Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include <errno.h>
  16#include <inttypes.h>
  17#include <traceevent/event-parse.h>
  18
  19#include "builtin.h"
  20
  21#include "util/util.h"
  22
  23#include "util/color.h"
  24#include <linux/list.h>
  25#include "util/cache.h"
  26#include "util/evlist.h"
  27#include "util/evsel.h"
  28#include <linux/kernel.h>
  29#include <linux/rbtree.h>
  30#include <linux/time64.h>
  31#include "util/symbol.h"
  32#include "util/thread.h"
  33#include "util/callchain.h"
 
  34
  35#include "perf.h"
  36#include "util/header.h"
  37#include <subcmd/parse-options.h>
  38#include "util/parse-events.h"
  39#include "util/event.h"
  40#include "util/session.h"
  41#include "util/svghelper.h"
  42#include "util/tool.h"
  43#include "util/data.h"
  44#include "util/debug.h"
  45
  46#define SUPPORT_OLD_POWER_EVENTS 1
  47#define PWR_EVENT_EXIT -1
  48
  49struct per_pid;
  50struct power_event;
  51struct wake_event;
  52
  53struct timechart {
  54	struct perf_tool	tool;
  55	struct per_pid		*all_data;
  56	struct power_event	*power_events;
  57	struct wake_event	*wake_events;
  58	int			proc_num;
  59	unsigned int		numcpus;
  60	u64			min_freq,	/* Lowest CPU frequency seen */
  61				max_freq,	/* Highest CPU frequency seen */
  62				turbo_frequency,
  63				first_time, last_time;
  64	bool			power_only,
  65				tasks_only,
  66				with_backtrace,
  67				topology;
  68	bool			force;
  69	/* IO related settings */
  70	bool			io_only,
  71				skip_eagain;
  72	u64			io_events;
  73	u64			min_time,
  74				merge_dist;
  75};
  76
 
 
 
 
 
 
  77struct per_pidcomm;
 
  78struct cpu_sample;
  79struct io_sample;
 
 
 
  80
  81/*
  82 * Datastructure layout:
  83 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  84 * Each "pid" entry, has a list of "comm"s.
  85 *	this is because we want to track different programs different, while
  86 *	exec will reuse the original pid (by design).
  87 * Each comm has a list of samples that will be used to draw
  88 * final graph.
  89 */
  90
  91struct per_pid {
  92	struct per_pid *next;
  93
  94	int		pid;
  95	int		ppid;
  96
  97	u64		start_time;
  98	u64		end_time;
  99	u64		total_time;
 100	u64		total_bytes;
 101	int		display;
 102
 103	struct per_pidcomm *all;
 104	struct per_pidcomm *current;
 105};
 106
 107
 108struct per_pidcomm {
 109	struct per_pidcomm *next;
 110
 111	u64		start_time;
 112	u64		end_time;
 113	u64		total_time;
 114	u64		max_bytes;
 115	u64		total_bytes;
 116
 117	int		Y;
 118	int		display;
 119
 120	long		state;
 121	u64		state_since;
 122
 123	char		*comm;
 124
 125	struct cpu_sample *samples;
 126	struct io_sample  *io_samples;
 127};
 128
 129struct sample_wrapper {
 130	struct sample_wrapper *next;
 131
 132	u64		timestamp;
 133	unsigned char	data[0];
 134};
 135
 136#define TYPE_NONE	0
 137#define TYPE_RUNNING	1
 138#define TYPE_WAITING	2
 139#define TYPE_BLOCKED	3
 140
 141struct cpu_sample {
 142	struct cpu_sample *next;
 143
 144	u64 start_time;
 145	u64 end_time;
 146	int type;
 147	int cpu;
 148	const char *backtrace;
 149};
 150
 151enum {
 152	IOTYPE_READ,
 153	IOTYPE_WRITE,
 154	IOTYPE_SYNC,
 155	IOTYPE_TX,
 156	IOTYPE_RX,
 157	IOTYPE_POLL,
 158};
 159
 160struct io_sample {
 161	struct io_sample *next;
 162
 163	u64 start_time;
 164	u64 end_time;
 165	u64 bytes;
 166	int type;
 167	int fd;
 168	int err;
 169	int merges;
 170};
 171
 172#define CSTATE 1
 173#define PSTATE 2
 174
 175struct power_event {
 176	struct power_event *next;
 177	int type;
 178	int state;
 179	u64 start_time;
 180	u64 end_time;
 181	int cpu;
 182};
 183
 184struct wake_event {
 185	struct wake_event *next;
 186	int waker;
 187	int wakee;
 188	u64 time;
 189	const char *backtrace;
 190};
 191
 
 
 
 
 192struct process_filter {
 193	char			*name;
 194	int			pid;
 195	struct process_filter	*next;
 196};
 197
 198static struct process_filter *process_filter;
 199
 200
 201static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 202{
 203	struct per_pid *cursor = tchart->all_data;
 204
 205	while (cursor) {
 206		if (cursor->pid == pid)
 207			return cursor;
 208		cursor = cursor->next;
 209	}
 210	cursor = zalloc(sizeof(*cursor));
 211	assert(cursor != NULL);
 
 212	cursor->pid = pid;
 213	cursor->next = tchart->all_data;
 214	tchart->all_data = cursor;
 215	return cursor;
 216}
 217
 218static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 219{
 220	struct per_pid *p;
 221	struct per_pidcomm *c;
 222	p = find_create_pid(tchart, pid);
 223	c = p->all;
 224	while (c) {
 225		if (c->comm && strcmp(c->comm, comm) == 0) {
 226			p->current = c;
 227			return;
 228		}
 229		if (!c->comm) {
 230			c->comm = strdup(comm);
 231			p->current = c;
 232			return;
 233		}
 234		c = c->next;
 235	}
 236	c = zalloc(sizeof(*c));
 237	assert(c != NULL);
 
 238	c->comm = strdup(comm);
 239	p->current = c;
 240	c->next = p->all;
 241	p->all = c;
 242}
 243
 244static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 245{
 246	struct per_pid *p, *pp;
 247	p = find_create_pid(tchart, pid);
 248	pp = find_create_pid(tchart, ppid);
 249	p->ppid = ppid;
 250	if (pp->current && pp->current->comm && !p->current)
 251		pid_set_comm(tchart, pid, pp->current->comm);
 252
 253	p->start_time = timestamp;
 254	if (p->current && !p->current->start_time) {
 255		p->current->start_time = timestamp;
 256		p->current->state_since = timestamp;
 257	}
 258}
 259
 260static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 261{
 262	struct per_pid *p;
 263	p = find_create_pid(tchart, pid);
 264	p->end_time = timestamp;
 265	if (p->current)
 266		p->current->end_time = timestamp;
 267}
 268
 269static void pid_put_sample(struct timechart *tchart, int pid, int type,
 270			   unsigned int cpu, u64 start, u64 end,
 271			   const char *backtrace)
 272{
 273	struct per_pid *p;
 274	struct per_pidcomm *c;
 275	struct cpu_sample *sample;
 276
 277	p = find_create_pid(tchart, pid);
 278	c = p->current;
 279	if (!c) {
 280		c = zalloc(sizeof(*c));
 281		assert(c != NULL);
 
 282		p->current = c;
 283		c->next = p->all;
 284		p->all = c;
 285	}
 286
 287	sample = zalloc(sizeof(*sample));
 288	assert(sample != NULL);
 
 289	sample->start_time = start;
 290	sample->end_time = end;
 291	sample->type = type;
 292	sample->next = c->samples;
 293	sample->cpu = cpu;
 294	sample->backtrace = backtrace;
 295	c->samples = sample;
 296
 297	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 298		c->total_time += (end-start);
 299		p->total_time += (end-start);
 300	}
 301
 302	if (c->start_time == 0 || c->start_time > start)
 303		c->start_time = start;
 304	if (p->start_time == 0 || p->start_time > start)
 305		p->start_time = start;
 306}
 307
 308#define MAX_CPUS 4096
 309
 310static u64 cpus_cstate_start_times[MAX_CPUS];
 311static int cpus_cstate_state[MAX_CPUS];
 312static u64 cpus_pstate_start_times[MAX_CPUS];
 313static u64 cpus_pstate_state[MAX_CPUS];
 314
 315static int process_comm_event(struct perf_tool *tool,
 316			      union perf_event *event,
 317			      struct perf_sample *sample __maybe_unused,
 318			      struct machine *machine __maybe_unused)
 319{
 320	struct timechart *tchart = container_of(tool, struct timechart, tool);
 321	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 322	return 0;
 323}
 324
 325static int process_fork_event(struct perf_tool *tool,
 326			      union perf_event *event,
 327			      struct perf_sample *sample __maybe_unused,
 328			      struct machine *machine __maybe_unused)
 329{
 330	struct timechart *tchart = container_of(tool, struct timechart, tool);
 331	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 332	return 0;
 333}
 334
 335static int process_exit_event(struct perf_tool *tool,
 336			      union perf_event *event,
 337			      struct perf_sample *sample __maybe_unused,
 338			      struct machine *machine __maybe_unused)
 339{
 340	struct timechart *tchart = container_of(tool, struct timechart, tool);
 341	pid_exit(tchart, event->fork.pid, event->fork.time);
 342	return 0;
 343}
 344
 
 
 
 
 
 
 
 
 345#ifdef SUPPORT_OLD_POWER_EVENTS
 346static int use_old_power_events;
 
 
 
 
 
 
 347#endif
 348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349static void c_state_start(int cpu, u64 timestamp, int state)
 350{
 351	cpus_cstate_start_times[cpu] = timestamp;
 352	cpus_cstate_state[cpu] = state;
 353}
 354
 355static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 356{
 357	struct power_event *pwr = zalloc(sizeof(*pwr));
 358
 359	if (!pwr)
 360		return;
 
 361
 362	pwr->state = cpus_cstate_state[cpu];
 363	pwr->start_time = cpus_cstate_start_times[cpu];
 364	pwr->end_time = timestamp;
 365	pwr->cpu = cpu;
 366	pwr->type = CSTATE;
 367	pwr->next = tchart->power_events;
 368
 369	tchart->power_events = pwr;
 370}
 371
 372static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 373{
 374	struct power_event *pwr;
 
 375
 376	if (new_freq > 8000000) /* detect invalid data */
 377		return;
 378
 379	pwr = zalloc(sizeof(*pwr));
 380	if (!pwr)
 381		return;
 
 382
 383	pwr->state = cpus_pstate_state[cpu];
 384	pwr->start_time = cpus_pstate_start_times[cpu];
 385	pwr->end_time = timestamp;
 386	pwr->cpu = cpu;
 387	pwr->type = PSTATE;
 388	pwr->next = tchart->power_events;
 389
 390	if (!pwr->start_time)
 391		pwr->start_time = tchart->first_time;
 392
 393	tchart->power_events = pwr;
 394
 395	cpus_pstate_state[cpu] = new_freq;
 396	cpus_pstate_start_times[cpu] = timestamp;
 397
 398	if ((u64)new_freq > tchart->max_freq)
 399		tchart->max_freq = new_freq;
 400
 401	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 402		tchart->min_freq = new_freq;
 403
 404	if (new_freq == tchart->max_freq - 1000)
 405		tchart->turbo_frequency = tchart->max_freq;
 406}
 407
 408static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 409			 int waker, int wakee, u8 flags, const char *backtrace)
 410{
 
 411	struct per_pid *p;
 412	struct wake_event *we = zalloc(sizeof(*we));
 413
 
 414	if (!we)
 415		return;
 416
 
 417	we->time = timestamp;
 418	we->waker = waker;
 419	we->backtrace = backtrace;
 420
 421	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 422		we->waker = -1;
 423
 424	we->wakee = wakee;
 425	we->next = tchart->wake_events;
 426	tchart->wake_events = we;
 427	p = find_create_pid(tchart, we->wakee);
 428
 429	if (p && p->current && p->current->state == TYPE_NONE) {
 430		p->current->state_since = timestamp;
 431		p->current->state = TYPE_WAITING;
 432	}
 433	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 434		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 435			       p->current->state_since, timestamp, NULL);
 436		p->current->state_since = timestamp;
 437		p->current->state = TYPE_WAITING;
 438	}
 439}
 440
 441static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 442			 int prev_pid, int next_pid, u64 prev_state,
 443			 const char *backtrace)
 444{
 445	struct per_pid *p = NULL, *prev_p;
 
 446
 447	prev_p = find_create_pid(tchart, prev_pid);
 448
 449	p = find_create_pid(tchart, next_pid);
 
 
 450
 451	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 452		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 453			       prev_p->current->state_since, timestamp,
 454			       backtrace);
 455	if (p && p->current) {
 456		if (p->current->state != TYPE_NONE)
 457			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 458				       p->current->state_since, timestamp,
 459				       backtrace);
 460
 461		p->current->state_since = timestamp;
 462		p->current->state = TYPE_RUNNING;
 463	}
 464
 465	if (prev_p->current) {
 466		prev_p->current->state = TYPE_NONE;
 467		prev_p->current->state_since = timestamp;
 468		if (prev_state & 2)
 469			prev_p->current->state = TYPE_BLOCKED;
 470		if (prev_state == 0)
 471			prev_p->current->state = TYPE_WAITING;
 472	}
 473}
 474
 475static const char *cat_backtrace(union perf_event *event,
 476				 struct perf_sample *sample,
 477				 struct machine *machine)
 478{
 479	struct addr_location al;
 480	unsigned int i;
 481	char *p = NULL;
 482	size_t p_len;
 483	u8 cpumode = PERF_RECORD_MISC_USER;
 484	struct addr_location tal;
 485	struct ip_callchain *chain = sample->callchain;
 486	FILE *f = open_memstream(&p, &p_len);
 487
 488	if (!f) {
 489		perror("open_memstream error");
 490		return NULL;
 491	}
 492
 493	if (!chain)
 494		goto exit;
 495
 496	if (machine__resolve(machine, &al, sample) < 0) {
 497		fprintf(stderr, "problem processing %d event, skipping it.\n",
 498			event->header.type);
 499		goto exit;
 500	}
 501
 502	for (i = 0; i < chain->nr; i++) {
 503		u64 ip;
 504
 505		if (callchain_param.order == ORDER_CALLEE)
 506			ip = chain->ips[i];
 507		else
 508			ip = chain->ips[chain->nr - i - 1];
 509
 510		if (ip >= PERF_CONTEXT_MAX) {
 511			switch (ip) {
 512			case PERF_CONTEXT_HV:
 513				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 514				break;
 515			case PERF_CONTEXT_KERNEL:
 516				cpumode = PERF_RECORD_MISC_KERNEL;
 517				break;
 518			case PERF_CONTEXT_USER:
 519				cpumode = PERF_RECORD_MISC_USER;
 520				break;
 521			default:
 522				pr_debug("invalid callchain context: "
 523					 "%"PRId64"\n", (s64) ip);
 524
 525				/*
 526				 * It seems the callchain is corrupted.
 527				 * Discard all.
 528				 */
 529				zfree(&p);
 530				goto exit_put;
 531			}
 532			continue;
 533		}
 534
 535		tal.filtered = 0;
 536		thread__find_addr_location(al.thread, cpumode,
 537					   MAP__FUNCTION, ip, &tal);
 538
 539		if (tal.sym)
 540			fprintf(f, "..... %016" PRIx64 " %s\n", ip,
 541				tal.sym->name);
 542		else
 543			fprintf(f, "..... %016" PRIx64 "\n", ip);
 544	}
 545exit_put:
 546	addr_location__put(&al);
 547exit:
 548	fclose(f);
 549
 550	return p;
 551}
 552
 553typedef int (*tracepoint_handler)(struct timechart *tchart,
 554				  struct perf_evsel *evsel,
 555				  struct perf_sample *sample,
 556				  const char *backtrace);
 557
 558static int process_sample_event(struct perf_tool *tool,
 559				union perf_event *event,
 560				struct perf_sample *sample,
 561				struct perf_evsel *evsel,
 562				struct machine *machine)
 563{
 564	struct timechart *tchart = container_of(tool, struct timechart, tool);
 565
 566	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 567		if (!tchart->first_time || tchart->first_time > sample->time)
 568			tchart->first_time = sample->time;
 569		if (tchart->last_time < sample->time)
 570			tchart->last_time = sample->time;
 571	}
 572
 573	if (evsel->handler != NULL) {
 574		tracepoint_handler f = evsel->handler;
 575		return f(tchart, evsel, sample,
 576			 cat_backtrace(event, sample, machine));
 577	}
 578
 579	return 0;
 580}
 581
 582static int
 583process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 584			struct perf_evsel *evsel,
 585			struct perf_sample *sample,
 586			const char *backtrace __maybe_unused)
 587{
 588	u32 state = perf_evsel__intval(evsel, sample, "state");
 589	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 590
 591	if (state == (u32)PWR_EVENT_EXIT)
 592		c_state_end(tchart, cpu_id, sample->time);
 593	else
 594		c_state_start(cpu_id, sample->time, state);
 595	return 0;
 596}
 597
 598static int
 599process_sample_cpu_frequency(struct timechart *tchart,
 600			     struct perf_evsel *evsel,
 601			     struct perf_sample *sample,
 602			     const char *backtrace __maybe_unused)
 603{
 604	u32 state = perf_evsel__intval(evsel, sample, "state");
 605	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 606
 607	p_state_change(tchart, cpu_id, sample->time, state);
 608	return 0;
 609}
 610
 611static int
 612process_sample_sched_wakeup(struct timechart *tchart,
 613			    struct perf_evsel *evsel,
 614			    struct perf_sample *sample,
 615			    const char *backtrace)
 616{
 617	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 618	int waker = perf_evsel__intval(evsel, sample, "common_pid");
 619	int wakee = perf_evsel__intval(evsel, sample, "pid");
 620
 621	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 622	return 0;
 623}
 624
 625static int
 626process_sample_sched_switch(struct timechart *tchart,
 627			    struct perf_evsel *evsel,
 628			    struct perf_sample *sample,
 629			    const char *backtrace)
 630{
 631	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 632	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 633	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 634
 635	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 636		     prev_state, backtrace);
 637	return 0;
 638}
 639
 640#ifdef SUPPORT_OLD_POWER_EVENTS
 641static int
 642process_sample_power_start(struct timechart *tchart __maybe_unused,
 643			   struct perf_evsel *evsel,
 644			   struct perf_sample *sample,
 645			   const char *backtrace __maybe_unused)
 646{
 647	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 648	u64 value = perf_evsel__intval(evsel, sample, "value");
 649
 650	c_state_start(cpu_id, sample->time, value);
 651	return 0;
 652}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653
 654static int
 655process_sample_power_end(struct timechart *tchart,
 656			 struct perf_evsel *evsel __maybe_unused,
 657			 struct perf_sample *sample,
 658			 const char *backtrace __maybe_unused)
 659{
 660	c_state_end(tchart, sample->cpu, sample->time);
 661	return 0;
 662}
 663
 664static int
 665process_sample_power_frequency(struct timechart *tchart,
 666			       struct perf_evsel *evsel,
 667			       struct perf_sample *sample,
 668			       const char *backtrace __maybe_unused)
 669{
 670	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 671	u64 value = perf_evsel__intval(evsel, sample, "value");
 672
 673	p_state_change(tchart, cpu_id, sample->time, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674	return 0;
 675}
 676#endif /* SUPPORT_OLD_POWER_EVENTS */
 677
 678/*
 679 * After the last sample we need to wrap up the current C/P state
 680 * and close out each CPU for these.
 681 */
 682static void end_sample_processing(struct timechart *tchart)
 683{
 684	u64 cpu;
 685	struct power_event *pwr;
 686
 687	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 688		/* C state */
 689#if 0
 690		pwr = zalloc(sizeof(*pwr));
 691		if (!pwr)
 692			return;
 
 693
 
 
 694		pwr->state = cpus_cstate_state[cpu];
 695		pwr->start_time = cpus_cstate_start_times[cpu];
 696		pwr->end_time = tchart->last_time;
 697		pwr->cpu = cpu;
 698		pwr->type = CSTATE;
 699		pwr->next = tchart->power_events;
 700
 701		tchart->power_events = pwr;
 702#endif
 703		/* P state */
 704
 705		pwr = zalloc(sizeof(*pwr));
 706		if (!pwr)
 707			return;
 
 708
 709		pwr->state = cpus_pstate_state[cpu];
 710		pwr->start_time = cpus_pstate_start_times[cpu];
 711		pwr->end_time = tchart->last_time;
 712		pwr->cpu = cpu;
 713		pwr->type = PSTATE;
 714		pwr->next = tchart->power_events;
 715
 716		if (!pwr->start_time)
 717			pwr->start_time = tchart->first_time;
 718		if (!pwr->state)
 719			pwr->state = tchart->min_freq;
 720		tchart->power_events = pwr;
 721	}
 722}
 723
 724static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 725			       u64 start, int fd)
 726{
 727	struct per_pid *p = find_create_pid(tchart, pid);
 728	struct per_pidcomm *c = p->current;
 729	struct io_sample *sample;
 730	struct io_sample *prev;
 731
 732	if (!c) {
 733		c = zalloc(sizeof(*c));
 734		if (!c)
 735			return -ENOMEM;
 736		p->current = c;
 737		c->next = p->all;
 738		p->all = c;
 739	}
 740
 741	prev = c->io_samples;
 742
 743	if (prev && prev->start_time && !prev->end_time) {
 744		pr_warning("Skip invalid start event: "
 745			   "previous event already started!\n");
 746
 747		/* remove previous event that has been started,
 748		 * we are not sure we will ever get an end for it */
 749		c->io_samples = prev->next;
 750		free(prev);
 751		return 0;
 752	}
 753
 754	sample = zalloc(sizeof(*sample));
 755	if (!sample)
 756		return -ENOMEM;
 757	sample->start_time = start;
 758	sample->type = type;
 759	sample->fd = fd;
 760	sample->next = c->io_samples;
 761	c->io_samples = sample;
 762
 763	if (c->start_time == 0 || c->start_time > start)
 764		c->start_time = start;
 765
 766	return 0;
 767}
 768
 769static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 770			     u64 end, long ret)
 771{
 772	struct per_pid *p = find_create_pid(tchart, pid);
 773	struct per_pidcomm *c = p->current;
 774	struct io_sample *sample, *prev;
 775
 776	if (!c) {
 777		pr_warning("Invalid pidcomm!\n");
 778		return -1;
 779	}
 780
 781	sample = c->io_samples;
 782
 783	if (!sample) /* skip partially captured events */
 784		return 0;
 785
 786	if (sample->end_time) {
 787		pr_warning("Skip invalid end event: "
 788			   "previous event already ended!\n");
 789		return 0;
 790	}
 791
 792	if (sample->type != type) {
 793		pr_warning("Skip invalid end event: invalid event type!\n");
 794		return 0;
 795	}
 796
 797	sample->end_time = end;
 798	prev = sample->next;
 799
 800	/* we want to be able to see small and fast transfers, so make them
 801	 * at least min_time long, but don't overlap them */
 802	if (sample->end_time - sample->start_time < tchart->min_time)
 803		sample->end_time = sample->start_time + tchart->min_time;
 804	if (prev && sample->start_time < prev->end_time) {
 805		if (prev->err) /* try to make errors more visible */
 806			sample->start_time = prev->end_time;
 807		else
 808			prev->end_time = sample->start_time;
 809	}
 810
 811	if (ret < 0) {
 812		sample->err = ret;
 813	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 814		   type == IOTYPE_TX || type == IOTYPE_RX) {
 815
 816		if ((u64)ret > c->max_bytes)
 817			c->max_bytes = ret;
 818
 819		c->total_bytes += ret;
 820		p->total_bytes += ret;
 821		sample->bytes = ret;
 822	}
 823
 824	/* merge two requests to make svg smaller and render-friendly */
 825	if (prev &&
 826	    prev->type == sample->type &&
 827	    prev->err == sample->err &&
 828	    prev->fd == sample->fd &&
 829	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 830
 831		sample->bytes += prev->bytes;
 832		sample->merges += prev->merges + 1;
 833
 834		sample->start_time = prev->start_time;
 835		sample->next = prev->next;
 836		free(prev);
 837
 838		if (!sample->err && sample->bytes > c->max_bytes)
 839			c->max_bytes = sample->bytes;
 840	}
 841
 842	tchart->io_events++;
 843
 844	return 0;
 845}
 846
 847static int
 848process_enter_read(struct timechart *tchart,
 849		   struct perf_evsel *evsel,
 850		   struct perf_sample *sample)
 851{
 852	long fd = perf_evsel__intval(evsel, sample, "fd");
 853	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 854				   sample->time, fd);
 855}
 856
 857static int
 858process_exit_read(struct timechart *tchart,
 859		  struct perf_evsel *evsel,
 860		  struct perf_sample *sample)
 861{
 862	long ret = perf_evsel__intval(evsel, sample, "ret");
 863	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 864				 sample->time, ret);
 865}
 866
 867static int
 868process_enter_write(struct timechart *tchart,
 869		    struct perf_evsel *evsel,
 870		    struct perf_sample *sample)
 871{
 872	long fd = perf_evsel__intval(evsel, sample, "fd");
 873	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 874				   sample->time, fd);
 875}
 876
 877static int
 878process_exit_write(struct timechart *tchart,
 879		   struct perf_evsel *evsel,
 880		   struct perf_sample *sample)
 881{
 882	long ret = perf_evsel__intval(evsel, sample, "ret");
 883	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 884				 sample->time, ret);
 885}
 886
 887static int
 888process_enter_sync(struct timechart *tchart,
 889		   struct perf_evsel *evsel,
 890		   struct perf_sample *sample)
 891{
 892	long fd = perf_evsel__intval(evsel, sample, "fd");
 893	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 894				   sample->time, fd);
 895}
 896
 897static int
 898process_exit_sync(struct timechart *tchart,
 899		  struct perf_evsel *evsel,
 900		  struct perf_sample *sample)
 901{
 902	long ret = perf_evsel__intval(evsel, sample, "ret");
 903	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 904				 sample->time, ret);
 905}
 906
 907static int
 908process_enter_tx(struct timechart *tchart,
 909		 struct perf_evsel *evsel,
 910		 struct perf_sample *sample)
 911{
 912	long fd = perf_evsel__intval(evsel, sample, "fd");
 913	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 914				   sample->time, fd);
 915}
 916
 917static int
 918process_exit_tx(struct timechart *tchart,
 919		struct perf_evsel *evsel,
 920		struct perf_sample *sample)
 921{
 922	long ret = perf_evsel__intval(evsel, sample, "ret");
 923	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 924				 sample->time, ret);
 925}
 926
 927static int
 928process_enter_rx(struct timechart *tchart,
 929		 struct perf_evsel *evsel,
 930		 struct perf_sample *sample)
 931{
 932	long fd = perf_evsel__intval(evsel, sample, "fd");
 933	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 934				   sample->time, fd);
 935}
 936
 937static int
 938process_exit_rx(struct timechart *tchart,
 939		struct perf_evsel *evsel,
 940		struct perf_sample *sample)
 941{
 942	long ret = perf_evsel__intval(evsel, sample, "ret");
 943	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 944				 sample->time, ret);
 945}
 946
 947static int
 948process_enter_poll(struct timechart *tchart,
 949		   struct perf_evsel *evsel,
 950		   struct perf_sample *sample)
 951{
 952	long fd = perf_evsel__intval(evsel, sample, "fd");
 953	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 954				   sample->time, fd);
 955}
 956
 957static int
 958process_exit_poll(struct timechart *tchart,
 959		  struct perf_evsel *evsel,
 960		  struct perf_sample *sample)
 961{
 962	long ret = perf_evsel__intval(evsel, sample, "ret");
 963	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 964				 sample->time, ret);
 965}
 966
 967/*
 968 * Sort the pid datastructure
 969 */
 970static void sort_pids(struct timechart *tchart)
 971{
 972	struct per_pid *new_list, *p, *cursor, *prev;
 973	/* sort by ppid first, then by pid, lowest to highest */
 974
 975	new_list = NULL;
 976
 977	while (tchart->all_data) {
 978		p = tchart->all_data;
 979		tchart->all_data = p->next;
 980		p->next = NULL;
 981
 982		if (new_list == NULL) {
 983			new_list = p;
 984			p->next = NULL;
 985			continue;
 986		}
 987		prev = NULL;
 988		cursor = new_list;
 989		while (cursor) {
 990			if (cursor->ppid > p->ppid ||
 991				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 992				/* must insert before */
 993				if (prev) {
 994					p->next = prev->next;
 995					prev->next = p;
 996					cursor = NULL;
 997					continue;
 998				} else {
 999					p->next = new_list;
1000					new_list = p;
1001					cursor = NULL;
1002					continue;
1003				}
1004			}
1005
1006			prev = cursor;
1007			cursor = cursor->next;
1008			if (!cursor)
1009				prev->next = p;
1010		}
1011	}
1012	tchart->all_data = new_list;
1013}
1014
1015
1016static void draw_c_p_states(struct timechart *tchart)
1017{
1018	struct power_event *pwr;
1019	pwr = tchart->power_events;
1020
1021	/*
1022	 * two pass drawing so that the P state bars are on top of the C state blocks
1023	 */
1024	while (pwr) {
1025		if (pwr->type == CSTATE)
1026			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027		pwr = pwr->next;
1028	}
1029
1030	pwr = tchart->power_events;
1031	while (pwr) {
1032		if (pwr->type == PSTATE) {
1033			if (!pwr->state)
1034				pwr->state = tchart->min_freq;
1035			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1036		}
1037		pwr = pwr->next;
1038	}
1039}
1040
1041static void draw_wakeups(struct timechart *tchart)
1042{
1043	struct wake_event *we;
1044	struct per_pid *p;
1045	struct per_pidcomm *c;
1046
1047	we = tchart->wake_events;
1048	while (we) {
1049		int from = 0, to = 0;
1050		char *task_from = NULL, *task_to = NULL;
1051
1052		/* locate the column of the waker and wakee */
1053		p = tchart->all_data;
1054		while (p) {
1055			if (p->pid == we->waker || p->pid == we->wakee) {
1056				c = p->all;
1057				while (c) {
1058					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059						if (p->pid == we->waker && !from) {
1060							from = c->Y;
1061							task_from = strdup(c->comm);
1062						}
1063						if (p->pid == we->wakee && !to) {
1064							to = c->Y;
1065							task_to = strdup(c->comm);
1066						}
1067					}
1068					c = c->next;
1069				}
1070				c = p->all;
1071				while (c) {
1072					if (p->pid == we->waker && !from) {
1073						from = c->Y;
1074						task_from = strdup(c->comm);
1075					}
1076					if (p->pid == we->wakee && !to) {
1077						to = c->Y;
1078						task_to = strdup(c->comm);
1079					}
1080					c = c->next;
1081				}
1082			}
1083			p = p->next;
1084		}
1085
1086		if (!task_from) {
1087			task_from = malloc(40);
1088			sprintf(task_from, "[%i]", we->waker);
1089		}
1090		if (!task_to) {
1091			task_to = malloc(40);
1092			sprintf(task_to, "[%i]", we->wakee);
1093		}
1094
1095		if (we->waker == -1)
1096			svg_interrupt(we->time, to, we->backtrace);
1097		else if (from && to && abs(from - to) == 1)
1098			svg_wakeline(we->time, from, to, we->backtrace);
1099		else
1100			svg_partial_wakeline(we->time, from, task_from, to,
1101					     task_to, we->backtrace);
1102		we = we->next;
1103
1104		free(task_from);
1105		free(task_to);
1106	}
1107}
1108
1109static void draw_cpu_usage(struct timechart *tchart)
1110{
1111	struct per_pid *p;
1112	struct per_pidcomm *c;
1113	struct cpu_sample *sample;
1114	p = tchart->all_data;
1115	while (p) {
1116		c = p->all;
1117		while (c) {
1118			sample = c->samples;
1119			while (sample) {
1120				if (sample->type == TYPE_RUNNING) {
1121					svg_process(sample->cpu,
1122						    sample->start_time,
1123						    sample->end_time,
1124						    p->pid,
1125						    c->comm,
1126						    sample->backtrace);
1127				}
1128
1129				sample = sample->next;
1130			}
1131			c = c->next;
1132		}
1133		p = p->next;
1134	}
1135}
1136
1137static void draw_io_bars(struct timechart *tchart)
1138{
1139	const char *suf;
1140	double bytes;
1141	char comm[256];
1142	struct per_pid *p;
1143	struct per_pidcomm *c;
1144	struct io_sample *sample;
1145	int Y = 1;
1146
1147	p = tchart->all_data;
1148	while (p) {
1149		c = p->all;
1150		while (c) {
1151			if (!c->display) {
1152				c->Y = 0;
1153				c = c->next;
1154				continue;
1155			}
1156
1157			svg_box(Y, c->start_time, c->end_time, "process3");
1158			sample = c->io_samples;
1159			for (sample = c->io_samples; sample; sample = sample->next) {
1160				double h = (double)sample->bytes / c->max_bytes;
1161
1162				if (tchart->skip_eagain &&
1163				    sample->err == -EAGAIN)
1164					continue;
1165
1166				if (sample->err)
1167					h = 1;
1168
1169				if (sample->type == IOTYPE_SYNC)
1170					svg_fbox(Y,
1171						sample->start_time,
1172						sample->end_time,
1173						1,
1174						sample->err ? "error" : "sync",
1175						sample->fd,
1176						sample->err,
1177						sample->merges);
1178				else if (sample->type == IOTYPE_POLL)
1179					svg_fbox(Y,
1180						sample->start_time,
1181						sample->end_time,
1182						1,
1183						sample->err ? "error" : "poll",
1184						sample->fd,
1185						sample->err,
1186						sample->merges);
1187				else if (sample->type == IOTYPE_READ)
1188					svg_ubox(Y,
1189						sample->start_time,
1190						sample->end_time,
1191						h,
1192						sample->err ? "error" : "disk",
1193						sample->fd,
1194						sample->err,
1195						sample->merges);
1196				else if (sample->type == IOTYPE_WRITE)
1197					svg_lbox(Y,
1198						sample->start_time,
1199						sample->end_time,
1200						h,
1201						sample->err ? "error" : "disk",
1202						sample->fd,
1203						sample->err,
1204						sample->merges);
1205				else if (sample->type == IOTYPE_RX)
1206					svg_ubox(Y,
1207						sample->start_time,
1208						sample->end_time,
1209						h,
1210						sample->err ? "error" : "net",
1211						sample->fd,
1212						sample->err,
1213						sample->merges);
1214				else if (sample->type == IOTYPE_TX)
1215					svg_lbox(Y,
1216						sample->start_time,
1217						sample->end_time,
1218						h,
1219						sample->err ? "error" : "net",
1220						sample->fd,
1221						sample->err,
1222						sample->merges);
1223			}
1224
1225			suf = "";
1226			bytes = c->total_bytes;
1227			if (bytes > 1024) {
1228				bytes = bytes / 1024;
1229				suf = "K";
1230			}
1231			if (bytes > 1024) {
1232				bytes = bytes / 1024;
1233				suf = "M";
1234			}
1235			if (bytes > 1024) {
1236				bytes = bytes / 1024;
1237				suf = "G";
1238			}
1239
1240
1241			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242			svg_text(Y, c->start_time, comm);
1243
1244			c->Y = Y;
1245			Y++;
1246			c = c->next;
1247		}
1248		p = p->next;
1249	}
1250}
1251
1252static void draw_process_bars(struct timechart *tchart)
1253{
1254	struct per_pid *p;
1255	struct per_pidcomm *c;
1256	struct cpu_sample *sample;
1257	int Y = 0;
1258
1259	Y = 2 * tchart->numcpus + 2;
1260
1261	p = tchart->all_data;
1262	while (p) {
1263		c = p->all;
1264		while (c) {
1265			if (!c->display) {
1266				c->Y = 0;
1267				c = c->next;
1268				continue;
1269			}
1270
1271			svg_box(Y, c->start_time, c->end_time, "process");
1272			sample = c->samples;
1273			while (sample) {
1274				if (sample->type == TYPE_RUNNING)
1275					svg_running(Y, sample->cpu,
1276						    sample->start_time,
1277						    sample->end_time,
1278						    sample->backtrace);
1279				if (sample->type == TYPE_BLOCKED)
1280					svg_blocked(Y, sample->cpu,
1281						    sample->start_time,
1282						    sample->end_time,
1283						    sample->backtrace);
1284				if (sample->type == TYPE_WAITING)
1285					svg_waiting(Y, sample->cpu,
1286						    sample->start_time,
1287						    sample->end_time,
1288						    sample->backtrace);
1289				sample = sample->next;
1290			}
1291
1292			if (c->comm) {
1293				char comm[256];
1294				if (c->total_time > 5000000000) /* 5 seconds */
1295					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296				else
1297					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1298
1299				svg_text(Y, c->start_time, comm);
1300			}
1301			c->Y = Y;
1302			Y++;
1303			c = c->next;
1304		}
1305		p = p->next;
1306	}
1307}
1308
1309static void add_process_filter(const char *string)
1310{
1311	int pid = strtoull(string, NULL, 10);
1312	struct process_filter *filt = malloc(sizeof(*filt));
1313
 
 
1314	if (!filt)
1315		return;
1316
1317	filt->name = strdup(string);
1318	filt->pid  = pid;
1319	filt->next = process_filter;
1320
1321	process_filter = filt;
1322}
1323
1324static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1325{
1326	struct process_filter *filt;
1327	if (!process_filter)
1328		return 1;
1329
1330	filt = process_filter;
1331	while (filt) {
1332		if (filt->pid && p->pid == filt->pid)
1333			return 1;
1334		if (strcmp(filt->name, c->comm) == 0)
1335			return 1;
1336		filt = filt->next;
1337	}
1338	return 0;
1339}
1340
1341static int determine_display_tasks_filtered(struct timechart *tchart)
1342{
1343	struct per_pid *p;
1344	struct per_pidcomm *c;
1345	int count = 0;
1346
1347	p = tchart->all_data;
1348	while (p) {
1349		p->display = 0;
1350		if (p->start_time == 1)
1351			p->start_time = tchart->first_time;
1352
1353		/* no exit marker, task kept running to the end */
1354		if (p->end_time == 0)
1355			p->end_time = tchart->last_time;
1356
1357		c = p->all;
1358
1359		while (c) {
1360			c->display = 0;
1361
1362			if (c->start_time == 1)
1363				c->start_time = tchart->first_time;
1364
1365			if (passes_filter(p, c)) {
1366				c->display = 1;
1367				p->display = 1;
1368				count++;
1369			}
1370
1371			if (c->end_time == 0)
1372				c->end_time = tchart->last_time;
1373
1374			c = c->next;
1375		}
1376		p = p->next;
1377	}
1378	return count;
1379}
1380
1381static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1382{
1383	struct per_pid *p;
1384	struct per_pidcomm *c;
1385	int count = 0;
1386
1387	p = tchart->all_data;
 
 
 
1388	while (p) {
1389		p->display = 0;
1390		if (p->start_time == 1)
1391			p->start_time = tchart->first_time;
1392
1393		/* no exit marker, task kept running to the end */
1394		if (p->end_time == 0)
1395			p->end_time = tchart->last_time;
1396		if (p->total_time >= threshold)
1397			p->display = 1;
1398
1399		c = p->all;
1400
1401		while (c) {
1402			c->display = 0;
1403
1404			if (c->start_time == 1)
1405				c->start_time = tchart->first_time;
1406
1407			if (c->total_time >= threshold) {
1408				c->display = 1;
1409				count++;
1410			}
1411
1412			if (c->end_time == 0)
1413				c->end_time = tchart->last_time;
1414
1415			c = c->next;
1416		}
1417		p = p->next;
1418	}
1419	return count;
1420}
1421
1422static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1423{
1424	struct per_pid *p;
1425	struct per_pidcomm *c;
1426	int count = 0;
1427
1428	p = timechart->all_data;
1429	while (p) {
1430		/* no exit marker, task kept running to the end */
1431		if (p->end_time == 0)
1432			p->end_time = timechart->last_time;
1433
1434		c = p->all;
1435
1436		while (c) {
1437			c->display = 0;
1438
1439			if (c->total_bytes >= threshold) {
1440				c->display = 1;
1441				count++;
1442			}
1443
1444			if (c->end_time == 0)
1445				c->end_time = timechart->last_time;
1446
1447			c = c->next;
1448		}
1449		p = p->next;
1450	}
1451	return count;
1452}
1453
1454#define BYTES_THRESH (1 * 1024 * 1024)
1455#define TIME_THRESH 10000000
1456
1457static void write_svg_file(struct timechart *tchart, const char *filename)
1458{
1459	u64 i;
1460	int count;
1461	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1462
1463	if (tchart->power_only)
1464		tchart->proc_num = 0;
1465
1466	/* We'd like to show at least proc_num tasks;
1467	 * be less picky if we have fewer */
1468	do {
1469		if (process_filter)
1470			count = determine_display_tasks_filtered(tchart);
1471		else if (tchart->io_events)
1472			count = determine_display_io_tasks(tchart, thresh);
1473		else
1474			count = determine_display_tasks(tchart, thresh);
1475		thresh /= 10;
1476	} while (!process_filter && thresh && count < tchart->proc_num);
1477
1478	if (!tchart->proc_num)
1479		count = 0;
1480
1481	if (tchart->io_events) {
1482		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1483
1484		svg_time_grid(0.5);
1485		svg_io_legenda();
1486
1487		draw_io_bars(tchart);
1488	} else {
1489		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1490
1491		svg_time_grid(0);
1492
1493		svg_legenda();
 
1494
1495		for (i = 0; i < tchart->numcpus; i++)
1496			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1497
1498		draw_cpu_usage(tchart);
1499		if (tchart->proc_num)
1500			draw_process_bars(tchart);
1501		if (!tchart->tasks_only)
1502			draw_c_p_states(tchart);
1503		if (tchart->proc_num)
1504			draw_wakeups(tchart);
1505	}
1506
1507	svg_close();
1508}
1509
1510static int process_header(struct perf_file_section *section __maybe_unused,
1511			  struct perf_header *ph,
1512			  int feat,
1513			  int fd __maybe_unused,
1514			  void *data)
1515{
1516	struct timechart *tchart = data;
1517
1518	switch (feat) {
1519	case HEADER_NRCPUS:
1520		tchart->numcpus = ph->env.nr_cpus_avail;
1521		break;
1522
1523	case HEADER_CPU_TOPOLOGY:
1524		if (!tchart->topology)
1525			break;
1526
1527		if (svg_build_topology_map(ph->env.sibling_cores,
1528					   ph->env.nr_sibling_cores,
1529					   ph->env.sibling_threads,
1530					   ph->env.nr_sibling_threads))
1531			fprintf(stderr, "problem building topology\n");
1532		break;
1533
1534	default:
1535		break;
1536	}
1537
1538	return 0;
1539}
1540
1541static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1542{
1543	const struct perf_evsel_str_handler power_tracepoints[] = {
1544		{ "power:cpu_idle",		process_sample_cpu_idle },
1545		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1546		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1547		{ "sched:sched_switch",		process_sample_sched_switch },
1548#ifdef SUPPORT_OLD_POWER_EVENTS
1549		{ "power:power_start",		process_sample_power_start },
1550		{ "power:power_end",		process_sample_power_end },
1551		{ "power:power_frequency",	process_sample_power_frequency },
1552#endif
1553
1554		{ "syscalls:sys_enter_read",		process_enter_read },
1555		{ "syscalls:sys_enter_pread64",		process_enter_read },
1556		{ "syscalls:sys_enter_readv",		process_enter_read },
1557		{ "syscalls:sys_enter_preadv",		process_enter_read },
1558		{ "syscalls:sys_enter_write",		process_enter_write },
1559		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1560		{ "syscalls:sys_enter_writev",		process_enter_write },
1561		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1562		{ "syscalls:sys_enter_sync",		process_enter_sync },
1563		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1564		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1565		{ "syscalls:sys_enter_msync",		process_enter_sync },
1566		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1567		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1568		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1569		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1570		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1571		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1572		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1573		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1574		{ "syscalls:sys_enter_poll",		process_enter_poll },
1575		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1576		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1577		{ "syscalls:sys_enter_select",		process_enter_poll },
1578
1579		{ "syscalls:sys_exit_read",		process_exit_read },
1580		{ "syscalls:sys_exit_pread64",		process_exit_read },
1581		{ "syscalls:sys_exit_readv",		process_exit_read },
1582		{ "syscalls:sys_exit_preadv",		process_exit_read },
1583		{ "syscalls:sys_exit_write",		process_exit_write },
1584		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1585		{ "syscalls:sys_exit_writev",		process_exit_write },
1586		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1587		{ "syscalls:sys_exit_sync",		process_exit_sync },
1588		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1589		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1590		{ "syscalls:sys_exit_msync",		process_exit_sync },
1591		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1592		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1593		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1594		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1595		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1596		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1597		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1598		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1599		{ "syscalls:sys_exit_poll",		process_exit_poll },
1600		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1601		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1602		{ "syscalls:sys_exit_select",		process_exit_poll },
1603	};
1604	struct perf_data data = {
1605		.file      = {
1606			.path = input_name,
1607		},
1608		.mode      = PERF_DATA_MODE_READ,
1609		.force     = tchart->force,
1610	};
1611
1612	struct perf_session *session = perf_session__new(&data, false,
1613							 &tchart->tool);
1614	int ret = -EINVAL;
1615
1616	if (session == NULL)
1617		return -1;
1618
1619	symbol__init(&session->header.env);
1620
1621	(void)perf_header__process_sections(&session->header,
1622					    perf_data__fd(session->data),
1623					    tchart,
1624					    process_header);
1625
1626	if (!perf_session__has_traces(session, "timechart record"))
1627		goto out_delete;
1628
1629	if (perf_session__set_tracepoints_handlers(session,
1630						   power_tracepoints)) {
1631		pr_err("Initializing session tracepoint handlers failed\n");
1632		goto out_delete;
1633	}
1634
1635	ret = perf_session__process_events(session);
1636	if (ret)
1637		goto out_delete;
1638
1639	end_sample_processing(tchart);
1640
1641	sort_pids(tchart);
1642
1643	write_svg_file(tchart, output_name);
1644
1645	pr_info("Written %2.1f seconds of trace to %s.\n",
1646		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1647out_delete:
1648	perf_session__delete(session);
1649	return ret;
1650}
1651
1652static int timechart__io_record(int argc, const char **argv)
1653{
1654	unsigned int rec_argc, i;
1655	const char **rec_argv;
1656	const char **p;
1657	char *filter = NULL;
1658
1659	const char * const common_args[] = {
1660		"record", "-a", "-R", "-c", "1",
1661	};
1662	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1663
1664	const char * const disk_events[] = {
1665		"syscalls:sys_enter_read",
1666		"syscalls:sys_enter_pread64",
1667		"syscalls:sys_enter_readv",
1668		"syscalls:sys_enter_preadv",
1669		"syscalls:sys_enter_write",
1670		"syscalls:sys_enter_pwrite64",
1671		"syscalls:sys_enter_writev",
1672		"syscalls:sys_enter_pwritev",
1673		"syscalls:sys_enter_sync",
1674		"syscalls:sys_enter_sync_file_range",
1675		"syscalls:sys_enter_fsync",
1676		"syscalls:sys_enter_msync",
1677
1678		"syscalls:sys_exit_read",
1679		"syscalls:sys_exit_pread64",
1680		"syscalls:sys_exit_readv",
1681		"syscalls:sys_exit_preadv",
1682		"syscalls:sys_exit_write",
1683		"syscalls:sys_exit_pwrite64",
1684		"syscalls:sys_exit_writev",
1685		"syscalls:sys_exit_pwritev",
1686		"syscalls:sys_exit_sync",
1687		"syscalls:sys_exit_sync_file_range",
1688		"syscalls:sys_exit_fsync",
1689		"syscalls:sys_exit_msync",
1690	};
1691	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1692
1693	const char * const net_events[] = {
1694		"syscalls:sys_enter_recvfrom",
1695		"syscalls:sys_enter_recvmmsg",
1696		"syscalls:sys_enter_recvmsg",
1697		"syscalls:sys_enter_sendto",
1698		"syscalls:sys_enter_sendmsg",
1699		"syscalls:sys_enter_sendmmsg",
1700
1701		"syscalls:sys_exit_recvfrom",
1702		"syscalls:sys_exit_recvmmsg",
1703		"syscalls:sys_exit_recvmsg",
1704		"syscalls:sys_exit_sendto",
1705		"syscalls:sys_exit_sendmsg",
1706		"syscalls:sys_exit_sendmmsg",
1707	};
1708	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1709
1710	const char * const poll_events[] = {
1711		"syscalls:sys_enter_epoll_pwait",
1712		"syscalls:sys_enter_epoll_wait",
1713		"syscalls:sys_enter_poll",
1714		"syscalls:sys_enter_ppoll",
1715		"syscalls:sys_enter_pselect6",
1716		"syscalls:sys_enter_select",
1717
1718		"syscalls:sys_exit_epoll_pwait",
1719		"syscalls:sys_exit_epoll_wait",
1720		"syscalls:sys_exit_poll",
1721		"syscalls:sys_exit_ppoll",
1722		"syscalls:sys_exit_pselect6",
1723		"syscalls:sys_exit_select",
1724	};
1725	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1726
1727	rec_argc = common_args_nr +
1728		disk_events_nr * 4 +
1729		net_events_nr * 4 +
1730		poll_events_nr * 4 +
1731		argc;
1732	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1733
1734	if (rec_argv == NULL)
1735		return -ENOMEM;
1736
1737	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1738		free(rec_argv);
1739		return -ENOMEM;
1740	}
1741
1742	p = rec_argv;
1743	for (i = 0; i < common_args_nr; i++)
1744		*p++ = strdup(common_args[i]);
1745
1746	for (i = 0; i < disk_events_nr; i++) {
1747		if (!is_valid_tracepoint(disk_events[i])) {
1748			rec_argc -= 4;
1749			continue;
1750		}
1751
1752		*p++ = "-e";
1753		*p++ = strdup(disk_events[i]);
1754		*p++ = "--filter";
1755		*p++ = filter;
1756	}
1757	for (i = 0; i < net_events_nr; i++) {
1758		if (!is_valid_tracepoint(net_events[i])) {
1759			rec_argc -= 4;
1760			continue;
1761		}
1762
1763		*p++ = "-e";
1764		*p++ = strdup(net_events[i]);
1765		*p++ = "--filter";
1766		*p++ = filter;
1767	}
1768	for (i = 0; i < poll_events_nr; i++) {
1769		if (!is_valid_tracepoint(poll_events[i])) {
1770			rec_argc -= 4;
1771			continue;
1772		}
1773
1774		*p++ = "-e";
1775		*p++ = strdup(poll_events[i]);
1776		*p++ = "--filter";
1777		*p++ = filter;
1778	}
1779
1780	for (i = 0; i < (unsigned int)argc; i++)
1781		*p++ = argv[i];
1782
1783	return cmd_record(rec_argc, rec_argv);
1784}
 
 
 
 
 
 
 
 
 
 
 
 
1785
 
 
 
 
 
 
 
 
 
 
 
1786
1787static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1788{
1789	unsigned int rec_argc, i, j;
1790	const char **rec_argv;
1791	const char **p;
1792	unsigned int record_elems;
1793
1794	const char * const common_args[] = {
1795		"record", "-a", "-R", "-c", "1",
1796	};
1797	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1798
1799	const char * const backtrace_args[] = {
1800		"-g",
1801	};
1802	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1803
1804	const char * const power_args[] = {
1805		"-e", "power:cpu_frequency",
1806		"-e", "power:cpu_idle",
1807	};
1808	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1809
1810	const char * const old_power_args[] = {
1811#ifdef SUPPORT_OLD_POWER_EVENTS
1812		"-e", "power:power_start",
1813		"-e", "power:power_end",
1814		"-e", "power:power_frequency",
1815#endif
1816	};
1817	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1818
1819	const char * const tasks_args[] = {
1820		"-e", "sched:sched_wakeup",
1821		"-e", "sched:sched_switch",
1822	};
1823	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1824
1825#ifdef SUPPORT_OLD_POWER_EVENTS
1826	if (!is_valid_tracepoint("power:cpu_idle") &&
1827	    is_valid_tracepoint("power:power_start")) {
1828		use_old_power_events = 1;
1829		power_args_nr = 0;
1830	} else {
1831		old_power_args_nr = 0;
1832	}
1833#endif
1834
1835	if (tchart->power_only)
1836		tasks_args_nr = 0;
1837
1838	if (tchart->tasks_only) {
1839		power_args_nr = 0;
1840		old_power_args_nr = 0;
1841	}
1842
1843	if (!tchart->with_backtrace)
1844		backtrace_args_no = 0;
1845
1846	record_elems = common_args_nr + tasks_args_nr +
1847		power_args_nr + old_power_args_nr + backtrace_args_no;
1848
1849	rec_argc = record_elems + argc;
1850	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1851
1852	if (rec_argv == NULL)
1853		return -ENOMEM;
1854
1855	p = rec_argv;
1856	for (i = 0; i < common_args_nr; i++)
1857		*p++ = strdup(common_args[i]);
1858
1859	for (i = 0; i < backtrace_args_no; i++)
1860		*p++ = strdup(backtrace_args[i]);
1861
1862	for (i = 0; i < tasks_args_nr; i++)
1863		*p++ = strdup(tasks_args[i]);
1864
1865	for (i = 0; i < power_args_nr; i++)
1866		*p++ = strdup(power_args[i]);
1867
1868	for (i = 0; i < old_power_args_nr; i++)
1869		*p++ = strdup(old_power_args[i]);
1870
1871	for (j = 0; j < (unsigned int)argc; j++)
1872		*p++ = argv[j];
1873
1874	return cmd_record(rec_argc, rec_argv);
1875}
1876
1877static int
1878parse_process(const struct option *opt __maybe_unused, const char *arg,
1879	      int __maybe_unused unset)
1880{
1881	if (arg)
1882		add_process_filter(arg);
1883	return 0;
1884}
1885
1886static int
1887parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1888		int __maybe_unused unset)
1889{
1890	unsigned long duration = strtoul(arg, NULL, 0);
1891
1892	if (svg_highlight || svg_highlight_name)
1893		return -1;
1894
1895	if (duration)
1896		svg_highlight = duration;
1897	else
1898		svg_highlight_name = strdup(arg);
 
 
 
1899
1900	return 0;
1901}
1902
1903static int
1904parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1905{
1906	char unit = 'n';
1907	u64 *value = opt->value;
1908
1909	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1910		switch (unit) {
1911		case 'm':
1912			*value *= NSEC_PER_MSEC;
1913			break;
1914		case 'u':
1915			*value *= NSEC_PER_USEC;
1916			break;
1917		case 'n':
1918			break;
1919		default:
1920			return -1;
1921		}
1922	}
1923
1924	return 0;
1925}
1926
1927int cmd_timechart(int argc, const char **argv)
1928{
1929	struct timechart tchart = {
1930		.tool = {
1931			.comm		 = process_comm_event,
1932			.fork		 = process_fork_event,
1933			.exit		 = process_exit_event,
1934			.sample		 = process_sample_event,
1935			.ordered_events	 = true,
1936		},
1937		.proc_num = 15,
1938		.min_time = NSEC_PER_MSEC,
1939		.merge_dist = 1000,
1940	};
1941	const char *output_name = "output.svg";
1942	const struct option timechart_common_options[] = {
1943	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1945	OPT_END()
1946	};
1947	const struct option timechart_options[] = {
1948	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1949	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1950	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1951	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1952		      "highlight tasks. Pass duration in ns or process name.",
1953		       parse_highlight),
1954	OPT_CALLBACK('p', "process", NULL, "process",
1955		      "process selector. Pass a pid or process name.",
1956		       parse_process),
1957	OPT_CALLBACK(0, "symfs", NULL, "directory",
1958		     "Look for files with symbols relative to this directory",
1959		     symbol__config_symfs),
1960	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1961		    "min. number of tasks to print"),
1962	OPT_BOOLEAN('t', "topology", &tchart.topology,
1963		    "sort CPUs according to topology"),
1964	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1965		    "skip EAGAIN errors"),
1966	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1967		     "all IO faster than min-time will visually appear longer",
1968		     parse_time),
1969	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1970		     "merge events that are merge-dist us apart",
1971		     parse_time),
1972	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1973	OPT_PARENT(timechart_common_options),
1974	};
1975	const char * const timechart_subcommands[] = { "record", NULL };
1976	const char *timechart_usage[] = {
1977		"perf timechart [<options>] {record}",
1978		NULL
1979	};
1980	const struct option timechart_record_options[] = {
1981	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1982		    "record only IO data"),
1983	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1984	OPT_PARENT(timechart_common_options),
1985	};
1986	const char * const timechart_record_usage[] = {
1987		"perf timechart record [<options>]",
1988		NULL
1989	};
1990	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1991			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1992
1993	if (tchart.power_only && tchart.tasks_only) {
1994		pr_err("-P and -T options cannot be used at the same time.\n");
1995		return -1;
1996	}
1997
1998	if (argc && !strncmp(argv[0], "rec", 3)) {
1999		argc = parse_options(argc, argv, timechart_record_options,
2000				     timechart_record_usage,
2001				     PARSE_OPT_STOP_AT_NON_OPTION);
2002
2003		if (tchart.power_only && tchart.tasks_only) {
2004			pr_err("-P and -T options cannot be used at the same time.\n");
2005			return -1;
2006		}
2007
2008		if (tchart.io_only)
2009			return timechart__io_record(argc, argv);
2010		else
2011			return timechart__record(&tchart, argc, argv);
2012	} else if (argc)
2013		usage_with_options(timechart_usage, timechart_options);
2014
2015	setup_pager();
2016
2017	return __cmd_timechart(&tchart, output_name);
2018}
v3.1
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
 
 
 
 
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
 
 
 
  22#include <linux/rbtree.h>
 
  23#include "util/symbol.h"
 
  24#include "util/callchain.h"
  25#include "util/strlist.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include "util/parse-options.h"
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
 
 
 
  34
  35#define SUPPORT_OLD_POWER_EVENTS 1
  36#define PWR_EVENT_EXIT -1
  37
 
 
 
  38
  39static char		const *input_name = "perf.data";
  40static char		const *output_name = "output.svg";
  41
  42static unsigned int	numcpus;
  43static u64		min_freq;	/* Lowest CPU frequency seen */
  44static u64		max_freq;	/* Highest CPU frequency seen */
  45static u64		turbo_frequency;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47static u64		first_time, last_time;
  48
  49static bool		power_only;
  50
  51
  52struct per_pid;
  53struct per_pidcomm;
  54
  55struct cpu_sample;
  56struct power_event;
  57struct wake_event;
  58
  59struct sample_wrapper;
  60
  61/*
  62 * Datastructure layout:
  63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  64 * Each "pid" entry, has a list of "comm"s.
  65 *	this is because we want to track different programs different, while
  66 *	exec will reuse the original pid (by design).
  67 * Each comm has a list of samples that will be used to draw
  68 * final graph.
  69 */
  70
  71struct per_pid {
  72	struct per_pid *next;
  73
  74	int		pid;
  75	int		ppid;
  76
  77	u64		start_time;
  78	u64		end_time;
  79	u64		total_time;
 
  80	int		display;
  81
  82	struct per_pidcomm *all;
  83	struct per_pidcomm *current;
  84};
  85
  86
  87struct per_pidcomm {
  88	struct per_pidcomm *next;
  89
  90	u64		start_time;
  91	u64		end_time;
  92	u64		total_time;
 
 
  93
  94	int		Y;
  95	int		display;
  96
  97	long		state;
  98	u64		state_since;
  99
 100	char		*comm;
 101
 102	struct cpu_sample *samples;
 
 103};
 104
 105struct sample_wrapper {
 106	struct sample_wrapper *next;
 107
 108	u64		timestamp;
 109	unsigned char	data[0];
 110};
 111
 112#define TYPE_NONE	0
 113#define TYPE_RUNNING	1
 114#define TYPE_WAITING	2
 115#define TYPE_BLOCKED	3
 116
 117struct cpu_sample {
 118	struct cpu_sample *next;
 119
 120	u64 start_time;
 121	u64 end_time;
 122	int type;
 123	int cpu;
 
 124};
 125
 126static struct per_pid *all_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128#define CSTATE 1
 129#define PSTATE 2
 130
 131struct power_event {
 132	struct power_event *next;
 133	int type;
 134	int state;
 135	u64 start_time;
 136	u64 end_time;
 137	int cpu;
 138};
 139
 140struct wake_event {
 141	struct wake_event *next;
 142	int waker;
 143	int wakee;
 144	u64 time;
 
 145};
 146
 147static struct power_event    *power_events;
 148static struct wake_event     *wake_events;
 149
 150struct process_filter;
 151struct process_filter {
 152	char			*name;
 153	int			pid;
 154	struct process_filter	*next;
 155};
 156
 157static struct process_filter *process_filter;
 158
 159
 160static struct per_pid *find_create_pid(int pid)
 161{
 162	struct per_pid *cursor = all_data;
 163
 164	while (cursor) {
 165		if (cursor->pid == pid)
 166			return cursor;
 167		cursor = cursor->next;
 168	}
 169	cursor = malloc(sizeof(struct per_pid));
 170	assert(cursor != NULL);
 171	memset(cursor, 0, sizeof(struct per_pid));
 172	cursor->pid = pid;
 173	cursor->next = all_data;
 174	all_data = cursor;
 175	return cursor;
 176}
 177
 178static void pid_set_comm(int pid, char *comm)
 179{
 180	struct per_pid *p;
 181	struct per_pidcomm *c;
 182	p = find_create_pid(pid);
 183	c = p->all;
 184	while (c) {
 185		if (c->comm && strcmp(c->comm, comm) == 0) {
 186			p->current = c;
 187			return;
 188		}
 189		if (!c->comm) {
 190			c->comm = strdup(comm);
 191			p->current = c;
 192			return;
 193		}
 194		c = c->next;
 195	}
 196	c = malloc(sizeof(struct per_pidcomm));
 197	assert(c != NULL);
 198	memset(c, 0, sizeof(struct per_pidcomm));
 199	c->comm = strdup(comm);
 200	p->current = c;
 201	c->next = p->all;
 202	p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207	struct per_pid *p, *pp;
 208	p = find_create_pid(pid);
 209	pp = find_create_pid(ppid);
 210	p->ppid = ppid;
 211	if (pp->current && pp->current->comm && !p->current)
 212		pid_set_comm(pid, pp->current->comm);
 213
 214	p->start_time = timestamp;
 215	if (p->current) {
 216		p->current->start_time = timestamp;
 217		p->current->state_since = timestamp;
 218	}
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223	struct per_pid *p;
 224	p = find_create_pid(pid);
 225	p->end_time = timestamp;
 226	if (p->current)
 227		p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 
 232{
 233	struct per_pid *p;
 234	struct per_pidcomm *c;
 235	struct cpu_sample *sample;
 236
 237	p = find_create_pid(pid);
 238	c = p->current;
 239	if (!c) {
 240		c = malloc(sizeof(struct per_pidcomm));
 241		assert(c != NULL);
 242		memset(c, 0, sizeof(struct per_pidcomm));
 243		p->current = c;
 244		c->next = p->all;
 245		p->all = c;
 246	}
 247
 248	sample = malloc(sizeof(struct cpu_sample));
 249	assert(sample != NULL);
 250	memset(sample, 0, sizeof(struct cpu_sample));
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 
 256	c->samples = sample;
 257
 258	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 259		c->total_time += (end-start);
 260		p->total_time += (end-start);
 261	}
 262
 263	if (c->start_time == 0 || c->start_time > start)
 264		c->start_time = start;
 265	if (p->start_time == 0 || p->start_time > start)
 266		p->start_time = start;
 267}
 268
 269#define MAX_CPUS 4096
 270
 271static u64 cpus_cstate_start_times[MAX_CPUS];
 272static int cpus_cstate_state[MAX_CPUS];
 273static u64 cpus_pstate_start_times[MAX_CPUS];
 274static u64 cpus_pstate_state[MAX_CPUS];
 275
 276static int process_comm_event(union perf_event *event,
 277			      struct perf_sample *sample __used,
 278			      struct perf_session *session __used)
 
 279{
 280	pid_set_comm(event->comm.tid, event->comm.comm);
 
 281	return 0;
 282}
 283
 284static int process_fork_event(union perf_event *event,
 285			      struct perf_sample *sample __used,
 286			      struct perf_session *session __used)
 
 287{
 288	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 
 289	return 0;
 290}
 291
 292static int process_exit_event(union perf_event *event,
 293			      struct perf_sample *sample __used,
 294			      struct perf_session *session __used)
 
 295{
 296	pid_exit(event->fork.pid, event->fork.time);
 
 297	return 0;
 298}
 299
 300struct trace_entry {
 301	unsigned short		type;
 302	unsigned char		flags;
 303	unsigned char		preempt_count;
 304	int			pid;
 305	int			lock_depth;
 306};
 307
 308#ifdef SUPPORT_OLD_POWER_EVENTS
 309static int use_old_power_events;
 310struct power_entry_old {
 311	struct trace_entry te;
 312	u64	type;
 313	u64	value;
 314	u64	cpu_id;
 315};
 316#endif
 317
 318struct power_processor_entry {
 319	struct trace_entry te;
 320	u32	state;
 321	u32	cpu_id;
 322};
 323
 324#define TASK_COMM_LEN 16
 325struct wakeup_entry {
 326	struct trace_entry te;
 327	char comm[TASK_COMM_LEN];
 328	int   pid;
 329	int   prio;
 330	int   success;
 331};
 332
 333/*
 334 * trace_flag_type is an enumeration that holds different
 335 * states when a trace occurs. These are:
 336 *  IRQS_OFF            - interrupts were disabled
 337 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 338 *  NEED_RESCED         - reschedule is requested
 339 *  HARDIRQ             - inside an interrupt handler
 340 *  SOFTIRQ             - inside a softirq handler
 341 */
 342enum trace_flag_type {
 343	TRACE_FLAG_IRQS_OFF		= 0x01,
 344	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 345	TRACE_FLAG_NEED_RESCHED		= 0x04,
 346	TRACE_FLAG_HARDIRQ		= 0x08,
 347	TRACE_FLAG_SOFTIRQ		= 0x10,
 348};
 349
 350
 351
 352struct sched_switch {
 353	struct trace_entry te;
 354	char prev_comm[TASK_COMM_LEN];
 355	int  prev_pid;
 356	int  prev_prio;
 357	long prev_state; /* Arjan weeps. */
 358	char next_comm[TASK_COMM_LEN];
 359	int  next_pid;
 360	int  next_prio;
 361};
 362
 363static void c_state_start(int cpu, u64 timestamp, int state)
 364{
 365	cpus_cstate_start_times[cpu] = timestamp;
 366	cpus_cstate_state[cpu] = state;
 367}
 368
 369static void c_state_end(int cpu, u64 timestamp)
 370{
 371	struct power_event *pwr;
 372	pwr = malloc(sizeof(struct power_event));
 373	if (!pwr)
 374		return;
 375	memset(pwr, 0, sizeof(struct power_event));
 376
 377	pwr->state = cpus_cstate_state[cpu];
 378	pwr->start_time = cpus_cstate_start_times[cpu];
 379	pwr->end_time = timestamp;
 380	pwr->cpu = cpu;
 381	pwr->type = CSTATE;
 382	pwr->next = power_events;
 383
 384	power_events = pwr;
 385}
 386
 387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 388{
 389	struct power_event *pwr;
 390	pwr = malloc(sizeof(struct power_event));
 391
 392	if (new_freq > 8000000) /* detect invalid data */
 393		return;
 394
 
 395	if (!pwr)
 396		return;
 397	memset(pwr, 0, sizeof(struct power_event));
 398
 399	pwr->state = cpus_pstate_state[cpu];
 400	pwr->start_time = cpus_pstate_start_times[cpu];
 401	pwr->end_time = timestamp;
 402	pwr->cpu = cpu;
 403	pwr->type = PSTATE;
 404	pwr->next = power_events;
 405
 406	if (!pwr->start_time)
 407		pwr->start_time = first_time;
 408
 409	power_events = pwr;
 410
 411	cpus_pstate_state[cpu] = new_freq;
 412	cpus_pstate_start_times[cpu] = timestamp;
 413
 414	if ((u64)new_freq > max_freq)
 415		max_freq = new_freq;
 416
 417	if (new_freq < min_freq || min_freq == 0)
 418		min_freq = new_freq;
 419
 420	if (new_freq == max_freq - 1000)
 421			turbo_frequency = max_freq;
 422}
 423
 424static void
 425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 426{
 427	struct wake_event *we;
 428	struct per_pid *p;
 429	struct wakeup_entry *wake = (void *)te;
 430
 431	we = malloc(sizeof(struct wake_event));
 432	if (!we)
 433		return;
 434
 435	memset(we, 0, sizeof(struct wake_event));
 436	we->time = timestamp;
 437	we->waker = pid;
 
 438
 439	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 440		we->waker = -1;
 441
 442	we->wakee = wake->pid;
 443	we->next = wake_events;
 444	wake_events = we;
 445	p = find_create_pid(we->wakee);
 446
 447	if (p && p->current && p->current->state == TYPE_NONE) {
 448		p->current->state_since = timestamp;
 449		p->current->state = TYPE_WAITING;
 450	}
 451	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 452		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 
 
 459{
 460	struct per_pid *p = NULL, *prev_p;
 461	struct sched_switch *sw = (void *)te;
 462
 
 463
 464	prev_p = find_create_pid(sw->prev_pid);
 465
 466	p = find_create_pid(sw->next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 
 
 470	if (p && p->current) {
 471		if (p->current->state != TYPE_NONE)
 472			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 
 473
 474		p->current->state_since = timestamp;
 475		p->current->state = TYPE_RUNNING;
 476	}
 477
 478	if (prev_p->current) {
 479		prev_p->current->state = TYPE_NONE;
 480		prev_p->current->state_since = timestamp;
 481		if (sw->prev_state & 2)
 482			prev_p->current->state = TYPE_BLOCKED;
 483		if (sw->prev_state == 0)
 484			prev_p->current->state = TYPE_WAITING;
 485	}
 486}
 487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488
 489static int process_sample_event(union perf_event *event __used,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490				struct perf_sample *sample,
 491				struct perf_evsel *evsel __used,
 492				struct perf_session *session)
 493{
 494	struct trace_entry *te;
 495
 496	if (session->sample_type & PERF_SAMPLE_TIME) {
 497		if (!first_time || first_time > sample->time)
 498			first_time = sample->time;
 499		if (last_time < sample->time)
 500			last_time = sample->time;
 
 
 
 
 
 
 501	}
 502
 503	te = (void *)sample->raw_data;
 504	if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
 505		char *event_str;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506#ifdef SUPPORT_OLD_POWER_EVENTS
 507		struct power_entry_old *peo;
 508		peo = (void *)te;
 509#endif
 510		/*
 511		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 512		 * remove perf_header__find_event infrastructure bits.
 513		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 514		 * ID and then just comparing against evsel->attr.config.
 515		 *
 516		 * e.g.:
 517		 *
 518		 * if (evsel->attr.config == power_cpu_idle_id)
 519		 */
 520		event_str = perf_header__find_event(te->type);
 521
 522		if (!event_str)
 523			return 0;
 524
 525		if (sample->cpu > numcpus)
 526			numcpus = sample->cpu;
 527
 528		if (strcmp(event_str, "power:cpu_idle") == 0) {
 529			struct power_processor_entry *ppe = (void *)te;
 530			if (ppe->state == (u32)PWR_EVENT_EXIT)
 531				c_state_end(ppe->cpu_id, sample->time);
 532			else
 533				c_state_start(ppe->cpu_id, sample->time,
 534					      ppe->state);
 535		}
 536		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 537			struct power_processor_entry *ppe = (void *)te;
 538			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 539		}
 540
 541		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 542			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 
 
 
 
 
 
 
 543
 544		else if (strcmp(event_str, "sched:sched_switch") == 0)
 545			sched_switch(sample->cpu, sample->time, te);
 
 
 
 
 
 
 546
 547#ifdef SUPPORT_OLD_POWER_EVENTS
 548		if (use_old_power_events) {
 549			if (strcmp(event_str, "power:power_start") == 0)
 550				c_state_start(peo->cpu_id, sample->time,
 551					      peo->value);
 552
 553			else if (strcmp(event_str, "power:power_end") == 0)
 554				c_state_end(sample->cpu, sample->time);
 555
 556			else if (strcmp(event_str,
 557					"power:power_frequency") == 0)
 558				p_state_change(peo->cpu_id, sample->time,
 559					       peo->value);
 560		}
 561#endif
 562	}
 563	return 0;
 564}
 
 565
 566/*
 567 * After the last sample we need to wrap up the current C/P state
 568 * and close out each CPU for these.
 569 */
 570static void end_sample_processing(void)
 571{
 572	u64 cpu;
 573	struct power_event *pwr;
 574
 575	for (cpu = 0; cpu <= numcpus; cpu++) {
 576		pwr = malloc(sizeof(struct power_event));
 
 
 577		if (!pwr)
 578			return;
 579		memset(pwr, 0, sizeof(struct power_event));
 580
 581		/* C state */
 582#if 0
 583		pwr->state = cpus_cstate_state[cpu];
 584		pwr->start_time = cpus_cstate_start_times[cpu];
 585		pwr->end_time = last_time;
 586		pwr->cpu = cpu;
 587		pwr->type = CSTATE;
 588		pwr->next = power_events;
 589
 590		power_events = pwr;
 591#endif
 592		/* P state */
 593
 594		pwr = malloc(sizeof(struct power_event));
 595		if (!pwr)
 596			return;
 597		memset(pwr, 0, sizeof(struct power_event));
 598
 599		pwr->state = cpus_pstate_state[cpu];
 600		pwr->start_time = cpus_pstate_start_times[cpu];
 601		pwr->end_time = last_time;
 602		pwr->cpu = cpu;
 603		pwr->type = PSTATE;
 604		pwr->next = power_events;
 605
 606		if (!pwr->start_time)
 607			pwr->start_time = first_time;
 608		if (!pwr->state)
 609			pwr->state = min_freq;
 610		power_events = pwr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612}
 613
 614/*
 615 * Sort the pid datastructure
 616 */
 617static void sort_pids(void)
 618{
 619	struct per_pid *new_list, *p, *cursor, *prev;
 620	/* sort by ppid first, then by pid, lowest to highest */
 621
 622	new_list = NULL;
 623
 624	while (all_data) {
 625		p = all_data;
 626		all_data = p->next;
 627		p->next = NULL;
 628
 629		if (new_list == NULL) {
 630			new_list = p;
 631			p->next = NULL;
 632			continue;
 633		}
 634		prev = NULL;
 635		cursor = new_list;
 636		while (cursor) {
 637			if (cursor->ppid > p->ppid ||
 638				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 639				/* must insert before */
 640				if (prev) {
 641					p->next = prev->next;
 642					prev->next = p;
 643					cursor = NULL;
 644					continue;
 645				} else {
 646					p->next = new_list;
 647					new_list = p;
 648					cursor = NULL;
 649					continue;
 650				}
 651			}
 652
 653			prev = cursor;
 654			cursor = cursor->next;
 655			if (!cursor)
 656				prev->next = p;
 657		}
 658	}
 659	all_data = new_list;
 660}
 661
 662
 663static void draw_c_p_states(void)
 664{
 665	struct power_event *pwr;
 666	pwr = power_events;
 667
 668	/*
 669	 * two pass drawing so that the P state bars are on top of the C state blocks
 670	 */
 671	while (pwr) {
 672		if (pwr->type == CSTATE)
 673			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 674		pwr = pwr->next;
 675	}
 676
 677	pwr = power_events;
 678	while (pwr) {
 679		if (pwr->type == PSTATE) {
 680			if (!pwr->state)
 681				pwr->state = min_freq;
 682			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 683		}
 684		pwr = pwr->next;
 685	}
 686}
 687
 688static void draw_wakeups(void)
 689{
 690	struct wake_event *we;
 691	struct per_pid *p;
 692	struct per_pidcomm *c;
 693
 694	we = wake_events;
 695	while (we) {
 696		int from = 0, to = 0;
 697		char *task_from = NULL, *task_to = NULL;
 698
 699		/* locate the column of the waker and wakee */
 700		p = all_data;
 701		while (p) {
 702			if (p->pid == we->waker || p->pid == we->wakee) {
 703				c = p->all;
 704				while (c) {
 705					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 706						if (p->pid == we->waker && !from) {
 707							from = c->Y;
 708							task_from = strdup(c->comm);
 709						}
 710						if (p->pid == we->wakee && !to) {
 711							to = c->Y;
 712							task_to = strdup(c->comm);
 713						}
 714					}
 715					c = c->next;
 716				}
 717				c = p->all;
 718				while (c) {
 719					if (p->pid == we->waker && !from) {
 720						from = c->Y;
 721						task_from = strdup(c->comm);
 722					}
 723					if (p->pid == we->wakee && !to) {
 724						to = c->Y;
 725						task_to = strdup(c->comm);
 726					}
 727					c = c->next;
 728				}
 729			}
 730			p = p->next;
 731		}
 732
 733		if (!task_from) {
 734			task_from = malloc(40);
 735			sprintf(task_from, "[%i]", we->waker);
 736		}
 737		if (!task_to) {
 738			task_to = malloc(40);
 739			sprintf(task_to, "[%i]", we->wakee);
 740		}
 741
 742		if (we->waker == -1)
 743			svg_interrupt(we->time, to);
 744		else if (from && to && abs(from - to) == 1)
 745			svg_wakeline(we->time, from, to);
 746		else
 747			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 
 748		we = we->next;
 749
 750		free(task_from);
 751		free(task_to);
 752	}
 753}
 754
 755static void draw_cpu_usage(void)
 756{
 757	struct per_pid *p;
 758	struct per_pidcomm *c;
 759	struct cpu_sample *sample;
 760	p = all_data;
 761	while (p) {
 762		c = p->all;
 763		while (c) {
 764			sample = c->samples;
 765			while (sample) {
 766				if (sample->type == TYPE_RUNNING)
 767					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 
 
 
 
 
 
 768
 769				sample = sample->next;
 770			}
 771			c = c->next;
 772		}
 773		p = p->next;
 774	}
 775}
 776
 777static void draw_process_bars(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	struct per_pid *p;
 780	struct per_pidcomm *c;
 781	struct cpu_sample *sample;
 782	int Y = 0;
 783
 784	Y = 2 * numcpus + 2;
 785
 786	p = all_data;
 787	while (p) {
 788		c = p->all;
 789		while (c) {
 790			if (!c->display) {
 791				c->Y = 0;
 792				c = c->next;
 793				continue;
 794			}
 795
 796			svg_box(Y, c->start_time, c->end_time, "process");
 797			sample = c->samples;
 798			while (sample) {
 799				if (sample->type == TYPE_RUNNING)
 800					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 
 
 
 801				if (sample->type == TYPE_BLOCKED)
 802					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 
 
 
 803				if (sample->type == TYPE_WAITING)
 804					svg_waiting(Y, sample->start_time, sample->end_time);
 
 
 
 805				sample = sample->next;
 806			}
 807
 808			if (c->comm) {
 809				char comm[256];
 810				if (c->total_time > 5000000000) /* 5 seconds */
 811					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 812				else
 813					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 814
 815				svg_text(Y, c->start_time, comm);
 816			}
 817			c->Y = Y;
 818			Y++;
 819			c = c->next;
 820		}
 821		p = p->next;
 822	}
 823}
 824
 825static void add_process_filter(const char *string)
 826{
 827	struct process_filter *filt;
 828	int pid;
 829
 830	pid = strtoull(string, NULL, 10);
 831	filt = malloc(sizeof(struct process_filter));
 832	if (!filt)
 833		return;
 834
 835	filt->name = strdup(string);
 836	filt->pid  = pid;
 837	filt->next = process_filter;
 838
 839	process_filter = filt;
 840}
 841
 842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 843{
 844	struct process_filter *filt;
 845	if (!process_filter)
 846		return 1;
 847
 848	filt = process_filter;
 849	while (filt) {
 850		if (filt->pid && p->pid == filt->pid)
 851			return 1;
 852		if (strcmp(filt->name, c->comm) == 0)
 853			return 1;
 854		filt = filt->next;
 855	}
 856	return 0;
 857}
 858
 859static int determine_display_tasks_filtered(void)
 860{
 861	struct per_pid *p;
 862	struct per_pidcomm *c;
 863	int count = 0;
 864
 865	p = all_data;
 866	while (p) {
 867		p->display = 0;
 868		if (p->start_time == 1)
 869			p->start_time = first_time;
 870
 871		/* no exit marker, task kept running to the end */
 872		if (p->end_time == 0)
 873			p->end_time = last_time;
 874
 875		c = p->all;
 876
 877		while (c) {
 878			c->display = 0;
 879
 880			if (c->start_time == 1)
 881				c->start_time = first_time;
 882
 883			if (passes_filter(p, c)) {
 884				c->display = 1;
 885				p->display = 1;
 886				count++;
 887			}
 888
 889			if (c->end_time == 0)
 890				c->end_time = last_time;
 891
 892			c = c->next;
 893		}
 894		p = p->next;
 895	}
 896	return count;
 897}
 898
 899static int determine_display_tasks(u64 threshold)
 900{
 901	struct per_pid *p;
 902	struct per_pidcomm *c;
 903	int count = 0;
 904
 905	if (process_filter)
 906		return determine_display_tasks_filtered();
 907
 908	p = all_data;
 909	while (p) {
 910		p->display = 0;
 911		if (p->start_time == 1)
 912			p->start_time = first_time;
 913
 914		/* no exit marker, task kept running to the end */
 915		if (p->end_time == 0)
 916			p->end_time = last_time;
 917		if (p->total_time >= threshold && !power_only)
 918			p->display = 1;
 919
 920		c = p->all;
 921
 922		while (c) {
 923			c->display = 0;
 924
 925			if (c->start_time == 1)
 926				c->start_time = first_time;
 927
 928			if (c->total_time >= threshold && !power_only) {
 929				c->display = 1;
 930				count++;
 931			}
 932
 933			if (c->end_time == 0)
 934				c->end_time = last_time;
 935
 936			c = c->next;
 937		}
 938		p = p->next;
 939	}
 940	return count;
 941}
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 
 
 
 
 
 
 
 944
 
 
 
 
 
 
 
 
 945#define TIME_THRESH 10000000
 946
 947static void write_svg_file(const char *filename)
 948{
 949	u64 i;
 950	int count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951
 952	numcpus++;
 
 953
 
 
 954
 955	count = determine_display_tasks(TIME_THRESH);
 
 956
 957	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 958	if (count < 15)
 959		count = determine_display_tasks(TIME_THRESH / 10);
 960
 961	open_svg(filename, numcpus, count, first_time, last_time);
 962
 963	svg_time_grid();
 964	svg_legenda();
 965
 966	for (i = 0; i < numcpus; i++)
 967		svg_cpu_box(i, max_freq, turbo_frequency);
 968
 969	draw_cpu_usage();
 970	draw_process_bars();
 971	draw_c_p_states();
 972	draw_wakeups();
 
 
 
 
 973
 974	svg_close();
 975}
 976
 977static struct perf_event_ops event_ops = {
 978	.comm			= process_comm_event,
 979	.fork			= process_fork_event,
 980	.exit			= process_exit_event,
 981	.sample			= process_sample_event,
 982	.ordered_samples	= true,
 983};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 985static int __cmd_timechart(void)
 986{
 987	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 988							 0, false, &event_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	int ret = -EINVAL;
 990
 991	if (session == NULL)
 992		return -ENOMEM;
 
 
 
 
 
 
 
 993
 994	if (!perf_session__has_traces(session, "timechart record"))
 995		goto out_delete;
 996
 997	ret = perf_session__process_events(session, &event_ops);
 
 
 
 
 
 
 998	if (ret)
 999		goto out_delete;
1000
1001	end_sample_processing();
1002
1003	sort_pids();
1004
1005	write_svg_file(output_name);
1006
1007	pr_info("Written %2.1f seconds of trace to %s.\n",
1008		(last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010	perf_session__delete(session);
1011	return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015	"perf timechart [<options>] {record}",
1016	NULL
1017};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021	"record",
1022	"-a",
1023	"-R",
1024	"-f",
1025	"-c", "1",
1026	"-e", "power:power_start",
1027	"-e", "power:power_end",
1028	"-e", "power:power_frequency",
1029	"-e", "sched:sched_wakeup",
1030	"-e", "sched:sched_switch",
1031};
1032#endif
1033
1034static const char * const record_new_args[] = {
1035	"record",
1036	"-a",
1037	"-R",
1038	"-f",
1039	"-c", "1",
1040	"-e", "power:cpu_frequency",
1041	"-e", "power:cpu_idle",
1042	"-e", "sched:sched_wakeup",
1043	"-e", "sched:sched_switch",
1044};
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048	unsigned int rec_argc, i, j;
1049	const char **rec_argv;
1050	const char * const *record_args = record_new_args;
1051	unsigned int record_elems = ARRAY_SIZE(record_new_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054	if (!is_valid_tracepoint("power:cpu_idle") &&
1055	    is_valid_tracepoint("power:power_start")) {
1056		use_old_power_events = 1;
1057		record_args = record_old_args;
1058		record_elems = ARRAY_SIZE(record_old_args);
 
1059	}
1060#endif
1061
1062	rec_argc = record_elems + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065	if (rec_argv == NULL)
1066		return -ENOMEM;
1067
1068	for (i = 0; i < record_elems; i++)
1069		rec_argv[i] = strdup(record_args[i]);
 
 
 
 
 
 
 
 
 
 
1070
1071	for (j = 1; j < (unsigned int)argc; j++, i++)
1072		rec_argv[i] = argv[j];
1073
1074	return cmd_record(i, rec_argv, NULL);
 
 
 
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
 
1079{
1080	if (arg)
1081		add_process_filter(arg);
1082	return 0;
1083}
1084
1085static const struct option options[] = {
1086	OPT_STRING('i', "input", &input_name, "file",
1087		    "input file name"),
1088	OPT_STRING('o', "output", &output_name, "file",
1089		    "output file name"),
1090	OPT_INTEGER('w', "width", &svg_page_width,
1091		    "page width"),
1092	OPT_BOOLEAN('P', "power-only", &power_only,
1093		    "output power data only"),
1094	OPT_CALLBACK('p', "process", NULL, "process",
1095		      "process selector. Pass a pid or process name.",
1096		       parse_process),
1097	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098		    "Look for files with symbols relative to this directory"),
1099	OPT_END()
1100};
1101
 
 
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
 
1104{
1105	argc = parse_options(argc, argv, options, timechart_usage,
1106			PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108	symbol__init();
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
1110	if (argc && !strncmp(argv[0], "rec", 3))
1111		return __cmd_record(argc, argv);
1112	else if (argc)
1113		usage_with_options(timechart_usage, options);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115	setup_pager();
1116
1117	return __cmd_timechart();
1118}