Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(struct timer_list *t)
  45{
  46	struct sas_task_slow *slow = from_timer(slow, t, timer);
  47	struct sas_task *task = slow->task;
  48	unsigned long flags;
  49
  50	spin_lock_irqsave(&task->task_state_lock, flags);
  51	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  52		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  53	spin_unlock_irqrestore(&task->task_state_lock, flags);
  54
  55	complete(&task->slow_task->completion);
  56}
  57
  58static void smp_task_done(struct sas_task *task)
  59{
  60	if (!del_timer(&task->slow_task->timer))
  61		return;
  62	complete(&task->slow_task->completion);
  63}
  64
  65/* Give it some long enough timeout. In seconds. */
  66#define SMP_TIMEOUT 10
  67
  68static int smp_execute_task_sg(struct domain_device *dev,
  69		struct scatterlist *req, struct scatterlist *resp)
  70{
  71	int res, retry;
  72	struct sas_task *task = NULL;
  73	struct sas_internal *i =
  74		to_sas_internal(dev->port->ha->core.shost->transportt);
  75
  76	mutex_lock(&dev->ex_dev.cmd_mutex);
  77	for (retry = 0; retry < 3; retry++) {
  78		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  79			res = -ECOMM;
  80			break;
  81		}
  82
  83		task = sas_alloc_slow_task(GFP_KERNEL);
  84		if (!task) {
  85			res = -ENOMEM;
  86			break;
  87		}
  88		task->dev = dev;
  89		task->task_proto = dev->tproto;
  90		task->smp_task.smp_req = *req;
  91		task->smp_task.smp_resp = *resp;
  92
  93		task->task_done = smp_task_done;
  94
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
 
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 
 
 151	return res;
 152}
 153
 154static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 155			    void *resp, int resp_size)
 156{
 157	struct scatterlist req_sg;
 158	struct scatterlist resp_sg;
 159
 160	sg_init_one(&req_sg, req, req_size);
 161	sg_init_one(&resp_sg, resp, resp_size);
 162	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 163}
 164
 165/* ---------- Allocations ---------- */
 166
 167static inline void *alloc_smp_req(int size)
 168{
 169	u8 *p = kzalloc(size, GFP_KERNEL);
 170	if (p)
 171		p[0] = SMP_REQUEST;
 172	return p;
 173}
 174
 175static inline void *alloc_smp_resp(int size)
 176{
 177	return kzalloc(size, GFP_KERNEL);
 178}
 179
 180static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 181{
 182	switch (phy->routing_attr) {
 183	case TABLE_ROUTING:
 184		if (dev->ex_dev.t2t_supp)
 185			return 'U';
 186		else
 187			return 'T';
 188	case DIRECT_ROUTING:
 189		return 'D';
 190	case SUBTRACTIVE_ROUTING:
 191		return 'S';
 192	default:
 193		return '?';
 194	}
 195}
 196
 197static enum sas_device_type to_dev_type(struct discover_resp *dr)
 
 198{
 199	/* This is detecting a failure to transmit initial dev to host
 200	 * FIS as described in section J.5 of sas-2 r16
 201	 */
 202	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 203	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 204		return SAS_SATA_PENDING;
 205	else
 206		return dr->attached_dev_type;
 207}
 208
 209static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 210{
 211	enum sas_device_type dev_type;
 212	enum sas_linkrate linkrate;
 213	u8 sas_addr[SAS_ADDR_SIZE];
 214	struct smp_resp *resp = rsp;
 215	struct discover_resp *dr = &resp->disc;
 216	struct sas_ha_struct *ha = dev->port->ha;
 217	struct expander_device *ex = &dev->ex_dev;
 218	struct ex_phy *phy = &ex->ex_phy[phy_id];
 
 
 219	struct sas_rphy *rphy = dev->rphy;
 220	bool new_phy = !phy->phy;
 221	char *type;
 222
 223	if (new_phy) {
 224		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 225			return;
 226		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 227
 228		/* FIXME: error_handling */
 229		BUG_ON(!phy->phy);
 230	}
 231
 232	switch (resp->result) {
 233	case SMP_RESP_PHY_VACANT:
 234		phy->phy_state = PHY_VACANT;
 235		break;
 236	default:
 237		phy->phy_state = PHY_NOT_PRESENT;
 238		break;
 239	case SMP_RESP_FUNC_ACC:
 240		phy->phy_state = PHY_EMPTY; /* do not know yet */
 241		break;
 242	}
 243
 244	/* check if anything important changed to squelch debug */
 245	dev_type = phy->attached_dev_type;
 246	linkrate  = phy->linkrate;
 247	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 248
 249	/* Handle vacant phy - rest of dr data is not valid so skip it */
 250	if (phy->phy_state == PHY_VACANT) {
 251		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 252		phy->attached_dev_type = SAS_PHY_UNUSED;
 253		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 254			phy->phy_id = phy_id;
 255			goto skip;
 256		} else
 257			goto out;
 258	}
 259
 260	phy->attached_dev_type = to_dev_type(dr);
 261	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 262		goto out;
 263	phy->phy_id = phy_id;
 
 264	phy->linkrate = dr->linkrate;
 265	phy->attached_sata_host = dr->attached_sata_host;
 266	phy->attached_sata_dev  = dr->attached_sata_dev;
 267	phy->attached_sata_ps   = dr->attached_sata_ps;
 268	phy->attached_iproto = dr->iproto << 1;
 269	phy->attached_tproto = dr->tproto << 1;
 270	/* help some expanders that fail to zero sas_address in the 'no
 271	 * device' case
 272	 */
 273	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 274	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 275		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 276	else
 277		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 278	phy->attached_phy_id = dr->attached_phy_id;
 279	phy->phy_change_count = dr->change_count;
 280	phy->routing_attr = dr->routing_attr;
 281	phy->virtual = dr->virtual;
 282	phy->last_da_index = -1;
 283
 284	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 285	phy->phy->identify.device_type = dr->attached_dev_type;
 286	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 287	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 288	if (!phy->attached_tproto && dr->attached_sata_dev)
 289		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 290	phy->phy->identify.phy_identifier = phy_id;
 291	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 292	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 293	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 294	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 295	phy->phy->negotiated_linkrate = phy->linkrate;
 296	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 297
 298 skip:
 299	if (new_phy)
 300		if (sas_phy_add(phy->phy)) {
 301			sas_phy_free(phy->phy);
 302			return;
 303		}
 304
 305 out:
 306	switch (phy->attached_dev_type) {
 307	case SAS_SATA_PENDING:
 308		type = "stp pending";
 309		break;
 310	case SAS_PHY_UNUSED:
 311		type = "no device";
 312		break;
 313	case SAS_END_DEVICE:
 314		if (phy->attached_iproto) {
 315			if (phy->attached_tproto)
 316				type = "host+target";
 317			else
 318				type = "host";
 319		} else {
 320			if (dr->attached_sata_dev)
 321				type = "stp";
 322			else
 323				type = "ssp";
 324		}
 325		break;
 326	case SAS_EDGE_EXPANDER_DEVICE:
 327	case SAS_FANOUT_EXPANDER_DEVICE:
 328		type = "smp";
 329		break;
 330	default:
 331		type = "unknown";
 332	}
 333
 334	/* this routine is polled by libata error recovery so filter
 335	 * unimportant messages
 336	 */
 337	if (new_phy || phy->attached_dev_type != dev_type ||
 338	    phy->linkrate != linkrate ||
 339	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 340		/* pass */;
 341	else
 342		return;
 343
 344	/* if the attached device type changed and ata_eh is active,
 345	 * make sure we run revalidation when eh completes (see:
 346	 * sas_enable_revalidation)
 347	 */
 348	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 349		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 350
 351	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 352		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 353		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 354		    sas_route_char(dev, phy), phy->linkrate,
 355		    SAS_ADDR(phy->attached_sas_addr), type);
 356}
 357
 358/* check if we have an existing attached ata device on this expander phy */
 359struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 360{
 361	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 362	struct domain_device *dev;
 363	struct sas_rphy *rphy;
 364
 365	if (!ex_phy->port)
 366		return NULL;
 367
 368	rphy = ex_phy->port->rphy;
 369	if (!rphy)
 370		return NULL;
 371
 372	dev = sas_find_dev_by_rphy(rphy);
 373
 374	if (dev && dev_is_sata(dev))
 375		return dev;
 376
 377	return NULL;
 378}
 379
 380#define DISCOVER_REQ_SIZE  16
 381#define DISCOVER_RESP_SIZE 56
 382
 383static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 384				      u8 *disc_resp, int single)
 385{
 386	struct discover_resp *dr;
 387	int res;
 388
 389	disc_req[9] = single;
 
 
 390
 391	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 392			       disc_resp, DISCOVER_RESP_SIZE);
 393	if (res)
 394		return res;
 395	dr = &((struct smp_resp *)disc_resp)->disc;
 396	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 397		sas_printk("Found loopback topology, just ignore it!\n");
 398		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 399	}
 400	sas_set_ex_phy(dev, single, disc_resp);
 401	return 0;
 402}
 403
 404int sas_ex_phy_discover(struct domain_device *dev, int single)
 405{
 406	struct expander_device *ex = &dev->ex_dev;
 407	int  res = 0;
 408	u8   *disc_req;
 409	u8   *disc_resp;
 410
 411	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 412	if (!disc_req)
 413		return -ENOMEM;
 414
 415	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 416	if (!disc_resp) {
 417		kfree(disc_req);
 418		return -ENOMEM;
 419	}
 420
 421	disc_req[1] = SMP_DISCOVER;
 422
 423	if (0 <= single && single < ex->num_phys) {
 424		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 425	} else {
 426		int i;
 427
 428		for (i = 0; i < ex->num_phys; i++) {
 429			res = sas_ex_phy_discover_helper(dev, disc_req,
 430							 disc_resp, i);
 431			if (res)
 432				goto out_err;
 433		}
 434	}
 435out_err:
 436	kfree(disc_resp);
 437	kfree(disc_req);
 438	return res;
 439}
 440
 441static int sas_expander_discover(struct domain_device *dev)
 442{
 443	struct expander_device *ex = &dev->ex_dev;
 444	int res = -ENOMEM;
 445
 446	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 447	if (!ex->ex_phy)
 448		return -ENOMEM;
 449
 450	res = sas_ex_phy_discover(dev, -1);
 451	if (res)
 452		goto out_err;
 453
 454	return 0;
 455 out_err:
 456	kfree(ex->ex_phy);
 457	ex->ex_phy = NULL;
 458	return res;
 459}
 460
 461#define MAX_EXPANDER_PHYS 128
 462
 463static void ex_assign_report_general(struct domain_device *dev,
 464					    struct smp_resp *resp)
 465{
 466	struct report_general_resp *rg = &resp->rg;
 467
 468	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 469	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 470	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 471	dev->ex_dev.t2t_supp = rg->t2t_supp;
 472	dev->ex_dev.conf_route_table = rg->conf_route_table;
 473	dev->ex_dev.configuring = rg->configuring;
 474	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 475}
 476
 477#define RG_REQ_SIZE   8
 478#define RG_RESP_SIZE 32
 479
 480static int sas_ex_general(struct domain_device *dev)
 481{
 482	u8 *rg_req;
 483	struct smp_resp *rg_resp;
 484	int res;
 485	int i;
 486
 487	rg_req = alloc_smp_req(RG_REQ_SIZE);
 488	if (!rg_req)
 489		return -ENOMEM;
 490
 491	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 492	if (!rg_resp) {
 493		kfree(rg_req);
 494		return -ENOMEM;
 495	}
 496
 497	rg_req[1] = SMP_REPORT_GENERAL;
 498
 499	for (i = 0; i < 5; i++) {
 500		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 501				       RG_RESP_SIZE);
 502
 503		if (res) {
 504			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 505				    SAS_ADDR(dev->sas_addr), res);
 506			goto out;
 507		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 508			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 509				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 510			res = rg_resp->result;
 511			goto out;
 512		}
 513
 514		ex_assign_report_general(dev, rg_resp);
 515
 516		if (dev->ex_dev.configuring) {
 517			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 518				    SAS_ADDR(dev->sas_addr));
 519			schedule_timeout_interruptible(5*HZ);
 520		} else
 521			break;
 522	}
 523out:
 524	kfree(rg_req);
 525	kfree(rg_resp);
 526	return res;
 527}
 528
 529static void ex_assign_manuf_info(struct domain_device *dev, void
 530					*_mi_resp)
 531{
 532	u8 *mi_resp = _mi_resp;
 533	struct sas_rphy *rphy = dev->rphy;
 534	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 535
 536	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 537	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 538	memcpy(edev->product_rev, mi_resp + 36,
 539	       SAS_EXPANDER_PRODUCT_REV_LEN);
 540
 541	if (mi_resp[8] & 1) {
 542		memcpy(edev->component_vendor_id, mi_resp + 40,
 543		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 544		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 545		edev->component_revision_id = mi_resp[50];
 546	}
 547}
 548
 549#define MI_REQ_SIZE   8
 550#define MI_RESP_SIZE 64
 551
 552static int sas_ex_manuf_info(struct domain_device *dev)
 553{
 554	u8 *mi_req;
 555	u8 *mi_resp;
 556	int res;
 557
 558	mi_req = alloc_smp_req(MI_REQ_SIZE);
 559	if (!mi_req)
 560		return -ENOMEM;
 561
 562	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 563	if (!mi_resp) {
 564		kfree(mi_req);
 565		return -ENOMEM;
 566	}
 567
 568	mi_req[1] = SMP_REPORT_MANUF_INFO;
 569
 570	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 571	if (res) {
 572		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 573			    SAS_ADDR(dev->sas_addr), res);
 574		goto out;
 575	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 576		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 577			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 578		goto out;
 579	}
 580
 581	ex_assign_manuf_info(dev, mi_resp);
 582out:
 583	kfree(mi_req);
 584	kfree(mi_resp);
 585	return res;
 586}
 587
 588#define PC_REQ_SIZE  44
 589#define PC_RESP_SIZE 8
 590
 591int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 592			enum phy_func phy_func,
 593			struct sas_phy_linkrates *rates)
 594{
 595	u8 *pc_req;
 596	u8 *pc_resp;
 597	int res;
 598
 599	pc_req = alloc_smp_req(PC_REQ_SIZE);
 600	if (!pc_req)
 601		return -ENOMEM;
 602
 603	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 604	if (!pc_resp) {
 605		kfree(pc_req);
 606		return -ENOMEM;
 607	}
 608
 609	pc_req[1] = SMP_PHY_CONTROL;
 610	pc_req[9] = phy_id;
 611	pc_req[10]= phy_func;
 612	if (rates) {
 613		pc_req[32] = rates->minimum_linkrate << 4;
 614		pc_req[33] = rates->maximum_linkrate << 4;
 615	}
 616
 617	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 618
 619	kfree(pc_resp);
 620	kfree(pc_req);
 621	return res;
 622}
 623
 624static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 625{
 626	struct expander_device *ex = &dev->ex_dev;
 627	struct ex_phy *phy = &ex->ex_phy[phy_id];
 628
 629	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 630	phy->linkrate = SAS_PHY_DISABLED;
 631}
 632
 633static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 634{
 635	struct expander_device *ex = &dev->ex_dev;
 636	int i;
 637
 638	for (i = 0; i < ex->num_phys; i++) {
 639		struct ex_phy *phy = &ex->ex_phy[i];
 640
 641		if (phy->phy_state == PHY_VACANT ||
 642		    phy->phy_state == PHY_NOT_PRESENT)
 643			continue;
 644
 645		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 646			sas_ex_disable_phy(dev, i);
 647	}
 648}
 649
 650static int sas_dev_present_in_domain(struct asd_sas_port *port,
 651					    u8 *sas_addr)
 652{
 653	struct domain_device *dev;
 654
 655	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 656		return 1;
 657	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 658		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 659			return 1;
 660	}
 661	return 0;
 662}
 663
 664#define RPEL_REQ_SIZE	16
 665#define RPEL_RESP_SIZE	32
 666int sas_smp_get_phy_events(struct sas_phy *phy)
 667{
 668	int res;
 669	u8 *req;
 670	u8 *resp;
 671	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 672	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 673
 674	req = alloc_smp_req(RPEL_REQ_SIZE);
 675	if (!req)
 676		return -ENOMEM;
 677
 678	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 679	if (!resp) {
 680		kfree(req);
 681		return -ENOMEM;
 682	}
 683
 684	req[1] = SMP_REPORT_PHY_ERR_LOG;
 685	req[9] = phy->number;
 686
 687	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 688			            resp, RPEL_RESP_SIZE);
 689
 690	if (res)
 691		goto out;
 692
 693	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 694	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 695	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 696	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 697
 698 out:
 699	kfree(req);
 700	kfree(resp);
 701	return res;
 702
 703}
 704
 705#ifdef CONFIG_SCSI_SAS_ATA
 706
 707#define RPS_REQ_SIZE  16
 708#define RPS_RESP_SIZE 60
 709
 710int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 711			    struct smp_resp *rps_resp)
 
 712{
 713	int res;
 714	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 715	u8 *resp = (u8 *)rps_resp;
 716
 717	if (!rps_req)
 718		return -ENOMEM;
 719
 720	rps_req[1] = SMP_REPORT_PHY_SATA;
 721	rps_req[9] = phy_id;
 722
 723	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 724			            rps_resp, RPS_RESP_SIZE);
 725
 726	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 727	 * standards cockup here.  sas-2 explicitly specifies the FIS
 728	 * should be encoded so that FIS type is in resp[24].
 729	 * However, some expanders endian reverse this.  Undo the
 730	 * reversal here */
 731	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 732		int i;
 733
 734		for (i = 0; i < 5; i++) {
 735			int j = 24 + (i*4);
 736			u8 a, b;
 737			a = resp[j + 0];
 738			b = resp[j + 1];
 739			resp[j + 0] = resp[j + 3];
 740			resp[j + 1] = resp[j + 2];
 741			resp[j + 2] = b;
 742			resp[j + 3] = a;
 743		}
 744	}
 745
 746	kfree(rps_req);
 747	return res;
 748}
 749#endif
 750
 751static void sas_ex_get_linkrate(struct domain_device *parent,
 752				       struct domain_device *child,
 753				       struct ex_phy *parent_phy)
 754{
 755	struct expander_device *parent_ex = &parent->ex_dev;
 756	struct sas_port *port;
 757	int i;
 758
 759	child->pathways = 0;
 760
 761	port = parent_phy->port;
 762
 763	for (i = 0; i < parent_ex->num_phys; i++) {
 764		struct ex_phy *phy = &parent_ex->ex_phy[i];
 765
 766		if (phy->phy_state == PHY_VACANT ||
 767		    phy->phy_state == PHY_NOT_PRESENT)
 768			continue;
 769
 770		if (SAS_ADDR(phy->attached_sas_addr) ==
 771		    SAS_ADDR(child->sas_addr)) {
 772
 773			child->min_linkrate = min(parent->min_linkrate,
 774						  phy->linkrate);
 775			child->max_linkrate = max(parent->max_linkrate,
 776						  phy->linkrate);
 777			child->pathways++;
 778			sas_port_add_phy(port, phy->phy);
 779		}
 780	}
 781	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 782	child->pathways = min(child->pathways, parent->pathways);
 783}
 784
 785static struct domain_device *sas_ex_discover_end_dev(
 786	struct domain_device *parent, int phy_id)
 787{
 788	struct expander_device *parent_ex = &parent->ex_dev;
 789	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 790	struct domain_device *child = NULL;
 791	struct sas_rphy *rphy;
 792	int res;
 793
 794	if (phy->attached_sata_host || phy->attached_sata_ps)
 795		return NULL;
 796
 797	child = sas_alloc_device();
 798	if (!child)
 799		return NULL;
 800
 801	kref_get(&parent->kref);
 802	child->parent = parent;
 803	child->port   = parent->port;
 804	child->iproto = phy->attached_iproto;
 805	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 806	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 807	if (!phy->port) {
 808		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 809		if (unlikely(!phy->port))
 810			goto out_err;
 811		if (unlikely(sas_port_add(phy->port) != 0)) {
 812			sas_port_free(phy->port);
 813			goto out_err;
 814		}
 815	}
 816	sas_ex_get_linkrate(parent, child, phy);
 817	sas_device_set_phy(child, phy->port);
 818
 819#ifdef CONFIG_SCSI_SAS_ATA
 820	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 821		res = sas_get_ata_info(child, phy);
 822		if (res)
 
 
 
 
 
 
 
 
 
 823			goto out_free;
 
 
 
 824
 825		sas_init_dev(child);
 826		res = sas_ata_init(child);
 827		if (res)
 828			goto out_free;
 829		rphy = sas_end_device_alloc(phy->port);
 830		if (!rphy)
 831			goto out_free;
 832
 
 
 833		child->rphy = rphy;
 834		get_device(&rphy->dev);
 835
 836		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 837
 838		res = sas_discover_sata(child);
 839		if (res) {
 840			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 841				    "%016llx:0x%x returned 0x%x\n",
 842				    SAS_ADDR(child->sas_addr),
 843				    SAS_ADDR(parent->sas_addr), phy_id, res);
 844			goto out_list_del;
 845		}
 846	} else
 847#endif
 848	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 849		child->dev_type = SAS_END_DEVICE;
 850		rphy = sas_end_device_alloc(phy->port);
 851		/* FIXME: error handling */
 852		if (unlikely(!rphy))
 853			goto out_free;
 854		child->tproto = phy->attached_tproto;
 855		sas_init_dev(child);
 856
 857		child->rphy = rphy;
 858		get_device(&rphy->dev);
 859		sas_fill_in_rphy(child, rphy);
 860
 861		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 862
 863		res = sas_discover_end_dev(child);
 864		if (res) {
 865			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 866				    "at %016llx:0x%x returned 0x%x\n",
 867				    SAS_ADDR(child->sas_addr),
 868				    SAS_ADDR(parent->sas_addr), phy_id, res);
 869			goto out_list_del;
 870		}
 871	} else {
 872		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 873			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 874			    phy_id);
 875		goto out_free;
 876	}
 877
 878	list_add_tail(&child->siblings, &parent_ex->children);
 879	return child;
 880
 881 out_list_del:
 882	sas_rphy_free(child->rphy);
 883	list_del(&child->disco_list_node);
 884	spin_lock_irq(&parent->port->dev_list_lock);
 885	list_del(&child->dev_list_node);
 886	spin_unlock_irq(&parent->port->dev_list_lock);
 887 out_free:
 888	sas_port_delete(phy->port);
 889 out_err:
 890	phy->port = NULL;
 891	sas_put_device(child);
 892	return NULL;
 893}
 894
 895/* See if this phy is part of a wide port */
 896static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 897{
 898	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 899	int i;
 900
 901	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 902		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 903
 904		if (ephy == phy)
 905			continue;
 906
 907		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 908			    SAS_ADDR_SIZE) && ephy->port) {
 909			sas_port_add_phy(ephy->port, phy->phy);
 910			phy->port = ephy->port;
 911			phy->phy_state = PHY_DEVICE_DISCOVERED;
 912			return true;
 913		}
 914	}
 915
 916	return false;
 917}
 918
 919static struct domain_device *sas_ex_discover_expander(
 920	struct domain_device *parent, int phy_id)
 921{
 922	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 923	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 924	struct domain_device *child = NULL;
 925	struct sas_rphy *rphy;
 926	struct sas_expander_device *edev;
 927	struct asd_sas_port *port;
 928	int res;
 929
 930	if (phy->routing_attr == DIRECT_ROUTING) {
 931		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 932			    "allowed\n",
 933			    SAS_ADDR(parent->sas_addr), phy_id,
 934			    SAS_ADDR(phy->attached_sas_addr),
 935			    phy->attached_phy_id);
 936		return NULL;
 937	}
 938	child = sas_alloc_device();
 939	if (!child)
 940		return NULL;
 941
 942	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 943	/* FIXME: better error handling */
 944	BUG_ON(sas_port_add(phy->port) != 0);
 945
 946
 947	switch (phy->attached_dev_type) {
 948	case SAS_EDGE_EXPANDER_DEVICE:
 949		rphy = sas_expander_alloc(phy->port,
 950					  SAS_EDGE_EXPANDER_DEVICE);
 951		break;
 952	case SAS_FANOUT_EXPANDER_DEVICE:
 953		rphy = sas_expander_alloc(phy->port,
 954					  SAS_FANOUT_EXPANDER_DEVICE);
 955		break;
 956	default:
 957		rphy = NULL;	/* shut gcc up */
 958		BUG();
 959	}
 960	port = parent->port;
 961	child->rphy = rphy;
 962	get_device(&rphy->dev);
 963	edev = rphy_to_expander_device(rphy);
 964	child->dev_type = phy->attached_dev_type;
 965	kref_get(&parent->kref);
 966	child->parent = parent;
 967	child->port = port;
 968	child->iproto = phy->attached_iproto;
 969	child->tproto = phy->attached_tproto;
 970	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 971	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 972	sas_ex_get_linkrate(parent, child, phy);
 973	edev->level = parent_ex->level + 1;
 974	parent->port->disc.max_level = max(parent->port->disc.max_level,
 975					   edev->level);
 976	sas_init_dev(child);
 977	sas_fill_in_rphy(child, rphy);
 978	sas_rphy_add(rphy);
 979
 980	spin_lock_irq(&parent->port->dev_list_lock);
 981	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 982	spin_unlock_irq(&parent->port->dev_list_lock);
 983
 984	res = sas_discover_expander(child);
 985	if (res) {
 986		sas_rphy_delete(rphy);
 987		spin_lock_irq(&parent->port->dev_list_lock);
 988		list_del(&child->dev_list_node);
 989		spin_unlock_irq(&parent->port->dev_list_lock);
 990		sas_put_device(child);
 991		return NULL;
 992	}
 993	list_add_tail(&child->siblings, &parent->ex_dev.children);
 994	return child;
 995}
 996
 997static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 998{
 999	struct expander_device *ex = &dev->ex_dev;
1000	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001	struct domain_device *child = NULL;
1002	int res = 0;
1003
1004	/* Phy state */
1005	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007			res = sas_ex_phy_discover(dev, phy_id);
1008		if (res)
1009			return res;
1010	}
1011
1012	/* Parent and domain coherency */
1013	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014			     SAS_ADDR(dev->port->sas_addr))) {
1015		sas_add_parent_port(dev, phy_id);
1016		return 0;
1017	}
1018	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019			    SAS_ADDR(dev->parent->sas_addr))) {
1020		sas_add_parent_port(dev, phy_id);
1021		if (ex_phy->routing_attr == TABLE_ROUTING)
1022			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023		return 0;
1024	}
1025
1026	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028
1029	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033		}
1034		return 0;
1035	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036		return 0;
1037
1038	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043			    "phy 0x%x\n", ex_phy->attached_dev_type,
1044			    SAS_ADDR(dev->sas_addr),
1045			    phy_id);
1046		return 0;
1047	}
1048
1049	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050	if (res) {
1051		SAS_DPRINTK("configure routing for dev %016llx "
1052			    "reported 0x%x. Forgotten\n",
1053			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1054		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055		return res;
1056	}
1057
1058	if (sas_ex_join_wide_port(dev, phy_id)) {
 
1059		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061		return res;
1062	}
1063
1064	switch (ex_phy->attached_dev_type) {
1065	case SAS_END_DEVICE:
1066	case SAS_SATA_PENDING:
1067		child = sas_ex_discover_end_dev(dev, phy_id);
1068		break;
1069	case SAS_FANOUT_EXPANDER_DEVICE:
1070		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072				    "attached to ex %016llx phy 0x%x\n",
1073				    SAS_ADDR(ex_phy->attached_sas_addr),
1074				    ex_phy->attached_phy_id,
1075				    SAS_ADDR(dev->sas_addr),
1076				    phy_id);
1077			sas_ex_disable_phy(dev, phy_id);
1078			break;
1079		} else
1080			memcpy(dev->port->disc.fanout_sas_addr,
1081			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082		/* fallthrough */
1083	case SAS_EDGE_EXPANDER_DEVICE:
1084		child = sas_ex_discover_expander(dev, phy_id);
1085		break;
1086	default:
1087		break;
1088	}
1089
1090	if (child) {
1091		int i;
1092
1093		for (i = 0; i < ex->num_phys; i++) {
1094			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096				continue;
1097			/*
1098			 * Due to races, the phy might not get added to the
1099			 * wide port, so we add the phy to the wide port here.
1100			 */
1101			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102			    SAS_ADDR(child->sas_addr)) {
1103				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104				if (sas_ex_join_wide_port(dev, i))
 
1105					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1107
1108			}
1109		}
1110	}
1111
1112	return res;
1113}
1114
1115static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116{
1117	struct expander_device *ex = &dev->ex_dev;
1118	int i;
1119
1120	for (i = 0; i < ex->num_phys; i++) {
1121		struct ex_phy *phy = &ex->ex_phy[i];
1122
1123		if (phy->phy_state == PHY_VACANT ||
1124		    phy->phy_state == PHY_NOT_PRESENT)
1125			continue;
1126
1127		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130
1131			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132
1133			return 1;
1134		}
1135	}
1136	return 0;
1137}
1138
1139static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140{
1141	struct expander_device *ex = &dev->ex_dev;
1142	struct domain_device *child;
1143	u8 sub_addr[8] = {0, };
1144
1145	list_for_each_entry(child, &ex->children, siblings) {
1146		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148			continue;
1149		if (sub_addr[0] == 0) {
1150			sas_find_sub_addr(child, sub_addr);
1151			continue;
1152		} else {
1153			u8 s2[8];
1154
1155			if (sas_find_sub_addr(child, s2) &&
1156			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157
1158				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159					    "diverges from subtractive "
1160					    "boundary %016llx\n",
1161					    SAS_ADDR(dev->sas_addr),
1162					    SAS_ADDR(child->sas_addr),
1163					    SAS_ADDR(s2),
1164					    SAS_ADDR(sub_addr));
1165
1166				sas_ex_disable_port(child, s2);
1167			}
1168		}
1169	}
1170	return 0;
1171}
1172/**
1173 * sas_ex_discover_devices - discover devices attached to this expander
1174 * @dev: pointer to the expander domain device
1175 * @single: if you want to do a single phy, else set to -1;
1176 *
1177 * Configure this expander for use with its devices and register the
1178 * devices of this expander.
1179 */
1180static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181{
1182	struct expander_device *ex = &dev->ex_dev;
1183	int i = 0, end = ex->num_phys;
1184	int res = 0;
1185
1186	if (0 <= single && single < end) {
1187		i = single;
1188		end = i+1;
1189	}
1190
1191	for ( ; i < end; i++) {
1192		struct ex_phy *ex_phy = &ex->ex_phy[i];
1193
1194		if (ex_phy->phy_state == PHY_VACANT ||
1195		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1196		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197			continue;
1198
1199		switch (ex_phy->linkrate) {
1200		case SAS_PHY_DISABLED:
1201		case SAS_PHY_RESET_PROBLEM:
1202		case SAS_SATA_PORT_SELECTOR:
1203			continue;
1204		default:
1205			res = sas_ex_discover_dev(dev, i);
1206			if (res)
1207				break;
1208			continue;
1209		}
1210	}
1211
1212	if (!res)
1213		sas_check_level_subtractive_boundary(dev);
1214
1215	return res;
1216}
1217
1218static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219{
1220	struct expander_device *ex = &dev->ex_dev;
1221	int i;
1222	u8  *sub_sas_addr = NULL;
1223
1224	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225		return 0;
1226
1227	for (i = 0; i < ex->num_phys; i++) {
1228		struct ex_phy *phy = &ex->ex_phy[i];
1229
1230		if (phy->phy_state == PHY_VACANT ||
1231		    phy->phy_state == PHY_NOT_PRESENT)
1232			continue;
1233
1234		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237
1238			if (!sub_sas_addr)
1239				sub_sas_addr = &phy->attached_sas_addr[0];
1240			else if (SAS_ADDR(sub_sas_addr) !=
1241				 SAS_ADDR(phy->attached_sas_addr)) {
1242
1243				SAS_DPRINTK("ex %016llx phy 0x%x "
1244					    "diverges(%016llx) on subtractive "
1245					    "boundary(%016llx). Disabled\n",
1246					    SAS_ADDR(dev->sas_addr), i,
1247					    SAS_ADDR(phy->attached_sas_addr),
1248					    SAS_ADDR(sub_sas_addr));
1249				sas_ex_disable_phy(dev, i);
1250			}
1251		}
1252	}
1253	return 0;
1254}
1255
1256static void sas_print_parent_topology_bug(struct domain_device *child,
1257						 struct ex_phy *parent_phy,
1258						 struct ex_phy *child_phy)
1259{
 
 
 
 
 
1260	static const char *ex_type[] = {
1261		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263	};
1264	struct domain_device *parent = child->parent;
1265
1266	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267		   "phy 0x%x has %c:%c routing link!\n",
1268
1269		   ex_type[parent->dev_type],
1270		   SAS_ADDR(parent->sas_addr),
1271		   parent_phy->phy_id,
1272
1273		   ex_type[child->dev_type],
1274		   SAS_ADDR(child->sas_addr),
1275		   child_phy->phy_id,
1276
1277		   sas_route_char(parent, parent_phy),
1278		   sas_route_char(child, child_phy));
1279}
1280
1281static int sas_check_eeds(struct domain_device *child,
1282				 struct ex_phy *parent_phy,
1283				 struct ex_phy *child_phy)
1284{
1285	int res = 0;
1286	struct domain_device *parent = child->parent;
1287
1288	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289		res = -ENODEV;
1290		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1292			    SAS_ADDR(parent->sas_addr),
1293			    parent_phy->phy_id,
1294			    SAS_ADDR(child->sas_addr),
1295			    child_phy->phy_id,
1296			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299		       SAS_ADDR_SIZE);
1300		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301		       SAS_ADDR_SIZE);
1302	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303		    SAS_ADDR(parent->sas_addr)) ||
1304		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1305		    SAS_ADDR(child->sas_addr)))
1306		   &&
1307		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308		     SAS_ADDR(parent->sas_addr)) ||
1309		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1310		     SAS_ADDR(child->sas_addr))))
1311		;
1312	else {
1313		res = -ENODEV;
1314		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315			    "phy 0x%x link forms a third EEDS!\n",
1316			    SAS_ADDR(parent->sas_addr),
1317			    parent_phy->phy_id,
1318			    SAS_ADDR(child->sas_addr),
1319			    child_phy->phy_id);
1320	}
1321
1322	return res;
1323}
1324
1325/* Here we spill over 80 columns.  It is intentional.
1326 */
1327static int sas_check_parent_topology(struct domain_device *child)
1328{
1329	struct expander_device *child_ex = &child->ex_dev;
1330	struct expander_device *parent_ex;
1331	int i;
1332	int res = 0;
1333
1334	if (!child->parent)
1335		return 0;
1336
1337	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339		return 0;
1340
1341	parent_ex = &child->parent->ex_dev;
1342
1343	for (i = 0; i < parent_ex->num_phys; i++) {
1344		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345		struct ex_phy *child_phy;
1346
1347		if (parent_phy->phy_state == PHY_VACANT ||
1348		    parent_phy->phy_state == PHY_NOT_PRESENT)
1349			continue;
1350
1351		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352			continue;
1353
1354		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355
1356		switch (child->parent->dev_type) {
1357		case SAS_EDGE_EXPANDER_DEVICE:
1358			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360				    child_phy->routing_attr != TABLE_ROUTING) {
1361					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362					res = -ENODEV;
1363				}
1364			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366					res = sas_check_eeds(child, parent_phy, child_phy);
1367				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1368					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369					res = -ENODEV;
1370				}
1371			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373				    (child_phy->routing_attr == TABLE_ROUTING &&
1374				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375					/* All good */;
1376				} else {
1377					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378					res = -ENODEV;
1379				}
1380			}
1381			break;
1382		case SAS_FANOUT_EXPANDER_DEVICE:
1383			if (parent_phy->routing_attr != TABLE_ROUTING ||
1384			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386				res = -ENODEV;
1387			}
1388			break;
1389		default:
1390			break;
1391		}
1392	}
1393
1394	return res;
1395}
1396
1397#define RRI_REQ_SIZE  16
1398#define RRI_RESP_SIZE 44
1399
1400static int sas_configure_present(struct domain_device *dev, int phy_id,
1401				 u8 *sas_addr, int *index, int *present)
1402{
1403	int i, res = 0;
1404	struct expander_device *ex = &dev->ex_dev;
1405	struct ex_phy *phy = &ex->ex_phy[phy_id];
1406	u8 *rri_req;
1407	u8 *rri_resp;
1408
1409	*present = 0;
1410	*index = 0;
1411
1412	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413	if (!rri_req)
1414		return -ENOMEM;
1415
1416	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417	if (!rri_resp) {
1418		kfree(rri_req);
1419		return -ENOMEM;
1420	}
1421
1422	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423	rri_req[9] = phy_id;
1424
1425	for (i = 0; i < ex->max_route_indexes ; i++) {
1426		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428				       RRI_RESP_SIZE);
1429		if (res)
1430			goto out;
1431		res = rri_resp[2];
1432		if (res == SMP_RESP_NO_INDEX) {
1433			SAS_DPRINTK("overflow of indexes: dev %016llx "
1434				    "phy 0x%x index 0x%x\n",
1435				    SAS_ADDR(dev->sas_addr), phy_id, i);
1436			goto out;
1437		} else if (res != SMP_RESP_FUNC_ACC) {
1438			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439				    "result 0x%x\n", __func__,
1440				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441			goto out;
1442		}
1443		if (SAS_ADDR(sas_addr) != 0) {
1444			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445				*index = i;
1446				if ((rri_resp[12] & 0x80) == 0x80)
1447					*present = 0;
1448				else
1449					*present = 1;
1450				goto out;
1451			} else if (SAS_ADDR(rri_resp+16) == 0) {
1452				*index = i;
1453				*present = 0;
1454				goto out;
1455			}
1456		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1457			   phy->last_da_index < i) {
1458			phy->last_da_index = i;
1459			*index = i;
1460			*present = 0;
1461			goto out;
1462		}
1463	}
1464	res = -1;
1465out:
1466	kfree(rri_req);
1467	kfree(rri_resp);
1468	return res;
1469}
1470
1471#define CRI_REQ_SIZE  44
1472#define CRI_RESP_SIZE  8
1473
1474static int sas_configure_set(struct domain_device *dev, int phy_id,
1475			     u8 *sas_addr, int index, int include)
1476{
1477	int res;
1478	u8 *cri_req;
1479	u8 *cri_resp;
1480
1481	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482	if (!cri_req)
1483		return -ENOMEM;
1484
1485	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486	if (!cri_resp) {
1487		kfree(cri_req);
1488		return -ENOMEM;
1489	}
1490
1491	cri_req[1] = SMP_CONF_ROUTE_INFO;
1492	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493	cri_req[9] = phy_id;
1494	if (SAS_ADDR(sas_addr) == 0 || !include)
1495		cri_req[12] |= 0x80;
1496	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497
1498	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499			       CRI_RESP_SIZE);
1500	if (res)
1501		goto out;
1502	res = cri_resp[2];
1503	if (res == SMP_RESP_NO_INDEX) {
1504		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505			    "index 0x%x\n",
1506			    SAS_ADDR(dev->sas_addr), phy_id, index);
1507	}
1508out:
1509	kfree(cri_req);
1510	kfree(cri_resp);
1511	return res;
1512}
1513
1514static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515				    u8 *sas_addr, int include)
1516{
1517	int index;
1518	int present;
1519	int res;
1520
1521	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522	if (res)
1523		return res;
1524	if (include ^ present)
1525		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1526
1527	return res;
1528}
1529
1530/**
1531 * sas_configure_parent - configure routing table of parent
1532 * @parent: parent expander
1533 * @child: child expander
1534 * @sas_addr: SAS port identifier of device directly attached to child
1535 * @include: whether or not to include @child in the expander routing table
1536 */
1537static int sas_configure_parent(struct domain_device *parent,
1538				struct domain_device *child,
1539				u8 *sas_addr, int include)
1540{
1541	struct expander_device *ex_parent = &parent->ex_dev;
1542	int res = 0;
1543	int i;
1544
1545	if (parent->parent) {
1546		res = sas_configure_parent(parent->parent, parent, sas_addr,
1547					   include);
1548		if (res)
1549			return res;
1550	}
1551
1552	if (ex_parent->conf_route_table == 0) {
1553		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1554			    SAS_ADDR(parent->sas_addr));
1555		return 0;
1556	}
1557
1558	for (i = 0; i < ex_parent->num_phys; i++) {
1559		struct ex_phy *phy = &ex_parent->ex_phy[i];
1560
1561		if ((phy->routing_attr == TABLE_ROUTING) &&
1562		    (SAS_ADDR(phy->attached_sas_addr) ==
1563		     SAS_ADDR(child->sas_addr))) {
1564			res = sas_configure_phy(parent, i, sas_addr, include);
1565			if (res)
1566				return res;
1567		}
1568	}
1569
1570	return res;
1571}
1572
1573/**
1574 * sas_configure_routing - configure routing
1575 * @dev: expander device
1576 * @sas_addr: port identifier of device directly attached to the expander device
1577 */
1578static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579{
1580	if (dev->parent)
1581		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1582	return 0;
1583}
1584
1585static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1586{
1587	if (dev->parent)
1588		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1589	return 0;
1590}
1591
1592/**
1593 * sas_discover_expander - expander discovery
1594 * @dev: pointer to expander domain device
1595 *
1596 * See comment in sas_discover_sata().
1597 */
1598static int sas_discover_expander(struct domain_device *dev)
1599{
1600	int res;
1601
1602	res = sas_notify_lldd_dev_found(dev);
1603	if (res)
1604		return res;
1605
1606	res = sas_ex_general(dev);
1607	if (res)
1608		goto out_err;
1609	res = sas_ex_manuf_info(dev);
1610	if (res)
1611		goto out_err;
1612
1613	res = sas_expander_discover(dev);
1614	if (res) {
1615		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1616			    SAS_ADDR(dev->sas_addr), res);
1617		goto out_err;
1618	}
1619
1620	sas_check_ex_subtractive_boundary(dev);
1621	res = sas_check_parent_topology(dev);
1622	if (res)
1623		goto out_err;
1624	return 0;
1625out_err:
1626	sas_notify_lldd_dev_gone(dev);
1627	return res;
1628}
1629
1630static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631{
1632	int res = 0;
1633	struct domain_device *dev;
1634
1635	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1636		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1637		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1638			struct sas_expander_device *ex =
1639				rphy_to_expander_device(dev->rphy);
1640
1641			if (level == ex->level)
1642				res = sas_ex_discover_devices(dev, -1);
1643			else if (level > 0)
1644				res = sas_ex_discover_devices(port->port_dev, -1);
1645
1646		}
1647	}
1648
1649	return res;
1650}
1651
1652static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653{
1654	int res;
1655	int level;
1656
1657	do {
1658		level = port->disc.max_level;
1659		res = sas_ex_level_discovery(port, level);
1660		mb();
1661	} while (level < port->disc.max_level);
1662
1663	return res;
1664}
1665
1666int sas_discover_root_expander(struct domain_device *dev)
1667{
1668	int res;
1669	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670
1671	res = sas_rphy_add(dev->rphy);
1672	if (res)
1673		goto out_err;
1674
1675	ex->level = dev->port->disc.max_level; /* 0 */
1676	res = sas_discover_expander(dev);
1677	if (res)
1678		goto out_err2;
1679
1680	sas_ex_bfs_disc(dev->port);
1681
1682	return res;
1683
1684out_err2:
1685	sas_rphy_remove(dev->rphy);
1686out_err:
1687	return res;
1688}
1689
1690/* ---------- Domain revalidation ---------- */
1691
1692static int sas_get_phy_discover(struct domain_device *dev,
1693				int phy_id, struct smp_resp *disc_resp)
1694{
1695	int res;
1696	u8 *disc_req;
1697
1698	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1699	if (!disc_req)
1700		return -ENOMEM;
1701
1702	disc_req[1] = SMP_DISCOVER;
1703	disc_req[9] = phy_id;
1704
1705	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1706			       disc_resp, DISCOVER_RESP_SIZE);
1707	if (res)
1708		goto out;
1709	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1710		res = disc_resp->result;
1711		goto out;
1712	}
1713out:
1714	kfree(disc_req);
1715	return res;
1716}
1717
1718static int sas_get_phy_change_count(struct domain_device *dev,
1719				    int phy_id, int *pcc)
1720{
1721	int res;
1722	struct smp_resp *disc_resp;
1723
1724	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725	if (!disc_resp)
1726		return -ENOMEM;
1727
1728	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1729	if (!res)
1730		*pcc = disc_resp->disc.change_count;
1731
1732	kfree(disc_resp);
1733	return res;
1734}
1735
1736static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1737				    u8 *sas_addr, enum sas_device_type *type)
1738{
1739	int res;
1740	struct smp_resp *disc_resp;
1741	struct discover_resp *dr;
1742
1743	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1744	if (!disc_resp)
1745		return -ENOMEM;
1746	dr = &disc_resp->disc;
1747
1748	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749	if (res == 0) {
1750		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1751		*type = to_dev_type(dr);
1752		if (*type == 0)
1753			memset(sas_addr, 0, 8);
1754	}
1755	kfree(disc_resp);
1756	return res;
1757}
1758
1759static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1760			      int from_phy, bool update)
1761{
1762	struct expander_device *ex = &dev->ex_dev;
1763	int res = 0;
1764	int i;
1765
1766	for (i = from_phy; i < ex->num_phys; i++) {
1767		int phy_change_count = 0;
1768
1769		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1770		switch (res) {
1771		case SMP_RESP_PHY_VACANT:
1772		case SMP_RESP_NO_PHY:
1773			continue;
1774		case SMP_RESP_FUNC_ACC:
1775			break;
1776		default:
1777			return res;
1778		}
1779
1780		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1781			if (update)
1782				ex->ex_phy[i].phy_change_count =
1783					phy_change_count;
1784			*phy_id = i;
1785			return 0;
1786		}
1787	}
1788	return 0;
 
1789}
1790
1791static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792{
1793	int res;
1794	u8  *rg_req;
1795	struct smp_resp  *rg_resp;
1796
1797	rg_req = alloc_smp_req(RG_REQ_SIZE);
1798	if (!rg_req)
1799		return -ENOMEM;
1800
1801	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1802	if (!rg_resp) {
1803		kfree(rg_req);
1804		return -ENOMEM;
1805	}
1806
1807	rg_req[1] = SMP_REPORT_GENERAL;
1808
1809	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1810			       RG_RESP_SIZE);
1811	if (res)
1812		goto out;
1813	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1814		res = rg_resp->result;
1815		goto out;
1816	}
1817
1818	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1819out:
1820	kfree(rg_resp);
1821	kfree(rg_req);
1822	return res;
1823}
1824/**
1825 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1826 * @dev:domain device to be detect.
1827 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 *
1829 * Add self-configuration expander support. Suppose two expander cascading,
1830 * when the first level expander is self-configuring, hotplug the disks in
1831 * second level expander, BROADCAST(CHANGE) will not only be originated
1832 * in the second level expander, but also be originated in the first level
1833 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1834 * expander changed count in two level expanders will all increment at least
1835 * once, but the phy which chang count has changed is the source device which
1836 * we concerned.
1837 */
1838
1839static int sas_find_bcast_dev(struct domain_device *dev,
1840			      struct domain_device **src_dev)
1841{
1842	struct expander_device *ex = &dev->ex_dev;
1843	int ex_change_count = -1;
1844	int phy_id = -1;
1845	int res;
1846	struct domain_device *ch;
1847
1848	res = sas_get_ex_change_count(dev, &ex_change_count);
1849	if (res)
1850		goto out;
1851	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1852		/* Just detect if this expander phys phy change count changed,
1853		* in order to determine if this expander originate BROADCAST,
1854		* and do not update phy change count field in our structure.
1855		*/
1856		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1857		if (phy_id != -1) {
1858			*src_dev = dev;
1859			ex->ex_change_count = ex_change_count;
1860			SAS_DPRINTK("Expander phy change count has changed\n");
1861			return res;
1862		} else
1863			SAS_DPRINTK("Expander phys DID NOT change\n");
1864	}
1865	list_for_each_entry(ch, &ex->children, siblings) {
1866		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1867			res = sas_find_bcast_dev(ch, src_dev);
1868			if (*src_dev)
1869				return res;
1870		}
1871	}
1872out:
1873	return res;
1874}
1875
1876static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877{
1878	struct expander_device *ex = &dev->ex_dev;
1879	struct domain_device *child, *n;
1880
1881	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1882		set_bit(SAS_DEV_GONE, &child->state);
1883		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1884		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1885			sas_unregister_ex_tree(port, child);
1886		else
1887			sas_unregister_dev(port, child);
1888	}
1889	sas_unregister_dev(port, dev);
1890}
1891
1892static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1893					 int phy_id, bool last)
1894{
1895	struct expander_device *ex_dev = &parent->ex_dev;
1896	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1897	struct domain_device *child, *n, *found = NULL;
1898	if (last) {
1899		list_for_each_entry_safe(child, n,
1900			&ex_dev->children, siblings) {
1901			if (SAS_ADDR(child->sas_addr) ==
1902			    SAS_ADDR(phy->attached_sas_addr)) {
1903				set_bit(SAS_DEV_GONE, &child->state);
1904				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906					sas_unregister_ex_tree(parent->port, child);
1907				else
1908					sas_unregister_dev(parent->port, child);
1909				found = child;
1910				break;
1911			}
1912		}
 
1913		sas_disable_routing(parent, phy->attached_sas_addr);
1914	}
1915	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1916	if (phy->port) {
1917		sas_port_delete_phy(phy->port, phy->phy);
1918		sas_device_set_phy(found, phy->port);
1919		if (phy->port->num_phys == 0)
1920			list_add_tail(&phy->port->del_list,
1921				&parent->port->sas_port_del_list);
1922		phy->port = NULL;
1923	}
1924}
1925
1926static int sas_discover_bfs_by_root_level(struct domain_device *root,
1927					  const int level)
1928{
1929	struct expander_device *ex_root = &root->ex_dev;
1930	struct domain_device *child;
1931	int res = 0;
1932
1933	list_for_each_entry(child, &ex_root->children, siblings) {
1934		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1936			struct sas_expander_device *ex =
1937				rphy_to_expander_device(child->rphy);
1938
1939			if (level > ex->level)
1940				res = sas_discover_bfs_by_root_level(child,
1941								     level);
1942			else if (level == ex->level)
1943				res = sas_ex_discover_devices(child, -1);
1944		}
1945	}
1946	return res;
1947}
1948
1949static int sas_discover_bfs_by_root(struct domain_device *dev)
1950{
1951	int res;
1952	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1953	int level = ex->level+1;
1954
1955	res = sas_ex_discover_devices(dev, -1);
1956	if (res)
1957		goto out;
1958	do {
1959		res = sas_discover_bfs_by_root_level(dev, level);
1960		mb();
1961		level += 1;
1962	} while (level <= dev->port->disc.max_level);
1963out:
1964	return res;
1965}
1966
1967static int sas_discover_new(struct domain_device *dev, int phy_id)
1968{
1969	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1970	struct domain_device *child;
1971	int res;
 
1972
1973	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1974		    SAS_ADDR(dev->sas_addr), phy_id);
1975	res = sas_ex_phy_discover(dev, phy_id);
1976	if (res)
1977		return res;
1978
1979	if (sas_ex_join_wide_port(dev, phy_id))
 
 
 
 
 
 
 
 
 
 
 
1980		return 0;
1981
1982	res = sas_ex_discover_devices(dev, phy_id);
1983	if (res)
1984		return res;
1985	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1986		if (SAS_ADDR(child->sas_addr) ==
1987		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1988			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1989			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1990				res = sas_discover_bfs_by_root(child);
1991			break;
1992		}
1993	}
 
1994	return res;
1995}
1996
1997static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998{
1999	if (old == new)
2000		return true;
2001
2002	/* treat device directed resets as flutter, if we went
2003	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004	 */
2005	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2006	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2007		return true;
2008
2009	return false;
2010}
2011
2012static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013{
2014	struct expander_device *ex = &dev->ex_dev;
2015	struct ex_phy *phy = &ex->ex_phy[phy_id];
2016	enum sas_device_type type = SAS_PHY_UNUSED;
2017	u8 sas_addr[8];
2018	int res;
2019
2020	memset(sas_addr, 0, 8);
2021	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2022	switch (res) {
2023	case SMP_RESP_NO_PHY:
2024		phy->phy_state = PHY_NOT_PRESENT;
2025		sas_unregister_devs_sas_addr(dev, phy_id, last);
2026		return res;
2027	case SMP_RESP_PHY_VACANT:
2028		phy->phy_state = PHY_VACANT;
2029		sas_unregister_devs_sas_addr(dev, phy_id, last);
2030		return res;
2031	case SMP_RESP_FUNC_ACC:
2032		break;
2033	case -ECOMM:
2034		break;
2035	default:
2036		return res;
2037	}
2038
2039	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2040		phy->phy_state = PHY_EMPTY;
2041		sas_unregister_devs_sas_addr(dev, phy_id, last);
2042		return res;
2043	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2044		   dev_type_flutter(type, phy->attached_dev_type)) {
2045		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2046		char *action = "";
2047
2048		sas_ex_phy_discover(dev, phy_id);
2049
2050		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2051			action = ", needs recovery";
2052		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2053			    SAS_ADDR(dev->sas_addr), phy_id, action);
2054		return res;
2055	}
2056
2057	/* delete the old link */
2058	if (SAS_ADDR(phy->attached_sas_addr) &&
2059	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2060		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2061			    SAS_ADDR(dev->sas_addr), phy_id,
2062			    SAS_ADDR(phy->attached_sas_addr));
2063		sas_unregister_devs_sas_addr(dev, phy_id, last);
2064	}
2065
2066	return sas_discover_new(dev, phy_id);
2067}
2068
2069/**
2070 * sas_rediscover - revalidate the domain.
2071 * @dev:domain device to be detect.
2072 * @phy_id: the phy id will be detected.
2073 *
2074 * NOTE: this process _must_ quit (return) as soon as any connection
2075 * errors are encountered.  Connection recovery is done elsewhere.
2076 * Discover process only interrogates devices in order to discover the
2077 * domain.For plugging out, we un-register the device only when it is
2078 * the last phy in the port, for other phys in this port, we just delete it
2079 * from the port.For inserting, we do discovery when it is the
2080 * first phy,for other phys in this port, we add it to the port to
2081 * forming the wide-port.
2082 */
2083static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084{
2085	struct expander_device *ex = &dev->ex_dev;
2086	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2087	int res = 0;
2088	int i;
2089	bool last = true;	/* is this the last phy of the port */
2090
2091	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2092		    SAS_ADDR(dev->sas_addr), phy_id);
2093
2094	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2095		for (i = 0; i < ex->num_phys; i++) {
2096			struct ex_phy *phy = &ex->ex_phy[i];
2097
2098			if (i == phy_id)
2099				continue;
2100			if (SAS_ADDR(phy->attached_sas_addr) ==
2101			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2102				SAS_DPRINTK("phy%d part of wide port with "
2103					    "phy%d\n", phy_id, i);
2104				last = false;
2105				break;
2106			}
2107		}
2108		res = sas_rediscover_dev(dev, phy_id, last);
2109	} else
2110		res = sas_discover_new(dev, phy_id);
2111	return res;
2112}
2113
2114/**
2115 * sas_ex_revalidate_domain - revalidate the domain
2116 * @port_dev: port domain device.
2117 *
2118 * NOTE: this process _must_ quit (return) as soon as any connection
2119 * errors are encountered.  Connection recovery is done elsewhere.
2120 * Discover process only interrogates devices in order to discover the
2121 * domain.
2122 */
2123int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124{
2125	int res;
2126	struct domain_device *dev = NULL;
2127
2128	res = sas_find_bcast_dev(port_dev, &dev);
2129	if (res == 0 && dev) {
 
 
2130		struct expander_device *ex = &dev->ex_dev;
2131		int i = 0, phy_id;
2132
2133		do {
2134			phy_id = -1;
2135			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2136			if (phy_id == -1)
2137				break;
2138			res = sas_rediscover(dev, phy_id);
2139			i = phy_id + 1;
2140		} while (i < ex->num_phys);
2141	}
 
2142	return res;
2143}
2144
2145void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2146		struct sas_rphy *rphy)
2147{
2148	struct domain_device *dev;
2149	unsigned int rcvlen = 0;
2150	int ret = -EINVAL;
 
 
 
 
 
 
2151
2152	/* no rphy means no smp target support (ie aic94xx host) */
2153	if (!rphy)
2154		return sas_smp_host_handler(job, shost);
2155
2156	switch (rphy->identify.device_type) {
2157	case SAS_EDGE_EXPANDER_DEVICE:
2158	case SAS_FANOUT_EXPANDER_DEVICE:
2159		break;
2160	default:
2161		printk("%s: can we send a smp request to a device?\n",
2162		       __func__);
2163		goto out;
2164	}
2165
2166	dev = sas_find_dev_by_rphy(rphy);
2167	if (!dev) {
2168		printk("%s: fail to find a domain_device?\n", __func__);
2169		goto out;
2170	}
2171
2172	/* do we need to support multiple segments? */
2173	if (job->request_payload.sg_cnt > 1 ||
2174	    job->reply_payload.sg_cnt > 1) {
2175		printk("%s: multiple segments req %u, rsp %u\n",
2176		       __func__, job->request_payload.payload_len,
2177		       job->reply_payload.payload_len);
2178		goto out;
2179	}
2180
2181	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2182			job->reply_payload.sg_list);
2183	if (ret >= 0) {
2184		/* bsg_job_done() requires the length received  */
2185		rcvlen = job->reply_payload.payload_len - ret;
 
2186		ret = 0;
 
 
 
2187	}
2188
2189out:
2190	bsg_job_done(job, ret, rcvlen);
2191}
v3.1
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
 
  31#include <scsi/scsi_transport.h>
  32#include <scsi/scsi_transport_sas.h>
  33#include "../scsi_sas_internal.h"
  34
  35static int sas_discover_expander(struct domain_device *dev);
  36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  37static int sas_configure_phy(struct domain_device *dev, int phy_id,
  38			     u8 *sas_addr, int include);
  39static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  40
  41/* ---------- SMP task management ---------- */
  42
  43static void smp_task_timedout(unsigned long _task)
  44{
  45	struct sas_task *task = (void *) _task;
 
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&task->task_state_lock, flags);
  49	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  50		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  51	spin_unlock_irqrestore(&task->task_state_lock, flags);
  52
  53	complete(&task->completion);
  54}
  55
  56static void smp_task_done(struct sas_task *task)
  57{
  58	if (!del_timer(&task->timer))
  59		return;
  60	complete(&task->completion);
  61}
  62
  63/* Give it some long enough timeout. In seconds. */
  64#define SMP_TIMEOUT 10
  65
  66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  67			    void *resp, int resp_size)
  68{
  69	int res, retry;
  70	struct sas_task *task = NULL;
  71	struct sas_internal *i =
  72		to_sas_internal(dev->port->ha->core.shost->transportt);
  73
 
  74	for (retry = 0; retry < 3; retry++) {
  75		task = sas_alloc_task(GFP_KERNEL);
  76		if (!task)
  77			return -ENOMEM;
 
  78
 
 
 
 
 
  79		task->dev = dev;
  80		task->task_proto = dev->tproto;
  81		sg_init_one(&task->smp_task.smp_req, req, req_size);
  82		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  83
  84		task->task_done = smp_task_done;
  85
  86		task->timer.data = (unsigned long) task;
  87		task->timer.function = smp_task_timedout;
  88		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  89		add_timer(&task->timer);
  90
  91		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
  92
  93		if (res) {
  94			del_timer(&task->timer);
  95			SAS_DPRINTK("executing SMP task failed:%d\n", res);
  96			goto ex_err;
  97		}
  98
  99		wait_for_completion(&task->completion);
 100		res = -ECOMM;
 101		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 102			SAS_DPRINTK("smp task timed out or aborted\n");
 103			i->dft->lldd_abort_task(task);
 104			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 105				SAS_DPRINTK("SMP task aborted and not done\n");
 106				goto ex_err;
 107			}
 108		}
 109		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 110		    task->task_status.stat == SAM_STAT_GOOD) {
 111			res = 0;
 112			break;
 113		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 114		      task->task_status.stat == SAS_DATA_UNDERRUN) {
 
 115			/* no error, but return the number of bytes of
 116			 * underrun */
 117			res = task->task_status.residual;
 118			break;
 119		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		      task->task_status.stat == SAS_DATA_OVERRUN) {
 
 121			res = -EMSGSIZE;
 122			break;
 123		} else {
 
 
 
 
 124			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 125				    "status 0x%x\n", __func__,
 126				    SAS_ADDR(dev->sas_addr),
 127				    task->task_status.resp,
 128				    task->task_status.stat);
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133ex_err:
 
 134	BUG_ON(retry == 3 && task != NULL);
 135	if (task != NULL) {
 136		sas_free_task(task);
 137	}
 138	return res;
 139}
 140
 
 
 
 
 
 
 
 
 
 
 
 141/* ---------- Allocations ---------- */
 142
 143static inline void *alloc_smp_req(int size)
 144{
 145	u8 *p = kzalloc(size, GFP_KERNEL);
 146	if (p)
 147		p[0] = SMP_REQUEST;
 148	return p;
 149}
 150
 151static inline void *alloc_smp_resp(int size)
 152{
 153	return kzalloc(size, GFP_KERNEL);
 154}
 155
 156/* ---------- Expander configuration ---------- */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 159			   void *disc_resp)
 160{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161	struct expander_device *ex = &dev->ex_dev;
 162	struct ex_phy *phy = &ex->ex_phy[phy_id];
 163	struct smp_resp *resp = disc_resp;
 164	struct discover_resp *dr = &resp->disc;
 165	struct sas_rphy *rphy = dev->rphy;
 166	int rediscover = (phy->phy != NULL);
 
 167
 168	if (!rediscover) {
 
 
 169		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 170
 171		/* FIXME: error_handling */
 172		BUG_ON(!phy->phy);
 173	}
 174
 175	switch (resp->result) {
 176	case SMP_RESP_PHY_VACANT:
 177		phy->phy_state = PHY_VACANT;
 178		break;
 179	default:
 180		phy->phy_state = PHY_NOT_PRESENT;
 181		break;
 182	case SMP_RESP_FUNC_ACC:
 183		phy->phy_state = PHY_EMPTY; /* do not know yet */
 184		break;
 185	}
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187	phy->phy_id = phy_id;
 188	phy->attached_dev_type = dr->attached_dev_type;
 189	phy->linkrate = dr->linkrate;
 190	phy->attached_sata_host = dr->attached_sata_host;
 191	phy->attached_sata_dev  = dr->attached_sata_dev;
 192	phy->attached_sata_ps   = dr->attached_sata_ps;
 193	phy->attached_iproto = dr->iproto << 1;
 194	phy->attached_tproto = dr->tproto << 1;
 195	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 
 
 
 
 
 
 
 196	phy->attached_phy_id = dr->attached_phy_id;
 197	phy->phy_change_count = dr->change_count;
 198	phy->routing_attr = dr->routing_attr;
 199	phy->virtual = dr->virtual;
 200	phy->last_da_index = -1;
 201
 
 
 202	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 203	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 
 
 204	phy->phy->identify.phy_identifier = phy_id;
 205	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 206	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 207	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 208	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 209	phy->phy->negotiated_linkrate = phy->linkrate;
 
 210
 211	if (!rediscover)
 
 212		if (sas_phy_add(phy->phy)) {
 213			sas_phy_free(phy->phy);
 214			return;
 215		}
 216
 217	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 219		    phy->routing_attr == TABLE_ROUTING ? 'T' :
 220		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
 221		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
 222		    SAS_ADDR(phy->attached_sas_addr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	return;
 
 
 
 
 
 225}
 226
 227#define DISCOVER_REQ_SIZE  16
 228#define DISCOVER_RESP_SIZE 56
 229
 230static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 231				      u8 *disc_resp, int single)
 232{
 233	int i, res;
 
 234
 235	disc_req[9] = single;
 236	for (i = 1 ; i < 3; i++) {
 237		struct discover_resp *dr;
 238
 239		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 240				       disc_resp, DISCOVER_RESP_SIZE);
 241		if (res)
 242			return res;
 243		/* This is detecting a failure to transmit initial
 244		 * dev to host FIS as described in section G.5 of
 245		 * sas-2 r 04b */
 246		dr = &((struct smp_resp *)disc_resp)->disc;
 247		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
 248			  SAS_ADDR_SIZE) == 0) {
 249			sas_printk("Found loopback topology, just ignore it!\n");
 250			return 0;
 251		}
 252		if (!(dr->attached_dev_type == 0 &&
 253		      dr->attached_sata_dev))
 254			break;
 255		/* In order to generate the dev to host FIS, we
 256		 * send a link reset to the expander port */
 257		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
 258		/* Wait for the reset to trigger the negotiation */
 259		msleep(500);
 260	}
 261	sas_set_ex_phy(dev, single, disc_resp);
 262	return 0;
 263}
 264
 265static int sas_ex_phy_discover(struct domain_device *dev, int single)
 266{
 267	struct expander_device *ex = &dev->ex_dev;
 268	int  res = 0;
 269	u8   *disc_req;
 270	u8   *disc_resp;
 271
 272	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 273	if (!disc_req)
 274		return -ENOMEM;
 275
 276	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 277	if (!disc_resp) {
 278		kfree(disc_req);
 279		return -ENOMEM;
 280	}
 281
 282	disc_req[1] = SMP_DISCOVER;
 283
 284	if (0 <= single && single < ex->num_phys) {
 285		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 286	} else {
 287		int i;
 288
 289		for (i = 0; i < ex->num_phys; i++) {
 290			res = sas_ex_phy_discover_helper(dev, disc_req,
 291							 disc_resp, i);
 292			if (res)
 293				goto out_err;
 294		}
 295	}
 296out_err:
 297	kfree(disc_resp);
 298	kfree(disc_req);
 299	return res;
 300}
 301
 302static int sas_expander_discover(struct domain_device *dev)
 303{
 304	struct expander_device *ex = &dev->ex_dev;
 305	int res = -ENOMEM;
 306
 307	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 308	if (!ex->ex_phy)
 309		return -ENOMEM;
 310
 311	res = sas_ex_phy_discover(dev, -1);
 312	if (res)
 313		goto out_err;
 314
 315	return 0;
 316 out_err:
 317	kfree(ex->ex_phy);
 318	ex->ex_phy = NULL;
 319	return res;
 320}
 321
 322#define MAX_EXPANDER_PHYS 128
 323
 324static void ex_assign_report_general(struct domain_device *dev,
 325					    struct smp_resp *resp)
 326{
 327	struct report_general_resp *rg = &resp->rg;
 328
 329	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 330	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 331	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 
 332	dev->ex_dev.conf_route_table = rg->conf_route_table;
 333	dev->ex_dev.configuring = rg->configuring;
 334	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 335}
 336
 337#define RG_REQ_SIZE   8
 338#define RG_RESP_SIZE 32
 339
 340static int sas_ex_general(struct domain_device *dev)
 341{
 342	u8 *rg_req;
 343	struct smp_resp *rg_resp;
 344	int res;
 345	int i;
 346
 347	rg_req = alloc_smp_req(RG_REQ_SIZE);
 348	if (!rg_req)
 349		return -ENOMEM;
 350
 351	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 352	if (!rg_resp) {
 353		kfree(rg_req);
 354		return -ENOMEM;
 355	}
 356
 357	rg_req[1] = SMP_REPORT_GENERAL;
 358
 359	for (i = 0; i < 5; i++) {
 360		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 361				       RG_RESP_SIZE);
 362
 363		if (res) {
 364			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 365				    SAS_ADDR(dev->sas_addr), res);
 366			goto out;
 367		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 368			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 369				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 370			res = rg_resp->result;
 371			goto out;
 372		}
 373
 374		ex_assign_report_general(dev, rg_resp);
 375
 376		if (dev->ex_dev.configuring) {
 377			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 378				    SAS_ADDR(dev->sas_addr));
 379			schedule_timeout_interruptible(5*HZ);
 380		} else
 381			break;
 382	}
 383out:
 384	kfree(rg_req);
 385	kfree(rg_resp);
 386	return res;
 387}
 388
 389static void ex_assign_manuf_info(struct domain_device *dev, void
 390					*_mi_resp)
 391{
 392	u8 *mi_resp = _mi_resp;
 393	struct sas_rphy *rphy = dev->rphy;
 394	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 395
 396	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 397	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 398	memcpy(edev->product_rev, mi_resp + 36,
 399	       SAS_EXPANDER_PRODUCT_REV_LEN);
 400
 401	if (mi_resp[8] & 1) {
 402		memcpy(edev->component_vendor_id, mi_resp + 40,
 403		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 404		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 405		edev->component_revision_id = mi_resp[50];
 406	}
 407}
 408
 409#define MI_REQ_SIZE   8
 410#define MI_RESP_SIZE 64
 411
 412static int sas_ex_manuf_info(struct domain_device *dev)
 413{
 414	u8 *mi_req;
 415	u8 *mi_resp;
 416	int res;
 417
 418	mi_req = alloc_smp_req(MI_REQ_SIZE);
 419	if (!mi_req)
 420		return -ENOMEM;
 421
 422	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 423	if (!mi_resp) {
 424		kfree(mi_req);
 425		return -ENOMEM;
 426	}
 427
 428	mi_req[1] = SMP_REPORT_MANUF_INFO;
 429
 430	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 431	if (res) {
 432		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 433			    SAS_ADDR(dev->sas_addr), res);
 434		goto out;
 435	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 436		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 437			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 438		goto out;
 439	}
 440
 441	ex_assign_manuf_info(dev, mi_resp);
 442out:
 443	kfree(mi_req);
 444	kfree(mi_resp);
 445	return res;
 446}
 447
 448#define PC_REQ_SIZE  44
 449#define PC_RESP_SIZE 8
 450
 451int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 452			enum phy_func phy_func,
 453			struct sas_phy_linkrates *rates)
 454{
 455	u8 *pc_req;
 456	u8 *pc_resp;
 457	int res;
 458
 459	pc_req = alloc_smp_req(PC_REQ_SIZE);
 460	if (!pc_req)
 461		return -ENOMEM;
 462
 463	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 464	if (!pc_resp) {
 465		kfree(pc_req);
 466		return -ENOMEM;
 467	}
 468
 469	pc_req[1] = SMP_PHY_CONTROL;
 470	pc_req[9] = phy_id;
 471	pc_req[10]= phy_func;
 472	if (rates) {
 473		pc_req[32] = rates->minimum_linkrate << 4;
 474		pc_req[33] = rates->maximum_linkrate << 4;
 475	}
 476
 477	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 478
 479	kfree(pc_resp);
 480	kfree(pc_req);
 481	return res;
 482}
 483
 484static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 485{
 486	struct expander_device *ex = &dev->ex_dev;
 487	struct ex_phy *phy = &ex->ex_phy[phy_id];
 488
 489	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 490	phy->linkrate = SAS_PHY_DISABLED;
 491}
 492
 493static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 494{
 495	struct expander_device *ex = &dev->ex_dev;
 496	int i;
 497
 498	for (i = 0; i < ex->num_phys; i++) {
 499		struct ex_phy *phy = &ex->ex_phy[i];
 500
 501		if (phy->phy_state == PHY_VACANT ||
 502		    phy->phy_state == PHY_NOT_PRESENT)
 503			continue;
 504
 505		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 506			sas_ex_disable_phy(dev, i);
 507	}
 508}
 509
 510static int sas_dev_present_in_domain(struct asd_sas_port *port,
 511					    u8 *sas_addr)
 512{
 513	struct domain_device *dev;
 514
 515	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 516		return 1;
 517	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 518		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 519			return 1;
 520	}
 521	return 0;
 522}
 523
 524#define RPEL_REQ_SIZE	16
 525#define RPEL_RESP_SIZE	32
 526int sas_smp_get_phy_events(struct sas_phy *phy)
 527{
 528	int res;
 529	u8 *req;
 530	u8 *resp;
 531	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 532	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 533
 534	req = alloc_smp_req(RPEL_REQ_SIZE);
 535	if (!req)
 536		return -ENOMEM;
 537
 538	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 539	if (!resp) {
 540		kfree(req);
 541		return -ENOMEM;
 542	}
 543
 544	req[1] = SMP_REPORT_PHY_ERR_LOG;
 545	req[9] = phy->number;
 546
 547	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 548			            resp, RPEL_RESP_SIZE);
 549
 550	if (!res)
 551		goto out;
 552
 553	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 554	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 555	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 556	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 557
 558 out:
 
 559	kfree(resp);
 560	return res;
 561
 562}
 563
 564#ifdef CONFIG_SCSI_SAS_ATA
 565
 566#define RPS_REQ_SIZE  16
 567#define RPS_RESP_SIZE 60
 568
 569static int sas_get_report_phy_sata(struct domain_device *dev,
 570					  int phy_id,
 571					  struct smp_resp *rps_resp)
 572{
 573	int res;
 574	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 575	u8 *resp = (u8 *)rps_resp;
 576
 577	if (!rps_req)
 578		return -ENOMEM;
 579
 580	rps_req[1] = SMP_REPORT_PHY_SATA;
 581	rps_req[9] = phy_id;
 582
 583	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 584			            rps_resp, RPS_RESP_SIZE);
 585
 586	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 587	 * standards cockup here.  sas-2 explicitly specifies the FIS
 588	 * should be encoded so that FIS type is in resp[24].
 589	 * However, some expanders endian reverse this.  Undo the
 590	 * reversal here */
 591	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 592		int i;
 593
 594		for (i = 0; i < 5; i++) {
 595			int j = 24 + (i*4);
 596			u8 a, b;
 597			a = resp[j + 0];
 598			b = resp[j + 1];
 599			resp[j + 0] = resp[j + 3];
 600			resp[j + 1] = resp[j + 2];
 601			resp[j + 2] = b;
 602			resp[j + 3] = a;
 603		}
 604	}
 605
 606	kfree(rps_req);
 607	return res;
 608}
 609#endif
 610
 611static void sas_ex_get_linkrate(struct domain_device *parent,
 612				       struct domain_device *child,
 613				       struct ex_phy *parent_phy)
 614{
 615	struct expander_device *parent_ex = &parent->ex_dev;
 616	struct sas_port *port;
 617	int i;
 618
 619	child->pathways = 0;
 620
 621	port = parent_phy->port;
 622
 623	for (i = 0; i < parent_ex->num_phys; i++) {
 624		struct ex_phy *phy = &parent_ex->ex_phy[i];
 625
 626		if (phy->phy_state == PHY_VACANT ||
 627		    phy->phy_state == PHY_NOT_PRESENT)
 628			continue;
 629
 630		if (SAS_ADDR(phy->attached_sas_addr) ==
 631		    SAS_ADDR(child->sas_addr)) {
 632
 633			child->min_linkrate = min(parent->min_linkrate,
 634						  phy->linkrate);
 635			child->max_linkrate = max(parent->max_linkrate,
 636						  phy->linkrate);
 637			child->pathways++;
 638			sas_port_add_phy(port, phy->phy);
 639		}
 640	}
 641	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 642	child->pathways = min(child->pathways, parent->pathways);
 643}
 644
 645static struct domain_device *sas_ex_discover_end_dev(
 646	struct domain_device *parent, int phy_id)
 647{
 648	struct expander_device *parent_ex = &parent->ex_dev;
 649	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 650	struct domain_device *child = NULL;
 651	struct sas_rphy *rphy;
 652	int res;
 653
 654	if (phy->attached_sata_host || phy->attached_sata_ps)
 655		return NULL;
 656
 657	child = kzalloc(sizeof(*child), GFP_KERNEL);
 658	if (!child)
 659		return NULL;
 660
 
 661	child->parent = parent;
 662	child->port   = parent->port;
 663	child->iproto = phy->attached_iproto;
 664	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 665	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 666	if (!phy->port) {
 667		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 668		if (unlikely(!phy->port))
 669			goto out_err;
 670		if (unlikely(sas_port_add(phy->port) != 0)) {
 671			sas_port_free(phy->port);
 672			goto out_err;
 673		}
 674	}
 675	sas_ex_get_linkrate(parent, child, phy);
 
 676
 677#ifdef CONFIG_SCSI_SAS_ATA
 678	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 679		child->dev_type = SATA_DEV;
 680		if (phy->attached_tproto & SAS_PROTOCOL_STP)
 681			child->tproto = phy->attached_tproto;
 682		if (phy->attached_sata_dev)
 683			child->tproto |= SATA_DEV;
 684		res = sas_get_report_phy_sata(parent, phy_id,
 685					      &child->sata_dev.rps_resp);
 686		if (res) {
 687			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
 688				    "0x%x\n", SAS_ADDR(parent->sas_addr),
 689				    phy_id, res);
 690			goto out_free;
 691		}
 692		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
 693		       sizeof(struct dev_to_host_fis));
 694
 
 
 
 
 695		rphy = sas_end_device_alloc(phy->port);
 696		if (unlikely(!rphy))
 697			goto out_free;
 698
 699		sas_init_dev(child);
 700
 701		child->rphy = rphy;
 
 702
 703		spin_lock_irq(&parent->port->dev_list_lock);
 704		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 705		spin_unlock_irq(&parent->port->dev_list_lock);
 706
 707		res = sas_discover_sata(child);
 708		if (res) {
 709			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 710				    "%016llx:0x%x returned 0x%x\n",
 711				    SAS_ADDR(child->sas_addr),
 712				    SAS_ADDR(parent->sas_addr), phy_id, res);
 713			goto out_list_del;
 714		}
 715	} else
 716#endif
 717	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 718		child->dev_type = SAS_END_DEV;
 719		rphy = sas_end_device_alloc(phy->port);
 720		/* FIXME: error handling */
 721		if (unlikely(!rphy))
 722			goto out_free;
 723		child->tproto = phy->attached_tproto;
 724		sas_init_dev(child);
 725
 726		child->rphy = rphy;
 
 727		sas_fill_in_rphy(child, rphy);
 728
 729		spin_lock_irq(&parent->port->dev_list_lock);
 730		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 731		spin_unlock_irq(&parent->port->dev_list_lock);
 732
 733		res = sas_discover_end_dev(child);
 734		if (res) {
 735			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 736				    "at %016llx:0x%x returned 0x%x\n",
 737				    SAS_ADDR(child->sas_addr),
 738				    SAS_ADDR(parent->sas_addr), phy_id, res);
 739			goto out_list_del;
 740		}
 741	} else {
 742		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 743			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 744			    phy_id);
 745		goto out_free;
 746	}
 747
 748	list_add_tail(&child->siblings, &parent_ex->children);
 749	return child;
 750
 751 out_list_del:
 752	sas_rphy_free(child->rphy);
 753	child->rphy = NULL;
 
 754	list_del(&child->dev_list_node);
 
 755 out_free:
 756	sas_port_delete(phy->port);
 757 out_err:
 758	phy->port = NULL;
 759	kfree(child);
 760	return NULL;
 761}
 762
 763/* See if this phy is part of a wide port */
 764static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 765{
 766	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 767	int i;
 768
 769	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 770		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 771
 772		if (ephy == phy)
 773			continue;
 774
 775		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 776			    SAS_ADDR_SIZE) && ephy->port) {
 777			sas_port_add_phy(ephy->port, phy->phy);
 778			phy->port = ephy->port;
 779			phy->phy_state = PHY_DEVICE_DISCOVERED;
 780			return 0;
 781		}
 782	}
 783
 784	return -ENODEV;
 785}
 786
 787static struct domain_device *sas_ex_discover_expander(
 788	struct domain_device *parent, int phy_id)
 789{
 790	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 791	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 792	struct domain_device *child = NULL;
 793	struct sas_rphy *rphy;
 794	struct sas_expander_device *edev;
 795	struct asd_sas_port *port;
 796	int res;
 797
 798	if (phy->routing_attr == DIRECT_ROUTING) {
 799		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 800			    "allowed\n",
 801			    SAS_ADDR(parent->sas_addr), phy_id,
 802			    SAS_ADDR(phy->attached_sas_addr),
 803			    phy->attached_phy_id);
 804		return NULL;
 805	}
 806	child = kzalloc(sizeof(*child), GFP_KERNEL);
 807	if (!child)
 808		return NULL;
 809
 810	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 811	/* FIXME: better error handling */
 812	BUG_ON(sas_port_add(phy->port) != 0);
 813
 814
 815	switch (phy->attached_dev_type) {
 816	case EDGE_DEV:
 817		rphy = sas_expander_alloc(phy->port,
 818					  SAS_EDGE_EXPANDER_DEVICE);
 819		break;
 820	case FANOUT_DEV:
 821		rphy = sas_expander_alloc(phy->port,
 822					  SAS_FANOUT_EXPANDER_DEVICE);
 823		break;
 824	default:
 825		rphy = NULL;	/* shut gcc up */
 826		BUG();
 827	}
 828	port = parent->port;
 829	child->rphy = rphy;
 
 830	edev = rphy_to_expander_device(rphy);
 831	child->dev_type = phy->attached_dev_type;
 
 832	child->parent = parent;
 833	child->port = port;
 834	child->iproto = phy->attached_iproto;
 835	child->tproto = phy->attached_tproto;
 836	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 837	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 838	sas_ex_get_linkrate(parent, child, phy);
 839	edev->level = parent_ex->level + 1;
 840	parent->port->disc.max_level = max(parent->port->disc.max_level,
 841					   edev->level);
 842	sas_init_dev(child);
 843	sas_fill_in_rphy(child, rphy);
 844	sas_rphy_add(rphy);
 845
 846	spin_lock_irq(&parent->port->dev_list_lock);
 847	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 848	spin_unlock_irq(&parent->port->dev_list_lock);
 849
 850	res = sas_discover_expander(child);
 851	if (res) {
 
 852		spin_lock_irq(&parent->port->dev_list_lock);
 853		list_del(&child->dev_list_node);
 854		spin_unlock_irq(&parent->port->dev_list_lock);
 855		kfree(child);
 856		return NULL;
 857	}
 858	list_add_tail(&child->siblings, &parent->ex_dev.children);
 859	return child;
 860}
 861
 862static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 863{
 864	struct expander_device *ex = &dev->ex_dev;
 865	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 866	struct domain_device *child = NULL;
 867	int res = 0;
 868
 869	/* Phy state */
 870	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 871		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 872			res = sas_ex_phy_discover(dev, phy_id);
 873		if (res)
 874			return res;
 875	}
 876
 877	/* Parent and domain coherency */
 878	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 879			     SAS_ADDR(dev->port->sas_addr))) {
 880		sas_add_parent_port(dev, phy_id);
 881		return 0;
 882	}
 883	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 884			    SAS_ADDR(dev->parent->sas_addr))) {
 885		sas_add_parent_port(dev, phy_id);
 886		if (ex_phy->routing_attr == TABLE_ROUTING)
 887			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 888		return 0;
 889	}
 890
 891	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 892		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 893
 894	if (ex_phy->attached_dev_type == NO_DEVICE) {
 895		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 896			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 897			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 898		}
 899		return 0;
 900	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 901		return 0;
 902
 903	if (ex_phy->attached_dev_type != SAS_END_DEV &&
 904	    ex_phy->attached_dev_type != FANOUT_DEV &&
 905	    ex_phy->attached_dev_type != EDGE_DEV) {
 
 906		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
 907			    "phy 0x%x\n", ex_phy->attached_dev_type,
 908			    SAS_ADDR(dev->sas_addr),
 909			    phy_id);
 910		return 0;
 911	}
 912
 913	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
 914	if (res) {
 915		SAS_DPRINTK("configure routing for dev %016llx "
 916			    "reported 0x%x. Forgotten\n",
 917			    SAS_ADDR(ex_phy->attached_sas_addr), res);
 918		sas_disable_routing(dev, ex_phy->attached_sas_addr);
 919		return res;
 920	}
 921
 922	res = sas_ex_join_wide_port(dev, phy_id);
 923	if (!res) {
 924		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 925			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 926		return res;
 927	}
 928
 929	switch (ex_phy->attached_dev_type) {
 930	case SAS_END_DEV:
 
 931		child = sas_ex_discover_end_dev(dev, phy_id);
 932		break;
 933	case FANOUT_DEV:
 934		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
 935			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
 936				    "attached to ex %016llx phy 0x%x\n",
 937				    SAS_ADDR(ex_phy->attached_sas_addr),
 938				    ex_phy->attached_phy_id,
 939				    SAS_ADDR(dev->sas_addr),
 940				    phy_id);
 941			sas_ex_disable_phy(dev, phy_id);
 942			break;
 943		} else
 944			memcpy(dev->port->disc.fanout_sas_addr,
 945			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
 946		/* fallthrough */
 947	case EDGE_DEV:
 948		child = sas_ex_discover_expander(dev, phy_id);
 949		break;
 950	default:
 951		break;
 952	}
 953
 954	if (child) {
 955		int i;
 956
 957		for (i = 0; i < ex->num_phys; i++) {
 958			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
 959			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
 960				continue;
 961			/*
 962			 * Due to races, the phy might not get added to the
 963			 * wide port, so we add the phy to the wide port here.
 964			 */
 965			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
 966			    SAS_ADDR(child->sas_addr)) {
 967				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
 968				res = sas_ex_join_wide_port(dev, i);
 969				if (!res)
 970					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 971						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
 972
 973			}
 974		}
 975	}
 976
 977	return res;
 978}
 979
 980static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
 981{
 982	struct expander_device *ex = &dev->ex_dev;
 983	int i;
 984
 985	for (i = 0; i < ex->num_phys; i++) {
 986		struct ex_phy *phy = &ex->ex_phy[i];
 987
 988		if (phy->phy_state == PHY_VACANT ||
 989		    phy->phy_state == PHY_NOT_PRESENT)
 990			continue;
 991
 992		if ((phy->attached_dev_type == EDGE_DEV ||
 993		     phy->attached_dev_type == FANOUT_DEV) &&
 994		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
 995
 996			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
 997
 998			return 1;
 999		}
1000	}
1001	return 0;
1002}
1003
1004static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005{
1006	struct expander_device *ex = &dev->ex_dev;
1007	struct domain_device *child;
1008	u8 sub_addr[8] = {0, };
1009
1010	list_for_each_entry(child, &ex->children, siblings) {
1011		if (child->dev_type != EDGE_DEV &&
1012		    child->dev_type != FANOUT_DEV)
1013			continue;
1014		if (sub_addr[0] == 0) {
1015			sas_find_sub_addr(child, sub_addr);
1016			continue;
1017		} else {
1018			u8 s2[8];
1019
1020			if (sas_find_sub_addr(child, s2) &&
1021			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024					    "diverges from subtractive "
1025					    "boundary %016llx\n",
1026					    SAS_ADDR(dev->sas_addr),
1027					    SAS_ADDR(child->sas_addr),
1028					    SAS_ADDR(s2),
1029					    SAS_ADDR(sub_addr));
1030
1031				sas_ex_disable_port(child, s2);
1032			}
1033		}
1034	}
1035	return 0;
1036}
1037/**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046{
1047	struct expander_device *ex = &dev->ex_dev;
1048	int i = 0, end = ex->num_phys;
1049	int res = 0;
1050
1051	if (0 <= single && single < end) {
1052		i = single;
1053		end = i+1;
1054	}
1055
1056	for ( ; i < end; i++) {
1057		struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059		if (ex_phy->phy_state == PHY_VACANT ||
1060		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1061		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062			continue;
1063
1064		switch (ex_phy->linkrate) {
1065		case SAS_PHY_DISABLED:
1066		case SAS_PHY_RESET_PROBLEM:
1067		case SAS_SATA_PORT_SELECTOR:
1068			continue;
1069		default:
1070			res = sas_ex_discover_dev(dev, i);
1071			if (res)
1072				break;
1073			continue;
1074		}
1075	}
1076
1077	if (!res)
1078		sas_check_level_subtractive_boundary(dev);
1079
1080	return res;
1081}
1082
1083static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084{
1085	struct expander_device *ex = &dev->ex_dev;
1086	int i;
1087	u8  *sub_sas_addr = NULL;
1088
1089	if (dev->dev_type != EDGE_DEV)
1090		return 0;
1091
1092	for (i = 0; i < ex->num_phys; i++) {
1093		struct ex_phy *phy = &ex->ex_phy[i];
1094
1095		if (phy->phy_state == PHY_VACANT ||
1096		    phy->phy_state == PHY_NOT_PRESENT)
1097			continue;
1098
1099		if ((phy->attached_dev_type == FANOUT_DEV ||
1100		     phy->attached_dev_type == EDGE_DEV) &&
1101		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103			if (!sub_sas_addr)
1104				sub_sas_addr = &phy->attached_sas_addr[0];
1105			else if (SAS_ADDR(sub_sas_addr) !=
1106				 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108				SAS_DPRINTK("ex %016llx phy 0x%x "
1109					    "diverges(%016llx) on subtractive "
1110					    "boundary(%016llx). Disabled\n",
1111					    SAS_ADDR(dev->sas_addr), i,
1112					    SAS_ADDR(phy->attached_sas_addr),
1113					    SAS_ADDR(sub_sas_addr));
1114				sas_ex_disable_phy(dev, i);
1115			}
1116		}
1117	}
1118	return 0;
1119}
1120
1121static void sas_print_parent_topology_bug(struct domain_device *child,
1122						 struct ex_phy *parent_phy,
1123						 struct ex_phy *child_phy)
1124{
1125	static const char ra_char[] = {
1126		[DIRECT_ROUTING] = 'D',
1127		[SUBTRACTIVE_ROUTING] = 'S',
1128		[TABLE_ROUTING] = 'T',
1129	};
1130	static const char *ex_type[] = {
1131		[EDGE_DEV] = "edge",
1132		[FANOUT_DEV] = "fanout",
1133	};
1134	struct domain_device *parent = child->parent;
1135
1136	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137		   "has %c:%c routing link!\n",
1138
1139		   ex_type[parent->dev_type],
1140		   SAS_ADDR(parent->sas_addr),
1141		   parent_phy->phy_id,
1142
1143		   ex_type[child->dev_type],
1144		   SAS_ADDR(child->sas_addr),
1145		   child_phy->phy_id,
1146
1147		   ra_char[parent_phy->routing_attr],
1148		   ra_char[child_phy->routing_attr]);
1149}
1150
1151static int sas_check_eeds(struct domain_device *child,
1152				 struct ex_phy *parent_phy,
1153				 struct ex_phy *child_phy)
1154{
1155	int res = 0;
1156	struct domain_device *parent = child->parent;
1157
1158	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159		res = -ENODEV;
1160		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1162			    SAS_ADDR(parent->sas_addr),
1163			    parent_phy->phy_id,
1164			    SAS_ADDR(child->sas_addr),
1165			    child_phy->phy_id,
1166			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169		       SAS_ADDR_SIZE);
1170		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171		       SAS_ADDR_SIZE);
1172	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173		    SAS_ADDR(parent->sas_addr)) ||
1174		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1175		    SAS_ADDR(child->sas_addr)))
1176		   &&
1177		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178		     SAS_ADDR(parent->sas_addr)) ||
1179		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1180		     SAS_ADDR(child->sas_addr))))
1181		;
1182	else {
1183		res = -ENODEV;
1184		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185			    "phy 0x%x link forms a third EEDS!\n",
1186			    SAS_ADDR(parent->sas_addr),
1187			    parent_phy->phy_id,
1188			    SAS_ADDR(child->sas_addr),
1189			    child_phy->phy_id);
1190	}
1191
1192	return res;
1193}
1194
1195/* Here we spill over 80 columns.  It is intentional.
1196 */
1197static int sas_check_parent_topology(struct domain_device *child)
1198{
1199	struct expander_device *child_ex = &child->ex_dev;
1200	struct expander_device *parent_ex;
1201	int i;
1202	int res = 0;
1203
1204	if (!child->parent)
1205		return 0;
1206
1207	if (child->parent->dev_type != EDGE_DEV &&
1208	    child->parent->dev_type != FANOUT_DEV)
1209		return 0;
1210
1211	parent_ex = &child->parent->ex_dev;
1212
1213	for (i = 0; i < parent_ex->num_phys; i++) {
1214		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215		struct ex_phy *child_phy;
1216
1217		if (parent_phy->phy_state == PHY_VACANT ||
1218		    parent_phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222			continue;
1223
1224		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226		switch (child->parent->dev_type) {
1227		case EDGE_DEV:
1228			if (child->dev_type == FANOUT_DEV) {
1229				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230				    child_phy->routing_attr != TABLE_ROUTING) {
1231					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232					res = -ENODEV;
1233				}
1234			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236					res = sas_check_eeds(child, parent_phy, child_phy);
1237				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1238					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239					res = -ENODEV;
1240				}
1241			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244				res = -ENODEV;
 
 
 
 
 
1245			}
1246			break;
1247		case FANOUT_DEV:
1248			if (parent_phy->routing_attr != TABLE_ROUTING ||
1249			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251				res = -ENODEV;
1252			}
1253			break;
1254		default:
1255			break;
1256		}
1257	}
1258
1259	return res;
1260}
1261
1262#define RRI_REQ_SIZE  16
1263#define RRI_RESP_SIZE 44
1264
1265static int sas_configure_present(struct domain_device *dev, int phy_id,
1266				 u8 *sas_addr, int *index, int *present)
1267{
1268	int i, res = 0;
1269	struct expander_device *ex = &dev->ex_dev;
1270	struct ex_phy *phy = &ex->ex_phy[phy_id];
1271	u8 *rri_req;
1272	u8 *rri_resp;
1273
1274	*present = 0;
1275	*index = 0;
1276
1277	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278	if (!rri_req)
1279		return -ENOMEM;
1280
1281	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282	if (!rri_resp) {
1283		kfree(rri_req);
1284		return -ENOMEM;
1285	}
1286
1287	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288	rri_req[9] = phy_id;
1289
1290	for (i = 0; i < ex->max_route_indexes ; i++) {
1291		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293				       RRI_RESP_SIZE);
1294		if (res)
1295			goto out;
1296		res = rri_resp[2];
1297		if (res == SMP_RESP_NO_INDEX) {
1298			SAS_DPRINTK("overflow of indexes: dev %016llx "
1299				    "phy 0x%x index 0x%x\n",
1300				    SAS_ADDR(dev->sas_addr), phy_id, i);
1301			goto out;
1302		} else if (res != SMP_RESP_FUNC_ACC) {
1303			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304				    "result 0x%x\n", __func__,
1305				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306			goto out;
1307		}
1308		if (SAS_ADDR(sas_addr) != 0) {
1309			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310				*index = i;
1311				if ((rri_resp[12] & 0x80) == 0x80)
1312					*present = 0;
1313				else
1314					*present = 1;
1315				goto out;
1316			} else if (SAS_ADDR(rri_resp+16) == 0) {
1317				*index = i;
1318				*present = 0;
1319				goto out;
1320			}
1321		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1322			   phy->last_da_index < i) {
1323			phy->last_da_index = i;
1324			*index = i;
1325			*present = 0;
1326			goto out;
1327		}
1328	}
1329	res = -1;
1330out:
1331	kfree(rri_req);
1332	kfree(rri_resp);
1333	return res;
1334}
1335
1336#define CRI_REQ_SIZE  44
1337#define CRI_RESP_SIZE  8
1338
1339static int sas_configure_set(struct domain_device *dev, int phy_id,
1340			     u8 *sas_addr, int index, int include)
1341{
1342	int res;
1343	u8 *cri_req;
1344	u8 *cri_resp;
1345
1346	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347	if (!cri_req)
1348		return -ENOMEM;
1349
1350	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351	if (!cri_resp) {
1352		kfree(cri_req);
1353		return -ENOMEM;
1354	}
1355
1356	cri_req[1] = SMP_CONF_ROUTE_INFO;
1357	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358	cri_req[9] = phy_id;
1359	if (SAS_ADDR(sas_addr) == 0 || !include)
1360		cri_req[12] |= 0x80;
1361	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364			       CRI_RESP_SIZE);
1365	if (res)
1366		goto out;
1367	res = cri_resp[2];
1368	if (res == SMP_RESP_NO_INDEX) {
1369		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370			    "index 0x%x\n",
1371			    SAS_ADDR(dev->sas_addr), phy_id, index);
1372	}
1373out:
1374	kfree(cri_req);
1375	kfree(cri_resp);
1376	return res;
1377}
1378
1379static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380				    u8 *sas_addr, int include)
1381{
1382	int index;
1383	int present;
1384	int res;
1385
1386	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387	if (res)
1388		return res;
1389	if (include ^ present)
1390		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392	return res;
1393}
1394
1395/**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
 
1400 */
1401static int sas_configure_parent(struct domain_device *parent,
1402				struct domain_device *child,
1403				u8 *sas_addr, int include)
1404{
1405	struct expander_device *ex_parent = &parent->ex_dev;
1406	int res = 0;
1407	int i;
1408
1409	if (parent->parent) {
1410		res = sas_configure_parent(parent->parent, parent, sas_addr,
1411					   include);
1412		if (res)
1413			return res;
1414	}
1415
1416	if (ex_parent->conf_route_table == 0) {
1417		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418			    SAS_ADDR(parent->sas_addr));
1419		return 0;
1420	}
1421
1422	for (i = 0; i < ex_parent->num_phys; i++) {
1423		struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425		if ((phy->routing_attr == TABLE_ROUTING) &&
1426		    (SAS_ADDR(phy->attached_sas_addr) ==
1427		     SAS_ADDR(child->sas_addr))) {
1428			res = sas_configure_phy(parent, i, sas_addr, include);
1429			if (res)
1430				return res;
1431		}
1432	}
1433
1434	return res;
1435}
1436
1437/**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443{
1444	if (dev->parent)
1445		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446	return 0;
1447}
1448
1449static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1450{
1451	if (dev->parent)
1452		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453	return 0;
1454}
1455
1456/**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462static int sas_discover_expander(struct domain_device *dev)
1463{
1464	int res;
1465
1466	res = sas_notify_lldd_dev_found(dev);
1467	if (res)
1468		return res;
1469
1470	res = sas_ex_general(dev);
1471	if (res)
1472		goto out_err;
1473	res = sas_ex_manuf_info(dev);
1474	if (res)
1475		goto out_err;
1476
1477	res = sas_expander_discover(dev);
1478	if (res) {
1479		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480			    SAS_ADDR(dev->sas_addr), res);
1481		goto out_err;
1482	}
1483
1484	sas_check_ex_subtractive_boundary(dev);
1485	res = sas_check_parent_topology(dev);
1486	if (res)
1487		goto out_err;
1488	return 0;
1489out_err:
1490	sas_notify_lldd_dev_gone(dev);
1491	return res;
1492}
1493
1494static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495{
1496	int res = 0;
1497	struct domain_device *dev;
1498
1499	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500		if (dev->dev_type == EDGE_DEV ||
1501		    dev->dev_type == FANOUT_DEV) {
1502			struct sas_expander_device *ex =
1503				rphy_to_expander_device(dev->rphy);
1504
1505			if (level == ex->level)
1506				res = sas_ex_discover_devices(dev, -1);
1507			else if (level > 0)
1508				res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510		}
1511	}
1512
1513	return res;
1514}
1515
1516static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517{
1518	int res;
1519	int level;
1520
1521	do {
1522		level = port->disc.max_level;
1523		res = sas_ex_level_discovery(port, level);
1524		mb();
1525	} while (level < port->disc.max_level);
1526
1527	return res;
1528}
1529
1530int sas_discover_root_expander(struct domain_device *dev)
1531{
1532	int res;
1533	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535	res = sas_rphy_add(dev->rphy);
1536	if (res)
1537		goto out_err;
1538
1539	ex->level = dev->port->disc.max_level; /* 0 */
1540	res = sas_discover_expander(dev);
1541	if (res)
1542		goto out_err2;
1543
1544	sas_ex_bfs_disc(dev->port);
1545
1546	return res;
1547
1548out_err2:
1549	sas_rphy_remove(dev->rphy);
1550out_err:
1551	return res;
1552}
1553
1554/* ---------- Domain revalidation ---------- */
1555
1556static int sas_get_phy_discover(struct domain_device *dev,
1557				int phy_id, struct smp_resp *disc_resp)
1558{
1559	int res;
1560	u8 *disc_req;
1561
1562	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563	if (!disc_req)
1564		return -ENOMEM;
1565
1566	disc_req[1] = SMP_DISCOVER;
1567	disc_req[9] = phy_id;
1568
1569	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570			       disc_resp, DISCOVER_RESP_SIZE);
1571	if (res)
1572		goto out;
1573	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574		res = disc_resp->result;
1575		goto out;
1576	}
1577out:
1578	kfree(disc_req);
1579	return res;
1580}
1581
1582static int sas_get_phy_change_count(struct domain_device *dev,
1583				    int phy_id, int *pcc)
1584{
1585	int res;
1586	struct smp_resp *disc_resp;
1587
1588	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589	if (!disc_resp)
1590		return -ENOMEM;
1591
1592	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593	if (!res)
1594		*pcc = disc_resp->disc.change_count;
1595
1596	kfree(disc_resp);
1597	return res;
1598}
1599
1600static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601					 int phy_id, u8 *attached_sas_addr)
1602{
1603	int res;
1604	struct smp_resp *disc_resp;
1605	struct discover_resp *dr;
1606
1607	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608	if (!disc_resp)
1609		return -ENOMEM;
1610	dr = &disc_resp->disc;
1611
1612	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613	if (!res) {
1614		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615		if (dr->attached_dev_type == 0)
1616			memset(attached_sas_addr, 0, 8);
 
1617	}
1618	kfree(disc_resp);
1619	return res;
1620}
1621
1622static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623			      int from_phy, bool update)
1624{
1625	struct expander_device *ex = &dev->ex_dev;
1626	int res = 0;
1627	int i;
1628
1629	for (i = from_phy; i < ex->num_phys; i++) {
1630		int phy_change_count = 0;
1631
1632		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633		if (res)
1634			goto out;
1635		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
 
 
 
 
 
 
 
 
1636			if (update)
1637				ex->ex_phy[i].phy_change_count =
1638					phy_change_count;
1639			*phy_id = i;
1640			return 0;
1641		}
1642	}
1643out:
1644	return res;
1645}
1646
1647static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648{
1649	int res;
1650	u8  *rg_req;
1651	struct smp_resp  *rg_resp;
1652
1653	rg_req = alloc_smp_req(RG_REQ_SIZE);
1654	if (!rg_req)
1655		return -ENOMEM;
1656
1657	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658	if (!rg_resp) {
1659		kfree(rg_req);
1660		return -ENOMEM;
1661	}
1662
1663	rg_req[1] = SMP_REPORT_GENERAL;
1664
1665	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666			       RG_RESP_SIZE);
1667	if (res)
1668		goto out;
1669	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670		res = rg_resp->result;
1671		goto out;
1672	}
1673
1674	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1675out:
1676	kfree(rg_resp);
1677	kfree(rg_req);
1678	return res;
1679}
1680/**
1681 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695static int sas_find_bcast_dev(struct domain_device *dev,
1696			      struct domain_device **src_dev)
1697{
1698	struct expander_device *ex = &dev->ex_dev;
1699	int ex_change_count = -1;
1700	int phy_id = -1;
1701	int res;
1702	struct domain_device *ch;
1703
1704	res = sas_get_ex_change_count(dev, &ex_change_count);
1705	if (res)
1706		goto out;
1707	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708		/* Just detect if this expander phys phy change count changed,
1709		* in order to determine if this expander originate BROADCAST,
1710		* and do not update phy change count field in our structure.
1711		*/
1712		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713		if (phy_id != -1) {
1714			*src_dev = dev;
1715			ex->ex_change_count = ex_change_count;
1716			SAS_DPRINTK("Expander phy change count has changed\n");
1717			return res;
1718		} else
1719			SAS_DPRINTK("Expander phys DID NOT change\n");
1720	}
1721	list_for_each_entry(ch, &ex->children, siblings) {
1722		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723			res = sas_find_bcast_dev(ch, src_dev);
1724			if (*src_dev)
1725				return res;
1726		}
1727	}
1728out:
1729	return res;
1730}
1731
1732static void sas_unregister_ex_tree(struct domain_device *dev)
1733{
1734	struct expander_device *ex = &dev->ex_dev;
1735	struct domain_device *child, *n;
1736
1737	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738		child->gone = 1;
1739		if (child->dev_type == EDGE_DEV ||
1740		    child->dev_type == FANOUT_DEV)
1741			sas_unregister_ex_tree(child);
1742		else
1743			sas_unregister_dev(child);
1744	}
1745	sas_unregister_dev(dev);
1746}
1747
1748static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749					 int phy_id, bool last)
1750{
1751	struct expander_device *ex_dev = &parent->ex_dev;
1752	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753	struct domain_device *child, *n;
1754	if (last) {
1755		list_for_each_entry_safe(child, n,
1756			&ex_dev->children, siblings) {
1757			if (SAS_ADDR(child->sas_addr) ==
1758			    SAS_ADDR(phy->attached_sas_addr)) {
1759				child->gone = 1;
1760				if (child->dev_type == EDGE_DEV ||
1761				    child->dev_type == FANOUT_DEV)
1762					sas_unregister_ex_tree(child);
1763				else
1764					sas_unregister_dev(child);
 
1765				break;
1766			}
1767		}
1768		parent->gone = 1;
1769		sas_disable_routing(parent, phy->attached_sas_addr);
1770	}
1771	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772	if (phy->port) {
1773		sas_port_delete_phy(phy->port, phy->phy);
 
1774		if (phy->port->num_phys == 0)
1775			sas_port_delete(phy->port);
 
1776		phy->port = NULL;
1777	}
1778}
1779
1780static int sas_discover_bfs_by_root_level(struct domain_device *root,
1781					  const int level)
1782{
1783	struct expander_device *ex_root = &root->ex_dev;
1784	struct domain_device *child;
1785	int res = 0;
1786
1787	list_for_each_entry(child, &ex_root->children, siblings) {
1788		if (child->dev_type == EDGE_DEV ||
1789		    child->dev_type == FANOUT_DEV) {
1790			struct sas_expander_device *ex =
1791				rphy_to_expander_device(child->rphy);
1792
1793			if (level > ex->level)
1794				res = sas_discover_bfs_by_root_level(child,
1795								     level);
1796			else if (level == ex->level)
1797				res = sas_ex_discover_devices(child, -1);
1798		}
1799	}
1800	return res;
1801}
1802
1803static int sas_discover_bfs_by_root(struct domain_device *dev)
1804{
1805	int res;
1806	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1807	int level = ex->level+1;
1808
1809	res = sas_ex_discover_devices(dev, -1);
1810	if (res)
1811		goto out;
1812	do {
1813		res = sas_discover_bfs_by_root_level(dev, level);
1814		mb();
1815		level += 1;
1816	} while (level <= dev->port->disc.max_level);
1817out:
1818	return res;
1819}
1820
1821static int sas_discover_new(struct domain_device *dev, int phy_id)
1822{
1823	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1824	struct domain_device *child;
1825	bool found = false;
1826	int res, i;
1827
1828	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1829		    SAS_ADDR(dev->sas_addr), phy_id);
1830	res = sas_ex_phy_discover(dev, phy_id);
1831	if (res)
1832		goto out;
1833	/* to support the wide port inserted */
1834	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1835		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1836		if (i == phy_id)
1837			continue;
1838		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1839		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1840			found = true;
1841			break;
1842		}
1843	}
1844	if (found) {
1845		sas_ex_join_wide_port(dev, phy_id);
1846		return 0;
1847	}
1848	res = sas_ex_discover_devices(dev, phy_id);
1849	if (!res)
1850		goto out;
1851	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1852		if (SAS_ADDR(child->sas_addr) ==
1853		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1854			if (child->dev_type == EDGE_DEV ||
1855			    child->dev_type == FANOUT_DEV)
1856				res = sas_discover_bfs_by_root(child);
1857			break;
1858		}
1859	}
1860out:
1861	return res;
1862}
1863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1865{
1866	struct expander_device *ex = &dev->ex_dev;
1867	struct ex_phy *phy = &ex->ex_phy[phy_id];
1868	u8 attached_sas_addr[8];
 
1869	int res;
1870
1871	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
 
1872	switch (res) {
1873	case SMP_RESP_NO_PHY:
1874		phy->phy_state = PHY_NOT_PRESENT;
1875		sas_unregister_devs_sas_addr(dev, phy_id, last);
1876		goto out; break;
1877	case SMP_RESP_PHY_VACANT:
1878		phy->phy_state = PHY_VACANT;
1879		sas_unregister_devs_sas_addr(dev, phy_id, last);
1880		goto out; break;
1881	case SMP_RESP_FUNC_ACC:
1882		break;
 
 
 
 
1883	}
1884
1885	if (SAS_ADDR(attached_sas_addr) == 0) {
1886		phy->phy_state = PHY_EMPTY;
1887		sas_unregister_devs_sas_addr(dev, phy_id, last);
1888	} else if (SAS_ADDR(attached_sas_addr) ==
1889		   SAS_ADDR(phy->attached_sas_addr)) {
1890		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1891			    SAS_ADDR(dev->sas_addr), phy_id);
 
 
1892		sas_ex_phy_discover(dev, phy_id);
1893	} else
1894		res = sas_discover_new(dev, phy_id);
1895out:
1896	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899/**
1900 * sas_rediscover - revalidate the domain.
1901 * @dev:domain device to be detect.
1902 * @phy_id: the phy id will be detected.
1903 *
1904 * NOTE: this process _must_ quit (return) as soon as any connection
1905 * errors are encountered.  Connection recovery is done elsewhere.
1906 * Discover process only interrogates devices in order to discover the
1907 * domain.For plugging out, we un-register the device only when it is
1908 * the last phy in the port, for other phys in this port, we just delete it
1909 * from the port.For inserting, we do discovery when it is the
1910 * first phy,for other phys in this port, we add it to the port to
1911 * forming the wide-port.
1912 */
1913static int sas_rediscover(struct domain_device *dev, const int phy_id)
1914{
1915	struct expander_device *ex = &dev->ex_dev;
1916	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1917	int res = 0;
1918	int i;
1919	bool last = true;	/* is this the last phy of the port */
1920
1921	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1922		    SAS_ADDR(dev->sas_addr), phy_id);
1923
1924	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1925		for (i = 0; i < ex->num_phys; i++) {
1926			struct ex_phy *phy = &ex->ex_phy[i];
1927
1928			if (i == phy_id)
1929				continue;
1930			if (SAS_ADDR(phy->attached_sas_addr) ==
1931			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1932				SAS_DPRINTK("phy%d part of wide port with "
1933					    "phy%d\n", phy_id, i);
1934				last = false;
1935				break;
1936			}
1937		}
1938		res = sas_rediscover_dev(dev, phy_id, last);
1939	} else
1940		res = sas_discover_new(dev, phy_id);
1941	return res;
1942}
1943
1944/**
1945 * sas_revalidate_domain -- revalidate the domain
1946 * @port: port to the domain of interest
1947 *
1948 * NOTE: this process _must_ quit (return) as soon as any connection
1949 * errors are encountered.  Connection recovery is done elsewhere.
1950 * Discover process only interrogates devices in order to discover the
1951 * domain.
1952 */
1953int sas_ex_revalidate_domain(struct domain_device *port_dev)
1954{
1955	int res;
1956	struct domain_device *dev = NULL;
1957
1958	res = sas_find_bcast_dev(port_dev, &dev);
1959	if (res)
1960		goto out;
1961	if (dev) {
1962		struct expander_device *ex = &dev->ex_dev;
1963		int i = 0, phy_id;
1964
1965		do {
1966			phy_id = -1;
1967			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1968			if (phy_id == -1)
1969				break;
1970			res = sas_rediscover(dev, phy_id);
1971			i = phy_id + 1;
1972		} while (i < ex->num_phys);
1973	}
1974out:
1975	return res;
1976}
1977
1978int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1979		    struct request *req)
1980{
1981	struct domain_device *dev;
1982	int ret, type;
1983	struct request *rsp = req->next_rq;
1984
1985	if (!rsp) {
1986		printk("%s: space for a smp response is missing\n",
1987		       __func__);
1988		return -EINVAL;
1989	}
1990
1991	/* no rphy means no smp target support (ie aic94xx host) */
1992	if (!rphy)
1993		return sas_smp_host_handler(shost, req, rsp);
1994
1995	type = rphy->identify.device_type;
1996
1997	if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998	    type != SAS_FANOUT_EXPANDER_DEVICE) {
 
1999		printk("%s: can we send a smp request to a device?\n",
2000		       __func__);
2001		return -EINVAL;
2002	}
2003
2004	dev = sas_find_dev_by_rphy(rphy);
2005	if (!dev) {
2006		printk("%s: fail to find a domain_device?\n", __func__);
2007		return -EINVAL;
2008	}
2009
2010	/* do we need to support multiple segments? */
2011	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2014		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2015		return -EINVAL;
 
2016	}
2017
2018	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2019			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2020	if (ret > 0) {
2021		/* positive number is the untransferred residual */
2022		rsp->resid_len = ret;
2023		req->resid_len = 0;
2024		ret = 0;
2025	} else if (ret == 0) {
2026		rsp->resid_len = 0;
2027		req->resid_len = 0;
2028	}
2029
2030	return ret;
 
2031}