Loading...
1/*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/export.h>
8#include <linux/pagemap.h>
9#include <linux/slab.h>
10#include <linux/cred.h>
11#include <linux/mount.h>
12#include <linux/vfs.h>
13#include <linux/quotaops.h>
14#include <linux/mutex.h>
15#include <linux/namei.h>
16#include <linux/exportfs.h>
17#include <linux/writeback.h>
18#include <linux/buffer_head.h> /* sync_mapping_buffers */
19
20#include <linux/uaccess.h>
21
22#include "internal.h"
23
24int simple_getattr(const struct path *path, struct kstat *stat,
25 u32 request_mask, unsigned int query_flags)
26{
27 struct inode *inode = d_inode(path->dentry);
28 generic_fillattr(inode, stat);
29 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
30 return 0;
31}
32EXPORT_SYMBOL(simple_getattr);
33
34int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35{
36 buf->f_type = dentry->d_sb->s_magic;
37 buf->f_bsize = PAGE_SIZE;
38 buf->f_namelen = NAME_MAX;
39 return 0;
40}
41EXPORT_SYMBOL(simple_statfs);
42
43/*
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
46 */
47int always_delete_dentry(const struct dentry *dentry)
48{
49 return 1;
50}
51EXPORT_SYMBOL(always_delete_dentry);
52
53const struct dentry_operations simple_dentry_operations = {
54 .d_delete = always_delete_dentry,
55};
56EXPORT_SYMBOL(simple_dentry_operations);
57
58/*
59 * Lookup the data. This is trivial - if the dentry didn't already
60 * exist, we know it is negative. Set d_op to delete negative dentries.
61 */
62struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63{
64 if (dentry->d_name.len > NAME_MAX)
65 return ERR_PTR(-ENAMETOOLONG);
66 if (!dentry->d_sb->s_d_op)
67 d_set_d_op(dentry, &simple_dentry_operations);
68 d_add(dentry, NULL);
69 return NULL;
70}
71EXPORT_SYMBOL(simple_lookup);
72
73int dcache_dir_open(struct inode *inode, struct file *file)
74{
75 file->private_data = d_alloc_cursor(file->f_path.dentry);
76
77 return file->private_data ? 0 : -ENOMEM;
78}
79EXPORT_SYMBOL(dcache_dir_open);
80
81int dcache_dir_close(struct inode *inode, struct file *file)
82{
83 dput(file->private_data);
84 return 0;
85}
86EXPORT_SYMBOL(dcache_dir_close);
87
88/* parent is locked at least shared */
89static struct dentry *next_positive(struct dentry *parent,
90 struct list_head *from,
91 int count)
92{
93 unsigned *seq = &parent->d_inode->i_dir_seq, n;
94 struct dentry *res;
95 struct list_head *p;
96 bool skipped;
97 int i;
98
99retry:
100 i = count;
101 skipped = false;
102 n = smp_load_acquire(seq) & ~1;
103 res = NULL;
104 rcu_read_lock();
105 for (p = from->next; p != &parent->d_subdirs; p = p->next) {
106 struct dentry *d = list_entry(p, struct dentry, d_child);
107 if (!simple_positive(d)) {
108 skipped = true;
109 } else if (!--i) {
110 res = d;
111 break;
112 }
113 }
114 rcu_read_unlock();
115 if (skipped) {
116 smp_rmb();
117 if (unlikely(*seq != n))
118 goto retry;
119 }
120 return res;
121}
122
123static void move_cursor(struct dentry *cursor, struct list_head *after)
124{
125 struct dentry *parent = cursor->d_parent;
126 unsigned n, *seq = &parent->d_inode->i_dir_seq;
127 spin_lock(&parent->d_lock);
128 for (;;) {
129 n = *seq;
130 if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
131 break;
132 cpu_relax();
133 }
134 __list_del(cursor->d_child.prev, cursor->d_child.next);
135 if (after)
136 list_add(&cursor->d_child, after);
137 else
138 list_add_tail(&cursor->d_child, &parent->d_subdirs);
139 smp_store_release(seq, n + 2);
140 spin_unlock(&parent->d_lock);
141}
142
143loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
144{
145 struct dentry *dentry = file->f_path.dentry;
146 switch (whence) {
147 case 1:
148 offset += file->f_pos;
149 case 0:
150 if (offset >= 0)
151 break;
152 default:
153 return -EINVAL;
154 }
155 if (offset != file->f_pos) {
156 file->f_pos = offset;
157 if (file->f_pos >= 2) {
158 struct dentry *cursor = file->private_data;
159 struct dentry *to;
160 loff_t n = file->f_pos - 2;
161
162 inode_lock_shared(dentry->d_inode);
163 to = next_positive(dentry, &dentry->d_subdirs, n);
164 move_cursor(cursor, to ? &to->d_child : NULL);
165 inode_unlock_shared(dentry->d_inode);
166 }
167 }
168 return offset;
169}
170EXPORT_SYMBOL(dcache_dir_lseek);
171
172/* Relationship between i_mode and the DT_xxx types */
173static inline unsigned char dt_type(struct inode *inode)
174{
175 return (inode->i_mode >> 12) & 15;
176}
177
178/*
179 * Directory is locked and all positive dentries in it are safe, since
180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
181 * both impossible due to the lock on directory.
182 */
183
184int dcache_readdir(struct file *file, struct dir_context *ctx)
185{
186 struct dentry *dentry = file->f_path.dentry;
187 struct dentry *cursor = file->private_data;
188 struct list_head *p = &cursor->d_child;
189 struct dentry *next;
190 bool moved = false;
191
192 if (!dir_emit_dots(file, ctx))
193 return 0;
194
195 if (ctx->pos == 2)
196 p = &dentry->d_subdirs;
197 while ((next = next_positive(dentry, p, 1)) != NULL) {
198 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
199 d_inode(next)->i_ino, dt_type(d_inode(next))))
200 break;
201 moved = true;
202 p = &next->d_child;
203 ctx->pos++;
204 }
205 if (moved)
206 move_cursor(cursor, p);
207 return 0;
208}
209EXPORT_SYMBOL(dcache_readdir);
210
211ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
212{
213 return -EISDIR;
214}
215EXPORT_SYMBOL(generic_read_dir);
216
217const struct file_operations simple_dir_operations = {
218 .open = dcache_dir_open,
219 .release = dcache_dir_close,
220 .llseek = dcache_dir_lseek,
221 .read = generic_read_dir,
222 .iterate_shared = dcache_readdir,
223 .fsync = noop_fsync,
224};
225EXPORT_SYMBOL(simple_dir_operations);
226
227const struct inode_operations simple_dir_inode_operations = {
228 .lookup = simple_lookup,
229};
230EXPORT_SYMBOL(simple_dir_inode_operations);
231
232static const struct super_operations simple_super_operations = {
233 .statfs = simple_statfs,
234};
235
236/*
237 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
238 * will never be mountable)
239 */
240struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
241 const struct super_operations *ops, const struct xattr_handler **xattr,
242 const struct dentry_operations *dops, unsigned long magic)
243{
244 struct super_block *s;
245 struct dentry *dentry;
246 struct inode *root;
247 struct qstr d_name = QSTR_INIT(name, strlen(name));
248
249 s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
250 &init_user_ns, NULL);
251 if (IS_ERR(s))
252 return ERR_CAST(s);
253
254 s->s_maxbytes = MAX_LFS_FILESIZE;
255 s->s_blocksize = PAGE_SIZE;
256 s->s_blocksize_bits = PAGE_SHIFT;
257 s->s_magic = magic;
258 s->s_op = ops ? ops : &simple_super_operations;
259 s->s_xattr = xattr;
260 s->s_time_gran = 1;
261 root = new_inode(s);
262 if (!root)
263 goto Enomem;
264 /*
265 * since this is the first inode, make it number 1. New inodes created
266 * after this must take care not to collide with it (by passing
267 * max_reserved of 1 to iunique).
268 */
269 root->i_ino = 1;
270 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
271 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
272 dentry = __d_alloc(s, &d_name);
273 if (!dentry) {
274 iput(root);
275 goto Enomem;
276 }
277 d_instantiate(dentry, root);
278 s->s_root = dentry;
279 s->s_d_op = dops;
280 s->s_flags |= SB_ACTIVE;
281 return dget(s->s_root);
282
283Enomem:
284 deactivate_locked_super(s);
285 return ERR_PTR(-ENOMEM);
286}
287EXPORT_SYMBOL(mount_pseudo_xattr);
288
289int simple_open(struct inode *inode, struct file *file)
290{
291 if (inode->i_private)
292 file->private_data = inode->i_private;
293 return 0;
294}
295EXPORT_SYMBOL(simple_open);
296
297int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
298{
299 struct inode *inode = d_inode(old_dentry);
300
301 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
302 inc_nlink(inode);
303 ihold(inode);
304 dget(dentry);
305 d_instantiate(dentry, inode);
306 return 0;
307}
308EXPORT_SYMBOL(simple_link);
309
310int simple_empty(struct dentry *dentry)
311{
312 struct dentry *child;
313 int ret = 0;
314
315 spin_lock(&dentry->d_lock);
316 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
317 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
318 if (simple_positive(child)) {
319 spin_unlock(&child->d_lock);
320 goto out;
321 }
322 spin_unlock(&child->d_lock);
323 }
324 ret = 1;
325out:
326 spin_unlock(&dentry->d_lock);
327 return ret;
328}
329EXPORT_SYMBOL(simple_empty);
330
331int simple_unlink(struct inode *dir, struct dentry *dentry)
332{
333 struct inode *inode = d_inode(dentry);
334
335 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
336 drop_nlink(inode);
337 dput(dentry);
338 return 0;
339}
340EXPORT_SYMBOL(simple_unlink);
341
342int simple_rmdir(struct inode *dir, struct dentry *dentry)
343{
344 if (!simple_empty(dentry))
345 return -ENOTEMPTY;
346
347 drop_nlink(d_inode(dentry));
348 simple_unlink(dir, dentry);
349 drop_nlink(dir);
350 return 0;
351}
352EXPORT_SYMBOL(simple_rmdir);
353
354int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
355 struct inode *new_dir, struct dentry *new_dentry,
356 unsigned int flags)
357{
358 struct inode *inode = d_inode(old_dentry);
359 int they_are_dirs = d_is_dir(old_dentry);
360
361 if (flags & ~RENAME_NOREPLACE)
362 return -EINVAL;
363
364 if (!simple_empty(new_dentry))
365 return -ENOTEMPTY;
366
367 if (d_really_is_positive(new_dentry)) {
368 simple_unlink(new_dir, new_dentry);
369 if (they_are_dirs) {
370 drop_nlink(d_inode(new_dentry));
371 drop_nlink(old_dir);
372 }
373 } else if (they_are_dirs) {
374 drop_nlink(old_dir);
375 inc_nlink(new_dir);
376 }
377
378 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
379 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
380
381 return 0;
382}
383EXPORT_SYMBOL(simple_rename);
384
385/**
386 * simple_setattr - setattr for simple filesystem
387 * @dentry: dentry
388 * @iattr: iattr structure
389 *
390 * Returns 0 on success, -error on failure.
391 *
392 * simple_setattr is a simple ->setattr implementation without a proper
393 * implementation of size changes.
394 *
395 * It can either be used for in-memory filesystems or special files
396 * on simple regular filesystems. Anything that needs to change on-disk
397 * or wire state on size changes needs its own setattr method.
398 */
399int simple_setattr(struct dentry *dentry, struct iattr *iattr)
400{
401 struct inode *inode = d_inode(dentry);
402 int error;
403
404 error = setattr_prepare(dentry, iattr);
405 if (error)
406 return error;
407
408 if (iattr->ia_valid & ATTR_SIZE)
409 truncate_setsize(inode, iattr->ia_size);
410 setattr_copy(inode, iattr);
411 mark_inode_dirty(inode);
412 return 0;
413}
414EXPORT_SYMBOL(simple_setattr);
415
416int simple_readpage(struct file *file, struct page *page)
417{
418 clear_highpage(page);
419 flush_dcache_page(page);
420 SetPageUptodate(page);
421 unlock_page(page);
422 return 0;
423}
424EXPORT_SYMBOL(simple_readpage);
425
426int simple_write_begin(struct file *file, struct address_space *mapping,
427 loff_t pos, unsigned len, unsigned flags,
428 struct page **pagep, void **fsdata)
429{
430 struct page *page;
431 pgoff_t index;
432
433 index = pos >> PAGE_SHIFT;
434
435 page = grab_cache_page_write_begin(mapping, index, flags);
436 if (!page)
437 return -ENOMEM;
438
439 *pagep = page;
440
441 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
442 unsigned from = pos & (PAGE_SIZE - 1);
443
444 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
445 }
446 return 0;
447}
448EXPORT_SYMBOL(simple_write_begin);
449
450/**
451 * simple_write_end - .write_end helper for non-block-device FSes
452 * @available: See .write_end of address_space_operations
453 * @file: "
454 * @mapping: "
455 * @pos: "
456 * @len: "
457 * @copied: "
458 * @page: "
459 * @fsdata: "
460 *
461 * simple_write_end does the minimum needed for updating a page after writing is
462 * done. It has the same API signature as the .write_end of
463 * address_space_operations vector. So it can just be set onto .write_end for
464 * FSes that don't need any other processing. i_mutex is assumed to be held.
465 * Block based filesystems should use generic_write_end().
466 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
467 * is not called, so a filesystem that actually does store data in .write_inode
468 * should extend on what's done here with a call to mark_inode_dirty() in the
469 * case that i_size has changed.
470 *
471 * Use *ONLY* with simple_readpage()
472 */
473int simple_write_end(struct file *file, struct address_space *mapping,
474 loff_t pos, unsigned len, unsigned copied,
475 struct page *page, void *fsdata)
476{
477 struct inode *inode = page->mapping->host;
478 loff_t last_pos = pos + copied;
479
480 /* zero the stale part of the page if we did a short copy */
481 if (!PageUptodate(page)) {
482 if (copied < len) {
483 unsigned from = pos & (PAGE_SIZE - 1);
484
485 zero_user(page, from + copied, len - copied);
486 }
487 SetPageUptodate(page);
488 }
489 /*
490 * No need to use i_size_read() here, the i_size
491 * cannot change under us because we hold the i_mutex.
492 */
493 if (last_pos > inode->i_size)
494 i_size_write(inode, last_pos);
495
496 set_page_dirty(page);
497 unlock_page(page);
498 put_page(page);
499
500 return copied;
501}
502EXPORT_SYMBOL(simple_write_end);
503
504/*
505 * the inodes created here are not hashed. If you use iunique to generate
506 * unique inode values later for this filesystem, then you must take care
507 * to pass it an appropriate max_reserved value to avoid collisions.
508 */
509int simple_fill_super(struct super_block *s, unsigned long magic,
510 const struct tree_descr *files)
511{
512 struct inode *inode;
513 struct dentry *root;
514 struct dentry *dentry;
515 int i;
516
517 s->s_blocksize = PAGE_SIZE;
518 s->s_blocksize_bits = PAGE_SHIFT;
519 s->s_magic = magic;
520 s->s_op = &simple_super_operations;
521 s->s_time_gran = 1;
522
523 inode = new_inode(s);
524 if (!inode)
525 return -ENOMEM;
526 /*
527 * because the root inode is 1, the files array must not contain an
528 * entry at index 1
529 */
530 inode->i_ino = 1;
531 inode->i_mode = S_IFDIR | 0755;
532 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
533 inode->i_op = &simple_dir_inode_operations;
534 inode->i_fop = &simple_dir_operations;
535 set_nlink(inode, 2);
536 root = d_make_root(inode);
537 if (!root)
538 return -ENOMEM;
539 for (i = 0; !files->name || files->name[0]; i++, files++) {
540 if (!files->name)
541 continue;
542
543 /* warn if it tries to conflict with the root inode */
544 if (unlikely(i == 1))
545 printk(KERN_WARNING "%s: %s passed in a files array"
546 "with an index of 1!\n", __func__,
547 s->s_type->name);
548
549 dentry = d_alloc_name(root, files->name);
550 if (!dentry)
551 goto out;
552 inode = new_inode(s);
553 if (!inode) {
554 dput(dentry);
555 goto out;
556 }
557 inode->i_mode = S_IFREG | files->mode;
558 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
559 inode->i_fop = files->ops;
560 inode->i_ino = i;
561 d_add(dentry, inode);
562 }
563 s->s_root = root;
564 return 0;
565out:
566 d_genocide(root);
567 shrink_dcache_parent(root);
568 dput(root);
569 return -ENOMEM;
570}
571EXPORT_SYMBOL(simple_fill_super);
572
573static DEFINE_SPINLOCK(pin_fs_lock);
574
575int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
576{
577 struct vfsmount *mnt = NULL;
578 spin_lock(&pin_fs_lock);
579 if (unlikely(!*mount)) {
580 spin_unlock(&pin_fs_lock);
581 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
582 if (IS_ERR(mnt))
583 return PTR_ERR(mnt);
584 spin_lock(&pin_fs_lock);
585 if (!*mount)
586 *mount = mnt;
587 }
588 mntget(*mount);
589 ++*count;
590 spin_unlock(&pin_fs_lock);
591 mntput(mnt);
592 return 0;
593}
594EXPORT_SYMBOL(simple_pin_fs);
595
596void simple_release_fs(struct vfsmount **mount, int *count)
597{
598 struct vfsmount *mnt;
599 spin_lock(&pin_fs_lock);
600 mnt = *mount;
601 if (!--*count)
602 *mount = NULL;
603 spin_unlock(&pin_fs_lock);
604 mntput(mnt);
605}
606EXPORT_SYMBOL(simple_release_fs);
607
608/**
609 * simple_read_from_buffer - copy data from the buffer to user space
610 * @to: the user space buffer to read to
611 * @count: the maximum number of bytes to read
612 * @ppos: the current position in the buffer
613 * @from: the buffer to read from
614 * @available: the size of the buffer
615 *
616 * The simple_read_from_buffer() function reads up to @count bytes from the
617 * buffer @from at offset @ppos into the user space address starting at @to.
618 *
619 * On success, the number of bytes read is returned and the offset @ppos is
620 * advanced by this number, or negative value is returned on error.
621 **/
622ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
623 const void *from, size_t available)
624{
625 loff_t pos = *ppos;
626 size_t ret;
627
628 if (pos < 0)
629 return -EINVAL;
630 if (pos >= available || !count)
631 return 0;
632 if (count > available - pos)
633 count = available - pos;
634 ret = copy_to_user(to, from + pos, count);
635 if (ret == count)
636 return -EFAULT;
637 count -= ret;
638 *ppos = pos + count;
639 return count;
640}
641EXPORT_SYMBOL(simple_read_from_buffer);
642
643/**
644 * simple_write_to_buffer - copy data from user space to the buffer
645 * @to: the buffer to write to
646 * @available: the size of the buffer
647 * @ppos: the current position in the buffer
648 * @from: the user space buffer to read from
649 * @count: the maximum number of bytes to read
650 *
651 * The simple_write_to_buffer() function reads up to @count bytes from the user
652 * space address starting at @from into the buffer @to at offset @ppos.
653 *
654 * On success, the number of bytes written is returned and the offset @ppos is
655 * advanced by this number, or negative value is returned on error.
656 **/
657ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
658 const void __user *from, size_t count)
659{
660 loff_t pos = *ppos;
661 size_t res;
662
663 if (pos < 0)
664 return -EINVAL;
665 if (pos >= available || !count)
666 return 0;
667 if (count > available - pos)
668 count = available - pos;
669 res = copy_from_user(to + pos, from, count);
670 if (res == count)
671 return -EFAULT;
672 count -= res;
673 *ppos = pos + count;
674 return count;
675}
676EXPORT_SYMBOL(simple_write_to_buffer);
677
678/**
679 * memory_read_from_buffer - copy data from the buffer
680 * @to: the kernel space buffer to read to
681 * @count: the maximum number of bytes to read
682 * @ppos: the current position in the buffer
683 * @from: the buffer to read from
684 * @available: the size of the buffer
685 *
686 * The memory_read_from_buffer() function reads up to @count bytes from the
687 * buffer @from at offset @ppos into the kernel space address starting at @to.
688 *
689 * On success, the number of bytes read is returned and the offset @ppos is
690 * advanced by this number, or negative value is returned on error.
691 **/
692ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
693 const void *from, size_t available)
694{
695 loff_t pos = *ppos;
696
697 if (pos < 0)
698 return -EINVAL;
699 if (pos >= available)
700 return 0;
701 if (count > available - pos)
702 count = available - pos;
703 memcpy(to, from + pos, count);
704 *ppos = pos + count;
705
706 return count;
707}
708EXPORT_SYMBOL(memory_read_from_buffer);
709
710/*
711 * Transaction based IO.
712 * The file expects a single write which triggers the transaction, and then
713 * possibly a read which collects the result - which is stored in a
714 * file-local buffer.
715 */
716
717void simple_transaction_set(struct file *file, size_t n)
718{
719 struct simple_transaction_argresp *ar = file->private_data;
720
721 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
722
723 /*
724 * The barrier ensures that ar->size will really remain zero until
725 * ar->data is ready for reading.
726 */
727 smp_mb();
728 ar->size = n;
729}
730EXPORT_SYMBOL(simple_transaction_set);
731
732char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
733{
734 struct simple_transaction_argresp *ar;
735 static DEFINE_SPINLOCK(simple_transaction_lock);
736
737 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
738 return ERR_PTR(-EFBIG);
739
740 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
741 if (!ar)
742 return ERR_PTR(-ENOMEM);
743
744 spin_lock(&simple_transaction_lock);
745
746 /* only one write allowed per open */
747 if (file->private_data) {
748 spin_unlock(&simple_transaction_lock);
749 free_page((unsigned long)ar);
750 return ERR_PTR(-EBUSY);
751 }
752
753 file->private_data = ar;
754
755 spin_unlock(&simple_transaction_lock);
756
757 if (copy_from_user(ar->data, buf, size))
758 return ERR_PTR(-EFAULT);
759
760 return ar->data;
761}
762EXPORT_SYMBOL(simple_transaction_get);
763
764ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
765{
766 struct simple_transaction_argresp *ar = file->private_data;
767
768 if (!ar)
769 return 0;
770 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
771}
772EXPORT_SYMBOL(simple_transaction_read);
773
774int simple_transaction_release(struct inode *inode, struct file *file)
775{
776 free_page((unsigned long)file->private_data);
777 return 0;
778}
779EXPORT_SYMBOL(simple_transaction_release);
780
781/* Simple attribute files */
782
783struct simple_attr {
784 int (*get)(void *, u64 *);
785 int (*set)(void *, u64);
786 char get_buf[24]; /* enough to store a u64 and "\n\0" */
787 char set_buf[24];
788 void *data;
789 const char *fmt; /* format for read operation */
790 struct mutex mutex; /* protects access to these buffers */
791};
792
793/* simple_attr_open is called by an actual attribute open file operation
794 * to set the attribute specific access operations. */
795int simple_attr_open(struct inode *inode, struct file *file,
796 int (*get)(void *, u64 *), int (*set)(void *, u64),
797 const char *fmt)
798{
799 struct simple_attr *attr;
800
801 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
802 if (!attr)
803 return -ENOMEM;
804
805 attr->get = get;
806 attr->set = set;
807 attr->data = inode->i_private;
808 attr->fmt = fmt;
809 mutex_init(&attr->mutex);
810
811 file->private_data = attr;
812
813 return nonseekable_open(inode, file);
814}
815EXPORT_SYMBOL_GPL(simple_attr_open);
816
817int simple_attr_release(struct inode *inode, struct file *file)
818{
819 kfree(file->private_data);
820 return 0;
821}
822EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
823
824/* read from the buffer that is filled with the get function */
825ssize_t simple_attr_read(struct file *file, char __user *buf,
826 size_t len, loff_t *ppos)
827{
828 struct simple_attr *attr;
829 size_t size;
830 ssize_t ret;
831
832 attr = file->private_data;
833
834 if (!attr->get)
835 return -EACCES;
836
837 ret = mutex_lock_interruptible(&attr->mutex);
838 if (ret)
839 return ret;
840
841 if (*ppos) { /* continued read */
842 size = strlen(attr->get_buf);
843 } else { /* first read */
844 u64 val;
845 ret = attr->get(attr->data, &val);
846 if (ret)
847 goto out;
848
849 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
850 attr->fmt, (unsigned long long)val);
851 }
852
853 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
854out:
855 mutex_unlock(&attr->mutex);
856 return ret;
857}
858EXPORT_SYMBOL_GPL(simple_attr_read);
859
860/* interpret the buffer as a number to call the set function with */
861ssize_t simple_attr_write(struct file *file, const char __user *buf,
862 size_t len, loff_t *ppos)
863{
864 struct simple_attr *attr;
865 u64 val;
866 size_t size;
867 ssize_t ret;
868
869 attr = file->private_data;
870 if (!attr->set)
871 return -EACCES;
872
873 ret = mutex_lock_interruptible(&attr->mutex);
874 if (ret)
875 return ret;
876
877 ret = -EFAULT;
878 size = min(sizeof(attr->set_buf) - 1, len);
879 if (copy_from_user(attr->set_buf, buf, size))
880 goto out;
881
882 attr->set_buf[size] = '\0';
883 val = simple_strtoll(attr->set_buf, NULL, 0);
884 ret = attr->set(attr->data, val);
885 if (ret == 0)
886 ret = len; /* on success, claim we got the whole input */
887out:
888 mutex_unlock(&attr->mutex);
889 return ret;
890}
891EXPORT_SYMBOL_GPL(simple_attr_write);
892
893/**
894 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
895 * @sb: filesystem to do the file handle conversion on
896 * @fid: file handle to convert
897 * @fh_len: length of the file handle in bytes
898 * @fh_type: type of file handle
899 * @get_inode: filesystem callback to retrieve inode
900 *
901 * This function decodes @fid as long as it has one of the well-known
902 * Linux filehandle types and calls @get_inode on it to retrieve the
903 * inode for the object specified in the file handle.
904 */
905struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
906 int fh_len, int fh_type, struct inode *(*get_inode)
907 (struct super_block *sb, u64 ino, u32 gen))
908{
909 struct inode *inode = NULL;
910
911 if (fh_len < 2)
912 return NULL;
913
914 switch (fh_type) {
915 case FILEID_INO32_GEN:
916 case FILEID_INO32_GEN_PARENT:
917 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
918 break;
919 }
920
921 return d_obtain_alias(inode);
922}
923EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
924
925/**
926 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
927 * @sb: filesystem to do the file handle conversion on
928 * @fid: file handle to convert
929 * @fh_len: length of the file handle in bytes
930 * @fh_type: type of file handle
931 * @get_inode: filesystem callback to retrieve inode
932 *
933 * This function decodes @fid as long as it has one of the well-known
934 * Linux filehandle types and calls @get_inode on it to retrieve the
935 * inode for the _parent_ object specified in the file handle if it
936 * is specified in the file handle, or NULL otherwise.
937 */
938struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
939 int fh_len, int fh_type, struct inode *(*get_inode)
940 (struct super_block *sb, u64 ino, u32 gen))
941{
942 struct inode *inode = NULL;
943
944 if (fh_len <= 2)
945 return NULL;
946
947 switch (fh_type) {
948 case FILEID_INO32_GEN_PARENT:
949 inode = get_inode(sb, fid->i32.parent_ino,
950 (fh_len > 3 ? fid->i32.parent_gen : 0));
951 break;
952 }
953
954 return d_obtain_alias(inode);
955}
956EXPORT_SYMBOL_GPL(generic_fh_to_parent);
957
958/**
959 * __generic_file_fsync - generic fsync implementation for simple filesystems
960 *
961 * @file: file to synchronize
962 * @start: start offset in bytes
963 * @end: end offset in bytes (inclusive)
964 * @datasync: only synchronize essential metadata if true
965 *
966 * This is a generic implementation of the fsync method for simple
967 * filesystems which track all non-inode metadata in the buffers list
968 * hanging off the address_space structure.
969 */
970int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
971 int datasync)
972{
973 struct inode *inode = file->f_mapping->host;
974 int err;
975 int ret;
976
977 err = file_write_and_wait_range(file, start, end);
978 if (err)
979 return err;
980
981 inode_lock(inode);
982 ret = sync_mapping_buffers(inode->i_mapping);
983 if (!(inode->i_state & I_DIRTY_ALL))
984 goto out;
985 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
986 goto out;
987
988 err = sync_inode_metadata(inode, 1);
989 if (ret == 0)
990 ret = err;
991
992out:
993 inode_unlock(inode);
994 /* check and advance again to catch errors after syncing out buffers */
995 err = file_check_and_advance_wb_err(file);
996 if (ret == 0)
997 ret = err;
998 return ret;
999}
1000EXPORT_SYMBOL(__generic_file_fsync);
1001
1002/**
1003 * generic_file_fsync - generic fsync implementation for simple filesystems
1004 * with flush
1005 * @file: file to synchronize
1006 * @start: start offset in bytes
1007 * @end: end offset in bytes (inclusive)
1008 * @datasync: only synchronize essential metadata if true
1009 *
1010 */
1011
1012int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1013 int datasync)
1014{
1015 struct inode *inode = file->f_mapping->host;
1016 int err;
1017
1018 err = __generic_file_fsync(file, start, end, datasync);
1019 if (err)
1020 return err;
1021 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1022}
1023EXPORT_SYMBOL(generic_file_fsync);
1024
1025/**
1026 * generic_check_addressable - Check addressability of file system
1027 * @blocksize_bits: log of file system block size
1028 * @num_blocks: number of blocks in file system
1029 *
1030 * Determine whether a file system with @num_blocks blocks (and a
1031 * block size of 2**@blocksize_bits) is addressable by the sector_t
1032 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1033 */
1034int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1035{
1036 u64 last_fs_block = num_blocks - 1;
1037 u64 last_fs_page =
1038 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1039
1040 if (unlikely(num_blocks == 0))
1041 return 0;
1042
1043 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1044 return -EINVAL;
1045
1046 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1047 (last_fs_page > (pgoff_t)(~0ULL))) {
1048 return -EFBIG;
1049 }
1050 return 0;
1051}
1052EXPORT_SYMBOL(generic_check_addressable);
1053
1054/*
1055 * No-op implementation of ->fsync for in-memory filesystems.
1056 */
1057int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1058{
1059 return 0;
1060}
1061EXPORT_SYMBOL(noop_fsync);
1062
1063int noop_set_page_dirty(struct page *page)
1064{
1065 /*
1066 * Unlike __set_page_dirty_no_writeback that handles dirty page
1067 * tracking in the page object, dax does all dirty tracking in
1068 * the inode address_space in response to mkwrite faults. In the
1069 * dax case we only need to worry about potentially dirty CPU
1070 * caches, not dirty page cache pages to write back.
1071 *
1072 * This callback is defined to prevent fallback to
1073 * __set_page_dirty_buffers() in set_page_dirty().
1074 */
1075 return 0;
1076}
1077EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1078
1079void noop_invalidatepage(struct page *page, unsigned int offset,
1080 unsigned int length)
1081{
1082 /*
1083 * There is no page cache to invalidate in the dax case, however
1084 * we need this callback defined to prevent falling back to
1085 * block_invalidatepage() in do_invalidatepage().
1086 */
1087}
1088EXPORT_SYMBOL_GPL(noop_invalidatepage);
1089
1090ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1091{
1092 /*
1093 * iomap based filesystems support direct I/O without need for
1094 * this callback. However, it still needs to be set in
1095 * inode->a_ops so that open/fcntl know that direct I/O is
1096 * generally supported.
1097 */
1098 return -EINVAL;
1099}
1100EXPORT_SYMBOL_GPL(noop_direct_IO);
1101
1102/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1103void kfree_link(void *p)
1104{
1105 kfree(p);
1106}
1107EXPORT_SYMBOL(kfree_link);
1108
1109/*
1110 * nop .set_page_dirty method so that people can use .page_mkwrite on
1111 * anon inodes.
1112 */
1113static int anon_set_page_dirty(struct page *page)
1114{
1115 return 0;
1116};
1117
1118/*
1119 * A single inode exists for all anon_inode files. Contrary to pipes,
1120 * anon_inode inodes have no associated per-instance data, so we need
1121 * only allocate one of them.
1122 */
1123struct inode *alloc_anon_inode(struct super_block *s)
1124{
1125 static const struct address_space_operations anon_aops = {
1126 .set_page_dirty = anon_set_page_dirty,
1127 };
1128 struct inode *inode = new_inode_pseudo(s);
1129
1130 if (!inode)
1131 return ERR_PTR(-ENOMEM);
1132
1133 inode->i_ino = get_next_ino();
1134 inode->i_mapping->a_ops = &anon_aops;
1135
1136 /*
1137 * Mark the inode dirty from the very beginning,
1138 * that way it will never be moved to the dirty
1139 * list because mark_inode_dirty() will think
1140 * that it already _is_ on the dirty list.
1141 */
1142 inode->i_state = I_DIRTY;
1143 inode->i_mode = S_IRUSR | S_IWUSR;
1144 inode->i_uid = current_fsuid();
1145 inode->i_gid = current_fsgid();
1146 inode->i_flags |= S_PRIVATE;
1147 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1148 return inode;
1149}
1150EXPORT_SYMBOL(alloc_anon_inode);
1151
1152/**
1153 * simple_nosetlease - generic helper for prohibiting leases
1154 * @filp: file pointer
1155 * @arg: type of lease to obtain
1156 * @flp: new lease supplied for insertion
1157 * @priv: private data for lm_setup operation
1158 *
1159 * Generic helper for filesystems that do not wish to allow leases to be set.
1160 * All arguments are ignored and it just returns -EINVAL.
1161 */
1162int
1163simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1164 void **priv)
1165{
1166 return -EINVAL;
1167}
1168EXPORT_SYMBOL(simple_nosetlease);
1169
1170const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1171 struct delayed_call *done)
1172{
1173 return inode->i_link;
1174}
1175EXPORT_SYMBOL(simple_get_link);
1176
1177const struct inode_operations simple_symlink_inode_operations = {
1178 .get_link = simple_get_link,
1179};
1180EXPORT_SYMBOL(simple_symlink_inode_operations);
1181
1182/*
1183 * Operations for a permanently empty directory.
1184 */
1185static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1186{
1187 return ERR_PTR(-ENOENT);
1188}
1189
1190static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1191 u32 request_mask, unsigned int query_flags)
1192{
1193 struct inode *inode = d_inode(path->dentry);
1194 generic_fillattr(inode, stat);
1195 return 0;
1196}
1197
1198static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1199{
1200 return -EPERM;
1201}
1202
1203static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1204{
1205 return -EOPNOTSUPP;
1206}
1207
1208static const struct inode_operations empty_dir_inode_operations = {
1209 .lookup = empty_dir_lookup,
1210 .permission = generic_permission,
1211 .setattr = empty_dir_setattr,
1212 .getattr = empty_dir_getattr,
1213 .listxattr = empty_dir_listxattr,
1214};
1215
1216static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1217{
1218 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1219 return generic_file_llseek_size(file, offset, whence, 2, 2);
1220}
1221
1222static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1223{
1224 dir_emit_dots(file, ctx);
1225 return 0;
1226}
1227
1228static const struct file_operations empty_dir_operations = {
1229 .llseek = empty_dir_llseek,
1230 .read = generic_read_dir,
1231 .iterate_shared = empty_dir_readdir,
1232 .fsync = noop_fsync,
1233};
1234
1235
1236void make_empty_dir_inode(struct inode *inode)
1237{
1238 set_nlink(inode, 2);
1239 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1240 inode->i_uid = GLOBAL_ROOT_UID;
1241 inode->i_gid = GLOBAL_ROOT_GID;
1242 inode->i_rdev = 0;
1243 inode->i_size = 0;
1244 inode->i_blkbits = PAGE_SHIFT;
1245 inode->i_blocks = 0;
1246
1247 inode->i_op = &empty_dir_inode_operations;
1248 inode->i_opflags &= ~IOP_XATTR;
1249 inode->i_fop = &empty_dir_operations;
1250}
1251
1252bool is_empty_dir_inode(struct inode *inode)
1253{
1254 return (inode->i_fop == &empty_dir_operations) &&
1255 (inode->i_op == &empty_dir_inode_operations);
1256}
1/*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6#include <linux/module.h>
7#include <linux/pagemap.h>
8#include <linux/slab.h>
9#include <linux/mount.h>
10#include <linux/vfs.h>
11#include <linux/quotaops.h>
12#include <linux/mutex.h>
13#include <linux/exportfs.h>
14#include <linux/writeback.h>
15#include <linux/buffer_head.h>
16
17#include <asm/uaccess.h>
18
19#include "internal.h"
20
21static inline int simple_positive(struct dentry *dentry)
22{
23 return dentry->d_inode && !d_unhashed(dentry);
24}
25
26int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 struct kstat *stat)
28{
29 struct inode *inode = dentry->d_inode;
30 generic_fillattr(inode, stat);
31 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 return 0;
33}
34
35int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
36{
37 buf->f_type = dentry->d_sb->s_magic;
38 buf->f_bsize = PAGE_CACHE_SIZE;
39 buf->f_namelen = NAME_MAX;
40 return 0;
41}
42
43/*
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
46 */
47static int simple_delete_dentry(const struct dentry *dentry)
48{
49 return 1;
50}
51
52/*
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
55 */
56struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
57{
58 static const struct dentry_operations simple_dentry_operations = {
59 .d_delete = simple_delete_dentry,
60 };
61
62 if (dentry->d_name.len > NAME_MAX)
63 return ERR_PTR(-ENAMETOOLONG);
64 d_set_d_op(dentry, &simple_dentry_operations);
65 d_add(dentry, NULL);
66 return NULL;
67}
68
69int dcache_dir_open(struct inode *inode, struct file *file)
70{
71 static struct qstr cursor_name = {.len = 1, .name = "."};
72
73 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
74
75 return file->private_data ? 0 : -ENOMEM;
76}
77
78int dcache_dir_close(struct inode *inode, struct file *file)
79{
80 dput(file->private_data);
81 return 0;
82}
83
84loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
85{
86 struct dentry *dentry = file->f_path.dentry;
87 mutex_lock(&dentry->d_inode->i_mutex);
88 switch (origin) {
89 case 1:
90 offset += file->f_pos;
91 case 0:
92 if (offset >= 0)
93 break;
94 default:
95 mutex_unlock(&dentry->d_inode->i_mutex);
96 return -EINVAL;
97 }
98 if (offset != file->f_pos) {
99 file->f_pos = offset;
100 if (file->f_pos >= 2) {
101 struct list_head *p;
102 struct dentry *cursor = file->private_data;
103 loff_t n = file->f_pos - 2;
104
105 spin_lock(&dentry->d_lock);
106 /* d_lock not required for cursor */
107 list_del(&cursor->d_u.d_child);
108 p = dentry->d_subdirs.next;
109 while (n && p != &dentry->d_subdirs) {
110 struct dentry *next;
111 next = list_entry(p, struct dentry, d_u.d_child);
112 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
113 if (simple_positive(next))
114 n--;
115 spin_unlock(&next->d_lock);
116 p = p->next;
117 }
118 list_add_tail(&cursor->d_u.d_child, p);
119 spin_unlock(&dentry->d_lock);
120 }
121 }
122 mutex_unlock(&dentry->d_inode->i_mutex);
123 return offset;
124}
125
126/* Relationship between i_mode and the DT_xxx types */
127static inline unsigned char dt_type(struct inode *inode)
128{
129 return (inode->i_mode >> 12) & 15;
130}
131
132/*
133 * Directory is locked and all positive dentries in it are safe, since
134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
135 * both impossible due to the lock on directory.
136 */
137
138int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
139{
140 struct dentry *dentry = filp->f_path.dentry;
141 struct dentry *cursor = filp->private_data;
142 struct list_head *p, *q = &cursor->d_u.d_child;
143 ino_t ino;
144 int i = filp->f_pos;
145
146 switch (i) {
147 case 0:
148 ino = dentry->d_inode->i_ino;
149 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
150 break;
151 filp->f_pos++;
152 i++;
153 /* fallthrough */
154 case 1:
155 ino = parent_ino(dentry);
156 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
157 break;
158 filp->f_pos++;
159 i++;
160 /* fallthrough */
161 default:
162 spin_lock(&dentry->d_lock);
163 if (filp->f_pos == 2)
164 list_move(q, &dentry->d_subdirs);
165
166 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
167 struct dentry *next;
168 next = list_entry(p, struct dentry, d_u.d_child);
169 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
170 if (!simple_positive(next)) {
171 spin_unlock(&next->d_lock);
172 continue;
173 }
174
175 spin_unlock(&next->d_lock);
176 spin_unlock(&dentry->d_lock);
177 if (filldir(dirent, next->d_name.name,
178 next->d_name.len, filp->f_pos,
179 next->d_inode->i_ino,
180 dt_type(next->d_inode)) < 0)
181 return 0;
182 spin_lock(&dentry->d_lock);
183 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
184 /* next is still alive */
185 list_move(q, p);
186 spin_unlock(&next->d_lock);
187 p = q;
188 filp->f_pos++;
189 }
190 spin_unlock(&dentry->d_lock);
191 }
192 return 0;
193}
194
195ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
196{
197 return -EISDIR;
198}
199
200const struct file_operations simple_dir_operations = {
201 .open = dcache_dir_open,
202 .release = dcache_dir_close,
203 .llseek = dcache_dir_lseek,
204 .read = generic_read_dir,
205 .readdir = dcache_readdir,
206 .fsync = noop_fsync,
207};
208
209const struct inode_operations simple_dir_inode_operations = {
210 .lookup = simple_lookup,
211};
212
213static const struct super_operations simple_super_operations = {
214 .statfs = simple_statfs,
215};
216
217/*
218 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
219 * will never be mountable)
220 */
221struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
222 const struct super_operations *ops,
223 const struct dentry_operations *dops, unsigned long magic)
224{
225 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
226 struct dentry *dentry;
227 struct inode *root;
228 struct qstr d_name = {.name = name, .len = strlen(name)};
229
230 if (IS_ERR(s))
231 return ERR_CAST(s);
232
233 s->s_flags = MS_NOUSER;
234 s->s_maxbytes = MAX_LFS_FILESIZE;
235 s->s_blocksize = PAGE_SIZE;
236 s->s_blocksize_bits = PAGE_SHIFT;
237 s->s_magic = magic;
238 s->s_op = ops ? ops : &simple_super_operations;
239 s->s_time_gran = 1;
240 root = new_inode(s);
241 if (!root)
242 goto Enomem;
243 /*
244 * since this is the first inode, make it number 1. New inodes created
245 * after this must take care not to collide with it (by passing
246 * max_reserved of 1 to iunique).
247 */
248 root->i_ino = 1;
249 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
250 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
251 dentry = __d_alloc(s, &d_name);
252 if (!dentry) {
253 iput(root);
254 goto Enomem;
255 }
256 d_instantiate(dentry, root);
257 s->s_root = dentry;
258 s->s_d_op = dops;
259 s->s_flags |= MS_ACTIVE;
260 return dget(s->s_root);
261
262Enomem:
263 deactivate_locked_super(s);
264 return ERR_PTR(-ENOMEM);
265}
266
267int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
268{
269 struct inode *inode = old_dentry->d_inode;
270
271 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
272 inc_nlink(inode);
273 ihold(inode);
274 dget(dentry);
275 d_instantiate(dentry, inode);
276 return 0;
277}
278
279int simple_empty(struct dentry *dentry)
280{
281 struct dentry *child;
282 int ret = 0;
283
284 spin_lock(&dentry->d_lock);
285 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
286 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 if (simple_positive(child)) {
288 spin_unlock(&child->d_lock);
289 goto out;
290 }
291 spin_unlock(&child->d_lock);
292 }
293 ret = 1;
294out:
295 spin_unlock(&dentry->d_lock);
296 return ret;
297}
298
299int simple_unlink(struct inode *dir, struct dentry *dentry)
300{
301 struct inode *inode = dentry->d_inode;
302
303 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
304 drop_nlink(inode);
305 dput(dentry);
306 return 0;
307}
308
309int simple_rmdir(struct inode *dir, struct dentry *dentry)
310{
311 if (!simple_empty(dentry))
312 return -ENOTEMPTY;
313
314 drop_nlink(dentry->d_inode);
315 simple_unlink(dir, dentry);
316 drop_nlink(dir);
317 return 0;
318}
319
320int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
321 struct inode *new_dir, struct dentry *new_dentry)
322{
323 struct inode *inode = old_dentry->d_inode;
324 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
325
326 if (!simple_empty(new_dentry))
327 return -ENOTEMPTY;
328
329 if (new_dentry->d_inode) {
330 simple_unlink(new_dir, new_dentry);
331 if (they_are_dirs) {
332 drop_nlink(new_dentry->d_inode);
333 drop_nlink(old_dir);
334 }
335 } else if (they_are_dirs) {
336 drop_nlink(old_dir);
337 inc_nlink(new_dir);
338 }
339
340 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
341 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
342
343 return 0;
344}
345
346/**
347 * simple_setattr - setattr for simple filesystem
348 * @dentry: dentry
349 * @iattr: iattr structure
350 *
351 * Returns 0 on success, -error on failure.
352 *
353 * simple_setattr is a simple ->setattr implementation without a proper
354 * implementation of size changes.
355 *
356 * It can either be used for in-memory filesystems or special files
357 * on simple regular filesystems. Anything that needs to change on-disk
358 * or wire state on size changes needs its own setattr method.
359 */
360int simple_setattr(struct dentry *dentry, struct iattr *iattr)
361{
362 struct inode *inode = dentry->d_inode;
363 int error;
364
365 WARN_ON_ONCE(inode->i_op->truncate);
366
367 error = inode_change_ok(inode, iattr);
368 if (error)
369 return error;
370
371 if (iattr->ia_valid & ATTR_SIZE)
372 truncate_setsize(inode, iattr->ia_size);
373 setattr_copy(inode, iattr);
374 mark_inode_dirty(inode);
375 return 0;
376}
377EXPORT_SYMBOL(simple_setattr);
378
379int simple_readpage(struct file *file, struct page *page)
380{
381 clear_highpage(page);
382 flush_dcache_page(page);
383 SetPageUptodate(page);
384 unlock_page(page);
385 return 0;
386}
387
388int simple_write_begin(struct file *file, struct address_space *mapping,
389 loff_t pos, unsigned len, unsigned flags,
390 struct page **pagep, void **fsdata)
391{
392 struct page *page;
393 pgoff_t index;
394
395 index = pos >> PAGE_CACHE_SHIFT;
396
397 page = grab_cache_page_write_begin(mapping, index, flags);
398 if (!page)
399 return -ENOMEM;
400
401 *pagep = page;
402
403 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
404 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
405
406 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
407 }
408 return 0;
409}
410
411/**
412 * simple_write_end - .write_end helper for non-block-device FSes
413 * @available: See .write_end of address_space_operations
414 * @file: "
415 * @mapping: "
416 * @pos: "
417 * @len: "
418 * @copied: "
419 * @page: "
420 * @fsdata: "
421 *
422 * simple_write_end does the minimum needed for updating a page after writing is
423 * done. It has the same API signature as the .write_end of
424 * address_space_operations vector. So it can just be set onto .write_end for
425 * FSes that don't need any other processing. i_mutex is assumed to be held.
426 * Block based filesystems should use generic_write_end().
427 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
428 * is not called, so a filesystem that actually does store data in .write_inode
429 * should extend on what's done here with a call to mark_inode_dirty() in the
430 * case that i_size has changed.
431 */
432int simple_write_end(struct file *file, struct address_space *mapping,
433 loff_t pos, unsigned len, unsigned copied,
434 struct page *page, void *fsdata)
435{
436 struct inode *inode = page->mapping->host;
437 loff_t last_pos = pos + copied;
438
439 /* zero the stale part of the page if we did a short copy */
440 if (copied < len) {
441 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
442
443 zero_user(page, from + copied, len - copied);
444 }
445
446 if (!PageUptodate(page))
447 SetPageUptodate(page);
448 /*
449 * No need to use i_size_read() here, the i_size
450 * cannot change under us because we hold the i_mutex.
451 */
452 if (last_pos > inode->i_size)
453 i_size_write(inode, last_pos);
454
455 set_page_dirty(page);
456 unlock_page(page);
457 page_cache_release(page);
458
459 return copied;
460}
461
462/*
463 * the inodes created here are not hashed. If you use iunique to generate
464 * unique inode values later for this filesystem, then you must take care
465 * to pass it an appropriate max_reserved value to avoid collisions.
466 */
467int simple_fill_super(struct super_block *s, unsigned long magic,
468 struct tree_descr *files)
469{
470 struct inode *inode;
471 struct dentry *root;
472 struct dentry *dentry;
473 int i;
474
475 s->s_blocksize = PAGE_CACHE_SIZE;
476 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
477 s->s_magic = magic;
478 s->s_op = &simple_super_operations;
479 s->s_time_gran = 1;
480
481 inode = new_inode(s);
482 if (!inode)
483 return -ENOMEM;
484 /*
485 * because the root inode is 1, the files array must not contain an
486 * entry at index 1
487 */
488 inode->i_ino = 1;
489 inode->i_mode = S_IFDIR | 0755;
490 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
491 inode->i_op = &simple_dir_inode_operations;
492 inode->i_fop = &simple_dir_operations;
493 inode->i_nlink = 2;
494 root = d_alloc_root(inode);
495 if (!root) {
496 iput(inode);
497 return -ENOMEM;
498 }
499 for (i = 0; !files->name || files->name[0]; i++, files++) {
500 if (!files->name)
501 continue;
502
503 /* warn if it tries to conflict with the root inode */
504 if (unlikely(i == 1))
505 printk(KERN_WARNING "%s: %s passed in a files array"
506 "with an index of 1!\n", __func__,
507 s->s_type->name);
508
509 dentry = d_alloc_name(root, files->name);
510 if (!dentry)
511 goto out;
512 inode = new_inode(s);
513 if (!inode)
514 goto out;
515 inode->i_mode = S_IFREG | files->mode;
516 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
517 inode->i_fop = files->ops;
518 inode->i_ino = i;
519 d_add(dentry, inode);
520 }
521 s->s_root = root;
522 return 0;
523out:
524 d_genocide(root);
525 dput(root);
526 return -ENOMEM;
527}
528
529static DEFINE_SPINLOCK(pin_fs_lock);
530
531int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
532{
533 struct vfsmount *mnt = NULL;
534 spin_lock(&pin_fs_lock);
535 if (unlikely(!*mount)) {
536 spin_unlock(&pin_fs_lock);
537 mnt = vfs_kern_mount(type, 0, type->name, NULL);
538 if (IS_ERR(mnt))
539 return PTR_ERR(mnt);
540 spin_lock(&pin_fs_lock);
541 if (!*mount)
542 *mount = mnt;
543 }
544 mntget(*mount);
545 ++*count;
546 spin_unlock(&pin_fs_lock);
547 mntput(mnt);
548 return 0;
549}
550
551void simple_release_fs(struct vfsmount **mount, int *count)
552{
553 struct vfsmount *mnt;
554 spin_lock(&pin_fs_lock);
555 mnt = *mount;
556 if (!--*count)
557 *mount = NULL;
558 spin_unlock(&pin_fs_lock);
559 mntput(mnt);
560}
561
562/**
563 * simple_read_from_buffer - copy data from the buffer to user space
564 * @to: the user space buffer to read to
565 * @count: the maximum number of bytes to read
566 * @ppos: the current position in the buffer
567 * @from: the buffer to read from
568 * @available: the size of the buffer
569 *
570 * The simple_read_from_buffer() function reads up to @count bytes from the
571 * buffer @from at offset @ppos into the user space address starting at @to.
572 *
573 * On success, the number of bytes read is returned and the offset @ppos is
574 * advanced by this number, or negative value is returned on error.
575 **/
576ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
577 const void *from, size_t available)
578{
579 loff_t pos = *ppos;
580 size_t ret;
581
582 if (pos < 0)
583 return -EINVAL;
584 if (pos >= available || !count)
585 return 0;
586 if (count > available - pos)
587 count = available - pos;
588 ret = copy_to_user(to, from + pos, count);
589 if (ret == count)
590 return -EFAULT;
591 count -= ret;
592 *ppos = pos + count;
593 return count;
594}
595
596/**
597 * simple_write_to_buffer - copy data from user space to the buffer
598 * @to: the buffer to write to
599 * @available: the size of the buffer
600 * @ppos: the current position in the buffer
601 * @from: the user space buffer to read from
602 * @count: the maximum number of bytes to read
603 *
604 * The simple_write_to_buffer() function reads up to @count bytes from the user
605 * space address starting at @from into the buffer @to at offset @ppos.
606 *
607 * On success, the number of bytes written is returned and the offset @ppos is
608 * advanced by this number, or negative value is returned on error.
609 **/
610ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
611 const void __user *from, size_t count)
612{
613 loff_t pos = *ppos;
614 size_t res;
615
616 if (pos < 0)
617 return -EINVAL;
618 if (pos >= available || !count)
619 return 0;
620 if (count > available - pos)
621 count = available - pos;
622 res = copy_from_user(to + pos, from, count);
623 if (res == count)
624 return -EFAULT;
625 count -= res;
626 *ppos = pos + count;
627 return count;
628}
629
630/**
631 * memory_read_from_buffer - copy data from the buffer
632 * @to: the kernel space buffer to read to
633 * @count: the maximum number of bytes to read
634 * @ppos: the current position in the buffer
635 * @from: the buffer to read from
636 * @available: the size of the buffer
637 *
638 * The memory_read_from_buffer() function reads up to @count bytes from the
639 * buffer @from at offset @ppos into the kernel space address starting at @to.
640 *
641 * On success, the number of bytes read is returned and the offset @ppos is
642 * advanced by this number, or negative value is returned on error.
643 **/
644ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
645 const void *from, size_t available)
646{
647 loff_t pos = *ppos;
648
649 if (pos < 0)
650 return -EINVAL;
651 if (pos >= available)
652 return 0;
653 if (count > available - pos)
654 count = available - pos;
655 memcpy(to, from + pos, count);
656 *ppos = pos + count;
657
658 return count;
659}
660
661/*
662 * Transaction based IO.
663 * The file expects a single write which triggers the transaction, and then
664 * possibly a read which collects the result - which is stored in a
665 * file-local buffer.
666 */
667
668void simple_transaction_set(struct file *file, size_t n)
669{
670 struct simple_transaction_argresp *ar = file->private_data;
671
672 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
673
674 /*
675 * The barrier ensures that ar->size will really remain zero until
676 * ar->data is ready for reading.
677 */
678 smp_mb();
679 ar->size = n;
680}
681
682char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
683{
684 struct simple_transaction_argresp *ar;
685 static DEFINE_SPINLOCK(simple_transaction_lock);
686
687 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
688 return ERR_PTR(-EFBIG);
689
690 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
691 if (!ar)
692 return ERR_PTR(-ENOMEM);
693
694 spin_lock(&simple_transaction_lock);
695
696 /* only one write allowed per open */
697 if (file->private_data) {
698 spin_unlock(&simple_transaction_lock);
699 free_page((unsigned long)ar);
700 return ERR_PTR(-EBUSY);
701 }
702
703 file->private_data = ar;
704
705 spin_unlock(&simple_transaction_lock);
706
707 if (copy_from_user(ar->data, buf, size))
708 return ERR_PTR(-EFAULT);
709
710 return ar->data;
711}
712
713ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
714{
715 struct simple_transaction_argresp *ar = file->private_data;
716
717 if (!ar)
718 return 0;
719 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
720}
721
722int simple_transaction_release(struct inode *inode, struct file *file)
723{
724 free_page((unsigned long)file->private_data);
725 return 0;
726}
727
728/* Simple attribute files */
729
730struct simple_attr {
731 int (*get)(void *, u64 *);
732 int (*set)(void *, u64);
733 char get_buf[24]; /* enough to store a u64 and "\n\0" */
734 char set_buf[24];
735 void *data;
736 const char *fmt; /* format for read operation */
737 struct mutex mutex; /* protects access to these buffers */
738};
739
740/* simple_attr_open is called by an actual attribute open file operation
741 * to set the attribute specific access operations. */
742int simple_attr_open(struct inode *inode, struct file *file,
743 int (*get)(void *, u64 *), int (*set)(void *, u64),
744 const char *fmt)
745{
746 struct simple_attr *attr;
747
748 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
749 if (!attr)
750 return -ENOMEM;
751
752 attr->get = get;
753 attr->set = set;
754 attr->data = inode->i_private;
755 attr->fmt = fmt;
756 mutex_init(&attr->mutex);
757
758 file->private_data = attr;
759
760 return nonseekable_open(inode, file);
761}
762
763int simple_attr_release(struct inode *inode, struct file *file)
764{
765 kfree(file->private_data);
766 return 0;
767}
768
769/* read from the buffer that is filled with the get function */
770ssize_t simple_attr_read(struct file *file, char __user *buf,
771 size_t len, loff_t *ppos)
772{
773 struct simple_attr *attr;
774 size_t size;
775 ssize_t ret;
776
777 attr = file->private_data;
778
779 if (!attr->get)
780 return -EACCES;
781
782 ret = mutex_lock_interruptible(&attr->mutex);
783 if (ret)
784 return ret;
785
786 if (*ppos) { /* continued read */
787 size = strlen(attr->get_buf);
788 } else { /* first read */
789 u64 val;
790 ret = attr->get(attr->data, &val);
791 if (ret)
792 goto out;
793
794 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
795 attr->fmt, (unsigned long long)val);
796 }
797
798 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
799out:
800 mutex_unlock(&attr->mutex);
801 return ret;
802}
803
804/* interpret the buffer as a number to call the set function with */
805ssize_t simple_attr_write(struct file *file, const char __user *buf,
806 size_t len, loff_t *ppos)
807{
808 struct simple_attr *attr;
809 u64 val;
810 size_t size;
811 ssize_t ret;
812
813 attr = file->private_data;
814 if (!attr->set)
815 return -EACCES;
816
817 ret = mutex_lock_interruptible(&attr->mutex);
818 if (ret)
819 return ret;
820
821 ret = -EFAULT;
822 size = min(sizeof(attr->set_buf) - 1, len);
823 if (copy_from_user(attr->set_buf, buf, size))
824 goto out;
825
826 attr->set_buf[size] = '\0';
827 val = simple_strtoll(attr->set_buf, NULL, 0);
828 ret = attr->set(attr->data, val);
829 if (ret == 0)
830 ret = len; /* on success, claim we got the whole input */
831out:
832 mutex_unlock(&attr->mutex);
833 return ret;
834}
835
836/**
837 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
838 * @sb: filesystem to do the file handle conversion on
839 * @fid: file handle to convert
840 * @fh_len: length of the file handle in bytes
841 * @fh_type: type of file handle
842 * @get_inode: filesystem callback to retrieve inode
843 *
844 * This function decodes @fid as long as it has one of the well-known
845 * Linux filehandle types and calls @get_inode on it to retrieve the
846 * inode for the object specified in the file handle.
847 */
848struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
849 int fh_len, int fh_type, struct inode *(*get_inode)
850 (struct super_block *sb, u64 ino, u32 gen))
851{
852 struct inode *inode = NULL;
853
854 if (fh_len < 2)
855 return NULL;
856
857 switch (fh_type) {
858 case FILEID_INO32_GEN:
859 case FILEID_INO32_GEN_PARENT:
860 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
861 break;
862 }
863
864 return d_obtain_alias(inode);
865}
866EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
867
868/**
869 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
870 * @sb: filesystem to do the file handle conversion on
871 * @fid: file handle to convert
872 * @fh_len: length of the file handle in bytes
873 * @fh_type: type of file handle
874 * @get_inode: filesystem callback to retrieve inode
875 *
876 * This function decodes @fid as long as it has one of the well-known
877 * Linux filehandle types and calls @get_inode on it to retrieve the
878 * inode for the _parent_ object specified in the file handle if it
879 * is specified in the file handle, or NULL otherwise.
880 */
881struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
882 int fh_len, int fh_type, struct inode *(*get_inode)
883 (struct super_block *sb, u64 ino, u32 gen))
884{
885 struct inode *inode = NULL;
886
887 if (fh_len <= 2)
888 return NULL;
889
890 switch (fh_type) {
891 case FILEID_INO32_GEN_PARENT:
892 inode = get_inode(sb, fid->i32.parent_ino,
893 (fh_len > 3 ? fid->i32.parent_gen : 0));
894 break;
895 }
896
897 return d_obtain_alias(inode);
898}
899EXPORT_SYMBOL_GPL(generic_fh_to_parent);
900
901/**
902 * generic_file_fsync - generic fsync implementation for simple filesystems
903 * @file: file to synchronize
904 * @datasync: only synchronize essential metadata if true
905 *
906 * This is a generic implementation of the fsync method for simple
907 * filesystems which track all non-inode metadata in the buffers list
908 * hanging off the address_space structure.
909 */
910int generic_file_fsync(struct file *file, loff_t start, loff_t end,
911 int datasync)
912{
913 struct inode *inode = file->f_mapping->host;
914 int err;
915 int ret;
916
917 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
918 if (err)
919 return err;
920
921 mutex_lock(&inode->i_mutex);
922 ret = sync_mapping_buffers(inode->i_mapping);
923 if (!(inode->i_state & I_DIRTY))
924 goto out;
925 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
926 goto out;
927
928 err = sync_inode_metadata(inode, 1);
929 if (ret == 0)
930 ret = err;
931out:
932 mutex_unlock(&inode->i_mutex);
933 return ret;
934}
935EXPORT_SYMBOL(generic_file_fsync);
936
937/**
938 * generic_check_addressable - Check addressability of file system
939 * @blocksize_bits: log of file system block size
940 * @num_blocks: number of blocks in file system
941 *
942 * Determine whether a file system with @num_blocks blocks (and a
943 * block size of 2**@blocksize_bits) is addressable by the sector_t
944 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
945 */
946int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
947{
948 u64 last_fs_block = num_blocks - 1;
949 u64 last_fs_page =
950 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
951
952 if (unlikely(num_blocks == 0))
953 return 0;
954
955 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
956 return -EINVAL;
957
958 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
959 (last_fs_page > (pgoff_t)(~0ULL))) {
960 return -EFBIG;
961 }
962 return 0;
963}
964EXPORT_SYMBOL(generic_check_addressable);
965
966/*
967 * No-op implementation of ->fsync for in-memory filesystems.
968 */
969int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
970{
971 return 0;
972}
973
974EXPORT_SYMBOL(dcache_dir_close);
975EXPORT_SYMBOL(dcache_dir_lseek);
976EXPORT_SYMBOL(dcache_dir_open);
977EXPORT_SYMBOL(dcache_readdir);
978EXPORT_SYMBOL(generic_read_dir);
979EXPORT_SYMBOL(mount_pseudo);
980EXPORT_SYMBOL(simple_write_begin);
981EXPORT_SYMBOL(simple_write_end);
982EXPORT_SYMBOL(simple_dir_inode_operations);
983EXPORT_SYMBOL(simple_dir_operations);
984EXPORT_SYMBOL(simple_empty);
985EXPORT_SYMBOL(simple_fill_super);
986EXPORT_SYMBOL(simple_getattr);
987EXPORT_SYMBOL(simple_link);
988EXPORT_SYMBOL(simple_lookup);
989EXPORT_SYMBOL(simple_pin_fs);
990EXPORT_SYMBOL(simple_readpage);
991EXPORT_SYMBOL(simple_release_fs);
992EXPORT_SYMBOL(simple_rename);
993EXPORT_SYMBOL(simple_rmdir);
994EXPORT_SYMBOL(simple_statfs);
995EXPORT_SYMBOL(noop_fsync);
996EXPORT_SYMBOL(simple_unlink);
997EXPORT_SYMBOL(simple_read_from_buffer);
998EXPORT_SYMBOL(simple_write_to_buffer);
999EXPORT_SYMBOL(memory_read_from_buffer);
1000EXPORT_SYMBOL(simple_transaction_set);
1001EXPORT_SYMBOL(simple_transaction_get);
1002EXPORT_SYMBOL(simple_transaction_read);
1003EXPORT_SYMBOL(simple_transaction_release);
1004EXPORT_SYMBOL_GPL(simple_attr_open);
1005EXPORT_SYMBOL_GPL(simple_attr_release);
1006EXPORT_SYMBOL_GPL(simple_attr_read);
1007EXPORT_SYMBOL_GPL(simple_attr_write);