Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/oom_kill.c
   3 * 
   4 *  Copyright (C)  1998,2000  Rik van Riel
   5 *	Thanks go out to Claus Fischer for some serious inspiration and
   6 *	for goading me into coding this file...
   7 *  Copyright (C)  2010  Google, Inc.
   8 *	Rewritten by David Rientjes
   9 *
  10 *  The routines in this file are used to kill a process when
  11 *  we're seriously out of memory. This gets called from __alloc_pages()
  12 *  in mm/page_alloc.c when we really run out of memory.
  13 *
  14 *  Since we won't call these routines often (on a well-configured
  15 *  machine) this file will double as a 'coding guide' and a signpost
  16 *  for newbie kernel hackers. It features several pointers to major
  17 *  kernel subsystems and hints as to where to find out what things do.
  18 */
  19
  20#include <linux/oom.h>
  21#include <linux/mm.h>
  22#include <linux/err.h>
  23#include <linux/gfp.h>
  24#include <linux/sched.h>
  25#include <linux/sched/mm.h>
  26#include <linux/sched/coredump.h>
  27#include <linux/sched/task.h>
  28#include <linux/swap.h>
  29#include <linux/timex.h>
  30#include <linux/jiffies.h>
  31#include <linux/cpuset.h>
  32#include <linux/export.h>
  33#include <linux/notifier.h>
  34#include <linux/memcontrol.h>
  35#include <linux/mempolicy.h>
  36#include <linux/security.h>
  37#include <linux/ptrace.h>
  38#include <linux/freezer.h>
  39#include <linux/ftrace.h>
  40#include <linux/ratelimit.h>
  41#include <linux/kthread.h>
  42#include <linux/init.h>
  43#include <linux/mmu_notifier.h>
  44
  45#include <asm/tlb.h>
  46#include "internal.h"
  47#include "slab.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/oom.h>
  51
  52int sysctl_panic_on_oom;
  53int sysctl_oom_kill_allocating_task;
  54int sysctl_oom_dump_tasks = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56DEFINE_MUTEX(oom_lock);
 
  57
  58#ifdef CONFIG_NUMA
  59/**
  60 * has_intersects_mems_allowed() - check task eligiblity for kill
  61 * @start: task struct of which task to consider
  62 * @mask: nodemask passed to page allocator for mempolicy ooms
  63 *
  64 * Task eligibility is determined by whether or not a candidate task, @tsk,
  65 * shares the same mempolicy nodes as current if it is bound by such a policy
  66 * and whether or not it has the same set of allowed cpuset nodes.
  67 */
  68static bool has_intersects_mems_allowed(struct task_struct *start,
  69					const nodemask_t *mask)
  70{
  71	struct task_struct *tsk;
  72	bool ret = false;
  73
  74	rcu_read_lock();
  75	for_each_thread(start, tsk) {
  76		if (mask) {
  77			/*
  78			 * If this is a mempolicy constrained oom, tsk's
  79			 * cpuset is irrelevant.  Only return true if its
  80			 * mempolicy intersects current, otherwise it may be
  81			 * needlessly killed.
  82			 */
  83			ret = mempolicy_nodemask_intersects(tsk, mask);
 
  84		} else {
  85			/*
  86			 * This is not a mempolicy constrained oom, so only
  87			 * check the mems of tsk's cpuset.
  88			 */
  89			ret = cpuset_mems_allowed_intersects(current, tsk);
 
  90		}
  91		if (ret)
  92			break;
  93	}
  94	rcu_read_unlock();
  95
  96	return ret;
  97}
  98#else
  99static bool has_intersects_mems_allowed(struct task_struct *tsk,
 100					const nodemask_t *mask)
 101{
 102	return true;
 103}
 104#endif /* CONFIG_NUMA */
 105
 106/*
 107 * The process p may have detached its own ->mm while exiting or through
 108 * use_mm(), but one or more of its subthreads may still have a valid
 109 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 110 * task_lock() held.
 111 */
 112struct task_struct *find_lock_task_mm(struct task_struct *p)
 113{
 114	struct task_struct *t;
 115
 116	rcu_read_lock();
 117
 118	for_each_thread(p, t) {
 119		task_lock(t);
 120		if (likely(t->mm))
 121			goto found;
 122		task_unlock(t);
 123	}
 124	t = NULL;
 125found:
 126	rcu_read_unlock();
 127
 128	return t;
 129}
 130
 131/*
 132 * order == -1 means the oom kill is required by sysrq, otherwise only
 133 * for display purposes.
 134 */
 135static inline bool is_sysrq_oom(struct oom_control *oc)
 136{
 137	return oc->order == -1;
 138}
 139
 140static inline bool is_memcg_oom(struct oom_control *oc)
 141{
 142	return oc->memcg != NULL;
 143}
 144
 145/* return true if the task is not adequate as candidate victim task. */
 146static bool oom_unkillable_task(struct task_struct *p,
 147		struct mem_cgroup *memcg, const nodemask_t *nodemask)
 148{
 149	if (is_global_init(p))
 150		return true;
 151	if (p->flags & PF_KTHREAD)
 152		return true;
 153
 154	/* When mem_cgroup_out_of_memory() and p is not member of the group */
 155	if (memcg && !task_in_mem_cgroup(p, memcg))
 156		return true;
 157
 158	/* p may not have freeable memory in nodemask */
 159	if (!has_intersects_mems_allowed(p, nodemask))
 160		return true;
 161
 162	return false;
 163}
 164
 165/*
 166 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 167 * than all user memory (LRU pages)
 168 */
 169static bool is_dump_unreclaim_slabs(void)
 170{
 171	unsigned long nr_lru;
 172
 173	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 174		 global_node_page_state(NR_INACTIVE_ANON) +
 175		 global_node_page_state(NR_ACTIVE_FILE) +
 176		 global_node_page_state(NR_INACTIVE_FILE) +
 177		 global_node_page_state(NR_ISOLATED_ANON) +
 178		 global_node_page_state(NR_ISOLATED_FILE) +
 179		 global_node_page_state(NR_UNEVICTABLE);
 180
 181	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
 182}
 183
 184/**
 185 * oom_badness - heuristic function to determine which candidate task to kill
 186 * @p: task struct of which task we should calculate
 187 * @totalpages: total present RAM allowed for page allocation
 188 * @memcg: task's memory controller, if constrained
 189 * @nodemask: nodemask passed to page allocator for mempolicy ooms
 190 *
 191 * The heuristic for determining which task to kill is made to be as simple and
 192 * predictable as possible.  The goal is to return the highest value for the
 193 * task consuming the most memory to avoid subsequent oom failures.
 194 */
 195unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
 196			  const nodemask_t *nodemask, unsigned long totalpages)
 197{
 198	long points;
 199	long adj;
 200
 201	if (oom_unkillable_task(p, memcg, nodemask))
 202		return 0;
 203
 204	p = find_lock_task_mm(p);
 205	if (!p)
 206		return 0;
 207
 208	/*
 209	 * Do not even consider tasks which are explicitly marked oom
 210	 * unkillable or have been already oom reaped or the are in
 211	 * the middle of vfork
 212	 */
 213	adj = (long)p->signal->oom_score_adj;
 214	if (adj == OOM_SCORE_ADJ_MIN ||
 215			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 216			in_vfork(p)) {
 217		task_unlock(p);
 218		return 0;
 219	}
 220
 221	/*
 
 
 
 
 
 
 
 222	 * The baseline for the badness score is the proportion of RAM that each
 223	 * task's rss, pagetable and swap space use.
 224	 */
 225	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 226		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 
 
 
 227	task_unlock(p);
 228
 229	/* Normalize to oom_score_adj units */
 230	adj *= totalpages / 1000;
 231	points += adj;
 
 
 
 
 
 
 
 
 
 
 232
 233	/*
 234	 * Never return 0 for an eligible task regardless of the root bonus and
 235	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 
 236	 */
 237	return points > 0 ? points : 1;
 
 
 238}
 239
 240enum oom_constraint {
 241	CONSTRAINT_NONE,
 242	CONSTRAINT_CPUSET,
 243	CONSTRAINT_MEMORY_POLICY,
 244	CONSTRAINT_MEMCG,
 245};
 246
 247/*
 248 * Determine the type of allocation constraint.
 249 */
 250static enum oom_constraint constrained_alloc(struct oom_control *oc)
 
 
 
 251{
 252	struct zone *zone;
 253	struct zoneref *z;
 254	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 255	bool cpuset_limited = false;
 256	int nid;
 257
 258	if (is_memcg_oom(oc)) {
 259		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
 260		return CONSTRAINT_MEMCG;
 261	}
 262
 263	/* Default to all available memory */
 264	oc->totalpages = totalram_pages + total_swap_pages;
 265
 266	if (!IS_ENABLED(CONFIG_NUMA))
 267		return CONSTRAINT_NONE;
 268
 269	if (!oc->zonelist)
 270		return CONSTRAINT_NONE;
 271	/*
 272	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 273	 * to kill current.We have to random task kill in this case.
 274	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 275	 */
 276	if (oc->gfp_mask & __GFP_THISNODE)
 277		return CONSTRAINT_NONE;
 278
 279	/*
 280	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 281	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 282	 * is enforced in get_page_from_freelist().
 283	 */
 284	if (oc->nodemask &&
 285	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 286		oc->totalpages = total_swap_pages;
 287		for_each_node_mask(nid, *oc->nodemask)
 288			oc->totalpages += node_spanned_pages(nid);
 289		return CONSTRAINT_MEMORY_POLICY;
 290	}
 291
 292	/* Check this allocation failure is caused by cpuset's wall function */
 293	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 294			high_zoneidx, oc->nodemask)
 295		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 296			cpuset_limited = true;
 297
 298	if (cpuset_limited) {
 299		oc->totalpages = total_swap_pages;
 300		for_each_node_mask(nid, cpuset_current_mems_allowed)
 301			oc->totalpages += node_spanned_pages(nid);
 302		return CONSTRAINT_CPUSET;
 303	}
 304	return CONSTRAINT_NONE;
 305}
 
 
 
 
 
 
 
 
 
 306
 307static int oom_evaluate_task(struct task_struct *task, void *arg)
 
 
 
 
 
 
 
 
 308{
 309	struct oom_control *oc = arg;
 310	unsigned long points;
 
 311
 312	if (oom_unkillable_task(task, NULL, oc->nodemask))
 313		goto next;
 314
 315	/*
 316	 * This task already has access to memory reserves and is being killed.
 317	 * Don't allow any other task to have access to the reserves unless
 318	 * the task has MMF_OOM_SKIP because chances that it would release
 319	 * any memory is quite low.
 320	 */
 321	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 322		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 323			goto next;
 324		goto abort;
 325	}
 326
 327	/*
 328	 * If task is allocating a lot of memory and has been marked to be
 329	 * killed first if it triggers an oom, then select it.
 330	 */
 331	if (oom_task_origin(task)) {
 332		points = ULONG_MAX;
 333		goto select;
 334	}
 
 
 
 
 
 335
 336	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
 337	if (!points || points < oc->chosen_points)
 338		goto next;
 339
 340	/* Prefer thread group leaders for display purposes */
 341	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
 342		goto next;
 343select:
 344	if (oc->chosen)
 345		put_task_struct(oc->chosen);
 346	get_task_struct(task);
 347	oc->chosen = task;
 348	oc->chosen_points = points;
 349next:
 350	return 0;
 351abort:
 352	if (oc->chosen)
 353		put_task_struct(oc->chosen);
 354	oc->chosen = (void *)-1UL;
 355	return 1;
 356}
 
 
 357
 358/*
 359 * Simple selection loop. We choose the process with the highest number of
 360 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 361 */
 362static void select_bad_process(struct oom_control *oc)
 363{
 364	if (is_memcg_oom(oc))
 365		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 366	else {
 367		struct task_struct *p;
 368
 369		rcu_read_lock();
 370		for_each_process(p)
 371			if (oom_evaluate_task(p, oc))
 372				break;
 373		rcu_read_unlock();
 374	}
 375
 376	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
 377}
 378
 379/**
 380 * dump_tasks - dump current memory state of all system tasks
 381 * @memcg: current's memory controller, if constrained
 382 * @nodemask: nodemask passed to page allocator for mempolicy ooms
 383 *
 384 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 385 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 386 * are not shown.
 387 * State information includes task's pid, uid, tgid, vm size, rss,
 388 * pgtables_bytes, swapents, oom_score_adj value, and name.
 
 
 389 */
 390static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
 391{
 392	struct task_struct *p;
 393	struct task_struct *task;
 394
 395	pr_info("[ pid ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 396	rcu_read_lock();
 397	for_each_process(p) {
 398		if (oom_unkillable_task(p, memcg, nodemask))
 399			continue;
 400
 401		task = find_lock_task_mm(p);
 402		if (!task) {
 403			/*
 404			 * This is a kthread or all of p's threads have already
 405			 * detached their mm's.  There's no need to report
 406			 * them; they can't be oom killed anyway.
 407			 */
 408			continue;
 409		}
 410
 411		pr_info("[%5d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 412			task->pid, from_kuid(&init_user_ns, task_uid(task)),
 413			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 414			mm_pgtables_bytes(task->mm),
 415			get_mm_counter(task->mm, MM_SWAPENTS),
 416			task->signal->oom_score_adj, task->comm);
 417		task_unlock(task);
 418	}
 419	rcu_read_unlock();
 420}
 421
 422static void dump_header(struct oom_control *oc, struct task_struct *p)
 
 423{
 424	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
 425		current->comm, oc->gfp_mask, &oc->gfp_mask,
 426		nodemask_pr_args(oc->nodemask), oc->order,
 427			current->signal->oom_score_adj);
 428	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 429		pr_warn("COMPACTION is disabled!!!\n");
 430
 431	cpuset_print_current_mems_allowed();
 432	dump_stack();
 433	if (is_memcg_oom(oc))
 434		mem_cgroup_print_oom_info(oc->memcg, p);
 435	else {
 436		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 437		if (is_dump_unreclaim_slabs())
 438			dump_unreclaimable_slab();
 439	}
 440	if (sysctl_oom_dump_tasks)
 441		dump_tasks(oc->memcg, oc->nodemask);
 442}
 443
 444/*
 445 * Number of OOM victims in flight
 446 */
 447static atomic_t oom_victims = ATOMIC_INIT(0);
 448static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 449
 450static bool oom_killer_disabled __read_mostly;
 451
 452#define K(x) ((x) << (PAGE_SHIFT-10))
 453
 454/*
 455 * task->mm can be NULL if the task is the exited group leader.  So to
 456 * determine whether the task is using a particular mm, we examine all the
 457 * task's threads: if one of those is using this mm then this task was also
 458 * using it.
 459 */
 460bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 461{
 462	struct task_struct *t;
 463
 464	for_each_thread(p, t) {
 465		struct mm_struct *t_mm = READ_ONCE(t->mm);
 466		if (t_mm)
 467			return t_mm == mm;
 468	}
 469	return false;
 470}
 471
 472#ifdef CONFIG_MMU
 473/*
 474 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 475 * victim (if that is possible) to help the OOM killer to move on.
 476 */
 477static struct task_struct *oom_reaper_th;
 478static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 479static struct task_struct *oom_reaper_list;
 480static DEFINE_SPINLOCK(oom_reaper_lock);
 481
 482void __oom_reap_task_mm(struct mm_struct *mm)
 483{
 484	struct vm_area_struct *vma;
 485
 486	/*
 487	 * Tell all users of get_user/copy_from_user etc... that the content
 488	 * is no longer stable. No barriers really needed because unmapping
 489	 * should imply barriers already and the reader would hit a page fault
 490	 * if it stumbled over a reaped memory.
 491	 */
 492	set_bit(MMF_UNSTABLE, &mm->flags);
 493
 494	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 495		if (!can_madv_dontneed_vma(vma))
 496			continue;
 497
 498		/*
 499		 * Only anonymous pages have a good chance to be dropped
 500		 * without additional steps which we cannot afford as we
 501		 * are OOM already.
 502		 *
 503		 * We do not even care about fs backed pages because all
 504		 * which are reclaimable have already been reclaimed and
 505		 * we do not want to block exit_mmap by keeping mm ref
 506		 * count elevated without a good reason.
 507		 */
 508		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 509			const unsigned long start = vma->vm_start;
 510			const unsigned long end = vma->vm_end;
 511			struct mmu_gather tlb;
 512
 513			tlb_gather_mmu(&tlb, mm, start, end);
 514			mmu_notifier_invalidate_range_start(mm, start, end);
 515			unmap_page_range(&tlb, vma, start, end, NULL);
 516			mmu_notifier_invalidate_range_end(mm, start, end);
 517			tlb_finish_mmu(&tlb, start, end);
 518		}
 519	}
 520}
 521
 522static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 523{
 524	bool ret = true;
 525
 526	/*
 527	 * We have to make sure to not race with the victim exit path
 528	 * and cause premature new oom victim selection:
 529	 * oom_reap_task_mm		exit_mm
 530	 *   mmget_not_zero
 531	 *				  mmput
 532	 *				    atomic_dec_and_test
 533	 *				  exit_oom_victim
 534	 *				[...]
 535	 *				out_of_memory
 536	 *				  select_bad_process
 537	 *				    # no TIF_MEMDIE task selects new victim
 538	 *  unmap_page_range # frees some memory
 539	 */
 540	mutex_lock(&oom_lock);
 541
 542	if (!down_read_trylock(&mm->mmap_sem)) {
 543		ret = false;
 544		trace_skip_task_reaping(tsk->pid);
 545		goto unlock_oom;
 546	}
 547
 548	/*
 549	 * If the mm has invalidate_{start,end}() notifiers that could block,
 550	 * sleep to give the oom victim some more time.
 551	 * TODO: we really want to get rid of this ugly hack and make sure that
 552	 * notifiers cannot block for unbounded amount of time
 553	 */
 554	if (mm_has_blockable_invalidate_notifiers(mm)) {
 555		up_read(&mm->mmap_sem);
 556		schedule_timeout_idle(HZ);
 557		goto unlock_oom;
 558	}
 559
 560	/*
 561	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 562	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 563	 * under mmap_sem for reading because it serializes against the
 564	 * down_write();up_write() cycle in exit_mmap().
 565	 */
 566	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 567		up_read(&mm->mmap_sem);
 568		trace_skip_task_reaping(tsk->pid);
 569		goto unlock_oom;
 570	}
 571
 572	trace_start_task_reaping(tsk->pid);
 573
 574	__oom_reap_task_mm(mm);
 575
 576	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 577			task_pid_nr(tsk), tsk->comm,
 578			K(get_mm_counter(mm, MM_ANONPAGES)),
 579			K(get_mm_counter(mm, MM_FILEPAGES)),
 580			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 581	up_read(&mm->mmap_sem);
 582
 583	trace_finish_task_reaping(tsk->pid);
 584unlock_oom:
 585	mutex_unlock(&oom_lock);
 586	return ret;
 587}
 588
 589#define MAX_OOM_REAP_RETRIES 10
 590static void oom_reap_task(struct task_struct *tsk)
 591{
 592	int attempts = 0;
 593	struct mm_struct *mm = tsk->signal->oom_mm;
 594
 595	/* Retry the down_read_trylock(mmap_sem) a few times */
 596	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 597		schedule_timeout_idle(HZ/10);
 598
 599	if (attempts <= MAX_OOM_REAP_RETRIES ||
 600	    test_bit(MMF_OOM_SKIP, &mm->flags))
 601		goto done;
 602
 603	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 604		task_pid_nr(tsk), tsk->comm);
 605	debug_show_all_locks();
 606
 607done:
 608	tsk->oom_reaper_list = NULL;
 
 
 
 609
 610	/*
 611	 * Hide this mm from OOM killer because it has been either reaped or
 612	 * somebody can't call up_write(mmap_sem).
 613	 */
 614	set_bit(MMF_OOM_SKIP, &mm->flags);
 615
 616	/* Drop a reference taken by wake_oom_reaper */
 617	put_task_struct(tsk);
 618}
 619
 620static int oom_reaper(void *unused)
 621{
 622	while (true) {
 623		struct task_struct *tsk = NULL;
 624
 625		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 626		spin_lock(&oom_reaper_lock);
 627		if (oom_reaper_list != NULL) {
 628			tsk = oom_reaper_list;
 629			oom_reaper_list = tsk->oom_reaper_list;
 630		}
 631		spin_unlock(&oom_reaper_lock);
 632
 633		if (tsk)
 634			oom_reap_task(tsk);
 635	}
 636
 637	return 0;
 638}
 639
 640static void wake_oom_reaper(struct task_struct *tsk)
 641{
 642	/* tsk is already queued? */
 643	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
 644		return;
 645
 646	get_task_struct(tsk);
 647
 648	spin_lock(&oom_reaper_lock);
 649	tsk->oom_reaper_list = oom_reaper_list;
 650	oom_reaper_list = tsk;
 651	spin_unlock(&oom_reaper_lock);
 652	trace_wake_reaper(tsk->pid);
 653	wake_up(&oom_reaper_wait);
 654}
 655
 656static int __init oom_init(void)
 657{
 658	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 659	return 0;
 660}
 661subsys_initcall(oom_init)
 662#else
 663static inline void wake_oom_reaper(struct task_struct *tsk)
 664{
 665}
 666#endif /* CONFIG_MMU */
 667
 668/**
 669 * mark_oom_victim - mark the given task as OOM victim
 670 * @tsk: task to mark
 671 *
 672 * Has to be called with oom_lock held and never after
 673 * oom has been disabled already.
 674 *
 675 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 676 * under task_lock or operate on the current).
 677 */
 678static void mark_oom_victim(struct task_struct *tsk)
 679{
 680	struct mm_struct *mm = tsk->mm;
 681
 682	WARN_ON(oom_killer_disabled);
 683	/* OOM killer might race with memcg OOM */
 684	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 685		return;
 686
 687	/* oom_mm is bound to the signal struct life time. */
 688	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 689		mmgrab(tsk->signal->oom_mm);
 690		set_bit(MMF_OOM_VICTIM, &mm->flags);
 691	}
 692
 693	/*
 694	 * Make sure that the task is woken up from uninterruptible sleep
 695	 * if it is frozen because OOM killer wouldn't be able to free
 696	 * any memory and livelock. freezing_slow_path will tell the freezer
 697	 * that TIF_MEMDIE tasks should be ignored.
 698	 */
 699	__thaw_task(tsk);
 700	atomic_inc(&oom_victims);
 701	trace_mark_victim(tsk->pid);
 702}
 703
 704/**
 705 * exit_oom_victim - note the exit of an OOM victim
 706 */
 707void exit_oom_victim(void)
 708{
 709	clear_thread_flag(TIF_MEMDIE);
 710
 711	if (!atomic_dec_return(&oom_victims))
 712		wake_up_all(&oom_victims_wait);
 713}
 714
 715/**
 716 * oom_killer_enable - enable OOM killer
 717 */
 718void oom_killer_enable(void)
 719{
 720	oom_killer_disabled = false;
 721	pr_info("OOM killer enabled.\n");
 722}
 723
 724/**
 725 * oom_killer_disable - disable OOM killer
 726 * @timeout: maximum timeout to wait for oom victims in jiffies
 727 *
 728 * Forces all page allocations to fail rather than trigger OOM killer.
 729 * Will block and wait until all OOM victims are killed or the given
 730 * timeout expires.
 731 *
 732 * The function cannot be called when there are runnable user tasks because
 733 * the userspace would see unexpected allocation failures as a result. Any
 734 * new usage of this function should be consulted with MM people.
 735 *
 736 * Returns true if successful and false if the OOM killer cannot be
 737 * disabled.
 738 */
 739bool oom_killer_disable(signed long timeout)
 740{
 741	signed long ret;
 742
 743	/*
 744	 * Make sure to not race with an ongoing OOM killer. Check that the
 745	 * current is not killed (possibly due to sharing the victim's memory).
 746	 */
 747	if (mutex_lock_killable(&oom_lock))
 748		return false;
 749	oom_killer_disabled = true;
 750	mutex_unlock(&oom_lock);
 751
 752	ret = wait_event_interruptible_timeout(oom_victims_wait,
 753			!atomic_read(&oom_victims), timeout);
 754	if (ret <= 0) {
 755		oom_killer_enable();
 756		return false;
 757	}
 758	pr_info("OOM killer disabled.\n");
 759
 760	return true;
 761}
 762
 763static inline bool __task_will_free_mem(struct task_struct *task)
 764{
 765	struct signal_struct *sig = task->signal;
 766
 767	/*
 768	 * A coredumping process may sleep for an extended period in exit_mm(),
 769	 * so the oom killer cannot assume that the process will promptly exit
 770	 * and release memory.
 771	 */
 772	if (sig->flags & SIGNAL_GROUP_COREDUMP)
 773		return false;
 774
 775	if (sig->flags & SIGNAL_GROUP_EXIT)
 776		return true;
 777
 778	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 779		return true;
 780
 781	return false;
 782}
 783
 784/*
 785 * Checks whether the given task is dying or exiting and likely to
 786 * release its address space. This means that all threads and processes
 787 * sharing the same mm have to be killed or exiting.
 788 * Caller has to make sure that task->mm is stable (hold task_lock or
 789 * it operates on the current).
 790 */
 791static bool task_will_free_mem(struct task_struct *task)
 792{
 793	struct mm_struct *mm = task->mm;
 794	struct task_struct *p;
 795	bool ret = true;
 796
 797	/*
 798	 * Skip tasks without mm because it might have passed its exit_mm and
 799	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 800	 * on that for now. We can consider find_lock_task_mm in future.
 801	 */
 802	if (!mm)
 803		return false;
 804
 805	if (!__task_will_free_mem(task))
 806		return false;
 807
 808	/*
 809	 * This task has already been drained by the oom reaper so there are
 810	 * only small chances it will free some more
 811	 */
 812	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 813		return false;
 814
 815	if (atomic_read(&mm->mm_users) <= 1)
 816		return true;
 817
 818	/*
 819	 * Make sure that all tasks which share the mm with the given tasks
 820	 * are dying as well to make sure that a) nobody pins its mm and
 821	 * b) the task is also reapable by the oom reaper.
 822	 */
 823	rcu_read_lock();
 824	for_each_process(p) {
 825		if (!process_shares_mm(p, mm))
 826			continue;
 827		if (same_thread_group(task, p))
 828			continue;
 829		ret = __task_will_free_mem(p);
 830		if (!ret)
 831			break;
 832	}
 833	rcu_read_unlock();
 834
 835	return ret;
 836}
 837
 838static void oom_kill_process(struct oom_control *oc, const char *message)
 
 
 
 839{
 840	struct task_struct *p = oc->chosen;
 841	unsigned int points = oc->chosen_points;
 842	struct task_struct *victim = p;
 843	struct task_struct *child;
 844	struct task_struct *t;
 845	struct mm_struct *mm;
 846	unsigned int victim_points = 0;
 847	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 848					      DEFAULT_RATELIMIT_BURST);
 849	bool can_oom_reap = true;
 850
 851	/*
 852	 * If the task is already exiting, don't alarm the sysadmin or kill
 853	 * its children or threads, just give it access to memory reserves
 854	 * so it can die quickly
 855	 */
 856	task_lock(p);
 857	if (task_will_free_mem(p)) {
 858		mark_oom_victim(p);
 859		wake_oom_reaper(p);
 860		task_unlock(p);
 861		put_task_struct(p);
 862		return;
 863	}
 864	task_unlock(p);
 865
 866	if (__ratelimit(&oom_rs))
 867		dump_header(oc, p);
 868
 869	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
 
 870		message, task_pid_nr(p), p->comm, points);
 
 871
 872	/*
 873	 * If any of p's children has a different mm and is eligible for kill,
 874	 * the one with the highest oom_badness() score is sacrificed for its
 875	 * parent.  This attempts to lose the minimal amount of work done while
 876	 * still freeing memory.
 877	 */
 878	read_lock(&tasklist_lock);
 879	for_each_thread(p, t) {
 880		list_for_each_entry(child, &t->children, sibling) {
 881			unsigned int child_points;
 882
 883			if (process_shares_mm(child, p->mm))
 884				continue;
 885			/*
 886			 * oom_badness() returns 0 if the thread is unkillable
 887			 */
 888			child_points = oom_badness(child,
 889				oc->memcg, oc->nodemask, oc->totalpages);
 890			if (child_points > victim_points) {
 891				put_task_struct(victim);
 892				victim = child;
 893				victim_points = child_points;
 894				get_task_struct(victim);
 895			}
 896		}
 897	}
 898	read_unlock(&tasklist_lock);
 899
 900	p = find_lock_task_mm(victim);
 901	if (!p) {
 902		put_task_struct(victim);
 903		return;
 904	} else if (victim != p) {
 905		get_task_struct(p);
 906		put_task_struct(victim);
 907		victim = p;
 908	}
 909
 910	/* Get a reference to safely compare mm after task_unlock(victim) */
 911	mm = victim->mm;
 912	mmgrab(mm);
 913
 914	/* Raise event before sending signal: task reaper must see this */
 915	count_vm_event(OOM_KILL);
 916	count_memcg_event_mm(mm, OOM_KILL);
 917
 918	/*
 919	 * We should send SIGKILL before granting access to memory reserves
 920	 * in order to prevent the OOM victim from depleting the memory
 921	 * reserves from the user space under its control.
 922	 */
 923	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
 924	mark_oom_victim(victim);
 925	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 926		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
 927		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
 928		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
 929		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
 930	task_unlock(victim);
 931
 932	/*
 933	 * Kill all user processes sharing victim->mm in other thread groups, if
 934	 * any.  They don't get access to memory reserves, though, to avoid
 935	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 936	 * oom killed thread cannot exit because it requires the semaphore and
 937	 * its contended by another thread trying to allocate memory itself.
 938	 * That thread will now get access to memory reserves since it has a
 939	 * pending fatal signal.
 940	 */
 941	rcu_read_lock();
 942	for_each_process(p) {
 943		if (!process_shares_mm(p, mm))
 944			continue;
 945		if (same_thread_group(p, victim))
 946			continue;
 947		if (is_global_init(p)) {
 948			can_oom_reap = false;
 949			set_bit(MMF_OOM_SKIP, &mm->flags);
 950			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 951					task_pid_nr(victim), victim->comm,
 952					task_pid_nr(p), p->comm);
 953			continue;
 954		}
 955		/*
 956		 * No use_mm() user needs to read from the userspace so we are
 957		 * ok to reap it.
 958		 */
 959		if (unlikely(p->flags & PF_KTHREAD))
 960			continue;
 961		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
 962	}
 963	rcu_read_unlock();
 964
 965	if (can_oom_reap)
 966		wake_oom_reaper(victim);
 967
 968	mmdrop(mm);
 969	put_task_struct(victim);
 970}
 971#undef K
 972
 973/*
 974 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 975 */
 976static void check_panic_on_oom(struct oom_control *oc,
 977			       enum oom_constraint constraint)
 978{
 979	if (likely(!sysctl_panic_on_oom))
 980		return;
 981	if (sysctl_panic_on_oom != 2) {
 982		/*
 983		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
 984		 * does not panic for cpuset, mempolicy, or memcg allocation
 985		 * failures.
 986		 */
 987		if (constraint != CONSTRAINT_NONE)
 988			return;
 989	}
 990	/* Do not panic for oom kills triggered by sysrq */
 991	if (is_sysrq_oom(oc))
 992		return;
 993	dump_header(oc, NULL);
 994	panic("Out of memory: %s panic_on_oom is enabled\n",
 995		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
 996}
 997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
 999
1000int register_oom_notifier(struct notifier_block *nb)
1001{
1002	return blocking_notifier_chain_register(&oom_notify_list, nb);
1003}
1004EXPORT_SYMBOL_GPL(register_oom_notifier);
1005
1006int unregister_oom_notifier(struct notifier_block *nb)
1007{
1008	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1009}
1010EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012/**
1013 * out_of_memory - kill the "best" process when we run out of memory
1014 * @oc: pointer to struct oom_control
 
 
 
1015 *
1016 * If we run out of memory, we have the choice between either
1017 * killing a random task (bad), letting the system crash (worse)
1018 * OR try to be smart about which process to kill. Note that we
1019 * don't have to be perfect here, we just have to be good.
1020 */
1021bool out_of_memory(struct oom_control *oc)
 
1022{
 
 
 
1023	unsigned long freed = 0;
 
1024	enum oom_constraint constraint = CONSTRAINT_NONE;
 
1025
1026	if (oom_killer_disabled)
1027		return false;
1028
1029	if (!is_memcg_oom(oc)) {
1030		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1031		if (freed > 0)
1032			/* Got some memory back in the last second. */
1033			return true;
1034	}
1035
1036	/*
1037	 * If current has a pending SIGKILL or is exiting, then automatically
1038	 * select it.  The goal is to allow it to allocate so that it may
1039	 * quickly exit and free its memory.
1040	 */
1041	if (task_will_free_mem(current)) {
1042		mark_oom_victim(current);
1043		wake_oom_reaper(current);
1044		return true;
1045	}
1046
1047	/*
1048	 * The OOM killer does not compensate for IO-less reclaim.
1049	 * pagefault_out_of_memory lost its gfp context so we have to
1050	 * make sure exclude 0 mask - all other users should have at least
1051	 * ___GFP_DIRECT_RECLAIM to get here.
1052	 */
1053	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1054		return true;
1055
1056	/*
1057	 * Check if there were limitations on the allocation (only relevant for
1058	 * NUMA and memcg) that may require different handling.
1059	 */
1060	constraint = constrained_alloc(oc);
1061	if (constraint != CONSTRAINT_MEMORY_POLICY)
1062		oc->nodemask = NULL;
1063	check_panic_on_oom(oc, constraint);
1064
1065	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1066	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1067	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1068		get_task_struct(current);
1069		oc->chosen = current;
1070		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1071		return true;
 
 
 
 
 
 
1072	}
1073
1074	select_bad_process(oc);
 
 
 
 
1075	/* Found nothing?!?! Either we hang forever, or we panic. */
1076	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1077		dump_header(oc, NULL);
 
1078		panic("Out of memory and no killable processes...\n");
1079	}
1080	if (oc->chosen && oc->chosen != (void *)-1UL) {
1081		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1082				 "Memory cgroup out of memory");
1083		/*
1084		 * Give the killed process a good chance to exit before trying
1085		 * to allocate memory again.
1086		 */
1087		schedule_timeout_killable(1);
1088	}
1089	return !!oc->chosen;
 
 
 
 
1090}
1091
1092/*
1093 * The pagefault handler calls here because it is out of memory, so kill a
1094 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1095 * killing is already in progress so do nothing.
 
1096 */
1097void pagefault_out_of_memory(void)
1098{
1099	struct oom_control oc = {
1100		.zonelist = NULL,
1101		.nodemask = NULL,
1102		.memcg = NULL,
1103		.gfp_mask = 0,
1104		.order = 0,
1105	};
1106
1107	if (mem_cgroup_oom_synchronize(true))
1108		return;
1109
1110	if (!mutex_trylock(&oom_lock))
1111		return;
1112	out_of_memory(&oc);
1113	mutex_unlock(&oom_lock);
1114}
v3.1
  1/*
  2 *  linux/mm/oom_kill.c
  3 * 
  4 *  Copyright (C)  1998,2000  Rik van Riel
  5 *	Thanks go out to Claus Fischer for some serious inspiration and
  6 *	for goading me into coding this file...
  7 *  Copyright (C)  2010  Google, Inc.
  8 *	Rewritten by David Rientjes
  9 *
 10 *  The routines in this file are used to kill a process when
 11 *  we're seriously out of memory. This gets called from __alloc_pages()
 12 *  in mm/page_alloc.c when we really run out of memory.
 13 *
 14 *  Since we won't call these routines often (on a well-configured
 15 *  machine) this file will double as a 'coding guide' and a signpost
 16 *  for newbie kernel hackers. It features several pointers to major
 17 *  kernel subsystems and hints as to where to find out what things do.
 18 */
 19
 20#include <linux/oom.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/gfp.h>
 24#include <linux/sched.h>
 
 
 
 25#include <linux/swap.h>
 26#include <linux/timex.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpuset.h>
 29#include <linux/module.h>
 30#include <linux/notifier.h>
 31#include <linux/memcontrol.h>
 32#include <linux/mempolicy.h>
 33#include <linux/security.h>
 34#include <linux/ptrace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36int sysctl_panic_on_oom;
 37int sysctl_oom_kill_allocating_task;
 38int sysctl_oom_dump_tasks = 1;
 39static DEFINE_SPINLOCK(zone_scan_lock);
 40
 41/**
 42 * test_set_oom_score_adj() - set current's oom_score_adj and return old value
 43 * @new_val: new oom_score_adj value
 44 *
 45 * Sets the oom_score_adj value for current to @new_val with proper
 46 * synchronization and returns the old value.  Usually used to temporarily
 47 * set a value, save the old value in the caller, and then reinstate it later.
 48 */
 49int test_set_oom_score_adj(int new_val)
 50{
 51	struct sighand_struct *sighand = current->sighand;
 52	int old_val;
 53
 54	spin_lock_irq(&sighand->siglock);
 55	old_val = current->signal->oom_score_adj;
 56	if (new_val != old_val) {
 57		if (new_val == OOM_SCORE_ADJ_MIN)
 58			atomic_inc(&current->mm->oom_disable_count);
 59		else if (old_val == OOM_SCORE_ADJ_MIN)
 60			atomic_dec(&current->mm->oom_disable_count);
 61		current->signal->oom_score_adj = new_val;
 62	}
 63	spin_unlock_irq(&sighand->siglock);
 64
 65	return old_val;
 66}
 67
 68#ifdef CONFIG_NUMA
 69/**
 70 * has_intersects_mems_allowed() - check task eligiblity for kill
 71 * @tsk: task struct of which task to consider
 72 * @mask: nodemask passed to page allocator for mempolicy ooms
 73 *
 74 * Task eligibility is determined by whether or not a candidate task, @tsk,
 75 * shares the same mempolicy nodes as current if it is bound by such a policy
 76 * and whether or not it has the same set of allowed cpuset nodes.
 77 */
 78static bool has_intersects_mems_allowed(struct task_struct *tsk,
 79					const nodemask_t *mask)
 80{
 81	struct task_struct *start = tsk;
 
 82
 83	do {
 
 84		if (mask) {
 85			/*
 86			 * If this is a mempolicy constrained oom, tsk's
 87			 * cpuset is irrelevant.  Only return true if its
 88			 * mempolicy intersects current, otherwise it may be
 89			 * needlessly killed.
 90			 */
 91			if (mempolicy_nodemask_intersects(tsk, mask))
 92				return true;
 93		} else {
 94			/*
 95			 * This is not a mempolicy constrained oom, so only
 96			 * check the mems of tsk's cpuset.
 97			 */
 98			if (cpuset_mems_allowed_intersects(current, tsk))
 99				return true;
100		}
101	} while_each_thread(start, tsk);
 
 
 
102
103	return false;
104}
105#else
106static bool has_intersects_mems_allowed(struct task_struct *tsk,
107					const nodemask_t *mask)
108{
109	return true;
110}
111#endif /* CONFIG_NUMA */
112
113/*
114 * The process p may have detached its own ->mm while exiting or through
115 * use_mm(), but one or more of its subthreads may still have a valid
116 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
117 * task_lock() held.
118 */
119struct task_struct *find_lock_task_mm(struct task_struct *p)
120{
121	struct task_struct *t = p;
 
 
122
123	do {
124		task_lock(t);
125		if (likely(t->mm))
126			return t;
127		task_unlock(t);
128	} while_each_thread(p, t);
 
 
 
 
 
 
129
130	return NULL;
 
 
 
 
 
 
 
 
 
 
 
131}
132
133/* return true if the task is not adequate as candidate victim task. */
134static bool oom_unkillable_task(struct task_struct *p,
135		const struct mem_cgroup *mem, const nodemask_t *nodemask)
136{
137	if (is_global_init(p))
138		return true;
139	if (p->flags & PF_KTHREAD)
140		return true;
141
142	/* When mem_cgroup_out_of_memory() and p is not member of the group */
143	if (mem && !task_in_mem_cgroup(p, mem))
144		return true;
145
146	/* p may not have freeable memory in nodemask */
147	if (!has_intersects_mems_allowed(p, nodemask))
148		return true;
149
150	return false;
151}
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153/**
154 * oom_badness - heuristic function to determine which candidate task to kill
155 * @p: task struct of which task we should calculate
156 * @totalpages: total present RAM allowed for page allocation
 
 
157 *
158 * The heuristic for determining which task to kill is made to be as simple and
159 * predictable as possible.  The goal is to return the highest value for the
160 * task consuming the most memory to avoid subsequent oom failures.
161 */
162unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
163		      const nodemask_t *nodemask, unsigned long totalpages)
164{
165	int points;
 
166
167	if (oom_unkillable_task(p, mem, nodemask))
168		return 0;
169
170	p = find_lock_task_mm(p);
171	if (!p)
172		return 0;
173
174	/*
175	 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
176	 * so the entire heuristic doesn't need to be executed for something
177	 * that cannot be killed.
178	 */
179	if (atomic_read(&p->mm->oom_disable_count)) {
 
 
 
180		task_unlock(p);
181		return 0;
182	}
183
184	/*
185	 * The memory controller may have a limit of 0 bytes, so avoid a divide
186	 * by zero, if necessary.
187	 */
188	if (!totalpages)
189		totalpages = 1;
190
191	/*
192	 * The baseline for the badness score is the proportion of RAM that each
193	 * task's rss, pagetable and swap space use.
194	 */
195	points = get_mm_rss(p->mm) + p->mm->nr_ptes;
196	points += get_mm_counter(p->mm, MM_SWAPENTS);
197
198	points *= 1000;
199	points /= totalpages;
200	task_unlock(p);
201
202	/*
203	 * Root processes get 3% bonus, just like the __vm_enough_memory()
204	 * implementation used by LSMs.
205	 */
206	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
207		points -= 30;
208
209	/*
210	 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
211	 * either completely disable oom killing or always prefer a certain
212	 * task.
213	 */
214	points += p->signal->oom_score_adj;
215
216	/*
217	 * Never return 0 for an eligible task that may be killed since it's
218	 * possible that no single user task uses more than 0.1% of memory and
219	 * no single admin tasks uses more than 3.0%.
220	 */
221	if (points <= 0)
222		return 1;
223	return (points < 1000) ? points : 1000;
224}
225
 
 
 
 
 
 
 
226/*
227 * Determine the type of allocation constraint.
228 */
229#ifdef CONFIG_NUMA
230static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
231				gfp_t gfp_mask, nodemask_t *nodemask,
232				unsigned long *totalpages)
233{
234	struct zone *zone;
235	struct zoneref *z;
236	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
237	bool cpuset_limited = false;
238	int nid;
239
 
 
 
 
 
240	/* Default to all available memory */
241	*totalpages = totalram_pages + total_swap_pages;
242
243	if (!zonelist)
 
 
 
244		return CONSTRAINT_NONE;
245	/*
246	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
247	 * to kill current.We have to random task kill in this case.
248	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
249	 */
250	if (gfp_mask & __GFP_THISNODE)
251		return CONSTRAINT_NONE;
252
253	/*
254	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
255	 * the page allocator means a mempolicy is in effect.  Cpuset policy
256	 * is enforced in get_page_from_freelist().
257	 */
258	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
259		*totalpages = total_swap_pages;
260		for_each_node_mask(nid, *nodemask)
261			*totalpages += node_spanned_pages(nid);
 
262		return CONSTRAINT_MEMORY_POLICY;
263	}
264
265	/* Check this allocation failure is caused by cpuset's wall function */
266	for_each_zone_zonelist_nodemask(zone, z, zonelist,
267			high_zoneidx, nodemask)
268		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
269			cpuset_limited = true;
270
271	if (cpuset_limited) {
272		*totalpages = total_swap_pages;
273		for_each_node_mask(nid, cpuset_current_mems_allowed)
274			*totalpages += node_spanned_pages(nid);
275		return CONSTRAINT_CPUSET;
276	}
277	return CONSTRAINT_NONE;
278}
279#else
280static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
281				gfp_t gfp_mask, nodemask_t *nodemask,
282				unsigned long *totalpages)
283{
284	*totalpages = totalram_pages + total_swap_pages;
285	return CONSTRAINT_NONE;
286}
287#endif
288
289/*
290 * Simple selection loop. We chose the process with the highest
291 * number of 'points'. We expect the caller will lock the tasklist.
292 *
293 * (not docbooked, we don't want this one cluttering up the manual)
294 */
295static struct task_struct *select_bad_process(unsigned int *ppoints,
296		unsigned long totalpages, struct mem_cgroup *mem,
297		const nodemask_t *nodemask)
298{
299	struct task_struct *g, *p;
300	struct task_struct *chosen = NULL;
301	*ppoints = 0;
302
303	do_each_thread(g, p) {
304		unsigned int points;
305
306		if (p->exit_state)
307			continue;
308		if (oom_unkillable_task(p, mem, nodemask))
309			continue;
 
 
 
 
 
 
 
310
311		/*
312		 * This task already has access to memory reserves and is
313		 * being killed. Don't allow any other task access to the
314		 * memory reserve.
315		 *
316		 * Note: this may have a chance of deadlock if it gets
317		 * blocked waiting for another task which itself is waiting
318		 * for memory. Is there a better alternative?
319		 */
320		if (test_tsk_thread_flag(p, TIF_MEMDIE))
321			return ERR_PTR(-1UL);
322		if (!p->mm)
323			continue;
324
325		if (p->flags & PF_EXITING) {
326			/*
327			 * If p is the current task and is in the process of
328			 * releasing memory, we allow the "kill" to set
329			 * TIF_MEMDIE, which will allow it to gain access to
330			 * memory reserves.  Otherwise, it may stall forever.
331			 *
332			 * The loop isn't broken here, however, in case other
333			 * threads are found to have already been oom killed.
334			 */
335			if (p == current) {
336				chosen = p;
337				*ppoints = 1000;
338			} else {
339				/*
340				 * If this task is not being ptraced on exit,
341				 * then wait for it to finish before killing
342				 * some other task unnecessarily.
343				 */
344				if (!(p->group_leader->ptrace & PT_TRACE_EXIT))
345					return ERR_PTR(-1UL);
346			}
347		}
348
349		points = oom_badness(p, mem, nodemask, totalpages);
350		if (points > *ppoints) {
351			chosen = p;
352			*ppoints = points;
353		}
354	} while_each_thread(g, p);
 
 
 
 
 
 
 
 
 
 
 
355
356	return chosen;
357}
358
359/**
360 * dump_tasks - dump current memory state of all system tasks
361 * @mem: current's memory controller, if constrained
362 * @nodemask: nodemask passed to page allocator for mempolicy ooms
363 *
364 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
365 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
366 * are not shown.
367 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
368 * value, oom_score_adj value, and name.
369 *
370 * Call with tasklist_lock read-locked.
371 */
372static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
373{
374	struct task_struct *p;
375	struct task_struct *task;
376
377	pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n");
 
378	for_each_process(p) {
379		if (oom_unkillable_task(p, mem, nodemask))
380			continue;
381
382		task = find_lock_task_mm(p);
383		if (!task) {
384			/*
385			 * This is a kthread or all of p's threads have already
386			 * detached their mm's.  There's no need to report
387			 * them; they can't be oom killed anyway.
388			 */
389			continue;
390		}
391
392		pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n",
393			task->pid, task_uid(task), task->tgid,
394			task->mm->total_vm, get_mm_rss(task->mm),
395			task_cpu(task), task->signal->oom_adj,
 
396			task->signal->oom_score_adj, task->comm);
397		task_unlock(task);
398	}
 
399}
400
401static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
402			struct mem_cgroup *mem, const nodemask_t *nodemask)
403{
404	task_lock(current);
405	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
406		"oom_adj=%d, oom_score_adj=%d\n",
407		current->comm, gfp_mask, order, current->signal->oom_adj,
408		current->signal->oom_score_adj);
409	cpuset_print_task_mems_allowed(current);
410	task_unlock(current);
 
411	dump_stack();
412	mem_cgroup_print_oom_info(mem, p);
413	show_mem(SHOW_MEM_FILTER_NODES);
 
 
 
 
 
414	if (sysctl_oom_dump_tasks)
415		dump_tasks(mem, nodemask);
416}
417
 
 
 
 
 
 
 
 
418#define K(x) ((x) << (PAGE_SHIFT-10))
419static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
 
 
 
 
 
 
 
420{
421	struct task_struct *q;
422	struct mm_struct *mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423
424	p = find_lock_task_mm(p);
425	if (!p)
426		return 1;
 
 
427
428	/* mm cannot be safely dereferenced after task_unlock(p) */
429	mm = p->mm;
 
 
 
 
 
 
 
 
 
430
431	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
432		task_pid_nr(p), p->comm, K(p->mm->total_vm),
433		K(get_mm_counter(p->mm, MM_ANONPAGES)),
434		K(get_mm_counter(p->mm, MM_FILEPAGES)));
435	task_unlock(p);
436
437	/*
438	 * Kill all processes sharing p->mm in other thread groups, if any.
439	 * They don't get access to memory reserves or a higher scheduler
440	 * priority, though, to avoid depletion of all memory or task
441	 * starvation.  This prevents mm->mmap_sem livelock when an oom killed
442	 * task cannot exit because it requires the semaphore and its contended
443	 * by another thread trying to allocate memory itself.  That thread will
444	 * now get access to memory reserves since it has a pending fatal
445	 * signal.
446	 */
447	for_each_process(q)
448		if (q->mm == mm && !same_thread_group(q, p)) {
449			task_lock(q);	/* Protect ->comm from prctl() */
450			pr_err("Kill process %d (%s) sharing same memory\n",
451				task_pid_nr(q), q->comm);
452			task_unlock(q);
453			force_sig(SIGKILL, q);
 
 
 
454		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455
456	set_tsk_thread_flag(p, TIF_MEMDIE);
457	force_sig(SIGKILL, p);
 
 
 
 
 
458
 
 
 
459	return 0;
460}
461#undef K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
463static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
464			    unsigned int points, unsigned long totalpages,
465			    struct mem_cgroup *mem, nodemask_t *nodemask,
466			    const char *message)
467{
 
 
468	struct task_struct *victim = p;
469	struct task_struct *child;
470	struct task_struct *t = p;
 
471	unsigned int victim_points = 0;
472
473	if (printk_ratelimit())
474		dump_header(p, gfp_mask, order, mem, nodemask);
475
476	/*
477	 * If the task is already exiting, don't alarm the sysadmin or kill
478	 * its children or threads, just set TIF_MEMDIE so it can die quickly
 
479	 */
480	if (p->flags & PF_EXITING) {
481		set_tsk_thread_flag(p, TIF_MEMDIE);
482		return 0;
 
 
 
 
483	}
 
 
 
 
484
485	task_lock(p);
486	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
487		message, task_pid_nr(p), p->comm, points);
488	task_unlock(p);
489
490	/*
491	 * If any of p's children has a different mm and is eligible for kill,
492	 * the one with the highest oom_badness() score is sacrificed for its
493	 * parent.  This attempts to lose the minimal amount of work done while
494	 * still freeing memory.
495	 */
496	do {
 
497		list_for_each_entry(child, &t->children, sibling) {
498			unsigned int child_points;
499
500			if (child->mm == p->mm)
501				continue;
502			/*
503			 * oom_badness() returns 0 if the thread is unkillable
504			 */
505			child_points = oom_badness(child, mem, nodemask,
506								totalpages);
507			if (child_points > victim_points) {
 
508				victim = child;
509				victim_points = child_points;
 
510			}
511		}
512	} while_each_thread(p, t);
 
513
514	return oom_kill_task(victim, mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515}
 
516
517/*
518 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
519 */
520static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
521				int order, const nodemask_t *nodemask)
522{
523	if (likely(!sysctl_panic_on_oom))
524		return;
525	if (sysctl_panic_on_oom != 2) {
526		/*
527		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
528		 * does not panic for cpuset, mempolicy, or memcg allocation
529		 * failures.
530		 */
531		if (constraint != CONSTRAINT_NONE)
532			return;
533	}
534	read_lock(&tasklist_lock);
535	dump_header(NULL, gfp_mask, order, NULL, nodemask);
536	read_unlock(&tasklist_lock);
 
537	panic("Out of memory: %s panic_on_oom is enabled\n",
538		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
539}
540
541#ifdef CONFIG_CGROUP_MEM_RES_CTLR
542void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
543{
544	unsigned long limit;
545	unsigned int points = 0;
546	struct task_struct *p;
547
548	/*
549	 * If current has a pending SIGKILL, then automatically select it.  The
550	 * goal is to allow it to allocate so that it may quickly exit and free
551	 * its memory.
552	 */
553	if (fatal_signal_pending(current)) {
554		set_thread_flag(TIF_MEMDIE);
555		return;
556	}
557
558	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
559	limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
560	read_lock(&tasklist_lock);
561retry:
562	p = select_bad_process(&points, limit, mem, NULL);
563	if (!p || PTR_ERR(p) == -1UL)
564		goto out;
565
566	if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
567				"Memory cgroup out of memory"))
568		goto retry;
569out:
570	read_unlock(&tasklist_lock);
571}
572#endif
573
574static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
575
576int register_oom_notifier(struct notifier_block *nb)
577{
578	return blocking_notifier_chain_register(&oom_notify_list, nb);
579}
580EXPORT_SYMBOL_GPL(register_oom_notifier);
581
582int unregister_oom_notifier(struct notifier_block *nb)
583{
584	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
585}
586EXPORT_SYMBOL_GPL(unregister_oom_notifier);
587
588/*
589 * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
590 * if a parallel OOM killing is already taking place that includes a zone in
591 * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
592 */
593int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
594{
595	struct zoneref *z;
596	struct zone *zone;
597	int ret = 1;
598
599	spin_lock(&zone_scan_lock);
600	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
601		if (zone_is_oom_locked(zone)) {
602			ret = 0;
603			goto out;
604		}
605	}
606
607	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
608		/*
609		 * Lock each zone in the zonelist under zone_scan_lock so a
610		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
611		 * when it shouldn't.
612		 */
613		zone_set_flag(zone, ZONE_OOM_LOCKED);
614	}
615
616out:
617	spin_unlock(&zone_scan_lock);
618	return ret;
619}
620
621/*
622 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
623 * allocation attempts with zonelists containing them may now recall the OOM
624 * killer, if necessary.
625 */
626void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
627{
628	struct zoneref *z;
629	struct zone *zone;
630
631	spin_lock(&zone_scan_lock);
632	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
633		zone_clear_flag(zone, ZONE_OOM_LOCKED);
634	}
635	spin_unlock(&zone_scan_lock);
636}
637
638/*
639 * Try to acquire the oom killer lock for all system zones.  Returns zero if a
640 * parallel oom killing is taking place, otherwise locks all zones and returns
641 * non-zero.
642 */
643static int try_set_system_oom(void)
644{
645	struct zone *zone;
646	int ret = 1;
647
648	spin_lock(&zone_scan_lock);
649	for_each_populated_zone(zone)
650		if (zone_is_oom_locked(zone)) {
651			ret = 0;
652			goto out;
653		}
654	for_each_populated_zone(zone)
655		zone_set_flag(zone, ZONE_OOM_LOCKED);
656out:
657	spin_unlock(&zone_scan_lock);
658	return ret;
659}
660
661/*
662 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
663 * attempts or page faults may now recall the oom killer, if necessary.
664 */
665static void clear_system_oom(void)
666{
667	struct zone *zone;
668
669	spin_lock(&zone_scan_lock);
670	for_each_populated_zone(zone)
671		zone_clear_flag(zone, ZONE_OOM_LOCKED);
672	spin_unlock(&zone_scan_lock);
673}
674
675/**
676 * out_of_memory - kill the "best" process when we run out of memory
677 * @zonelist: zonelist pointer
678 * @gfp_mask: memory allocation flags
679 * @order: amount of memory being requested as a power of 2
680 * @nodemask: nodemask passed to page allocator
681 *
682 * If we run out of memory, we have the choice between either
683 * killing a random task (bad), letting the system crash (worse)
684 * OR try to be smart about which process to kill. Note that we
685 * don't have to be perfect here, we just have to be good.
686 */
687void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
688		int order, nodemask_t *nodemask)
689{
690	const nodemask_t *mpol_mask;
691	struct task_struct *p;
692	unsigned long totalpages;
693	unsigned long freed = 0;
694	unsigned int points;
695	enum oom_constraint constraint = CONSTRAINT_NONE;
696	int killed = 0;
697
698	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
699	if (freed > 0)
700		/* Got some memory back in the last second. */
701		return;
 
 
 
 
 
702
703	/*
704	 * If current has a pending SIGKILL, then automatically select it.  The
705	 * goal is to allow it to allocate so that it may quickly exit and free
706	 * its memory.
707	 */
708	if (fatal_signal_pending(current)) {
709		set_thread_flag(TIF_MEMDIE);
710		return;
 
711	}
712
713	/*
 
 
 
 
 
 
 
 
 
714	 * Check if there were limitations on the allocation (only relevant for
715	 * NUMA) that may require different handling.
716	 */
717	constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
718						&totalpages);
719	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
720	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
721
722	read_lock(&tasklist_lock);
723	if (sysctl_oom_kill_allocating_task &&
724	    !oom_unkillable_task(current, NULL, nodemask) &&
725	    current->mm && !atomic_read(&current->mm->oom_disable_count)) {
726		/*
727		 * oom_kill_process() needs tasklist_lock held.  If it returns
728		 * non-zero, current could not be killed so we must fallback to
729		 * the tasklist scan.
730		 */
731		if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
732				NULL, nodemask,
733				"Out of memory (oom_kill_allocating_task)"))
734			goto out;
735	}
736
737retry:
738	p = select_bad_process(&points, totalpages, NULL, mpol_mask);
739	if (PTR_ERR(p) == -1UL)
740		goto out;
741
742	/* Found nothing?!?! Either we hang forever, or we panic. */
743	if (!p) {
744		dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
745		read_unlock(&tasklist_lock);
746		panic("Out of memory and no killable processes...\n");
747	}
748
749	if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
750				nodemask, "Out of memory"))
751		goto retry;
752	killed = 1;
753out:
754	read_unlock(&tasklist_lock);
755
756	/*
757	 * Give "p" a good chance of killing itself before we
758	 * retry to allocate memory unless "p" is current
759	 */
760	if (killed && !test_thread_flag(TIF_MEMDIE))
761		schedule_timeout_uninterruptible(1);
762}
763
764/*
765 * The pagefault handler calls here because it is out of memory, so kill a
766 * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel
767 * oom killing is already in progress so do nothing.  If a task is found with
768 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
769 */
770void pagefault_out_of_memory(void)
771{
772	if (try_set_system_oom()) {
773		out_of_memory(NULL, 0, 0, NULL);
774		clear_system_oom();
775	}
776	if (!test_thread_flag(TIF_MEMDIE))
777		schedule_timeout_uninterruptible(1);
 
 
 
 
 
 
 
 
 
778}