Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   3 *
   4 *  PowerPC version
   5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   6 * Copyright (C) 2001 IBM
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
   9 *
  10 *  Derived from "arch/i386/kernel/signal.c"
  11 *    Copyright (C) 1991, 1992 Linus Torvalds
  12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  13 *
  14 *  This program is free software; you can redistribute it and/or
  15 *  modify it under the terms of the GNU General Public License
  16 *  as published by the Free Software Foundation; either version
  17 *  2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/sched.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/kernel.h>
  24#include <linux/signal.h>
  25#include <linux/errno.h>
  26#include <linux/elf.h>
  27#include <linux/ptrace.h>
  28#include <linux/ratelimit.h>
  29#ifdef CONFIG_PPC64
  30#include <linux/syscalls.h>
  31#include <linux/compat.h>
  32#else
  33#include <linux/wait.h>
  34#include <linux/unistd.h>
  35#include <linux/stddef.h>
  36#include <linux/tty.h>
  37#include <linux/binfmts.h>
  38#endif
  39
  40#include <linux/uaccess.h>
  41#include <asm/cacheflush.h>
  42#include <asm/syscalls.h>
  43#include <asm/sigcontext.h>
  44#include <asm/vdso.h>
  45#include <asm/switch_to.h>
  46#include <asm/tm.h>
  47#include <asm/asm-prototypes.h>
  48#ifdef CONFIG_PPC64
  49#include "ppc32.h"
  50#include <asm/unistd.h>
  51#else
  52#include <asm/ucontext.h>
  53#include <asm/pgtable.h>
  54#endif
  55
  56#include "signal.h"
  57
 
  58
  59#ifdef CONFIG_PPC64
  60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
  61#define sys_swapcontext	compat_sys_swapcontext
  62#define sys_sigreturn	compat_sys_sigreturn
  63
  64#define old_sigaction	old_sigaction32
  65#define sigcontext	sigcontext32
  66#define mcontext	mcontext32
  67#define ucontext	ucontext32
  68
  69#define __save_altstack __compat_save_altstack
  70
  71/*
  72 * Userspace code may pass a ucontext which doesn't include VSX added
  73 * at the end.  We need to check for this case.
  74 */
  75#define UCONTEXTSIZEWITHOUTVSX \
  76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  77
  78/*
  79 * Returning 0 means we return to userspace via
  80 * ret_from_except and thus restore all user
  81 * registers from *regs.  This is what we need
  82 * to do when a signal has been delivered.
  83 */
  84
  85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  86#undef __SIGNAL_FRAMESIZE
  87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  88#undef ELF_NVRREG
  89#define ELF_NVRREG	ELF_NVRREG32
  90
  91/*
  92 * Functions for flipping sigsets (thanks to brain dead generic
  93 * implementation that makes things simple for little endian only)
  94 */
  95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  96{
  97	return put_compat_sigset(uset, set, sizeof(*uset));
 
 
 
 
 
 
 
 
 
 
 
 
  98}
  99
 100static inline int get_sigset_t(sigset_t *set,
 101			       const compat_sigset_t __user *uset)
 102{
 103	return get_compat_sigset(set, uset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104}
 105
 106#define to_user_ptr(p)		ptr_to_compat(p)
 107#define from_user_ptr(p)	compat_ptr(p)
 108
 109static inline int save_general_regs(struct pt_regs *regs,
 110		struct mcontext __user *frame)
 111{
 112	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 113	int i;
 114	/* Force usr to alway see softe as 1 (interrupts enabled) */
 115	elf_greg_t64 softe = 0x1;
 116
 117	WARN_ON(!FULL_REGS(regs));
 118
 119	for (i = 0; i <= PT_RESULT; i ++) {
 120		if (i == 14 && !FULL_REGS(regs))
 121			i = 32;
 122		if ( i == PT_SOFTE) {
 123			if(__put_user((unsigned int)softe, &frame->mc_gregs[i]))
 124				return -EFAULT;
 125			else
 126				continue;
 127		}
 128		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 129			return -EFAULT;
 130	}
 131	return 0;
 132}
 133
 134static inline int restore_general_regs(struct pt_regs *regs,
 135		struct mcontext __user *sr)
 136{
 137	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 138	int i;
 139
 140	for (i = 0; i <= PT_RESULT; i++) {
 141		if ((i == PT_MSR) || (i == PT_SOFTE))
 142			continue;
 143		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 144			return -EFAULT;
 145	}
 146	return 0;
 147}
 148
 149#else /* CONFIG_PPC64 */
 150
 151#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 152
 153static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 154{
 155	return copy_to_user(uset, set, sizeof(*uset));
 156}
 157
 158static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 159{
 160	return copy_from_user(set, uset, sizeof(*uset));
 161}
 162
 163#define to_user_ptr(p)		((unsigned long)(p))
 164#define from_user_ptr(p)	((void __user *)(p))
 165
 166static inline int save_general_regs(struct pt_regs *regs,
 167		struct mcontext __user *frame)
 168{
 169	WARN_ON(!FULL_REGS(regs));
 170	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 171}
 172
 173static inline int restore_general_regs(struct pt_regs *regs,
 174		struct mcontext __user *sr)
 175{
 176	/* copy up to but not including MSR */
 177	if (__copy_from_user(regs, &sr->mc_gregs,
 178				PT_MSR * sizeof(elf_greg_t)))
 179		return -EFAULT;
 180	/* copy from orig_r3 (the word after the MSR) up to the end */
 181	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 182				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 183		return -EFAULT;
 184	return 0;
 185}
 186#endif
 187
 188/*
 189 * When we have signals to deliver, we set up on the
 190 * user stack, going down from the original stack pointer:
 191 *	an ABI gap of 56 words
 192 *	an mcontext struct
 193 *	a sigcontext struct
 194 *	a gap of __SIGNAL_FRAMESIZE bytes
 195 *
 196 * Each of these things must be a multiple of 16 bytes in size. The following
 197 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 198 *
 199 */
 200struct sigframe {
 201	struct sigcontext sctx;		/* the sigcontext */
 202	struct mcontext	mctx;		/* all the register values */
 203#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 204	struct sigcontext sctx_transact;
 205	struct mcontext	mctx_transact;
 206#endif
 207	/*
 208	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 209	 * regs and 18 fp regs below sp before decrementing it.
 210	 */
 211	int			abigap[56];
 212};
 213
 214/* We use the mc_pad field for the signal return trampoline. */
 215#define tramp	mc_pad
 216
 217/*
 218 *  When we have rt signals to deliver, we set up on the
 219 *  user stack, going down from the original stack pointer:
 220 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 221 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 222 *  (the +16 is to get the siginfo and ucontext in the same
 223 *  positions as in older kernels).
 224 *
 225 *  Each of these things must be a multiple of 16 bytes in size.
 226 *
 227 */
 228struct rt_sigframe {
 229#ifdef CONFIG_PPC64
 230	compat_siginfo_t info;
 231#else
 232	struct siginfo info;
 233#endif
 234	struct ucontext	uc;
 235#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 236	struct ucontext	uc_transact;
 237#endif
 238	/*
 239	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 240	 * regs and 18 fp regs below sp before decrementing it.
 241	 */
 242	int			abigap[56];
 243};
 244
 245#ifdef CONFIG_VSX
 246unsigned long copy_fpr_to_user(void __user *to,
 247			       struct task_struct *task)
 248{
 249	u64 buf[ELF_NFPREG];
 250	int i;
 251
 252	/* save FPR copy to local buffer then write to the thread_struct */
 253	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 254		buf[i] = task->thread.TS_FPR(i);
 255	buf[i] = task->thread.fp_state.fpscr;
 256	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 257}
 258
 259unsigned long copy_fpr_from_user(struct task_struct *task,
 260				 void __user *from)
 261{
 262	u64 buf[ELF_NFPREG];
 263	int i;
 264
 265	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 266		return 1;
 267	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 268		task->thread.TS_FPR(i) = buf[i];
 269	task->thread.fp_state.fpscr = buf[i];
 270
 271	return 0;
 272}
 273
 274unsigned long copy_vsx_to_user(void __user *to,
 275			       struct task_struct *task)
 276{
 277	u64 buf[ELF_NVSRHALFREG];
 278	int i;
 279
 280	/* save FPR copy to local buffer then write to the thread_struct */
 281	for (i = 0; i < ELF_NVSRHALFREG; i++)
 282		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 283	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 284}
 285
 286unsigned long copy_vsx_from_user(struct task_struct *task,
 287				 void __user *from)
 288{
 289	u64 buf[ELF_NVSRHALFREG];
 290	int i;
 291
 292	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 293		return 1;
 294	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 295		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 296	return 0;
 297}
 298
 299#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 300unsigned long copy_ckfpr_to_user(void __user *to,
 301				  struct task_struct *task)
 302{
 303	u64 buf[ELF_NFPREG];
 304	int i;
 305
 306	/* save FPR copy to local buffer then write to the thread_struct */
 307	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 308		buf[i] = task->thread.TS_CKFPR(i);
 309	buf[i] = task->thread.ckfp_state.fpscr;
 310	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 311}
 312
 313unsigned long copy_ckfpr_from_user(struct task_struct *task,
 314					  void __user *from)
 315{
 316	u64 buf[ELF_NFPREG];
 317	int i;
 318
 319	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 320		return 1;
 321	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 322		task->thread.TS_CKFPR(i) = buf[i];
 323	task->thread.ckfp_state.fpscr = buf[i];
 324
 325	return 0;
 326}
 327
 328unsigned long copy_ckvsx_to_user(void __user *to,
 329				  struct task_struct *task)
 330{
 331	u64 buf[ELF_NVSRHALFREG];
 332	int i;
 333
 334	/* save FPR copy to local buffer then write to the thread_struct */
 335	for (i = 0; i < ELF_NVSRHALFREG; i++)
 336		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
 337	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 338}
 339
 340unsigned long copy_ckvsx_from_user(struct task_struct *task,
 341					  void __user *from)
 342{
 343	u64 buf[ELF_NVSRHALFREG];
 344	int i;
 345
 346	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 347		return 1;
 348	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 349		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 350	return 0;
 351}
 352#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 353#else
 354inline unsigned long copy_fpr_to_user(void __user *to,
 355				      struct task_struct *task)
 356{
 357	return __copy_to_user(to, task->thread.fp_state.fpr,
 358			      ELF_NFPREG * sizeof(double));
 359}
 360
 361inline unsigned long copy_fpr_from_user(struct task_struct *task,
 362					void __user *from)
 363{
 364	return __copy_from_user(task->thread.fp_state.fpr, from,
 365			      ELF_NFPREG * sizeof(double));
 366}
 367
 368#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 369inline unsigned long copy_ckfpr_to_user(void __user *to,
 370					 struct task_struct *task)
 371{
 372	return __copy_to_user(to, task->thread.ckfp_state.fpr,
 373			      ELF_NFPREG * sizeof(double));
 374}
 375
 376inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
 377						 void __user *from)
 378{
 379	return __copy_from_user(task->thread.ckfp_state.fpr, from,
 380				ELF_NFPREG * sizeof(double));
 381}
 382#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 383#endif
 384
 385/*
 386 * Save the current user registers on the user stack.
 387 * We only save the altivec/spe registers if the process has used
 388 * altivec/spe instructions at some point.
 389 */
 390static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 391			  struct mcontext __user *tm_frame, int sigret,
 392			  int ctx_has_vsx_region)
 393{
 394	unsigned long msr = regs->msr;
 395
 396	/* Make sure floating point registers are stored in regs */
 397	flush_fp_to_thread(current);
 398
 399	/* save general registers */
 400	if (save_general_regs(regs, frame))
 401		return 1;
 402
 403#ifdef CONFIG_ALTIVEC
 404	/* save altivec registers */
 405	if (current->thread.used_vr) {
 406		flush_altivec_to_thread(current);
 407		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 408				   ELF_NVRREG * sizeof(vector128)))
 409			return 1;
 410		/* set MSR_VEC in the saved MSR value to indicate that
 411		   frame->mc_vregs contains valid data */
 412		msr |= MSR_VEC;
 413	}
 414	/* else assert((regs->msr & MSR_VEC) == 0) */
 415
 416	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 417	 * use altivec. Since VSCR only contains 32 bits saved in the least
 418	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 419	 * most significant bits of that same vector. --BenH
 420	 * Note that the current VRSAVE value is in the SPR at this point.
 421	 */
 422	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 423		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 424	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 425		return 1;
 426#endif /* CONFIG_ALTIVEC */
 427	if (copy_fpr_to_user(&frame->mc_fregs, current))
 428		return 1;
 429
 430	/*
 431	 * Clear the MSR VSX bit to indicate there is no valid state attached
 432	 * to this context, except in the specific case below where we set it.
 433	 */
 434	msr &= ~MSR_VSX;
 435#ifdef CONFIG_VSX
 436	/*
 437	 * Copy VSR 0-31 upper half from thread_struct to local
 438	 * buffer, then write that to userspace.  Also set MSR_VSX in
 439	 * the saved MSR value to indicate that frame->mc_vregs
 440	 * contains valid data
 441	 */
 442	if (current->thread.used_vsr && ctx_has_vsx_region) {
 443		flush_vsx_to_thread(current);
 444		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 445			return 1;
 446		msr |= MSR_VSX;
 447	}
 448#endif /* CONFIG_VSX */
 449#ifdef CONFIG_SPE
 450	/* save spe registers */
 451	if (current->thread.used_spe) {
 452		flush_spe_to_thread(current);
 453		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 454				   ELF_NEVRREG * sizeof(u32)))
 455			return 1;
 456		/* set MSR_SPE in the saved MSR value to indicate that
 457		   frame->mc_vregs contains valid data */
 458		msr |= MSR_SPE;
 459	}
 460	/* else assert((regs->msr & MSR_SPE) == 0) */
 461
 462	/* We always copy to/from spefscr */
 463	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 464		return 1;
 465#endif /* CONFIG_SPE */
 466
 467	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 468		return 1;
 469	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 470	 * can check it on the restore to see if TM is active
 471	 */
 472	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 473		return 1;
 474
 475	if (sigret) {
 476		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 477		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 478		    || __put_user(0x44000002UL, &frame->tramp[1]))
 479			return 1;
 480		flush_icache_range((unsigned long) &frame->tramp[0],
 481				   (unsigned long) &frame->tramp[2]);
 482	}
 483
 484	return 0;
 485}
 486
 487#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 488/*
 489 * Save the current user registers on the user stack.
 490 * We only save the altivec/spe registers if the process has used
 491 * altivec/spe instructions at some point.
 492 * We also save the transactional registers to a second ucontext in the
 493 * frame.
 494 *
 495 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 496 */
 497static int save_tm_user_regs(struct pt_regs *regs,
 498			     struct mcontext __user *frame,
 499			     struct mcontext __user *tm_frame, int sigret)
 500{
 501	unsigned long msr = regs->msr;
 502
 503	WARN_ON(tm_suspend_disabled);
 504
 505	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
 506	 * just indicates to userland that we were doing a transaction, but we
 507	 * don't want to return in transactional state.  This also ensures
 508	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
 509	 */
 510	regs->msr &= ~MSR_TS_MASK;
 511
 
 
 
 512	/* Save both sets of general registers */
 513	if (save_general_regs(&current->thread.ckpt_regs, frame)
 514	    || save_general_regs(regs, tm_frame))
 515		return 1;
 516
 517	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 518	 * of the transactional mcontext.  This way we have a backward-compatible
 519	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 520	 * also look at what type of transaction (T or S) was active at the
 521	 * time of the signal.
 522	 */
 523	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 524		return 1;
 525
 526#ifdef CONFIG_ALTIVEC
 527	/* save altivec registers */
 528	if (current->thread.used_vr) {
 529		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 
 530				   ELF_NVRREG * sizeof(vector128)))
 531			return 1;
 532		if (msr & MSR_VEC) {
 533			if (__copy_to_user(&tm_frame->mc_vregs,
 534					   &current->thread.vr_state,
 535					   ELF_NVRREG * sizeof(vector128)))
 536				return 1;
 537		} else {
 538			if (__copy_to_user(&tm_frame->mc_vregs,
 539					   &current->thread.ckvr_state,
 540					   ELF_NVRREG * sizeof(vector128)))
 541				return 1;
 542		}
 543
 544		/* set MSR_VEC in the saved MSR value to indicate that
 545		 * frame->mc_vregs contains valid data
 546		 */
 547		msr |= MSR_VEC;
 548	}
 549
 550	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 551	 * use altivec. Since VSCR only contains 32 bits saved in the least
 552	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 553	 * most significant bits of that same vector. --BenH
 554	 */
 555	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 556		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 557	if (__put_user(current->thread.ckvrsave,
 558		       (u32 __user *)&frame->mc_vregs[32]))
 559		return 1;
 560	if (msr & MSR_VEC) {
 561		if (__put_user(current->thread.vrsave,
 562			       (u32 __user *)&tm_frame->mc_vregs[32]))
 563			return 1;
 564	} else {
 565		if (__put_user(current->thread.ckvrsave,
 566			       (u32 __user *)&tm_frame->mc_vregs[32]))
 567			return 1;
 568	}
 569#endif /* CONFIG_ALTIVEC */
 570
 571	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
 572		return 1;
 573	if (msr & MSR_FP) {
 574		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 575			return 1;
 576	} else {
 577		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
 578			return 1;
 579	}
 580
 581#ifdef CONFIG_VSX
 582	/*
 583	 * Copy VSR 0-31 upper half from thread_struct to local
 584	 * buffer, then write that to userspace.  Also set MSR_VSX in
 585	 * the saved MSR value to indicate that frame->mc_vregs
 586	 * contains valid data
 587	 */
 588	if (current->thread.used_vsr) {
 589		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
 
 590			return 1;
 591		if (msr & MSR_VSX) {
 592			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
 593						      current))
 594				return 1;
 595		} else {
 596			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
 597				return 1;
 598		}
 599
 600		msr |= MSR_VSX;
 601	}
 602#endif /* CONFIG_VSX */
 603#ifdef CONFIG_SPE
 604	/* SPE regs are not checkpointed with TM, so this section is
 605	 * simply the same as in save_user_regs().
 606	 */
 607	if (current->thread.used_spe) {
 608		flush_spe_to_thread(current);
 609		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 610				   ELF_NEVRREG * sizeof(u32)))
 611			return 1;
 612		/* set MSR_SPE in the saved MSR value to indicate that
 613		 * frame->mc_vregs contains valid data */
 614		msr |= MSR_SPE;
 615	}
 616
 617	/* We always copy to/from spefscr */
 618	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 619		return 1;
 620#endif /* CONFIG_SPE */
 621
 622	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 623		return 1;
 624	if (sigret) {
 625		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 626		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 627		    || __put_user(0x44000002UL, &frame->tramp[1]))
 628			return 1;
 629		flush_icache_range((unsigned long) &frame->tramp[0],
 630				   (unsigned long) &frame->tramp[2]);
 631	}
 632
 633	return 0;
 634}
 635#endif
 636
 637/*
 638 * Restore the current user register values from the user stack,
 639 * (except for MSR).
 640 */
 641static long restore_user_regs(struct pt_regs *regs,
 642			      struct mcontext __user *sr, int sig)
 643{
 644	long err;
 645	unsigned int save_r2 = 0;
 646	unsigned long msr;
 647#ifdef CONFIG_VSX
 648	int i;
 649#endif
 650
 651	/*
 652	 * restore general registers but not including MSR or SOFTE. Also
 653	 * take care of keeping r2 (TLS) intact if not a signal
 654	 */
 655	if (!sig)
 656		save_r2 = (unsigned int)regs->gpr[2];
 657	err = restore_general_regs(regs, sr);
 658	regs->trap = 0;
 659	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 660	if (!sig)
 661		regs->gpr[2] = (unsigned long) save_r2;
 662	if (err)
 663		return 1;
 664
 665	/* if doing signal return, restore the previous little-endian mode */
 666	if (sig)
 667		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 668
 
 
 
 
 
 
 
 
 
 669#ifdef CONFIG_ALTIVEC
 670	/*
 671	 * Force the process to reload the altivec registers from
 672	 * current->thread when it next does altivec instructions
 673	 */
 674	regs->msr &= ~MSR_VEC;
 675	if (msr & MSR_VEC) {
 676		/* restore altivec registers from the stack */
 677		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 678				     sizeof(sr->mc_vregs)))
 679			return 1;
 680		current->thread.used_vr = true;
 681	} else if (current->thread.used_vr)
 682		memset(&current->thread.vr_state, 0,
 683		       ELF_NVRREG * sizeof(vector128));
 684
 685	/* Always get VRSAVE back */
 686	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 687		return 1;
 688	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 689		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 690#endif /* CONFIG_ALTIVEC */
 691	if (copy_fpr_from_user(current, &sr->mc_fregs))
 692		return 1;
 693
 694#ifdef CONFIG_VSX
 695	/*
 696	 * Force the process to reload the VSX registers from
 697	 * current->thread when it next does VSX instruction.
 698	 */
 699	regs->msr &= ~MSR_VSX;
 700	if (msr & MSR_VSX) {
 701		/*
 702		 * Restore altivec registers from the stack to a local
 703		 * buffer, then write this out to the thread_struct
 704		 */
 705		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 706			return 1;
 707		current->thread.used_vsr = true;
 708	} else if (current->thread.used_vsr)
 709		for (i = 0; i < 32 ; i++)
 710			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 711#endif /* CONFIG_VSX */
 712	/*
 713	 * force the process to reload the FP registers from
 714	 * current->thread when it next does FP instructions
 715	 */
 716	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 717
 718#ifdef CONFIG_SPE
 719	/* force the process to reload the spe registers from
 720	   current->thread when it next does spe instructions */
 721	regs->msr &= ~MSR_SPE;
 722	if (msr & MSR_SPE) {
 723		/* restore spe registers from the stack */
 724		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 725				     ELF_NEVRREG * sizeof(u32)))
 726			return 1;
 727		current->thread.used_spe = true;
 728	} else if (current->thread.used_spe)
 729		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 730
 731	/* Always get SPEFSCR back */
 732	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 733		return 1;
 734#endif /* CONFIG_SPE */
 735
 736	return 0;
 737}
 738
 739#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 740/*
 741 * Restore the current user register values from the user stack, except for
 742 * MSR, and recheckpoint the original checkpointed register state for processes
 743 * in transactions.
 744 */
 745static long restore_tm_user_regs(struct pt_regs *regs,
 746				 struct mcontext __user *sr,
 747				 struct mcontext __user *tm_sr)
 748{
 749	long err;
 750	unsigned long msr, msr_hi;
 751#ifdef CONFIG_VSX
 752	int i;
 753#endif
 754
 755	if (tm_suspend_disabled)
 756		return 1;
 757	/*
 758	 * restore general registers but not including MSR or SOFTE. Also
 759	 * take care of keeping r2 (TLS) intact if not a signal.
 760	 * See comment in signal_64.c:restore_tm_sigcontexts();
 761	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 762	 * were set by the signal delivery.
 763	 */
 764	err = restore_general_regs(regs, tm_sr);
 765	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 766
 767	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 768
 769	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 770	if (err)
 771		return 1;
 772
 773	/* Restore the previous little-endian mode */
 774	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 775
 
 
 
 
 
 
 
 
 
 776#ifdef CONFIG_ALTIVEC
 777	regs->msr &= ~MSR_VEC;
 778	if (msr & MSR_VEC) {
 779		/* restore altivec registers from the stack */
 780		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 781				     sizeof(sr->mc_vregs)) ||
 782		    __copy_from_user(&current->thread.vr_state,
 783				     &tm_sr->mc_vregs,
 784				     sizeof(sr->mc_vregs)))
 785			return 1;
 786		current->thread.used_vr = true;
 787	} else if (current->thread.used_vr) {
 788		memset(&current->thread.vr_state, 0,
 789		       ELF_NVRREG * sizeof(vector128));
 790		memset(&current->thread.ckvr_state, 0,
 791		       ELF_NVRREG * sizeof(vector128));
 792	}
 793
 794	/* Always get VRSAVE back */
 795	if (__get_user(current->thread.ckvrsave,
 796		       (u32 __user *)&sr->mc_vregs[32]) ||
 797	    __get_user(current->thread.vrsave,
 798		       (u32 __user *)&tm_sr->mc_vregs[32]))
 799		return 1;
 800	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 801		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 802#endif /* CONFIG_ALTIVEC */
 803
 804	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 805
 806	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 807	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
 808		return 1;
 809
 810#ifdef CONFIG_VSX
 811	regs->msr &= ~MSR_VSX;
 812	if (msr & MSR_VSX) {
 813		/*
 814		 * Restore altivec registers from the stack to a local
 815		 * buffer, then write this out to the thread_struct
 816		 */
 817		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
 818		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
 819			return 1;
 820		current->thread.used_vsr = true;
 821	} else if (current->thread.used_vsr)
 822		for (i = 0; i < 32 ; i++) {
 823			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 824			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 825		}
 826#endif /* CONFIG_VSX */
 827
 828#ifdef CONFIG_SPE
 829	/* SPE regs are not checkpointed with TM, so this section is
 830	 * simply the same as in restore_user_regs().
 831	 */
 832	regs->msr &= ~MSR_SPE;
 833	if (msr & MSR_SPE) {
 834		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 835				     ELF_NEVRREG * sizeof(u32)))
 836			return 1;
 837		current->thread.used_spe = true;
 838	} else if (current->thread.used_spe)
 839		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 840
 841	/* Always get SPEFSCR back */
 842	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 843		       + ELF_NEVRREG))
 844		return 1;
 845#endif /* CONFIG_SPE */
 846
 847	/* Get the top half of the MSR from the user context */
 848	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 849		return 1;
 850	msr_hi <<= 32;
 851	/* If TM bits are set to the reserved value, it's an invalid context */
 852	if (MSR_TM_RESV(msr_hi))
 853		return 1;
 854	/* Pull in the MSR TM bits from the user context */
 855	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
 856	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 857	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 858	 * transactional versions should be loaded.
 859	 */
 860	tm_enable();
 861	/* Make sure the transaction is marked as failed */
 862	current->thread.tm_texasr |= TEXASR_FS;
 863	/* This loads the checkpointed FP/VEC state, if used */
 864	tm_recheckpoint(&current->thread);
 
 
 
 
 
 865
 866	/* This loads the speculative FP/VEC state, if used */
 867	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 868	if (msr & MSR_FP) {
 869		load_fp_state(&current->thread.fp_state);
 870		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 871	}
 872#ifdef CONFIG_ALTIVEC
 873	if (msr & MSR_VEC) {
 874		load_vr_state(&current->thread.vr_state);
 875		regs->msr |= MSR_VEC;
 876	}
 877#endif
 878
 879	return 0;
 880}
 881#endif
 882
 883#ifdef CONFIG_PPC64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885#define copy_siginfo_to_user	copy_siginfo_to_user32
 886
 
 
 
 
 
 
 
 
 
 
 
 887#endif /* CONFIG_PPC64 */
 888
 889/*
 890 * Set up a signal frame for a "real-time" signal handler
 891 * (one which gets siginfo).
 892 */
 893int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 894		       struct task_struct *tsk)
 
 895{
 896	struct rt_sigframe __user *rt_sf;
 897	struct mcontext __user *frame;
 898	struct mcontext __user *tm_frame = NULL;
 899	void __user *addr;
 900	unsigned long newsp = 0;
 901	int sigret;
 902	unsigned long tramp;
 903	struct pt_regs *regs = tsk->thread.regs;
 904
 905	BUG_ON(tsk != current);
 906
 907	/* Set up Signal Frame */
 908	/* Put a Real Time Context onto stack */
 909	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
 910	addr = rt_sf;
 911	if (unlikely(rt_sf == NULL))
 912		goto badframe;
 913
 914	/* Put the siginfo & fill in most of the ucontext */
 915	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
 916	    || __put_user(0, &rt_sf->uc.uc_flags)
 917	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
 918	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
 919		    &rt_sf->uc.uc_regs)
 920	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
 921		goto badframe;
 922
 923	/* Save user registers on the stack */
 924	frame = &rt_sf->uc.uc_mcontext;
 925	addr = frame;
 926	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
 927		sigret = 0;
 928		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
 929	} else {
 930		sigret = __NR_rt_sigreturn;
 931		tramp = (unsigned long) frame->tramp;
 932	}
 933
 934#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 935	tm_frame = &rt_sf->uc_transact.uc_mcontext;
 936	if (MSR_TM_ACTIVE(regs->msr)) {
 937		if (__put_user((unsigned long)&rt_sf->uc_transact,
 938			       &rt_sf->uc.uc_link) ||
 939		    __put_user((unsigned long)tm_frame,
 940			       &rt_sf->uc_transact.uc_regs))
 941			goto badframe;
 942		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
 943			goto badframe;
 944	}
 945	else
 946#endif
 947	{
 948		if (__put_user(0, &rt_sf->uc.uc_link))
 949			goto badframe;
 950		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
 951			goto badframe;
 952	}
 953	regs->link = tramp;
 954
 955	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 956
 957	/* create a stack frame for the caller of the handler */
 958	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
 959	addr = (void __user *)regs->gpr[1];
 960	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 961		goto badframe;
 962
 963	/* Fill registers for signal handler */
 964	regs->gpr[1] = newsp;
 965	regs->gpr[3] = ksig->sig;
 966	regs->gpr[4] = (unsigned long) &rt_sf->info;
 967	regs->gpr[5] = (unsigned long) &rt_sf->uc;
 968	regs->gpr[6] = (unsigned long) rt_sf;
 969	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
 970	/* enter the signal handler in native-endian mode */
 971	regs->msr &= ~MSR_LE;
 972	regs->msr |= (MSR_KERNEL & MSR_LE);
 973	return 0;
 974
 975badframe:
 
 
 
 
 976	if (show_unhandled_signals)
 977		printk_ratelimited(KERN_INFO
 978				   "%s[%d]: bad frame in handle_rt_signal32: "
 979				   "%p nip %08lx lr %08lx\n",
 980				   tsk->comm, tsk->pid,
 981				   addr, regs->nip, regs->link);
 982
 983	return 1;
 
 984}
 985
 986static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 987{
 988	sigset_t set;
 989	struct mcontext __user *mcp;
 990
 991	if (get_sigset_t(&set, &ucp->uc_sigmask))
 992		return -EFAULT;
 993#ifdef CONFIG_PPC64
 994	{
 995		u32 cmcp;
 996
 997		if (__get_user(cmcp, &ucp->uc_regs))
 998			return -EFAULT;
 999		mcp = (struct mcontext __user *)(u64)cmcp;
1000		/* no need to check access_ok(mcp), since mcp < 4GB */
1001	}
1002#else
1003	if (__get_user(mcp, &ucp->uc_regs))
1004		return -EFAULT;
1005	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1006		return -EFAULT;
1007#endif
1008	set_current_blocked(&set);
1009	if (restore_user_regs(regs, mcp, sig))
1010		return -EFAULT;
1011
1012	return 0;
1013}
1014
1015#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1016static int do_setcontext_tm(struct ucontext __user *ucp,
1017			    struct ucontext __user *tm_ucp,
1018			    struct pt_regs *regs)
1019{
1020	sigset_t set;
1021	struct mcontext __user *mcp;
1022	struct mcontext __user *tm_mcp;
1023	u32 cmcp;
1024	u32 tm_cmcp;
1025
1026	if (get_sigset_t(&set, &ucp->uc_sigmask))
1027		return -EFAULT;
1028
1029	if (__get_user(cmcp, &ucp->uc_regs) ||
1030	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1031		return -EFAULT;
1032	mcp = (struct mcontext __user *)(u64)cmcp;
1033	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1034	/* no need to check access_ok(mcp), since mcp < 4GB */
1035
1036	set_current_blocked(&set);
1037	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1038		return -EFAULT;
1039
1040	return 0;
1041}
1042#endif
1043
1044long sys_swapcontext(struct ucontext __user *old_ctx,
1045		     struct ucontext __user *new_ctx,
1046		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1047{
1048	unsigned char tmp __maybe_unused;
1049	int ctx_has_vsx_region = 0;
1050
1051#ifdef CONFIG_PPC64
1052	unsigned long new_msr = 0;
1053
1054	if (new_ctx) {
1055		struct mcontext __user *mcp;
1056		u32 cmcp;
1057
1058		/*
1059		 * Get pointer to the real mcontext.  No need for
1060		 * access_ok since we are dealing with compat
1061		 * pointers.
1062		 */
1063		if (__get_user(cmcp, &new_ctx->uc_regs))
1064			return -EFAULT;
1065		mcp = (struct mcontext __user *)(u64)cmcp;
1066		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1067			return -EFAULT;
1068	}
1069	/*
1070	 * Check that the context is not smaller than the original
1071	 * size (with VMX but without VSX)
1072	 */
1073	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1074		return -EINVAL;
1075	/*
1076	 * If the new context state sets the MSR VSX bits but
1077	 * it doesn't provide VSX state.
1078	 */
1079	if ((ctx_size < sizeof(struct ucontext)) &&
1080	    (new_msr & MSR_VSX))
1081		return -EINVAL;
1082	/* Does the context have enough room to store VSX data? */
1083	if (ctx_size >= sizeof(struct ucontext))
1084		ctx_has_vsx_region = 1;
1085#else
1086	/* Context size is for future use. Right now, we only make sure
1087	 * we are passed something we understand
1088	 */
1089	if (ctx_size < sizeof(struct ucontext))
1090		return -EINVAL;
1091#endif
1092	if (old_ctx != NULL) {
1093		struct mcontext __user *mctx;
1094
1095		/*
1096		 * old_ctx might not be 16-byte aligned, in which
1097		 * case old_ctx->uc_mcontext won't be either.
1098		 * Because we have the old_ctx->uc_pad2 field
1099		 * before old_ctx->uc_mcontext, we need to round down
1100		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1101		 */
1102		mctx = (struct mcontext __user *)
1103			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1104		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1105		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1106		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1107		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1108			return -EFAULT;
1109	}
1110	if (new_ctx == NULL)
1111		return 0;
1112	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1113	    || __get_user(tmp, (u8 __user *) new_ctx)
1114	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1115		return -EFAULT;
1116
1117	/*
1118	 * If we get a fault copying the context into the kernel's
1119	 * image of the user's registers, we can't just return -EFAULT
1120	 * because the user's registers will be corrupted.  For instance
1121	 * the NIP value may have been updated but not some of the
1122	 * other registers.  Given that we have done the access_ok
1123	 * and successfully read the first and last bytes of the region
1124	 * above, this should only happen in an out-of-memory situation
1125	 * or if another thread unmaps the region containing the context.
1126	 * We kill the task with a SIGSEGV in this situation.
1127	 */
1128	if (do_setcontext(new_ctx, regs, 0))
1129		do_exit(SIGSEGV);
1130
1131	set_thread_flag(TIF_RESTOREALL);
1132	return 0;
1133}
1134
1135long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1136		     struct pt_regs *regs)
1137{
1138	struct rt_sigframe __user *rt_sf;
1139#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1140	struct ucontext __user *uc_transact;
1141	unsigned long msr_hi;
1142	unsigned long tmp;
1143	int tm_restore = 0;
1144#endif
1145	/* Always make any pending restarted system calls return -EINTR */
1146	current->restart_block.fn = do_no_restart_syscall;
1147
1148	rt_sf = (struct rt_sigframe __user *)
1149		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1150	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1151		goto bad;
1152
1153#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1154	/*
1155	 * If there is a transactional state then throw it away.
1156	 * The purpose of a sigreturn is to destroy all traces of the
1157	 * signal frame, this includes any transactional state created
1158	 * within in. We only check for suspended as we can never be
1159	 * active in the kernel, we are active, there is nothing better to
1160	 * do than go ahead and Bad Thing later.
1161	 * The cause is not important as there will never be a
1162	 * recheckpoint so it's not user visible.
1163	 */
1164	if (MSR_TM_SUSPENDED(mfmsr()))
1165		tm_reclaim_current(0);
1166
1167	if (__get_user(tmp, &rt_sf->uc.uc_link))
1168		goto bad;
1169	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1170	if (uc_transact) {
1171		u32 cmcp;
1172		struct mcontext __user *mcp;
1173
1174		if (__get_user(cmcp, &uc_transact->uc_regs))
1175			return -EFAULT;
1176		mcp = (struct mcontext __user *)(u64)cmcp;
1177		/* The top 32 bits of the MSR are stashed in the transactional
1178		 * ucontext. */
1179		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1180			goto bad;
1181
1182		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1183			/* We only recheckpoint on return if we're
1184			 * transaction.
1185			 */
1186			tm_restore = 1;
1187			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1188				goto bad;
1189		}
1190	}
1191	if (!tm_restore)
1192		/* Fall through, for non-TM restore */
1193#endif
1194	if (do_setcontext(&rt_sf->uc, regs, 1))
1195		goto bad;
1196
1197	/*
1198	 * It's not clear whether or why it is desirable to save the
1199	 * sigaltstack setting on signal delivery and restore it on
1200	 * signal return.  But other architectures do this and we have
1201	 * always done it up until now so it is probably better not to
1202	 * change it.  -- paulus
1203	 */
1204#ifdef CONFIG_PPC64
1205	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1206		goto bad;
1207#else
1208	if (restore_altstack(&rt_sf->uc.uc_stack))
1209		goto bad;
1210#endif
1211	set_thread_flag(TIF_RESTOREALL);
1212	return 0;
1213
1214 bad:
1215	if (show_unhandled_signals)
1216		printk_ratelimited(KERN_INFO
1217				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1218				   "%p nip %08lx lr %08lx\n",
1219				   current->comm, current->pid,
1220				   rt_sf, regs->nip, regs->link);
1221
1222	force_sig(SIGSEGV, current);
1223	return 0;
1224}
1225
1226#ifdef CONFIG_PPC32
1227int sys_debug_setcontext(struct ucontext __user *ctx,
1228			 int ndbg, struct sig_dbg_op __user *dbg,
1229			 int r6, int r7, int r8,
1230			 struct pt_regs *regs)
1231{
1232	struct sig_dbg_op op;
1233	int i;
1234	unsigned char tmp __maybe_unused;
1235	unsigned long new_msr = regs->msr;
1236#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1237	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1238#endif
1239
1240	for (i=0; i<ndbg; i++) {
1241		if (copy_from_user(&op, dbg + i, sizeof(op)))
1242			return -EFAULT;
1243		switch (op.dbg_type) {
1244		case SIG_DBG_SINGLE_STEPPING:
1245#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1246			if (op.dbg_value) {
1247				new_msr |= MSR_DE;
1248				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1249			} else {
1250				new_dbcr0 &= ~DBCR0_IC;
1251				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1252						current->thread.debug.dbcr1)) {
1253					new_msr &= ~MSR_DE;
1254					new_dbcr0 &= ~DBCR0_IDM;
1255				}
1256			}
1257#else
1258			if (op.dbg_value)
1259				new_msr |= MSR_SE;
1260			else
1261				new_msr &= ~MSR_SE;
1262#endif
1263			break;
1264		case SIG_DBG_BRANCH_TRACING:
1265#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1266			return -EINVAL;
1267#else
1268			if (op.dbg_value)
1269				new_msr |= MSR_BE;
1270			else
1271				new_msr &= ~MSR_BE;
1272#endif
1273			break;
1274
1275		default:
1276			return -EINVAL;
1277		}
1278	}
1279
1280	/* We wait until here to actually install the values in the
1281	   registers so if we fail in the above loop, it will not
1282	   affect the contents of these registers.  After this point,
1283	   failure is a problem, anyway, and it's very unlikely unless
1284	   the user is really doing something wrong. */
1285	regs->msr = new_msr;
1286#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1287	current->thread.debug.dbcr0 = new_dbcr0;
1288#endif
1289
1290	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1291	    || __get_user(tmp, (u8 __user *) ctx)
1292	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1293		return -EFAULT;
1294
1295	/*
1296	 * If we get a fault copying the context into the kernel's
1297	 * image of the user's registers, we can't just return -EFAULT
1298	 * because the user's registers will be corrupted.  For instance
1299	 * the NIP value may have been updated but not some of the
1300	 * other registers.  Given that we have done the access_ok
1301	 * and successfully read the first and last bytes of the region
1302	 * above, this should only happen in an out-of-memory situation
1303	 * or if another thread unmaps the region containing the context.
1304	 * We kill the task with a SIGSEGV in this situation.
1305	 */
1306	if (do_setcontext(ctx, regs, 1)) {
1307		if (show_unhandled_signals)
1308			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1309					   "sys_debug_setcontext: %p nip %08lx "
1310					   "lr %08lx\n",
1311					   current->comm, current->pid,
1312					   ctx, regs->nip, regs->link);
1313
1314		force_sig(SIGSEGV, current);
1315		goto out;
1316	}
1317
1318	/*
1319	 * It's not clear whether or why it is desirable to save the
1320	 * sigaltstack setting on signal delivery and restore it on
1321	 * signal return.  But other architectures do this and we have
1322	 * always done it up until now so it is probably better not to
1323	 * change it.  -- paulus
1324	 */
1325	restore_altstack(&ctx->uc_stack);
1326
1327	set_thread_flag(TIF_RESTOREALL);
1328 out:
1329	return 0;
1330}
1331#endif
1332
1333/*
1334 * OK, we're invoking a handler
1335 */
1336int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1337		struct task_struct *tsk)
1338{
1339	struct sigcontext __user *sc;
1340	struct sigframe __user *frame;
1341	struct mcontext __user *tm_mctx = NULL;
1342	unsigned long newsp = 0;
1343	int sigret;
1344	unsigned long tramp;
1345	struct pt_regs *regs = tsk->thread.regs;
1346
1347	BUG_ON(tsk != current);
1348
1349	/* Set up Signal Frame */
1350	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1351	if (unlikely(frame == NULL))
1352		goto badframe;
1353	sc = (struct sigcontext __user *) &frame->sctx;
1354
1355#if _NSIG != 64
1356#error "Please adjust handle_signal()"
1357#endif
1358	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1359	    || __put_user(oldset->sig[0], &sc->oldmask)
1360#ifdef CONFIG_PPC64
1361	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1362#else
1363	    || __put_user(oldset->sig[1], &sc->_unused[3])
1364#endif
1365	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1366	    || __put_user(ksig->sig, &sc->signal))
1367		goto badframe;
1368
1369	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1370		sigret = 0;
1371		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1372	} else {
1373		sigret = __NR_sigreturn;
1374		tramp = (unsigned long) frame->mctx.tramp;
1375	}
1376
1377#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1378	tm_mctx = &frame->mctx_transact;
1379	if (MSR_TM_ACTIVE(regs->msr)) {
1380		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1381				      sigret))
1382			goto badframe;
1383	}
1384	else
1385#endif
1386	{
1387		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1388			goto badframe;
1389	}
1390
1391	regs->link = tramp;
1392
1393	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1394
1395	/* create a stack frame for the caller of the handler */
1396	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1397	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1398		goto badframe;
1399
1400	regs->gpr[1] = newsp;
1401	regs->gpr[3] = ksig->sig;
1402	regs->gpr[4] = (unsigned long) sc;
1403	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1404	/* enter the signal handler in big-endian mode */
1405	regs->msr &= ~MSR_LE;
1406	return 0;
1407
1408badframe:
 
 
 
 
1409	if (show_unhandled_signals)
1410		printk_ratelimited(KERN_INFO
1411				   "%s[%d]: bad frame in handle_signal32: "
1412				   "%p nip %08lx lr %08lx\n",
1413				   tsk->comm, tsk->pid,
1414				   frame, regs->nip, regs->link);
1415
1416	return 1;
 
1417}
1418
1419/*
1420 * Do a signal return; undo the signal stack.
1421 */
1422long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1423		       struct pt_regs *regs)
1424{
1425	struct sigframe __user *sf;
1426	struct sigcontext __user *sc;
1427	struct sigcontext sigctx;
1428	struct mcontext __user *sr;
1429	void __user *addr;
1430	sigset_t set;
1431#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432	struct mcontext __user *mcp, *tm_mcp;
1433	unsigned long msr_hi;
1434#endif
1435
1436	/* Always make any pending restarted system calls return -EINTR */
1437	current->restart_block.fn = do_no_restart_syscall;
1438
1439	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1440	sc = &sf->sctx;
1441	addr = sc;
1442	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1443		goto badframe;
1444
1445#ifdef CONFIG_PPC64
1446	/*
1447	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1448	 * unused part of the signal stackframe
1449	 */
1450	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1451#else
1452	set.sig[0] = sigctx.oldmask;
1453	set.sig[1] = sigctx._unused[3];
1454#endif
1455	set_current_blocked(&set);
1456
1457#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1458	mcp = (struct mcontext __user *)&sf->mctx;
1459	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1460	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1461		goto badframe;
1462	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1463		if (!cpu_has_feature(CPU_FTR_TM))
1464			goto badframe;
1465		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1466			goto badframe;
1467	} else
1468#endif
1469	{
1470		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1471		addr = sr;
1472		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1473		    || restore_user_regs(regs, sr, 1))
1474			goto badframe;
1475	}
1476
1477	set_thread_flag(TIF_RESTOREALL);
1478	return 0;
1479
1480badframe:
1481	if (show_unhandled_signals)
1482		printk_ratelimited(KERN_INFO
1483				   "%s[%d]: bad frame in sys_sigreturn: "
1484				   "%p nip %08lx lr %08lx\n",
1485				   current->comm, current->pid,
1486				   addr, regs->nip, regs->link);
1487
1488	force_sig(SIGSEGV, current);
1489	return 0;
1490}
v3.15
   1/*
   2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   3 *
   4 *  PowerPC version
   5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   6 * Copyright (C) 2001 IBM
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
   9 *
  10 *  Derived from "arch/i386/kernel/signal.c"
  11 *    Copyright (C) 1991, 1992 Linus Torvalds
  12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  13 *
  14 *  This program is free software; you can redistribute it and/or
  15 *  modify it under the terms of the GNU General Public License
  16 *  as published by the Free Software Foundation; either version
  17 *  2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/sched.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/kernel.h>
  24#include <linux/signal.h>
  25#include <linux/errno.h>
  26#include <linux/elf.h>
  27#include <linux/ptrace.h>
  28#include <linux/ratelimit.h>
  29#ifdef CONFIG_PPC64
  30#include <linux/syscalls.h>
  31#include <linux/compat.h>
  32#else
  33#include <linux/wait.h>
  34#include <linux/unistd.h>
  35#include <linux/stddef.h>
  36#include <linux/tty.h>
  37#include <linux/binfmts.h>
  38#endif
  39
  40#include <asm/uaccess.h>
  41#include <asm/cacheflush.h>
  42#include <asm/syscalls.h>
  43#include <asm/sigcontext.h>
  44#include <asm/vdso.h>
  45#include <asm/switch_to.h>
  46#include <asm/tm.h>
 
  47#ifdef CONFIG_PPC64
  48#include "ppc32.h"
  49#include <asm/unistd.h>
  50#else
  51#include <asm/ucontext.h>
  52#include <asm/pgtable.h>
  53#endif
  54
  55#include "signal.h"
  56
  57#undef DEBUG_SIG
  58
  59#ifdef CONFIG_PPC64
  60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
  61#define sys_swapcontext	compat_sys_swapcontext
  62#define sys_sigreturn	compat_sys_sigreturn
  63
  64#define old_sigaction	old_sigaction32
  65#define sigcontext	sigcontext32
  66#define mcontext	mcontext32
  67#define ucontext	ucontext32
  68
  69#define __save_altstack __compat_save_altstack
  70
  71/*
  72 * Userspace code may pass a ucontext which doesn't include VSX added
  73 * at the end.  We need to check for this case.
  74 */
  75#define UCONTEXTSIZEWITHOUTVSX \
  76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  77
  78/*
  79 * Returning 0 means we return to userspace via
  80 * ret_from_except and thus restore all user
  81 * registers from *regs.  This is what we need
  82 * to do when a signal has been delivered.
  83 */
  84
  85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  86#undef __SIGNAL_FRAMESIZE
  87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  88#undef ELF_NVRREG
  89#define ELF_NVRREG	ELF_NVRREG32
  90
  91/*
  92 * Functions for flipping sigsets (thanks to brain dead generic
  93 * implementation that makes things simple for little endian only)
  94 */
  95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  96{
  97	compat_sigset_t	cset;
  98
  99	switch (_NSIG_WORDS) {
 100	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
 101		cset.sig[7] = set->sig[3] >> 32;
 102	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
 103		cset.sig[5] = set->sig[2] >> 32;
 104	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
 105		cset.sig[3] = set->sig[1] >> 32;
 106	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
 107		cset.sig[1] = set->sig[0] >> 32;
 108	}
 109	return copy_to_user(uset, &cset, sizeof(*uset));
 110}
 111
 112static inline int get_sigset_t(sigset_t *set,
 113			       const compat_sigset_t __user *uset)
 114{
 115	compat_sigset_t s32;
 116
 117	if (copy_from_user(&s32, uset, sizeof(*uset)))
 118		return -EFAULT;
 119
 120	/*
 121	 * Swap the 2 words of the 64-bit sigset_t (they are stored
 122	 * in the "wrong" endian in 32-bit user storage).
 123	 */
 124	switch (_NSIG_WORDS) {
 125	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
 126	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
 127	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
 128	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
 129	}
 130	return 0;
 131}
 132
 133#define to_user_ptr(p)		ptr_to_compat(p)
 134#define from_user_ptr(p)	compat_ptr(p)
 135
 136static inline int save_general_regs(struct pt_regs *regs,
 137		struct mcontext __user *frame)
 138{
 139	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 140	int i;
 
 
 141
 142	WARN_ON(!FULL_REGS(regs));
 143
 144	for (i = 0; i <= PT_RESULT; i ++) {
 145		if (i == 14 && !FULL_REGS(regs))
 146			i = 32;
 
 
 
 
 
 
 147		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 148			return -EFAULT;
 149	}
 150	return 0;
 151}
 152
 153static inline int restore_general_regs(struct pt_regs *regs,
 154		struct mcontext __user *sr)
 155{
 156	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 157	int i;
 158
 159	for (i = 0; i <= PT_RESULT; i++) {
 160		if ((i == PT_MSR) || (i == PT_SOFTE))
 161			continue;
 162		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 163			return -EFAULT;
 164	}
 165	return 0;
 166}
 167
 168#else /* CONFIG_PPC64 */
 169
 170#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 171
 172static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 173{
 174	return copy_to_user(uset, set, sizeof(*uset));
 175}
 176
 177static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 178{
 179	return copy_from_user(set, uset, sizeof(*uset));
 180}
 181
 182#define to_user_ptr(p)		((unsigned long)(p))
 183#define from_user_ptr(p)	((void __user *)(p))
 184
 185static inline int save_general_regs(struct pt_regs *regs,
 186		struct mcontext __user *frame)
 187{
 188	WARN_ON(!FULL_REGS(regs));
 189	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 190}
 191
 192static inline int restore_general_regs(struct pt_regs *regs,
 193		struct mcontext __user *sr)
 194{
 195	/* copy up to but not including MSR */
 196	if (__copy_from_user(regs, &sr->mc_gregs,
 197				PT_MSR * sizeof(elf_greg_t)))
 198		return -EFAULT;
 199	/* copy from orig_r3 (the word after the MSR) up to the end */
 200	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 201				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 202		return -EFAULT;
 203	return 0;
 204}
 205#endif
 206
 207/*
 208 * When we have signals to deliver, we set up on the
 209 * user stack, going down from the original stack pointer:
 210 *	an ABI gap of 56 words
 211 *	an mcontext struct
 212 *	a sigcontext struct
 213 *	a gap of __SIGNAL_FRAMESIZE bytes
 214 *
 215 * Each of these things must be a multiple of 16 bytes in size. The following
 216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 217 *
 218 */
 219struct sigframe {
 220	struct sigcontext sctx;		/* the sigcontext */
 221	struct mcontext	mctx;		/* all the register values */
 222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 223	struct sigcontext sctx_transact;
 224	struct mcontext	mctx_transact;
 225#endif
 226	/*
 227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 228	 * regs and 18 fp regs below sp before decrementing it.
 229	 */
 230	int			abigap[56];
 231};
 232
 233/* We use the mc_pad field for the signal return trampoline. */
 234#define tramp	mc_pad
 235
 236/*
 237 *  When we have rt signals to deliver, we set up on the
 238 *  user stack, going down from the original stack pointer:
 239 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 240 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 241 *  (the +16 is to get the siginfo and ucontext in the same
 242 *  positions as in older kernels).
 243 *
 244 *  Each of these things must be a multiple of 16 bytes in size.
 245 *
 246 */
 247struct rt_sigframe {
 248#ifdef CONFIG_PPC64
 249	compat_siginfo_t info;
 250#else
 251	struct siginfo info;
 252#endif
 253	struct ucontext	uc;
 254#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 255	struct ucontext	uc_transact;
 256#endif
 257	/*
 258	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 259	 * regs and 18 fp regs below sp before decrementing it.
 260	 */
 261	int			abigap[56];
 262};
 263
 264#ifdef CONFIG_VSX
 265unsigned long copy_fpr_to_user(void __user *to,
 266			       struct task_struct *task)
 267{
 268	u64 buf[ELF_NFPREG];
 269	int i;
 270
 271	/* save FPR copy to local buffer then write to the thread_struct */
 272	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 273		buf[i] = task->thread.TS_FPR(i);
 274	buf[i] = task->thread.fp_state.fpscr;
 275	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 276}
 277
 278unsigned long copy_fpr_from_user(struct task_struct *task,
 279				 void __user *from)
 280{
 281	u64 buf[ELF_NFPREG];
 282	int i;
 283
 284	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 285		return 1;
 286	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 287		task->thread.TS_FPR(i) = buf[i];
 288	task->thread.fp_state.fpscr = buf[i];
 289
 290	return 0;
 291}
 292
 293unsigned long copy_vsx_to_user(void __user *to,
 294			       struct task_struct *task)
 295{
 296	u64 buf[ELF_NVSRHALFREG];
 297	int i;
 298
 299	/* save FPR copy to local buffer then write to the thread_struct */
 300	for (i = 0; i < ELF_NVSRHALFREG; i++)
 301		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 302	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 303}
 304
 305unsigned long copy_vsx_from_user(struct task_struct *task,
 306				 void __user *from)
 307{
 308	u64 buf[ELF_NVSRHALFREG];
 309	int i;
 310
 311	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 312		return 1;
 313	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 314		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 315	return 0;
 316}
 317
 318#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 319unsigned long copy_transact_fpr_to_user(void __user *to,
 320				  struct task_struct *task)
 321{
 322	u64 buf[ELF_NFPREG];
 323	int i;
 324
 325	/* save FPR copy to local buffer then write to the thread_struct */
 326	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 327		buf[i] = task->thread.TS_TRANS_FPR(i);
 328	buf[i] = task->thread.transact_fp.fpscr;
 329	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 330}
 331
 332unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 333					  void __user *from)
 334{
 335	u64 buf[ELF_NFPREG];
 336	int i;
 337
 338	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 339		return 1;
 340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 341		task->thread.TS_TRANS_FPR(i) = buf[i];
 342	task->thread.transact_fp.fpscr = buf[i];
 343
 344	return 0;
 345}
 346
 347unsigned long copy_transact_vsx_to_user(void __user *to,
 348				  struct task_struct *task)
 349{
 350	u64 buf[ELF_NVSRHALFREG];
 351	int i;
 352
 353	/* save FPR copy to local buffer then write to the thread_struct */
 354	for (i = 0; i < ELF_NVSRHALFREG; i++)
 355		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
 356	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 357}
 358
 359unsigned long copy_transact_vsx_from_user(struct task_struct *task,
 360					  void __user *from)
 361{
 362	u64 buf[ELF_NVSRHALFREG];
 363	int i;
 364
 365	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 366		return 1;
 367	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 368		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 369	return 0;
 370}
 371#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 372#else
 373inline unsigned long copy_fpr_to_user(void __user *to,
 374				      struct task_struct *task)
 375{
 376	return __copy_to_user(to, task->thread.fp_state.fpr,
 377			      ELF_NFPREG * sizeof(double));
 378}
 379
 380inline unsigned long copy_fpr_from_user(struct task_struct *task,
 381					void __user *from)
 382{
 383	return __copy_from_user(task->thread.fp_state.fpr, from,
 384			      ELF_NFPREG * sizeof(double));
 385}
 386
 387#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 388inline unsigned long copy_transact_fpr_to_user(void __user *to,
 389					 struct task_struct *task)
 390{
 391	return __copy_to_user(to, task->thread.transact_fp.fpr,
 392			      ELF_NFPREG * sizeof(double));
 393}
 394
 395inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 396						 void __user *from)
 397{
 398	return __copy_from_user(task->thread.transact_fp.fpr, from,
 399				ELF_NFPREG * sizeof(double));
 400}
 401#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 402#endif
 403
 404/*
 405 * Save the current user registers on the user stack.
 406 * We only save the altivec/spe registers if the process has used
 407 * altivec/spe instructions at some point.
 408 */
 409static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 410			  struct mcontext __user *tm_frame, int sigret,
 411			  int ctx_has_vsx_region)
 412{
 413	unsigned long msr = regs->msr;
 414
 415	/* Make sure floating point registers are stored in regs */
 416	flush_fp_to_thread(current);
 417
 418	/* save general registers */
 419	if (save_general_regs(regs, frame))
 420		return 1;
 421
 422#ifdef CONFIG_ALTIVEC
 423	/* save altivec registers */
 424	if (current->thread.used_vr) {
 425		flush_altivec_to_thread(current);
 426		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 427				   ELF_NVRREG * sizeof(vector128)))
 428			return 1;
 429		/* set MSR_VEC in the saved MSR value to indicate that
 430		   frame->mc_vregs contains valid data */
 431		msr |= MSR_VEC;
 432	}
 433	/* else assert((regs->msr & MSR_VEC) == 0) */
 434
 435	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 436	 * use altivec. Since VSCR only contains 32 bits saved in the least
 437	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 438	 * most significant bits of that same vector. --BenH
 439	 * Note that the current VRSAVE value is in the SPR at this point.
 440	 */
 441	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 442		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 443	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 444		return 1;
 445#endif /* CONFIG_ALTIVEC */
 446	if (copy_fpr_to_user(&frame->mc_fregs, current))
 447		return 1;
 448
 449	/*
 450	 * Clear the MSR VSX bit to indicate there is no valid state attached
 451	 * to this context, except in the specific case below where we set it.
 452	 */
 453	msr &= ~MSR_VSX;
 454#ifdef CONFIG_VSX
 455	/*
 456	 * Copy VSR 0-31 upper half from thread_struct to local
 457	 * buffer, then write that to userspace.  Also set MSR_VSX in
 458	 * the saved MSR value to indicate that frame->mc_vregs
 459	 * contains valid data
 460	 */
 461	if (current->thread.used_vsr && ctx_has_vsx_region) {
 462		__giveup_vsx(current);
 463		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 464			return 1;
 465		msr |= MSR_VSX;
 466	}
 467#endif /* CONFIG_VSX */
 468#ifdef CONFIG_SPE
 469	/* save spe registers */
 470	if (current->thread.used_spe) {
 471		flush_spe_to_thread(current);
 472		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 473				   ELF_NEVRREG * sizeof(u32)))
 474			return 1;
 475		/* set MSR_SPE in the saved MSR value to indicate that
 476		   frame->mc_vregs contains valid data */
 477		msr |= MSR_SPE;
 478	}
 479	/* else assert((regs->msr & MSR_SPE) == 0) */
 480
 481	/* We always copy to/from spefscr */
 482	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 483		return 1;
 484#endif /* CONFIG_SPE */
 485
 486	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 487		return 1;
 488	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 489	 * can check it on the restore to see if TM is active
 490	 */
 491	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 492		return 1;
 493
 494	if (sigret) {
 495		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 496		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 497		    || __put_user(0x44000002UL, &frame->tramp[1]))
 498			return 1;
 499		flush_icache_range((unsigned long) &frame->tramp[0],
 500				   (unsigned long) &frame->tramp[2]);
 501	}
 502
 503	return 0;
 504}
 505
 506#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 507/*
 508 * Save the current user registers on the user stack.
 509 * We only save the altivec/spe registers if the process has used
 510 * altivec/spe instructions at some point.
 511 * We also save the transactional registers to a second ucontext in the
 512 * frame.
 513 *
 514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 515 */
 516static int save_tm_user_regs(struct pt_regs *regs,
 517			     struct mcontext __user *frame,
 518			     struct mcontext __user *tm_frame, int sigret)
 519{
 520	unsigned long msr = regs->msr;
 521
 
 
 522	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
 523	 * just indicates to userland that we were doing a transaction, but we
 524	 * don't want to return in transactional state.  This also ensures
 525	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
 526	 */
 527	regs->msr &= ~MSR_TS_MASK;
 528
 529	/* Make sure floating point registers are stored in regs */
 530	flush_fp_to_thread(current);
 531
 532	/* Save both sets of general registers */
 533	if (save_general_regs(&current->thread.ckpt_regs, frame)
 534	    || save_general_regs(regs, tm_frame))
 535		return 1;
 536
 537	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 538	 * of the transactional mcontext.  This way we have a backward-compatible
 539	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 540	 * also look at what type of transaction (T or S) was active at the
 541	 * time of the signal.
 542	 */
 543	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 544		return 1;
 545
 546#ifdef CONFIG_ALTIVEC
 547	/* save altivec registers */
 548	if (current->thread.used_vr) {
 549		flush_altivec_to_thread(current);
 550		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 551				   ELF_NVRREG * sizeof(vector128)))
 552			return 1;
 553		if (msr & MSR_VEC) {
 554			if (__copy_to_user(&tm_frame->mc_vregs,
 555					   &current->thread.transact_vr,
 556					   ELF_NVRREG * sizeof(vector128)))
 557				return 1;
 558		} else {
 559			if (__copy_to_user(&tm_frame->mc_vregs,
 560					   &current->thread.vr_state,
 561					   ELF_NVRREG * sizeof(vector128)))
 562				return 1;
 563		}
 564
 565		/* set MSR_VEC in the saved MSR value to indicate that
 566		 * frame->mc_vregs contains valid data
 567		 */
 568		msr |= MSR_VEC;
 569	}
 570
 571	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 572	 * use altivec. Since VSCR only contains 32 bits saved in the least
 573	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 574	 * most significant bits of that same vector. --BenH
 575	 */
 576	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 577		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 578	if (__put_user(current->thread.vrsave,
 579		       (u32 __user *)&frame->mc_vregs[32]))
 580		return 1;
 581	if (msr & MSR_VEC) {
 582		if (__put_user(current->thread.transact_vrsave,
 583			       (u32 __user *)&tm_frame->mc_vregs[32]))
 584			return 1;
 585	} else {
 586		if (__put_user(current->thread.vrsave,
 587			       (u32 __user *)&tm_frame->mc_vregs[32]))
 588			return 1;
 589	}
 590#endif /* CONFIG_ALTIVEC */
 591
 592	if (copy_fpr_to_user(&frame->mc_fregs, current))
 593		return 1;
 594	if (msr & MSR_FP) {
 595		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
 596			return 1;
 597	} else {
 598		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 599			return 1;
 600	}
 601
 602#ifdef CONFIG_VSX
 603	/*
 604	 * Copy VSR 0-31 upper half from thread_struct to local
 605	 * buffer, then write that to userspace.  Also set MSR_VSX in
 606	 * the saved MSR value to indicate that frame->mc_vregs
 607	 * contains valid data
 608	 */
 609	if (current->thread.used_vsr) {
 610		__giveup_vsx(current);
 611		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 612			return 1;
 613		if (msr & MSR_VSX) {
 614			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
 615						      current))
 616				return 1;
 617		} else {
 618			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
 619				return 1;
 620		}
 621
 622		msr |= MSR_VSX;
 623	}
 624#endif /* CONFIG_VSX */
 625#ifdef CONFIG_SPE
 626	/* SPE regs are not checkpointed with TM, so this section is
 627	 * simply the same as in save_user_regs().
 628	 */
 629	if (current->thread.used_spe) {
 630		flush_spe_to_thread(current);
 631		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 632				   ELF_NEVRREG * sizeof(u32)))
 633			return 1;
 634		/* set MSR_SPE in the saved MSR value to indicate that
 635		 * frame->mc_vregs contains valid data */
 636		msr |= MSR_SPE;
 637	}
 638
 639	/* We always copy to/from spefscr */
 640	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 641		return 1;
 642#endif /* CONFIG_SPE */
 643
 644	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 645		return 1;
 646	if (sigret) {
 647		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 648		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 649		    || __put_user(0x44000002UL, &frame->tramp[1]))
 650			return 1;
 651		flush_icache_range((unsigned long) &frame->tramp[0],
 652				   (unsigned long) &frame->tramp[2]);
 653	}
 654
 655	return 0;
 656}
 657#endif
 658
 659/*
 660 * Restore the current user register values from the user stack,
 661 * (except for MSR).
 662 */
 663static long restore_user_regs(struct pt_regs *regs,
 664			      struct mcontext __user *sr, int sig)
 665{
 666	long err;
 667	unsigned int save_r2 = 0;
 668	unsigned long msr;
 669#ifdef CONFIG_VSX
 670	int i;
 671#endif
 672
 673	/*
 674	 * restore general registers but not including MSR or SOFTE. Also
 675	 * take care of keeping r2 (TLS) intact if not a signal
 676	 */
 677	if (!sig)
 678		save_r2 = (unsigned int)regs->gpr[2];
 679	err = restore_general_regs(regs, sr);
 680	regs->trap = 0;
 681	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 682	if (!sig)
 683		regs->gpr[2] = (unsigned long) save_r2;
 684	if (err)
 685		return 1;
 686
 687	/* if doing signal return, restore the previous little-endian mode */
 688	if (sig)
 689		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 690
 691	/*
 692	 * Do this before updating the thread state in
 693	 * current->thread.fpr/vr/evr.  That way, if we get preempted
 694	 * and another task grabs the FPU/Altivec/SPE, it won't be
 695	 * tempted to save the current CPU state into the thread_struct
 696	 * and corrupt what we are writing there.
 697	 */
 698	discard_lazy_cpu_state();
 699
 700#ifdef CONFIG_ALTIVEC
 701	/*
 702	 * Force the process to reload the altivec registers from
 703	 * current->thread when it next does altivec instructions
 704	 */
 705	regs->msr &= ~MSR_VEC;
 706	if (msr & MSR_VEC) {
 707		/* restore altivec registers from the stack */
 708		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 709				     sizeof(sr->mc_vregs)))
 710			return 1;
 
 711	} else if (current->thread.used_vr)
 712		memset(&current->thread.vr_state, 0,
 713		       ELF_NVRREG * sizeof(vector128));
 714
 715	/* Always get VRSAVE back */
 716	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 717		return 1;
 718	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 719		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 720#endif /* CONFIG_ALTIVEC */
 721	if (copy_fpr_from_user(current, &sr->mc_fregs))
 722		return 1;
 723
 724#ifdef CONFIG_VSX
 725	/*
 726	 * Force the process to reload the VSX registers from
 727	 * current->thread when it next does VSX instruction.
 728	 */
 729	regs->msr &= ~MSR_VSX;
 730	if (msr & MSR_VSX) {
 731		/*
 732		 * Restore altivec registers from the stack to a local
 733		 * buffer, then write this out to the thread_struct
 734		 */
 735		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 736			return 1;
 
 737	} else if (current->thread.used_vsr)
 738		for (i = 0; i < 32 ; i++)
 739			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 740#endif /* CONFIG_VSX */
 741	/*
 742	 * force the process to reload the FP registers from
 743	 * current->thread when it next does FP instructions
 744	 */
 745	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 746
 747#ifdef CONFIG_SPE
 748	/* force the process to reload the spe registers from
 749	   current->thread when it next does spe instructions */
 750	regs->msr &= ~MSR_SPE;
 751	if (msr & MSR_SPE) {
 752		/* restore spe registers from the stack */
 753		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 754				     ELF_NEVRREG * sizeof(u32)))
 755			return 1;
 
 756	} else if (current->thread.used_spe)
 757		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 758
 759	/* Always get SPEFSCR back */
 760	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 761		return 1;
 762#endif /* CONFIG_SPE */
 763
 764	return 0;
 765}
 766
 767#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 768/*
 769 * Restore the current user register values from the user stack, except for
 770 * MSR, and recheckpoint the original checkpointed register state for processes
 771 * in transactions.
 772 */
 773static long restore_tm_user_regs(struct pt_regs *regs,
 774				 struct mcontext __user *sr,
 775				 struct mcontext __user *tm_sr)
 776{
 777	long err;
 778	unsigned long msr, msr_hi;
 779#ifdef CONFIG_VSX
 780	int i;
 781#endif
 782
 
 
 783	/*
 784	 * restore general registers but not including MSR or SOFTE. Also
 785	 * take care of keeping r2 (TLS) intact if not a signal.
 786	 * See comment in signal_64.c:restore_tm_sigcontexts();
 787	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 788	 * were set by the signal delivery.
 789	 */
 790	err = restore_general_regs(regs, tm_sr);
 791	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 792
 793	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 794
 795	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 796	if (err)
 797		return 1;
 798
 799	/* Restore the previous little-endian mode */
 800	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 801
 802	/*
 803	 * Do this before updating the thread state in
 804	 * current->thread.fpr/vr/evr.  That way, if we get preempted
 805	 * and another task grabs the FPU/Altivec/SPE, it won't be
 806	 * tempted to save the current CPU state into the thread_struct
 807	 * and corrupt what we are writing there.
 808	 */
 809	discard_lazy_cpu_state();
 810
 811#ifdef CONFIG_ALTIVEC
 812	regs->msr &= ~MSR_VEC;
 813	if (msr & MSR_VEC) {
 814		/* restore altivec registers from the stack */
 815		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 816				     sizeof(sr->mc_vregs)) ||
 817		    __copy_from_user(&current->thread.transact_vr,
 818				     &tm_sr->mc_vregs,
 819				     sizeof(sr->mc_vregs)))
 820			return 1;
 
 821	} else if (current->thread.used_vr) {
 822		memset(&current->thread.vr_state, 0,
 823		       ELF_NVRREG * sizeof(vector128));
 824		memset(&current->thread.transact_vr, 0,
 825		       ELF_NVRREG * sizeof(vector128));
 826	}
 827
 828	/* Always get VRSAVE back */
 829	if (__get_user(current->thread.vrsave,
 830		       (u32 __user *)&sr->mc_vregs[32]) ||
 831	    __get_user(current->thread.transact_vrsave,
 832		       (u32 __user *)&tm_sr->mc_vregs[32]))
 833		return 1;
 834	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 835		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 836#endif /* CONFIG_ALTIVEC */
 837
 838	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 839
 840	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 841	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
 842		return 1;
 843
 844#ifdef CONFIG_VSX
 845	regs->msr &= ~MSR_VSX;
 846	if (msr & MSR_VSX) {
 847		/*
 848		 * Restore altivec registers from the stack to a local
 849		 * buffer, then write this out to the thread_struct
 850		 */
 851		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
 852		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
 853			return 1;
 
 854	} else if (current->thread.used_vsr)
 855		for (i = 0; i < 32 ; i++) {
 856			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 857			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
 858		}
 859#endif /* CONFIG_VSX */
 860
 861#ifdef CONFIG_SPE
 862	/* SPE regs are not checkpointed with TM, so this section is
 863	 * simply the same as in restore_user_regs().
 864	 */
 865	regs->msr &= ~MSR_SPE;
 866	if (msr & MSR_SPE) {
 867		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 868				     ELF_NEVRREG * sizeof(u32)))
 869			return 1;
 
 870	} else if (current->thread.used_spe)
 871		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 872
 873	/* Always get SPEFSCR back */
 874	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 875		       + ELF_NEVRREG))
 876		return 1;
 877#endif /* CONFIG_SPE */
 878
 
 
 
 
 
 
 
 
 
 879	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 880	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 881	 * transactional versions should be loaded.
 882	 */
 883	tm_enable();
 884	/* Make sure the transaction is marked as failed */
 885	current->thread.tm_texasr |= TEXASR_FS;
 886	/* This loads the checkpointed FP/VEC state, if used */
 887	tm_recheckpoint(&current->thread, msr);
 888	/* Get the top half of the MSR */
 889	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 890		return 1;
 891	/* Pull in MSR TM from user context */
 892	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
 893
 894	/* This loads the speculative FP/VEC state, if used */
 
 895	if (msr & MSR_FP) {
 896		do_load_up_transact_fpu(&current->thread);
 897		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 898	}
 899#ifdef CONFIG_ALTIVEC
 900	if (msr & MSR_VEC) {
 901		do_load_up_transact_altivec(&current->thread);
 902		regs->msr |= MSR_VEC;
 903	}
 904#endif
 905
 906	return 0;
 907}
 908#endif
 909
 910#ifdef CONFIG_PPC64
 911int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
 912{
 913	int err;
 914
 915	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
 916		return -EFAULT;
 917
 918	/* If you change siginfo_t structure, please be sure
 919	 * this code is fixed accordingly.
 920	 * It should never copy any pad contained in the structure
 921	 * to avoid security leaks, but must copy the generic
 922	 * 3 ints plus the relevant union member.
 923	 * This routine must convert siginfo from 64bit to 32bit as well
 924	 * at the same time.
 925	 */
 926	err = __put_user(s->si_signo, &d->si_signo);
 927	err |= __put_user(s->si_errno, &d->si_errno);
 928	err |= __put_user((short)s->si_code, &d->si_code);
 929	if (s->si_code < 0)
 930		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
 931				      SI_PAD_SIZE32);
 932	else switch(s->si_code >> 16) {
 933	case __SI_CHLD >> 16:
 934		err |= __put_user(s->si_pid, &d->si_pid);
 935		err |= __put_user(s->si_uid, &d->si_uid);
 936		err |= __put_user(s->si_utime, &d->si_utime);
 937		err |= __put_user(s->si_stime, &d->si_stime);
 938		err |= __put_user(s->si_status, &d->si_status);
 939		break;
 940	case __SI_FAULT >> 16:
 941		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
 942				  &d->si_addr);
 943		break;
 944	case __SI_POLL >> 16:
 945		err |= __put_user(s->si_band, &d->si_band);
 946		err |= __put_user(s->si_fd, &d->si_fd);
 947		break;
 948	case __SI_TIMER >> 16:
 949		err |= __put_user(s->si_tid, &d->si_tid);
 950		err |= __put_user(s->si_overrun, &d->si_overrun);
 951		err |= __put_user(s->si_int, &d->si_int);
 952		break;
 953	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
 954	case __SI_MESGQ >> 16:
 955		err |= __put_user(s->si_int, &d->si_int);
 956		/* fallthrough */
 957	case __SI_KILL >> 16:
 958	default:
 959		err |= __put_user(s->si_pid, &d->si_pid);
 960		err |= __put_user(s->si_uid, &d->si_uid);
 961		break;
 962	}
 963	return err;
 964}
 965
 966#define copy_siginfo_to_user	copy_siginfo_to_user32
 967
 968int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
 969{
 970	memset(to, 0, sizeof *to);
 971
 972	if (copy_from_user(to, from, 3*sizeof(int)) ||
 973	    copy_from_user(to->_sifields._pad,
 974			   from->_sifields._pad, SI_PAD_SIZE32))
 975		return -EFAULT;
 976
 977	return 0;
 978}
 979#endif /* CONFIG_PPC64 */
 980
 981/*
 982 * Set up a signal frame for a "real-time" signal handler
 983 * (one which gets siginfo).
 984 */
 985int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
 986		siginfo_t *info, sigset_t *oldset,
 987		struct pt_regs *regs)
 988{
 989	struct rt_sigframe __user *rt_sf;
 990	struct mcontext __user *frame;
 991	struct mcontext __user *tm_frame = NULL;
 992	void __user *addr;
 993	unsigned long newsp = 0;
 994	int sigret;
 995	unsigned long tramp;
 
 
 
 996
 997	/* Set up Signal Frame */
 998	/* Put a Real Time Context onto stack */
 999	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
1000	addr = rt_sf;
1001	if (unlikely(rt_sf == NULL))
1002		goto badframe;
1003
1004	/* Put the siginfo & fill in most of the ucontext */
1005	if (copy_siginfo_to_user(&rt_sf->info, info)
1006	    || __put_user(0, &rt_sf->uc.uc_flags)
1007	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1008	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1009		    &rt_sf->uc.uc_regs)
1010	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1011		goto badframe;
1012
1013	/* Save user registers on the stack */
1014	frame = &rt_sf->uc.uc_mcontext;
1015	addr = frame;
1016	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1017		sigret = 0;
1018		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1019	} else {
1020		sigret = __NR_rt_sigreturn;
1021		tramp = (unsigned long) frame->tramp;
1022	}
1023
1024#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1025	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1026	if (MSR_TM_ACTIVE(regs->msr)) {
1027		if (__put_user((unsigned long)&rt_sf->uc_transact,
1028			       &rt_sf->uc.uc_link) ||
1029		    __put_user((unsigned long)tm_frame,
1030			       &rt_sf->uc_transact.uc_regs))
1031			goto badframe;
1032		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1033			goto badframe;
1034	}
1035	else
1036#endif
1037	{
1038		if (__put_user(0, &rt_sf->uc.uc_link))
1039			goto badframe;
1040		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1041			goto badframe;
1042	}
1043	regs->link = tramp;
1044
1045	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1046
1047	/* create a stack frame for the caller of the handler */
1048	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1049	addr = (void __user *)regs->gpr[1];
1050	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1051		goto badframe;
1052
1053	/* Fill registers for signal handler */
1054	regs->gpr[1] = newsp;
1055	regs->gpr[3] = sig;
1056	regs->gpr[4] = (unsigned long) &rt_sf->info;
1057	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1058	regs->gpr[6] = (unsigned long) rt_sf;
1059	regs->nip = (unsigned long) ka->sa.sa_handler;
1060	/* enter the signal handler in native-endian mode */
1061	regs->msr &= ~MSR_LE;
1062	regs->msr |= (MSR_KERNEL & MSR_LE);
1063	return 1;
1064
1065badframe:
1066#ifdef DEBUG_SIG
1067	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1068	       regs, frame, newsp);
1069#endif
1070	if (show_unhandled_signals)
1071		printk_ratelimited(KERN_INFO
1072				   "%s[%d]: bad frame in handle_rt_signal32: "
1073				   "%p nip %08lx lr %08lx\n",
1074				   current->comm, current->pid,
1075				   addr, regs->nip, regs->link);
1076
1077	force_sigsegv(sig, current);
1078	return 0;
1079}
1080
1081static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1082{
1083	sigset_t set;
1084	struct mcontext __user *mcp;
1085
1086	if (get_sigset_t(&set, &ucp->uc_sigmask))
1087		return -EFAULT;
1088#ifdef CONFIG_PPC64
1089	{
1090		u32 cmcp;
1091
1092		if (__get_user(cmcp, &ucp->uc_regs))
1093			return -EFAULT;
1094		mcp = (struct mcontext __user *)(u64)cmcp;
1095		/* no need to check access_ok(mcp), since mcp < 4GB */
1096	}
1097#else
1098	if (__get_user(mcp, &ucp->uc_regs))
1099		return -EFAULT;
1100	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1101		return -EFAULT;
1102#endif
1103	set_current_blocked(&set);
1104	if (restore_user_regs(regs, mcp, sig))
1105		return -EFAULT;
1106
1107	return 0;
1108}
1109
1110#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1111static int do_setcontext_tm(struct ucontext __user *ucp,
1112			    struct ucontext __user *tm_ucp,
1113			    struct pt_regs *regs)
1114{
1115	sigset_t set;
1116	struct mcontext __user *mcp;
1117	struct mcontext __user *tm_mcp;
1118	u32 cmcp;
1119	u32 tm_cmcp;
1120
1121	if (get_sigset_t(&set, &ucp->uc_sigmask))
1122		return -EFAULT;
1123
1124	if (__get_user(cmcp, &ucp->uc_regs) ||
1125	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1126		return -EFAULT;
1127	mcp = (struct mcontext __user *)(u64)cmcp;
1128	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1129	/* no need to check access_ok(mcp), since mcp < 4GB */
1130
1131	set_current_blocked(&set);
1132	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1133		return -EFAULT;
1134
1135	return 0;
1136}
1137#endif
1138
1139long sys_swapcontext(struct ucontext __user *old_ctx,
1140		     struct ucontext __user *new_ctx,
1141		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1142{
1143	unsigned char tmp;
1144	int ctx_has_vsx_region = 0;
1145
1146#ifdef CONFIG_PPC64
1147	unsigned long new_msr = 0;
1148
1149	if (new_ctx) {
1150		struct mcontext __user *mcp;
1151		u32 cmcp;
1152
1153		/*
1154		 * Get pointer to the real mcontext.  No need for
1155		 * access_ok since we are dealing with compat
1156		 * pointers.
1157		 */
1158		if (__get_user(cmcp, &new_ctx->uc_regs))
1159			return -EFAULT;
1160		mcp = (struct mcontext __user *)(u64)cmcp;
1161		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1162			return -EFAULT;
1163	}
1164	/*
1165	 * Check that the context is not smaller than the original
1166	 * size (with VMX but without VSX)
1167	 */
1168	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1169		return -EINVAL;
1170	/*
1171	 * If the new context state sets the MSR VSX bits but
1172	 * it doesn't provide VSX state.
1173	 */
1174	if ((ctx_size < sizeof(struct ucontext)) &&
1175	    (new_msr & MSR_VSX))
1176		return -EINVAL;
1177	/* Does the context have enough room to store VSX data? */
1178	if (ctx_size >= sizeof(struct ucontext))
1179		ctx_has_vsx_region = 1;
1180#else
1181	/* Context size is for future use. Right now, we only make sure
1182	 * we are passed something we understand
1183	 */
1184	if (ctx_size < sizeof(struct ucontext))
1185		return -EINVAL;
1186#endif
1187	if (old_ctx != NULL) {
1188		struct mcontext __user *mctx;
1189
1190		/*
1191		 * old_ctx might not be 16-byte aligned, in which
1192		 * case old_ctx->uc_mcontext won't be either.
1193		 * Because we have the old_ctx->uc_pad2 field
1194		 * before old_ctx->uc_mcontext, we need to round down
1195		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1196		 */
1197		mctx = (struct mcontext __user *)
1198			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1199		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1200		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1201		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1202		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1203			return -EFAULT;
1204	}
1205	if (new_ctx == NULL)
1206		return 0;
1207	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1208	    || __get_user(tmp, (u8 __user *) new_ctx)
1209	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1210		return -EFAULT;
1211
1212	/*
1213	 * If we get a fault copying the context into the kernel's
1214	 * image of the user's registers, we can't just return -EFAULT
1215	 * because the user's registers will be corrupted.  For instance
1216	 * the NIP value may have been updated but not some of the
1217	 * other registers.  Given that we have done the access_ok
1218	 * and successfully read the first and last bytes of the region
1219	 * above, this should only happen in an out-of-memory situation
1220	 * or if another thread unmaps the region containing the context.
1221	 * We kill the task with a SIGSEGV in this situation.
1222	 */
1223	if (do_setcontext(new_ctx, regs, 0))
1224		do_exit(SIGSEGV);
1225
1226	set_thread_flag(TIF_RESTOREALL);
1227	return 0;
1228}
1229
1230long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1231		     struct pt_regs *regs)
1232{
1233	struct rt_sigframe __user *rt_sf;
1234#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1235	struct ucontext __user *uc_transact;
1236	unsigned long msr_hi;
1237	unsigned long tmp;
1238	int tm_restore = 0;
1239#endif
1240	/* Always make any pending restarted system calls return -EINTR */
1241	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1242
1243	rt_sf = (struct rt_sigframe __user *)
1244		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1245	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1246		goto bad;
 
1247#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
 
 
 
 
 
 
 
 
 
 
 
1248	if (__get_user(tmp, &rt_sf->uc.uc_link))
1249		goto bad;
1250	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1251	if (uc_transact) {
1252		u32 cmcp;
1253		struct mcontext __user *mcp;
1254
1255		if (__get_user(cmcp, &uc_transact->uc_regs))
1256			return -EFAULT;
1257		mcp = (struct mcontext __user *)(u64)cmcp;
1258		/* The top 32 bits of the MSR are stashed in the transactional
1259		 * ucontext. */
1260		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1261			goto bad;
1262
1263		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1264			/* We only recheckpoint on return if we're
1265			 * transaction.
1266			 */
1267			tm_restore = 1;
1268			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1269				goto bad;
1270		}
1271	}
1272	if (!tm_restore)
1273		/* Fall through, for non-TM restore */
1274#endif
1275	if (do_setcontext(&rt_sf->uc, regs, 1))
1276		goto bad;
1277
1278	/*
1279	 * It's not clear whether or why it is desirable to save the
1280	 * sigaltstack setting on signal delivery and restore it on
1281	 * signal return.  But other architectures do this and we have
1282	 * always done it up until now so it is probably better not to
1283	 * change it.  -- paulus
1284	 */
1285#ifdef CONFIG_PPC64
1286	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1287		goto bad;
1288#else
1289	if (restore_altstack(&rt_sf->uc.uc_stack))
1290		goto bad;
1291#endif
1292	set_thread_flag(TIF_RESTOREALL);
1293	return 0;
1294
1295 bad:
1296	if (show_unhandled_signals)
1297		printk_ratelimited(KERN_INFO
1298				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1299				   "%p nip %08lx lr %08lx\n",
1300				   current->comm, current->pid,
1301				   rt_sf, regs->nip, regs->link);
1302
1303	force_sig(SIGSEGV, current);
1304	return 0;
1305}
1306
1307#ifdef CONFIG_PPC32
1308int sys_debug_setcontext(struct ucontext __user *ctx,
1309			 int ndbg, struct sig_dbg_op __user *dbg,
1310			 int r6, int r7, int r8,
1311			 struct pt_regs *regs)
1312{
1313	struct sig_dbg_op op;
1314	int i;
1315	unsigned char tmp;
1316	unsigned long new_msr = regs->msr;
1317#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1318	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1319#endif
1320
1321	for (i=0; i<ndbg; i++) {
1322		if (copy_from_user(&op, dbg + i, sizeof(op)))
1323			return -EFAULT;
1324		switch (op.dbg_type) {
1325		case SIG_DBG_SINGLE_STEPPING:
1326#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1327			if (op.dbg_value) {
1328				new_msr |= MSR_DE;
1329				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1330			} else {
1331				new_dbcr0 &= ~DBCR0_IC;
1332				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1333						current->thread.debug.dbcr1)) {
1334					new_msr &= ~MSR_DE;
1335					new_dbcr0 &= ~DBCR0_IDM;
1336				}
1337			}
1338#else
1339			if (op.dbg_value)
1340				new_msr |= MSR_SE;
1341			else
1342				new_msr &= ~MSR_SE;
1343#endif
1344			break;
1345		case SIG_DBG_BRANCH_TRACING:
1346#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1347			return -EINVAL;
1348#else
1349			if (op.dbg_value)
1350				new_msr |= MSR_BE;
1351			else
1352				new_msr &= ~MSR_BE;
1353#endif
1354			break;
1355
1356		default:
1357			return -EINVAL;
1358		}
1359	}
1360
1361	/* We wait until here to actually install the values in the
1362	   registers so if we fail in the above loop, it will not
1363	   affect the contents of these registers.  After this point,
1364	   failure is a problem, anyway, and it's very unlikely unless
1365	   the user is really doing something wrong. */
1366	regs->msr = new_msr;
1367#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1368	current->thread.debug.dbcr0 = new_dbcr0;
1369#endif
1370
1371	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1372	    || __get_user(tmp, (u8 __user *) ctx)
1373	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1374		return -EFAULT;
1375
1376	/*
1377	 * If we get a fault copying the context into the kernel's
1378	 * image of the user's registers, we can't just return -EFAULT
1379	 * because the user's registers will be corrupted.  For instance
1380	 * the NIP value may have been updated but not some of the
1381	 * other registers.  Given that we have done the access_ok
1382	 * and successfully read the first and last bytes of the region
1383	 * above, this should only happen in an out-of-memory situation
1384	 * or if another thread unmaps the region containing the context.
1385	 * We kill the task with a SIGSEGV in this situation.
1386	 */
1387	if (do_setcontext(ctx, regs, 1)) {
1388		if (show_unhandled_signals)
1389			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1390					   "sys_debug_setcontext: %p nip %08lx "
1391					   "lr %08lx\n",
1392					   current->comm, current->pid,
1393					   ctx, regs->nip, regs->link);
1394
1395		force_sig(SIGSEGV, current);
1396		goto out;
1397	}
1398
1399	/*
1400	 * It's not clear whether or why it is desirable to save the
1401	 * sigaltstack setting on signal delivery and restore it on
1402	 * signal return.  But other architectures do this and we have
1403	 * always done it up until now so it is probably better not to
1404	 * change it.  -- paulus
1405	 */
1406	restore_altstack(&ctx->uc_stack);
1407
1408	set_thread_flag(TIF_RESTOREALL);
1409 out:
1410	return 0;
1411}
1412#endif
1413
1414/*
1415 * OK, we're invoking a handler
1416 */
1417int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1418		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1419{
1420	struct sigcontext __user *sc;
1421	struct sigframe __user *frame;
1422	struct mcontext __user *tm_mctx = NULL;
1423	unsigned long newsp = 0;
1424	int sigret;
1425	unsigned long tramp;
 
 
 
1426
1427	/* Set up Signal Frame */
1428	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1429	if (unlikely(frame == NULL))
1430		goto badframe;
1431	sc = (struct sigcontext __user *) &frame->sctx;
1432
1433#if _NSIG != 64
1434#error "Please adjust handle_signal()"
1435#endif
1436	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1437	    || __put_user(oldset->sig[0], &sc->oldmask)
1438#ifdef CONFIG_PPC64
1439	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1440#else
1441	    || __put_user(oldset->sig[1], &sc->_unused[3])
1442#endif
1443	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1444	    || __put_user(sig, &sc->signal))
1445		goto badframe;
1446
1447	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1448		sigret = 0;
1449		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1450	} else {
1451		sigret = __NR_sigreturn;
1452		tramp = (unsigned long) frame->mctx.tramp;
1453	}
1454
1455#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1456	tm_mctx = &frame->mctx_transact;
1457	if (MSR_TM_ACTIVE(regs->msr)) {
1458		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1459				      sigret))
1460			goto badframe;
1461	}
1462	else
1463#endif
1464	{
1465		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1466			goto badframe;
1467	}
1468
1469	regs->link = tramp;
1470
1471	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1472
1473	/* create a stack frame for the caller of the handler */
1474	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1475	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1476		goto badframe;
1477
1478	regs->gpr[1] = newsp;
1479	regs->gpr[3] = sig;
1480	regs->gpr[4] = (unsigned long) sc;
1481	regs->nip = (unsigned long) ka->sa.sa_handler;
1482	/* enter the signal handler in big-endian mode */
1483	regs->msr &= ~MSR_LE;
1484	return 1;
1485
1486badframe:
1487#ifdef DEBUG_SIG
1488	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1489	       regs, frame, newsp);
1490#endif
1491	if (show_unhandled_signals)
1492		printk_ratelimited(KERN_INFO
1493				   "%s[%d]: bad frame in handle_signal32: "
1494				   "%p nip %08lx lr %08lx\n",
1495				   current->comm, current->pid,
1496				   frame, regs->nip, regs->link);
1497
1498	force_sigsegv(sig, current);
1499	return 0;
1500}
1501
1502/*
1503 * Do a signal return; undo the signal stack.
1504 */
1505long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1506		       struct pt_regs *regs)
1507{
1508	struct sigframe __user *sf;
1509	struct sigcontext __user *sc;
1510	struct sigcontext sigctx;
1511	struct mcontext __user *sr;
1512	void __user *addr;
1513	sigset_t set;
1514#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515	struct mcontext __user *mcp, *tm_mcp;
1516	unsigned long msr_hi;
1517#endif
1518
1519	/* Always make any pending restarted system calls return -EINTR */
1520	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1521
1522	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1523	sc = &sf->sctx;
1524	addr = sc;
1525	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1526		goto badframe;
1527
1528#ifdef CONFIG_PPC64
1529	/*
1530	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1531	 * unused part of the signal stackframe
1532	 */
1533	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1534#else
1535	set.sig[0] = sigctx.oldmask;
1536	set.sig[1] = sigctx._unused[3];
1537#endif
1538	set_current_blocked(&set);
1539
1540#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1541	mcp = (struct mcontext __user *)&sf->mctx;
1542	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1543	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1544		goto badframe;
1545	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1546		if (!cpu_has_feature(CPU_FTR_TM))
1547			goto badframe;
1548		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1549			goto badframe;
1550	} else
1551#endif
1552	{
1553		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1554		addr = sr;
1555		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1556		    || restore_user_regs(regs, sr, 1))
1557			goto badframe;
1558	}
1559
1560	set_thread_flag(TIF_RESTOREALL);
1561	return 0;
1562
1563badframe:
1564	if (show_unhandled_signals)
1565		printk_ratelimited(KERN_INFO
1566				   "%s[%d]: bad frame in sys_sigreturn: "
1567				   "%p nip %08lx lr %08lx\n",
1568				   current->comm, current->pid,
1569				   addr, regs->nip, regs->link);
1570
1571	force_sig(SIGSEGV, current);
1572	return 0;
1573}