Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v4.17
  1/*
  2 *  PowerPC version
  3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4 *
  5 *  Derived from "arch/i386/mm/fault.c"
  6 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7 *
  8 *  Modified by Cort Dougan and Paul Mackerras.
  9 *
 10 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 11 *
 12 *  This program is free software; you can redistribute it and/or
 13 *  modify it under the terms of the GNU General Public License
 14 *  as published by the Free Software Foundation; either version
 15 *  2 of the License, or (at your option) any later version.
 16 */
 17
 18#include <linux/signal.h>
 19#include <linux/sched.h>
 20#include <linux/sched/task_stack.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/types.h>
 25#include <linux/ptrace.h>
 26#include <linux/mman.h>
 27#include <linux/mm.h>
 28#include <linux/interrupt.h>
 29#include <linux/highmem.h>
 30#include <linux/extable.h>
 31#include <linux/kprobes.h>
 32#include <linux/kdebug.h>
 33#include <linux/perf_event.h>
 
 34#include <linux/ratelimit.h>
 35#include <linux/context_tracking.h>
 36#include <linux/hugetlb.h>
 37#include <linux/uaccess.h>
 38
 39#include <asm/firmware.h>
 40#include <asm/page.h>
 41#include <asm/pgtable.h>
 42#include <asm/mmu.h>
 43#include <asm/mmu_context.h>
 
 44#include <asm/tlbflush.h>
 45#include <asm/siginfo.h>
 46#include <asm/debug.h>
 
 47
 48static inline bool notify_page_fault(struct pt_regs *regs)
 49{
 50	bool ret = false;
 51
 52#ifdef CONFIG_KPROBES
 
 
 
 
 53	/* kprobe_running() needs smp_processor_id() */
 54	if (!user_mode(regs)) {
 55		preempt_disable();
 56		if (kprobe_running() && kprobe_fault_handler(regs, 11))
 57			ret = true;
 58		preempt_enable();
 59	}
 60#endif /* CONFIG_KPROBES */
 61
 62	if (unlikely(debugger_fault_handler(regs)))
 63		ret = true;
 64
 65	return ret;
 66}
 
 
 
 
 
 
 67
 68/*
 69 * Check whether the instruction at regs->nip is a store using
 70 * an update addressing form which will update r1.
 71 */
 72static bool store_updates_sp(struct pt_regs *regs)
 73{
 74	unsigned int inst;
 75
 76	if (get_user(inst, (unsigned int __user *)regs->nip))
 77		return false;
 78	/* check for 1 in the rA field */
 79	if (((inst >> 16) & 0x1f) != 1)
 80		return false;
 81	/* check major opcode */
 82	switch (inst >> 26) {
 83	case 37:	/* stwu */
 84	case 39:	/* stbu */
 85	case 45:	/* sthu */
 86	case 53:	/* stfsu */
 87	case 55:	/* stfdu */
 88		return true;
 89	case 62:	/* std or stdu */
 90		return (inst & 3) == 1;
 91	case 31:
 92		/* check minor opcode */
 93		switch ((inst >> 1) & 0x3ff) {
 94		case 181:	/* stdux */
 95		case 183:	/* stwux */
 96		case 247:	/* stbux */
 97		case 439:	/* sthux */
 98		case 695:	/* stfsux */
 99		case 759:	/* stfdux */
100			return true;
101		}
102	}
103	return false;
104}
105/*
106 * do_page_fault error handling helpers
107 */
108
109static int
110__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
111		int pkey)
112{
113	/*
114	 * If we are in kernel mode, bail out with a SEGV, this will
115	 * be caught by the assembly which will restore the non-volatile
116	 * registers before calling bad_page_fault()
117	 */
118	if (!user_mode(regs))
119		return SIGSEGV;
120
121	_exception_pkey(SIGSEGV, regs, si_code, address, pkey);
122
123	return 0;
124}
125
126static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
127{
128	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
129}
130
131static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
132			int pkey)
133{
134	struct mm_struct *mm = current->mm;
135
136	/*
137	 * Something tried to access memory that isn't in our memory map..
138	 * Fix it, but check if it's kernel or user first..
139	 */
140	up_read(&mm->mmap_sem);
141
142	return __bad_area_nosemaphore(regs, address, si_code, pkey);
143}
144
145static noinline int bad_area(struct pt_regs *regs, unsigned long address)
146{
147	return __bad_area(regs, address, SEGV_MAPERR, 0);
148}
149
150static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
151				    int pkey)
152{
153	return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
154}
155
156static noinline int bad_access(struct pt_regs *regs, unsigned long address)
157{
158	return __bad_area(regs, address, SEGV_ACCERR, 0);
159}
160
161static int do_sigbus(struct pt_regs *regs, unsigned long address,
162		     unsigned int fault)
163{
164	siginfo_t info;
165	unsigned int lsb = 0;
166
167	if (!user_mode(regs))
168		return SIGBUS;
169
170	current->thread.trap_nr = BUS_ADRERR;
171	info.si_signo = SIGBUS;
172	info.si_errno = 0;
173	info.si_code = BUS_ADRERR;
174	info.si_addr = (void __user *)address;
175#ifdef CONFIG_MEMORY_FAILURE
176	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
177		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
178			current->comm, current->pid, address);
179		info.si_code = BUS_MCEERR_AR;
180	}
181
182	if (fault & VM_FAULT_HWPOISON_LARGE)
183		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
184	if (fault & VM_FAULT_HWPOISON)
185		lsb = PAGE_SHIFT;
186#endif
187	info.si_addr_lsb = lsb;
188	force_sig_info(SIGBUS, &info, current);
189	return 0;
190}
191
192static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
193{
194	/*
195	 * Kernel page fault interrupted by SIGKILL. We have no reason to
196	 * continue processing.
197	 */
198	if (fatal_signal_pending(current) && !user_mode(regs))
199		return SIGKILL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
201	/* Out of memory */
202	if (fault & VM_FAULT_OOM) {
 
 
203		/*
204		 * We ran out of memory, or some other thing happened to us that
205		 * made us unable to handle the page fault gracefully.
206		 */
207		if (!user_mode(regs))
208			return SIGSEGV;
209		pagefault_out_of_memory();
210	} else {
211		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
212			     VM_FAULT_HWPOISON_LARGE))
213			return do_sigbus(regs, addr, fault);
214		else if (fault & VM_FAULT_SIGSEGV)
215			return bad_area_nosemaphore(regs, addr);
216		else
217			BUG();
218	}
219	return 0;
220}
221
222/* Is this a bad kernel fault ? */
223static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
224			     unsigned long address)
225{
226	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
227		printk_ratelimited(KERN_CRIT "kernel tried to execute"
228				   " exec-protected page (%lx) -"
229				   "exploit attempt? (uid: %d)\n",
230				   address, from_kuid(&init_user_ns,
231						      current_uid()));
232	}
233	return is_exec || (address >= TASK_SIZE);
234}
235
236static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
237				struct vm_area_struct *vma,
238				bool store_update_sp)
239{
240	/*
241	 * N.B. The POWER/Open ABI allows programs to access up to
242	 * 288 bytes below the stack pointer.
243	 * The kernel signal delivery code writes up to about 1.5kB
244	 * below the stack pointer (r1) before decrementing it.
245	 * The exec code can write slightly over 640kB to the stack
246	 * before setting the user r1.  Thus we allow the stack to
247	 * expand to 1MB without further checks.
248	 */
249	if (address + 0x100000 < vma->vm_end) {
250		/* get user regs even if this fault is in kernel mode */
251		struct pt_regs *uregs = current->thread.regs;
252		if (uregs == NULL)
253			return true;
254
255		/*
256		 * A user-mode access to an address a long way below
257		 * the stack pointer is only valid if the instruction
258		 * is one which would update the stack pointer to the
259		 * address accessed if the instruction completed,
260		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
261		 * (or the byte, halfword, float or double forms).
262		 *
263		 * If we don't check this then any write to the area
264		 * between the last mapped region and the stack will
265		 * expand the stack rather than segfaulting.
266		 */
267		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
268			return true;
269	}
270	return false;
271}
272
273static bool access_error(bool is_write, bool is_exec,
274			 struct vm_area_struct *vma)
275{
276	/*
277	 * Allow execution from readable areas if the MMU does not
278	 * provide separate controls over reading and executing.
279	 *
280	 * Note: That code used to not be enabled for 4xx/BookE.
281	 * It is now as I/D cache coherency for these is done at
282	 * set_pte_at() time and I see no reason why the test
283	 * below wouldn't be valid on those processors. This -may-
284	 * break programs compiled with a really old ABI though.
285	 */
286	if (is_exec) {
287		return !(vma->vm_flags & VM_EXEC) &&
288			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
289			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
290	}
291
292	if (is_write) {
293		if (unlikely(!(vma->vm_flags & VM_WRITE)))
294			return true;
295		return false;
296	}
297
298	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
299		return true;
300	/*
301	 * We should ideally do the vma pkey access check here. But in the
302	 * fault path, handle_mm_fault() also does the same check. To avoid
303	 * these multiple checks, we skip it here and handle access error due
304	 * to pkeys later.
305	 */
306	return false;
307}
308
309#ifdef CONFIG_PPC_SMLPAR
310static inline void cmo_account_page_fault(void)
311{
312	if (firmware_has_feature(FW_FEATURE_CMO)) {
313		u32 page_ins;
314
315		preempt_disable();
316		page_ins = be32_to_cpu(get_lppaca()->page_ins);
317		page_ins += 1 << PAGE_FACTOR;
318		get_lppaca()->page_ins = cpu_to_be32(page_ins);
319		preempt_enable();
320	}
321}
322#else
323static inline void cmo_account_page_fault(void) { }
324#endif /* CONFIG_PPC_SMLPAR */
325
326#ifdef CONFIG_PPC_STD_MMU
327static void sanity_check_fault(bool is_write, unsigned long error_code)
328{
329	/*
330	 * For hash translation mode, we should never get a
331	 * PROTFAULT. Any update to pte to reduce access will result in us
332	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
333	 * fault instead of DSISR_PROTFAULT.
334	 *
335	 * A pte update to relax the access will not result in a hash page table
336	 * entry invalidate and hence can result in DSISR_PROTFAULT.
337	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
338	 * the special !is_write in the below conditional.
339	 *
340	 * For platforms that doesn't supports coherent icache and do support
341	 * per page noexec bit, we do setup things such that we do the
342	 * sync between D/I cache via fault. But that is handled via low level
343	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
344	 * here in such case.
345	 *
346	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
347	 * check should handle those and hence we should fall to the bad_area
348	 * handling correctly.
349	 *
350	 * For embedded with per page exec support that doesn't support coherent
351	 * icache we do get PROTFAULT and we handle that D/I cache sync in
352	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
353	 * is conditional for server MMU.
354	 *
355	 * For radix, we can get prot fault for autonuma case, because radix
356	 * page table will have them marked noaccess for user.
357	 */
358	if (!radix_enabled() && !is_write)
359		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
360}
361#else
362static void sanity_check_fault(bool is_write, unsigned long error_code) { }
363#endif /* CONFIG_PPC_STD_MMU */
364
365/*
366 * Define the correct "is_write" bit in error_code based
367 * on the processor family
368 */
369#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
370#define page_fault_is_write(__err)	((__err) & ESR_DST)
371#define page_fault_is_bad(__err)	(0)
372#else
373#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
374#if defined(CONFIG_PPC_8xx)
375#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
376#elif defined(CONFIG_PPC64)
377#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
378#else
379#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
380#endif
381#endif
382
383/*
384 * For 600- and 800-family processors, the error_code parameter is DSISR
385 * for a data fault, SRR1 for an instruction fault. For 400-family processors
386 * the error_code parameter is ESR for a data fault, 0 for an instruction
387 * fault.
388 * For 64-bit processors, the error_code parameter is
389 *  - DSISR for a non-SLB data access fault,
390 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
391 *  - 0 any SLB fault.
392 *
393 * The return value is 0 if the fault was handled, or the signal
394 * number if this is a kernel fault that can't be handled here.
395 */
396static int __do_page_fault(struct pt_regs *regs, unsigned long address,
397			   unsigned long error_code)
398{
 
399	struct vm_area_struct * vma;
400	struct mm_struct *mm = current->mm;
401	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
402 	int is_exec = TRAP(regs) == 0x400;
403	int is_user = user_mode(regs);
404	int is_write = page_fault_is_write(error_code);
405	int fault, major = 0;
406	bool store_update_sp = false;
407
408	if (notify_page_fault(regs))
409		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
410
411	if (unlikely(page_fault_is_bad(error_code))) {
412		if (is_user) {
413			_exception(SIGBUS, regs, BUS_OBJERR, address);
414			return 0;
415		}
416		return SIGBUS;
 
 
 
 
417	}
 
418
419	/* Additional sanity check(s) */
420	sanity_check_fault(is_write, error_code);
421
422	/*
423	 * The kernel should never take an execute fault nor should it
424	 * take a page fault to a kernel address.
425	 */
426	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
427		return SIGSEGV;
428
429	/*
430	 * If we're in an interrupt, have no user context or are running
431	 * in a region with pagefaults disabled then we must not take the fault
432	 */
433	if (unlikely(faulthandler_disabled() || !mm)) {
434		if (is_user)
435			printk_ratelimited(KERN_ERR "Page fault in user mode"
436					   " with faulthandler_disabled()=%d"
437					   " mm=%p\n",
438					   faulthandler_disabled(), mm);
439		return bad_area_nosemaphore(regs, address);
440	}
441
 
 
 
 
 
 
 
 
 
442	/* We restore the interrupt state now */
443	if (!arch_irq_disabled_regs(regs))
444		local_irq_enable();
445
446	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
447
448	if (error_code & DSISR_KEYFAULT)
449		return bad_key_fault_exception(regs, address,
450					       get_mm_addr_key(mm, address));
451
452	/*
453	 * We want to do this outside mmap_sem, because reading code around nip
454	 * can result in fault, which will cause a deadlock when called with
455	 * mmap_sem held
456	 */
457	if (is_write && is_user)
458		store_update_sp = store_updates_sp(regs);
459
460	if (is_user)
461		flags |= FAULT_FLAG_USER;
462	if (is_write)
463		flags |= FAULT_FLAG_WRITE;
464	if (is_exec)
465		flags |= FAULT_FLAG_INSTRUCTION;
466
467	/* When running in the kernel we expect faults to occur only to
468	 * addresses in user space.  All other faults represent errors in the
469	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
470	 * erroneous fault occurring in a code path which already holds mmap_sem
471	 * we will deadlock attempting to validate the fault against the
472	 * address space.  Luckily the kernel only validly references user
473	 * space from well defined areas of code, which are listed in the
474	 * exceptions table.
475	 *
476	 * As the vast majority of faults will be valid we will only perform
477	 * the source reference check when there is a possibility of a deadlock.
478	 * Attempt to lock the address space, if we cannot we then validate the
479	 * source.  If this is invalid we can skip the address space check,
480	 * thus avoiding the deadlock.
481	 */
482	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
483		if (!is_user && !search_exception_tables(regs->nip))
484			return bad_area_nosemaphore(regs, address);
485
486retry:
487		down_read(&mm->mmap_sem);
488	} else {
489		/*
490		 * The above down_read_trylock() might have succeeded in
491		 * which case we'll have missed the might_sleep() from
492		 * down_read():
493		 */
494		might_sleep();
495	}
496
497	vma = find_vma(mm, address);
498	if (unlikely(!vma))
499		return bad_area(regs, address);
500	if (likely(vma->vm_start <= address))
501		goto good_area;
502	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
503		return bad_area(regs, address);
504
505	/* The stack is being expanded, check if it's valid */
506	if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
507		return bad_area(regs, address);
508
509	/* Try to expand it */
510	if (unlikely(expand_stack(vma, address)))
511		return bad_area(regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512
513good_area:
514	if (unlikely(access_error(is_write, is_exec, vma)))
515		return bad_access(regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
517	/*
518	 * If for any reason at all we couldn't handle the fault,
519	 * make sure we exit gracefully rather than endlessly redo
520	 * the fault.
521	 */
522	fault = handle_mm_fault(vma, address, flags);
523
524#ifdef CONFIG_PPC_MEM_KEYS
525	/*
526	 * we skipped checking for access error due to key earlier.
527	 * Check that using handle_mm_fault error return.
528	 */
529	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
530		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
531
532		int pkey = vma_pkey(vma);
533
534		up_read(&mm->mmap_sem);
535		return bad_key_fault_exception(regs, address, pkey);
536	}
537#endif /* CONFIG_PPC_MEM_KEYS */
538
539	major |= fault & VM_FAULT_MAJOR;
540
541	/*
542	 * Handle the retry right now, the mmap_sem has been released in that
543	 * case.
 
544	 */
545	if (unlikely(fault & VM_FAULT_RETRY)) {
546		/* We retry only once */
547		if (flags & FAULT_FLAG_ALLOW_RETRY) {
548			/*
549			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
550			 * of starvation.
551			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552			flags &= ~FAULT_FLAG_ALLOW_RETRY;
553			flags |= FAULT_FLAG_TRIED;
554			if (!fatal_signal_pending(current))
555				goto retry;
556		}
557
558		/*
559		 * User mode? Just return to handle the fatal exception otherwise
560		 * return to bad_page_fault
561		 */
562		return is_user ? 0 : SIGBUS;
563	}
564
565	up_read(&current->mm->mmap_sem);
 
566
567	if (unlikely(fault & VM_FAULT_ERROR))
568		return mm_fault_error(regs, address, fault);
569
570	/*
571	 * Major/minor page fault accounting.
572	 */
573	if (major) {
574		current->maj_flt++;
575		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
576		cmo_account_page_fault();
577	} else {
578		current->min_flt++;
579		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
580	}
581	return 0;
582}
583NOKPROBE_SYMBOL(__do_page_fault);
584
585int do_page_fault(struct pt_regs *regs, unsigned long address,
586		  unsigned long error_code)
587{
588	enum ctx_state prev_state = exception_enter();
589	int rc = __do_page_fault(regs, address, error_code);
 
 
 
590	exception_exit(prev_state);
591	return rc;
 
592}
593NOKPROBE_SYMBOL(do_page_fault);
594
595/*
596 * bad_page_fault is called when we have a bad access from the kernel.
597 * It is called from the DSI and ISI handlers in head.S and from some
598 * of the procedures in traps.c.
599 */
600void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
601{
602	const struct exception_table_entry *entry;
 
603
604	/* Are we prepared to handle this fault?  */
605	if ((entry = search_exception_tables(regs->nip)) != NULL) {
606		regs->nip = extable_fixup(entry);
607		return;
608	}
609
610	/* kernel has accessed a bad area */
611
612	switch (TRAP(regs)) {
613	case 0x300:
614	case 0x380:
615		printk(KERN_ALERT "Unable to handle kernel paging request for "
616			"data at address 0x%08lx\n", regs->dar);
617		break;
618	case 0x400:
619	case 0x480:
620		printk(KERN_ALERT "Unable to handle kernel paging request for "
621			"instruction fetch\n");
622		break;
623	case 0x600:
624		printk(KERN_ALERT "Unable to handle kernel paging request for "
625			"unaligned access at address 0x%08lx\n", regs->dar);
626		break;
627	default:
628		printk(KERN_ALERT "Unable to handle kernel paging request for "
629			"unknown fault\n");
630		break;
631	}
632	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
633		regs->nip);
634
635	if (task_stack_end_corrupted(current))
 
636		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
637
638	die("Kernel access of bad area", regs, sig);
639}
v3.15
  1/*
  2 *  PowerPC version
  3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4 *
  5 *  Derived from "arch/i386/mm/fault.c"
  6 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7 *
  8 *  Modified by Cort Dougan and Paul Mackerras.
  9 *
 10 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 11 *
 12 *  This program is free software; you can redistribute it and/or
 13 *  modify it under the terms of the GNU General Public License
 14 *  as published by the Free Software Foundation; either version
 15 *  2 of the License, or (at your option) any later version.
 16 */
 17
 18#include <linux/signal.h>
 19#include <linux/sched.h>
 
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/string.h>
 23#include <linux/types.h>
 24#include <linux/ptrace.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/highmem.h>
 29#include <linux/module.h>
 30#include <linux/kprobes.h>
 31#include <linux/kdebug.h>
 32#include <linux/perf_event.h>
 33#include <linux/magic.h>
 34#include <linux/ratelimit.h>
 35#include <linux/context_tracking.h>
 
 
 36
 37#include <asm/firmware.h>
 38#include <asm/page.h>
 39#include <asm/pgtable.h>
 40#include <asm/mmu.h>
 41#include <asm/mmu_context.h>
 42#include <asm/uaccess.h>
 43#include <asm/tlbflush.h>
 44#include <asm/siginfo.h>
 45#include <asm/debug.h>
 46#include <mm/mmu_decl.h>
 47
 48#include "icswx.h"
 
 
 49
 50#ifdef CONFIG_KPROBES
 51static inline int notify_page_fault(struct pt_regs *regs)
 52{
 53	int ret = 0;
 54
 55	/* kprobe_running() needs smp_processor_id() */
 56	if (!user_mode(regs)) {
 57		preempt_disable();
 58		if (kprobe_running() && kprobe_fault_handler(regs, 11))
 59			ret = 1;
 60		preempt_enable();
 61	}
 
 
 
 
 62
 63	return ret;
 64}
 65#else
 66static inline int notify_page_fault(struct pt_regs *regs)
 67{
 68	return 0;
 69}
 70#endif
 71
 72/*
 73 * Check whether the instruction at regs->nip is a store using
 74 * an update addressing form which will update r1.
 75 */
 76static int store_updates_sp(struct pt_regs *regs)
 77{
 78	unsigned int inst;
 79
 80	if (get_user(inst, (unsigned int __user *)regs->nip))
 81		return 0;
 82	/* check for 1 in the rA field */
 83	if (((inst >> 16) & 0x1f) != 1)
 84		return 0;
 85	/* check major opcode */
 86	switch (inst >> 26) {
 87	case 37:	/* stwu */
 88	case 39:	/* stbu */
 89	case 45:	/* sthu */
 90	case 53:	/* stfsu */
 91	case 55:	/* stfdu */
 92		return 1;
 93	case 62:	/* std or stdu */
 94		return (inst & 3) == 1;
 95	case 31:
 96		/* check minor opcode */
 97		switch ((inst >> 1) & 0x3ff) {
 98		case 181:	/* stdux */
 99		case 183:	/* stwux */
100		case 247:	/* stbux */
101		case 439:	/* sthux */
102		case 695:	/* stfsux */
103		case 759:	/* stfdux */
104			return 1;
105		}
106	}
107	return 0;
108}
109/*
110 * do_page_fault error handling helpers
111 */
112
113#define MM_FAULT_RETURN		0
114#define MM_FAULT_CONTINUE	-1
115#define MM_FAULT_ERR(sig)	(sig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117static int do_sigbus(struct pt_regs *regs, unsigned long address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118{
119	siginfo_t info;
 
120
121	up_read(&current->mm->mmap_sem);
 
122
123	if (user_mode(regs)) {
124		current->thread.trap_nr = BUS_ADRERR;
125		info.si_signo = SIGBUS;
126		info.si_errno = 0;
127		info.si_code = BUS_ADRERR;
128		info.si_addr = (void __user *)address;
129		force_sig_info(SIGBUS, &info, current);
130		return MM_FAULT_RETURN;
131	}
132	return MM_FAULT_ERR(SIGBUS);
 
 
 
 
 
 
 
 
 
 
133}
134
135static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
136{
137	/*
138	 * Pagefault was interrupted by SIGKILL. We have no reason to
139	 * continue the pagefault.
140	 */
141	if (fatal_signal_pending(current)) {
142		/*
143		 * If we have retry set, the mmap semaphore will have
144		 * alrady been released in __lock_page_or_retry(). Else
145		 * we release it now.
146		 */
147		if (!(fault & VM_FAULT_RETRY))
148			up_read(&current->mm->mmap_sem);
149		/* Coming from kernel, we need to deal with uaccess fixups */
150		if (user_mode(regs))
151			return MM_FAULT_RETURN;
152		return MM_FAULT_ERR(SIGKILL);
153	}
154
155	/* No fault: be happy */
156	if (!(fault & VM_FAULT_ERROR))
157		return MM_FAULT_CONTINUE;
158
159	/* Out of memory */
160	if (fault & VM_FAULT_OOM) {
161		up_read(&current->mm->mmap_sem);
162
163		/*
164		 * We ran out of memory, or some other thing happened to us that
165		 * made us unable to handle the page fault gracefully.
166		 */
167		if (!user_mode(regs))
168			return MM_FAULT_ERR(SIGKILL);
169		pagefault_out_of_memory();
170		return MM_FAULT_RETURN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171	}
 
 
172
173	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
174	 * we support the feature in HW
 
 
 
 
 
 
 
 
 
 
175	 */
176	if (fault & VM_FAULT_SIGBUS)
177		return do_sigbus(regs, addr);
 
 
 
178
179	/* We don't understand the fault code, this is fatal */
180	BUG();
181	return MM_FAULT_CONTINUE;
 
 
 
 
 
 
 
 
 
 
 
 
 
182}
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184/*
185 * For 600- and 800-family processors, the error_code parameter is DSISR
186 * for a data fault, SRR1 for an instruction fault. For 400-family processors
187 * the error_code parameter is ESR for a data fault, 0 for an instruction
188 * fault.
189 * For 64-bit processors, the error_code parameter is
190 *  - DSISR for a non-SLB data access fault,
191 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
192 *  - 0 any SLB fault.
193 *
194 * The return value is 0 if the fault was handled, or the signal
195 * number if this is a kernel fault that can't be handled here.
196 */
197int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
198			    unsigned long error_code)
199{
200	enum ctx_state prev_state = exception_enter();
201	struct vm_area_struct * vma;
202	struct mm_struct *mm = current->mm;
203	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204	int code = SEGV_MAPERR;
205	int is_write = 0;
206	int trap = TRAP(regs);
207 	int is_exec = trap == 0x400;
208	int fault;
209	int rc = 0, store_update_sp = 0;
210
211#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
212	/*
213	 * Fortunately the bit assignments in SRR1 for an instruction
214	 * fault and DSISR for a data fault are mostly the same for the
215	 * bits we are interested in.  But there are some bits which
216	 * indicate errors in DSISR but can validly be set in SRR1.
217	 */
218	if (trap == 0x400)
219		error_code &= 0x48200000;
220	else
221		is_write = error_code & DSISR_ISSTORE;
222#else
223	is_write = error_code & ESR_DST;
224#endif /* CONFIG_4xx || CONFIG_BOOKE */
225
226#ifdef CONFIG_PPC_ICSWX
227	/*
228	 * we need to do this early because this "data storage
229	 * interrupt" does not update the DAR/DEAR so we don't want to
230	 * look at it
231	 */
232	if (error_code & ICSWX_DSI_UCT) {
233		rc = acop_handle_fault(regs, address, error_code);
234		if (rc)
235			goto bail;
236	}
237#endif /* CONFIG_PPC_ICSWX */
238
239	if (notify_page_fault(regs))
240		goto bail;
241
242	if (unlikely(debugger_fault_handler(regs)))
243		goto bail;
 
 
 
 
244
245	/* On a kernel SLB miss we can only check for a valid exception entry */
246	if (!user_mode(regs) && (address >= TASK_SIZE)) {
247		rc = SIGSEGV;
248		goto bail;
 
 
 
 
 
 
 
249	}
250
251#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252			     defined(CONFIG_PPC_BOOK3S_64))
253  	if (error_code & DSISR_DABRMATCH) {
254		/* breakpoint match */
255		do_break(regs, address, error_code);
256		goto bail;
257	}
258#endif
259
260	/* We restore the interrupt state now */
261	if (!arch_irq_disabled_regs(regs))
262		local_irq_enable();
263
264	if (in_atomic() || mm == NULL) {
265		if (!user_mode(regs)) {
266			rc = SIGSEGV;
267			goto bail;
268		}
269		/* in_atomic() in user mode is really bad,
270		   as is current->mm == NULL. */
271		printk(KERN_EMERG "Page fault in user mode with "
272		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
273		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
274		       regs->nip, regs->msr);
275		die("Weird page fault", regs, SIGSEGV);
276	}
277
278	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
 
279
280	/*
281	 * We want to do this outside mmap_sem, because reading code around nip
282	 * can result in fault, which will cause a deadlock when called with
283	 * mmap_sem held
284	 */
285	if (user_mode(regs))
286		store_update_sp = store_updates_sp(regs);
287
288	if (user_mode(regs))
289		flags |= FAULT_FLAG_USER;
 
 
 
 
290
291	/* When running in the kernel we expect faults to occur only to
292	 * addresses in user space.  All other faults represent errors in the
293	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
294	 * erroneous fault occurring in a code path which already holds mmap_sem
295	 * we will deadlock attempting to validate the fault against the
296	 * address space.  Luckily the kernel only validly references user
297	 * space from well defined areas of code, which are listed in the
298	 * exceptions table.
299	 *
300	 * As the vast majority of faults will be valid we will only perform
301	 * the source reference check when there is a possibility of a deadlock.
302	 * Attempt to lock the address space, if we cannot we then validate the
303	 * source.  If this is invalid we can skip the address space check,
304	 * thus avoiding the deadlock.
305	 */
306	if (!down_read_trylock(&mm->mmap_sem)) {
307		if (!user_mode(regs) && !search_exception_tables(regs->nip))
308			goto bad_area_nosemaphore;
309
310retry:
311		down_read(&mm->mmap_sem);
312	} else {
313		/*
314		 * The above down_read_trylock() might have succeeded in
315		 * which case we'll have missed the might_sleep() from
316		 * down_read():
317		 */
318		might_sleep();
319	}
320
321	vma = find_vma(mm, address);
322	if (!vma)
323		goto bad_area;
324	if (vma->vm_start <= address)
325		goto good_area;
326	if (!(vma->vm_flags & VM_GROWSDOWN))
327		goto bad_area;
328
329	/*
330	 * N.B. The POWER/Open ABI allows programs to access up to
331	 * 288 bytes below the stack pointer.
332	 * The kernel signal delivery code writes up to about 1.5kB
333	 * below the stack pointer (r1) before decrementing it.
334	 * The exec code can write slightly over 640kB to the stack
335	 * before setting the user r1.  Thus we allow the stack to
336	 * expand to 1MB without further checks.
337	 */
338	if (address + 0x100000 < vma->vm_end) {
339		/* get user regs even if this fault is in kernel mode */
340		struct pt_regs *uregs = current->thread.regs;
341		if (uregs == NULL)
342			goto bad_area;
343
344		/*
345		 * A user-mode access to an address a long way below
346		 * the stack pointer is only valid if the instruction
347		 * is one which would update the stack pointer to the
348		 * address accessed if the instruction completed,
349		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
350		 * (or the byte, halfword, float or double forms).
351		 *
352		 * If we don't check this then any write to the area
353		 * between the last mapped region and the stack will
354		 * expand the stack rather than segfaulting.
355		 */
356		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
357			goto bad_area;
358	}
359	if (expand_stack(vma, address))
360		goto bad_area;
361
362good_area:
363	code = SEGV_ACCERR;
364#if defined(CONFIG_6xx)
365	if (error_code & 0x95700000)
366		/* an error such as lwarx to I/O controller space,
367		   address matching DABR, eciwx, etc. */
368		goto bad_area;
369#endif /* CONFIG_6xx */
370#if defined(CONFIG_8xx)
371	/* 8xx sometimes need to load a invalid/non-present TLBs.
372	 * These must be invalidated separately as linux mm don't.
373	 */
374	if (error_code & 0x40000000) /* no translation? */
375		_tlbil_va(address, 0, 0, 0);
376
377        /* The MPC8xx seems to always set 0x80000000, which is
378         * "undefined".  Of those that can be set, this is the only
379         * one which seems bad.
380         */
381	if (error_code & 0x10000000)
382                /* Guarded storage error. */
383		goto bad_area;
384#endif /* CONFIG_8xx */
385
386	if (is_exec) {
387#ifdef CONFIG_PPC_STD_MMU
388		/* Protection fault on exec go straight to failure on
389		 * Hash based MMUs as they either don't support per-page
390		 * execute permission, or if they do, it's handled already
391		 * at the hash level. This test would probably have to
392		 * be removed if we change the way this works to make hash
393		 * processors use the same I/D cache coherency mechanism
394		 * as embedded.
395		 */
396		if (error_code & DSISR_PROTFAULT)
397			goto bad_area;
398#endif /* CONFIG_PPC_STD_MMU */
399
400		/*
401		 * Allow execution from readable areas if the MMU does not
402		 * provide separate controls over reading and executing.
403		 *
404		 * Note: That code used to not be enabled for 4xx/BookE.
405		 * It is now as I/D cache coherency for these is done at
406		 * set_pte_at() time and I see no reason why the test
407		 * below wouldn't be valid on those processors. This -may-
408		 * break programs compiled with a really old ABI though.
409		 */
410		if (!(vma->vm_flags & VM_EXEC) &&
411		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
412		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
413			goto bad_area;
414	/* a write */
415	} else if (is_write) {
416		if (!(vma->vm_flags & VM_WRITE))
417			goto bad_area;
418		flags |= FAULT_FLAG_WRITE;
419	/* a read */
420	} else {
421		/* protection fault */
422		if (error_code & 0x08000000)
423			goto bad_area;
424		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
425			goto bad_area;
426	}
427
428	/*
429	 * If for any reason at all we couldn't handle the fault,
430	 * make sure we exit gracefully rather than endlessly redo
431	 * the fault.
432	 */
433	fault = handle_mm_fault(mm, vma, address, flags);
434	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
435		rc = mm_fault_error(regs, address, fault);
436		if (rc >= MM_FAULT_RETURN)
437			goto bail;
438		else
439			rc = 0;
 
 
 
 
 
 
 
440	}
 
 
 
441
442	/*
443	 * Major/minor page fault accounting is only done on the
444	 * initial attempt. If we go through a retry, it is extremely
445	 * likely that the page will be found in page cache at that point.
446	 */
447	if (flags & FAULT_FLAG_ALLOW_RETRY) {
448		if (fault & VM_FAULT_MAJOR) {
449			current->maj_flt++;
450			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
451				      regs, address);
452#ifdef CONFIG_PPC_SMLPAR
453			if (firmware_has_feature(FW_FEATURE_CMO)) {
454				u32 page_ins;
455
456				preempt_disable();
457				page_ins = be32_to_cpu(get_lppaca()->page_ins);
458				page_ins += 1 << PAGE_FACTOR;
459				get_lppaca()->page_ins = cpu_to_be32(page_ins);
460				preempt_enable();
461			}
462#endif /* CONFIG_PPC_SMLPAR */
463		} else {
464			current->min_flt++;
465			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
466				      regs, address);
467		}
468		if (fault & VM_FAULT_RETRY) {
469			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
470			 * of starvation. */
471			flags &= ~FAULT_FLAG_ALLOW_RETRY;
472			flags |= FAULT_FLAG_TRIED;
473			goto retry;
 
474		}
 
 
 
 
 
 
475	}
476
477	up_read(&mm->mmap_sem);
478	goto bail;
479
480bad_area:
481	up_read(&mm->mmap_sem);
482
483bad_area_nosemaphore:
484	/* User mode accesses cause a SIGSEGV */
485	if (user_mode(regs)) {
486		_exception(SIGSEGV, regs, code, address);
487		goto bail;
 
 
 
 
 
488	}
 
 
 
489
490	if (is_exec && (error_code & DSISR_PROTFAULT))
491		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
492				   " page (%lx) - exploit attempt? (uid: %d)\n",
493				   address, from_kuid(&init_user_ns, current_uid()));
494
495	rc = SIGSEGV;
496
497bail:
498	exception_exit(prev_state);
499	return rc;
500
501}
 
502
503/*
504 * bad_page_fault is called when we have a bad access from the kernel.
505 * It is called from the DSI and ISI handlers in head.S and from some
506 * of the procedures in traps.c.
507 */
508void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
509{
510	const struct exception_table_entry *entry;
511	unsigned long *stackend;
512
513	/* Are we prepared to handle this fault?  */
514	if ((entry = search_exception_tables(regs->nip)) != NULL) {
515		regs->nip = entry->fixup;
516		return;
517	}
518
519	/* kernel has accessed a bad area */
520
521	switch (regs->trap) {
522	case 0x300:
523	case 0x380:
524		printk(KERN_ALERT "Unable to handle kernel paging request for "
525			"data at address 0x%08lx\n", regs->dar);
526		break;
527	case 0x400:
528	case 0x480:
529		printk(KERN_ALERT "Unable to handle kernel paging request for "
530			"instruction fetch\n");
531		break;
 
 
 
 
532	default:
533		printk(KERN_ALERT "Unable to handle kernel paging request for "
534			"unknown fault\n");
535		break;
536	}
537	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
538		regs->nip);
539
540	stackend = end_of_stack(current);
541	if (current != &init_task && *stackend != STACK_END_MAGIC)
542		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
543
544	die("Kernel access of bad area", regs, sig);
545}