Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * unaligned.c: Unaligned load/store trap handling with special
  4 *              cases for the kernel to do them more quickly.
  5 *
  6 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  7 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  8 */
  9
 10
 11#include <linux/jiffies.h>
 12#include <linux/kernel.h>
 13#include <linux/sched.h>
 14#include <linux/mm.h>
 15#include <linux/extable.h>
 16#include <asm/asi.h>
 17#include <asm/ptrace.h>
 18#include <asm/pstate.h>
 19#include <asm/processor.h>
 20#include <linux/uaccess.h>
 21#include <linux/smp.h>
 22#include <linux/bitops.h>
 23#include <linux/perf_event.h>
 24#include <linux/ratelimit.h>
 25#include <linux/context_tracking.h>
 26#include <asm/fpumacro.h>
 27#include <asm/cacheflush.h>
 28#include <asm/setup.h>
 29
 30#include "entry.h"
 31#include "kernel.h"
 32
 33enum direction {
 34	load,    /* ld, ldd, ldh, ldsh */
 35	store,   /* st, std, sth, stsh */
 36	both,    /* Swap, ldstub, cas, ... */
 37	fpld,
 38	fpst,
 39	invalid,
 40};
 41
 42static inline enum direction decode_direction(unsigned int insn)
 43{
 44	unsigned long tmp = (insn >> 21) & 1;
 45
 46	if (!tmp)
 47		return load;
 48	else {
 49		switch ((insn>>19)&0xf) {
 50		case 15: /* swap* */
 51			return both;
 52		default:
 53			return store;
 54		}
 55	}
 56}
 57
 58/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 59static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 60{
 61	unsigned int tmp;
 62
 63	tmp = ((insn >> 19) & 0xf);
 64	if (tmp == 11 || tmp == 14) /* ldx/stx */
 65		return 8;
 66	tmp &= 3;
 67	if (!tmp)
 68		return 4;
 69	else if (tmp == 3)
 70		return 16;	/* ldd/std - Although it is actually 8 */
 71	else if (tmp == 2)
 72		return 2;
 73	else {
 74		printk("Impossible unaligned trap. insn=%08x\n", insn);
 75		die_if_kernel("Byte sized unaligned access?!?!", regs);
 76
 77		/* GCC should never warn that control reaches the end
 78		 * of this function without returning a value because
 79		 * die_if_kernel() is marked with attribute 'noreturn'.
 80		 * Alas, some versions do...
 81		 */
 82
 83		return 0;
 84	}
 85}
 86
 87static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 88{
 89	if (insn & 0x800000) {
 90		if (insn & 0x2000)
 91			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 92		else
 93			return (unsigned char)(insn >> 5);		/* imm_asi */
 94	} else
 95		return ASI_P;
 96}
 97
 98/* 0x400000 = signed, 0 = unsigned */
 99static inline int decode_signedness(unsigned int insn)
100{
101	return (insn & 0x400000);
102}
103
104static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
105				       unsigned int rd, int from_kernel)
106{
107	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
108		if (from_kernel != 0)
109			__asm__ __volatile__("flushw");
110		else
111			flushw_user();
112	}
113}
114
115static inline long sign_extend_imm13(long imm)
116{
117	return imm << 51 >> 51;
118}
119
120static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
121{
122	unsigned long value, fp;
123	
124	if (reg < 16)
125		return (!reg ? 0 : regs->u_regs[reg]);
126
127	fp = regs->u_regs[UREG_FP];
128
129	if (regs->tstate & TSTATE_PRIV) {
130		struct reg_window *win;
131		win = (struct reg_window *)(fp + STACK_BIAS);
132		value = win->locals[reg - 16];
133	} else if (!test_thread_64bit_stack(fp)) {
134		struct reg_window32 __user *win32;
135		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
136		get_user(value, &win32->locals[reg - 16]);
137	} else {
138		struct reg_window __user *win;
139		win = (struct reg_window __user *)(fp + STACK_BIAS);
140		get_user(value, &win->locals[reg - 16]);
141	}
142	return value;
143}
144
145static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
146{
147	unsigned long fp;
148
149	if (reg < 16)
150		return &regs->u_regs[reg];
151
152	fp = regs->u_regs[UREG_FP];
153
154	if (regs->tstate & TSTATE_PRIV) {
155		struct reg_window *win;
156		win = (struct reg_window *)(fp + STACK_BIAS);
157		return &win->locals[reg - 16];
158	} else if (!test_thread_64bit_stack(fp)) {
159		struct reg_window32 *win32;
160		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
161		return (unsigned long *)&win32->locals[reg - 16];
162	} else {
163		struct reg_window *win;
164		win = (struct reg_window *)(fp + STACK_BIAS);
165		return &win->locals[reg - 16];
166	}
167}
168
169unsigned long compute_effective_address(struct pt_regs *regs,
170					unsigned int insn, unsigned int rd)
171{
172	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
173	unsigned int rs1 = (insn >> 14) & 0x1f;
174	unsigned int rs2 = insn & 0x1f;
175	unsigned long addr;
176
177	if (insn & 0x2000) {
178		maybe_flush_windows(rs1, 0, rd, from_kernel);
179		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
180	} else {
181		maybe_flush_windows(rs1, rs2, rd, from_kernel);
182		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
183	}
184
185	if (!from_kernel && test_thread_flag(TIF_32BIT))
186		addr &= 0xffffffff;
187
188	return addr;
189}
190
191/* This is just to make gcc think die_if_kernel does return... */
192static void __used unaligned_panic(char *str, struct pt_regs *regs)
193{
194	die_if_kernel(str, regs);
195}
196
197extern int do_int_load(unsigned long *dest_reg, int size,
198		       unsigned long *saddr, int is_signed, int asi);
199	
200extern int __do_int_store(unsigned long *dst_addr, int size,
201			  unsigned long src_val, int asi);
202
203static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
204			       struct pt_regs *regs, int asi, int orig_asi)
205{
206	unsigned long zero = 0;
207	unsigned long *src_val_p = &zero;
208	unsigned long src_val;
209
210	if (size == 16) {
211		size = 8;
212		zero = (((long)(reg_num ?
213		        (unsigned int)fetch_reg(reg_num, regs) : 0)) << 32) |
214			(unsigned int)fetch_reg(reg_num + 1, regs);
215	} else if (reg_num) {
216		src_val_p = fetch_reg_addr(reg_num, regs);
217	}
218	src_val = *src_val_p;
219	if (unlikely(asi != orig_asi)) {
220		switch (size) {
221		case 2:
222			src_val = swab16(src_val);
223			break;
224		case 4:
225			src_val = swab32(src_val);
226			break;
227		case 8:
228			src_val = swab64(src_val);
229			break;
230		case 16:
231		default:
232			BUG();
233			break;
234		}
235	}
236	return __do_int_store(dst_addr, size, src_val, asi);
237}
238
239static inline void advance(struct pt_regs *regs)
240{
241	regs->tpc   = regs->tnpc;
242	regs->tnpc += 4;
243	if (test_thread_flag(TIF_32BIT)) {
244		regs->tpc &= 0xffffffff;
245		regs->tnpc &= 0xffffffff;
246	}
247}
248
249static inline int floating_point_load_or_store_p(unsigned int insn)
250{
251	return (insn >> 24) & 1;
252}
253
254static inline int ok_for_kernel(unsigned int insn)
255{
256	return !floating_point_load_or_store_p(insn);
257}
258
259static void kernel_mna_trap_fault(int fixup_tstate_asi)
260{
261	struct pt_regs *regs = current_thread_info()->kern_una_regs;
262	unsigned int insn = current_thread_info()->kern_una_insn;
263	const struct exception_table_entry *entry;
264
265	entry = search_exception_tables(regs->tpc);
266	if (!entry) {
267		unsigned long address;
268
269		address = compute_effective_address(regs, insn,
270						    ((insn >> 25) & 0x1f));
271        	if (address < PAGE_SIZE) {
272                	printk(KERN_ALERT "Unable to handle kernel NULL "
273			       "pointer dereference in mna handler");
274        	} else
275                	printk(KERN_ALERT "Unable to handle kernel paging "
276			       "request in mna handler");
277	        printk(KERN_ALERT " at virtual address %016lx\n",address);
278		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
279			(current->mm ? CTX_HWBITS(current->mm->context) :
280			CTX_HWBITS(current->active_mm->context)));
281		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
282			(current->mm ? (unsigned long) current->mm->pgd :
283			(unsigned long) current->active_mm->pgd));
284	        die_if_kernel("Oops", regs);
285		/* Not reached */
286	}
287	regs->tpc = entry->fixup;
288	regs->tnpc = regs->tpc + 4;
289
290	if (fixup_tstate_asi) {
291		regs->tstate &= ~TSTATE_ASI;
292		regs->tstate |= (ASI_AIUS << 24UL);
293	}
294}
295
296static void log_unaligned(struct pt_regs *regs)
297{
298	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
299
300	if (__ratelimit(&ratelimit)) {
301		printk("Kernel unaligned access at TPC[%lx] %pS\n",
302		       regs->tpc, (void *) regs->tpc);
303	}
304}
305
306asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
307{
308	enum direction dir = decode_direction(insn);
309	int size = decode_access_size(regs, insn);
310	int orig_asi, asi;
311
312	current_thread_info()->kern_una_regs = regs;
313	current_thread_info()->kern_una_insn = insn;
314
315	orig_asi = asi = decode_asi(insn, regs);
316
317	/* If this is a {get,put}_user() on an unaligned userspace pointer,
318	 * just signal a fault and do not log the event.
319	 */
320	if (asi == ASI_AIUS) {
321		kernel_mna_trap_fault(0);
322		return;
323	}
324
325	log_unaligned(regs);
326
327	if (!ok_for_kernel(insn) || dir == both) {
328		printk("Unsupported unaligned load/store trap for kernel "
329		       "at <%016lx>.\n", regs->tpc);
330		unaligned_panic("Kernel does fpu/atomic "
331				"unaligned load/store.", regs);
332
333		kernel_mna_trap_fault(0);
334	} else {
335		unsigned long addr, *reg_addr;
336		int err;
337
338		addr = compute_effective_address(regs, insn,
339						 ((insn >> 25) & 0x1f));
340		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
341		switch (asi) {
342		case ASI_NL:
343		case ASI_AIUPL:
344		case ASI_AIUSL:
345		case ASI_PL:
346		case ASI_SL:
347		case ASI_PNFL:
348		case ASI_SNFL:
349			asi &= ~0x08;
350			break;
351		}
352		switch (dir) {
353		case load:
354			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
355			err = do_int_load(reg_addr, size,
356					  (unsigned long *) addr,
357					  decode_signedness(insn), asi);
358			if (likely(!err) && unlikely(asi != orig_asi)) {
359				unsigned long val_in = *reg_addr;
360				switch (size) {
361				case 2:
362					val_in = swab16(val_in);
363					break;
364				case 4:
365					val_in = swab32(val_in);
366					break;
367				case 8:
368					val_in = swab64(val_in);
369					break;
370				case 16:
371				default:
372					BUG();
373					break;
374				}
375				*reg_addr = val_in;
376			}
377			break;
378
379		case store:
380			err = do_int_store(((insn>>25)&0x1f), size,
381					   (unsigned long *) addr, regs,
382					   asi, orig_asi);
383			break;
384
385		default:
386			panic("Impossible kernel unaligned trap.");
387			/* Not reached... */
388		}
389		if (unlikely(err))
390			kernel_mna_trap_fault(1);
391		else
392			advance(regs);
393	}
394}
395
396int handle_popc(u32 insn, struct pt_regs *regs)
397{
398	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
399	int ret, rd = ((insn >> 25) & 0x1f);
400	u64 value;
401	                        
402	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
403	if (insn & 0x2000) {
404		maybe_flush_windows(0, 0, rd, from_kernel);
405		value = sign_extend_imm13(insn);
406	} else {
407		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
408		value = fetch_reg(insn & 0x1f, regs);
409	}
410	ret = hweight64(value);
411	if (rd < 16) {
412		if (rd)
413			regs->u_regs[rd] = ret;
414	} else {
415		unsigned long fp = regs->u_regs[UREG_FP];
416
417		if (!test_thread_64bit_stack(fp)) {
418			struct reg_window32 __user *win32;
419			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
420			put_user(ret, &win32->locals[rd - 16]);
421		} else {
422			struct reg_window __user *win;
423			win = (struct reg_window __user *)(fp + STACK_BIAS);
424			put_user(ret, &win->locals[rd - 16]);
425		}
426	}
427	advance(regs);
428	return 1;
429}
430
431extern void do_fpother(struct pt_regs *regs);
432extern void do_privact(struct pt_regs *regs);
433extern void sun4v_data_access_exception(struct pt_regs *regs,
434					unsigned long addr,
435					unsigned long type_ctx);
436
437int handle_ldf_stq(u32 insn, struct pt_regs *regs)
438{
439	unsigned long addr = compute_effective_address(regs, insn, 0);
440	int freg;
441	struct fpustate *f = FPUSTATE;
442	int asi = decode_asi(insn, regs);
443	int flag;
444
445	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
446
447	save_and_clear_fpu();
448	current_thread_info()->xfsr[0] &= ~0x1c000;
 
 
 
 
 
449	if (insn & 0x200000) {
450		/* STQ */
451		u64 first = 0, second = 0;
452		
453		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
454		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
455		if (freg & 3) {
456			current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
457			do_fpother(regs);
458			return 0;
459		}
460		if (current_thread_info()->fpsaved[0] & flag) {
461			first = *(u64 *)&f->regs[freg];
462			second = *(u64 *)&f->regs[freg+2];
463		}
464		if (asi < 0x80) {
465			do_privact(regs);
466			return 1;
467		}
468		switch (asi) {
469		case ASI_P:
470		case ASI_S: break;
471		case ASI_PL:
472		case ASI_SL: 
473			{
474				/* Need to convert endians */
475				u64 tmp = __swab64p(&first);
476				
477				first = __swab64p(&second);
478				second = tmp;
479				break;
480			}
481		default:
482			if (tlb_type == hypervisor)
483				sun4v_data_access_exception(regs, addr, 0);
484			else
485				spitfire_data_access_exception(regs, 0, addr);
486			return 1;
487		}
488		if (put_user (first >> 32, (u32 __user *)addr) ||
489		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
490		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
491		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
492			if (tlb_type == hypervisor)
493				sun4v_data_access_exception(regs, addr, 0);
494			else
495				spitfire_data_access_exception(regs, 0, addr);
496		    	return 1;
497		}
498	} else {
499		/* LDF, LDDF, LDQF */
500		u32 data[4] __attribute__ ((aligned(8)));
501		int size, i;
502		int err;
503
504		if (asi < 0x80) {
505			do_privact(regs);
506			return 1;
507		} else if (asi > ASI_SNFL) {
508			if (tlb_type == hypervisor)
509				sun4v_data_access_exception(regs, addr, 0);
510			else
511				spitfire_data_access_exception(regs, 0, addr);
512			return 1;
513		}
514		switch (insn & 0x180000) {
515		case 0x000000: size = 1; break;
516		case 0x100000: size = 4; break;
517		default: size = 2; break;
518		}
519		if (size == 1)
520			freg = (insn >> 25) & 0x1f;
521		else
522			freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
523		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
524
525		for (i = 0; i < size; i++)
526			data[i] = 0;
527		
528		err = get_user (data[0], (u32 __user *) addr);
529		if (!err) {
530			for (i = 1; i < size; i++)
531				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
532		}
533		if (err && !(asi & 0x2 /* NF */)) {
534			if (tlb_type == hypervisor)
535				sun4v_data_access_exception(regs, addr, 0);
536			else
537				spitfire_data_access_exception(regs, 0, addr);
538			return 1;
539		}
540		if (asi & 0x8) /* Little */ {
541			u64 tmp;
542
543			switch (size) {
544			case 1: data[0] = le32_to_cpup(data + 0); break;
545			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
546				break;
547			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
548				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
549				*(u64 *)(data + 2) = tmp;
550				break;
551			}
552		}
553		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
554			current_thread_info()->fpsaved[0] = FPRS_FEF;
555			current_thread_info()->gsr[0] = 0;
556		}
557		if (!(current_thread_info()->fpsaved[0] & flag)) {
558			if (freg < 32)
559				memset(f->regs, 0, 32*sizeof(u32));
560			else
561				memset(f->regs+32, 0, 32*sizeof(u32));
562		}
563		memcpy(f->regs + freg, data, size * 4);
564		current_thread_info()->fpsaved[0] |= flag;
565	}
566	advance(regs);
567	return 1;
568}
569
570void handle_ld_nf(u32 insn, struct pt_regs *regs)
571{
572	int rd = ((insn >> 25) & 0x1f);
573	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
574	unsigned long *reg;
575	                        
576	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
577
578	maybe_flush_windows(0, 0, rd, from_kernel);
579	reg = fetch_reg_addr(rd, regs);
580	if (from_kernel || rd < 16) {
581		reg[0] = 0;
582		if ((insn & 0x780000) == 0x180000)
583			reg[1] = 0;
584	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
585		put_user(0, (int __user *) reg);
586		if ((insn & 0x780000) == 0x180000)
587			put_user(0, ((int __user *) reg) + 1);
588	} else {
589		put_user(0, (unsigned long __user *) reg);
590		if ((insn & 0x780000) == 0x180000)
591			put_user(0, (unsigned long __user *) reg + 1);
592	}
593	advance(regs);
594}
595
596void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
597{
598	enum ctx_state prev_state = exception_enter();
599	unsigned long pc = regs->tpc;
600	unsigned long tstate = regs->tstate;
601	u32 insn;
602	u64 value;
603	u8 freg;
604	int flag;
605	struct fpustate *f = FPUSTATE;
606
607	if (tstate & TSTATE_PRIV)
608		die_if_kernel("lddfmna from kernel", regs);
609	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
610	if (test_thread_flag(TIF_32BIT))
611		pc = (u32)pc;
612	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
613		int asi = decode_asi(insn, regs);
614		u32 first, second;
615		int err;
616
617		if ((asi > ASI_SNFL) ||
618		    (asi < ASI_P))
619			goto daex;
620		first = second = 0;
621		err = get_user(first, (u32 __user *)sfar);
622		if (!err)
623			err = get_user(second, (u32 __user *)(sfar + 4));
624		if (err) {
625			if (!(asi & 0x2))
626				goto daex;
627			first = second = 0;
628		}
629		save_and_clear_fpu();
630		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
631		value = (((u64)first) << 32) | second;
632		if (asi & 0x8) /* Little */
633			value = __swab64p(&value);
634		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
635		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
636			current_thread_info()->fpsaved[0] = FPRS_FEF;
637			current_thread_info()->gsr[0] = 0;
638		}
639		if (!(current_thread_info()->fpsaved[0] & flag)) {
640			if (freg < 32)
641				memset(f->regs, 0, 32*sizeof(u32));
642			else
643				memset(f->regs+32, 0, 32*sizeof(u32));
644		}
645		*(u64 *)(f->regs + freg) = value;
646		current_thread_info()->fpsaved[0] |= flag;
647	} else {
648daex:
649		if (tlb_type == hypervisor)
650			sun4v_data_access_exception(regs, sfar, sfsr);
651		else
652			spitfire_data_access_exception(regs, sfsr, sfar);
653		goto out;
654	}
655	advance(regs);
656out:
657	exception_exit(prev_state);
658}
659
660void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
661{
662	enum ctx_state prev_state = exception_enter();
663	unsigned long pc = regs->tpc;
664	unsigned long tstate = regs->tstate;
665	u32 insn;
666	u64 value;
667	u8 freg;
668	int flag;
669	struct fpustate *f = FPUSTATE;
670
671	if (tstate & TSTATE_PRIV)
672		die_if_kernel("stdfmna from kernel", regs);
673	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
674	if (test_thread_flag(TIF_32BIT))
675		pc = (u32)pc;
676	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
677		int asi = decode_asi(insn, regs);
678		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
679		value = 0;
680		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
681		if ((asi > ASI_SNFL) ||
682		    (asi < ASI_P))
683			goto daex;
684		save_and_clear_fpu();
685		if (current_thread_info()->fpsaved[0] & flag)
686			value = *(u64 *)&f->regs[freg];
687		switch (asi) {
688		case ASI_P:
689		case ASI_S: break;
690		case ASI_PL:
691		case ASI_SL: 
692			value = __swab64p(&value); break;
693		default: goto daex;
694		}
695		if (put_user (value >> 32, (u32 __user *) sfar) ||
696		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
697			goto daex;
698	} else {
699daex:
700		if (tlb_type == hypervisor)
701			sun4v_data_access_exception(regs, sfar, sfsr);
702		else
703			spitfire_data_access_exception(regs, sfsr, sfar);
704		goto out;
705	}
706	advance(regs);
707out:
708	exception_exit(prev_state);
709}
v3.15
 
  1/*
  2 * unaligned.c: Unaligned load/store trap handling with special
  3 *              cases for the kernel to do them more quickly.
  4 *
  5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9
 10#include <linux/jiffies.h>
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <asm/asi.h>
 16#include <asm/ptrace.h>
 17#include <asm/pstate.h>
 18#include <asm/processor.h>
 19#include <asm/uaccess.h>
 20#include <linux/smp.h>
 21#include <linux/bitops.h>
 22#include <linux/perf_event.h>
 23#include <linux/ratelimit.h>
 24#include <linux/context_tracking.h>
 25#include <asm/fpumacro.h>
 26#include <asm/cacheflush.h>
 
 27
 28#include "entry.h"
 
 29
 30enum direction {
 31	load,    /* ld, ldd, ldh, ldsh */
 32	store,   /* st, std, sth, stsh */
 33	both,    /* Swap, ldstub, cas, ... */
 34	fpld,
 35	fpst,
 36	invalid,
 37};
 38
 39static inline enum direction decode_direction(unsigned int insn)
 40{
 41	unsigned long tmp = (insn >> 21) & 1;
 42
 43	if (!tmp)
 44		return load;
 45	else {
 46		switch ((insn>>19)&0xf) {
 47		case 15: /* swap* */
 48			return both;
 49		default:
 50			return store;
 51		}
 52	}
 53}
 54
 55/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 56static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 57{
 58	unsigned int tmp;
 59
 60	tmp = ((insn >> 19) & 0xf);
 61	if (tmp == 11 || tmp == 14) /* ldx/stx */
 62		return 8;
 63	tmp &= 3;
 64	if (!tmp)
 65		return 4;
 66	else if (tmp == 3)
 67		return 16;	/* ldd/std - Although it is actually 8 */
 68	else if (tmp == 2)
 69		return 2;
 70	else {
 71		printk("Impossible unaligned trap. insn=%08x\n", insn);
 72		die_if_kernel("Byte sized unaligned access?!?!", regs);
 73
 74		/* GCC should never warn that control reaches the end
 75		 * of this function without returning a value because
 76		 * die_if_kernel() is marked with attribute 'noreturn'.
 77		 * Alas, some versions do...
 78		 */
 79
 80		return 0;
 81	}
 82}
 83
 84static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 85{
 86	if (insn & 0x800000) {
 87		if (insn & 0x2000)
 88			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 89		else
 90			return (unsigned char)(insn >> 5);		/* imm_asi */
 91	} else
 92		return ASI_P;
 93}
 94
 95/* 0x400000 = signed, 0 = unsigned */
 96static inline int decode_signedness(unsigned int insn)
 97{
 98	return (insn & 0x400000);
 99}
100
101static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
102				       unsigned int rd, int from_kernel)
103{
104	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
105		if (from_kernel != 0)
106			__asm__ __volatile__("flushw");
107		else
108			flushw_user();
109	}
110}
111
112static inline long sign_extend_imm13(long imm)
113{
114	return imm << 51 >> 51;
115}
116
117static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
118{
119	unsigned long value, fp;
120	
121	if (reg < 16)
122		return (!reg ? 0 : regs->u_regs[reg]);
123
124	fp = regs->u_regs[UREG_FP];
125
126	if (regs->tstate & TSTATE_PRIV) {
127		struct reg_window *win;
128		win = (struct reg_window *)(fp + STACK_BIAS);
129		value = win->locals[reg - 16];
130	} else if (!test_thread_64bit_stack(fp)) {
131		struct reg_window32 __user *win32;
132		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
133		get_user(value, &win32->locals[reg - 16]);
134	} else {
135		struct reg_window __user *win;
136		win = (struct reg_window __user *)(fp + STACK_BIAS);
137		get_user(value, &win->locals[reg - 16]);
138	}
139	return value;
140}
141
142static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
143{
144	unsigned long fp;
145
146	if (reg < 16)
147		return &regs->u_regs[reg];
148
149	fp = regs->u_regs[UREG_FP];
150
151	if (regs->tstate & TSTATE_PRIV) {
152		struct reg_window *win;
153		win = (struct reg_window *)(fp + STACK_BIAS);
154		return &win->locals[reg - 16];
155	} else if (!test_thread_64bit_stack(fp)) {
156		struct reg_window32 *win32;
157		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
158		return (unsigned long *)&win32->locals[reg - 16];
159	} else {
160		struct reg_window *win;
161		win = (struct reg_window *)(fp + STACK_BIAS);
162		return &win->locals[reg - 16];
163	}
164}
165
166unsigned long compute_effective_address(struct pt_regs *regs,
167					unsigned int insn, unsigned int rd)
168{
169	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
170	unsigned int rs1 = (insn >> 14) & 0x1f;
171	unsigned int rs2 = insn & 0x1f;
172	unsigned long addr;
173
174	if (insn & 0x2000) {
175		maybe_flush_windows(rs1, 0, rd, from_kernel);
176		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
177	} else {
178		maybe_flush_windows(rs1, rs2, rd, from_kernel);
179		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
180	}
181
182	if (!from_kernel && test_thread_flag(TIF_32BIT))
183		addr &= 0xffffffff;
184
185	return addr;
186}
187
188/* This is just to make gcc think die_if_kernel does return... */
189static void __used unaligned_panic(char *str, struct pt_regs *regs)
190{
191	die_if_kernel(str, regs);
192}
193
194extern int do_int_load(unsigned long *dest_reg, int size,
195		       unsigned long *saddr, int is_signed, int asi);
196	
197extern int __do_int_store(unsigned long *dst_addr, int size,
198			  unsigned long src_val, int asi);
199
200static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
201			       struct pt_regs *regs, int asi, int orig_asi)
202{
203	unsigned long zero = 0;
204	unsigned long *src_val_p = &zero;
205	unsigned long src_val;
206
207	if (size == 16) {
208		size = 8;
209		zero = (((long)(reg_num ?
210		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
211			(unsigned)fetch_reg(reg_num + 1, regs);
212	} else if (reg_num) {
213		src_val_p = fetch_reg_addr(reg_num, regs);
214	}
215	src_val = *src_val_p;
216	if (unlikely(asi != orig_asi)) {
217		switch (size) {
218		case 2:
219			src_val = swab16(src_val);
220			break;
221		case 4:
222			src_val = swab32(src_val);
223			break;
224		case 8:
225			src_val = swab64(src_val);
226			break;
227		case 16:
228		default:
229			BUG();
230			break;
231		}
232	}
233	return __do_int_store(dst_addr, size, src_val, asi);
234}
235
236static inline void advance(struct pt_regs *regs)
237{
238	regs->tpc   = regs->tnpc;
239	regs->tnpc += 4;
240	if (test_thread_flag(TIF_32BIT)) {
241		regs->tpc &= 0xffffffff;
242		regs->tnpc &= 0xffffffff;
243	}
244}
245
246static inline int floating_point_load_or_store_p(unsigned int insn)
247{
248	return (insn >> 24) & 1;
249}
250
251static inline int ok_for_kernel(unsigned int insn)
252{
253	return !floating_point_load_or_store_p(insn);
254}
255
256static void kernel_mna_trap_fault(int fixup_tstate_asi)
257{
258	struct pt_regs *regs = current_thread_info()->kern_una_regs;
259	unsigned int insn = current_thread_info()->kern_una_insn;
260	const struct exception_table_entry *entry;
261
262	entry = search_exception_tables(regs->tpc);
263	if (!entry) {
264		unsigned long address;
265
266		address = compute_effective_address(regs, insn,
267						    ((insn >> 25) & 0x1f));
268        	if (address < PAGE_SIZE) {
269                	printk(KERN_ALERT "Unable to handle kernel NULL "
270			       "pointer dereference in mna handler");
271        	} else
272                	printk(KERN_ALERT "Unable to handle kernel paging "
273			       "request in mna handler");
274	        printk(KERN_ALERT " at virtual address %016lx\n",address);
275		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
276			(current->mm ? CTX_HWBITS(current->mm->context) :
277			CTX_HWBITS(current->active_mm->context)));
278		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
279			(current->mm ? (unsigned long) current->mm->pgd :
280			(unsigned long) current->active_mm->pgd));
281	        die_if_kernel("Oops", regs);
282		/* Not reached */
283	}
284	regs->tpc = entry->fixup;
285	regs->tnpc = regs->tpc + 4;
286
287	if (fixup_tstate_asi) {
288		regs->tstate &= ~TSTATE_ASI;
289		regs->tstate |= (ASI_AIUS << 24UL);
290	}
291}
292
293static void log_unaligned(struct pt_regs *regs)
294{
295	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
296
297	if (__ratelimit(&ratelimit)) {
298		printk("Kernel unaligned access at TPC[%lx] %pS\n",
299		       regs->tpc, (void *) regs->tpc);
300	}
301}
302
303asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
304{
305	enum direction dir = decode_direction(insn);
306	int size = decode_access_size(regs, insn);
307	int orig_asi, asi;
308
309	current_thread_info()->kern_una_regs = regs;
310	current_thread_info()->kern_una_insn = insn;
311
312	orig_asi = asi = decode_asi(insn, regs);
313
314	/* If this is a {get,put}_user() on an unaligned userspace pointer,
315	 * just signal a fault and do not log the event.
316	 */
317	if (asi == ASI_AIUS) {
318		kernel_mna_trap_fault(0);
319		return;
320	}
321
322	log_unaligned(regs);
323
324	if (!ok_for_kernel(insn) || dir == both) {
325		printk("Unsupported unaligned load/store trap for kernel "
326		       "at <%016lx>.\n", regs->tpc);
327		unaligned_panic("Kernel does fpu/atomic "
328				"unaligned load/store.", regs);
329
330		kernel_mna_trap_fault(0);
331	} else {
332		unsigned long addr, *reg_addr;
333		int err;
334
335		addr = compute_effective_address(regs, insn,
336						 ((insn >> 25) & 0x1f));
337		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
338		switch (asi) {
339		case ASI_NL:
340		case ASI_AIUPL:
341		case ASI_AIUSL:
342		case ASI_PL:
343		case ASI_SL:
344		case ASI_PNFL:
345		case ASI_SNFL:
346			asi &= ~0x08;
347			break;
348		}
349		switch (dir) {
350		case load:
351			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
352			err = do_int_load(reg_addr, size,
353					  (unsigned long *) addr,
354					  decode_signedness(insn), asi);
355			if (likely(!err) && unlikely(asi != orig_asi)) {
356				unsigned long val_in = *reg_addr;
357				switch (size) {
358				case 2:
359					val_in = swab16(val_in);
360					break;
361				case 4:
362					val_in = swab32(val_in);
363					break;
364				case 8:
365					val_in = swab64(val_in);
366					break;
367				case 16:
368				default:
369					BUG();
370					break;
371				}
372				*reg_addr = val_in;
373			}
374			break;
375
376		case store:
377			err = do_int_store(((insn>>25)&0x1f), size,
378					   (unsigned long *) addr, regs,
379					   asi, orig_asi);
380			break;
381
382		default:
383			panic("Impossible kernel unaligned trap.");
384			/* Not reached... */
385		}
386		if (unlikely(err))
387			kernel_mna_trap_fault(1);
388		else
389			advance(regs);
390	}
391}
392
393int handle_popc(u32 insn, struct pt_regs *regs)
394{
395	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
396	int ret, rd = ((insn >> 25) & 0x1f);
397	u64 value;
398	                        
399	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
400	if (insn & 0x2000) {
401		maybe_flush_windows(0, 0, rd, from_kernel);
402		value = sign_extend_imm13(insn);
403	} else {
404		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
405		value = fetch_reg(insn & 0x1f, regs);
406	}
407	ret = hweight64(value);
408	if (rd < 16) {
409		if (rd)
410			regs->u_regs[rd] = ret;
411	} else {
412		unsigned long fp = regs->u_regs[UREG_FP];
413
414		if (!test_thread_64bit_stack(fp)) {
415			struct reg_window32 __user *win32;
416			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
417			put_user(ret, &win32->locals[rd - 16]);
418		} else {
419			struct reg_window __user *win;
420			win = (struct reg_window __user *)(fp + STACK_BIAS);
421			put_user(ret, &win->locals[rd - 16]);
422		}
423	}
424	advance(regs);
425	return 1;
426}
427
428extern void do_fpother(struct pt_regs *regs);
429extern void do_privact(struct pt_regs *regs);
430extern void sun4v_data_access_exception(struct pt_regs *regs,
431					unsigned long addr,
432					unsigned long type_ctx);
433
434int handle_ldf_stq(u32 insn, struct pt_regs *regs)
435{
436	unsigned long addr = compute_effective_address(regs, insn, 0);
437	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
438	struct fpustate *f = FPUSTATE;
439	int asi = decode_asi(insn, regs);
440	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
441
442	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
443
444	save_and_clear_fpu();
445	current_thread_info()->xfsr[0] &= ~0x1c000;
446	if (freg & 3) {
447		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
448		do_fpother(regs);
449		return 0;
450	}
451	if (insn & 0x200000) {
452		/* STQ */
453		u64 first = 0, second = 0;
454		
 
 
 
 
 
 
 
455		if (current_thread_info()->fpsaved[0] & flag) {
456			first = *(u64 *)&f->regs[freg];
457			second = *(u64 *)&f->regs[freg+2];
458		}
459		if (asi < 0x80) {
460			do_privact(regs);
461			return 1;
462		}
463		switch (asi) {
464		case ASI_P:
465		case ASI_S: break;
466		case ASI_PL:
467		case ASI_SL: 
468			{
469				/* Need to convert endians */
470				u64 tmp = __swab64p(&first);
471				
472				first = __swab64p(&second);
473				second = tmp;
474				break;
475			}
476		default:
477			if (tlb_type == hypervisor)
478				sun4v_data_access_exception(regs, addr, 0);
479			else
480				spitfire_data_access_exception(regs, 0, addr);
481			return 1;
482		}
483		if (put_user (first >> 32, (u32 __user *)addr) ||
484		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
485		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
486		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
487			if (tlb_type == hypervisor)
488				sun4v_data_access_exception(regs, addr, 0);
489			else
490				spitfire_data_access_exception(regs, 0, addr);
491		    	return 1;
492		}
493	} else {
494		/* LDF, LDDF, LDQF */
495		u32 data[4] __attribute__ ((aligned(8)));
496		int size, i;
497		int err;
498
499		if (asi < 0x80) {
500			do_privact(regs);
501			return 1;
502		} else if (asi > ASI_SNFL) {
503			if (tlb_type == hypervisor)
504				sun4v_data_access_exception(regs, addr, 0);
505			else
506				spitfire_data_access_exception(regs, 0, addr);
507			return 1;
508		}
509		switch (insn & 0x180000) {
510		case 0x000000: size = 1; break;
511		case 0x100000: size = 4; break;
512		default: size = 2; break;
513		}
 
 
 
 
 
 
514		for (i = 0; i < size; i++)
515			data[i] = 0;
516		
517		err = get_user (data[0], (u32 __user *) addr);
518		if (!err) {
519			for (i = 1; i < size; i++)
520				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
521		}
522		if (err && !(asi & 0x2 /* NF */)) {
523			if (tlb_type == hypervisor)
524				sun4v_data_access_exception(regs, addr, 0);
525			else
526				spitfire_data_access_exception(regs, 0, addr);
527			return 1;
528		}
529		if (asi & 0x8) /* Little */ {
530			u64 tmp;
531
532			switch (size) {
533			case 1: data[0] = le32_to_cpup(data + 0); break;
534			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
535				break;
536			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
537				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
538				*(u64 *)(data + 2) = tmp;
539				break;
540			}
541		}
542		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
543			current_thread_info()->fpsaved[0] = FPRS_FEF;
544			current_thread_info()->gsr[0] = 0;
545		}
546		if (!(current_thread_info()->fpsaved[0] & flag)) {
547			if (freg < 32)
548				memset(f->regs, 0, 32*sizeof(u32));
549			else
550				memset(f->regs+32, 0, 32*sizeof(u32));
551		}
552		memcpy(f->regs + freg, data, size * 4);
553		current_thread_info()->fpsaved[0] |= flag;
554	}
555	advance(regs);
556	return 1;
557}
558
559void handle_ld_nf(u32 insn, struct pt_regs *regs)
560{
561	int rd = ((insn >> 25) & 0x1f);
562	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
563	unsigned long *reg;
564	                        
565	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
566
567	maybe_flush_windows(0, 0, rd, from_kernel);
568	reg = fetch_reg_addr(rd, regs);
569	if (from_kernel || rd < 16) {
570		reg[0] = 0;
571		if ((insn & 0x780000) == 0x180000)
572			reg[1] = 0;
573	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
574		put_user(0, (int __user *) reg);
575		if ((insn & 0x780000) == 0x180000)
576			put_user(0, ((int __user *) reg) + 1);
577	} else {
578		put_user(0, (unsigned long __user *) reg);
579		if ((insn & 0x780000) == 0x180000)
580			put_user(0, (unsigned long __user *) reg + 1);
581	}
582	advance(regs);
583}
584
585void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
586{
587	enum ctx_state prev_state = exception_enter();
588	unsigned long pc = regs->tpc;
589	unsigned long tstate = regs->tstate;
590	u32 insn;
591	u64 value;
592	u8 freg;
593	int flag;
594	struct fpustate *f = FPUSTATE;
595
596	if (tstate & TSTATE_PRIV)
597		die_if_kernel("lddfmna from kernel", regs);
598	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
599	if (test_thread_flag(TIF_32BIT))
600		pc = (u32)pc;
601	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
602		int asi = decode_asi(insn, regs);
603		u32 first, second;
604		int err;
605
606		if ((asi > ASI_SNFL) ||
607		    (asi < ASI_P))
608			goto daex;
609		first = second = 0;
610		err = get_user(first, (u32 __user *)sfar);
611		if (!err)
612			err = get_user(second, (u32 __user *)(sfar + 4));
613		if (err) {
614			if (!(asi & 0x2))
615				goto daex;
616			first = second = 0;
617		}
618		save_and_clear_fpu();
619		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
620		value = (((u64)first) << 32) | second;
621		if (asi & 0x8) /* Little */
622			value = __swab64p(&value);
623		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
624		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
625			current_thread_info()->fpsaved[0] = FPRS_FEF;
626			current_thread_info()->gsr[0] = 0;
627		}
628		if (!(current_thread_info()->fpsaved[0] & flag)) {
629			if (freg < 32)
630				memset(f->regs, 0, 32*sizeof(u32));
631			else
632				memset(f->regs+32, 0, 32*sizeof(u32));
633		}
634		*(u64 *)(f->regs + freg) = value;
635		current_thread_info()->fpsaved[0] |= flag;
636	} else {
637daex:
638		if (tlb_type == hypervisor)
639			sun4v_data_access_exception(regs, sfar, sfsr);
640		else
641			spitfire_data_access_exception(regs, sfsr, sfar);
642		goto out;
643	}
644	advance(regs);
645out:
646	exception_exit(prev_state);
647}
648
649void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
650{
651	enum ctx_state prev_state = exception_enter();
652	unsigned long pc = regs->tpc;
653	unsigned long tstate = regs->tstate;
654	u32 insn;
655	u64 value;
656	u8 freg;
657	int flag;
658	struct fpustate *f = FPUSTATE;
659
660	if (tstate & TSTATE_PRIV)
661		die_if_kernel("stdfmna from kernel", regs);
662	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
663	if (test_thread_flag(TIF_32BIT))
664		pc = (u32)pc;
665	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
666		int asi = decode_asi(insn, regs);
667		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
668		value = 0;
669		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
670		if ((asi > ASI_SNFL) ||
671		    (asi < ASI_P))
672			goto daex;
673		save_and_clear_fpu();
674		if (current_thread_info()->fpsaved[0] & flag)
675			value = *(u64 *)&f->regs[freg];
676		switch (asi) {
677		case ASI_P:
678		case ASI_S: break;
679		case ASI_PL:
680		case ASI_SL: 
681			value = __swab64p(&value); break;
682		default: goto daex;
683		}
684		if (put_user (value >> 32, (u32 __user *) sfar) ||
685		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
686			goto daex;
687	} else {
688daex:
689		if (tlb_type == hypervisor)
690			sun4v_data_access_exception(regs, sfar, sfsr);
691		else
692			spitfire_data_access_exception(regs, sfsr, sfar);
693		goto out;
694	}
695	advance(regs);
696out:
697	exception_exit(prev_state);
698}