Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3 * Intel PRO/1000 Linux driver
4 * Copyright(c) 1999 - 2006 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
17 *
18 * Contact Information:
19 * Linux NICS <linux.nics@intel.com>
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 *
23 ******************************************************************************/
24
25/* ethtool support for e1000 */
26
27#include "e1000.h"
28#include <linux/jiffies.h>
29#include <linux/uaccess.h>
30
31enum {NETDEV_STATS, E1000_STATS};
32
33struct e1000_stats {
34 char stat_string[ETH_GSTRING_LEN];
35 int type;
36 int sizeof_stat;
37 int stat_offset;
38};
39
40#define E1000_STAT(m) E1000_STATS, \
41 sizeof(((struct e1000_adapter *)0)->m), \
42 offsetof(struct e1000_adapter, m)
43#define E1000_NETDEV_STAT(m) NETDEV_STATS, \
44 sizeof(((struct net_device *)0)->m), \
45 offsetof(struct net_device, m)
46
47static const struct e1000_stats e1000_gstrings_stats[] = {
48 { "rx_packets", E1000_STAT(stats.gprc) },
49 { "tx_packets", E1000_STAT(stats.gptc) },
50 { "rx_bytes", E1000_STAT(stats.gorcl) },
51 { "tx_bytes", E1000_STAT(stats.gotcl) },
52 { "rx_broadcast", E1000_STAT(stats.bprc) },
53 { "tx_broadcast", E1000_STAT(stats.bptc) },
54 { "rx_multicast", E1000_STAT(stats.mprc) },
55 { "tx_multicast", E1000_STAT(stats.mptc) },
56 { "rx_errors", E1000_STAT(stats.rxerrc) },
57 { "tx_errors", E1000_STAT(stats.txerrc) },
58 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
59 { "multicast", E1000_STAT(stats.mprc) },
60 { "collisions", E1000_STAT(stats.colc) },
61 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
62 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
63 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
64 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
65 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
66 { "rx_missed_errors", E1000_STAT(stats.mpc) },
67 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
68 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
69 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
70 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
71 { "tx_window_errors", E1000_STAT(stats.latecol) },
72 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
73 { "tx_deferred_ok", E1000_STAT(stats.dc) },
74 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
75 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
76 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
77 { "tx_restart_queue", E1000_STAT(restart_queue) },
78 { "rx_long_length_errors", E1000_STAT(stats.roc) },
79 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
80 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
81 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
82 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
83 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
84 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
85 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
86 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
87 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
88 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
89 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94};
95
96#define E1000_QUEUE_STATS_LEN 0
97#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
98#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
99static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
100 "Register test (offline)", "Eeprom test (offline)",
101 "Interrupt test (offline)", "Loopback test (offline)",
102 "Link test (on/offline)"
103};
104
105#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107static int e1000_get_link_ksettings(struct net_device *netdev,
108 struct ethtool_link_ksettings *cmd)
109{
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 supported, advertising;
113
114 if (hw->media_type == e1000_media_type_copper) {
115 supported = (SUPPORTED_10baseT_Half |
116 SUPPORTED_10baseT_Full |
117 SUPPORTED_100baseT_Half |
118 SUPPORTED_100baseT_Full |
119 SUPPORTED_1000baseT_Full|
120 SUPPORTED_Autoneg |
121 SUPPORTED_TP);
122 advertising = ADVERTISED_TP;
123
124 if (hw->autoneg == 1) {
125 advertising |= ADVERTISED_Autoneg;
126 /* the e1000 autoneg seems to match ethtool nicely */
127 advertising |= hw->autoneg_advertised;
128 }
129
130 cmd->base.port = PORT_TP;
131 cmd->base.phy_address = hw->phy_addr;
132 } else {
133 supported = (SUPPORTED_1000baseT_Full |
134 SUPPORTED_FIBRE |
135 SUPPORTED_Autoneg);
136
137 advertising = (ADVERTISED_1000baseT_Full |
138 ADVERTISED_FIBRE |
139 ADVERTISED_Autoneg);
140
141 cmd->base.port = PORT_FIBRE;
142 }
143
144 if (er32(STATUS) & E1000_STATUS_LU) {
145 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
146 &adapter->link_duplex);
147 cmd->base.speed = adapter->link_speed;
148
149 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
150 * and HALF_DUPLEX != DUPLEX_HALF
151 */
152 if (adapter->link_duplex == FULL_DUPLEX)
153 cmd->base.duplex = DUPLEX_FULL;
154 else
155 cmd->base.duplex = DUPLEX_HALF;
156 } else {
157 cmd->base.speed = SPEED_UNKNOWN;
158 cmd->base.duplex = DUPLEX_UNKNOWN;
159 }
160
161 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
162 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
163
164 /* MDI-X => 1; MDI => 0 */
165 if ((hw->media_type == e1000_media_type_copper) &&
166 netif_carrier_ok(netdev))
167 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
168 ETH_TP_MDI_X : ETH_TP_MDI);
169 else
170 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
171
172 if (hw->mdix == AUTO_ALL_MODES)
173 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
174 else
175 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
176
177 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
178 supported);
179 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
180 advertising);
181
182 return 0;
183}
184
185static int e1000_set_link_ksettings(struct net_device *netdev,
186 const struct ethtool_link_ksettings *cmd)
187{
188 struct e1000_adapter *adapter = netdev_priv(netdev);
189 struct e1000_hw *hw = &adapter->hw;
190 u32 advertising;
191
192 ethtool_convert_link_mode_to_legacy_u32(&advertising,
193 cmd->link_modes.advertising);
194
195 /* MDI setting is only allowed when autoneg enabled because
196 * some hardware doesn't allow MDI setting when speed or
197 * duplex is forced.
198 */
199 if (cmd->base.eth_tp_mdix_ctrl) {
200 if (hw->media_type != e1000_media_type_copper)
201 return -EOPNOTSUPP;
202
203 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
204 (cmd->base.autoneg != AUTONEG_ENABLE)) {
205 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
206 return -EINVAL;
207 }
208 }
209
210 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
211 msleep(1);
212
213 if (cmd->base.autoneg == AUTONEG_ENABLE) {
214 hw->autoneg = 1;
215 if (hw->media_type == e1000_media_type_fiber)
216 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
217 ADVERTISED_FIBRE |
218 ADVERTISED_Autoneg;
219 else
220 hw->autoneg_advertised = advertising |
221 ADVERTISED_TP |
222 ADVERTISED_Autoneg;
223 } else {
224 u32 speed = cmd->base.speed;
225 /* calling this overrides forced MDI setting */
226 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
227 clear_bit(__E1000_RESETTING, &adapter->flags);
228 return -EINVAL;
229 }
230 }
231
232 /* MDI-X => 2; MDI => 1; Auto => 3 */
233 if (cmd->base.eth_tp_mdix_ctrl) {
234 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
235 hw->mdix = AUTO_ALL_MODES;
236 else
237 hw->mdix = cmd->base.eth_tp_mdix_ctrl;
238 }
239
240 /* reset the link */
241
242 if (netif_running(adapter->netdev)) {
243 e1000_down(adapter);
244 e1000_up(adapter);
245 } else {
246 e1000_reset(adapter);
247 }
248 clear_bit(__E1000_RESETTING, &adapter->flags);
249 return 0;
250}
251
252static u32 e1000_get_link(struct net_device *netdev)
253{
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255
256 /* If the link is not reported up to netdev, interrupts are disabled,
257 * and so the physical link state may have changed since we last
258 * looked. Set get_link_status to make sure that the true link
259 * state is interrogated, rather than pulling a cached and possibly
260 * stale link state from the driver.
261 */
262 if (!netif_carrier_ok(netdev))
263 adapter->hw.get_link_status = 1;
264
265 return e1000_has_link(adapter);
266}
267
268static void e1000_get_pauseparam(struct net_device *netdev,
269 struct ethtool_pauseparam *pause)
270{
271 struct e1000_adapter *adapter = netdev_priv(netdev);
272 struct e1000_hw *hw = &adapter->hw;
273
274 pause->autoneg =
275 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
276
277 if (hw->fc == E1000_FC_RX_PAUSE) {
278 pause->rx_pause = 1;
279 } else if (hw->fc == E1000_FC_TX_PAUSE) {
280 pause->tx_pause = 1;
281 } else if (hw->fc == E1000_FC_FULL) {
282 pause->rx_pause = 1;
283 pause->tx_pause = 1;
284 }
285}
286
287static int e1000_set_pauseparam(struct net_device *netdev,
288 struct ethtool_pauseparam *pause)
289{
290 struct e1000_adapter *adapter = netdev_priv(netdev);
291 struct e1000_hw *hw = &adapter->hw;
292 int retval = 0;
293
294 adapter->fc_autoneg = pause->autoneg;
295
296 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
297 msleep(1);
298
299 if (pause->rx_pause && pause->tx_pause)
300 hw->fc = E1000_FC_FULL;
301 else if (pause->rx_pause && !pause->tx_pause)
302 hw->fc = E1000_FC_RX_PAUSE;
303 else if (!pause->rx_pause && pause->tx_pause)
304 hw->fc = E1000_FC_TX_PAUSE;
305 else if (!pause->rx_pause && !pause->tx_pause)
306 hw->fc = E1000_FC_NONE;
307
308 hw->original_fc = hw->fc;
309
310 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311 if (netif_running(adapter->netdev)) {
312 e1000_down(adapter);
313 e1000_up(adapter);
314 } else {
315 e1000_reset(adapter);
316 }
317 } else
318 retval = ((hw->media_type == e1000_media_type_fiber) ?
319 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
320
321 clear_bit(__E1000_RESETTING, &adapter->flags);
322 return retval;
323}
324
325static u32 e1000_get_msglevel(struct net_device *netdev)
326{
327 struct e1000_adapter *adapter = netdev_priv(netdev);
328
329 return adapter->msg_enable;
330}
331
332static void e1000_set_msglevel(struct net_device *netdev, u32 data)
333{
334 struct e1000_adapter *adapter = netdev_priv(netdev);
335
336 adapter->msg_enable = data;
337}
338
339static int e1000_get_regs_len(struct net_device *netdev)
340{
341#define E1000_REGS_LEN 32
342 return E1000_REGS_LEN * sizeof(u32);
343}
344
345static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
346 void *p)
347{
348 struct e1000_adapter *adapter = netdev_priv(netdev);
349 struct e1000_hw *hw = &adapter->hw;
350 u32 *regs_buff = p;
351 u16 phy_data;
352
353 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
354
355 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356
357 regs_buff[0] = er32(CTRL);
358 regs_buff[1] = er32(STATUS);
359
360 regs_buff[2] = er32(RCTL);
361 regs_buff[3] = er32(RDLEN);
362 regs_buff[4] = er32(RDH);
363 regs_buff[5] = er32(RDT);
364 regs_buff[6] = er32(RDTR);
365
366 regs_buff[7] = er32(TCTL);
367 regs_buff[8] = er32(TDLEN);
368 regs_buff[9] = er32(TDH);
369 regs_buff[10] = er32(TDT);
370 regs_buff[11] = er32(TIDV);
371
372 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
373 if (hw->phy_type == e1000_phy_igp) {
374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
375 IGP01E1000_PHY_AGC_A);
376 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
377 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
378 regs_buff[13] = (u32)phy_data; /* cable length */
379 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380 IGP01E1000_PHY_AGC_B);
381 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
382 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383 regs_buff[14] = (u32)phy_data; /* cable length */
384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385 IGP01E1000_PHY_AGC_C);
386 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
387 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388 regs_buff[15] = (u32)phy_data; /* cable length */
389 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390 IGP01E1000_PHY_AGC_D);
391 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
392 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393 regs_buff[16] = (u32)phy_data; /* cable length */
394 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
396 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
397 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398 regs_buff[18] = (u32)phy_data; /* cable polarity */
399 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400 IGP01E1000_PHY_PCS_INIT_REG);
401 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
402 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403 regs_buff[19] = (u32)phy_data; /* cable polarity */
404 regs_buff[20] = 0; /* polarity correction enabled (always) */
405 regs_buff[22] = 0; /* phy receive errors (unavailable) */
406 regs_buff[23] = regs_buff[18]; /* mdix mode */
407 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408 } else {
409 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
410 regs_buff[13] = (u32)phy_data; /* cable length */
411 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
413 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
416 regs_buff[18] = regs_buff[13]; /* cable polarity */
417 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
418 regs_buff[20] = regs_buff[17]; /* polarity correction */
419 /* phy receive errors */
420 regs_buff[22] = adapter->phy_stats.receive_errors;
421 regs_buff[23] = regs_buff[13]; /* mdix mode */
422 }
423 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
424 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
425 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
426 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
427 if (hw->mac_type >= e1000_82540 &&
428 hw->media_type == e1000_media_type_copper) {
429 regs_buff[26] = er32(MANC);
430 }
431}
432
433static int e1000_get_eeprom_len(struct net_device *netdev)
434{
435 struct e1000_adapter *adapter = netdev_priv(netdev);
436 struct e1000_hw *hw = &adapter->hw;
437
438 return hw->eeprom.word_size * 2;
439}
440
441static int e1000_get_eeprom(struct net_device *netdev,
442 struct ethtool_eeprom *eeprom, u8 *bytes)
443{
444 struct e1000_adapter *adapter = netdev_priv(netdev);
445 struct e1000_hw *hw = &adapter->hw;
446 u16 *eeprom_buff;
447 int first_word, last_word;
448 int ret_val = 0;
449 u16 i;
450
451 if (eeprom->len == 0)
452 return -EINVAL;
453
454 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455
456 first_word = eeprom->offset >> 1;
457 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458
459 eeprom_buff = kmalloc(sizeof(u16) *
460 (last_word - first_word + 1), GFP_KERNEL);
461 if (!eeprom_buff)
462 return -ENOMEM;
463
464 if (hw->eeprom.type == e1000_eeprom_spi)
465 ret_val = e1000_read_eeprom(hw, first_word,
466 last_word - first_word + 1,
467 eeprom_buff);
468 else {
469 for (i = 0; i < last_word - first_word + 1; i++) {
470 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
471 &eeprom_buff[i]);
472 if (ret_val)
473 break;
474 }
475 }
476
477 /* Device's eeprom is always little-endian, word addressable */
478 for (i = 0; i < last_word - first_word + 1; i++)
479 le16_to_cpus(&eeprom_buff[i]);
480
481 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
482 eeprom->len);
483 kfree(eeprom_buff);
484
485 return ret_val;
486}
487
488static int e1000_set_eeprom(struct net_device *netdev,
489 struct ethtool_eeprom *eeprom, u8 *bytes)
490{
491 struct e1000_adapter *adapter = netdev_priv(netdev);
492 struct e1000_hw *hw = &adapter->hw;
493 u16 *eeprom_buff;
494 void *ptr;
495 int max_len, first_word, last_word, ret_val = 0;
496 u16 i;
497
498 if (eeprom->len == 0)
499 return -EOPNOTSUPP;
500
501 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502 return -EFAULT;
503
504 max_len = hw->eeprom.word_size * 2;
505
506 first_word = eeprom->offset >> 1;
507 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
509 if (!eeprom_buff)
510 return -ENOMEM;
511
512 ptr = (void *)eeprom_buff;
513
514 if (eeprom->offset & 1) {
515 /* need read/modify/write of first changed EEPROM word
516 * only the second byte of the word is being modified
517 */
518 ret_val = e1000_read_eeprom(hw, first_word, 1,
519 &eeprom_buff[0]);
520 ptr++;
521 }
522 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
523 /* need read/modify/write of last changed EEPROM word
524 * only the first byte of the word is being modified
525 */
526 ret_val = e1000_read_eeprom(hw, last_word, 1,
527 &eeprom_buff[last_word - first_word]);
528 }
529
530 /* Device's eeprom is always little-endian, word addressable */
531 for (i = 0; i < last_word - first_word + 1; i++)
532 le16_to_cpus(&eeprom_buff[i]);
533
534 memcpy(ptr, bytes, eeprom->len);
535
536 for (i = 0; i < last_word - first_word + 1; i++)
537 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539 ret_val = e1000_write_eeprom(hw, first_word,
540 last_word - first_word + 1, eeprom_buff);
541
542 /* Update the checksum over the first part of the EEPROM if needed */
543 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544 e1000_update_eeprom_checksum(hw);
545
546 kfree(eeprom_buff);
547 return ret_val;
548}
549
550static void e1000_get_drvinfo(struct net_device *netdev,
551 struct ethtool_drvinfo *drvinfo)
552{
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554
555 strlcpy(drvinfo->driver, e1000_driver_name,
556 sizeof(drvinfo->driver));
557 strlcpy(drvinfo->version, e1000_driver_version,
558 sizeof(drvinfo->version));
559
560 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
561 sizeof(drvinfo->bus_info));
562}
563
564static void e1000_get_ringparam(struct net_device *netdev,
565 struct ethtool_ringparam *ring)
566{
567 struct e1000_adapter *adapter = netdev_priv(netdev);
568 struct e1000_hw *hw = &adapter->hw;
569 e1000_mac_type mac_type = hw->mac_type;
570 struct e1000_tx_ring *txdr = adapter->tx_ring;
571 struct e1000_rx_ring *rxdr = adapter->rx_ring;
572
573 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
574 E1000_MAX_82544_RXD;
575 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
576 E1000_MAX_82544_TXD;
577 ring->rx_pending = rxdr->count;
578 ring->tx_pending = txdr->count;
579}
580
581static int e1000_set_ringparam(struct net_device *netdev,
582 struct ethtool_ringparam *ring)
583{
584 struct e1000_adapter *adapter = netdev_priv(netdev);
585 struct e1000_hw *hw = &adapter->hw;
586 e1000_mac_type mac_type = hw->mac_type;
587 struct e1000_tx_ring *txdr, *tx_old;
588 struct e1000_rx_ring *rxdr, *rx_old;
589 int i, err;
590
591 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
592 return -EINVAL;
593
594 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595 msleep(1);
596
597 if (netif_running(adapter->netdev))
598 e1000_down(adapter);
599
600 tx_old = adapter->tx_ring;
601 rx_old = adapter->rx_ring;
602
603 err = -ENOMEM;
604 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
605 GFP_KERNEL);
606 if (!txdr)
607 goto err_alloc_tx;
608
609 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
610 GFP_KERNEL);
611 if (!rxdr)
612 goto err_alloc_rx;
613
614 adapter->tx_ring = txdr;
615 adapter->rx_ring = rxdr;
616
617 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
618 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
619 E1000_MAX_RXD : E1000_MAX_82544_RXD));
620 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
621 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
622 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
623 E1000_MAX_TXD : E1000_MAX_82544_TXD));
624 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
625
626 for (i = 0; i < adapter->num_tx_queues; i++)
627 txdr[i].count = txdr->count;
628 for (i = 0; i < adapter->num_rx_queues; i++)
629 rxdr[i].count = rxdr->count;
630
631 if (netif_running(adapter->netdev)) {
632 /* Try to get new resources before deleting old */
633 err = e1000_setup_all_rx_resources(adapter);
634 if (err)
635 goto err_setup_rx;
636 err = e1000_setup_all_tx_resources(adapter);
637 if (err)
638 goto err_setup_tx;
639
640 /* save the new, restore the old in order to free it,
641 * then restore the new back again
642 */
643
644 adapter->rx_ring = rx_old;
645 adapter->tx_ring = tx_old;
646 e1000_free_all_rx_resources(adapter);
647 e1000_free_all_tx_resources(adapter);
648 kfree(tx_old);
649 kfree(rx_old);
650 adapter->rx_ring = rxdr;
651 adapter->tx_ring = txdr;
652 err = e1000_up(adapter);
653 if (err)
654 goto err_setup;
655 }
656
657 clear_bit(__E1000_RESETTING, &adapter->flags);
658 return 0;
659err_setup_tx:
660 e1000_free_all_rx_resources(adapter);
661err_setup_rx:
662 adapter->rx_ring = rx_old;
663 adapter->tx_ring = tx_old;
664 kfree(rxdr);
665err_alloc_rx:
666 kfree(txdr);
667err_alloc_tx:
668 e1000_up(adapter);
669err_setup:
670 clear_bit(__E1000_RESETTING, &adapter->flags);
671 return err;
672}
673
674static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
675 u32 mask, u32 write)
676{
677 struct e1000_hw *hw = &adapter->hw;
678 static const u32 test[] = {
679 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
680 };
681 u8 __iomem *address = hw->hw_addr + reg;
682 u32 read;
683 int i;
684
685 for (i = 0; i < ARRAY_SIZE(test); i++) {
686 writel(write & test[i], address);
687 read = readl(address);
688 if (read != (write & test[i] & mask)) {
689 e_err(drv, "pattern test reg %04X failed: "
690 "got 0x%08X expected 0x%08X\n",
691 reg, read, (write & test[i] & mask));
692 *data = reg;
693 return true;
694 }
695 }
696 return false;
697}
698
699static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
700 u32 mask, u32 write)
701{
702 struct e1000_hw *hw = &adapter->hw;
703 u8 __iomem *address = hw->hw_addr + reg;
704 u32 read;
705
706 writel(write & mask, address);
707 read = readl(address);
708 if ((read & mask) != (write & mask)) {
709 e_err(drv, "set/check reg %04X test failed: "
710 "got 0x%08X expected 0x%08X\n",
711 reg, (read & mask), (write & mask));
712 *data = reg;
713 return true;
714 }
715 return false;
716}
717
718#define REG_PATTERN_TEST(reg, mask, write) \
719 do { \
720 if (reg_pattern_test(adapter, data, \
721 (hw->mac_type >= e1000_82543) \
722 ? E1000_##reg : E1000_82542_##reg, \
723 mask, write)) \
724 return 1; \
725 } while (0)
726
727#define REG_SET_AND_CHECK(reg, mask, write) \
728 do { \
729 if (reg_set_and_check(adapter, data, \
730 (hw->mac_type >= e1000_82543) \
731 ? E1000_##reg : E1000_82542_##reg, \
732 mask, write)) \
733 return 1; \
734 } while (0)
735
736static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
737{
738 u32 value, before, after;
739 u32 i, toggle;
740 struct e1000_hw *hw = &adapter->hw;
741
742 /* The status register is Read Only, so a write should fail.
743 * Some bits that get toggled are ignored.
744 */
745
746 /* there are several bits on newer hardware that are r/w */
747 toggle = 0xFFFFF833;
748
749 before = er32(STATUS);
750 value = (er32(STATUS) & toggle);
751 ew32(STATUS, toggle);
752 after = er32(STATUS) & toggle;
753 if (value != after) {
754 e_err(drv, "failed STATUS register test got: "
755 "0x%08X expected: 0x%08X\n", after, value);
756 *data = 1;
757 return 1;
758 }
759 /* restore previous status */
760 ew32(STATUS, before);
761
762 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
763 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
764 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
765 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
766
767 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
770 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
771 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
772 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
773 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
775 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
777
778 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
779
780 before = 0x06DFB3FE;
781 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
782 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
783
784 if (hw->mac_type >= e1000_82543) {
785 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
786 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
787 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
788 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
790 value = E1000_RAR_ENTRIES;
791 for (i = 0; i < value; i++) {
792 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
793 0x8003FFFF, 0xFFFFFFFF);
794 }
795 } else {
796 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
797 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
798 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
800 }
801
802 value = E1000_MC_TBL_SIZE;
803 for (i = 0; i < value; i++)
804 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
805
806 *data = 0;
807 return 0;
808}
809
810static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
811{
812 struct e1000_hw *hw = &adapter->hw;
813 u16 temp;
814 u16 checksum = 0;
815 u16 i;
816
817 *data = 0;
818 /* Read and add up the contents of the EEPROM */
819 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
820 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
821 *data = 1;
822 break;
823 }
824 checksum += temp;
825 }
826
827 /* If Checksum is not Correct return error else test passed */
828 if ((checksum != (u16)EEPROM_SUM) && !(*data))
829 *data = 2;
830
831 return *data;
832}
833
834static irqreturn_t e1000_test_intr(int irq, void *data)
835{
836 struct net_device *netdev = (struct net_device *)data;
837 struct e1000_adapter *adapter = netdev_priv(netdev);
838 struct e1000_hw *hw = &adapter->hw;
839
840 adapter->test_icr |= er32(ICR);
841
842 return IRQ_HANDLED;
843}
844
845static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
846{
847 struct net_device *netdev = adapter->netdev;
848 u32 mask, i = 0;
849 bool shared_int = true;
850 u32 irq = adapter->pdev->irq;
851 struct e1000_hw *hw = &adapter->hw;
852
853 *data = 0;
854
855 /* NOTE: we don't test MSI interrupts here, yet
856 * Hook up test interrupt handler just for this test
857 */
858 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
859 netdev))
860 shared_int = false;
861 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
862 netdev->name, netdev)) {
863 *data = 1;
864 return -1;
865 }
866 e_info(hw, "testing %s interrupt\n", (shared_int ?
867 "shared" : "unshared"));
868
869 /* Disable all the interrupts */
870 ew32(IMC, 0xFFFFFFFF);
871 E1000_WRITE_FLUSH();
872 msleep(10);
873
874 /* Test each interrupt */
875 for (; i < 10; i++) {
876 /* Interrupt to test */
877 mask = 1 << i;
878
879 if (!shared_int) {
880 /* Disable the interrupt to be reported in
881 * the cause register and then force the same
882 * interrupt and see if one gets posted. If
883 * an interrupt was posted to the bus, the
884 * test failed.
885 */
886 adapter->test_icr = 0;
887 ew32(IMC, mask);
888 ew32(ICS, mask);
889 E1000_WRITE_FLUSH();
890 msleep(10);
891
892 if (adapter->test_icr & mask) {
893 *data = 3;
894 break;
895 }
896 }
897
898 /* Enable the interrupt to be reported in
899 * the cause register and then force the same
900 * interrupt and see if one gets posted. If
901 * an interrupt was not posted to the bus, the
902 * test failed.
903 */
904 adapter->test_icr = 0;
905 ew32(IMS, mask);
906 ew32(ICS, mask);
907 E1000_WRITE_FLUSH();
908 msleep(10);
909
910 if (!(adapter->test_icr & mask)) {
911 *data = 4;
912 break;
913 }
914
915 if (!shared_int) {
916 /* Disable the other interrupts to be reported in
917 * the cause register and then force the other
918 * interrupts and see if any get posted. If
919 * an interrupt was posted to the bus, the
920 * test failed.
921 */
922 adapter->test_icr = 0;
923 ew32(IMC, ~mask & 0x00007FFF);
924 ew32(ICS, ~mask & 0x00007FFF);
925 E1000_WRITE_FLUSH();
926 msleep(10);
927
928 if (adapter->test_icr) {
929 *data = 5;
930 break;
931 }
932 }
933 }
934
935 /* Disable all the interrupts */
936 ew32(IMC, 0xFFFFFFFF);
937 E1000_WRITE_FLUSH();
938 msleep(10);
939
940 /* Unhook test interrupt handler */
941 free_irq(irq, netdev);
942
943 return *data;
944}
945
946static void e1000_free_desc_rings(struct e1000_adapter *adapter)
947{
948 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
949 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
950 struct pci_dev *pdev = adapter->pdev;
951 int i;
952
953 if (txdr->desc && txdr->buffer_info) {
954 for (i = 0; i < txdr->count; i++) {
955 if (txdr->buffer_info[i].dma)
956 dma_unmap_single(&pdev->dev,
957 txdr->buffer_info[i].dma,
958 txdr->buffer_info[i].length,
959 DMA_TO_DEVICE);
960 if (txdr->buffer_info[i].skb)
961 dev_kfree_skb(txdr->buffer_info[i].skb);
962 }
963 }
964
965 if (rxdr->desc && rxdr->buffer_info) {
966 for (i = 0; i < rxdr->count; i++) {
967 if (rxdr->buffer_info[i].dma)
968 dma_unmap_single(&pdev->dev,
969 rxdr->buffer_info[i].dma,
970 E1000_RXBUFFER_2048,
971 DMA_FROM_DEVICE);
972 kfree(rxdr->buffer_info[i].rxbuf.data);
973 }
974 }
975
976 if (txdr->desc) {
977 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
978 txdr->dma);
979 txdr->desc = NULL;
980 }
981 if (rxdr->desc) {
982 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
983 rxdr->dma);
984 rxdr->desc = NULL;
985 }
986
987 kfree(txdr->buffer_info);
988 txdr->buffer_info = NULL;
989 kfree(rxdr->buffer_info);
990 rxdr->buffer_info = NULL;
991}
992
993static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
994{
995 struct e1000_hw *hw = &adapter->hw;
996 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
997 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
998 struct pci_dev *pdev = adapter->pdev;
999 u32 rctl;
1000 int i, ret_val;
1001
1002 /* Setup Tx descriptor ring and Tx buffers */
1003
1004 if (!txdr->count)
1005 txdr->count = E1000_DEFAULT_TXD;
1006
1007 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1008 GFP_KERNEL);
1009 if (!txdr->buffer_info) {
1010 ret_val = 1;
1011 goto err_nomem;
1012 }
1013
1014 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1015 txdr->size = ALIGN(txdr->size, 4096);
1016 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1017 GFP_KERNEL);
1018 if (!txdr->desc) {
1019 ret_val = 2;
1020 goto err_nomem;
1021 }
1022 txdr->next_to_use = txdr->next_to_clean = 0;
1023
1024 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1025 ew32(TDBAH, ((u64)txdr->dma >> 32));
1026 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1027 ew32(TDH, 0);
1028 ew32(TDT, 0);
1029 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1030 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1031 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1032
1033 for (i = 0; i < txdr->count; i++) {
1034 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1035 struct sk_buff *skb;
1036 unsigned int size = 1024;
1037
1038 skb = alloc_skb(size, GFP_KERNEL);
1039 if (!skb) {
1040 ret_val = 3;
1041 goto err_nomem;
1042 }
1043 skb_put(skb, size);
1044 txdr->buffer_info[i].skb = skb;
1045 txdr->buffer_info[i].length = skb->len;
1046 txdr->buffer_info[i].dma =
1047 dma_map_single(&pdev->dev, skb->data, skb->len,
1048 DMA_TO_DEVICE);
1049 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1050 ret_val = 4;
1051 goto err_nomem;
1052 }
1053 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1054 tx_desc->lower.data = cpu_to_le32(skb->len);
1055 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1056 E1000_TXD_CMD_IFCS |
1057 E1000_TXD_CMD_RPS);
1058 tx_desc->upper.data = 0;
1059 }
1060
1061 /* Setup Rx descriptor ring and Rx buffers */
1062
1063 if (!rxdr->count)
1064 rxdr->count = E1000_DEFAULT_RXD;
1065
1066 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1067 GFP_KERNEL);
1068 if (!rxdr->buffer_info) {
1069 ret_val = 5;
1070 goto err_nomem;
1071 }
1072
1073 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1074 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1075 GFP_KERNEL);
1076 if (!rxdr->desc) {
1077 ret_val = 6;
1078 goto err_nomem;
1079 }
1080 rxdr->next_to_use = rxdr->next_to_clean = 0;
1081
1082 rctl = er32(RCTL);
1083 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1084 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1085 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1086 ew32(RDLEN, rxdr->size);
1087 ew32(RDH, 0);
1088 ew32(RDT, 0);
1089 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1090 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1091 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1092 ew32(RCTL, rctl);
1093
1094 for (i = 0; i < rxdr->count; i++) {
1095 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1096 u8 *buf;
1097
1098 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1099 GFP_KERNEL);
1100 if (!buf) {
1101 ret_val = 7;
1102 goto err_nomem;
1103 }
1104 rxdr->buffer_info[i].rxbuf.data = buf;
1105
1106 rxdr->buffer_info[i].dma =
1107 dma_map_single(&pdev->dev,
1108 buf + NET_SKB_PAD + NET_IP_ALIGN,
1109 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1110 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1111 ret_val = 8;
1112 goto err_nomem;
1113 }
1114 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115 }
1116
1117 return 0;
1118
1119err_nomem:
1120 e1000_free_desc_rings(adapter);
1121 return ret_val;
1122}
1123
1124static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125{
1126 struct e1000_hw *hw = &adapter->hw;
1127
1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129 e1000_write_phy_reg(hw, 29, 0x001F);
1130 e1000_write_phy_reg(hw, 30, 0x8FFC);
1131 e1000_write_phy_reg(hw, 29, 0x001A);
1132 e1000_write_phy_reg(hw, 30, 0x8FF0);
1133}
1134
1135static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136{
1137 struct e1000_hw *hw = &adapter->hw;
1138 u16 phy_reg;
1139
1140 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141 * Extended PHY Specific Control Register to 25MHz clock. This
1142 * value defaults back to a 2.5MHz clock when the PHY is reset.
1143 */
1144 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1146 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1147
1148 /* In addition, because of the s/w reset above, we need to enable
1149 * CRS on TX. This must be set for both full and half duplex
1150 * operation.
1151 */
1152 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1155}
1156
1157static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1158{
1159 struct e1000_hw *hw = &adapter->hw;
1160 u32 ctrl_reg;
1161 u16 phy_reg;
1162
1163 /* Setup the Device Control Register for PHY loopback test. */
1164
1165 ctrl_reg = er32(CTRL);
1166 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1167 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1168 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1169 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1170 E1000_CTRL_FD); /* Force Duplex to FULL */
1171
1172 ew32(CTRL, ctrl_reg);
1173
1174 /* Read the PHY Specific Control Register (0x10) */
1175 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176
1177 /* Clear Auto-Crossover bits in PHY Specific Control Register
1178 * (bits 6:5).
1179 */
1180 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1181 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1182
1183 /* Perform software reset on the PHY */
1184 e1000_phy_reset(hw);
1185
1186 /* Have to setup TX_CLK and TX_CRS after software reset */
1187 e1000_phy_reset_clk_and_crs(adapter);
1188
1189 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1190
1191 /* Wait for reset to complete. */
1192 udelay(500);
1193
1194 /* Have to setup TX_CLK and TX_CRS after software reset */
1195 e1000_phy_reset_clk_and_crs(adapter);
1196
1197 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198 e1000_phy_disable_receiver(adapter);
1199
1200 /* Set the loopback bit in the PHY control register. */
1201 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1202 phy_reg |= MII_CR_LOOPBACK;
1203 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1204
1205 /* Setup TX_CLK and TX_CRS one more time. */
1206 e1000_phy_reset_clk_and_crs(adapter);
1207
1208 /* Check Phy Configuration */
1209 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210 if (phy_reg != 0x4100)
1211 return 9;
1212
1213 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1214 if (phy_reg != 0x0070)
1215 return 10;
1216
1217 e1000_read_phy_reg(hw, 29, &phy_reg);
1218 if (phy_reg != 0x001A)
1219 return 11;
1220
1221 return 0;
1222}
1223
1224static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225{
1226 struct e1000_hw *hw = &adapter->hw;
1227 u32 ctrl_reg = 0;
1228 u32 stat_reg = 0;
1229
1230 hw->autoneg = false;
1231
1232 if (hw->phy_type == e1000_phy_m88) {
1233 /* Auto-MDI/MDIX Off */
1234 e1000_write_phy_reg(hw,
1235 M88E1000_PHY_SPEC_CTRL, 0x0808);
1236 /* reset to update Auto-MDI/MDIX */
1237 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1238 /* autoneg off */
1239 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1240 }
1241
1242 ctrl_reg = er32(CTRL);
1243
1244 /* force 1000, set loopback */
1245 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1246
1247 /* Now set up the MAC to the same speed/duplex as the PHY. */
1248 ctrl_reg = er32(CTRL);
1249 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1250 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1251 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1252 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1253 E1000_CTRL_FD); /* Force Duplex to FULL */
1254
1255 if (hw->media_type == e1000_media_type_copper &&
1256 hw->phy_type == e1000_phy_m88)
1257 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1258 else {
1259 /* Set the ILOS bit on the fiber Nic is half
1260 * duplex link is detected.
1261 */
1262 stat_reg = er32(STATUS);
1263 if ((stat_reg & E1000_STATUS_FD) == 0)
1264 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1265 }
1266
1267 ew32(CTRL, ctrl_reg);
1268
1269 /* Disable the receiver on the PHY so when a cable is plugged in, the
1270 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271 */
1272 if (hw->phy_type == e1000_phy_m88)
1273 e1000_phy_disable_receiver(adapter);
1274
1275 udelay(500);
1276
1277 return 0;
1278}
1279
1280static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1281{
1282 struct e1000_hw *hw = &adapter->hw;
1283 u16 phy_reg = 0;
1284 u16 count = 0;
1285
1286 switch (hw->mac_type) {
1287 case e1000_82543:
1288 if (hw->media_type == e1000_media_type_copper) {
1289 /* Attempt to setup Loopback mode on Non-integrated PHY.
1290 * Some PHY registers get corrupted at random, so
1291 * attempt this 10 times.
1292 */
1293 while (e1000_nonintegrated_phy_loopback(adapter) &&
1294 count++ < 10);
1295 if (count < 11)
1296 return 0;
1297 }
1298 break;
1299
1300 case e1000_82544:
1301 case e1000_82540:
1302 case e1000_82545:
1303 case e1000_82545_rev_3:
1304 case e1000_82546:
1305 case e1000_82546_rev_3:
1306 case e1000_82541:
1307 case e1000_82541_rev_2:
1308 case e1000_82547:
1309 case e1000_82547_rev_2:
1310 return e1000_integrated_phy_loopback(adapter);
1311 default:
1312 /* Default PHY loopback work is to read the MII
1313 * control register and assert bit 14 (loopback mode).
1314 */
1315 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1316 phy_reg |= MII_CR_LOOPBACK;
1317 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1318 return 0;
1319 }
1320
1321 return 8;
1322}
1323
1324static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1325{
1326 struct e1000_hw *hw = &adapter->hw;
1327 u32 rctl;
1328
1329 if (hw->media_type == e1000_media_type_fiber ||
1330 hw->media_type == e1000_media_type_internal_serdes) {
1331 switch (hw->mac_type) {
1332 case e1000_82545:
1333 case e1000_82546:
1334 case e1000_82545_rev_3:
1335 case e1000_82546_rev_3:
1336 return e1000_set_phy_loopback(adapter);
1337 default:
1338 rctl = er32(RCTL);
1339 rctl |= E1000_RCTL_LBM_TCVR;
1340 ew32(RCTL, rctl);
1341 return 0;
1342 }
1343 } else if (hw->media_type == e1000_media_type_copper) {
1344 return e1000_set_phy_loopback(adapter);
1345 }
1346
1347 return 7;
1348}
1349
1350static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1351{
1352 struct e1000_hw *hw = &adapter->hw;
1353 u32 rctl;
1354 u16 phy_reg;
1355
1356 rctl = er32(RCTL);
1357 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1358 ew32(RCTL, rctl);
1359
1360 switch (hw->mac_type) {
1361 case e1000_82545:
1362 case e1000_82546:
1363 case e1000_82545_rev_3:
1364 case e1000_82546_rev_3:
1365 default:
1366 hw->autoneg = true;
1367 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1368 if (phy_reg & MII_CR_LOOPBACK) {
1369 phy_reg &= ~MII_CR_LOOPBACK;
1370 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1371 e1000_phy_reset(hw);
1372 }
1373 break;
1374 }
1375}
1376
1377static void e1000_create_lbtest_frame(struct sk_buff *skb,
1378 unsigned int frame_size)
1379{
1380 memset(skb->data, 0xFF, frame_size);
1381 frame_size &= ~1;
1382 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1383 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1384 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1385}
1386
1387static int e1000_check_lbtest_frame(const unsigned char *data,
1388 unsigned int frame_size)
1389{
1390 frame_size &= ~1;
1391 if (*(data + 3) == 0xFF) {
1392 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1393 (*(data + frame_size / 2 + 12) == 0xAF)) {
1394 return 0;
1395 }
1396 }
1397 return 13;
1398}
1399
1400static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1401{
1402 struct e1000_hw *hw = &adapter->hw;
1403 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1404 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1405 struct pci_dev *pdev = adapter->pdev;
1406 int i, j, k, l, lc, good_cnt, ret_val = 0;
1407 unsigned long time;
1408
1409 ew32(RDT, rxdr->count - 1);
1410
1411 /* Calculate the loop count based on the largest descriptor ring
1412 * The idea is to wrap the largest ring a number of times using 64
1413 * send/receive pairs during each loop
1414 */
1415
1416 if (rxdr->count <= txdr->count)
1417 lc = ((txdr->count / 64) * 2) + 1;
1418 else
1419 lc = ((rxdr->count / 64) * 2) + 1;
1420
1421 k = l = 0;
1422 for (j = 0; j <= lc; j++) { /* loop count loop */
1423 for (i = 0; i < 64; i++) { /* send the packets */
1424 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1425 1024);
1426 dma_sync_single_for_device(&pdev->dev,
1427 txdr->buffer_info[k].dma,
1428 txdr->buffer_info[k].length,
1429 DMA_TO_DEVICE);
1430 if (unlikely(++k == txdr->count))
1431 k = 0;
1432 }
1433 ew32(TDT, k);
1434 E1000_WRITE_FLUSH();
1435 msleep(200);
1436 time = jiffies; /* set the start time for the receive */
1437 good_cnt = 0;
1438 do { /* receive the sent packets */
1439 dma_sync_single_for_cpu(&pdev->dev,
1440 rxdr->buffer_info[l].dma,
1441 E1000_RXBUFFER_2048,
1442 DMA_FROM_DEVICE);
1443
1444 ret_val = e1000_check_lbtest_frame(
1445 rxdr->buffer_info[l].rxbuf.data +
1446 NET_SKB_PAD + NET_IP_ALIGN,
1447 1024);
1448 if (!ret_val)
1449 good_cnt++;
1450 if (unlikely(++l == rxdr->count))
1451 l = 0;
1452 /* time + 20 msecs (200 msecs on 2.4) is more than
1453 * enough time to complete the receives, if it's
1454 * exceeded, break and error off
1455 */
1456 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1457
1458 if (good_cnt != 64) {
1459 ret_val = 13; /* ret_val is the same as mis-compare */
1460 break;
1461 }
1462 if (time_after_eq(jiffies, time + 2)) {
1463 ret_val = 14; /* error code for time out error */
1464 break;
1465 }
1466 } /* end loop count loop */
1467 return ret_val;
1468}
1469
1470static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471{
1472 *data = e1000_setup_desc_rings(adapter);
1473 if (*data)
1474 goto out;
1475 *data = e1000_setup_loopback_test(adapter);
1476 if (*data)
1477 goto err_loopback;
1478 *data = e1000_run_loopback_test(adapter);
1479 e1000_loopback_cleanup(adapter);
1480
1481err_loopback:
1482 e1000_free_desc_rings(adapter);
1483out:
1484 return *data;
1485}
1486
1487static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488{
1489 struct e1000_hw *hw = &adapter->hw;
1490 *data = 0;
1491 if (hw->media_type == e1000_media_type_internal_serdes) {
1492 int i = 0;
1493
1494 hw->serdes_has_link = false;
1495
1496 /* On some blade server designs, link establishment
1497 * could take as long as 2-3 minutes
1498 */
1499 do {
1500 e1000_check_for_link(hw);
1501 if (hw->serdes_has_link)
1502 return *data;
1503 msleep(20);
1504 } while (i++ < 3750);
1505
1506 *data = 1;
1507 } else {
1508 e1000_check_for_link(hw);
1509 if (hw->autoneg) /* if auto_neg is set wait for it */
1510 msleep(4000);
1511
1512 if (!(er32(STATUS) & E1000_STATUS_LU))
1513 *data = 1;
1514 }
1515 return *data;
1516}
1517
1518static int e1000_get_sset_count(struct net_device *netdev, int sset)
1519{
1520 switch (sset) {
1521 case ETH_SS_TEST:
1522 return E1000_TEST_LEN;
1523 case ETH_SS_STATS:
1524 return E1000_STATS_LEN;
1525 default:
1526 return -EOPNOTSUPP;
1527 }
1528}
1529
1530static void e1000_diag_test(struct net_device *netdev,
1531 struct ethtool_test *eth_test, u64 *data)
1532{
1533 struct e1000_adapter *adapter = netdev_priv(netdev);
1534 struct e1000_hw *hw = &adapter->hw;
1535 bool if_running = netif_running(netdev);
1536
1537 set_bit(__E1000_TESTING, &adapter->flags);
1538 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1539 /* Offline tests */
1540
1541 /* save speed, duplex, autoneg settings */
1542 u16 autoneg_advertised = hw->autoneg_advertised;
1543 u8 forced_speed_duplex = hw->forced_speed_duplex;
1544 u8 autoneg = hw->autoneg;
1545
1546 e_info(hw, "offline testing starting\n");
1547
1548 /* Link test performed before hardware reset so autoneg doesn't
1549 * interfere with test result
1550 */
1551 if (e1000_link_test(adapter, &data[4]))
1552 eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554 if (if_running)
1555 /* indicate we're in test mode */
1556 e1000_close(netdev);
1557 else
1558 e1000_reset(adapter);
1559
1560 if (e1000_reg_test(adapter, &data[0]))
1561 eth_test->flags |= ETH_TEST_FL_FAILED;
1562
1563 e1000_reset(adapter);
1564 if (e1000_eeprom_test(adapter, &data[1]))
1565 eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567 e1000_reset(adapter);
1568 if (e1000_intr_test(adapter, &data[2]))
1569 eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571 e1000_reset(adapter);
1572 /* make sure the phy is powered up */
1573 e1000_power_up_phy(adapter);
1574 if (e1000_loopback_test(adapter, &data[3]))
1575 eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577 /* restore speed, duplex, autoneg settings */
1578 hw->autoneg_advertised = autoneg_advertised;
1579 hw->forced_speed_duplex = forced_speed_duplex;
1580 hw->autoneg = autoneg;
1581
1582 e1000_reset(adapter);
1583 clear_bit(__E1000_TESTING, &adapter->flags);
1584 if (if_running)
1585 e1000_open(netdev);
1586 } else {
1587 e_info(hw, "online testing starting\n");
1588 /* Online tests */
1589 if (e1000_link_test(adapter, &data[4]))
1590 eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592 /* Online tests aren't run; pass by default */
1593 data[0] = 0;
1594 data[1] = 0;
1595 data[2] = 0;
1596 data[3] = 0;
1597
1598 clear_bit(__E1000_TESTING, &adapter->flags);
1599 }
1600 msleep_interruptible(4 * 1000);
1601}
1602
1603static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1604 struct ethtool_wolinfo *wol)
1605{
1606 struct e1000_hw *hw = &adapter->hw;
1607 int retval = 1; /* fail by default */
1608
1609 switch (hw->device_id) {
1610 case E1000_DEV_ID_82542:
1611 case E1000_DEV_ID_82543GC_FIBER:
1612 case E1000_DEV_ID_82543GC_COPPER:
1613 case E1000_DEV_ID_82544EI_FIBER:
1614 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1615 case E1000_DEV_ID_82545EM_FIBER:
1616 case E1000_DEV_ID_82545EM_COPPER:
1617 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1618 case E1000_DEV_ID_82546GB_PCIE:
1619 /* these don't support WoL at all */
1620 wol->supported = 0;
1621 break;
1622 case E1000_DEV_ID_82546EB_FIBER:
1623 case E1000_DEV_ID_82546GB_FIBER:
1624 /* Wake events not supported on port B */
1625 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1626 wol->supported = 0;
1627 break;
1628 }
1629 /* return success for non excluded adapter ports */
1630 retval = 0;
1631 break;
1632 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633 /* quad port adapters only support WoL on port A */
1634 if (!adapter->quad_port_a) {
1635 wol->supported = 0;
1636 break;
1637 }
1638 /* return success for non excluded adapter ports */
1639 retval = 0;
1640 break;
1641 default:
1642 /* dual port cards only support WoL on port A from now on
1643 * unless it was enabled in the eeprom for port B
1644 * so exclude FUNC_1 ports from having WoL enabled
1645 */
1646 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1647 !adapter->eeprom_wol) {
1648 wol->supported = 0;
1649 break;
1650 }
1651
1652 retval = 0;
1653 }
1654
1655 return retval;
1656}
1657
1658static void e1000_get_wol(struct net_device *netdev,
1659 struct ethtool_wolinfo *wol)
1660{
1661 struct e1000_adapter *adapter = netdev_priv(netdev);
1662 struct e1000_hw *hw = &adapter->hw;
1663
1664 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1665 wol->wolopts = 0;
1666
1667 /* this function will set ->supported = 0 and return 1 if wol is not
1668 * supported by this hardware
1669 */
1670 if (e1000_wol_exclusion(adapter, wol) ||
1671 !device_can_wakeup(&adapter->pdev->dev))
1672 return;
1673
1674 /* apply any specific unsupported masks here */
1675 switch (hw->device_id) {
1676 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1677 /* KSP3 does not support UCAST wake-ups */
1678 wol->supported &= ~WAKE_UCAST;
1679
1680 if (adapter->wol & E1000_WUFC_EX)
1681 e_err(drv, "Interface does not support directed "
1682 "(unicast) frame wake-up packets\n");
1683 break;
1684 default:
1685 break;
1686 }
1687
1688 if (adapter->wol & E1000_WUFC_EX)
1689 wol->wolopts |= WAKE_UCAST;
1690 if (adapter->wol & E1000_WUFC_MC)
1691 wol->wolopts |= WAKE_MCAST;
1692 if (adapter->wol & E1000_WUFC_BC)
1693 wol->wolopts |= WAKE_BCAST;
1694 if (adapter->wol & E1000_WUFC_MAG)
1695 wol->wolopts |= WAKE_MAGIC;
1696}
1697
1698static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1699{
1700 struct e1000_adapter *adapter = netdev_priv(netdev);
1701 struct e1000_hw *hw = &adapter->hw;
1702
1703 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1704 return -EOPNOTSUPP;
1705
1706 if (e1000_wol_exclusion(adapter, wol) ||
1707 !device_can_wakeup(&adapter->pdev->dev))
1708 return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710 switch (hw->device_id) {
1711 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1712 if (wol->wolopts & WAKE_UCAST) {
1713 e_err(drv, "Interface does not support directed "
1714 "(unicast) frame wake-up packets\n");
1715 return -EOPNOTSUPP;
1716 }
1717 break;
1718 default:
1719 break;
1720 }
1721
1722 /* these settings will always override what we currently have */
1723 adapter->wol = 0;
1724
1725 if (wol->wolopts & WAKE_UCAST)
1726 adapter->wol |= E1000_WUFC_EX;
1727 if (wol->wolopts & WAKE_MCAST)
1728 adapter->wol |= E1000_WUFC_MC;
1729 if (wol->wolopts & WAKE_BCAST)
1730 adapter->wol |= E1000_WUFC_BC;
1731 if (wol->wolopts & WAKE_MAGIC)
1732 adapter->wol |= E1000_WUFC_MAG;
1733
1734 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1735
1736 return 0;
1737}
1738
1739static int e1000_set_phys_id(struct net_device *netdev,
1740 enum ethtool_phys_id_state state)
1741{
1742 struct e1000_adapter *adapter = netdev_priv(netdev);
1743 struct e1000_hw *hw = &adapter->hw;
1744
1745 switch (state) {
1746 case ETHTOOL_ID_ACTIVE:
1747 e1000_setup_led(hw);
1748 return 2;
1749
1750 case ETHTOOL_ID_ON:
1751 e1000_led_on(hw);
1752 break;
1753
1754 case ETHTOOL_ID_OFF:
1755 e1000_led_off(hw);
1756 break;
1757
1758 case ETHTOOL_ID_INACTIVE:
1759 e1000_cleanup_led(hw);
1760 }
1761
1762 return 0;
1763}
1764
1765static int e1000_get_coalesce(struct net_device *netdev,
1766 struct ethtool_coalesce *ec)
1767{
1768 struct e1000_adapter *adapter = netdev_priv(netdev);
1769
1770 if (adapter->hw.mac_type < e1000_82545)
1771 return -EOPNOTSUPP;
1772
1773 if (adapter->itr_setting <= 4)
1774 ec->rx_coalesce_usecs = adapter->itr_setting;
1775 else
1776 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1777
1778 return 0;
1779}
1780
1781static int e1000_set_coalesce(struct net_device *netdev,
1782 struct ethtool_coalesce *ec)
1783{
1784 struct e1000_adapter *adapter = netdev_priv(netdev);
1785 struct e1000_hw *hw = &adapter->hw;
1786
1787 if (hw->mac_type < e1000_82545)
1788 return -EOPNOTSUPP;
1789
1790 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1791 ((ec->rx_coalesce_usecs > 4) &&
1792 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1793 (ec->rx_coalesce_usecs == 2))
1794 return -EINVAL;
1795
1796 if (ec->rx_coalesce_usecs == 4) {
1797 adapter->itr = adapter->itr_setting = 4;
1798 } else if (ec->rx_coalesce_usecs <= 3) {
1799 adapter->itr = 20000;
1800 adapter->itr_setting = ec->rx_coalesce_usecs;
1801 } else {
1802 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1803 adapter->itr_setting = adapter->itr & ~3;
1804 }
1805
1806 if (adapter->itr_setting != 0)
1807 ew32(ITR, 1000000000 / (adapter->itr * 256));
1808 else
1809 ew32(ITR, 0);
1810
1811 return 0;
1812}
1813
1814static int e1000_nway_reset(struct net_device *netdev)
1815{
1816 struct e1000_adapter *adapter = netdev_priv(netdev);
1817
1818 if (netif_running(netdev))
1819 e1000_reinit_locked(adapter);
1820 return 0;
1821}
1822
1823static void e1000_get_ethtool_stats(struct net_device *netdev,
1824 struct ethtool_stats *stats, u64 *data)
1825{
1826 struct e1000_adapter *adapter = netdev_priv(netdev);
1827 int i;
1828 const struct e1000_stats *stat = e1000_gstrings_stats;
1829
1830 e1000_update_stats(adapter);
1831 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1832 char *p;
1833
1834 switch (stat->type) {
1835 case NETDEV_STATS:
1836 p = (char *)netdev + stat->stat_offset;
1837 break;
1838 case E1000_STATS:
1839 p = (char *)adapter + stat->stat_offset;
1840 break;
1841 default:
1842 netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1843 stat->type, i);
1844 continue;
1845 }
1846
1847 if (stat->sizeof_stat == sizeof(u64))
1848 data[i] = *(u64 *)p;
1849 else
1850 data[i] = *(u32 *)p;
1851 }
1852/* BUG_ON(i != E1000_STATS_LEN); */
1853}
1854
1855static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856 u8 *data)
1857{
1858 u8 *p = data;
1859 int i;
1860
1861 switch (stringset) {
1862 case ETH_SS_TEST:
1863 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1864 break;
1865 case ETH_SS_STATS:
1866 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1867 memcpy(p, e1000_gstrings_stats[i].stat_string,
1868 ETH_GSTRING_LEN);
1869 p += ETH_GSTRING_LEN;
1870 }
1871 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1872 break;
1873 }
1874}
1875
1876static const struct ethtool_ops e1000_ethtool_ops = {
1877 .get_drvinfo = e1000_get_drvinfo,
1878 .get_regs_len = e1000_get_regs_len,
1879 .get_regs = e1000_get_regs,
1880 .get_wol = e1000_get_wol,
1881 .set_wol = e1000_set_wol,
1882 .get_msglevel = e1000_get_msglevel,
1883 .set_msglevel = e1000_set_msglevel,
1884 .nway_reset = e1000_nway_reset,
1885 .get_link = e1000_get_link,
1886 .get_eeprom_len = e1000_get_eeprom_len,
1887 .get_eeprom = e1000_get_eeprom,
1888 .set_eeprom = e1000_set_eeprom,
1889 .get_ringparam = e1000_get_ringparam,
1890 .set_ringparam = e1000_set_ringparam,
1891 .get_pauseparam = e1000_get_pauseparam,
1892 .set_pauseparam = e1000_set_pauseparam,
1893 .self_test = e1000_diag_test,
1894 .get_strings = e1000_get_strings,
1895 .set_phys_id = e1000_set_phys_id,
1896 .get_ethtool_stats = e1000_get_ethtool_stats,
1897 .get_sset_count = e1000_get_sset_count,
1898 .get_coalesce = e1000_get_coalesce,
1899 .set_coalesce = e1000_set_coalesce,
1900 .get_ts_info = ethtool_op_get_ts_info,
1901 .get_link_ksettings = e1000_get_link_ksettings,
1902 .set_link_ksettings = e1000_set_link_ksettings,
1903};
1904
1905void e1000_set_ethtool_ops(struct net_device *netdev)
1906{
1907 netdev->ethtool_ops = &e1000_ethtool_ops;
1908}
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include "e1000.h"
32#include <asm/uaccess.h>
33
34enum {NETDEV_STATS, E1000_STATS};
35
36struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
41};
42
43#define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46#define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
49
50static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97};
98
99#define E1000_QUEUE_STATS_LEN 0
100#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106};
107#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
108
109static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
111{
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
114
115 if (hw->media_type == e1000_media_type_copper) {
116
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
125
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
130 }
131
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
134
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
139
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
144
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
148
149 ecmd->port = PORT_FIBRE;
150
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
155 }
156
157 if (er32(STATUS) & E1000_STATUS_LU) {
158
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF
165 */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ethtool_cmd_speed_set(ecmd, -1);
172 ecmd->duplex = -1;
173 }
174
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177
178 /* MDI-X => 1; MDI => 0 */
179 if ((hw->media_type == e1000_media_type_copper) &&
180 netif_carrier_ok(netdev))
181 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
182 ETH_TP_MDI_X : ETH_TP_MDI);
183 else
184 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
185
186 if (hw->mdix == AUTO_ALL_MODES)
187 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
188 else
189 ecmd->eth_tp_mdix_ctrl = hw->mdix;
190 return 0;
191}
192
193static int e1000_set_settings(struct net_device *netdev,
194 struct ethtool_cmd *ecmd)
195{
196 struct e1000_adapter *adapter = netdev_priv(netdev);
197 struct e1000_hw *hw = &adapter->hw;
198
199 /* MDI setting is only allowed when autoneg enabled because
200 * some hardware doesn't allow MDI setting when speed or
201 * duplex is forced.
202 */
203 if (ecmd->eth_tp_mdix_ctrl) {
204 if (hw->media_type != e1000_media_type_copper)
205 return -EOPNOTSUPP;
206
207 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
208 (ecmd->autoneg != AUTONEG_ENABLE)) {
209 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
210 return -EINVAL;
211 }
212 }
213
214 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
215 msleep(1);
216
217 if (ecmd->autoneg == AUTONEG_ENABLE) {
218 hw->autoneg = 1;
219 if (hw->media_type == e1000_media_type_fiber)
220 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
221 ADVERTISED_FIBRE |
222 ADVERTISED_Autoneg;
223 else
224 hw->autoneg_advertised = ecmd->advertising |
225 ADVERTISED_TP |
226 ADVERTISED_Autoneg;
227 ecmd->advertising = hw->autoneg_advertised;
228 } else {
229 u32 speed = ethtool_cmd_speed(ecmd);
230 /* calling this overrides forced MDI setting */
231 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
232 clear_bit(__E1000_RESETTING, &adapter->flags);
233 return -EINVAL;
234 }
235 }
236
237 /* MDI-X => 2; MDI => 1; Auto => 3 */
238 if (ecmd->eth_tp_mdix_ctrl) {
239 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
240 hw->mdix = AUTO_ALL_MODES;
241 else
242 hw->mdix = ecmd->eth_tp_mdix_ctrl;
243 }
244
245 /* reset the link */
246
247 if (netif_running(adapter->netdev)) {
248 e1000_down(adapter);
249 e1000_up(adapter);
250 } else
251 e1000_reset(adapter);
252
253 clear_bit(__E1000_RESETTING, &adapter->flags);
254 return 0;
255}
256
257static u32 e1000_get_link(struct net_device *netdev)
258{
259 struct e1000_adapter *adapter = netdev_priv(netdev);
260
261 /* If the link is not reported up to netdev, interrupts are disabled,
262 * and so the physical link state may have changed since we last
263 * looked. Set get_link_status to make sure that the true link
264 * state is interrogated, rather than pulling a cached and possibly
265 * stale link state from the driver.
266 */
267 if (!netif_carrier_ok(netdev))
268 adapter->hw.get_link_status = 1;
269
270 return e1000_has_link(adapter);
271}
272
273static void e1000_get_pauseparam(struct net_device *netdev,
274 struct ethtool_pauseparam *pause)
275{
276 struct e1000_adapter *adapter = netdev_priv(netdev);
277 struct e1000_hw *hw = &adapter->hw;
278
279 pause->autoneg =
280 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281
282 if (hw->fc == E1000_FC_RX_PAUSE)
283 pause->rx_pause = 1;
284 else if (hw->fc == E1000_FC_TX_PAUSE)
285 pause->tx_pause = 1;
286 else if (hw->fc == E1000_FC_FULL) {
287 pause->rx_pause = 1;
288 pause->tx_pause = 1;
289 }
290}
291
292static int e1000_set_pauseparam(struct net_device *netdev,
293 struct ethtool_pauseparam *pause)
294{
295 struct e1000_adapter *adapter = netdev_priv(netdev);
296 struct e1000_hw *hw = &adapter->hw;
297 int retval = 0;
298
299 adapter->fc_autoneg = pause->autoneg;
300
301 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
302 msleep(1);
303
304 if (pause->rx_pause && pause->tx_pause)
305 hw->fc = E1000_FC_FULL;
306 else if (pause->rx_pause && !pause->tx_pause)
307 hw->fc = E1000_FC_RX_PAUSE;
308 else if (!pause->rx_pause && pause->tx_pause)
309 hw->fc = E1000_FC_TX_PAUSE;
310 else if (!pause->rx_pause && !pause->tx_pause)
311 hw->fc = E1000_FC_NONE;
312
313 hw->original_fc = hw->fc;
314
315 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316 if (netif_running(adapter->netdev)) {
317 e1000_down(adapter);
318 e1000_up(adapter);
319 } else
320 e1000_reset(adapter);
321 } else
322 retval = ((hw->media_type == e1000_media_type_fiber) ?
323 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
324
325 clear_bit(__E1000_RESETTING, &adapter->flags);
326 return retval;
327}
328
329static u32 e1000_get_msglevel(struct net_device *netdev)
330{
331 struct e1000_adapter *adapter = netdev_priv(netdev);
332 return adapter->msg_enable;
333}
334
335static void e1000_set_msglevel(struct net_device *netdev, u32 data)
336{
337 struct e1000_adapter *adapter = netdev_priv(netdev);
338 adapter->msg_enable = data;
339}
340
341static int e1000_get_regs_len(struct net_device *netdev)
342{
343#define E1000_REGS_LEN 32
344 return E1000_REGS_LEN * sizeof(u32);
345}
346
347static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
348 void *p)
349{
350 struct e1000_adapter *adapter = netdev_priv(netdev);
351 struct e1000_hw *hw = &adapter->hw;
352 u32 *regs_buff = p;
353 u16 phy_data;
354
355 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
356
357 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
358
359 regs_buff[0] = er32(CTRL);
360 regs_buff[1] = er32(STATUS);
361
362 regs_buff[2] = er32(RCTL);
363 regs_buff[3] = er32(RDLEN);
364 regs_buff[4] = er32(RDH);
365 regs_buff[5] = er32(RDT);
366 regs_buff[6] = er32(RDTR);
367
368 regs_buff[7] = er32(TCTL);
369 regs_buff[8] = er32(TDLEN);
370 regs_buff[9] = er32(TDH);
371 regs_buff[10] = er32(TDT);
372 regs_buff[11] = er32(TIDV);
373
374 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
375 if (hw->phy_type == e1000_phy_igp) {
376 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377 IGP01E1000_PHY_AGC_A);
378 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
379 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380 regs_buff[13] = (u32)phy_data; /* cable length */
381 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382 IGP01E1000_PHY_AGC_B);
383 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
384 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385 regs_buff[14] = (u32)phy_data; /* cable length */
386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387 IGP01E1000_PHY_AGC_C);
388 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
389 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390 regs_buff[15] = (u32)phy_data; /* cable length */
391 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392 IGP01E1000_PHY_AGC_D);
393 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
394 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395 regs_buff[16] = (u32)phy_data; /* cable length */
396 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
397 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
398 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
399 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400 regs_buff[18] = (u32)phy_data; /* cable polarity */
401 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402 IGP01E1000_PHY_PCS_INIT_REG);
403 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
404 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405 regs_buff[19] = (u32)phy_data; /* cable polarity */
406 regs_buff[20] = 0; /* polarity correction enabled (always) */
407 regs_buff[22] = 0; /* phy receive errors (unavailable) */
408 regs_buff[23] = regs_buff[18]; /* mdix mode */
409 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
410 } else {
411 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
412 regs_buff[13] = (u32)phy_data; /* cable length */
413 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
415 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
416 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
417 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
418 regs_buff[18] = regs_buff[13]; /* cable polarity */
419 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
420 regs_buff[20] = regs_buff[17]; /* polarity correction */
421 /* phy receive errors */
422 regs_buff[22] = adapter->phy_stats.receive_errors;
423 regs_buff[23] = regs_buff[13]; /* mdix mode */
424 }
425 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
426 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
427 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
428 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
429 if (hw->mac_type >= e1000_82540 &&
430 hw->media_type == e1000_media_type_copper) {
431 regs_buff[26] = er32(MANC);
432 }
433}
434
435static int e1000_get_eeprom_len(struct net_device *netdev)
436{
437 struct e1000_adapter *adapter = netdev_priv(netdev);
438 struct e1000_hw *hw = &adapter->hw;
439
440 return hw->eeprom.word_size * 2;
441}
442
443static int e1000_get_eeprom(struct net_device *netdev,
444 struct ethtool_eeprom *eeprom, u8 *bytes)
445{
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 struct e1000_hw *hw = &adapter->hw;
448 u16 *eeprom_buff;
449 int first_word, last_word;
450 int ret_val = 0;
451 u16 i;
452
453 if (eeprom->len == 0)
454 return -EINVAL;
455
456 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
457
458 first_word = eeprom->offset >> 1;
459 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
460
461 eeprom_buff = kmalloc(sizeof(u16) *
462 (last_word - first_word + 1), GFP_KERNEL);
463 if (!eeprom_buff)
464 return -ENOMEM;
465
466 if (hw->eeprom.type == e1000_eeprom_spi)
467 ret_val = e1000_read_eeprom(hw, first_word,
468 last_word - first_word + 1,
469 eeprom_buff);
470 else {
471 for (i = 0; i < last_word - first_word + 1; i++) {
472 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
473 &eeprom_buff[i]);
474 if (ret_val)
475 break;
476 }
477 }
478
479 /* Device's eeprom is always little-endian, word addressable */
480 for (i = 0; i < last_word - first_word + 1; i++)
481 le16_to_cpus(&eeprom_buff[i]);
482
483 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
484 eeprom->len);
485 kfree(eeprom_buff);
486
487 return ret_val;
488}
489
490static int e1000_set_eeprom(struct net_device *netdev,
491 struct ethtool_eeprom *eeprom, u8 *bytes)
492{
493 struct e1000_adapter *adapter = netdev_priv(netdev);
494 struct e1000_hw *hw = &adapter->hw;
495 u16 *eeprom_buff;
496 void *ptr;
497 int max_len, first_word, last_word, ret_val = 0;
498 u16 i;
499
500 if (eeprom->len == 0)
501 return -EOPNOTSUPP;
502
503 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
504 return -EFAULT;
505
506 max_len = hw->eeprom.word_size * 2;
507
508 first_word = eeprom->offset >> 1;
509 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
510 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
511 if (!eeprom_buff)
512 return -ENOMEM;
513
514 ptr = (void *)eeprom_buff;
515
516 if (eeprom->offset & 1) {
517 /* need read/modify/write of first changed EEPROM word
518 * only the second byte of the word is being modified
519 */
520 ret_val = e1000_read_eeprom(hw, first_word, 1,
521 &eeprom_buff[0]);
522 ptr++;
523 }
524 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
525 /* need read/modify/write of last changed EEPROM word
526 * only the first byte of the word is being modified
527 */
528 ret_val = e1000_read_eeprom(hw, last_word, 1,
529 &eeprom_buff[last_word - first_word]);
530 }
531
532 /* Device's eeprom is always little-endian, word addressable */
533 for (i = 0; i < last_word - first_word + 1; i++)
534 le16_to_cpus(&eeprom_buff[i]);
535
536 memcpy(ptr, bytes, eeprom->len);
537
538 for (i = 0; i < last_word - first_word + 1; i++)
539 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
540
541 ret_val = e1000_write_eeprom(hw, first_word,
542 last_word - first_word + 1, eeprom_buff);
543
544 /* Update the checksum over the first part of the EEPROM if needed */
545 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
546 e1000_update_eeprom_checksum(hw);
547
548 kfree(eeprom_buff);
549 return ret_val;
550}
551
552static void e1000_get_drvinfo(struct net_device *netdev,
553 struct ethtool_drvinfo *drvinfo)
554{
555 struct e1000_adapter *adapter = netdev_priv(netdev);
556
557 strlcpy(drvinfo->driver, e1000_driver_name,
558 sizeof(drvinfo->driver));
559 strlcpy(drvinfo->version, e1000_driver_version,
560 sizeof(drvinfo->version));
561
562 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
563 sizeof(drvinfo->bus_info));
564 drvinfo->regdump_len = e1000_get_regs_len(netdev);
565 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
566}
567
568static void e1000_get_ringparam(struct net_device *netdev,
569 struct ethtool_ringparam *ring)
570{
571 struct e1000_adapter *adapter = netdev_priv(netdev);
572 struct e1000_hw *hw = &adapter->hw;
573 e1000_mac_type mac_type = hw->mac_type;
574 struct e1000_tx_ring *txdr = adapter->tx_ring;
575 struct e1000_rx_ring *rxdr = adapter->rx_ring;
576
577 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
578 E1000_MAX_82544_RXD;
579 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
580 E1000_MAX_82544_TXD;
581 ring->rx_pending = rxdr->count;
582 ring->tx_pending = txdr->count;
583}
584
585static int e1000_set_ringparam(struct net_device *netdev,
586 struct ethtool_ringparam *ring)
587{
588 struct e1000_adapter *adapter = netdev_priv(netdev);
589 struct e1000_hw *hw = &adapter->hw;
590 e1000_mac_type mac_type = hw->mac_type;
591 struct e1000_tx_ring *txdr, *tx_old;
592 struct e1000_rx_ring *rxdr, *rx_old;
593 int i, err;
594
595 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
596 return -EINVAL;
597
598 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
599 msleep(1);
600
601 if (netif_running(adapter->netdev))
602 e1000_down(adapter);
603
604 tx_old = adapter->tx_ring;
605 rx_old = adapter->rx_ring;
606
607 err = -ENOMEM;
608 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
609 GFP_KERNEL);
610 if (!txdr)
611 goto err_alloc_tx;
612
613 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
614 GFP_KERNEL);
615 if (!rxdr)
616 goto err_alloc_rx;
617
618 adapter->tx_ring = txdr;
619 adapter->rx_ring = rxdr;
620
621 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
622 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
623 E1000_MAX_RXD : E1000_MAX_82544_RXD));
624 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
625
626 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
627 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
628 E1000_MAX_TXD : E1000_MAX_82544_TXD));
629 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
630
631 for (i = 0; i < adapter->num_tx_queues; i++)
632 txdr[i].count = txdr->count;
633 for (i = 0; i < adapter->num_rx_queues; i++)
634 rxdr[i].count = rxdr->count;
635
636 if (netif_running(adapter->netdev)) {
637 /* Try to get new resources before deleting old */
638 err = e1000_setup_all_rx_resources(adapter);
639 if (err)
640 goto err_setup_rx;
641 err = e1000_setup_all_tx_resources(adapter);
642 if (err)
643 goto err_setup_tx;
644
645 /* save the new, restore the old in order to free it,
646 * then restore the new back again
647 */
648
649 adapter->rx_ring = rx_old;
650 adapter->tx_ring = tx_old;
651 e1000_free_all_rx_resources(adapter);
652 e1000_free_all_tx_resources(adapter);
653 kfree(tx_old);
654 kfree(rx_old);
655 adapter->rx_ring = rxdr;
656 adapter->tx_ring = txdr;
657 err = e1000_up(adapter);
658 if (err)
659 goto err_setup;
660 }
661
662 clear_bit(__E1000_RESETTING, &adapter->flags);
663 return 0;
664err_setup_tx:
665 e1000_free_all_rx_resources(adapter);
666err_setup_rx:
667 adapter->rx_ring = rx_old;
668 adapter->tx_ring = tx_old;
669 kfree(rxdr);
670err_alloc_rx:
671 kfree(txdr);
672err_alloc_tx:
673 e1000_up(adapter);
674err_setup:
675 clear_bit(__E1000_RESETTING, &adapter->flags);
676 return err;
677}
678
679static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
680 u32 mask, u32 write)
681{
682 struct e1000_hw *hw = &adapter->hw;
683 static const u32 test[] =
684 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
685 u8 __iomem *address = hw->hw_addr + reg;
686 u32 read;
687 int i;
688
689 for (i = 0; i < ARRAY_SIZE(test); i++) {
690 writel(write & test[i], address);
691 read = readl(address);
692 if (read != (write & test[i] & mask)) {
693 e_err(drv, "pattern test reg %04X failed: "
694 "got 0x%08X expected 0x%08X\n",
695 reg, read, (write & test[i] & mask));
696 *data = reg;
697 return true;
698 }
699 }
700 return false;
701}
702
703static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
704 u32 mask, u32 write)
705{
706 struct e1000_hw *hw = &adapter->hw;
707 u8 __iomem *address = hw->hw_addr + reg;
708 u32 read;
709
710 writel(write & mask, address);
711 read = readl(address);
712 if ((read & mask) != (write & mask)) {
713 e_err(drv, "set/check reg %04X test failed: "
714 "got 0x%08X expected 0x%08X\n",
715 reg, (read & mask), (write & mask));
716 *data = reg;
717 return true;
718 }
719 return false;
720}
721
722#define REG_PATTERN_TEST(reg, mask, write) \
723 do { \
724 if (reg_pattern_test(adapter, data, \
725 (hw->mac_type >= e1000_82543) \
726 ? E1000_##reg : E1000_82542_##reg, \
727 mask, write)) \
728 return 1; \
729 } while (0)
730
731#define REG_SET_AND_CHECK(reg, mask, write) \
732 do { \
733 if (reg_set_and_check(adapter, data, \
734 (hw->mac_type >= e1000_82543) \
735 ? E1000_##reg : E1000_82542_##reg, \
736 mask, write)) \
737 return 1; \
738 } while (0)
739
740static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
741{
742 u32 value, before, after;
743 u32 i, toggle;
744 struct e1000_hw *hw = &adapter->hw;
745
746 /* The status register is Read Only, so a write should fail.
747 * Some bits that get toggled are ignored.
748 */
749
750 /* there are several bits on newer hardware that are r/w */
751 toggle = 0xFFFFF833;
752
753 before = er32(STATUS);
754 value = (er32(STATUS) & toggle);
755 ew32(STATUS, toggle);
756 after = er32(STATUS) & toggle;
757 if (value != after) {
758 e_err(drv, "failed STATUS register test got: "
759 "0x%08X expected: 0x%08X\n", after, value);
760 *data = 1;
761 return 1;
762 }
763 /* restore previous status */
764 ew32(STATUS, before);
765
766 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
770
771 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
772 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
773 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
774 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
775 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
777 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
778 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
779 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
781
782 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
783
784 before = 0x06DFB3FE;
785 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
786 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
787
788 if (hw->mac_type >= e1000_82543) {
789 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
790 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
793 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
794 value = E1000_RAR_ENTRIES;
795 for (i = 0; i < value; i++) {
796 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
797 0xFFFFFFFF);
798 }
799 } else {
800 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
801 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
802 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
803 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
804 }
805
806 value = E1000_MC_TBL_SIZE;
807 for (i = 0; i < value; i++)
808 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
809
810 *data = 0;
811 return 0;
812}
813
814static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
815{
816 struct e1000_hw *hw = &adapter->hw;
817 u16 temp;
818 u16 checksum = 0;
819 u16 i;
820
821 *data = 0;
822 /* Read and add up the contents of the EEPROM */
823 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
824 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
825 *data = 1;
826 break;
827 }
828 checksum += temp;
829 }
830
831 /* If Checksum is not Correct return error else test passed */
832 if ((checksum != (u16)EEPROM_SUM) && !(*data))
833 *data = 2;
834
835 return *data;
836}
837
838static irqreturn_t e1000_test_intr(int irq, void *data)
839{
840 struct net_device *netdev = (struct net_device *)data;
841 struct e1000_adapter *adapter = netdev_priv(netdev);
842 struct e1000_hw *hw = &adapter->hw;
843
844 adapter->test_icr |= er32(ICR);
845
846 return IRQ_HANDLED;
847}
848
849static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
850{
851 struct net_device *netdev = adapter->netdev;
852 u32 mask, i = 0;
853 bool shared_int = true;
854 u32 irq = adapter->pdev->irq;
855 struct e1000_hw *hw = &adapter->hw;
856
857 *data = 0;
858
859 /* NOTE: we don't test MSI interrupts here, yet
860 * Hook up test interrupt handler just for this test
861 */
862 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
863 netdev))
864 shared_int = false;
865 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
866 netdev->name, netdev)) {
867 *data = 1;
868 return -1;
869 }
870 e_info(hw, "testing %s interrupt\n", (shared_int ?
871 "shared" : "unshared"));
872
873 /* Disable all the interrupts */
874 ew32(IMC, 0xFFFFFFFF);
875 E1000_WRITE_FLUSH();
876 msleep(10);
877
878 /* Test each interrupt */
879 for (; i < 10; i++) {
880
881 /* Interrupt to test */
882 mask = 1 << i;
883
884 if (!shared_int) {
885 /* Disable the interrupt to be reported in
886 * the cause register and then force the same
887 * interrupt and see if one gets posted. If
888 * an interrupt was posted to the bus, the
889 * test failed.
890 */
891 adapter->test_icr = 0;
892 ew32(IMC, mask);
893 ew32(ICS, mask);
894 E1000_WRITE_FLUSH();
895 msleep(10);
896
897 if (adapter->test_icr & mask) {
898 *data = 3;
899 break;
900 }
901 }
902
903 /* Enable the interrupt to be reported in
904 * the cause register and then force the same
905 * interrupt and see if one gets posted. If
906 * an interrupt was not posted to the bus, the
907 * test failed.
908 */
909 adapter->test_icr = 0;
910 ew32(IMS, mask);
911 ew32(ICS, mask);
912 E1000_WRITE_FLUSH();
913 msleep(10);
914
915 if (!(adapter->test_icr & mask)) {
916 *data = 4;
917 break;
918 }
919
920 if (!shared_int) {
921 /* Disable the other interrupts to be reported in
922 * the cause register and then force the other
923 * interrupts and see if any get posted. If
924 * an interrupt was posted to the bus, the
925 * test failed.
926 */
927 adapter->test_icr = 0;
928 ew32(IMC, ~mask & 0x00007FFF);
929 ew32(ICS, ~mask & 0x00007FFF);
930 E1000_WRITE_FLUSH();
931 msleep(10);
932
933 if (adapter->test_icr) {
934 *data = 5;
935 break;
936 }
937 }
938 }
939
940 /* Disable all the interrupts */
941 ew32(IMC, 0xFFFFFFFF);
942 E1000_WRITE_FLUSH();
943 msleep(10);
944
945 /* Unhook test interrupt handler */
946 free_irq(irq, netdev);
947
948 return *data;
949}
950
951static void e1000_free_desc_rings(struct e1000_adapter *adapter)
952{
953 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
954 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
955 struct pci_dev *pdev = adapter->pdev;
956 int i;
957
958 if (txdr->desc && txdr->buffer_info) {
959 for (i = 0; i < txdr->count; i++) {
960 if (txdr->buffer_info[i].dma)
961 dma_unmap_single(&pdev->dev,
962 txdr->buffer_info[i].dma,
963 txdr->buffer_info[i].length,
964 DMA_TO_DEVICE);
965 if (txdr->buffer_info[i].skb)
966 dev_kfree_skb(txdr->buffer_info[i].skb);
967 }
968 }
969
970 if (rxdr->desc && rxdr->buffer_info) {
971 for (i = 0; i < rxdr->count; i++) {
972 if (rxdr->buffer_info[i].dma)
973 dma_unmap_single(&pdev->dev,
974 rxdr->buffer_info[i].dma,
975 rxdr->buffer_info[i].length,
976 DMA_FROM_DEVICE);
977 if (rxdr->buffer_info[i].skb)
978 dev_kfree_skb(rxdr->buffer_info[i].skb);
979 }
980 }
981
982 if (txdr->desc) {
983 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
984 txdr->dma);
985 txdr->desc = NULL;
986 }
987 if (rxdr->desc) {
988 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
989 rxdr->dma);
990 rxdr->desc = NULL;
991 }
992
993 kfree(txdr->buffer_info);
994 txdr->buffer_info = NULL;
995 kfree(rxdr->buffer_info);
996 rxdr->buffer_info = NULL;
997}
998
999static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1000{
1001 struct e1000_hw *hw = &adapter->hw;
1002 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004 struct pci_dev *pdev = adapter->pdev;
1005 u32 rctl;
1006 int i, ret_val;
1007
1008 /* Setup Tx descriptor ring and Tx buffers */
1009
1010 if (!txdr->count)
1011 txdr->count = E1000_DEFAULT_TXD;
1012
1013 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1014 GFP_KERNEL);
1015 if (!txdr->buffer_info) {
1016 ret_val = 1;
1017 goto err_nomem;
1018 }
1019
1020 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1021 txdr->size = ALIGN(txdr->size, 4096);
1022 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1023 GFP_KERNEL);
1024 if (!txdr->desc) {
1025 ret_val = 2;
1026 goto err_nomem;
1027 }
1028 txdr->next_to_use = txdr->next_to_clean = 0;
1029
1030 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1031 ew32(TDBAH, ((u64)txdr->dma >> 32));
1032 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1033 ew32(TDH, 0);
1034 ew32(TDT, 0);
1035 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1036 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1037 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1038
1039 for (i = 0; i < txdr->count; i++) {
1040 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1041 struct sk_buff *skb;
1042 unsigned int size = 1024;
1043
1044 skb = alloc_skb(size, GFP_KERNEL);
1045 if (!skb) {
1046 ret_val = 3;
1047 goto err_nomem;
1048 }
1049 skb_put(skb, size);
1050 txdr->buffer_info[i].skb = skb;
1051 txdr->buffer_info[i].length = skb->len;
1052 txdr->buffer_info[i].dma =
1053 dma_map_single(&pdev->dev, skb->data, skb->len,
1054 DMA_TO_DEVICE);
1055 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1056 ret_val = 4;
1057 goto err_nomem;
1058 }
1059 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1060 tx_desc->lower.data = cpu_to_le32(skb->len);
1061 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1062 E1000_TXD_CMD_IFCS |
1063 E1000_TXD_CMD_RPS);
1064 tx_desc->upper.data = 0;
1065 }
1066
1067 /* Setup Rx descriptor ring and Rx buffers */
1068
1069 if (!rxdr->count)
1070 rxdr->count = E1000_DEFAULT_RXD;
1071
1072 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1073 GFP_KERNEL);
1074 if (!rxdr->buffer_info) {
1075 ret_val = 5;
1076 goto err_nomem;
1077 }
1078
1079 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1080 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1081 GFP_KERNEL);
1082 if (!rxdr->desc) {
1083 ret_val = 6;
1084 goto err_nomem;
1085 }
1086 rxdr->next_to_use = rxdr->next_to_clean = 0;
1087
1088 rctl = er32(RCTL);
1089 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1090 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1091 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1092 ew32(RDLEN, rxdr->size);
1093 ew32(RDH, 0);
1094 ew32(RDT, 0);
1095 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1096 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1097 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1098 ew32(RCTL, rctl);
1099
1100 for (i = 0; i < rxdr->count; i++) {
1101 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1102 struct sk_buff *skb;
1103
1104 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1105 if (!skb) {
1106 ret_val = 7;
1107 goto err_nomem;
1108 }
1109 skb_reserve(skb, NET_IP_ALIGN);
1110 rxdr->buffer_info[i].skb = skb;
1111 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1112 rxdr->buffer_info[i].dma =
1113 dma_map_single(&pdev->dev, skb->data,
1114 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1115 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1116 ret_val = 8;
1117 goto err_nomem;
1118 }
1119 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1120 memset(skb->data, 0x00, skb->len);
1121 }
1122
1123 return 0;
1124
1125err_nomem:
1126 e1000_free_desc_rings(adapter);
1127 return ret_val;
1128}
1129
1130static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1131{
1132 struct e1000_hw *hw = &adapter->hw;
1133
1134 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1135 e1000_write_phy_reg(hw, 29, 0x001F);
1136 e1000_write_phy_reg(hw, 30, 0x8FFC);
1137 e1000_write_phy_reg(hw, 29, 0x001A);
1138 e1000_write_phy_reg(hw, 30, 0x8FF0);
1139}
1140
1141static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1142{
1143 struct e1000_hw *hw = &adapter->hw;
1144 u16 phy_reg;
1145
1146 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1147 * Extended PHY Specific Control Register to 25MHz clock. This
1148 * value defaults back to a 2.5MHz clock when the PHY is reset.
1149 */
1150 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1151 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1152 e1000_write_phy_reg(hw,
1153 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1154
1155 /* In addition, because of the s/w reset above, we need to enable
1156 * CRS on TX. This must be set for both full and half duplex
1157 * operation.
1158 */
1159 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1160 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1161 e1000_write_phy_reg(hw,
1162 M88E1000_PHY_SPEC_CTRL, phy_reg);
1163}
1164
1165static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1166{
1167 struct e1000_hw *hw = &adapter->hw;
1168 u32 ctrl_reg;
1169 u16 phy_reg;
1170
1171 /* Setup the Device Control Register for PHY loopback test. */
1172
1173 ctrl_reg = er32(CTRL);
1174 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1175 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1176 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1177 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1178 E1000_CTRL_FD); /* Force Duplex to FULL */
1179
1180 ew32(CTRL, ctrl_reg);
1181
1182 /* Read the PHY Specific Control Register (0x10) */
1183 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1184
1185 /* Clear Auto-Crossover bits in PHY Specific Control Register
1186 * (bits 6:5).
1187 */
1188 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1189 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1190
1191 /* Perform software reset on the PHY */
1192 e1000_phy_reset(hw);
1193
1194 /* Have to setup TX_CLK and TX_CRS after software reset */
1195 e1000_phy_reset_clk_and_crs(adapter);
1196
1197 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1198
1199 /* Wait for reset to complete. */
1200 udelay(500);
1201
1202 /* Have to setup TX_CLK and TX_CRS after software reset */
1203 e1000_phy_reset_clk_and_crs(adapter);
1204
1205 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1206 e1000_phy_disable_receiver(adapter);
1207
1208 /* Set the loopback bit in the PHY control register. */
1209 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210 phy_reg |= MII_CR_LOOPBACK;
1211 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1212
1213 /* Setup TX_CLK and TX_CRS one more time. */
1214 e1000_phy_reset_clk_and_crs(adapter);
1215
1216 /* Check Phy Configuration */
1217 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1218 if (phy_reg != 0x4100)
1219 return 9;
1220
1221 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1222 if (phy_reg != 0x0070)
1223 return 10;
1224
1225 e1000_read_phy_reg(hw, 29, &phy_reg);
1226 if (phy_reg != 0x001A)
1227 return 11;
1228
1229 return 0;
1230}
1231
1232static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1233{
1234 struct e1000_hw *hw = &adapter->hw;
1235 u32 ctrl_reg = 0;
1236 u32 stat_reg = 0;
1237
1238 hw->autoneg = false;
1239
1240 if (hw->phy_type == e1000_phy_m88) {
1241 /* Auto-MDI/MDIX Off */
1242 e1000_write_phy_reg(hw,
1243 M88E1000_PHY_SPEC_CTRL, 0x0808);
1244 /* reset to update Auto-MDI/MDIX */
1245 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1246 /* autoneg off */
1247 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1248 }
1249
1250 ctrl_reg = er32(CTRL);
1251
1252 /* force 1000, set loopback */
1253 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1254
1255 /* Now set up the MAC to the same speed/duplex as the PHY. */
1256 ctrl_reg = er32(CTRL);
1257 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1258 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1259 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1260 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1261 E1000_CTRL_FD); /* Force Duplex to FULL */
1262
1263 if (hw->media_type == e1000_media_type_copper &&
1264 hw->phy_type == e1000_phy_m88)
1265 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1266 else {
1267 /* Set the ILOS bit on the fiber Nic is half
1268 * duplex link is detected.
1269 */
1270 stat_reg = er32(STATUS);
1271 if ((stat_reg & E1000_STATUS_FD) == 0)
1272 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1273 }
1274
1275 ew32(CTRL, ctrl_reg);
1276
1277 /* Disable the receiver on the PHY so when a cable is plugged in, the
1278 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1279 */
1280 if (hw->phy_type == e1000_phy_m88)
1281 e1000_phy_disable_receiver(adapter);
1282
1283 udelay(500);
1284
1285 return 0;
1286}
1287
1288static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1289{
1290 struct e1000_hw *hw = &adapter->hw;
1291 u16 phy_reg = 0;
1292 u16 count = 0;
1293
1294 switch (hw->mac_type) {
1295 case e1000_82543:
1296 if (hw->media_type == e1000_media_type_copper) {
1297 /* Attempt to setup Loopback mode on Non-integrated PHY.
1298 * Some PHY registers get corrupted at random, so
1299 * attempt this 10 times.
1300 */
1301 while (e1000_nonintegrated_phy_loopback(adapter) &&
1302 count++ < 10);
1303 if (count < 11)
1304 return 0;
1305 }
1306 break;
1307
1308 case e1000_82544:
1309 case e1000_82540:
1310 case e1000_82545:
1311 case e1000_82545_rev_3:
1312 case e1000_82546:
1313 case e1000_82546_rev_3:
1314 case e1000_82541:
1315 case e1000_82541_rev_2:
1316 case e1000_82547:
1317 case e1000_82547_rev_2:
1318 return e1000_integrated_phy_loopback(adapter);
1319 break;
1320 default:
1321 /* Default PHY loopback work is to read the MII
1322 * control register and assert bit 14 (loopback mode).
1323 */
1324 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1325 phy_reg |= MII_CR_LOOPBACK;
1326 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1327 return 0;
1328 break;
1329 }
1330
1331 return 8;
1332}
1333
1334static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1335{
1336 struct e1000_hw *hw = &adapter->hw;
1337 u32 rctl;
1338
1339 if (hw->media_type == e1000_media_type_fiber ||
1340 hw->media_type == e1000_media_type_internal_serdes) {
1341 switch (hw->mac_type) {
1342 case e1000_82545:
1343 case e1000_82546:
1344 case e1000_82545_rev_3:
1345 case e1000_82546_rev_3:
1346 return e1000_set_phy_loopback(adapter);
1347 break;
1348 default:
1349 rctl = er32(RCTL);
1350 rctl |= E1000_RCTL_LBM_TCVR;
1351 ew32(RCTL, rctl);
1352 return 0;
1353 }
1354 } else if (hw->media_type == e1000_media_type_copper)
1355 return e1000_set_phy_loopback(adapter);
1356
1357 return 7;
1358}
1359
1360static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1361{
1362 struct e1000_hw *hw = &adapter->hw;
1363 u32 rctl;
1364 u16 phy_reg;
1365
1366 rctl = er32(RCTL);
1367 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1368 ew32(RCTL, rctl);
1369
1370 switch (hw->mac_type) {
1371 case e1000_82545:
1372 case e1000_82546:
1373 case e1000_82545_rev_3:
1374 case e1000_82546_rev_3:
1375 default:
1376 hw->autoneg = true;
1377 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1378 if (phy_reg & MII_CR_LOOPBACK) {
1379 phy_reg &= ~MII_CR_LOOPBACK;
1380 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1381 e1000_phy_reset(hw);
1382 }
1383 break;
1384 }
1385}
1386
1387static void e1000_create_lbtest_frame(struct sk_buff *skb,
1388 unsigned int frame_size)
1389{
1390 memset(skb->data, 0xFF, frame_size);
1391 frame_size &= ~1;
1392 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1393 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1394 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1395}
1396
1397static int e1000_check_lbtest_frame(struct sk_buff *skb,
1398 unsigned int frame_size)
1399{
1400 frame_size &= ~1;
1401 if (*(skb->data + 3) == 0xFF) {
1402 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1403 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1404 return 0;
1405 }
1406 }
1407 return 13;
1408}
1409
1410static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1411{
1412 struct e1000_hw *hw = &adapter->hw;
1413 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1414 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1415 struct pci_dev *pdev = adapter->pdev;
1416 int i, j, k, l, lc, good_cnt, ret_val=0;
1417 unsigned long time;
1418
1419 ew32(RDT, rxdr->count - 1);
1420
1421 /* Calculate the loop count based on the largest descriptor ring
1422 * The idea is to wrap the largest ring a number of times using 64
1423 * send/receive pairs during each loop
1424 */
1425
1426 if (rxdr->count <= txdr->count)
1427 lc = ((txdr->count / 64) * 2) + 1;
1428 else
1429 lc = ((rxdr->count / 64) * 2) + 1;
1430
1431 k = l = 0;
1432 for (j = 0; j <= lc; j++) { /* loop count loop */
1433 for (i = 0; i < 64; i++) { /* send the packets */
1434 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1435 1024);
1436 dma_sync_single_for_device(&pdev->dev,
1437 txdr->buffer_info[k].dma,
1438 txdr->buffer_info[k].length,
1439 DMA_TO_DEVICE);
1440 if (unlikely(++k == txdr->count)) k = 0;
1441 }
1442 ew32(TDT, k);
1443 E1000_WRITE_FLUSH();
1444 msleep(200);
1445 time = jiffies; /* set the start time for the receive */
1446 good_cnt = 0;
1447 do { /* receive the sent packets */
1448 dma_sync_single_for_cpu(&pdev->dev,
1449 rxdr->buffer_info[l].dma,
1450 rxdr->buffer_info[l].length,
1451 DMA_FROM_DEVICE);
1452
1453 ret_val = e1000_check_lbtest_frame(
1454 rxdr->buffer_info[l].skb,
1455 1024);
1456 if (!ret_val)
1457 good_cnt++;
1458 if (unlikely(++l == rxdr->count)) l = 0;
1459 /* time + 20 msecs (200 msecs on 2.4) is more than
1460 * enough time to complete the receives, if it's
1461 * exceeded, break and error off
1462 */
1463 } while (good_cnt < 64 && jiffies < (time + 20));
1464 if (good_cnt != 64) {
1465 ret_val = 13; /* ret_val is the same as mis-compare */
1466 break;
1467 }
1468 if (jiffies >= (time + 2)) {
1469 ret_val = 14; /* error code for time out error */
1470 break;
1471 }
1472 } /* end loop count loop */
1473 return ret_val;
1474}
1475
1476static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1477{
1478 *data = e1000_setup_desc_rings(adapter);
1479 if (*data)
1480 goto out;
1481 *data = e1000_setup_loopback_test(adapter);
1482 if (*data)
1483 goto err_loopback;
1484 *data = e1000_run_loopback_test(adapter);
1485 e1000_loopback_cleanup(adapter);
1486
1487err_loopback:
1488 e1000_free_desc_rings(adapter);
1489out:
1490 return *data;
1491}
1492
1493static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1494{
1495 struct e1000_hw *hw = &adapter->hw;
1496 *data = 0;
1497 if (hw->media_type == e1000_media_type_internal_serdes) {
1498 int i = 0;
1499 hw->serdes_has_link = false;
1500
1501 /* On some blade server designs, link establishment
1502 * could take as long as 2-3 minutes
1503 */
1504 do {
1505 e1000_check_for_link(hw);
1506 if (hw->serdes_has_link)
1507 return *data;
1508 msleep(20);
1509 } while (i++ < 3750);
1510
1511 *data = 1;
1512 } else {
1513 e1000_check_for_link(hw);
1514 if (hw->autoneg) /* if auto_neg is set wait for it */
1515 msleep(4000);
1516
1517 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1518 *data = 1;
1519 }
1520 }
1521 return *data;
1522}
1523
1524static int e1000_get_sset_count(struct net_device *netdev, int sset)
1525{
1526 switch (sset) {
1527 case ETH_SS_TEST:
1528 return E1000_TEST_LEN;
1529 case ETH_SS_STATS:
1530 return E1000_STATS_LEN;
1531 default:
1532 return -EOPNOTSUPP;
1533 }
1534}
1535
1536static void e1000_diag_test(struct net_device *netdev,
1537 struct ethtool_test *eth_test, u64 *data)
1538{
1539 struct e1000_adapter *adapter = netdev_priv(netdev);
1540 struct e1000_hw *hw = &adapter->hw;
1541 bool if_running = netif_running(netdev);
1542
1543 set_bit(__E1000_TESTING, &adapter->flags);
1544 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1545 /* Offline tests */
1546
1547 /* save speed, duplex, autoneg settings */
1548 u16 autoneg_advertised = hw->autoneg_advertised;
1549 u8 forced_speed_duplex = hw->forced_speed_duplex;
1550 u8 autoneg = hw->autoneg;
1551
1552 e_info(hw, "offline testing starting\n");
1553
1554 /* Link test performed before hardware reset so autoneg doesn't
1555 * interfere with test result
1556 */
1557 if (e1000_link_test(adapter, &data[4]))
1558 eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560 if (if_running)
1561 /* indicate we're in test mode */
1562 dev_close(netdev);
1563 else
1564 e1000_reset(adapter);
1565
1566 if (e1000_reg_test(adapter, &data[0]))
1567 eth_test->flags |= ETH_TEST_FL_FAILED;
1568
1569 e1000_reset(adapter);
1570 if (e1000_eeprom_test(adapter, &data[1]))
1571 eth_test->flags |= ETH_TEST_FL_FAILED;
1572
1573 e1000_reset(adapter);
1574 if (e1000_intr_test(adapter, &data[2]))
1575 eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577 e1000_reset(adapter);
1578 /* make sure the phy is powered up */
1579 e1000_power_up_phy(adapter);
1580 if (e1000_loopback_test(adapter, &data[3]))
1581 eth_test->flags |= ETH_TEST_FL_FAILED;
1582
1583 /* restore speed, duplex, autoneg settings */
1584 hw->autoneg_advertised = autoneg_advertised;
1585 hw->forced_speed_duplex = forced_speed_duplex;
1586 hw->autoneg = autoneg;
1587
1588 e1000_reset(adapter);
1589 clear_bit(__E1000_TESTING, &adapter->flags);
1590 if (if_running)
1591 dev_open(netdev);
1592 } else {
1593 e_info(hw, "online testing starting\n");
1594 /* Online tests */
1595 if (e1000_link_test(adapter, &data[4]))
1596 eth_test->flags |= ETH_TEST_FL_FAILED;
1597
1598 /* Online tests aren't run; pass by default */
1599 data[0] = 0;
1600 data[1] = 0;
1601 data[2] = 0;
1602 data[3] = 0;
1603
1604 clear_bit(__E1000_TESTING, &adapter->flags);
1605 }
1606 msleep_interruptible(4 * 1000);
1607}
1608
1609static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1610 struct ethtool_wolinfo *wol)
1611{
1612 struct e1000_hw *hw = &adapter->hw;
1613 int retval = 1; /* fail by default */
1614
1615 switch (hw->device_id) {
1616 case E1000_DEV_ID_82542:
1617 case E1000_DEV_ID_82543GC_FIBER:
1618 case E1000_DEV_ID_82543GC_COPPER:
1619 case E1000_DEV_ID_82544EI_FIBER:
1620 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1621 case E1000_DEV_ID_82545EM_FIBER:
1622 case E1000_DEV_ID_82545EM_COPPER:
1623 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1624 case E1000_DEV_ID_82546GB_PCIE:
1625 /* these don't support WoL at all */
1626 wol->supported = 0;
1627 break;
1628 case E1000_DEV_ID_82546EB_FIBER:
1629 case E1000_DEV_ID_82546GB_FIBER:
1630 /* Wake events not supported on port B */
1631 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1632 wol->supported = 0;
1633 break;
1634 }
1635 /* return success for non excluded adapter ports */
1636 retval = 0;
1637 break;
1638 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1639 /* quad port adapters only support WoL on port A */
1640 if (!adapter->quad_port_a) {
1641 wol->supported = 0;
1642 break;
1643 }
1644 /* return success for non excluded adapter ports */
1645 retval = 0;
1646 break;
1647 default:
1648 /* dual port cards only support WoL on port A from now on
1649 * unless it was enabled in the eeprom for port B
1650 * so exclude FUNC_1 ports from having WoL enabled
1651 */
1652 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1653 !adapter->eeprom_wol) {
1654 wol->supported = 0;
1655 break;
1656 }
1657
1658 retval = 0;
1659 }
1660
1661 return retval;
1662}
1663
1664static void e1000_get_wol(struct net_device *netdev,
1665 struct ethtool_wolinfo *wol)
1666{
1667 struct e1000_adapter *adapter = netdev_priv(netdev);
1668 struct e1000_hw *hw = &adapter->hw;
1669
1670 wol->supported = WAKE_UCAST | WAKE_MCAST |
1671 WAKE_BCAST | WAKE_MAGIC;
1672 wol->wolopts = 0;
1673
1674 /* this function will set ->supported = 0 and return 1 if wol is not
1675 * supported by this hardware
1676 */
1677 if (e1000_wol_exclusion(adapter, wol) ||
1678 !device_can_wakeup(&adapter->pdev->dev))
1679 return;
1680
1681 /* apply any specific unsupported masks here */
1682 switch (hw->device_id) {
1683 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1684 /* KSP3 does not support UCAST wake-ups */
1685 wol->supported &= ~WAKE_UCAST;
1686
1687 if (adapter->wol & E1000_WUFC_EX)
1688 e_err(drv, "Interface does not support directed "
1689 "(unicast) frame wake-up packets\n");
1690 break;
1691 default:
1692 break;
1693 }
1694
1695 if (adapter->wol & E1000_WUFC_EX)
1696 wol->wolopts |= WAKE_UCAST;
1697 if (adapter->wol & E1000_WUFC_MC)
1698 wol->wolopts |= WAKE_MCAST;
1699 if (adapter->wol & E1000_WUFC_BC)
1700 wol->wolopts |= WAKE_BCAST;
1701 if (adapter->wol & E1000_WUFC_MAG)
1702 wol->wolopts |= WAKE_MAGIC;
1703}
1704
1705static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1706{
1707 struct e1000_adapter *adapter = netdev_priv(netdev);
1708 struct e1000_hw *hw = &adapter->hw;
1709
1710 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1711 return -EOPNOTSUPP;
1712
1713 if (e1000_wol_exclusion(adapter, wol) ||
1714 !device_can_wakeup(&adapter->pdev->dev))
1715 return wol->wolopts ? -EOPNOTSUPP : 0;
1716
1717 switch (hw->device_id) {
1718 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1719 if (wol->wolopts & WAKE_UCAST) {
1720 e_err(drv, "Interface does not support directed "
1721 "(unicast) frame wake-up packets\n");
1722 return -EOPNOTSUPP;
1723 }
1724 break;
1725 default:
1726 break;
1727 }
1728
1729 /* these settings will always override what we currently have */
1730 adapter->wol = 0;
1731
1732 if (wol->wolopts & WAKE_UCAST)
1733 adapter->wol |= E1000_WUFC_EX;
1734 if (wol->wolopts & WAKE_MCAST)
1735 adapter->wol |= E1000_WUFC_MC;
1736 if (wol->wolopts & WAKE_BCAST)
1737 adapter->wol |= E1000_WUFC_BC;
1738 if (wol->wolopts & WAKE_MAGIC)
1739 adapter->wol |= E1000_WUFC_MAG;
1740
1741 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1742
1743 return 0;
1744}
1745
1746static int e1000_set_phys_id(struct net_device *netdev,
1747 enum ethtool_phys_id_state state)
1748{
1749 struct e1000_adapter *adapter = netdev_priv(netdev);
1750 struct e1000_hw *hw = &adapter->hw;
1751
1752 switch (state) {
1753 case ETHTOOL_ID_ACTIVE:
1754 e1000_setup_led(hw);
1755 return 2;
1756
1757 case ETHTOOL_ID_ON:
1758 e1000_led_on(hw);
1759 break;
1760
1761 case ETHTOOL_ID_OFF:
1762 e1000_led_off(hw);
1763 break;
1764
1765 case ETHTOOL_ID_INACTIVE:
1766 e1000_cleanup_led(hw);
1767 }
1768
1769 return 0;
1770}
1771
1772static int e1000_get_coalesce(struct net_device *netdev,
1773 struct ethtool_coalesce *ec)
1774{
1775 struct e1000_adapter *adapter = netdev_priv(netdev);
1776
1777 if (adapter->hw.mac_type < e1000_82545)
1778 return -EOPNOTSUPP;
1779
1780 if (adapter->itr_setting <= 4)
1781 ec->rx_coalesce_usecs = adapter->itr_setting;
1782 else
1783 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1784
1785 return 0;
1786}
1787
1788static int e1000_set_coalesce(struct net_device *netdev,
1789 struct ethtool_coalesce *ec)
1790{
1791 struct e1000_adapter *adapter = netdev_priv(netdev);
1792 struct e1000_hw *hw = &adapter->hw;
1793
1794 if (hw->mac_type < e1000_82545)
1795 return -EOPNOTSUPP;
1796
1797 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1798 ((ec->rx_coalesce_usecs > 4) &&
1799 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1800 (ec->rx_coalesce_usecs == 2))
1801 return -EINVAL;
1802
1803 if (ec->rx_coalesce_usecs == 4) {
1804 adapter->itr = adapter->itr_setting = 4;
1805 } else if (ec->rx_coalesce_usecs <= 3) {
1806 adapter->itr = 20000;
1807 adapter->itr_setting = ec->rx_coalesce_usecs;
1808 } else {
1809 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1810 adapter->itr_setting = adapter->itr & ~3;
1811 }
1812
1813 if (adapter->itr_setting != 0)
1814 ew32(ITR, 1000000000 / (adapter->itr * 256));
1815 else
1816 ew32(ITR, 0);
1817
1818 return 0;
1819}
1820
1821static int e1000_nway_reset(struct net_device *netdev)
1822{
1823 struct e1000_adapter *adapter = netdev_priv(netdev);
1824 if (netif_running(netdev))
1825 e1000_reinit_locked(adapter);
1826 return 0;
1827}
1828
1829static void e1000_get_ethtool_stats(struct net_device *netdev,
1830 struct ethtool_stats *stats, u64 *data)
1831{
1832 struct e1000_adapter *adapter = netdev_priv(netdev);
1833 int i;
1834 char *p = NULL;
1835
1836 e1000_update_stats(adapter);
1837 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1838 switch (e1000_gstrings_stats[i].type) {
1839 case NETDEV_STATS:
1840 p = (char *) netdev +
1841 e1000_gstrings_stats[i].stat_offset;
1842 break;
1843 case E1000_STATS:
1844 p = (char *) adapter +
1845 e1000_gstrings_stats[i].stat_offset;
1846 break;
1847 }
1848
1849 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1850 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1851 }
1852/* BUG_ON(i != E1000_STATS_LEN); */
1853}
1854
1855static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856 u8 *data)
1857{
1858 u8 *p = data;
1859 int i;
1860
1861 switch (stringset) {
1862 case ETH_SS_TEST:
1863 memcpy(data, *e1000_gstrings_test,
1864 sizeof(e1000_gstrings_test));
1865 break;
1866 case ETH_SS_STATS:
1867 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1868 memcpy(p, e1000_gstrings_stats[i].stat_string,
1869 ETH_GSTRING_LEN);
1870 p += ETH_GSTRING_LEN;
1871 }
1872 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1873 break;
1874 }
1875}
1876
1877static const struct ethtool_ops e1000_ethtool_ops = {
1878 .get_settings = e1000_get_settings,
1879 .set_settings = e1000_set_settings,
1880 .get_drvinfo = e1000_get_drvinfo,
1881 .get_regs_len = e1000_get_regs_len,
1882 .get_regs = e1000_get_regs,
1883 .get_wol = e1000_get_wol,
1884 .set_wol = e1000_set_wol,
1885 .get_msglevel = e1000_get_msglevel,
1886 .set_msglevel = e1000_set_msglevel,
1887 .nway_reset = e1000_nway_reset,
1888 .get_link = e1000_get_link,
1889 .get_eeprom_len = e1000_get_eeprom_len,
1890 .get_eeprom = e1000_get_eeprom,
1891 .set_eeprom = e1000_set_eeprom,
1892 .get_ringparam = e1000_get_ringparam,
1893 .set_ringparam = e1000_set_ringparam,
1894 .get_pauseparam = e1000_get_pauseparam,
1895 .set_pauseparam = e1000_set_pauseparam,
1896 .self_test = e1000_diag_test,
1897 .get_strings = e1000_get_strings,
1898 .set_phys_id = e1000_set_phys_id,
1899 .get_ethtool_stats = e1000_get_ethtool_stats,
1900 .get_sset_count = e1000_get_sset_count,
1901 .get_coalesce = e1000_get_coalesce,
1902 .set_coalesce = e1000_set_coalesce,
1903 .get_ts_info = ethtool_op_get_ts_info,
1904};
1905
1906void e1000_set_ethtool_ops(struct net_device *netdev)
1907{
1908 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1909}