == 1)) {
932 sp->led_state = 0x70;
933 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
934 sp->tx_enable = 1;
935 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
936 sp->xleft -= actual;
937 sp->xhead += actual;
938 sp->led_state = 0x60;
939 sp->status2 = 0;
940
941 }
942 }
943
944 /* needed to trigger the TNC watchdog */
945 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
946
947 /* if the state byte has been received, the TNC is present,
948 so the resync timer can be reset. */
949
950 if (sp->tnc_state == TNC_IN_SYNC) {
951 del_timer(&sp->resync_t);
952 sp->resync_t.data = (unsigned long) sp;
953 sp->resync_t.function = resync_tnc;
954 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
955 add_timer(&sp->resync_t);
956 }
957
958 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
959}
960
961/* identify and execute a standard 6pack command byte */
962
963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
964{
965 unsigned char checksum = 0, rest = 0, channel;
966 short i;
967
968 channel = cmd & SIXP_CHN_MASK;
969 switch (cmd & SIXP_CMD_MASK) { /* normal command */
970 case SIXP_SEOF:
971 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
972 if ((sp->status & SIXP_RX_DCD_MASK) ==
973 SIXP_RX_DCD_MASK) {
974 sp->led_state = 0x68;
975 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
976 }
977 } else {
978 sp->led_state = 0x60;
979 /* fill trailing bytes with zeroes */
980 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
981 rest = sp->rx_count;
982 if (rest != 0)
983 for (i = rest; i <= 3; i++)
984 decode_data(sp, 0);
985 if (rest == 2)
986 sp->rx_count_cooked -= 2;
987 else if (rest == 3)
988 sp->rx_count_cooked -= 1;
989 for (i = 0; i < sp->rx_count_cooked; i++)
990 checksum += sp->cooked_buf[i];
991 if (checksum != SIXP_CHKSUM) {
992 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
993 } else {
994 sp->rcount = sp->rx_count_cooked-2;
995 sp_bump(sp, 0);
996 }
997 sp->rx_count_cooked = 0;
998 }
999 break;
1000 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001 break;
1002 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003 break;
1004 case SIXP_RX_BUF_OVL:
1005 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006 }
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014 unsigned char inbyte;
1015 int count1;
1016
1017 for (count1 = 0; count1 < count; count1++) {
1018 inbyte = pre_rbuff[count1];
1019 if (inbyte == SIXP_FOUND_TNC) {
1020 tnc_set_sync_state(sp, TNC_IN_SYNC);
1021 del_timer(&sp->resync_t);
1022 }
1023 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024 decode_prio_command(sp, inbyte);
1025 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026 decode_std_command(sp, inbyte);
1027 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1028 decode_data(sp, inbyte);
1029 }
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);