Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
 
 
 
 
  14 * The full GNU General Public License is included in this distribution in the
  15 * file called COPYING.
  16 */
  17
  18/*
  19 * This code implements the DMA subsystem. It provides a HW-neutral interface
  20 * for other kernel code to use asynchronous memory copy capabilities,
  21 * if present, and allows different HW DMA drivers to register as providing
  22 * this capability.
  23 *
  24 * Due to the fact we are accelerating what is already a relatively fast
  25 * operation, the code goes to great lengths to avoid additional overhead,
  26 * such as locking.
  27 *
  28 * LOCKING:
  29 *
  30 * The subsystem keeps a global list of dma_device structs it is protected by a
  31 * mutex, dma_list_mutex.
  32 *
  33 * A subsystem can get access to a channel by calling dmaengine_get() followed
  34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
  35 * dma_request_channel().  Once a channel is allocated a reference is taken
  36 * against its corresponding driver to disable removal.
  37 *
  38 * Each device has a channels list, which runs unlocked but is never modified
  39 * once the device is registered, it's just setup by the driver.
  40 *
  41 * See Documentation/dmaengine.txt for more details
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/platform_device.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/init.h>
  49#include <linux/module.h>
  50#include <linux/mm.h>
  51#include <linux/device.h>
  52#include <linux/dmaengine.h>
  53#include <linux/hardirq.h>
  54#include <linux/spinlock.h>
  55#include <linux/percpu.h>
  56#include <linux/rcupdate.h>
  57#include <linux/mutex.h>
  58#include <linux/jiffies.h>
  59#include <linux/rculist.h>
  60#include <linux/idr.h>
  61#include <linux/slab.h>
  62#include <linux/acpi.h>
  63#include <linux/acpi_dma.h>
  64#include <linux/of_dma.h>
  65#include <linux/mempool.h>
  66
  67static DEFINE_MUTEX(dma_list_mutex);
  68static DEFINE_IDA(dma_ida);
  69static LIST_HEAD(dma_device_list);
  70static long dmaengine_ref_count;
  71
  72/* --- sysfs implementation --- */
  73
  74/**
  75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
  76 * @dev - device node
  77 *
  78 * Must be called under dma_list_mutex
  79 */
  80static struct dma_chan *dev_to_dma_chan(struct device *dev)
  81{
  82	struct dma_chan_dev *chan_dev;
  83
  84	chan_dev = container_of(dev, typeof(*chan_dev), device);
  85	return chan_dev->chan;
  86}
  87
  88static ssize_t memcpy_count_show(struct device *dev,
  89				 struct device_attribute *attr, char *buf)
  90{
  91	struct dma_chan *chan;
  92	unsigned long count = 0;
  93	int i;
  94	int err;
  95
  96	mutex_lock(&dma_list_mutex);
  97	chan = dev_to_dma_chan(dev);
  98	if (chan) {
  99		for_each_possible_cpu(i)
 100			count += per_cpu_ptr(chan->local, i)->memcpy_count;
 101		err = sprintf(buf, "%lu\n", count);
 102	} else
 103		err = -ENODEV;
 104	mutex_unlock(&dma_list_mutex);
 105
 106	return err;
 107}
 108static DEVICE_ATTR_RO(memcpy_count);
 109
 110static ssize_t bytes_transferred_show(struct device *dev,
 111				      struct device_attribute *attr, char *buf)
 112{
 113	struct dma_chan *chan;
 114	unsigned long count = 0;
 115	int i;
 116	int err;
 117
 118	mutex_lock(&dma_list_mutex);
 119	chan = dev_to_dma_chan(dev);
 120	if (chan) {
 121		for_each_possible_cpu(i)
 122			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
 123		err = sprintf(buf, "%lu\n", count);
 124	} else
 125		err = -ENODEV;
 126	mutex_unlock(&dma_list_mutex);
 127
 128	return err;
 129}
 130static DEVICE_ATTR_RO(bytes_transferred);
 131
 132static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
 133			   char *buf)
 134{
 135	struct dma_chan *chan;
 136	int err;
 137
 138	mutex_lock(&dma_list_mutex);
 139	chan = dev_to_dma_chan(dev);
 140	if (chan)
 141		err = sprintf(buf, "%d\n", chan->client_count);
 142	else
 143		err = -ENODEV;
 144	mutex_unlock(&dma_list_mutex);
 145
 146	return err;
 147}
 148static DEVICE_ATTR_RO(in_use);
 149
 150static struct attribute *dma_dev_attrs[] = {
 151	&dev_attr_memcpy_count.attr,
 152	&dev_attr_bytes_transferred.attr,
 153	&dev_attr_in_use.attr,
 154	NULL,
 155};
 156ATTRIBUTE_GROUPS(dma_dev);
 157
 158static void chan_dev_release(struct device *dev)
 159{
 160	struct dma_chan_dev *chan_dev;
 161
 162	chan_dev = container_of(dev, typeof(*chan_dev), device);
 163	if (atomic_dec_and_test(chan_dev->idr_ref)) {
 164		mutex_lock(&dma_list_mutex);
 165		ida_remove(&dma_ida, chan_dev->dev_id);
 166		mutex_unlock(&dma_list_mutex);
 167		kfree(chan_dev->idr_ref);
 168	}
 169	kfree(chan_dev);
 170}
 171
 172static struct class dma_devclass = {
 173	.name		= "dma",
 174	.dev_groups	= dma_dev_groups,
 175	.dev_release	= chan_dev_release,
 176};
 177
 178/* --- client and device registration --- */
 179
 180#define dma_device_satisfies_mask(device, mask) \
 181	__dma_device_satisfies_mask((device), &(mask))
 182static int
 183__dma_device_satisfies_mask(struct dma_device *device,
 184			    const dma_cap_mask_t *want)
 185{
 186	dma_cap_mask_t has;
 187
 188	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
 189		DMA_TX_TYPE_END);
 190	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
 191}
 192
 193static struct module *dma_chan_to_owner(struct dma_chan *chan)
 194{
 195	return chan->device->dev->driver->owner;
 196}
 197
 198/**
 199 * balance_ref_count - catch up the channel reference count
 200 * @chan - channel to balance ->client_count versus dmaengine_ref_count
 201 *
 202 * balance_ref_count must be called under dma_list_mutex
 203 */
 204static void balance_ref_count(struct dma_chan *chan)
 205{
 206	struct module *owner = dma_chan_to_owner(chan);
 207
 208	while (chan->client_count < dmaengine_ref_count) {
 209		__module_get(owner);
 210		chan->client_count++;
 211	}
 212}
 213
 214/**
 215 * dma_chan_get - try to grab a dma channel's parent driver module
 216 * @chan - channel to grab
 217 *
 218 * Must be called under dma_list_mutex
 219 */
 220static int dma_chan_get(struct dma_chan *chan)
 221{
 
 222	struct module *owner = dma_chan_to_owner(chan);
 223	int ret;
 224
 225	/* The channel is already in use, update client count */
 226	if (chan->client_count) {
 227		__module_get(owner);
 228		goto out;
 229	}
 
 230
 231	if (!try_module_get(owner))
 232		return -ENODEV;
 233
 234	/* allocate upon first client reference */
 235	if (chan->device->device_alloc_chan_resources) {
 236		ret = chan->device->device_alloc_chan_resources(chan);
 237		if (ret < 0)
 238			goto err_out;
 239	}
 240
 241	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
 242		balance_ref_count(chan);
 243
 244out:
 245	chan->client_count++;
 246	return 0;
 
 247
 248err_out:
 249	module_put(owner);
 250	return ret;
 251}
 252
 253/**
 254 * dma_chan_put - drop a reference to a dma channel's parent driver module
 255 * @chan - channel to release
 256 *
 257 * Must be called under dma_list_mutex
 258 */
 259static void dma_chan_put(struct dma_chan *chan)
 260{
 261	/* This channel is not in use, bail out */
 262	if (!chan->client_count)
 263		return;
 264
 265	chan->client_count--;
 266	module_put(dma_chan_to_owner(chan));
 267
 268	/* This channel is not in use anymore, free it */
 269	if (!chan->client_count && chan->device->device_free_chan_resources) {
 270		/* Make sure all operations have completed */
 271		dmaengine_synchronize(chan);
 272		chan->device->device_free_chan_resources(chan);
 273	}
 274
 275	/* If the channel is used via a DMA request router, free the mapping */
 276	if (chan->router && chan->router->route_free) {
 277		chan->router->route_free(chan->router->dev, chan->route_data);
 278		chan->router = NULL;
 279		chan->route_data = NULL;
 280	}
 281}
 282
 283enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
 284{
 285	enum dma_status status;
 286	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 287
 288	dma_async_issue_pending(chan);
 289	do {
 290		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 291		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 292			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
 293			return DMA_ERROR;
 294		}
 295		if (status != DMA_IN_PROGRESS)
 296			break;
 297		cpu_relax();
 298	} while (1);
 299
 300	return status;
 301}
 302EXPORT_SYMBOL(dma_sync_wait);
 303
 304/**
 305 * dma_cap_mask_all - enable iteration over all operation types
 306 */
 307static dma_cap_mask_t dma_cap_mask_all;
 308
 309/**
 310 * dma_chan_tbl_ent - tracks channel allocations per core/operation
 311 * @chan - associated channel for this entry
 312 */
 313struct dma_chan_tbl_ent {
 314	struct dma_chan *chan;
 315};
 316
 317/**
 318 * channel_table - percpu lookup table for memory-to-memory offload providers
 319 */
 320static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
 321
 322static int __init dma_channel_table_init(void)
 323{
 324	enum dma_transaction_type cap;
 325	int err = 0;
 326
 327	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
 328
 329	/* 'interrupt', 'private', and 'slave' are channel capabilities,
 330	 * but are not associated with an operation so they do not need
 331	 * an entry in the channel_table
 332	 */
 333	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
 334	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
 335	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
 336
 337	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
 338		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
 339		if (!channel_table[cap]) {
 340			err = -ENOMEM;
 341			break;
 342		}
 343	}
 344
 345	if (err) {
 346		pr_err("initialization failure\n");
 347		for_each_dma_cap_mask(cap, dma_cap_mask_all)
 348			free_percpu(channel_table[cap]);
 
 349	}
 350
 351	return err;
 352}
 353arch_initcall(dma_channel_table_init);
 354
 355/**
 356 * dma_find_channel - find a channel to carry out the operation
 357 * @tx_type: transaction type
 358 */
 359struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
 360{
 361	return this_cpu_read(channel_table[tx_type]->chan);
 362}
 363EXPORT_SYMBOL(dma_find_channel);
 364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365/**
 366 * dma_issue_pending_all - flush all pending operations across all channels
 367 */
 368void dma_issue_pending_all(void)
 369{
 370	struct dma_device *device;
 371	struct dma_chan *chan;
 372
 373	rcu_read_lock();
 374	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
 375		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 376			continue;
 377		list_for_each_entry(chan, &device->channels, device_node)
 378			if (chan->client_count)
 379				device->device_issue_pending(chan);
 380	}
 381	rcu_read_unlock();
 382}
 383EXPORT_SYMBOL(dma_issue_pending_all);
 384
 385/**
 386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
 387 */
 388static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
 389{
 390	int node = dev_to_node(chan->device->dev);
 391	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
 392}
 393
 394/**
 395 * min_chan - returns the channel with min count and in the same numa-node as the cpu
 396 * @cap: capability to match
 397 * @cpu: cpu index which the channel should be close to
 398 *
 399 * If some channels are close to the given cpu, the one with the lowest
 400 * reference count is returned. Otherwise, cpu is ignored and only the
 401 * reference count is taken into account.
 402 * Must be called under dma_list_mutex.
 403 */
 404static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
 405{
 406	struct dma_device *device;
 407	struct dma_chan *chan;
 408	struct dma_chan *min = NULL;
 409	struct dma_chan *localmin = NULL;
 410
 411	list_for_each_entry(device, &dma_device_list, global_node) {
 412		if (!dma_has_cap(cap, device->cap_mask) ||
 413		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
 414			continue;
 415		list_for_each_entry(chan, &device->channels, device_node) {
 416			if (!chan->client_count)
 417				continue;
 418			if (!min || chan->table_count < min->table_count)
 419				min = chan;
 420
 421			if (dma_chan_is_local(chan, cpu))
 422				if (!localmin ||
 423				    chan->table_count < localmin->table_count)
 424					localmin = chan;
 425		}
 426	}
 427
 428	chan = localmin ? localmin : min;
 429
 430	if (chan)
 431		chan->table_count++;
 432
 433	return chan;
 434}
 435
 436/**
 437 * dma_channel_rebalance - redistribute the available channels
 438 *
 439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
 440 * operation type) in the SMP case,  and operation isolation (avoid
 441 * multi-tasking channels) in the non-SMP case.  Must be called under
 442 * dma_list_mutex.
 443 */
 444static void dma_channel_rebalance(void)
 445{
 446	struct dma_chan *chan;
 447	struct dma_device *device;
 448	int cpu;
 449	int cap;
 450
 451	/* undo the last distribution */
 452	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 453		for_each_possible_cpu(cpu)
 454			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
 455
 456	list_for_each_entry(device, &dma_device_list, global_node) {
 457		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 458			continue;
 459		list_for_each_entry(chan, &device->channels, device_node)
 460			chan->table_count = 0;
 461	}
 462
 463	/* don't populate the channel_table if no clients are available */
 464	if (!dmaengine_ref_count)
 465		return;
 466
 467	/* redistribute available channels */
 468	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 469		for_each_online_cpu(cpu) {
 470			chan = min_chan(cap, cpu);
 471			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
 472		}
 473}
 474
 475int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
 476{
 477	struct dma_device *device;
 478
 479	if (!chan || !caps)
 480		return -EINVAL;
 481
 482	device = chan->device;
 483
 484	/* check if the channel supports slave transactions */
 485	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
 486	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
 487		return -ENXIO;
 488
 489	/*
 490	 * Check whether it reports it uses the generic slave
 491	 * capabilities, if not, that means it doesn't support any
 492	 * kind of slave capabilities reporting.
 493	 */
 494	if (!device->directions)
 495		return -ENXIO;
 496
 497	caps->src_addr_widths = device->src_addr_widths;
 498	caps->dst_addr_widths = device->dst_addr_widths;
 499	caps->directions = device->directions;
 500	caps->max_burst = device->max_burst;
 501	caps->residue_granularity = device->residue_granularity;
 502	caps->descriptor_reuse = device->descriptor_reuse;
 503
 504	/*
 505	 * Some devices implement only pause (e.g. to get residuum) but no
 506	 * resume. However cmd_pause is advertised as pause AND resume.
 507	 */
 508	caps->cmd_pause = !!(device->device_pause && device->device_resume);
 509	caps->cmd_terminate = !!device->device_terminate_all;
 510
 511	return 0;
 512}
 513EXPORT_SYMBOL_GPL(dma_get_slave_caps);
 514
 515static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
 516					  struct dma_device *dev,
 517					  dma_filter_fn fn, void *fn_param)
 518{
 519	struct dma_chan *chan;
 520
 521	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
 522		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
 523		return NULL;
 524	}
 525	/* devices with multiple channels need special handling as we need to
 526	 * ensure that all channels are either private or public.
 527	 */
 528	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
 529		list_for_each_entry(chan, &dev->channels, device_node) {
 530			/* some channels are already publicly allocated */
 531			if (chan->client_count)
 532				return NULL;
 533		}
 534
 535	list_for_each_entry(chan, &dev->channels, device_node) {
 536		if (chan->client_count) {
 537			dev_dbg(dev->dev, "%s: %s busy\n",
 538				 __func__, dma_chan_name(chan));
 539			continue;
 540		}
 541		if (fn && !fn(chan, fn_param)) {
 542			dev_dbg(dev->dev, "%s: %s filter said false\n",
 543				 __func__, dma_chan_name(chan));
 544			continue;
 545		}
 546		return chan;
 547	}
 548
 549	return NULL;
 550}
 551
 552static struct dma_chan *find_candidate(struct dma_device *device,
 553				       const dma_cap_mask_t *mask,
 554				       dma_filter_fn fn, void *fn_param)
 555{
 556	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
 557	int err;
 558
 559	if (chan) {
 560		/* Found a suitable channel, try to grab, prep, and return it.
 561		 * We first set DMA_PRIVATE to disable balance_ref_count as this
 562		 * channel will not be published in the general-purpose
 563		 * allocator
 564		 */
 565		dma_cap_set(DMA_PRIVATE, device->cap_mask);
 566		device->privatecnt++;
 567		err = dma_chan_get(chan);
 568
 569		if (err) {
 570			if (err == -ENODEV) {
 571				dev_dbg(device->dev, "%s: %s module removed\n",
 572					__func__, dma_chan_name(chan));
 573				list_del_rcu(&device->global_node);
 574			} else
 575				dev_dbg(device->dev,
 576					"%s: failed to get %s: (%d)\n",
 577					 __func__, dma_chan_name(chan), err);
 578
 579			if (--device->privatecnt == 0)
 580				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 581
 582			chan = ERR_PTR(err);
 583		}
 584	}
 585
 586	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 587}
 588
 589/**
 590 * dma_get_slave_channel - try to get specific channel exclusively
 591 * @chan: target channel
 592 */
 593struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
 594{
 595	int err = -EBUSY;
 596
 597	/* lock against __dma_request_channel */
 598	mutex_lock(&dma_list_mutex);
 599
 600	if (chan->client_count == 0) {
 601		struct dma_device *device = chan->device;
 602
 603		dma_cap_set(DMA_PRIVATE, device->cap_mask);
 604		device->privatecnt++;
 605		err = dma_chan_get(chan);
 606		if (err) {
 607			dev_dbg(chan->device->dev,
 608				"%s: failed to get %s: (%d)\n",
 609				__func__, dma_chan_name(chan), err);
 610			chan = NULL;
 611			if (--device->privatecnt == 0)
 612				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 613		}
 614	} else
 615		chan = NULL;
 616
 617	mutex_unlock(&dma_list_mutex);
 618
 619
 620	return chan;
 621}
 622EXPORT_SYMBOL_GPL(dma_get_slave_channel);
 623
 624struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
 625{
 626	dma_cap_mask_t mask;
 627	struct dma_chan *chan;
 
 628
 629	dma_cap_zero(mask);
 630	dma_cap_set(DMA_SLAVE, mask);
 631
 632	/* lock against __dma_request_channel */
 633	mutex_lock(&dma_list_mutex);
 634
 635	chan = find_candidate(device, &mask, NULL, NULL);
 
 
 
 
 
 
 
 
 636
 637	mutex_unlock(&dma_list_mutex);
 638
 639	return IS_ERR(chan) ? NULL : chan;
 640}
 641EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
 642
 643/**
 644 * __dma_request_channel - try to allocate an exclusive channel
 645 * @mask: capabilities that the channel must satisfy
 646 * @fn: optional callback to disposition available channels
 647 * @fn_param: opaque parameter to pass to dma_filter_fn
 648 *
 649 * Returns pointer to appropriate DMA channel on success or NULL.
 650 */
 651struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
 652				       dma_filter_fn fn, void *fn_param)
 653{
 654	struct dma_device *device, *_d;
 655	struct dma_chan *chan = NULL;
 
 656
 657	/* Find a channel */
 658	mutex_lock(&dma_list_mutex);
 659	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 660		chan = find_candidate(device, mask, fn, fn_param);
 661		if (!IS_ERR(chan))
 662			break;
 
 
 
 
 
 
 
 663
 664		chan = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 665	}
 666	mutex_unlock(&dma_list_mutex);
 667
 668	pr_debug("%s: %s (%s)\n",
 669		 __func__,
 670		 chan ? "success" : "fail",
 671		 chan ? dma_chan_name(chan) : NULL);
 672
 673	return chan;
 674}
 675EXPORT_SYMBOL_GPL(__dma_request_channel);
 676
 677static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
 678						    const char *name,
 679						    struct device *dev)
 680{
 681	int i;
 682
 683	if (!device->filter.mapcnt)
 684		return NULL;
 685
 686	for (i = 0; i < device->filter.mapcnt; i++) {
 687		const struct dma_slave_map *map = &device->filter.map[i];
 688
 689		if (!strcmp(map->devname, dev_name(dev)) &&
 690		    !strcmp(map->slave, name))
 691			return map;
 692	}
 693
 694	return NULL;
 695}
 696
 697/**
 698 * dma_request_chan - try to allocate an exclusive slave channel
 699 * @dev:	pointer to client device structure
 700 * @name:	slave channel name
 701 *
 702 * Returns pointer to appropriate DMA channel on success or an error pointer.
 703 */
 704struct dma_chan *dma_request_chan(struct device *dev, const char *name)
 
 705{
 706	struct dma_device *d, *_d;
 707	struct dma_chan *chan = NULL;
 708
 709	/* If device-tree is present get slave info from here */
 710	if (dev->of_node)
 711		chan = of_dma_request_slave_channel(dev->of_node, name);
 712
 713	/* If device was enumerated by ACPI get slave info from here */
 714	if (has_acpi_companion(dev) && !chan)
 715		chan = acpi_dma_request_slave_chan_by_name(dev, name);
 716
 717	if (chan) {
 718		/* Valid channel found or requester need to be deferred */
 719		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
 720			return chan;
 721	}
 722
 723	/* Try to find the channel via the DMA filter map(s) */
 724	mutex_lock(&dma_list_mutex);
 725	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
 726		dma_cap_mask_t mask;
 727		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
 728
 729		if (!map)
 730			continue;
 731
 732		dma_cap_zero(mask);
 733		dma_cap_set(DMA_SLAVE, mask);
 734
 735		chan = find_candidate(d, &mask, d->filter.fn, map->param);
 736		if (!IS_ERR(chan))
 737			break;
 738	}
 739	mutex_unlock(&dma_list_mutex);
 740
 741	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 742}
 743EXPORT_SYMBOL_GPL(dma_request_chan);
 744
 745/**
 746 * dma_request_slave_channel - try to allocate an exclusive slave channel
 747 * @dev:	pointer to client device structure
 748 * @name:	slave channel name
 749 *
 750 * Returns pointer to appropriate DMA channel on success or NULL.
 751 */
 752struct dma_chan *dma_request_slave_channel(struct device *dev,
 753					   const char *name)
 754{
 755	struct dma_chan *ch = dma_request_chan(dev, name);
 756	if (IS_ERR(ch))
 757		return NULL;
 758
 759	return ch;
 760}
 761EXPORT_SYMBOL_GPL(dma_request_slave_channel);
 762
 763/**
 764 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
 765 * @mask: capabilities that the channel must satisfy
 766 *
 767 * Returns pointer to appropriate DMA channel on success or an error pointer.
 768 */
 769struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
 770{
 771	struct dma_chan *chan;
 772
 773	if (!mask)
 774		return ERR_PTR(-ENODEV);
 775
 776	chan = __dma_request_channel(mask, NULL, NULL);
 777	if (!chan)
 778		chan = ERR_PTR(-ENODEV);
 779
 780	return chan;
 781}
 782EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
 783
 784void dma_release_channel(struct dma_chan *chan)
 785{
 786	mutex_lock(&dma_list_mutex);
 787	WARN_ONCE(chan->client_count != 1,
 788		  "chan reference count %d != 1\n", chan->client_count);
 789	dma_chan_put(chan);
 790	/* drop PRIVATE cap enabled by __dma_request_channel() */
 791	if (--chan->device->privatecnt == 0)
 792		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
 793	mutex_unlock(&dma_list_mutex);
 794}
 795EXPORT_SYMBOL_GPL(dma_release_channel);
 796
 797/**
 798 * dmaengine_get - register interest in dma_channels
 799 */
 800void dmaengine_get(void)
 801{
 802	struct dma_device *device, *_d;
 803	struct dma_chan *chan;
 804	int err;
 805
 806	mutex_lock(&dma_list_mutex);
 807	dmaengine_ref_count++;
 808
 809	/* try to grab channels */
 810	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 811		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 812			continue;
 813		list_for_each_entry(chan, &device->channels, device_node) {
 814			err = dma_chan_get(chan);
 815			if (err == -ENODEV) {
 816				/* module removed before we could use it */
 817				list_del_rcu(&device->global_node);
 818				break;
 819			} else if (err)
 820				dev_dbg(chan->device->dev,
 821					"%s: failed to get %s: (%d)\n",
 822					__func__, dma_chan_name(chan), err);
 823		}
 824	}
 825
 826	/* if this is the first reference and there were channels
 827	 * waiting we need to rebalance to get those channels
 828	 * incorporated into the channel table
 829	 */
 830	if (dmaengine_ref_count == 1)
 831		dma_channel_rebalance();
 832	mutex_unlock(&dma_list_mutex);
 833}
 834EXPORT_SYMBOL(dmaengine_get);
 835
 836/**
 837 * dmaengine_put - let dma drivers be removed when ref_count == 0
 838 */
 839void dmaengine_put(void)
 840{
 841	struct dma_device *device;
 842	struct dma_chan *chan;
 843
 844	mutex_lock(&dma_list_mutex);
 845	dmaengine_ref_count--;
 846	BUG_ON(dmaengine_ref_count < 0);
 847	/* drop channel references */
 848	list_for_each_entry(device, &dma_device_list, global_node) {
 849		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 850			continue;
 851		list_for_each_entry(chan, &device->channels, device_node)
 852			dma_chan_put(chan);
 853	}
 854	mutex_unlock(&dma_list_mutex);
 855}
 856EXPORT_SYMBOL(dmaengine_put);
 857
 858static bool device_has_all_tx_types(struct dma_device *device)
 859{
 860	/* A device that satisfies this test has channels that will never cause
 861	 * an async_tx channel switch event as all possible operation types can
 862	 * be handled.
 863	 */
 864	#ifdef CONFIG_ASYNC_TX_DMA
 865	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
 866		return false;
 867	#endif
 868
 869	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
 870	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
 871		return false;
 872	#endif
 873
 874	#if IS_ENABLED(CONFIG_ASYNC_XOR)
 875	if (!dma_has_cap(DMA_XOR, device->cap_mask))
 876		return false;
 877
 878	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
 879	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
 880		return false;
 881	#endif
 882	#endif
 883
 884	#if IS_ENABLED(CONFIG_ASYNC_PQ)
 885	if (!dma_has_cap(DMA_PQ, device->cap_mask))
 886		return false;
 887
 888	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
 889	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
 890		return false;
 891	#endif
 892	#endif
 893
 894	return true;
 895}
 896
 897static int get_dma_id(struct dma_device *device)
 898{
 899	int rc;
 900
 901	do {
 902		if (!ida_pre_get(&dma_ida, GFP_KERNEL))
 903			return -ENOMEM;
 904		mutex_lock(&dma_list_mutex);
 905		rc = ida_get_new(&dma_ida, &device->dev_id);
 906		mutex_unlock(&dma_list_mutex);
 907	} while (rc == -EAGAIN);
 908
 909	return rc;
 
 
 
 
 
 910}
 911
 912/**
 913 * dma_async_device_register - registers DMA devices found
 914 * @device: &dma_device
 915 */
 916int dma_async_device_register(struct dma_device *device)
 917{
 918	int chancnt = 0, rc;
 919	struct dma_chan* chan;
 920	atomic_t *idr_ref;
 921
 922	if (!device)
 923		return -ENODEV;
 924
 925	/* validate device routines */
 926	if (!device->dev) {
 927		pr_err("DMAdevice must have dev\n");
 928		return -EIO;
 929	}
 930
 931	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
 932		dev_err(device->dev,
 933			"Device claims capability %s, but op is not defined\n",
 934			"DMA_MEMCPY");
 935		return -EIO;
 936	}
 937
 938	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
 939		dev_err(device->dev,
 940			"Device claims capability %s, but op is not defined\n",
 941			"DMA_XOR");
 942		return -EIO;
 943	}
 944
 945	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
 946		dev_err(device->dev,
 947			"Device claims capability %s, but op is not defined\n",
 948			"DMA_XOR_VAL");
 949		return -EIO;
 950	}
 951
 952	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
 953		dev_err(device->dev,
 954			"Device claims capability %s, but op is not defined\n",
 955			"DMA_PQ");
 956		return -EIO;
 957	}
 958
 959	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
 960		dev_err(device->dev,
 961			"Device claims capability %s, but op is not defined\n",
 962			"DMA_PQ_VAL");
 963		return -EIO;
 964	}
 965
 966	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
 967		dev_err(device->dev,
 968			"Device claims capability %s, but op is not defined\n",
 969			"DMA_MEMSET");
 970		return -EIO;
 971	}
 972
 973	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
 974		dev_err(device->dev,
 975			"Device claims capability %s, but op is not defined\n",
 976			"DMA_INTERRUPT");
 977		return -EIO;
 978	}
 979
 980	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
 981		dev_err(device->dev,
 982			"Device claims capability %s, but op is not defined\n",
 983			"DMA_CYCLIC");
 984		return -EIO;
 985	}
 986
 987	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
 988		dev_err(device->dev,
 989			"Device claims capability %s, but op is not defined\n",
 990			"DMA_INTERLEAVE");
 991		return -EIO;
 992	}
 993
 994
 995	if (!device->device_tx_status) {
 996		dev_err(device->dev, "Device tx_status is not defined\n");
 997		return -EIO;
 998	}
 999
1000
1001	if (!device->device_issue_pending) {
1002		dev_err(device->dev, "Device issue_pending is not defined\n");
1003		return -EIO;
1004	}
1005
1006	/* note: this only matters in the
1007	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1008	 */
1009	if (device_has_all_tx_types(device))
1010		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1011
1012	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1013	if (!idr_ref)
1014		return -ENOMEM;
1015	rc = get_dma_id(device);
1016	if (rc != 0) {
1017		kfree(idr_ref);
1018		return rc;
1019	}
1020
1021	atomic_set(idr_ref, 0);
1022
1023	/* represent channels in sysfs. Probably want devs too */
1024	list_for_each_entry(chan, &device->channels, device_node) {
1025		rc = -ENOMEM;
1026		chan->local = alloc_percpu(typeof(*chan->local));
1027		if (chan->local == NULL)
1028			goto err_out;
1029		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1030		if (chan->dev == NULL) {
1031			free_percpu(chan->local);
1032			chan->local = NULL;
1033			goto err_out;
1034		}
1035
1036		chan->chan_id = chancnt++;
1037		chan->dev->device.class = &dma_devclass;
1038		chan->dev->device.parent = device->dev;
1039		chan->dev->chan = chan;
1040		chan->dev->idr_ref = idr_ref;
1041		chan->dev->dev_id = device->dev_id;
1042		atomic_inc(idr_ref);
1043		dev_set_name(&chan->dev->device, "dma%dchan%d",
1044			     device->dev_id, chan->chan_id);
1045
1046		rc = device_register(&chan->dev->device);
1047		if (rc) {
1048			free_percpu(chan->local);
1049			chan->local = NULL;
1050			kfree(chan->dev);
1051			atomic_dec(idr_ref);
1052			goto err_out;
1053		}
1054		chan->client_count = 0;
1055	}
1056
1057	if (!chancnt) {
1058		dev_err(device->dev, "%s: device has no channels!\n", __func__);
1059		rc = -ENODEV;
1060		goto err_out;
1061	}
1062
1063	device->chancnt = chancnt;
1064
1065	mutex_lock(&dma_list_mutex);
1066	/* take references on public channels */
1067	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1068		list_for_each_entry(chan, &device->channels, device_node) {
1069			/* if clients are already waiting for channels we need
1070			 * to take references on their behalf
1071			 */
1072			if (dma_chan_get(chan) == -ENODEV) {
1073				/* note we can only get here for the first
1074				 * channel as the remaining channels are
1075				 * guaranteed to get a reference
1076				 */
1077				rc = -ENODEV;
1078				mutex_unlock(&dma_list_mutex);
1079				goto err_out;
1080			}
1081		}
1082	list_add_tail_rcu(&device->global_node, &dma_device_list);
1083	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1084		device->privatecnt++;	/* Always private */
1085	dma_channel_rebalance();
1086	mutex_unlock(&dma_list_mutex);
1087
1088	return 0;
1089
1090err_out:
1091	/* if we never registered a channel just release the idr */
1092	if (atomic_read(idr_ref) == 0) {
1093		mutex_lock(&dma_list_mutex);
1094		ida_remove(&dma_ida, device->dev_id);
1095		mutex_unlock(&dma_list_mutex);
1096		kfree(idr_ref);
1097		return rc;
1098	}
1099
1100	list_for_each_entry(chan, &device->channels, device_node) {
1101		if (chan->local == NULL)
1102			continue;
1103		mutex_lock(&dma_list_mutex);
1104		chan->dev->chan = NULL;
1105		mutex_unlock(&dma_list_mutex);
1106		device_unregister(&chan->dev->device);
1107		free_percpu(chan->local);
1108	}
1109	return rc;
1110}
1111EXPORT_SYMBOL(dma_async_device_register);
1112
1113/**
1114 * dma_async_device_unregister - unregister a DMA device
1115 * @device: &dma_device
1116 *
1117 * This routine is called by dma driver exit routines, dmaengine holds module
1118 * references to prevent it being called while channels are in use.
1119 */
1120void dma_async_device_unregister(struct dma_device *device)
1121{
1122	struct dma_chan *chan;
1123
1124	mutex_lock(&dma_list_mutex);
1125	list_del_rcu(&device->global_node);
1126	dma_channel_rebalance();
1127	mutex_unlock(&dma_list_mutex);
1128
1129	list_for_each_entry(chan, &device->channels, device_node) {
1130		WARN_ONCE(chan->client_count,
1131			  "%s called while %d clients hold a reference\n",
1132			  __func__, chan->client_count);
1133		mutex_lock(&dma_list_mutex);
1134		chan->dev->chan = NULL;
1135		mutex_unlock(&dma_list_mutex);
1136		device_unregister(&chan->dev->device);
1137		free_percpu(chan->local);
1138	}
1139}
1140EXPORT_SYMBOL(dma_async_device_unregister);
1141
1142struct dmaengine_unmap_pool {
1143	struct kmem_cache *cache;
1144	const char *name;
1145	mempool_t *pool;
1146	size_t size;
1147};
1148
1149#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1150static struct dmaengine_unmap_pool unmap_pool[] = {
1151	__UNMAP_POOL(2),
1152	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1153	__UNMAP_POOL(16),
1154	__UNMAP_POOL(128),
1155	__UNMAP_POOL(256),
1156	#endif
1157};
1158
1159static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1160{
1161	int order = get_count_order(nr);
1162
1163	switch (order) {
1164	case 0 ... 1:
1165		return &unmap_pool[0];
1166#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1167	case 2 ... 4:
1168		return &unmap_pool[1];
1169	case 5 ... 7:
1170		return &unmap_pool[2];
1171	case 8:
1172		return &unmap_pool[3];
1173#endif
1174	default:
1175		BUG();
1176		return NULL;
1177	}
1178}
1179
1180static void dmaengine_unmap(struct kref *kref)
1181{
1182	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1183	struct device *dev = unmap->dev;
1184	int cnt, i;
1185
1186	cnt = unmap->to_cnt;
1187	for (i = 0; i < cnt; i++)
1188		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1189			       DMA_TO_DEVICE);
1190	cnt += unmap->from_cnt;
1191	for (; i < cnt; i++)
1192		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1193			       DMA_FROM_DEVICE);
1194	cnt += unmap->bidi_cnt;
1195	for (; i < cnt; i++) {
1196		if (unmap->addr[i] == 0)
1197			continue;
1198		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1199			       DMA_BIDIRECTIONAL);
1200	}
1201	cnt = unmap->map_cnt;
1202	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1203}
1204
1205void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1206{
1207	if (unmap)
1208		kref_put(&unmap->kref, dmaengine_unmap);
1209}
1210EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1211
1212static void dmaengine_destroy_unmap_pool(void)
1213{
1214	int i;
1215
1216	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1217		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1218
1219		mempool_destroy(p->pool);
 
1220		p->pool = NULL;
1221		kmem_cache_destroy(p->cache);
 
1222		p->cache = NULL;
1223	}
1224}
1225
1226static int __init dmaengine_init_unmap_pool(void)
1227{
1228	int i;
1229
1230	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1231		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1232		size_t size;
1233
1234		size = sizeof(struct dmaengine_unmap_data) +
1235		       sizeof(dma_addr_t) * p->size;
1236
1237		p->cache = kmem_cache_create(p->name, size, 0,
1238					     SLAB_HWCACHE_ALIGN, NULL);
1239		if (!p->cache)
1240			break;
1241		p->pool = mempool_create_slab_pool(1, p->cache);
1242		if (!p->pool)
1243			break;
1244	}
1245
1246	if (i == ARRAY_SIZE(unmap_pool))
1247		return 0;
1248
1249	dmaengine_destroy_unmap_pool();
1250	return -ENOMEM;
1251}
1252
1253struct dmaengine_unmap_data *
1254dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1255{
1256	struct dmaengine_unmap_data *unmap;
1257
1258	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1259	if (!unmap)
1260		return NULL;
1261
1262	memset(unmap, 0, sizeof(*unmap));
1263	kref_init(&unmap->kref);
1264	unmap->dev = dev;
1265	unmap->map_cnt = nr;
1266
1267	return unmap;
1268}
1269EXPORT_SYMBOL(dmaengine_get_unmap_data);
1270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1272	struct dma_chan *chan)
1273{
1274	tx->chan = chan;
1275	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1276	spin_lock_init(&tx->lock);
1277	#endif
1278}
1279EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1280
1281/* dma_wait_for_async_tx - spin wait for a transaction to complete
1282 * @tx: in-flight transaction to wait on
1283 */
1284enum dma_status
1285dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1286{
1287	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1288
1289	if (!tx)
1290		return DMA_COMPLETE;
1291
1292	while (tx->cookie == -EBUSY) {
1293		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1294			dev_err(tx->chan->device->dev,
1295				"%s timeout waiting for descriptor submission\n",
1296				__func__);
1297			return DMA_ERROR;
1298		}
1299		cpu_relax();
1300	}
1301	return dma_sync_wait(tx->chan, tx->cookie);
1302}
1303EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1304
1305/* dma_run_dependencies - helper routine for dma drivers to process
1306 *	(start) dependent operations on their target channel
1307 * @tx: transaction with dependencies
1308 */
1309void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1310{
1311	struct dma_async_tx_descriptor *dep = txd_next(tx);
1312	struct dma_async_tx_descriptor *dep_next;
1313	struct dma_chan *chan;
1314
1315	if (!dep)
1316		return;
1317
1318	/* we'll submit tx->next now, so clear the link */
1319	txd_clear_next(tx);
1320	chan = dep->chan;
1321
1322	/* keep submitting up until a channel switch is detected
1323	 * in that case we will be called again as a result of
1324	 * processing the interrupt from async_tx_channel_switch
1325	 */
1326	for (; dep; dep = dep_next) {
1327		txd_lock(dep);
1328		txd_clear_parent(dep);
1329		dep_next = txd_next(dep);
1330		if (dep_next && dep_next->chan == chan)
1331			txd_clear_next(dep); /* ->next will be submitted */
1332		else
1333			dep_next = NULL; /* submit current dep and terminate */
1334		txd_unlock(dep);
1335
1336		dep->tx_submit(dep);
1337	}
1338
1339	chan->device->device_issue_pending(chan);
1340}
1341EXPORT_SYMBOL_GPL(dma_run_dependencies);
1342
1343static int __init dma_bus_init(void)
1344{
1345	int err = dmaengine_init_unmap_pool();
1346
1347	if (err)
1348		return err;
1349	return class_register(&dma_devclass);
1350}
1351arch_initcall(dma_bus_init);
1352
1353
v3.15
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59
  16 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  17 *
  18 * The full GNU General Public License is included in this distribution in the
  19 * file called COPYING.
  20 */
  21
  22/*
  23 * This code implements the DMA subsystem. It provides a HW-neutral interface
  24 * for other kernel code to use asynchronous memory copy capabilities,
  25 * if present, and allows different HW DMA drivers to register as providing
  26 * this capability.
  27 *
  28 * Due to the fact we are accelerating what is already a relatively fast
  29 * operation, the code goes to great lengths to avoid additional overhead,
  30 * such as locking.
  31 *
  32 * LOCKING:
  33 *
  34 * The subsystem keeps a global list of dma_device structs it is protected by a
  35 * mutex, dma_list_mutex.
  36 *
  37 * A subsystem can get access to a channel by calling dmaengine_get() followed
  38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
  39 * dma_request_channel().  Once a channel is allocated a reference is taken
  40 * against its corresponding driver to disable removal.
  41 *
  42 * Each device has a channels list, which runs unlocked but is never modified
  43 * once the device is registered, it's just setup by the driver.
  44 *
  45 * See Documentation/dmaengine.txt for more details
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
 
  50#include <linux/dma-mapping.h>
  51#include <linux/init.h>
  52#include <linux/module.h>
  53#include <linux/mm.h>
  54#include <linux/device.h>
  55#include <linux/dmaengine.h>
  56#include <linux/hardirq.h>
  57#include <linux/spinlock.h>
  58#include <linux/percpu.h>
  59#include <linux/rcupdate.h>
  60#include <linux/mutex.h>
  61#include <linux/jiffies.h>
  62#include <linux/rculist.h>
  63#include <linux/idr.h>
  64#include <linux/slab.h>
  65#include <linux/acpi.h>
  66#include <linux/acpi_dma.h>
  67#include <linux/of_dma.h>
  68#include <linux/mempool.h>
  69
  70static DEFINE_MUTEX(dma_list_mutex);
  71static DEFINE_IDR(dma_idr);
  72static LIST_HEAD(dma_device_list);
  73static long dmaengine_ref_count;
  74
  75/* --- sysfs implementation --- */
  76
  77/**
  78 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
  79 * @dev - device node
  80 *
  81 * Must be called under dma_list_mutex
  82 */
  83static struct dma_chan *dev_to_dma_chan(struct device *dev)
  84{
  85	struct dma_chan_dev *chan_dev;
  86
  87	chan_dev = container_of(dev, typeof(*chan_dev), device);
  88	return chan_dev->chan;
  89}
  90
  91static ssize_t memcpy_count_show(struct device *dev,
  92				 struct device_attribute *attr, char *buf)
  93{
  94	struct dma_chan *chan;
  95	unsigned long count = 0;
  96	int i;
  97	int err;
  98
  99	mutex_lock(&dma_list_mutex);
 100	chan = dev_to_dma_chan(dev);
 101	if (chan) {
 102		for_each_possible_cpu(i)
 103			count += per_cpu_ptr(chan->local, i)->memcpy_count;
 104		err = sprintf(buf, "%lu\n", count);
 105	} else
 106		err = -ENODEV;
 107	mutex_unlock(&dma_list_mutex);
 108
 109	return err;
 110}
 111static DEVICE_ATTR_RO(memcpy_count);
 112
 113static ssize_t bytes_transferred_show(struct device *dev,
 114				      struct device_attribute *attr, char *buf)
 115{
 116	struct dma_chan *chan;
 117	unsigned long count = 0;
 118	int i;
 119	int err;
 120
 121	mutex_lock(&dma_list_mutex);
 122	chan = dev_to_dma_chan(dev);
 123	if (chan) {
 124		for_each_possible_cpu(i)
 125			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
 126		err = sprintf(buf, "%lu\n", count);
 127	} else
 128		err = -ENODEV;
 129	mutex_unlock(&dma_list_mutex);
 130
 131	return err;
 132}
 133static DEVICE_ATTR_RO(bytes_transferred);
 134
 135static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
 136			   char *buf)
 137{
 138	struct dma_chan *chan;
 139	int err;
 140
 141	mutex_lock(&dma_list_mutex);
 142	chan = dev_to_dma_chan(dev);
 143	if (chan)
 144		err = sprintf(buf, "%d\n", chan->client_count);
 145	else
 146		err = -ENODEV;
 147	mutex_unlock(&dma_list_mutex);
 148
 149	return err;
 150}
 151static DEVICE_ATTR_RO(in_use);
 152
 153static struct attribute *dma_dev_attrs[] = {
 154	&dev_attr_memcpy_count.attr,
 155	&dev_attr_bytes_transferred.attr,
 156	&dev_attr_in_use.attr,
 157	NULL,
 158};
 159ATTRIBUTE_GROUPS(dma_dev);
 160
 161static void chan_dev_release(struct device *dev)
 162{
 163	struct dma_chan_dev *chan_dev;
 164
 165	chan_dev = container_of(dev, typeof(*chan_dev), device);
 166	if (atomic_dec_and_test(chan_dev->idr_ref)) {
 167		mutex_lock(&dma_list_mutex);
 168		idr_remove(&dma_idr, chan_dev->dev_id);
 169		mutex_unlock(&dma_list_mutex);
 170		kfree(chan_dev->idr_ref);
 171	}
 172	kfree(chan_dev);
 173}
 174
 175static struct class dma_devclass = {
 176	.name		= "dma",
 177	.dev_groups	= dma_dev_groups,
 178	.dev_release	= chan_dev_release,
 179};
 180
 181/* --- client and device registration --- */
 182
 183#define dma_device_satisfies_mask(device, mask) \
 184	__dma_device_satisfies_mask((device), &(mask))
 185static int
 186__dma_device_satisfies_mask(struct dma_device *device,
 187			    const dma_cap_mask_t *want)
 188{
 189	dma_cap_mask_t has;
 190
 191	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
 192		DMA_TX_TYPE_END);
 193	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
 194}
 195
 196static struct module *dma_chan_to_owner(struct dma_chan *chan)
 197{
 198	return chan->device->dev->driver->owner;
 199}
 200
 201/**
 202 * balance_ref_count - catch up the channel reference count
 203 * @chan - channel to balance ->client_count versus dmaengine_ref_count
 204 *
 205 * balance_ref_count must be called under dma_list_mutex
 206 */
 207static void balance_ref_count(struct dma_chan *chan)
 208{
 209	struct module *owner = dma_chan_to_owner(chan);
 210
 211	while (chan->client_count < dmaengine_ref_count) {
 212		__module_get(owner);
 213		chan->client_count++;
 214	}
 215}
 216
 217/**
 218 * dma_chan_get - try to grab a dma channel's parent driver module
 219 * @chan - channel to grab
 220 *
 221 * Must be called under dma_list_mutex
 222 */
 223static int dma_chan_get(struct dma_chan *chan)
 224{
 225	int err = -ENODEV;
 226	struct module *owner = dma_chan_to_owner(chan);
 
 227
 
 228	if (chan->client_count) {
 229		__module_get(owner);
 230		err = 0;
 231	} else if (try_module_get(owner))
 232		err = 0;
 233
 234	if (err == 0)
 235		chan->client_count++;
 236
 237	/* allocate upon first client reference */
 238	if (chan->client_count == 1 && err == 0) {
 239		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
 
 
 
 240
 241		if (desc_cnt < 0) {
 242			err = desc_cnt;
 243			chan->client_count = 0;
 244			module_put(owner);
 245		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
 246			balance_ref_count(chan);
 247	}
 248
 249	return err;
 
 
 250}
 251
 252/**
 253 * dma_chan_put - drop a reference to a dma channel's parent driver module
 254 * @chan - channel to release
 255 *
 256 * Must be called under dma_list_mutex
 257 */
 258static void dma_chan_put(struct dma_chan *chan)
 259{
 
 260	if (!chan->client_count)
 261		return; /* this channel failed alloc_chan_resources */
 
 262	chan->client_count--;
 263	module_put(dma_chan_to_owner(chan));
 264	if (chan->client_count == 0)
 
 
 
 
 265		chan->device->device_free_chan_resources(chan);
 
 
 
 
 
 
 
 
 266}
 267
 268enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
 269{
 270	enum dma_status status;
 271	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 272
 273	dma_async_issue_pending(chan);
 274	do {
 275		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 276		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 277			pr_err("%s: timeout!\n", __func__);
 278			return DMA_ERROR;
 279		}
 280		if (status != DMA_IN_PROGRESS)
 281			break;
 282		cpu_relax();
 283	} while (1);
 284
 285	return status;
 286}
 287EXPORT_SYMBOL(dma_sync_wait);
 288
 289/**
 290 * dma_cap_mask_all - enable iteration over all operation types
 291 */
 292static dma_cap_mask_t dma_cap_mask_all;
 293
 294/**
 295 * dma_chan_tbl_ent - tracks channel allocations per core/operation
 296 * @chan - associated channel for this entry
 297 */
 298struct dma_chan_tbl_ent {
 299	struct dma_chan *chan;
 300};
 301
 302/**
 303 * channel_table - percpu lookup table for memory-to-memory offload providers
 304 */
 305static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
 306
 307static int __init dma_channel_table_init(void)
 308{
 309	enum dma_transaction_type cap;
 310	int err = 0;
 311
 312	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
 313
 314	/* 'interrupt', 'private', and 'slave' are channel capabilities,
 315	 * but are not associated with an operation so they do not need
 316	 * an entry in the channel_table
 317	 */
 318	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
 319	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
 320	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
 321
 322	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
 323		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
 324		if (!channel_table[cap]) {
 325			err = -ENOMEM;
 326			break;
 327		}
 328	}
 329
 330	if (err) {
 331		pr_err("initialization failure\n");
 332		for_each_dma_cap_mask(cap, dma_cap_mask_all)
 333			if (channel_table[cap])
 334				free_percpu(channel_table[cap]);
 335	}
 336
 337	return err;
 338}
 339arch_initcall(dma_channel_table_init);
 340
 341/**
 342 * dma_find_channel - find a channel to carry out the operation
 343 * @tx_type: transaction type
 344 */
 345struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
 346{
 347	return this_cpu_read(channel_table[tx_type]->chan);
 348}
 349EXPORT_SYMBOL(dma_find_channel);
 350
 351/*
 352 * net_dma_find_channel - find a channel for net_dma
 353 * net_dma has alignment requirements
 354 */
 355struct dma_chan *net_dma_find_channel(void)
 356{
 357	struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
 358	if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
 359		return NULL;
 360
 361	return chan;
 362}
 363EXPORT_SYMBOL(net_dma_find_channel);
 364
 365/**
 366 * dma_issue_pending_all - flush all pending operations across all channels
 367 */
 368void dma_issue_pending_all(void)
 369{
 370	struct dma_device *device;
 371	struct dma_chan *chan;
 372
 373	rcu_read_lock();
 374	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
 375		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 376			continue;
 377		list_for_each_entry(chan, &device->channels, device_node)
 378			if (chan->client_count)
 379				device->device_issue_pending(chan);
 380	}
 381	rcu_read_unlock();
 382}
 383EXPORT_SYMBOL(dma_issue_pending_all);
 384
 385/**
 386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
 387 */
 388static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
 389{
 390	int node = dev_to_node(chan->device->dev);
 391	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
 392}
 393
 394/**
 395 * min_chan - returns the channel with min count and in the same numa-node as the cpu
 396 * @cap: capability to match
 397 * @cpu: cpu index which the channel should be close to
 398 *
 399 * If some channels are close to the given cpu, the one with the lowest
 400 * reference count is returned. Otherwise, cpu is ignored and only the
 401 * reference count is taken into account.
 402 * Must be called under dma_list_mutex.
 403 */
 404static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
 405{
 406	struct dma_device *device;
 407	struct dma_chan *chan;
 408	struct dma_chan *min = NULL;
 409	struct dma_chan *localmin = NULL;
 410
 411	list_for_each_entry(device, &dma_device_list, global_node) {
 412		if (!dma_has_cap(cap, device->cap_mask) ||
 413		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
 414			continue;
 415		list_for_each_entry(chan, &device->channels, device_node) {
 416			if (!chan->client_count)
 417				continue;
 418			if (!min || chan->table_count < min->table_count)
 419				min = chan;
 420
 421			if (dma_chan_is_local(chan, cpu))
 422				if (!localmin ||
 423				    chan->table_count < localmin->table_count)
 424					localmin = chan;
 425		}
 426	}
 427
 428	chan = localmin ? localmin : min;
 429
 430	if (chan)
 431		chan->table_count++;
 432
 433	return chan;
 434}
 435
 436/**
 437 * dma_channel_rebalance - redistribute the available channels
 438 *
 439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
 440 * operation type) in the SMP case,  and operation isolation (avoid
 441 * multi-tasking channels) in the non-SMP case.  Must be called under
 442 * dma_list_mutex.
 443 */
 444static void dma_channel_rebalance(void)
 445{
 446	struct dma_chan *chan;
 447	struct dma_device *device;
 448	int cpu;
 449	int cap;
 450
 451	/* undo the last distribution */
 452	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 453		for_each_possible_cpu(cpu)
 454			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
 455
 456	list_for_each_entry(device, &dma_device_list, global_node) {
 457		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 458			continue;
 459		list_for_each_entry(chan, &device->channels, device_node)
 460			chan->table_count = 0;
 461	}
 462
 463	/* don't populate the channel_table if no clients are available */
 464	if (!dmaengine_ref_count)
 465		return;
 466
 467	/* redistribute available channels */
 468	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 469		for_each_online_cpu(cpu) {
 470			chan = min_chan(cap, cpu);
 471			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
 472		}
 473}
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
 476					  struct dma_device *dev,
 477					  dma_filter_fn fn, void *fn_param)
 478{
 479	struct dma_chan *chan;
 480
 481	if (!__dma_device_satisfies_mask(dev, mask)) {
 482		pr_debug("%s: wrong capabilities\n", __func__);
 483		return NULL;
 484	}
 485	/* devices with multiple channels need special handling as we need to
 486	 * ensure that all channels are either private or public.
 487	 */
 488	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
 489		list_for_each_entry(chan, &dev->channels, device_node) {
 490			/* some channels are already publicly allocated */
 491			if (chan->client_count)
 492				return NULL;
 493		}
 494
 495	list_for_each_entry(chan, &dev->channels, device_node) {
 496		if (chan->client_count) {
 497			pr_debug("%s: %s busy\n",
 498				 __func__, dma_chan_name(chan));
 499			continue;
 500		}
 501		if (fn && !fn(chan, fn_param)) {
 502			pr_debug("%s: %s filter said false\n",
 503				 __func__, dma_chan_name(chan));
 504			continue;
 505		}
 506		return chan;
 507	}
 508
 509	return NULL;
 510}
 511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512/**
 513 * dma_request_slave_channel - try to get specific channel exclusively
 514 * @chan: target channel
 515 */
 516struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
 517{
 518	int err = -EBUSY;
 519
 520	/* lock against __dma_request_channel */
 521	mutex_lock(&dma_list_mutex);
 522
 523	if (chan->client_count == 0) {
 
 
 
 
 524		err = dma_chan_get(chan);
 525		if (err)
 526			pr_debug("%s: failed to get %s: (%d)\n",
 
 527				__func__, dma_chan_name(chan), err);
 
 
 
 
 528	} else
 529		chan = NULL;
 530
 531	mutex_unlock(&dma_list_mutex);
 532
 533
 534	return chan;
 535}
 536EXPORT_SYMBOL_GPL(dma_get_slave_channel);
 537
 538struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
 539{
 540	dma_cap_mask_t mask;
 541	struct dma_chan *chan;
 542	int err;
 543
 544	dma_cap_zero(mask);
 545	dma_cap_set(DMA_SLAVE, mask);
 546
 547	/* lock against __dma_request_channel */
 548	mutex_lock(&dma_list_mutex);
 549
 550	chan = private_candidate(&mask, device, NULL, NULL);
 551	if (chan) {
 552		err = dma_chan_get(chan);
 553		if (err) {
 554			pr_debug("%s: failed to get %s: (%d)\n",
 555				__func__, dma_chan_name(chan), err);
 556			chan = NULL;
 557		}
 558	}
 559
 560	mutex_unlock(&dma_list_mutex);
 561
 562	return chan;
 563}
 564EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
 565
 566/**
 567 * __dma_request_channel - try to allocate an exclusive channel
 568 * @mask: capabilities that the channel must satisfy
 569 * @fn: optional callback to disposition available channels
 570 * @fn_param: opaque parameter to pass to dma_filter_fn
 571 *
 572 * Returns pointer to appropriate DMA channel on success or NULL.
 573 */
 574struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
 575				       dma_filter_fn fn, void *fn_param)
 576{
 577	struct dma_device *device, *_d;
 578	struct dma_chan *chan = NULL;
 579	int err;
 580
 581	/* Find a channel */
 582	mutex_lock(&dma_list_mutex);
 583	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 584		chan = private_candidate(mask, device, fn, fn_param);
 585		if (chan) {
 586			/* Found a suitable channel, try to grab, prep, and
 587			 * return it.  We first set DMA_PRIVATE to disable
 588			 * balance_ref_count as this channel will not be
 589			 * published in the general-purpose allocator
 590			 */
 591			dma_cap_set(DMA_PRIVATE, device->cap_mask);
 592			device->privatecnt++;
 593			err = dma_chan_get(chan);
 594
 595			if (err == -ENODEV) {
 596				pr_debug("%s: %s module removed\n",
 597					 __func__, dma_chan_name(chan));
 598				list_del_rcu(&device->global_node);
 599			} else if (err)
 600				pr_debug("%s: failed to get %s: (%d)\n",
 601					 __func__, dma_chan_name(chan), err);
 602			else
 603				break;
 604			if (--device->privatecnt == 0)
 605				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 606			chan = NULL;
 607		}
 608	}
 609	mutex_unlock(&dma_list_mutex);
 610
 611	pr_debug("%s: %s (%s)\n",
 612		 __func__,
 613		 chan ? "success" : "fail",
 614		 chan ? dma_chan_name(chan) : NULL);
 615
 616	return chan;
 617}
 618EXPORT_SYMBOL_GPL(__dma_request_channel);
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620/**
 621 * dma_request_slave_channel - try to allocate an exclusive slave channel
 622 * @dev:	pointer to client device structure
 623 * @name:	slave channel name
 624 *
 625 * Returns pointer to appropriate DMA channel on success or an error pointer.
 626 */
 627struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
 628						  const char *name)
 629{
 
 
 
 630	/* If device-tree is present get slave info from here */
 631	if (dev->of_node)
 632		return of_dma_request_slave_channel(dev->of_node, name);
 633
 634	/* If device was enumerated by ACPI get slave info from here */
 635	if (ACPI_HANDLE(dev))
 636		return acpi_dma_request_slave_chan_by_name(dev, name);
 
 
 
 
 
 
 637
 638	return ERR_PTR(-ENODEV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639}
 640EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
 641
 642/**
 643 * dma_request_slave_channel - try to allocate an exclusive slave channel
 644 * @dev:	pointer to client device structure
 645 * @name:	slave channel name
 646 *
 647 * Returns pointer to appropriate DMA channel on success or NULL.
 648 */
 649struct dma_chan *dma_request_slave_channel(struct device *dev,
 650					   const char *name)
 651{
 652	struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
 653	if (IS_ERR(ch))
 654		return NULL;
 
 655	return ch;
 656}
 657EXPORT_SYMBOL_GPL(dma_request_slave_channel);
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659void dma_release_channel(struct dma_chan *chan)
 660{
 661	mutex_lock(&dma_list_mutex);
 662	WARN_ONCE(chan->client_count != 1,
 663		  "chan reference count %d != 1\n", chan->client_count);
 664	dma_chan_put(chan);
 665	/* drop PRIVATE cap enabled by __dma_request_channel() */
 666	if (--chan->device->privatecnt == 0)
 667		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
 668	mutex_unlock(&dma_list_mutex);
 669}
 670EXPORT_SYMBOL_GPL(dma_release_channel);
 671
 672/**
 673 * dmaengine_get - register interest in dma_channels
 674 */
 675void dmaengine_get(void)
 676{
 677	struct dma_device *device, *_d;
 678	struct dma_chan *chan;
 679	int err;
 680
 681	mutex_lock(&dma_list_mutex);
 682	dmaengine_ref_count++;
 683
 684	/* try to grab channels */
 685	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 686		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 687			continue;
 688		list_for_each_entry(chan, &device->channels, device_node) {
 689			err = dma_chan_get(chan);
 690			if (err == -ENODEV) {
 691				/* module removed before we could use it */
 692				list_del_rcu(&device->global_node);
 693				break;
 694			} else if (err)
 695				pr_debug("%s: failed to get %s: (%d)\n",
 696				       __func__, dma_chan_name(chan), err);
 
 697		}
 698	}
 699
 700	/* if this is the first reference and there were channels
 701	 * waiting we need to rebalance to get those channels
 702	 * incorporated into the channel table
 703	 */
 704	if (dmaengine_ref_count == 1)
 705		dma_channel_rebalance();
 706	mutex_unlock(&dma_list_mutex);
 707}
 708EXPORT_SYMBOL(dmaengine_get);
 709
 710/**
 711 * dmaengine_put - let dma drivers be removed when ref_count == 0
 712 */
 713void dmaengine_put(void)
 714{
 715	struct dma_device *device;
 716	struct dma_chan *chan;
 717
 718	mutex_lock(&dma_list_mutex);
 719	dmaengine_ref_count--;
 720	BUG_ON(dmaengine_ref_count < 0);
 721	/* drop channel references */
 722	list_for_each_entry(device, &dma_device_list, global_node) {
 723		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 724			continue;
 725		list_for_each_entry(chan, &device->channels, device_node)
 726			dma_chan_put(chan);
 727	}
 728	mutex_unlock(&dma_list_mutex);
 729}
 730EXPORT_SYMBOL(dmaengine_put);
 731
 732static bool device_has_all_tx_types(struct dma_device *device)
 733{
 734	/* A device that satisfies this test has channels that will never cause
 735	 * an async_tx channel switch event as all possible operation types can
 736	 * be handled.
 737	 */
 738	#ifdef CONFIG_ASYNC_TX_DMA
 739	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
 740		return false;
 741	#endif
 742
 743	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
 744	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
 745		return false;
 746	#endif
 747
 748	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
 749	if (!dma_has_cap(DMA_XOR, device->cap_mask))
 750		return false;
 751
 752	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
 753	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
 754		return false;
 755	#endif
 756	#endif
 757
 758	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
 759	if (!dma_has_cap(DMA_PQ, device->cap_mask))
 760		return false;
 761
 762	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
 763	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
 764		return false;
 765	#endif
 766	#endif
 767
 768	return true;
 769}
 770
 771static int get_dma_id(struct dma_device *device)
 772{
 773	int rc;
 774
 775	mutex_lock(&dma_list_mutex);
 
 
 
 
 
 
 776
 777	rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
 778	if (rc >= 0)
 779		device->dev_id = rc;
 780
 781	mutex_unlock(&dma_list_mutex);
 782	return rc < 0 ? rc : 0;
 783}
 784
 785/**
 786 * dma_async_device_register - registers DMA devices found
 787 * @device: &dma_device
 788 */
 789int dma_async_device_register(struct dma_device *device)
 790{
 791	int chancnt = 0, rc;
 792	struct dma_chan* chan;
 793	atomic_t *idr_ref;
 794
 795	if (!device)
 796		return -ENODEV;
 797
 798	/* validate device routines */
 799	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
 800		!device->device_prep_dma_memcpy);
 801	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
 802		!device->device_prep_dma_xor);
 803	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
 804		!device->device_prep_dma_xor_val);
 805	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
 806		!device->device_prep_dma_pq);
 807	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
 808		!device->device_prep_dma_pq_val);
 809	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
 810		!device->device_prep_dma_interrupt);
 811	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
 812		!device->device_prep_dma_sg);
 813	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
 814		!device->device_prep_dma_cyclic);
 815	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
 816		!device->device_control);
 817	BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
 818		!device->device_prep_interleaved_dma);
 819
 820	BUG_ON(!device->device_alloc_chan_resources);
 821	BUG_ON(!device->device_free_chan_resources);
 822	BUG_ON(!device->device_tx_status);
 823	BUG_ON(!device->device_issue_pending);
 824	BUG_ON(!device->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826	/* note: this only matters in the
 827	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
 828	 */
 829	if (device_has_all_tx_types(device))
 830		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
 831
 832	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
 833	if (!idr_ref)
 834		return -ENOMEM;
 835	rc = get_dma_id(device);
 836	if (rc != 0) {
 837		kfree(idr_ref);
 838		return rc;
 839	}
 840
 841	atomic_set(idr_ref, 0);
 842
 843	/* represent channels in sysfs. Probably want devs too */
 844	list_for_each_entry(chan, &device->channels, device_node) {
 845		rc = -ENOMEM;
 846		chan->local = alloc_percpu(typeof(*chan->local));
 847		if (chan->local == NULL)
 848			goto err_out;
 849		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
 850		if (chan->dev == NULL) {
 851			free_percpu(chan->local);
 852			chan->local = NULL;
 853			goto err_out;
 854		}
 855
 856		chan->chan_id = chancnt++;
 857		chan->dev->device.class = &dma_devclass;
 858		chan->dev->device.parent = device->dev;
 859		chan->dev->chan = chan;
 860		chan->dev->idr_ref = idr_ref;
 861		chan->dev->dev_id = device->dev_id;
 862		atomic_inc(idr_ref);
 863		dev_set_name(&chan->dev->device, "dma%dchan%d",
 864			     device->dev_id, chan->chan_id);
 865
 866		rc = device_register(&chan->dev->device);
 867		if (rc) {
 868			free_percpu(chan->local);
 869			chan->local = NULL;
 870			kfree(chan->dev);
 871			atomic_dec(idr_ref);
 872			goto err_out;
 873		}
 874		chan->client_count = 0;
 875	}
 
 
 
 
 
 
 
 876	device->chancnt = chancnt;
 877
 878	mutex_lock(&dma_list_mutex);
 879	/* take references on public channels */
 880	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
 881		list_for_each_entry(chan, &device->channels, device_node) {
 882			/* if clients are already waiting for channels we need
 883			 * to take references on their behalf
 884			 */
 885			if (dma_chan_get(chan) == -ENODEV) {
 886				/* note we can only get here for the first
 887				 * channel as the remaining channels are
 888				 * guaranteed to get a reference
 889				 */
 890				rc = -ENODEV;
 891				mutex_unlock(&dma_list_mutex);
 892				goto err_out;
 893			}
 894		}
 895	list_add_tail_rcu(&device->global_node, &dma_device_list);
 896	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 897		device->privatecnt++;	/* Always private */
 898	dma_channel_rebalance();
 899	mutex_unlock(&dma_list_mutex);
 900
 901	return 0;
 902
 903err_out:
 904	/* if we never registered a channel just release the idr */
 905	if (atomic_read(idr_ref) == 0) {
 906		mutex_lock(&dma_list_mutex);
 907		idr_remove(&dma_idr, device->dev_id);
 908		mutex_unlock(&dma_list_mutex);
 909		kfree(idr_ref);
 910		return rc;
 911	}
 912
 913	list_for_each_entry(chan, &device->channels, device_node) {
 914		if (chan->local == NULL)
 915			continue;
 916		mutex_lock(&dma_list_mutex);
 917		chan->dev->chan = NULL;
 918		mutex_unlock(&dma_list_mutex);
 919		device_unregister(&chan->dev->device);
 920		free_percpu(chan->local);
 921	}
 922	return rc;
 923}
 924EXPORT_SYMBOL(dma_async_device_register);
 925
 926/**
 927 * dma_async_device_unregister - unregister a DMA device
 928 * @device: &dma_device
 929 *
 930 * This routine is called by dma driver exit routines, dmaengine holds module
 931 * references to prevent it being called while channels are in use.
 932 */
 933void dma_async_device_unregister(struct dma_device *device)
 934{
 935	struct dma_chan *chan;
 936
 937	mutex_lock(&dma_list_mutex);
 938	list_del_rcu(&device->global_node);
 939	dma_channel_rebalance();
 940	mutex_unlock(&dma_list_mutex);
 941
 942	list_for_each_entry(chan, &device->channels, device_node) {
 943		WARN_ONCE(chan->client_count,
 944			  "%s called while %d clients hold a reference\n",
 945			  __func__, chan->client_count);
 946		mutex_lock(&dma_list_mutex);
 947		chan->dev->chan = NULL;
 948		mutex_unlock(&dma_list_mutex);
 949		device_unregister(&chan->dev->device);
 950		free_percpu(chan->local);
 951	}
 952}
 953EXPORT_SYMBOL(dma_async_device_unregister);
 954
 955struct dmaengine_unmap_pool {
 956	struct kmem_cache *cache;
 957	const char *name;
 958	mempool_t *pool;
 959	size_t size;
 960};
 961
 962#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
 963static struct dmaengine_unmap_pool unmap_pool[] = {
 964	__UNMAP_POOL(2),
 965	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
 966	__UNMAP_POOL(16),
 967	__UNMAP_POOL(128),
 968	__UNMAP_POOL(256),
 969	#endif
 970};
 971
 972static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
 973{
 974	int order = get_count_order(nr);
 975
 976	switch (order) {
 977	case 0 ... 1:
 978		return &unmap_pool[0];
 
 979	case 2 ... 4:
 980		return &unmap_pool[1];
 981	case 5 ... 7:
 982		return &unmap_pool[2];
 983	case 8:
 984		return &unmap_pool[3];
 
 985	default:
 986		BUG();
 987		return NULL;
 988	}
 989}
 990
 991static void dmaengine_unmap(struct kref *kref)
 992{
 993	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
 994	struct device *dev = unmap->dev;
 995	int cnt, i;
 996
 997	cnt = unmap->to_cnt;
 998	for (i = 0; i < cnt; i++)
 999		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1000			       DMA_TO_DEVICE);
1001	cnt += unmap->from_cnt;
1002	for (; i < cnt; i++)
1003		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1004			       DMA_FROM_DEVICE);
1005	cnt += unmap->bidi_cnt;
1006	for (; i < cnt; i++) {
1007		if (unmap->addr[i] == 0)
1008			continue;
1009		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1010			       DMA_BIDIRECTIONAL);
1011	}
1012	cnt = unmap->map_cnt;
1013	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1014}
1015
1016void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1017{
1018	if (unmap)
1019		kref_put(&unmap->kref, dmaengine_unmap);
1020}
1021EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1022
1023static void dmaengine_destroy_unmap_pool(void)
1024{
1025	int i;
1026
1027	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1028		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1029
1030		if (p->pool)
1031			mempool_destroy(p->pool);
1032		p->pool = NULL;
1033		if (p->cache)
1034			kmem_cache_destroy(p->cache);
1035		p->cache = NULL;
1036	}
1037}
1038
1039static int __init dmaengine_init_unmap_pool(void)
1040{
1041	int i;
1042
1043	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1044		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1045		size_t size;
1046
1047		size = sizeof(struct dmaengine_unmap_data) +
1048		       sizeof(dma_addr_t) * p->size;
1049
1050		p->cache = kmem_cache_create(p->name, size, 0,
1051					     SLAB_HWCACHE_ALIGN, NULL);
1052		if (!p->cache)
1053			break;
1054		p->pool = mempool_create_slab_pool(1, p->cache);
1055		if (!p->pool)
1056			break;
1057	}
1058
1059	if (i == ARRAY_SIZE(unmap_pool))
1060		return 0;
1061
1062	dmaengine_destroy_unmap_pool();
1063	return -ENOMEM;
1064}
1065
1066struct dmaengine_unmap_data *
1067dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1068{
1069	struct dmaengine_unmap_data *unmap;
1070
1071	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1072	if (!unmap)
1073		return NULL;
1074
1075	memset(unmap, 0, sizeof(*unmap));
1076	kref_init(&unmap->kref);
1077	unmap->dev = dev;
1078	unmap->map_cnt = nr;
1079
1080	return unmap;
1081}
1082EXPORT_SYMBOL(dmaengine_get_unmap_data);
1083
1084/**
1085 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
1086 * @chan: DMA channel to offload copy to
1087 * @dest_pg: destination page
1088 * @dest_off: offset in page to copy to
1089 * @src_pg: source page
1090 * @src_off: offset in page to copy from
1091 * @len: length
1092 *
1093 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
1094 * address according to the DMA mapping API rules for streaming mappings.
1095 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
1096 * (kernel memory or locked user space pages).
1097 */
1098dma_cookie_t
1099dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
1100	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
1101	size_t len)
1102{
1103	struct dma_device *dev = chan->device;
1104	struct dma_async_tx_descriptor *tx;
1105	struct dmaengine_unmap_data *unmap;
1106	dma_cookie_t cookie;
1107	unsigned long flags;
1108
1109	unmap = dmaengine_get_unmap_data(dev->dev, 2, GFP_NOWAIT);
1110	if (!unmap)
1111		return -ENOMEM;
1112
1113	unmap->to_cnt = 1;
1114	unmap->from_cnt = 1;
1115	unmap->addr[0] = dma_map_page(dev->dev, src_pg, src_off, len,
1116				      DMA_TO_DEVICE);
1117	unmap->addr[1] = dma_map_page(dev->dev, dest_pg, dest_off, len,
1118				      DMA_FROM_DEVICE);
1119	unmap->len = len;
1120	flags = DMA_CTRL_ACK;
1121	tx = dev->device_prep_dma_memcpy(chan, unmap->addr[1], unmap->addr[0],
1122					 len, flags);
1123
1124	if (!tx) {
1125		dmaengine_unmap_put(unmap);
1126		return -ENOMEM;
1127	}
1128
1129	dma_set_unmap(tx, unmap);
1130	cookie = tx->tx_submit(tx);
1131	dmaengine_unmap_put(unmap);
1132
1133	preempt_disable();
1134	__this_cpu_add(chan->local->bytes_transferred, len);
1135	__this_cpu_inc(chan->local->memcpy_count);
1136	preempt_enable();
1137
1138	return cookie;
1139}
1140EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
1141
1142/**
1143 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
1144 * @chan: DMA channel to offload copy to
1145 * @dest: destination address (virtual)
1146 * @src: source address (virtual)
1147 * @len: length
1148 *
1149 * Both @dest and @src must be mappable to a bus address according to the
1150 * DMA mapping API rules for streaming mappings.
1151 * Both @dest and @src must stay memory resident (kernel memory or locked
1152 * user space pages).
1153 */
1154dma_cookie_t
1155dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
1156			    void *src, size_t len)
1157{
1158	return dma_async_memcpy_pg_to_pg(chan, virt_to_page(dest),
1159					 (unsigned long) dest & ~PAGE_MASK,
1160					 virt_to_page(src),
1161					 (unsigned long) src & ~PAGE_MASK, len);
1162}
1163EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
1164
1165/**
1166 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
1167 * @chan: DMA channel to offload copy to
1168 * @page: destination page
1169 * @offset: offset in page to copy to
1170 * @kdata: source address (virtual)
1171 * @len: length
1172 *
1173 * Both @page/@offset and @kdata must be mappable to a bus address according
1174 * to the DMA mapping API rules for streaming mappings.
1175 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
1176 * locked user space pages)
1177 */
1178dma_cookie_t
1179dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
1180			   unsigned int offset, void *kdata, size_t len)
1181{
1182	return dma_async_memcpy_pg_to_pg(chan, page, offset,
1183					 virt_to_page(kdata),
1184					 (unsigned long) kdata & ~PAGE_MASK, len);
1185}
1186EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
1187
1188void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1189	struct dma_chan *chan)
1190{
1191	tx->chan = chan;
1192	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1193	spin_lock_init(&tx->lock);
1194	#endif
1195}
1196EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1197
1198/* dma_wait_for_async_tx - spin wait for a transaction to complete
1199 * @tx: in-flight transaction to wait on
1200 */
1201enum dma_status
1202dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1203{
1204	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1205
1206	if (!tx)
1207		return DMA_COMPLETE;
1208
1209	while (tx->cookie == -EBUSY) {
1210		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1211			pr_err("%s timeout waiting for descriptor submission\n",
1212			       __func__);
 
1213			return DMA_ERROR;
1214		}
1215		cpu_relax();
1216	}
1217	return dma_sync_wait(tx->chan, tx->cookie);
1218}
1219EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1220
1221/* dma_run_dependencies - helper routine for dma drivers to process
1222 *	(start) dependent operations on their target channel
1223 * @tx: transaction with dependencies
1224 */
1225void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1226{
1227	struct dma_async_tx_descriptor *dep = txd_next(tx);
1228	struct dma_async_tx_descriptor *dep_next;
1229	struct dma_chan *chan;
1230
1231	if (!dep)
1232		return;
1233
1234	/* we'll submit tx->next now, so clear the link */
1235	txd_clear_next(tx);
1236	chan = dep->chan;
1237
1238	/* keep submitting up until a channel switch is detected
1239	 * in that case we will be called again as a result of
1240	 * processing the interrupt from async_tx_channel_switch
1241	 */
1242	for (; dep; dep = dep_next) {
1243		txd_lock(dep);
1244		txd_clear_parent(dep);
1245		dep_next = txd_next(dep);
1246		if (dep_next && dep_next->chan == chan)
1247			txd_clear_next(dep); /* ->next will be submitted */
1248		else
1249			dep_next = NULL; /* submit current dep and terminate */
1250		txd_unlock(dep);
1251
1252		dep->tx_submit(dep);
1253	}
1254
1255	chan->device->device_issue_pending(chan);
1256}
1257EXPORT_SYMBOL_GPL(dma_run_dependencies);
1258
1259static int __init dma_bus_init(void)
1260{
1261	int err = dmaengine_init_unmap_pool();
1262
1263	if (err)
1264		return err;
1265	return class_register(&dma_devclass);
1266}
1267arch_initcall(dma_bus_init);
1268
1269