Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.17
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/cred.h>
  11#include <linux/mount.h>
  12#include <linux/vfs.h>
  13#include <linux/quotaops.h>
  14#include <linux/mutex.h>
  15#include <linux/namei.h>
  16#include <linux/exportfs.h>
  17#include <linux/writeback.h>
  18#include <linux/buffer_head.h> /* sync_mapping_buffers */
  19
  20#include <linux/uaccess.h>
  21
  22#include "internal.h"
  23
  24int simple_getattr(const struct path *path, struct kstat *stat,
  25		   u32 request_mask, unsigned int query_flags)
  26{
  27	struct inode *inode = d_inode(path->dentry);
 
 
 
 
 
 
  28	generic_fillattr(inode, stat);
  29	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  30	return 0;
  31}
  32EXPORT_SYMBOL(simple_getattr);
  33
  34int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  35{
  36	buf->f_type = dentry->d_sb->s_magic;
  37	buf->f_bsize = PAGE_SIZE;
  38	buf->f_namelen = NAME_MAX;
  39	return 0;
  40}
  41EXPORT_SYMBOL(simple_statfs);
  42
  43/*
  44 * Retaining negative dentries for an in-memory filesystem just wastes
  45 * memory and lookup time: arrange for them to be deleted immediately.
  46 */
  47int always_delete_dentry(const struct dentry *dentry)
  48{
  49	return 1;
  50}
  51EXPORT_SYMBOL(always_delete_dentry);
  52
  53const struct dentry_operations simple_dentry_operations = {
  54	.d_delete = always_delete_dentry,
  55};
  56EXPORT_SYMBOL(simple_dentry_operations);
  57
  58/*
  59 * Lookup the data. This is trivial - if the dentry didn't already
  60 * exist, we know it is negative.  Set d_op to delete negative dentries.
  61 */
  62struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  63{
 
 
 
 
  64	if (dentry->d_name.len > NAME_MAX)
  65		return ERR_PTR(-ENAMETOOLONG);
  66	if (!dentry->d_sb->s_d_op)
  67		d_set_d_op(dentry, &simple_dentry_operations);
  68	d_add(dentry, NULL);
  69	return NULL;
  70}
  71EXPORT_SYMBOL(simple_lookup);
  72
  73int dcache_dir_open(struct inode *inode, struct file *file)
  74{
  75	file->private_data = d_alloc_cursor(file->f_path.dentry);
 
 
  76
  77	return file->private_data ? 0 : -ENOMEM;
  78}
  79EXPORT_SYMBOL(dcache_dir_open);
  80
  81int dcache_dir_close(struct inode *inode, struct file *file)
  82{
  83	dput(file->private_data);
  84	return 0;
  85}
  86EXPORT_SYMBOL(dcache_dir_close);
  87
  88/* parent is locked at least shared */
  89static struct dentry *next_positive(struct dentry *parent,
  90				    struct list_head *from,
  91				    int count)
  92{
  93	unsigned *seq = &parent->d_inode->i_dir_seq, n;
  94	struct dentry *res;
  95	struct list_head *p;
  96	bool skipped;
  97	int i;
  98
  99retry:
 100	i = count;
 101	skipped = false;
 102	n = smp_load_acquire(seq) & ~1;
 103	res = NULL;
 104	rcu_read_lock();
 105	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 106		struct dentry *d = list_entry(p, struct dentry, d_child);
 107		if (!simple_positive(d)) {
 108			skipped = true;
 109		} else if (!--i) {
 110			res = d;
 111			break;
 112		}
 113	}
 114	rcu_read_unlock();
 115	if (skipped) {
 116		smp_rmb();
 117		if (unlikely(*seq != n))
 118			goto retry;
 119	}
 120	return res;
 121}
 122
 123static void move_cursor(struct dentry *cursor, struct list_head *after)
 124{
 125	struct dentry *parent = cursor->d_parent;
 126	unsigned n, *seq = &parent->d_inode->i_dir_seq;
 127	spin_lock(&parent->d_lock);
 128	for (;;) {
 129		n = *seq;
 130		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 131			break;
 132		cpu_relax();
 133	}
 134	__list_del(cursor->d_child.prev, cursor->d_child.next);
 135	if (after)
 136		list_add(&cursor->d_child, after);
 137	else
 138		list_add_tail(&cursor->d_child, &parent->d_subdirs);
 139	smp_store_release(seq, n + 2);
 140	spin_unlock(&parent->d_lock);
 141}
 142
 143loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 144{
 145	struct dentry *dentry = file->f_path.dentry;
 146	switch (whence) {
 
 147		case 1:
 148			offset += file->f_pos;
 149		case 0:
 150			if (offset >= 0)
 151				break;
 152		default:
 
 153			return -EINVAL;
 154	}
 155	if (offset != file->f_pos) {
 156		file->f_pos = offset;
 157		if (file->f_pos >= 2) {
 
 158			struct dentry *cursor = file->private_data;
 159			struct dentry *to;
 160			loff_t n = file->f_pos - 2;
 161
 162			inode_lock_shared(dentry->d_inode);
 163			to = next_positive(dentry, &dentry->d_subdirs, n);
 164			move_cursor(cursor, to ? &to->d_child : NULL);
 165			inode_unlock_shared(dentry->d_inode);
 
 
 
 
 
 
 
 
 
 
 
 166		}
 167	}
 
 168	return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175	return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186	struct dentry *dentry = file->f_path.dentry;
 187	struct dentry *cursor = file->private_data;
 188	struct list_head *p = &cursor->d_child;
 189	struct dentry *next;
 190	bool moved = false;
 191
 192	if (!dir_emit_dots(file, ctx))
 193		return 0;
 194
 195	if (ctx->pos == 2)
 196		p = &dentry->d_subdirs;
 197	while ((next = next_positive(dentry, p, 1)) != NULL) {
 198		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 199			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 200			break;
 201		moved = true;
 202		p = &next->d_child;
 203		ctx->pos++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 204	}
 205	if (moved)
 206		move_cursor(cursor, p);
 207	return 0;
 208}
 209EXPORT_SYMBOL(dcache_readdir);
 210
 211ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 212{
 213	return -EISDIR;
 214}
 215EXPORT_SYMBOL(generic_read_dir);
 216
 217const struct file_operations simple_dir_operations = {
 218	.open		= dcache_dir_open,
 219	.release	= dcache_dir_close,
 220	.llseek		= dcache_dir_lseek,
 221	.read		= generic_read_dir,
 222	.iterate_shared	= dcache_readdir,
 223	.fsync		= noop_fsync,
 224};
 225EXPORT_SYMBOL(simple_dir_operations);
 226
 227const struct inode_operations simple_dir_inode_operations = {
 228	.lookup		= simple_lookup,
 229};
 230EXPORT_SYMBOL(simple_dir_inode_operations);
 231
 232static const struct super_operations simple_super_operations = {
 233	.statfs		= simple_statfs,
 234};
 235
 236/*
 237 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 238 * will never be mountable)
 239 */
 240struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
 241	const struct super_operations *ops, const struct xattr_handler **xattr,
 242	const struct dentry_operations *dops, unsigned long magic)
 243{
 244	struct super_block *s;
 245	struct dentry *dentry;
 246	struct inode *root;
 247	struct qstr d_name = QSTR_INIT(name, strlen(name));
 248
 249	s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
 250			&init_user_ns, NULL);
 251	if (IS_ERR(s))
 252		return ERR_CAST(s);
 253
 
 254	s->s_maxbytes = MAX_LFS_FILESIZE;
 255	s->s_blocksize = PAGE_SIZE;
 256	s->s_blocksize_bits = PAGE_SHIFT;
 257	s->s_magic = magic;
 258	s->s_op = ops ? ops : &simple_super_operations;
 259	s->s_xattr = xattr;
 260	s->s_time_gran = 1;
 261	root = new_inode(s);
 262	if (!root)
 263		goto Enomem;
 264	/*
 265	 * since this is the first inode, make it number 1. New inodes created
 266	 * after this must take care not to collide with it (by passing
 267	 * max_reserved of 1 to iunique).
 268	 */
 269	root->i_ino = 1;
 270	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 271	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 272	dentry = __d_alloc(s, &d_name);
 273	if (!dentry) {
 274		iput(root);
 275		goto Enomem;
 276	}
 277	d_instantiate(dentry, root);
 278	s->s_root = dentry;
 279	s->s_d_op = dops;
 280	s->s_flags |= SB_ACTIVE;
 281	return dget(s->s_root);
 282
 283Enomem:
 284	deactivate_locked_super(s);
 285	return ERR_PTR(-ENOMEM);
 286}
 287EXPORT_SYMBOL(mount_pseudo_xattr);
 288
 289int simple_open(struct inode *inode, struct file *file)
 290{
 291	if (inode->i_private)
 292		file->private_data = inode->i_private;
 293	return 0;
 294}
 295EXPORT_SYMBOL(simple_open);
 296
 297int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 298{
 299	struct inode *inode = d_inode(old_dentry);
 300
 301	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 302	inc_nlink(inode);
 303	ihold(inode);
 304	dget(dentry);
 305	d_instantiate(dentry, inode);
 306	return 0;
 307}
 308EXPORT_SYMBOL(simple_link);
 309
 310int simple_empty(struct dentry *dentry)
 311{
 312	struct dentry *child;
 313	int ret = 0;
 314
 315	spin_lock(&dentry->d_lock);
 316	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 317		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 318		if (simple_positive(child)) {
 319			spin_unlock(&child->d_lock);
 320			goto out;
 321		}
 322		spin_unlock(&child->d_lock);
 323	}
 324	ret = 1;
 325out:
 326	spin_unlock(&dentry->d_lock);
 327	return ret;
 328}
 329EXPORT_SYMBOL(simple_empty);
 330
 331int simple_unlink(struct inode *dir, struct dentry *dentry)
 332{
 333	struct inode *inode = d_inode(dentry);
 334
 335	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 336	drop_nlink(inode);
 337	dput(dentry);
 338	return 0;
 339}
 340EXPORT_SYMBOL(simple_unlink);
 341
 342int simple_rmdir(struct inode *dir, struct dentry *dentry)
 343{
 344	if (!simple_empty(dentry))
 345		return -ENOTEMPTY;
 346
 347	drop_nlink(d_inode(dentry));
 348	simple_unlink(dir, dentry);
 349	drop_nlink(dir);
 350	return 0;
 351}
 352EXPORT_SYMBOL(simple_rmdir);
 353
 354int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 355		  struct inode *new_dir, struct dentry *new_dentry,
 356		  unsigned int flags)
 357{
 358	struct inode *inode = d_inode(old_dentry);
 359	int they_are_dirs = d_is_dir(old_dentry);
 360
 361	if (flags & ~RENAME_NOREPLACE)
 362		return -EINVAL;
 363
 364	if (!simple_empty(new_dentry))
 365		return -ENOTEMPTY;
 366
 367	if (d_really_is_positive(new_dentry)) {
 368		simple_unlink(new_dir, new_dentry);
 369		if (they_are_dirs) {
 370			drop_nlink(d_inode(new_dentry));
 371			drop_nlink(old_dir);
 372		}
 373	} else if (they_are_dirs) {
 374		drop_nlink(old_dir);
 375		inc_nlink(new_dir);
 376	}
 377
 378	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 379		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 380
 381	return 0;
 382}
 383EXPORT_SYMBOL(simple_rename);
 384
 385/**
 386 * simple_setattr - setattr for simple filesystem
 387 * @dentry: dentry
 388 * @iattr: iattr structure
 389 *
 390 * Returns 0 on success, -error on failure.
 391 *
 392 * simple_setattr is a simple ->setattr implementation without a proper
 393 * implementation of size changes.
 394 *
 395 * It can either be used for in-memory filesystems or special files
 396 * on simple regular filesystems.  Anything that needs to change on-disk
 397 * or wire state on size changes needs its own setattr method.
 398 */
 399int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 400{
 401	struct inode *inode = d_inode(dentry);
 402	int error;
 403
 404	error = setattr_prepare(dentry, iattr);
 
 
 405	if (error)
 406		return error;
 407
 408	if (iattr->ia_valid & ATTR_SIZE)
 409		truncate_setsize(inode, iattr->ia_size);
 410	setattr_copy(inode, iattr);
 411	mark_inode_dirty(inode);
 412	return 0;
 413}
 414EXPORT_SYMBOL(simple_setattr);
 415
 416int simple_readpage(struct file *file, struct page *page)
 417{
 418	clear_highpage(page);
 419	flush_dcache_page(page);
 420	SetPageUptodate(page);
 421	unlock_page(page);
 422	return 0;
 423}
 424EXPORT_SYMBOL(simple_readpage);
 425
 426int simple_write_begin(struct file *file, struct address_space *mapping,
 427			loff_t pos, unsigned len, unsigned flags,
 428			struct page **pagep, void **fsdata)
 429{
 430	struct page *page;
 431	pgoff_t index;
 432
 433	index = pos >> PAGE_SHIFT;
 434
 435	page = grab_cache_page_write_begin(mapping, index, flags);
 436	if (!page)
 437		return -ENOMEM;
 438
 439	*pagep = page;
 440
 441	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 442		unsigned from = pos & (PAGE_SIZE - 1);
 443
 444		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 445	}
 446	return 0;
 447}
 448EXPORT_SYMBOL(simple_write_begin);
 449
 450/**
 451 * simple_write_end - .write_end helper for non-block-device FSes
 452 * @available: See .write_end of address_space_operations
 453 * @file: 		"
 454 * @mapping: 		"
 455 * @pos: 		"
 456 * @len: 		"
 457 * @copied: 		"
 458 * @page: 		"
 459 * @fsdata: 		"
 460 *
 461 * simple_write_end does the minimum needed for updating a page after writing is
 462 * done. It has the same API signature as the .write_end of
 463 * address_space_operations vector. So it can just be set onto .write_end for
 464 * FSes that don't need any other processing. i_mutex is assumed to be held.
 465 * Block based filesystems should use generic_write_end().
 466 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 467 * is not called, so a filesystem that actually does store data in .write_inode
 468 * should extend on what's done here with a call to mark_inode_dirty() in the
 469 * case that i_size has changed.
 470 *
 471 * Use *ONLY* with simple_readpage()
 472 */
 473int simple_write_end(struct file *file, struct address_space *mapping,
 474			loff_t pos, unsigned len, unsigned copied,
 475			struct page *page, void *fsdata)
 476{
 477	struct inode *inode = page->mapping->host;
 478	loff_t last_pos = pos + copied;
 479
 480	/* zero the stale part of the page if we did a short copy */
 481	if (!PageUptodate(page)) {
 482		if (copied < len) {
 483			unsigned from = pos & (PAGE_SIZE - 1);
 484
 485			zero_user(page, from + copied, len - copied);
 486		}
 487		SetPageUptodate(page);
 488	}
 
 
 
 489	/*
 490	 * No need to use i_size_read() here, the i_size
 491	 * cannot change under us because we hold the i_mutex.
 492	 */
 493	if (last_pos > inode->i_size)
 494		i_size_write(inode, last_pos);
 495
 496	set_page_dirty(page);
 497	unlock_page(page);
 498	put_page(page);
 499
 500	return copied;
 501}
 502EXPORT_SYMBOL(simple_write_end);
 503
 504/*
 505 * the inodes created here are not hashed. If you use iunique to generate
 506 * unique inode values later for this filesystem, then you must take care
 507 * to pass it an appropriate max_reserved value to avoid collisions.
 508 */
 509int simple_fill_super(struct super_block *s, unsigned long magic,
 510		      const struct tree_descr *files)
 511{
 512	struct inode *inode;
 513	struct dentry *root;
 514	struct dentry *dentry;
 515	int i;
 516
 517	s->s_blocksize = PAGE_SIZE;
 518	s->s_blocksize_bits = PAGE_SHIFT;
 519	s->s_magic = magic;
 520	s->s_op = &simple_super_operations;
 521	s->s_time_gran = 1;
 522
 523	inode = new_inode(s);
 524	if (!inode)
 525		return -ENOMEM;
 526	/*
 527	 * because the root inode is 1, the files array must not contain an
 528	 * entry at index 1
 529	 */
 530	inode->i_ino = 1;
 531	inode->i_mode = S_IFDIR | 0755;
 532	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 533	inode->i_op = &simple_dir_inode_operations;
 534	inode->i_fop = &simple_dir_operations;
 535	set_nlink(inode, 2);
 536	root = d_make_root(inode);
 537	if (!root)
 
 538		return -ENOMEM;
 
 539	for (i = 0; !files->name || files->name[0]; i++, files++) {
 540		if (!files->name)
 541			continue;
 542
 543		/* warn if it tries to conflict with the root inode */
 544		if (unlikely(i == 1))
 545			printk(KERN_WARNING "%s: %s passed in a files array"
 546				"with an index of 1!\n", __func__,
 547				s->s_type->name);
 548
 549		dentry = d_alloc_name(root, files->name);
 550		if (!dentry)
 551			goto out;
 552		inode = new_inode(s);
 553		if (!inode) {
 554			dput(dentry);
 555			goto out;
 556		}
 557		inode->i_mode = S_IFREG | files->mode;
 558		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 559		inode->i_fop = files->ops;
 560		inode->i_ino = i;
 561		d_add(dentry, inode);
 562	}
 563	s->s_root = root;
 564	return 0;
 565out:
 566	d_genocide(root);
 567	shrink_dcache_parent(root);
 568	dput(root);
 569	return -ENOMEM;
 570}
 571EXPORT_SYMBOL(simple_fill_super);
 572
 573static DEFINE_SPINLOCK(pin_fs_lock);
 574
 575int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 576{
 577	struct vfsmount *mnt = NULL;
 578	spin_lock(&pin_fs_lock);
 579	if (unlikely(!*mount)) {
 580		spin_unlock(&pin_fs_lock);
 581		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 582		if (IS_ERR(mnt))
 583			return PTR_ERR(mnt);
 584		spin_lock(&pin_fs_lock);
 585		if (!*mount)
 586			*mount = mnt;
 587	}
 588	mntget(*mount);
 589	++*count;
 590	spin_unlock(&pin_fs_lock);
 591	mntput(mnt);
 592	return 0;
 593}
 594EXPORT_SYMBOL(simple_pin_fs);
 595
 596void simple_release_fs(struct vfsmount **mount, int *count)
 597{
 598	struct vfsmount *mnt;
 599	spin_lock(&pin_fs_lock);
 600	mnt = *mount;
 601	if (!--*count)
 602		*mount = NULL;
 603	spin_unlock(&pin_fs_lock);
 604	mntput(mnt);
 605}
 606EXPORT_SYMBOL(simple_release_fs);
 607
 608/**
 609 * simple_read_from_buffer - copy data from the buffer to user space
 610 * @to: the user space buffer to read to
 611 * @count: the maximum number of bytes to read
 612 * @ppos: the current position in the buffer
 613 * @from: the buffer to read from
 614 * @available: the size of the buffer
 615 *
 616 * The simple_read_from_buffer() function reads up to @count bytes from the
 617 * buffer @from at offset @ppos into the user space address starting at @to.
 618 *
 619 * On success, the number of bytes read is returned and the offset @ppos is
 620 * advanced by this number, or negative value is returned on error.
 621 **/
 622ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 623				const void *from, size_t available)
 624{
 625	loff_t pos = *ppos;
 626	size_t ret;
 627
 628	if (pos < 0)
 629		return -EINVAL;
 630	if (pos >= available || !count)
 631		return 0;
 632	if (count > available - pos)
 633		count = available - pos;
 634	ret = copy_to_user(to, from + pos, count);
 635	if (ret == count)
 636		return -EFAULT;
 637	count -= ret;
 638	*ppos = pos + count;
 639	return count;
 640}
 641EXPORT_SYMBOL(simple_read_from_buffer);
 642
 643/**
 644 * simple_write_to_buffer - copy data from user space to the buffer
 645 * @to: the buffer to write to
 646 * @available: the size of the buffer
 647 * @ppos: the current position in the buffer
 648 * @from: the user space buffer to read from
 649 * @count: the maximum number of bytes to read
 650 *
 651 * The simple_write_to_buffer() function reads up to @count bytes from the user
 652 * space address starting at @from into the buffer @to at offset @ppos.
 653 *
 654 * On success, the number of bytes written is returned and the offset @ppos is
 655 * advanced by this number, or negative value is returned on error.
 656 **/
 657ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 658		const void __user *from, size_t count)
 659{
 660	loff_t pos = *ppos;
 661	size_t res;
 662
 663	if (pos < 0)
 664		return -EINVAL;
 665	if (pos >= available || !count)
 666		return 0;
 667	if (count > available - pos)
 668		count = available - pos;
 669	res = copy_from_user(to + pos, from, count);
 670	if (res == count)
 671		return -EFAULT;
 672	count -= res;
 673	*ppos = pos + count;
 674	return count;
 675}
 676EXPORT_SYMBOL(simple_write_to_buffer);
 677
 678/**
 679 * memory_read_from_buffer - copy data from the buffer
 680 * @to: the kernel space buffer to read to
 681 * @count: the maximum number of bytes to read
 682 * @ppos: the current position in the buffer
 683 * @from: the buffer to read from
 684 * @available: the size of the buffer
 685 *
 686 * The memory_read_from_buffer() function reads up to @count bytes from the
 687 * buffer @from at offset @ppos into the kernel space address starting at @to.
 688 *
 689 * On success, the number of bytes read is returned and the offset @ppos is
 690 * advanced by this number, or negative value is returned on error.
 691 **/
 692ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 693				const void *from, size_t available)
 694{
 695	loff_t pos = *ppos;
 696
 697	if (pos < 0)
 698		return -EINVAL;
 699	if (pos >= available)
 700		return 0;
 701	if (count > available - pos)
 702		count = available - pos;
 703	memcpy(to, from + pos, count);
 704	*ppos = pos + count;
 705
 706	return count;
 707}
 708EXPORT_SYMBOL(memory_read_from_buffer);
 709
 710/*
 711 * Transaction based IO.
 712 * The file expects a single write which triggers the transaction, and then
 713 * possibly a read which collects the result - which is stored in a
 714 * file-local buffer.
 715 */
 716
 717void simple_transaction_set(struct file *file, size_t n)
 718{
 719	struct simple_transaction_argresp *ar = file->private_data;
 720
 721	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 722
 723	/*
 724	 * The barrier ensures that ar->size will really remain zero until
 725	 * ar->data is ready for reading.
 726	 */
 727	smp_mb();
 728	ar->size = n;
 729}
 730EXPORT_SYMBOL(simple_transaction_set);
 731
 732char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 733{
 734	struct simple_transaction_argresp *ar;
 735	static DEFINE_SPINLOCK(simple_transaction_lock);
 736
 737	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 738		return ERR_PTR(-EFBIG);
 739
 740	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 741	if (!ar)
 742		return ERR_PTR(-ENOMEM);
 743
 744	spin_lock(&simple_transaction_lock);
 745
 746	/* only one write allowed per open */
 747	if (file->private_data) {
 748		spin_unlock(&simple_transaction_lock);
 749		free_page((unsigned long)ar);
 750		return ERR_PTR(-EBUSY);
 751	}
 752
 753	file->private_data = ar;
 754
 755	spin_unlock(&simple_transaction_lock);
 756
 757	if (copy_from_user(ar->data, buf, size))
 758		return ERR_PTR(-EFAULT);
 759
 760	return ar->data;
 761}
 762EXPORT_SYMBOL(simple_transaction_get);
 763
 764ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 765{
 766	struct simple_transaction_argresp *ar = file->private_data;
 767
 768	if (!ar)
 769		return 0;
 770	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 771}
 772EXPORT_SYMBOL(simple_transaction_read);
 773
 774int simple_transaction_release(struct inode *inode, struct file *file)
 775{
 776	free_page((unsigned long)file->private_data);
 777	return 0;
 778}
 779EXPORT_SYMBOL(simple_transaction_release);
 780
 781/* Simple attribute files */
 782
 783struct simple_attr {
 784	int (*get)(void *, u64 *);
 785	int (*set)(void *, u64);
 786	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 787	char set_buf[24];
 788	void *data;
 789	const char *fmt;	/* format for read operation */
 790	struct mutex mutex;	/* protects access to these buffers */
 791};
 792
 793/* simple_attr_open is called by an actual attribute open file operation
 794 * to set the attribute specific access operations. */
 795int simple_attr_open(struct inode *inode, struct file *file,
 796		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 797		     const char *fmt)
 798{
 799	struct simple_attr *attr;
 800
 801	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 802	if (!attr)
 803		return -ENOMEM;
 804
 805	attr->get = get;
 806	attr->set = set;
 807	attr->data = inode->i_private;
 808	attr->fmt = fmt;
 809	mutex_init(&attr->mutex);
 810
 811	file->private_data = attr;
 812
 813	return nonseekable_open(inode, file);
 814}
 815EXPORT_SYMBOL_GPL(simple_attr_open);
 816
 817int simple_attr_release(struct inode *inode, struct file *file)
 818{
 819	kfree(file->private_data);
 820	return 0;
 821}
 822EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 823
 824/* read from the buffer that is filled with the get function */
 825ssize_t simple_attr_read(struct file *file, char __user *buf,
 826			 size_t len, loff_t *ppos)
 827{
 828	struct simple_attr *attr;
 829	size_t size;
 830	ssize_t ret;
 831
 832	attr = file->private_data;
 833
 834	if (!attr->get)
 835		return -EACCES;
 836
 837	ret = mutex_lock_interruptible(&attr->mutex);
 838	if (ret)
 839		return ret;
 840
 841	if (*ppos) {		/* continued read */
 842		size = strlen(attr->get_buf);
 843	} else {		/* first read */
 844		u64 val;
 845		ret = attr->get(attr->data, &val);
 846		if (ret)
 847			goto out;
 848
 849		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 850				 attr->fmt, (unsigned long long)val);
 851	}
 852
 853	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 854out:
 855	mutex_unlock(&attr->mutex);
 856	return ret;
 857}
 858EXPORT_SYMBOL_GPL(simple_attr_read);
 859
 860/* interpret the buffer as a number to call the set function with */
 861ssize_t simple_attr_write(struct file *file, const char __user *buf,
 862			  size_t len, loff_t *ppos)
 863{
 864	struct simple_attr *attr;
 865	u64 val;
 866	size_t size;
 867	ssize_t ret;
 868
 869	attr = file->private_data;
 870	if (!attr->set)
 871		return -EACCES;
 872
 873	ret = mutex_lock_interruptible(&attr->mutex);
 874	if (ret)
 875		return ret;
 876
 877	ret = -EFAULT;
 878	size = min(sizeof(attr->set_buf) - 1, len);
 879	if (copy_from_user(attr->set_buf, buf, size))
 880		goto out;
 881
 882	attr->set_buf[size] = '\0';
 883	val = simple_strtoll(attr->set_buf, NULL, 0);
 884	ret = attr->set(attr->data, val);
 885	if (ret == 0)
 886		ret = len; /* on success, claim we got the whole input */
 887out:
 888	mutex_unlock(&attr->mutex);
 889	return ret;
 890}
 891EXPORT_SYMBOL_GPL(simple_attr_write);
 892
 893/**
 894 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 895 * @sb:		filesystem to do the file handle conversion on
 896 * @fid:	file handle to convert
 897 * @fh_len:	length of the file handle in bytes
 898 * @fh_type:	type of file handle
 899 * @get_inode:	filesystem callback to retrieve inode
 900 *
 901 * This function decodes @fid as long as it has one of the well-known
 902 * Linux filehandle types and calls @get_inode on it to retrieve the
 903 * inode for the object specified in the file handle.
 904 */
 905struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 906		int fh_len, int fh_type, struct inode *(*get_inode)
 907			(struct super_block *sb, u64 ino, u32 gen))
 908{
 909	struct inode *inode = NULL;
 910
 911	if (fh_len < 2)
 912		return NULL;
 913
 914	switch (fh_type) {
 915	case FILEID_INO32_GEN:
 916	case FILEID_INO32_GEN_PARENT:
 917		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 918		break;
 919	}
 920
 921	return d_obtain_alias(inode);
 922}
 923EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 924
 925/**
 926 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 927 * @sb:		filesystem to do the file handle conversion on
 928 * @fid:	file handle to convert
 929 * @fh_len:	length of the file handle in bytes
 930 * @fh_type:	type of file handle
 931 * @get_inode:	filesystem callback to retrieve inode
 932 *
 933 * This function decodes @fid as long as it has one of the well-known
 934 * Linux filehandle types and calls @get_inode on it to retrieve the
 935 * inode for the _parent_ object specified in the file handle if it
 936 * is specified in the file handle, or NULL otherwise.
 937 */
 938struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 939		int fh_len, int fh_type, struct inode *(*get_inode)
 940			(struct super_block *sb, u64 ino, u32 gen))
 941{
 942	struct inode *inode = NULL;
 943
 944	if (fh_len <= 2)
 945		return NULL;
 946
 947	switch (fh_type) {
 948	case FILEID_INO32_GEN_PARENT:
 949		inode = get_inode(sb, fid->i32.parent_ino,
 950				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 951		break;
 952	}
 953
 954	return d_obtain_alias(inode);
 955}
 956EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 957
 958/**
 959 * __generic_file_fsync - generic fsync implementation for simple filesystems
 960 *
 961 * @file:	file to synchronize
 962 * @start:	start offset in bytes
 963 * @end:	end offset in bytes (inclusive)
 964 * @datasync:	only synchronize essential metadata if true
 965 *
 966 * This is a generic implementation of the fsync method for simple
 967 * filesystems which track all non-inode metadata in the buffers list
 968 * hanging off the address_space structure.
 969 */
 970int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 971				 int datasync)
 972{
 973	struct inode *inode = file->f_mapping->host;
 974	int err;
 975	int ret;
 976
 977	err = file_write_and_wait_range(file, start, end);
 978	if (err)
 979		return err;
 980
 981	inode_lock(inode);
 982	ret = sync_mapping_buffers(inode->i_mapping);
 983	if (!(inode->i_state & I_DIRTY_ALL))
 984		goto out;
 985	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 986		goto out;
 987
 988	err = sync_inode_metadata(inode, 1);
 989	if (ret == 0)
 990		ret = err;
 991
 992out:
 993	inode_unlock(inode);
 994	/* check and advance again to catch errors after syncing out buffers */
 995	err = file_check_and_advance_wb_err(file);
 996	if (ret == 0)
 997		ret = err;
 998	return ret;
 999}
1000EXPORT_SYMBOL(__generic_file_fsync);
1001
1002/**
1003 * generic_file_fsync - generic fsync implementation for simple filesystems
1004 *			with flush
1005 * @file:	file to synchronize
1006 * @start:	start offset in bytes
1007 * @end:	end offset in bytes (inclusive)
1008 * @datasync:	only synchronize essential metadata if true
1009 *
1010 */
1011
1012int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1013		       int datasync)
1014{
1015	struct inode *inode = file->f_mapping->host;
1016	int err;
1017
1018	err = __generic_file_fsync(file, start, end, datasync);
1019	if (err)
1020		return err;
1021	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1022}
1023EXPORT_SYMBOL(generic_file_fsync);
1024
1025/**
1026 * generic_check_addressable - Check addressability of file system
1027 * @blocksize_bits:	log of file system block size
1028 * @num_blocks:		number of blocks in file system
1029 *
1030 * Determine whether a file system with @num_blocks blocks (and a
1031 * block size of 2**@blocksize_bits) is addressable by the sector_t
1032 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1033 */
1034int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1035{
1036	u64 last_fs_block = num_blocks - 1;
1037	u64 last_fs_page =
1038		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1039
1040	if (unlikely(num_blocks == 0))
1041		return 0;
1042
1043	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1044		return -EINVAL;
1045
1046	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1047	    (last_fs_page > (pgoff_t)(~0ULL))) {
1048		return -EFBIG;
1049	}
1050	return 0;
1051}
1052EXPORT_SYMBOL(generic_check_addressable);
1053
1054/*
1055 * No-op implementation of ->fsync for in-memory filesystems.
1056 */
1057int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1058{
1059	return 0;
1060}
1061EXPORT_SYMBOL(noop_fsync);
1062
1063int noop_set_page_dirty(struct page *page)
1064{
1065	/*
1066	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1067	 * tracking in the page object, dax does all dirty tracking in
1068	 * the inode address_space in response to mkwrite faults. In the
1069	 * dax case we only need to worry about potentially dirty CPU
1070	 * caches, not dirty page cache pages to write back.
1071	 *
1072	 * This callback is defined to prevent fallback to
1073	 * __set_page_dirty_buffers() in set_page_dirty().
1074	 */
1075	return 0;
1076}
1077EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1078
1079void noop_invalidatepage(struct page *page, unsigned int offset,
1080		unsigned int length)
1081{
1082	/*
1083	 * There is no page cache to invalidate in the dax case, however
1084	 * we need this callback defined to prevent falling back to
1085	 * block_invalidatepage() in do_invalidatepage().
1086	 */
1087}
1088EXPORT_SYMBOL_GPL(noop_invalidatepage);
1089
1090ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1091{
1092	/*
1093	 * iomap based filesystems support direct I/O without need for
1094	 * this callback. However, it still needs to be set in
1095	 * inode->a_ops so that open/fcntl know that direct I/O is
1096	 * generally supported.
1097	 */
1098	return -EINVAL;
1099}
1100EXPORT_SYMBOL_GPL(noop_direct_IO);
1101
1102/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1103void kfree_link(void *p)
1104{
1105	kfree(p);
1106}
1107EXPORT_SYMBOL(kfree_link);
1108
1109/*
1110 * nop .set_page_dirty method so that people can use .page_mkwrite on
1111 * anon inodes.
1112 */
1113static int anon_set_page_dirty(struct page *page)
1114{
1115	return 0;
1116};
1117
1118/*
1119 * A single inode exists for all anon_inode files. Contrary to pipes,
1120 * anon_inode inodes have no associated per-instance data, so we need
1121 * only allocate one of them.
1122 */
1123struct inode *alloc_anon_inode(struct super_block *s)
1124{
1125	static const struct address_space_operations anon_aops = {
1126		.set_page_dirty = anon_set_page_dirty,
1127	};
1128	struct inode *inode = new_inode_pseudo(s);
1129
1130	if (!inode)
1131		return ERR_PTR(-ENOMEM);
1132
1133	inode->i_ino = get_next_ino();
1134	inode->i_mapping->a_ops = &anon_aops;
1135
1136	/*
1137	 * Mark the inode dirty from the very beginning,
1138	 * that way it will never be moved to the dirty
1139	 * list because mark_inode_dirty() will think
1140	 * that it already _is_ on the dirty list.
1141	 */
1142	inode->i_state = I_DIRTY;
1143	inode->i_mode = S_IRUSR | S_IWUSR;
1144	inode->i_uid = current_fsuid();
1145	inode->i_gid = current_fsgid();
1146	inode->i_flags |= S_PRIVATE;
1147	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1148	return inode;
1149}
1150EXPORT_SYMBOL(alloc_anon_inode);
1151
1152/**
1153 * simple_nosetlease - generic helper for prohibiting leases
1154 * @filp: file pointer
1155 * @arg: type of lease to obtain
1156 * @flp: new lease supplied for insertion
1157 * @priv: private data for lm_setup operation
1158 *
1159 * Generic helper for filesystems that do not wish to allow leases to be set.
1160 * All arguments are ignored and it just returns -EINVAL.
1161 */
1162int
1163simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1164		  void **priv)
1165{
1166	return -EINVAL;
1167}
1168EXPORT_SYMBOL(simple_nosetlease);
1169
1170const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1171			    struct delayed_call *done)
1172{
1173	return inode->i_link;
1174}
1175EXPORT_SYMBOL(simple_get_link);
1176
1177const struct inode_operations simple_symlink_inode_operations = {
1178	.get_link = simple_get_link,
1179};
1180EXPORT_SYMBOL(simple_symlink_inode_operations);
1181
1182/*
1183 * Operations for a permanently empty directory.
1184 */
1185static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1186{
1187	return ERR_PTR(-ENOENT);
1188}
1189
1190static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1191			     u32 request_mask, unsigned int query_flags)
1192{
1193	struct inode *inode = d_inode(path->dentry);
1194	generic_fillattr(inode, stat);
1195	return 0;
1196}
1197
1198static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1199{
1200	return -EPERM;
1201}
1202
1203static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1204{
1205	return -EOPNOTSUPP;
1206}
1207
1208static const struct inode_operations empty_dir_inode_operations = {
1209	.lookup		= empty_dir_lookup,
1210	.permission	= generic_permission,
1211	.setattr	= empty_dir_setattr,
1212	.getattr	= empty_dir_getattr,
1213	.listxattr	= empty_dir_listxattr,
1214};
1215
1216static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1217{
1218	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1219	return generic_file_llseek_size(file, offset, whence, 2, 2);
1220}
1221
1222static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1223{
1224	dir_emit_dots(file, ctx);
1225	return 0;
1226}
1227
1228static const struct file_operations empty_dir_operations = {
1229	.llseek		= empty_dir_llseek,
1230	.read		= generic_read_dir,
1231	.iterate_shared	= empty_dir_readdir,
1232	.fsync		= noop_fsync,
1233};
1234
1235
1236void make_empty_dir_inode(struct inode *inode)
1237{
1238	set_nlink(inode, 2);
1239	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1240	inode->i_uid = GLOBAL_ROOT_UID;
1241	inode->i_gid = GLOBAL_ROOT_GID;
1242	inode->i_rdev = 0;
1243	inode->i_size = 0;
1244	inode->i_blkbits = PAGE_SHIFT;
1245	inode->i_blocks = 0;
1246
1247	inode->i_op = &empty_dir_inode_operations;
1248	inode->i_opflags &= ~IOP_XATTR;
1249	inode->i_fop = &empty_dir_operations;
1250}
1251
1252bool is_empty_dir_inode(struct inode *inode)
1253{
1254	return (inode->i_fop == &empty_dir_operations) &&
1255		(inode->i_op == &empty_dir_inode_operations);
1256}
 
 
 
 
 
v3.1
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/module.h>
 
   7#include <linux/pagemap.h>
   8#include <linux/slab.h>
 
   9#include <linux/mount.h>
  10#include <linux/vfs.h>
  11#include <linux/quotaops.h>
  12#include <linux/mutex.h>
 
  13#include <linux/exportfs.h>
  14#include <linux/writeback.h>
  15#include <linux/buffer_head.h>
  16
  17#include <asm/uaccess.h>
  18
  19#include "internal.h"
  20
  21static inline int simple_positive(struct dentry *dentry)
 
  22{
  23	return dentry->d_inode && !d_unhashed(dentry);
  24}
  25
  26int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  27		   struct kstat *stat)
  28{
  29	struct inode *inode = dentry->d_inode;
  30	generic_fillattr(inode, stat);
  31	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  32	return 0;
  33}
 
  34
  35int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  36{
  37	buf->f_type = dentry->d_sb->s_magic;
  38	buf->f_bsize = PAGE_CACHE_SIZE;
  39	buf->f_namelen = NAME_MAX;
  40	return 0;
  41}
 
  42
  43/*
  44 * Retaining negative dentries for an in-memory filesystem just wastes
  45 * memory and lookup time: arrange for them to be deleted immediately.
  46 */
  47static int simple_delete_dentry(const struct dentry *dentry)
  48{
  49	return 1;
  50}
 
 
 
 
 
 
  51
  52/*
  53 * Lookup the data. This is trivial - if the dentry didn't already
  54 * exist, we know it is negative.  Set d_op to delete negative dentries.
  55 */
  56struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  57{
  58	static const struct dentry_operations simple_dentry_operations = {
  59		.d_delete = simple_delete_dentry,
  60	};
  61
  62	if (dentry->d_name.len > NAME_MAX)
  63		return ERR_PTR(-ENAMETOOLONG);
  64	d_set_d_op(dentry, &simple_dentry_operations);
 
  65	d_add(dentry, NULL);
  66	return NULL;
  67}
 
  68
  69int dcache_dir_open(struct inode *inode, struct file *file)
  70{
  71	static struct qstr cursor_name = {.len = 1, .name = "."};
  72
  73	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  74
  75	return file->private_data ? 0 : -ENOMEM;
  76}
 
  77
  78int dcache_dir_close(struct inode *inode, struct file *file)
  79{
  80	dput(file->private_data);
  81	return 0;
  82}
 
  83
  84loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85{
  86	struct dentry *dentry = file->f_path.dentry;
  87	mutex_lock(&dentry->d_inode->i_mutex);
  88	switch (origin) {
  89		case 1:
  90			offset += file->f_pos;
  91		case 0:
  92			if (offset >= 0)
  93				break;
  94		default:
  95			mutex_unlock(&dentry->d_inode->i_mutex);
  96			return -EINVAL;
  97	}
  98	if (offset != file->f_pos) {
  99		file->f_pos = offset;
 100		if (file->f_pos >= 2) {
 101			struct list_head *p;
 102			struct dentry *cursor = file->private_data;
 
 103			loff_t n = file->f_pos - 2;
 104
 105			spin_lock(&dentry->d_lock);
 106			/* d_lock not required for cursor */
 107			list_del(&cursor->d_u.d_child);
 108			p = dentry->d_subdirs.next;
 109			while (n && p != &dentry->d_subdirs) {
 110				struct dentry *next;
 111				next = list_entry(p, struct dentry, d_u.d_child);
 112				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 113				if (simple_positive(next))
 114					n--;
 115				spin_unlock(&next->d_lock);
 116				p = p->next;
 117			}
 118			list_add_tail(&cursor->d_u.d_child, p);
 119			spin_unlock(&dentry->d_lock);
 120		}
 121	}
 122	mutex_unlock(&dentry->d_inode->i_mutex);
 123	return offset;
 124}
 
 125
 126/* Relationship between i_mode and the DT_xxx types */
 127static inline unsigned char dt_type(struct inode *inode)
 128{
 129	return (inode->i_mode >> 12) & 15;
 130}
 131
 132/*
 133 * Directory is locked and all positive dentries in it are safe, since
 134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 135 * both impossible due to the lock on directory.
 136 */
 137
 138int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
 139{
 140	struct dentry *dentry = filp->f_path.dentry;
 141	struct dentry *cursor = filp->private_data;
 142	struct list_head *p, *q = &cursor->d_u.d_child;
 143	ino_t ino;
 144	int i = filp->f_pos;
 
 
 
 145
 146	switch (i) {
 147		case 0:
 148			ino = dentry->d_inode->i_ino;
 149			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
 150				break;
 151			filp->f_pos++;
 152			i++;
 153			/* fallthrough */
 154		case 1:
 155			ino = parent_ino(dentry);
 156			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
 157				break;
 158			filp->f_pos++;
 159			i++;
 160			/* fallthrough */
 161		default:
 162			spin_lock(&dentry->d_lock);
 163			if (filp->f_pos == 2)
 164				list_move(q, &dentry->d_subdirs);
 165
 166			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
 167				struct dentry *next;
 168				next = list_entry(p, struct dentry, d_u.d_child);
 169				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 170				if (!simple_positive(next)) {
 171					spin_unlock(&next->d_lock);
 172					continue;
 173				}
 174
 175				spin_unlock(&next->d_lock);
 176				spin_unlock(&dentry->d_lock);
 177				if (filldir(dirent, next->d_name.name, 
 178					    next->d_name.len, filp->f_pos, 
 179					    next->d_inode->i_ino, 
 180					    dt_type(next->d_inode)) < 0)
 181					return 0;
 182				spin_lock(&dentry->d_lock);
 183				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 184				/* next is still alive */
 185				list_move(q, p);
 186				spin_unlock(&next->d_lock);
 187				p = q;
 188				filp->f_pos++;
 189			}
 190			spin_unlock(&dentry->d_lock);
 191	}
 
 
 192	return 0;
 193}
 
 194
 195ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 196{
 197	return -EISDIR;
 198}
 
 199
 200const struct file_operations simple_dir_operations = {
 201	.open		= dcache_dir_open,
 202	.release	= dcache_dir_close,
 203	.llseek		= dcache_dir_lseek,
 204	.read		= generic_read_dir,
 205	.readdir	= dcache_readdir,
 206	.fsync		= noop_fsync,
 207};
 
 208
 209const struct inode_operations simple_dir_inode_operations = {
 210	.lookup		= simple_lookup,
 211};
 
 212
 213static const struct super_operations simple_super_operations = {
 214	.statfs		= simple_statfs,
 215};
 216
 217/*
 218 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 219 * will never be mountable)
 220 */
 221struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 222	const struct super_operations *ops,
 223	const struct dentry_operations *dops, unsigned long magic)
 224{
 225	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
 226	struct dentry *dentry;
 227	struct inode *root;
 228	struct qstr d_name = {.name = name, .len = strlen(name)};
 229
 
 
 230	if (IS_ERR(s))
 231		return ERR_CAST(s);
 232
 233	s->s_flags = MS_NOUSER;
 234	s->s_maxbytes = MAX_LFS_FILESIZE;
 235	s->s_blocksize = PAGE_SIZE;
 236	s->s_blocksize_bits = PAGE_SHIFT;
 237	s->s_magic = magic;
 238	s->s_op = ops ? ops : &simple_super_operations;
 
 239	s->s_time_gran = 1;
 240	root = new_inode(s);
 241	if (!root)
 242		goto Enomem;
 243	/*
 244	 * since this is the first inode, make it number 1. New inodes created
 245	 * after this must take care not to collide with it (by passing
 246	 * max_reserved of 1 to iunique).
 247	 */
 248	root->i_ino = 1;
 249	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 250	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 251	dentry = __d_alloc(s, &d_name);
 252	if (!dentry) {
 253		iput(root);
 254		goto Enomem;
 255	}
 256	d_instantiate(dentry, root);
 257	s->s_root = dentry;
 258	s->s_d_op = dops;
 259	s->s_flags |= MS_ACTIVE;
 260	return dget(s->s_root);
 261
 262Enomem:
 263	deactivate_locked_super(s);
 264	return ERR_PTR(-ENOMEM);
 265}
 
 
 
 
 
 
 
 
 
 266
 267int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 268{
 269	struct inode *inode = old_dentry->d_inode;
 270
 271	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 272	inc_nlink(inode);
 273	ihold(inode);
 274	dget(dentry);
 275	d_instantiate(dentry, inode);
 276	return 0;
 277}
 
 278
 279int simple_empty(struct dentry *dentry)
 280{
 281	struct dentry *child;
 282	int ret = 0;
 283
 284	spin_lock(&dentry->d_lock);
 285	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
 286		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 287		if (simple_positive(child)) {
 288			spin_unlock(&child->d_lock);
 289			goto out;
 290		}
 291		spin_unlock(&child->d_lock);
 292	}
 293	ret = 1;
 294out:
 295	spin_unlock(&dentry->d_lock);
 296	return ret;
 297}
 
 298
 299int simple_unlink(struct inode *dir, struct dentry *dentry)
 300{
 301	struct inode *inode = dentry->d_inode;
 302
 303	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 304	drop_nlink(inode);
 305	dput(dentry);
 306	return 0;
 307}
 
 308
 309int simple_rmdir(struct inode *dir, struct dentry *dentry)
 310{
 311	if (!simple_empty(dentry))
 312		return -ENOTEMPTY;
 313
 314	drop_nlink(dentry->d_inode);
 315	simple_unlink(dir, dentry);
 316	drop_nlink(dir);
 317	return 0;
 318}
 
 319
 320int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 321		struct inode *new_dir, struct dentry *new_dentry)
 
 322{
 323	struct inode *inode = old_dentry->d_inode;
 324	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
 
 
 
 325
 326	if (!simple_empty(new_dentry))
 327		return -ENOTEMPTY;
 328
 329	if (new_dentry->d_inode) {
 330		simple_unlink(new_dir, new_dentry);
 331		if (they_are_dirs) {
 332			drop_nlink(new_dentry->d_inode);
 333			drop_nlink(old_dir);
 334		}
 335	} else if (they_are_dirs) {
 336		drop_nlink(old_dir);
 337		inc_nlink(new_dir);
 338	}
 339
 340	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 341		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 342
 343	return 0;
 344}
 
 345
 346/**
 347 * simple_setattr - setattr for simple filesystem
 348 * @dentry: dentry
 349 * @iattr: iattr structure
 350 *
 351 * Returns 0 on success, -error on failure.
 352 *
 353 * simple_setattr is a simple ->setattr implementation without a proper
 354 * implementation of size changes.
 355 *
 356 * It can either be used for in-memory filesystems or special files
 357 * on simple regular filesystems.  Anything that needs to change on-disk
 358 * or wire state on size changes needs its own setattr method.
 359 */
 360int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 361{
 362	struct inode *inode = dentry->d_inode;
 363	int error;
 364
 365	WARN_ON_ONCE(inode->i_op->truncate);
 366
 367	error = inode_change_ok(inode, iattr);
 368	if (error)
 369		return error;
 370
 371	if (iattr->ia_valid & ATTR_SIZE)
 372		truncate_setsize(inode, iattr->ia_size);
 373	setattr_copy(inode, iattr);
 374	mark_inode_dirty(inode);
 375	return 0;
 376}
 377EXPORT_SYMBOL(simple_setattr);
 378
 379int simple_readpage(struct file *file, struct page *page)
 380{
 381	clear_highpage(page);
 382	flush_dcache_page(page);
 383	SetPageUptodate(page);
 384	unlock_page(page);
 385	return 0;
 386}
 
 387
 388int simple_write_begin(struct file *file, struct address_space *mapping,
 389			loff_t pos, unsigned len, unsigned flags,
 390			struct page **pagep, void **fsdata)
 391{
 392	struct page *page;
 393	pgoff_t index;
 394
 395	index = pos >> PAGE_CACHE_SHIFT;
 396
 397	page = grab_cache_page_write_begin(mapping, index, flags);
 398	if (!page)
 399		return -ENOMEM;
 400
 401	*pagep = page;
 402
 403	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
 404		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 405
 406		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
 407	}
 408	return 0;
 409}
 
 410
 411/**
 412 * simple_write_end - .write_end helper for non-block-device FSes
 413 * @available: See .write_end of address_space_operations
 414 * @file: 		"
 415 * @mapping: 		"
 416 * @pos: 		"
 417 * @len: 		"
 418 * @copied: 		"
 419 * @page: 		"
 420 * @fsdata: 		"
 421 *
 422 * simple_write_end does the minimum needed for updating a page after writing is
 423 * done. It has the same API signature as the .write_end of
 424 * address_space_operations vector. So it can just be set onto .write_end for
 425 * FSes that don't need any other processing. i_mutex is assumed to be held.
 426 * Block based filesystems should use generic_write_end().
 427 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 428 * is not called, so a filesystem that actually does store data in .write_inode
 429 * should extend on what's done here with a call to mark_inode_dirty() in the
 430 * case that i_size has changed.
 
 
 431 */
 432int simple_write_end(struct file *file, struct address_space *mapping,
 433			loff_t pos, unsigned len, unsigned copied,
 434			struct page *page, void *fsdata)
 435{
 436	struct inode *inode = page->mapping->host;
 437	loff_t last_pos = pos + copied;
 438
 439	/* zero the stale part of the page if we did a short copy */
 440	if (copied < len) {
 441		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 
 442
 443		zero_user(page, from + copied, len - copied);
 
 
 444	}
 445
 446	if (!PageUptodate(page))
 447		SetPageUptodate(page);
 448	/*
 449	 * No need to use i_size_read() here, the i_size
 450	 * cannot change under us because we hold the i_mutex.
 451	 */
 452	if (last_pos > inode->i_size)
 453		i_size_write(inode, last_pos);
 454
 455	set_page_dirty(page);
 456	unlock_page(page);
 457	page_cache_release(page);
 458
 459	return copied;
 460}
 
 461
 462/*
 463 * the inodes created here are not hashed. If you use iunique to generate
 464 * unique inode values later for this filesystem, then you must take care
 465 * to pass it an appropriate max_reserved value to avoid collisions.
 466 */
 467int simple_fill_super(struct super_block *s, unsigned long magic,
 468		      struct tree_descr *files)
 469{
 470	struct inode *inode;
 471	struct dentry *root;
 472	struct dentry *dentry;
 473	int i;
 474
 475	s->s_blocksize = PAGE_CACHE_SIZE;
 476	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
 477	s->s_magic = magic;
 478	s->s_op = &simple_super_operations;
 479	s->s_time_gran = 1;
 480
 481	inode = new_inode(s);
 482	if (!inode)
 483		return -ENOMEM;
 484	/*
 485	 * because the root inode is 1, the files array must not contain an
 486	 * entry at index 1
 487	 */
 488	inode->i_ino = 1;
 489	inode->i_mode = S_IFDIR | 0755;
 490	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 491	inode->i_op = &simple_dir_inode_operations;
 492	inode->i_fop = &simple_dir_operations;
 493	inode->i_nlink = 2;
 494	root = d_alloc_root(inode);
 495	if (!root) {
 496		iput(inode);
 497		return -ENOMEM;
 498	}
 499	for (i = 0; !files->name || files->name[0]; i++, files++) {
 500		if (!files->name)
 501			continue;
 502
 503		/* warn if it tries to conflict with the root inode */
 504		if (unlikely(i == 1))
 505			printk(KERN_WARNING "%s: %s passed in a files array"
 506				"with an index of 1!\n", __func__,
 507				s->s_type->name);
 508
 509		dentry = d_alloc_name(root, files->name);
 510		if (!dentry)
 511			goto out;
 512		inode = new_inode(s);
 513		if (!inode)
 
 514			goto out;
 
 515		inode->i_mode = S_IFREG | files->mode;
 516		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 517		inode->i_fop = files->ops;
 518		inode->i_ino = i;
 519		d_add(dentry, inode);
 520	}
 521	s->s_root = root;
 522	return 0;
 523out:
 524	d_genocide(root);
 
 525	dput(root);
 526	return -ENOMEM;
 527}
 
 528
 529static DEFINE_SPINLOCK(pin_fs_lock);
 530
 531int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 532{
 533	struct vfsmount *mnt = NULL;
 534	spin_lock(&pin_fs_lock);
 535	if (unlikely(!*mount)) {
 536		spin_unlock(&pin_fs_lock);
 537		mnt = vfs_kern_mount(type, 0, type->name, NULL);
 538		if (IS_ERR(mnt))
 539			return PTR_ERR(mnt);
 540		spin_lock(&pin_fs_lock);
 541		if (!*mount)
 542			*mount = mnt;
 543	}
 544	mntget(*mount);
 545	++*count;
 546	spin_unlock(&pin_fs_lock);
 547	mntput(mnt);
 548	return 0;
 549}
 
 550
 551void simple_release_fs(struct vfsmount **mount, int *count)
 552{
 553	struct vfsmount *mnt;
 554	spin_lock(&pin_fs_lock);
 555	mnt = *mount;
 556	if (!--*count)
 557		*mount = NULL;
 558	spin_unlock(&pin_fs_lock);
 559	mntput(mnt);
 560}
 
 561
 562/**
 563 * simple_read_from_buffer - copy data from the buffer to user space
 564 * @to: the user space buffer to read to
 565 * @count: the maximum number of bytes to read
 566 * @ppos: the current position in the buffer
 567 * @from: the buffer to read from
 568 * @available: the size of the buffer
 569 *
 570 * The simple_read_from_buffer() function reads up to @count bytes from the
 571 * buffer @from at offset @ppos into the user space address starting at @to.
 572 *
 573 * On success, the number of bytes read is returned and the offset @ppos is
 574 * advanced by this number, or negative value is returned on error.
 575 **/
 576ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 577				const void *from, size_t available)
 578{
 579	loff_t pos = *ppos;
 580	size_t ret;
 581
 582	if (pos < 0)
 583		return -EINVAL;
 584	if (pos >= available || !count)
 585		return 0;
 586	if (count > available - pos)
 587		count = available - pos;
 588	ret = copy_to_user(to, from + pos, count);
 589	if (ret == count)
 590		return -EFAULT;
 591	count -= ret;
 592	*ppos = pos + count;
 593	return count;
 594}
 
 595
 596/**
 597 * simple_write_to_buffer - copy data from user space to the buffer
 598 * @to: the buffer to write to
 599 * @available: the size of the buffer
 600 * @ppos: the current position in the buffer
 601 * @from: the user space buffer to read from
 602 * @count: the maximum number of bytes to read
 603 *
 604 * The simple_write_to_buffer() function reads up to @count bytes from the user
 605 * space address starting at @from into the buffer @to at offset @ppos.
 606 *
 607 * On success, the number of bytes written is returned and the offset @ppos is
 608 * advanced by this number, or negative value is returned on error.
 609 **/
 610ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 611		const void __user *from, size_t count)
 612{
 613	loff_t pos = *ppos;
 614	size_t res;
 615
 616	if (pos < 0)
 617		return -EINVAL;
 618	if (pos >= available || !count)
 619		return 0;
 620	if (count > available - pos)
 621		count = available - pos;
 622	res = copy_from_user(to + pos, from, count);
 623	if (res == count)
 624		return -EFAULT;
 625	count -= res;
 626	*ppos = pos + count;
 627	return count;
 628}
 
 629
 630/**
 631 * memory_read_from_buffer - copy data from the buffer
 632 * @to: the kernel space buffer to read to
 633 * @count: the maximum number of bytes to read
 634 * @ppos: the current position in the buffer
 635 * @from: the buffer to read from
 636 * @available: the size of the buffer
 637 *
 638 * The memory_read_from_buffer() function reads up to @count bytes from the
 639 * buffer @from at offset @ppos into the kernel space address starting at @to.
 640 *
 641 * On success, the number of bytes read is returned and the offset @ppos is
 642 * advanced by this number, or negative value is returned on error.
 643 **/
 644ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 645				const void *from, size_t available)
 646{
 647	loff_t pos = *ppos;
 648
 649	if (pos < 0)
 650		return -EINVAL;
 651	if (pos >= available)
 652		return 0;
 653	if (count > available - pos)
 654		count = available - pos;
 655	memcpy(to, from + pos, count);
 656	*ppos = pos + count;
 657
 658	return count;
 659}
 
 660
 661/*
 662 * Transaction based IO.
 663 * The file expects a single write which triggers the transaction, and then
 664 * possibly a read which collects the result - which is stored in a
 665 * file-local buffer.
 666 */
 667
 668void simple_transaction_set(struct file *file, size_t n)
 669{
 670	struct simple_transaction_argresp *ar = file->private_data;
 671
 672	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 673
 674	/*
 675	 * The barrier ensures that ar->size will really remain zero until
 676	 * ar->data is ready for reading.
 677	 */
 678	smp_mb();
 679	ar->size = n;
 680}
 
 681
 682char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 683{
 684	struct simple_transaction_argresp *ar;
 685	static DEFINE_SPINLOCK(simple_transaction_lock);
 686
 687	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 688		return ERR_PTR(-EFBIG);
 689
 690	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 691	if (!ar)
 692		return ERR_PTR(-ENOMEM);
 693
 694	spin_lock(&simple_transaction_lock);
 695
 696	/* only one write allowed per open */
 697	if (file->private_data) {
 698		spin_unlock(&simple_transaction_lock);
 699		free_page((unsigned long)ar);
 700		return ERR_PTR(-EBUSY);
 701	}
 702
 703	file->private_data = ar;
 704
 705	spin_unlock(&simple_transaction_lock);
 706
 707	if (copy_from_user(ar->data, buf, size))
 708		return ERR_PTR(-EFAULT);
 709
 710	return ar->data;
 711}
 
 712
 713ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 714{
 715	struct simple_transaction_argresp *ar = file->private_data;
 716
 717	if (!ar)
 718		return 0;
 719	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 720}
 
 721
 722int simple_transaction_release(struct inode *inode, struct file *file)
 723{
 724	free_page((unsigned long)file->private_data);
 725	return 0;
 726}
 
 727
 728/* Simple attribute files */
 729
 730struct simple_attr {
 731	int (*get)(void *, u64 *);
 732	int (*set)(void *, u64);
 733	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 734	char set_buf[24];
 735	void *data;
 736	const char *fmt;	/* format for read operation */
 737	struct mutex mutex;	/* protects access to these buffers */
 738};
 739
 740/* simple_attr_open is called by an actual attribute open file operation
 741 * to set the attribute specific access operations. */
 742int simple_attr_open(struct inode *inode, struct file *file,
 743		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 744		     const char *fmt)
 745{
 746	struct simple_attr *attr;
 747
 748	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 749	if (!attr)
 750		return -ENOMEM;
 751
 752	attr->get = get;
 753	attr->set = set;
 754	attr->data = inode->i_private;
 755	attr->fmt = fmt;
 756	mutex_init(&attr->mutex);
 757
 758	file->private_data = attr;
 759
 760	return nonseekable_open(inode, file);
 761}
 
 762
 763int simple_attr_release(struct inode *inode, struct file *file)
 764{
 765	kfree(file->private_data);
 766	return 0;
 767}
 
 768
 769/* read from the buffer that is filled with the get function */
 770ssize_t simple_attr_read(struct file *file, char __user *buf,
 771			 size_t len, loff_t *ppos)
 772{
 773	struct simple_attr *attr;
 774	size_t size;
 775	ssize_t ret;
 776
 777	attr = file->private_data;
 778
 779	if (!attr->get)
 780		return -EACCES;
 781
 782	ret = mutex_lock_interruptible(&attr->mutex);
 783	if (ret)
 784		return ret;
 785
 786	if (*ppos) {		/* continued read */
 787		size = strlen(attr->get_buf);
 788	} else {		/* first read */
 789		u64 val;
 790		ret = attr->get(attr->data, &val);
 791		if (ret)
 792			goto out;
 793
 794		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 795				 attr->fmt, (unsigned long long)val);
 796	}
 797
 798	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 799out:
 800	mutex_unlock(&attr->mutex);
 801	return ret;
 802}
 
 803
 804/* interpret the buffer as a number to call the set function with */
 805ssize_t simple_attr_write(struct file *file, const char __user *buf,
 806			  size_t len, loff_t *ppos)
 807{
 808	struct simple_attr *attr;
 809	u64 val;
 810	size_t size;
 811	ssize_t ret;
 812
 813	attr = file->private_data;
 814	if (!attr->set)
 815		return -EACCES;
 816
 817	ret = mutex_lock_interruptible(&attr->mutex);
 818	if (ret)
 819		return ret;
 820
 821	ret = -EFAULT;
 822	size = min(sizeof(attr->set_buf) - 1, len);
 823	if (copy_from_user(attr->set_buf, buf, size))
 824		goto out;
 825
 826	attr->set_buf[size] = '\0';
 827	val = simple_strtoll(attr->set_buf, NULL, 0);
 828	ret = attr->set(attr->data, val);
 829	if (ret == 0)
 830		ret = len; /* on success, claim we got the whole input */
 831out:
 832	mutex_unlock(&attr->mutex);
 833	return ret;
 834}
 
 835
 836/**
 837 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 838 * @sb:		filesystem to do the file handle conversion on
 839 * @fid:	file handle to convert
 840 * @fh_len:	length of the file handle in bytes
 841 * @fh_type:	type of file handle
 842 * @get_inode:	filesystem callback to retrieve inode
 843 *
 844 * This function decodes @fid as long as it has one of the well-known
 845 * Linux filehandle types and calls @get_inode on it to retrieve the
 846 * inode for the object specified in the file handle.
 847 */
 848struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 849		int fh_len, int fh_type, struct inode *(*get_inode)
 850			(struct super_block *sb, u64 ino, u32 gen))
 851{
 852	struct inode *inode = NULL;
 853
 854	if (fh_len < 2)
 855		return NULL;
 856
 857	switch (fh_type) {
 858	case FILEID_INO32_GEN:
 859	case FILEID_INO32_GEN_PARENT:
 860		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 861		break;
 862	}
 863
 864	return d_obtain_alias(inode);
 865}
 866EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 867
 868/**
 869 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
 870 * @sb:		filesystem to do the file handle conversion on
 871 * @fid:	file handle to convert
 872 * @fh_len:	length of the file handle in bytes
 873 * @fh_type:	type of file handle
 874 * @get_inode:	filesystem callback to retrieve inode
 875 *
 876 * This function decodes @fid as long as it has one of the well-known
 877 * Linux filehandle types and calls @get_inode on it to retrieve the
 878 * inode for the _parent_ object specified in the file handle if it
 879 * is specified in the file handle, or NULL otherwise.
 880 */
 881struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 882		int fh_len, int fh_type, struct inode *(*get_inode)
 883			(struct super_block *sb, u64 ino, u32 gen))
 884{
 885	struct inode *inode = NULL;
 886
 887	if (fh_len <= 2)
 888		return NULL;
 889
 890	switch (fh_type) {
 891	case FILEID_INO32_GEN_PARENT:
 892		inode = get_inode(sb, fid->i32.parent_ino,
 893				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 894		break;
 895	}
 896
 897	return d_obtain_alias(inode);
 898}
 899EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 900
 901/**
 902 * generic_file_fsync - generic fsync implementation for simple filesystems
 
 903 * @file:	file to synchronize
 
 
 904 * @datasync:	only synchronize essential metadata if true
 905 *
 906 * This is a generic implementation of the fsync method for simple
 907 * filesystems which track all non-inode metadata in the buffers list
 908 * hanging off the address_space structure.
 909 */
 910int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 911		       int datasync)
 912{
 913	struct inode *inode = file->f_mapping->host;
 914	int err;
 915	int ret;
 916
 917	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 918	if (err)
 919		return err;
 920
 921	mutex_lock(&inode->i_mutex);
 922	ret = sync_mapping_buffers(inode->i_mapping);
 923	if (!(inode->i_state & I_DIRTY))
 924		goto out;
 925	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 926		goto out;
 927
 928	err = sync_inode_metadata(inode, 1);
 929	if (ret == 0)
 930		ret = err;
 
 931out:
 932	mutex_unlock(&inode->i_mutex);
 
 
 
 
 933	return ret;
 934}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935EXPORT_SYMBOL(generic_file_fsync);
 936
 937/**
 938 * generic_check_addressable - Check addressability of file system
 939 * @blocksize_bits:	log of file system block size
 940 * @num_blocks:		number of blocks in file system
 941 *
 942 * Determine whether a file system with @num_blocks blocks (and a
 943 * block size of 2**@blocksize_bits) is addressable by the sector_t
 944 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 945 */
 946int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 947{
 948	u64 last_fs_block = num_blocks - 1;
 949	u64 last_fs_page =
 950		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
 951
 952	if (unlikely(num_blocks == 0))
 953		return 0;
 954
 955	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
 956		return -EINVAL;
 957
 958	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
 959	    (last_fs_page > (pgoff_t)(~0ULL))) {
 960		return -EFBIG;
 961	}
 962	return 0;
 963}
 964EXPORT_SYMBOL(generic_check_addressable);
 965
 966/*
 967 * No-op implementation of ->fsync for in-memory filesystems.
 968 */
 969int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 970{
 971	return 0;
 972}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973
 974EXPORT_SYMBOL(dcache_dir_close);
 975EXPORT_SYMBOL(dcache_dir_lseek);
 976EXPORT_SYMBOL(dcache_dir_open);
 977EXPORT_SYMBOL(dcache_readdir);
 978EXPORT_SYMBOL(generic_read_dir);
 979EXPORT_SYMBOL(mount_pseudo);
 980EXPORT_SYMBOL(simple_write_begin);
 981EXPORT_SYMBOL(simple_write_end);
 982EXPORT_SYMBOL(simple_dir_inode_operations);
 983EXPORT_SYMBOL(simple_dir_operations);
 984EXPORT_SYMBOL(simple_empty);
 985EXPORT_SYMBOL(simple_fill_super);
 986EXPORT_SYMBOL(simple_getattr);
 987EXPORT_SYMBOL(simple_link);
 988EXPORT_SYMBOL(simple_lookup);
 989EXPORT_SYMBOL(simple_pin_fs);
 990EXPORT_SYMBOL(simple_readpage);
 991EXPORT_SYMBOL(simple_release_fs);
 992EXPORT_SYMBOL(simple_rename);
 993EXPORT_SYMBOL(simple_rmdir);
 994EXPORT_SYMBOL(simple_statfs);
 995EXPORT_SYMBOL(noop_fsync);
 996EXPORT_SYMBOL(simple_unlink);
 997EXPORT_SYMBOL(simple_read_from_buffer);
 998EXPORT_SYMBOL(simple_write_to_buffer);
 999EXPORT_SYMBOL(memory_read_from_buffer);
1000EXPORT_SYMBOL(simple_transaction_set);
1001EXPORT_SYMBOL(simple_transaction_get);
1002EXPORT_SYMBOL(simple_transaction_read);
1003EXPORT_SYMBOL(simple_transaction_release);
1004EXPORT_SYMBOL_GPL(simple_attr_open);
1005EXPORT_SYMBOL_GPL(simple_attr_release);
1006EXPORT_SYMBOL_GPL(simple_attr_read);
1007EXPORT_SYMBOL_GPL(simple_attr_write);