Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2011 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include "net_driver.h"
  18#include "bitfield.h"
  19#include "efx.h"
  20#include "nic.h"
  21#include "regs.h"
  22#include "io.h"
  23#include "workarounds.h"
  24
  25/**************************************************************************
  26 *
  27 * Configurable values
  28 *
  29 **************************************************************************
  30 */
  31
  32/* This is set to 16 for a good reason.  In summary, if larger than
  33 * 16, the descriptor cache holds more than a default socket
  34 * buffer's worth of packets (for UDP we can only have at most one
  35 * socket buffer's worth outstanding).  This combined with the fact
  36 * that we only get 1 TX event per descriptor cache means the NIC
  37 * goes idle.
  38 */
  39#define TX_DC_ENTRIES 16
  40#define TX_DC_ENTRIES_ORDER 1
  41
  42#define RX_DC_ENTRIES 64
  43#define RX_DC_ENTRIES_ORDER 3
  44
  45/* If EFX_MAX_INT_ERRORS internal errors occur within
  46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  47 * disable it.
  48 */
  49#define EFX_INT_ERROR_EXPIRE 3600
  50#define EFX_MAX_INT_ERRORS 5
  51
  52/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
  53 */
  54#define EFX_FLUSH_INTERVAL 10
  55#define EFX_FLUSH_POLL_COUNT 100
  56
  57/* Size and alignment of special buffers (4KB) */
  58#define EFX_BUF_SIZE 4096
  59
  60/* Depth of RX flush request fifo */
  61#define EFX_RX_FLUSH_COUNT 4
  62
  63/* Generated event code for efx_generate_test_event() */
  64#define EFX_CHANNEL_MAGIC_TEST(_channel)	\
  65	(0x00010100 + (_channel)->channel)
  66
  67/* Generated event code for efx_generate_fill_event() */
  68#define EFX_CHANNEL_MAGIC_FILL(_channel)	\
  69	(0x00010200 + (_channel)->channel)
  70
  71/**************************************************************************
  72 *
  73 * Solarstorm hardware access
  74 *
  75 **************************************************************************/
  76
  77static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  78				     unsigned int index)
  79{
  80	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  81			value, index);
  82}
  83
  84/* Read the current event from the event queue */
  85static inline efx_qword_t *efx_event(struct efx_channel *channel,
  86				     unsigned int index)
  87{
  88	return ((efx_qword_t *) (channel->eventq.addr)) +
  89		(index & channel->eventq_mask);
  90}
  91
  92/* See if an event is present
  93 *
  94 * We check both the high and low dword of the event for all ones.  We
  95 * wrote all ones when we cleared the event, and no valid event can
  96 * have all ones in either its high or low dwords.  This approach is
  97 * robust against reordering.
  98 *
  99 * Note that using a single 64-bit comparison is incorrect; even
 100 * though the CPU read will be atomic, the DMA write may not be.
 101 */
 102static inline int efx_event_present(efx_qword_t *event)
 103{
 104	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
 105		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
 106}
 107
 108static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
 109				     const efx_oword_t *mask)
 110{
 111	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 112		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 113}
 114
 115int efx_nic_test_registers(struct efx_nic *efx,
 116			   const struct efx_nic_register_test *regs,
 117			   size_t n_regs)
 118{
 119	unsigned address = 0, i, j;
 120	efx_oword_t mask, imask, original, reg, buf;
 121
 122	/* Falcon should be in loopback to isolate the XMAC from the PHY */
 123	WARN_ON(!LOOPBACK_INTERNAL(efx));
 124
 125	for (i = 0; i < n_regs; ++i) {
 126		address = regs[i].address;
 127		mask = imask = regs[i].mask;
 128		EFX_INVERT_OWORD(imask);
 129
 130		efx_reado(efx, &original, address);
 131
 132		/* bit sweep on and off */
 133		for (j = 0; j < 128; j++) {
 134			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 135				continue;
 136
 137			/* Test this testable bit can be set in isolation */
 138			EFX_AND_OWORD(reg, original, mask);
 139			EFX_SET_OWORD32(reg, j, j, 1);
 140
 141			efx_writeo(efx, &reg, address);
 142			efx_reado(efx, &buf, address);
 143
 144			if (efx_masked_compare_oword(&reg, &buf, &mask))
 145				goto fail;
 146
 147			/* Test this testable bit can be cleared in isolation */
 148			EFX_OR_OWORD(reg, original, mask);
 149			EFX_SET_OWORD32(reg, j, j, 0);
 150
 151			efx_writeo(efx, &reg, address);
 152			efx_reado(efx, &buf, address);
 153
 154			if (efx_masked_compare_oword(&reg, &buf, &mask))
 155				goto fail;
 156		}
 157
 158		efx_writeo(efx, &original, address);
 159	}
 160
 161	return 0;
 162
 163fail:
 164	netif_err(efx, hw, efx->net_dev,
 165		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 166		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 167		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 168	return -EIO;
 169}
 170
 171/**************************************************************************
 172 *
 173 * Special buffer handling
 174 * Special buffers are used for event queues and the TX and RX
 175 * descriptor rings.
 176 *
 177 *************************************************************************/
 178
 179/*
 180 * Initialise a special buffer
 181 *
 182 * This will define a buffer (previously allocated via
 183 * efx_alloc_special_buffer()) in the buffer table, allowing
 184 * it to be used for event queues, descriptor rings etc.
 185 */
 186static void
 187efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 188{
 189	efx_qword_t buf_desc;
 190	int index;
 191	dma_addr_t dma_addr;
 192	int i;
 193
 194	EFX_BUG_ON_PARANOID(!buffer->addr);
 195
 196	/* Write buffer descriptors to NIC */
 197	for (i = 0; i < buffer->entries; i++) {
 198		index = buffer->index + i;
 199		dma_addr = buffer->dma_addr + (i * 4096);
 200		netif_dbg(efx, probe, efx->net_dev,
 201			  "mapping special buffer %d at %llx\n",
 202			  index, (unsigned long long)dma_addr);
 203		EFX_POPULATE_QWORD_3(buf_desc,
 204				     FRF_AZ_BUF_ADR_REGION, 0,
 205				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 206				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 207		efx_write_buf_tbl(efx, &buf_desc, index);
 208	}
 209}
 210
 211/* Unmaps a buffer and clears the buffer table entries */
 212static void
 213efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 214{
 215	efx_oword_t buf_tbl_upd;
 216	unsigned int start = buffer->index;
 217	unsigned int end = (buffer->index + buffer->entries - 1);
 218
 219	if (!buffer->entries)
 220		return;
 221
 222	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 223		  buffer->index, buffer->index + buffer->entries - 1);
 224
 225	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 226			     FRF_AZ_BUF_UPD_CMD, 0,
 227			     FRF_AZ_BUF_CLR_CMD, 1,
 228			     FRF_AZ_BUF_CLR_END_ID, end,
 229			     FRF_AZ_BUF_CLR_START_ID, start);
 230	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 231}
 232
 233/*
 234 * Allocate a new special buffer
 235 *
 236 * This allocates memory for a new buffer, clears it and allocates a
 237 * new buffer ID range.  It does not write into the buffer table.
 238 *
 239 * This call will allocate 4KB buffers, since 8KB buffers can't be
 240 * used for event queues and descriptor rings.
 241 */
 242static int efx_alloc_special_buffer(struct efx_nic *efx,
 243				    struct efx_special_buffer *buffer,
 244				    unsigned int len)
 245{
 246	len = ALIGN(len, EFX_BUF_SIZE);
 247
 248	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
 249					  &buffer->dma_addr, GFP_KERNEL);
 250	if (!buffer->addr)
 251		return -ENOMEM;
 252	buffer->len = len;
 253	buffer->entries = len / EFX_BUF_SIZE;
 254	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
 255
 256	/* All zeros is a potentially valid event so memset to 0xff */
 257	memset(buffer->addr, 0xff, len);
 258
 259	/* Select new buffer ID */
 260	buffer->index = efx->next_buffer_table;
 261	efx->next_buffer_table += buffer->entries;
 262
 263	netif_dbg(efx, probe, efx->net_dev,
 264		  "allocating special buffers %d-%d at %llx+%x "
 265		  "(virt %p phys %llx)\n", buffer->index,
 266		  buffer->index + buffer->entries - 1,
 267		  (u64)buffer->dma_addr, len,
 268		  buffer->addr, (u64)virt_to_phys(buffer->addr));
 269
 270	return 0;
 271}
 272
 273static void
 274efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 275{
 276	if (!buffer->addr)
 277		return;
 278
 279	netif_dbg(efx, hw, efx->net_dev,
 280		  "deallocating special buffers %d-%d at %llx+%x "
 281		  "(virt %p phys %llx)\n", buffer->index,
 282		  buffer->index + buffer->entries - 1,
 283		  (u64)buffer->dma_addr, buffer->len,
 284		  buffer->addr, (u64)virt_to_phys(buffer->addr));
 285
 286	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
 287			  buffer->dma_addr);
 288	buffer->addr = NULL;
 289	buffer->entries = 0;
 290}
 291
 292/**************************************************************************
 293 *
 294 * Generic buffer handling
 295 * These buffers are used for interrupt status and MAC stats
 296 *
 297 **************************************************************************/
 298
 299int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 300			 unsigned int len)
 301{
 302	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
 303					    &buffer->dma_addr);
 304	if (!buffer->addr)
 305		return -ENOMEM;
 306	buffer->len = len;
 307	memset(buffer->addr, 0, len);
 308	return 0;
 309}
 310
 311void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 312{
 313	if (buffer->addr) {
 314		pci_free_consistent(efx->pci_dev, buffer->len,
 315				    buffer->addr, buffer->dma_addr);
 316		buffer->addr = NULL;
 317	}
 318}
 319
 320/**************************************************************************
 321 *
 322 * TX path
 323 *
 324 **************************************************************************/
 325
 326/* Returns a pointer to the specified transmit descriptor in the TX
 327 * descriptor queue belonging to the specified channel.
 328 */
 329static inline efx_qword_t *
 330efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
 331{
 332	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
 333}
 334
 335/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 336static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
 337{
 338	unsigned write_ptr;
 339	efx_dword_t reg;
 340
 341	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 342	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 343	efx_writed_page(tx_queue->efx, &reg,
 344			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 345}
 346
 347/* Write pointer and first descriptor for TX descriptor ring */
 348static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
 349				    const efx_qword_t *txd)
 350{
 351	unsigned write_ptr;
 352	efx_oword_t reg;
 353
 354	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 355	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 356
 357	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 358	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 359			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 360	reg.qword[0] = *txd;
 361	efx_writeo_page(tx_queue->efx, &reg,
 362			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 363}
 364
 365static inline bool
 366efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
 367{
 368	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
 369
 370	if (empty_read_count == 0)
 371		return false;
 372
 373	tx_queue->empty_read_count = 0;
 374	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
 375}
 376
 377/* For each entry inserted into the software descriptor ring, create a
 378 * descriptor in the hardware TX descriptor ring (in host memory), and
 379 * write a doorbell.
 380 */
 381void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
 382{
 383
 384	struct efx_tx_buffer *buffer;
 385	efx_qword_t *txd;
 386	unsigned write_ptr;
 387	unsigned old_write_count = tx_queue->write_count;
 388
 389	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 390
 391	do {
 392		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 393		buffer = &tx_queue->buffer[write_ptr];
 394		txd = efx_tx_desc(tx_queue, write_ptr);
 395		++tx_queue->write_count;
 396
 397		/* Create TX descriptor ring entry */
 398		EFX_POPULATE_QWORD_4(*txd,
 399				     FSF_AZ_TX_KER_CONT, buffer->continuation,
 400				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 401				     FSF_AZ_TX_KER_BUF_REGION, 0,
 402				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 403	} while (tx_queue->write_count != tx_queue->insert_count);
 404
 405	wmb(); /* Ensure descriptors are written before they are fetched */
 406
 407	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
 408		txd = efx_tx_desc(tx_queue,
 409				  old_write_count & tx_queue->ptr_mask);
 410		efx_push_tx_desc(tx_queue, txd);
 411		++tx_queue->pushes;
 412	} else {
 413		efx_notify_tx_desc(tx_queue);
 414	}
 415}
 416
 417/* Allocate hardware resources for a TX queue */
 418int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
 419{
 420	struct efx_nic *efx = tx_queue->efx;
 421	unsigned entries;
 422
 423	entries = tx_queue->ptr_mask + 1;
 424	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 425					entries * sizeof(efx_qword_t));
 426}
 427
 428void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
 429{
 430	struct efx_nic *efx = tx_queue->efx;
 431	efx_oword_t reg;
 432
 433	tx_queue->flushed = FLUSH_NONE;
 434
 435	/* Pin TX descriptor ring */
 436	efx_init_special_buffer(efx, &tx_queue->txd);
 437
 438	/* Push TX descriptor ring to card */
 439	EFX_POPULATE_OWORD_10(reg,
 440			      FRF_AZ_TX_DESCQ_EN, 1,
 441			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 442			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 443			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 444			      FRF_AZ_TX_DESCQ_EVQ_ID,
 445			      tx_queue->channel->channel,
 446			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 447			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 448			      FRF_AZ_TX_DESCQ_SIZE,
 449			      __ffs(tx_queue->txd.entries),
 450			      FRF_AZ_TX_DESCQ_TYPE, 0,
 451			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 452
 453	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 454		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 455		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 456		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 457				    !csum);
 458	}
 459
 460	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 461			 tx_queue->queue);
 462
 463	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 464		/* Only 128 bits in this register */
 465		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 466
 467		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 468		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 469			clear_bit_le(tx_queue->queue, (void *)&reg);
 470		else
 471			set_bit_le(tx_queue->queue, (void *)&reg);
 472		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 473	}
 474
 475	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 476		EFX_POPULATE_OWORD_1(reg,
 477				     FRF_BZ_TX_PACE,
 478				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 479				     FFE_BZ_TX_PACE_OFF :
 480				     FFE_BZ_TX_PACE_RESERVED);
 481		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 482				 tx_queue->queue);
 483	}
 484}
 485
 486static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
 487{
 488	struct efx_nic *efx = tx_queue->efx;
 489	efx_oword_t tx_flush_descq;
 490
 491	tx_queue->flushed = FLUSH_PENDING;
 492
 493	/* Post a flush command */
 494	EFX_POPULATE_OWORD_2(tx_flush_descq,
 495			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 496			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 497	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 498}
 499
 500void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
 501{
 502	struct efx_nic *efx = tx_queue->efx;
 503	efx_oword_t tx_desc_ptr;
 504
 505	/* The queue should have been flushed */
 506	WARN_ON(tx_queue->flushed != FLUSH_DONE);
 507
 508	/* Remove TX descriptor ring from card */
 509	EFX_ZERO_OWORD(tx_desc_ptr);
 510	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 511			 tx_queue->queue);
 512
 513	/* Unpin TX descriptor ring */
 514	efx_fini_special_buffer(efx, &tx_queue->txd);
 515}
 516
 517/* Free buffers backing TX queue */
 518void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
 519{
 520	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 521}
 522
 523/**************************************************************************
 524 *
 525 * RX path
 526 *
 527 **************************************************************************/
 528
 529/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 530static inline efx_qword_t *
 531efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
 532{
 533	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
 534}
 535
 536/* This creates an entry in the RX descriptor queue */
 537static inline void
 538efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 539{
 540	struct efx_rx_buffer *rx_buf;
 541	efx_qword_t *rxd;
 542
 543	rxd = efx_rx_desc(rx_queue, index);
 544	rx_buf = efx_rx_buffer(rx_queue, index);
 545	EFX_POPULATE_QWORD_3(*rxd,
 546			     FSF_AZ_RX_KER_BUF_SIZE,
 547			     rx_buf->len -
 548			     rx_queue->efx->type->rx_buffer_padding,
 549			     FSF_AZ_RX_KER_BUF_REGION, 0,
 550			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 551}
 552
 553/* This writes to the RX_DESC_WPTR register for the specified receive
 554 * descriptor ring.
 555 */
 556void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
 557{
 558	struct efx_nic *efx = rx_queue->efx;
 559	efx_dword_t reg;
 560	unsigned write_ptr;
 561
 562	while (rx_queue->notified_count != rx_queue->added_count) {
 563		efx_build_rx_desc(
 564			rx_queue,
 565			rx_queue->notified_count & rx_queue->ptr_mask);
 566		++rx_queue->notified_count;
 567	}
 568
 569	wmb();
 570	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 571	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 572	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 573			efx_rx_queue_index(rx_queue));
 574}
 575
 576int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
 577{
 578	struct efx_nic *efx = rx_queue->efx;
 579	unsigned entries;
 580
 581	entries = rx_queue->ptr_mask + 1;
 582	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 583					entries * sizeof(efx_qword_t));
 584}
 585
 586void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
 587{
 588	efx_oword_t rx_desc_ptr;
 589	struct efx_nic *efx = rx_queue->efx;
 590	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 591	bool iscsi_digest_en = is_b0;
 592
 593	netif_dbg(efx, hw, efx->net_dev,
 594		  "RX queue %d ring in special buffers %d-%d\n",
 595		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 596		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 597
 598	rx_queue->flushed = FLUSH_NONE;
 599
 600	/* Pin RX descriptor ring */
 601	efx_init_special_buffer(efx, &rx_queue->rxd);
 602
 603	/* Push RX descriptor ring to card */
 604	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 605			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 606			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 607			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 608			      FRF_AZ_RX_DESCQ_EVQ_ID,
 609			      efx_rx_queue_channel(rx_queue)->channel,
 610			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 611			      FRF_AZ_RX_DESCQ_LABEL,
 612			      efx_rx_queue_index(rx_queue),
 613			      FRF_AZ_RX_DESCQ_SIZE,
 614			      __ffs(rx_queue->rxd.entries),
 615			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 616			      /* For >=B0 this is scatter so disable */
 617			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
 618			      FRF_AZ_RX_DESCQ_EN, 1);
 619	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 620			 efx_rx_queue_index(rx_queue));
 621}
 622
 623static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
 624{
 625	struct efx_nic *efx = rx_queue->efx;
 626	efx_oword_t rx_flush_descq;
 627
 628	rx_queue->flushed = FLUSH_PENDING;
 629
 630	/* Post a flush command */
 631	EFX_POPULATE_OWORD_2(rx_flush_descq,
 632			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 633			     FRF_AZ_RX_FLUSH_DESCQ,
 634			     efx_rx_queue_index(rx_queue));
 635	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 636}
 637
 638void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
 639{
 640	efx_oword_t rx_desc_ptr;
 641	struct efx_nic *efx = rx_queue->efx;
 642
 643	/* The queue should already have been flushed */
 644	WARN_ON(rx_queue->flushed != FLUSH_DONE);
 645
 646	/* Remove RX descriptor ring from card */
 647	EFX_ZERO_OWORD(rx_desc_ptr);
 648	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 649			 efx_rx_queue_index(rx_queue));
 650
 651	/* Unpin RX descriptor ring */
 652	efx_fini_special_buffer(efx, &rx_queue->rxd);
 653}
 654
 655/* Free buffers backing RX queue */
 656void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
 657{
 658	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 659}
 660
 661/**************************************************************************
 662 *
 663 * Event queue processing
 664 * Event queues are processed by per-channel tasklets.
 665 *
 666 **************************************************************************/
 667
 668/* Update a channel's event queue's read pointer (RPTR) register
 669 *
 670 * This writes the EVQ_RPTR_REG register for the specified channel's
 671 * event queue.
 672 */
 673void efx_nic_eventq_read_ack(struct efx_channel *channel)
 674{
 675	efx_dword_t reg;
 676	struct efx_nic *efx = channel->efx;
 677
 678	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 679			     channel->eventq_read_ptr & channel->eventq_mask);
 680	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
 681			 channel->channel);
 682}
 683
 684/* Use HW to insert a SW defined event */
 685static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
 686{
 687	efx_oword_t drv_ev_reg;
 688
 689	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 690		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 691	drv_ev_reg.u32[0] = event->u32[0];
 692	drv_ev_reg.u32[1] = event->u32[1];
 693	drv_ev_reg.u32[2] = 0;
 694	drv_ev_reg.u32[3] = 0;
 695	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
 696	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
 697}
 698
 699/* Handle a transmit completion event
 700 *
 701 * The NIC batches TX completion events; the message we receive is of
 702 * the form "complete all TX events up to this index".
 703 */
 704static int
 705efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 706{
 707	unsigned int tx_ev_desc_ptr;
 708	unsigned int tx_ev_q_label;
 709	struct efx_tx_queue *tx_queue;
 710	struct efx_nic *efx = channel->efx;
 711	int tx_packets = 0;
 712
 713	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 714		/* Transmit completion */
 715		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 716		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 717		tx_queue = efx_channel_get_tx_queue(
 718			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 719		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 720			      tx_queue->ptr_mask);
 721		channel->irq_mod_score += tx_packets;
 722		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 723	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 724		/* Rewrite the FIFO write pointer */
 725		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 726		tx_queue = efx_channel_get_tx_queue(
 727			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 728
 729		if (efx_dev_registered(efx))
 730			netif_tx_lock(efx->net_dev);
 731		efx_notify_tx_desc(tx_queue);
 732		if (efx_dev_registered(efx))
 733			netif_tx_unlock(efx->net_dev);
 734	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
 735		   EFX_WORKAROUND_10727(efx)) {
 736		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 737	} else {
 738		netif_err(efx, tx_err, efx->net_dev,
 739			  "channel %d unexpected TX event "
 740			  EFX_QWORD_FMT"\n", channel->channel,
 741			  EFX_QWORD_VAL(*event));
 742	}
 743
 744	return tx_packets;
 745}
 746
 747/* Detect errors included in the rx_evt_pkt_ok bit. */
 748static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 749				 const efx_qword_t *event,
 750				 bool *rx_ev_pkt_ok,
 751				 bool *discard)
 752{
 753	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 754	struct efx_nic *efx = rx_queue->efx;
 755	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 756	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 757	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 758	bool rx_ev_other_err, rx_ev_pause_frm;
 759	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 760	unsigned rx_ev_pkt_type;
 761
 762	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 763	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 764	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 765	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 766	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 767						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 768	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 769						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 770	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 771						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 772	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 773	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 774	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 775			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 776	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 777
 778	/* Every error apart from tobe_disc and pause_frm */
 779	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 780			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 781			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 782
 783	/* Count errors that are not in MAC stats.  Ignore expected
 784	 * checksum errors during self-test. */
 785	if (rx_ev_frm_trunc)
 786		++channel->n_rx_frm_trunc;
 787	else if (rx_ev_tobe_disc)
 788		++channel->n_rx_tobe_disc;
 789	else if (!efx->loopback_selftest) {
 790		if (rx_ev_ip_hdr_chksum_err)
 791			++channel->n_rx_ip_hdr_chksum_err;
 792		else if (rx_ev_tcp_udp_chksum_err)
 793			++channel->n_rx_tcp_udp_chksum_err;
 794	}
 795
 796	/* The frame must be discarded if any of these are true. */
 797	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 798		    rx_ev_tobe_disc | rx_ev_pause_frm);
 799
 800	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 801	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 802	 * to a FIFO overflow.
 803	 */
 804#ifdef EFX_ENABLE_DEBUG
 805	if (rx_ev_other_err && net_ratelimit()) {
 806		netif_dbg(efx, rx_err, efx->net_dev,
 807			  " RX queue %d unexpected RX event "
 808			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 809			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 810			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 811			  rx_ev_ip_hdr_chksum_err ?
 812			  " [IP_HDR_CHKSUM_ERR]" : "",
 813			  rx_ev_tcp_udp_chksum_err ?
 814			  " [TCP_UDP_CHKSUM_ERR]" : "",
 815			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 816			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 817			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 818			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 819			  rx_ev_pause_frm ? " [PAUSE]" : "");
 820	}
 821#endif
 822}
 823
 824/* Handle receive events that are not in-order. */
 825static void
 826efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 827{
 828	struct efx_nic *efx = rx_queue->efx;
 829	unsigned expected, dropped;
 830
 831	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 832	dropped = (index - expected) & rx_queue->ptr_mask;
 833	netif_info(efx, rx_err, efx->net_dev,
 834		   "dropped %d events (index=%d expected=%d)\n",
 835		   dropped, index, expected);
 836
 837	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 838			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 839}
 840
 841/* Handle a packet received event
 842 *
 843 * The NIC gives a "discard" flag if it's a unicast packet with the
 844 * wrong destination address
 845 * Also "is multicast" and "matches multicast filter" flags can be used to
 846 * discard non-matching multicast packets.
 847 */
 848static void
 849efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 850{
 851	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 852	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 853	unsigned expected_ptr;
 854	bool rx_ev_pkt_ok, discard = false, checksummed;
 855	struct efx_rx_queue *rx_queue;
 856
 857	/* Basic packet information */
 858	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
 859	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
 860	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 861	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
 862	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
 863	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 864		channel->channel);
 865
 866	rx_queue = efx_channel_get_rx_queue(channel);
 867
 868	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 869	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
 870	if (unlikely(rx_ev_desc_ptr != expected_ptr))
 871		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
 872
 873	if (likely(rx_ev_pkt_ok)) {
 874		/* If packet is marked as OK and packet type is TCP/IP or
 875		 * UDP/IP, then we can rely on the hardware checksum.
 876		 */
 877		checksummed =
 878			rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
 879			rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP;
 880	} else {
 881		efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
 882		checksummed = false;
 883	}
 884
 885	/* Detect multicast packets that didn't match the filter */
 886	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 887	if (rx_ev_mcast_pkt) {
 888		unsigned int rx_ev_mcast_hash_match =
 889			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
 890
 891		if (unlikely(!rx_ev_mcast_hash_match)) {
 892			++channel->n_rx_mcast_mismatch;
 893			discard = true;
 894		}
 895	}
 896
 897	channel->irq_mod_score += 2;
 898
 899	/* Handle received packet */
 900	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
 901		      checksummed, discard);
 902}
 903
 904static void
 905efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
 906{
 907	struct efx_nic *efx = channel->efx;
 908	unsigned code;
 909
 910	code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
 911	if (code == EFX_CHANNEL_MAGIC_TEST(channel))
 912		; /* ignore */
 913	else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
 914		/* The queue must be empty, so we won't receive any rx
 915		 * events, so efx_process_channel() won't refill the
 916		 * queue. Refill it here */
 917		efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
 918	else
 919		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
 920			  "generated event "EFX_QWORD_FMT"\n",
 921			  channel->channel, EFX_QWORD_VAL(*event));
 922}
 923
 924static void
 925efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
 926{
 927	struct efx_nic *efx = channel->efx;
 928	unsigned int ev_sub_code;
 929	unsigned int ev_sub_data;
 930
 931	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
 932	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
 933
 934	switch (ev_sub_code) {
 935	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
 936		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
 937			   channel->channel, ev_sub_data);
 938		break;
 939	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
 940		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
 941			   channel->channel, ev_sub_data);
 942		break;
 943	case FSE_AZ_EVQ_INIT_DONE_EV:
 944		netif_dbg(efx, hw, efx->net_dev,
 945			  "channel %d EVQ %d initialised\n",
 946			  channel->channel, ev_sub_data);
 947		break;
 948	case FSE_AZ_SRM_UPD_DONE_EV:
 949		netif_vdbg(efx, hw, efx->net_dev,
 950			   "channel %d SRAM update done\n", channel->channel);
 951		break;
 952	case FSE_AZ_WAKE_UP_EV:
 953		netif_vdbg(efx, hw, efx->net_dev,
 954			   "channel %d RXQ %d wakeup event\n",
 955			   channel->channel, ev_sub_data);
 956		break;
 957	case FSE_AZ_TIMER_EV:
 958		netif_vdbg(efx, hw, efx->net_dev,
 959			   "channel %d RX queue %d timer expired\n",
 960			   channel->channel, ev_sub_data);
 961		break;
 962	case FSE_AA_RX_RECOVER_EV:
 963		netif_err(efx, rx_err, efx->net_dev,
 964			  "channel %d seen DRIVER RX_RESET event. "
 965			"Resetting.\n", channel->channel);
 966		atomic_inc(&efx->rx_reset);
 967		efx_schedule_reset(efx,
 968				   EFX_WORKAROUND_6555(efx) ?
 969				   RESET_TYPE_RX_RECOVERY :
 970				   RESET_TYPE_DISABLE);
 971		break;
 972	case FSE_BZ_RX_DSC_ERROR_EV:
 973		netif_err(efx, rx_err, efx->net_dev,
 974			  "RX DMA Q %d reports descriptor fetch error."
 975			  " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
 976		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
 977		break;
 978	case FSE_BZ_TX_DSC_ERROR_EV:
 979		netif_err(efx, tx_err, efx->net_dev,
 980			  "TX DMA Q %d reports descriptor fetch error."
 981			  " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
 982		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 983		break;
 984	default:
 985		netif_vdbg(efx, hw, efx->net_dev,
 986			   "channel %d unknown driver event code %d "
 987			   "data %04x\n", channel->channel, ev_sub_code,
 988			   ev_sub_data);
 989		break;
 990	}
 991}
 992
 993int efx_nic_process_eventq(struct efx_channel *channel, int budget)
 994{
 995	struct efx_nic *efx = channel->efx;
 996	unsigned int read_ptr;
 997	efx_qword_t event, *p_event;
 998	int ev_code;
 999	int tx_packets = 0;
1000	int spent = 0;
1001
1002	read_ptr = channel->eventq_read_ptr;
1003
1004	for (;;) {
1005		p_event = efx_event(channel, read_ptr);
1006		event = *p_event;
1007
1008		if (!efx_event_present(&event))
1009			/* End of events */
1010			break;
1011
1012		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1013			   "channel %d event is "EFX_QWORD_FMT"\n",
1014			   channel->channel, EFX_QWORD_VAL(event));
1015
1016		/* Clear this event by marking it all ones */
1017		EFX_SET_QWORD(*p_event);
1018
1019		++read_ptr;
1020
1021		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1022
1023		switch (ev_code) {
1024		case FSE_AZ_EV_CODE_RX_EV:
1025			efx_handle_rx_event(channel, &event);
1026			if (++spent == budget)
1027				goto out;
1028			break;
1029		case FSE_AZ_EV_CODE_TX_EV:
1030			tx_packets += efx_handle_tx_event(channel, &event);
1031			if (tx_packets > efx->txq_entries) {
1032				spent = budget;
1033				goto out;
1034			}
1035			break;
1036		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1037			efx_handle_generated_event(channel, &event);
1038			break;
1039		case FSE_AZ_EV_CODE_DRIVER_EV:
1040			efx_handle_driver_event(channel, &event);
1041			break;
1042		case FSE_CZ_EV_CODE_MCDI_EV:
1043			efx_mcdi_process_event(channel, &event);
1044			break;
1045		case FSE_AZ_EV_CODE_GLOBAL_EV:
1046			if (efx->type->handle_global_event &&
1047			    efx->type->handle_global_event(channel, &event))
1048				break;
1049			/* else fall through */
1050		default:
1051			netif_err(channel->efx, hw, channel->efx->net_dev,
1052				  "channel %d unknown event type %d (data "
1053				  EFX_QWORD_FMT ")\n", channel->channel,
1054				  ev_code, EFX_QWORD_VAL(event));
1055		}
1056	}
1057
1058out:
1059	channel->eventq_read_ptr = read_ptr;
1060	return spent;
1061}
1062
1063/* Check whether an event is present in the eventq at the current
1064 * read pointer.  Only useful for self-test.
1065 */
1066bool efx_nic_event_present(struct efx_channel *channel)
1067{
1068	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1069}
1070
1071/* Allocate buffer table entries for event queue */
1072int efx_nic_probe_eventq(struct efx_channel *channel)
1073{
1074	struct efx_nic *efx = channel->efx;
1075	unsigned entries;
1076
1077	entries = channel->eventq_mask + 1;
1078	return efx_alloc_special_buffer(efx, &channel->eventq,
1079					entries * sizeof(efx_qword_t));
1080}
1081
1082void efx_nic_init_eventq(struct efx_channel *channel)
1083{
1084	efx_oword_t reg;
1085	struct efx_nic *efx = channel->efx;
1086
1087	netif_dbg(efx, hw, efx->net_dev,
1088		  "channel %d event queue in special buffers %d-%d\n",
1089		  channel->channel, channel->eventq.index,
1090		  channel->eventq.index + channel->eventq.entries - 1);
1091
1092	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1093		EFX_POPULATE_OWORD_3(reg,
1094				     FRF_CZ_TIMER_Q_EN, 1,
1095				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1096				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1097		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1098	}
1099
1100	/* Pin event queue buffer */
1101	efx_init_special_buffer(efx, &channel->eventq);
1102
1103	/* Fill event queue with all ones (i.e. empty events) */
1104	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1105
1106	/* Push event queue to card */
1107	EFX_POPULATE_OWORD_3(reg,
1108			     FRF_AZ_EVQ_EN, 1,
1109			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1110			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1111	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1112			 channel->channel);
1113
1114	efx->type->push_irq_moderation(channel);
1115}
1116
1117void efx_nic_fini_eventq(struct efx_channel *channel)
1118{
1119	efx_oword_t reg;
1120	struct efx_nic *efx = channel->efx;
1121
1122	/* Remove event queue from card */
1123	EFX_ZERO_OWORD(reg);
1124	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1125			 channel->channel);
1126	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1127		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1128
1129	/* Unpin event queue */
1130	efx_fini_special_buffer(efx, &channel->eventq);
1131}
1132
1133/* Free buffers backing event queue */
1134void efx_nic_remove_eventq(struct efx_channel *channel)
1135{
1136	efx_free_special_buffer(channel->efx, &channel->eventq);
1137}
1138
1139
1140void efx_nic_generate_test_event(struct efx_channel *channel)
1141{
1142	unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1143	efx_qword_t test_event;
1144
1145	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1146			     FSE_AZ_EV_CODE_DRV_GEN_EV,
1147			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1148	efx_generate_event(channel, &test_event);
1149}
1150
1151void efx_nic_generate_fill_event(struct efx_channel *channel)
1152{
1153	unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1154	efx_qword_t test_event;
1155
1156	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1157			     FSE_AZ_EV_CODE_DRV_GEN_EV,
1158			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1159	efx_generate_event(channel, &test_event);
1160}
1161
1162/**************************************************************************
1163 *
1164 * Flush handling
1165 *
1166 **************************************************************************/
1167
1168
1169static void efx_poll_flush_events(struct efx_nic *efx)
1170{
1171	struct efx_channel *channel = efx_get_channel(efx, 0);
1172	struct efx_tx_queue *tx_queue;
1173	struct efx_rx_queue *rx_queue;
1174	unsigned int read_ptr = channel->eventq_read_ptr;
1175	unsigned int end_ptr = read_ptr + channel->eventq_mask - 1;
1176
1177	do {
1178		efx_qword_t *event = efx_event(channel, read_ptr);
1179		int ev_code, ev_sub_code, ev_queue;
1180		bool ev_failed;
1181
1182		if (!efx_event_present(event))
1183			break;
1184
1185		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1186		ev_sub_code = EFX_QWORD_FIELD(*event,
1187					      FSF_AZ_DRIVER_EV_SUBCODE);
1188		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1189		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1190			ev_queue = EFX_QWORD_FIELD(*event,
1191						   FSF_AZ_DRIVER_EV_SUBDATA);
1192			if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1193				tx_queue = efx_get_tx_queue(
1194					efx, ev_queue / EFX_TXQ_TYPES,
1195					ev_queue % EFX_TXQ_TYPES);
1196				tx_queue->flushed = FLUSH_DONE;
1197			}
1198		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1199			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1200			ev_queue = EFX_QWORD_FIELD(
1201				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1202			ev_failed = EFX_QWORD_FIELD(
1203				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1204			if (ev_queue < efx->n_rx_channels) {
1205				rx_queue = efx_get_rx_queue(efx, ev_queue);
1206				rx_queue->flushed =
1207					ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1208			}
1209		}
1210
1211		/* We're about to destroy the queue anyway, so
1212		 * it's ok to throw away every non-flush event */
1213		EFX_SET_QWORD(*event);
1214
1215		++read_ptr;
1216	} while (read_ptr != end_ptr);
1217
1218	channel->eventq_read_ptr = read_ptr;
1219}
1220
1221/* Handle tx and rx flushes at the same time, since they run in
1222 * parallel in the hardware and there's no reason for us to
1223 * serialise them */
1224int efx_nic_flush_queues(struct efx_nic *efx)
1225{
1226	struct efx_channel *channel;
1227	struct efx_rx_queue *rx_queue;
1228	struct efx_tx_queue *tx_queue;
1229	int i, tx_pending, rx_pending;
1230
1231	/* If necessary prepare the hardware for flushing */
1232	efx->type->prepare_flush(efx);
1233
1234	/* Flush all tx queues in parallel */
1235	efx_for_each_channel(channel, efx) {
1236		efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1237			if (tx_queue->initialised)
1238				efx_flush_tx_queue(tx_queue);
1239		}
1240	}
1241
1242	/* The hardware supports four concurrent rx flushes, each of which may
1243	 * need to be retried if there is an outstanding descriptor fetch */
1244	for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1245		rx_pending = tx_pending = 0;
1246		efx_for_each_channel(channel, efx) {
1247			efx_for_each_channel_rx_queue(rx_queue, channel) {
1248				if (rx_queue->flushed == FLUSH_PENDING)
1249					++rx_pending;
1250			}
1251		}
1252		efx_for_each_channel(channel, efx) {
1253			efx_for_each_channel_rx_queue(rx_queue, channel) {
1254				if (rx_pending == EFX_RX_FLUSH_COUNT)
1255					break;
1256				if (rx_queue->flushed == FLUSH_FAILED ||
1257				    rx_queue->flushed == FLUSH_NONE) {
1258					efx_flush_rx_queue(rx_queue);
1259					++rx_pending;
1260				}
1261			}
1262			efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1263				if (tx_queue->initialised &&
1264				    tx_queue->flushed != FLUSH_DONE)
1265					++tx_pending;
1266			}
1267		}
1268
1269		if (rx_pending == 0 && tx_pending == 0)
1270			return 0;
1271
1272		msleep(EFX_FLUSH_INTERVAL);
1273		efx_poll_flush_events(efx);
1274	}
1275
1276	/* Mark the queues as all flushed. We're going to return failure
1277	 * leading to a reset, or fake up success anyway */
1278	efx_for_each_channel(channel, efx) {
1279		efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1280			if (tx_queue->initialised &&
1281			    tx_queue->flushed != FLUSH_DONE)
1282				netif_err(efx, hw, efx->net_dev,
1283					  "tx queue %d flush command timed out\n",
1284					  tx_queue->queue);
1285			tx_queue->flushed = FLUSH_DONE;
1286		}
1287		efx_for_each_channel_rx_queue(rx_queue, channel) {
1288			if (rx_queue->flushed != FLUSH_DONE)
1289				netif_err(efx, hw, efx->net_dev,
1290					  "rx queue %d flush command timed out\n",
1291					  efx_rx_queue_index(rx_queue));
1292			rx_queue->flushed = FLUSH_DONE;
1293		}
1294	}
1295
1296	return -ETIMEDOUT;
1297}
1298
1299/**************************************************************************
1300 *
1301 * Hardware interrupts
1302 * The hardware interrupt handler does very little work; all the event
1303 * queue processing is carried out by per-channel tasklets.
1304 *
1305 **************************************************************************/
1306
1307/* Enable/disable/generate interrupts */
1308static inline void efx_nic_interrupts(struct efx_nic *efx,
1309				      bool enabled, bool force)
1310{
1311	efx_oword_t int_en_reg_ker;
1312
1313	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1314			     FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1315			     FRF_AZ_KER_INT_KER, force,
1316			     FRF_AZ_DRV_INT_EN_KER, enabled);
1317	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1318}
1319
1320void efx_nic_enable_interrupts(struct efx_nic *efx)
1321{
1322	struct efx_channel *channel;
1323
1324	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1325	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1326
1327	/* Enable interrupts */
1328	efx_nic_interrupts(efx, true, false);
1329
1330	/* Force processing of all the channels to get the EVQ RPTRs up to
1331	   date */
1332	efx_for_each_channel(channel, efx)
1333		efx_schedule_channel(channel);
1334}
1335
1336void efx_nic_disable_interrupts(struct efx_nic *efx)
1337{
1338	/* Disable interrupts */
1339	efx_nic_interrupts(efx, false, false);
1340}
1341
1342/* Generate a test interrupt
1343 * Interrupt must already have been enabled, otherwise nasty things
1344 * may happen.
1345 */
1346void efx_nic_generate_interrupt(struct efx_nic *efx)
1347{
1348	efx_nic_interrupts(efx, true, true);
1349}
1350
1351/* Process a fatal interrupt
1352 * Disable bus mastering ASAP and schedule a reset
1353 */
1354irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1355{
1356	struct falcon_nic_data *nic_data = efx->nic_data;
1357	efx_oword_t *int_ker = efx->irq_status.addr;
1358	efx_oword_t fatal_intr;
1359	int error, mem_perr;
1360
1361	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1362	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1363
1364	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1365		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1366		  EFX_OWORD_VAL(fatal_intr),
1367		  error ? "disabling bus mastering" : "no recognised error");
1368
1369	/* If this is a memory parity error dump which blocks are offending */
1370	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1371		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1372	if (mem_perr) {
1373		efx_oword_t reg;
1374		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1375		netif_err(efx, hw, efx->net_dev,
1376			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1377			  EFX_OWORD_VAL(reg));
1378	}
1379
1380	/* Disable both devices */
1381	pci_clear_master(efx->pci_dev);
1382	if (efx_nic_is_dual_func(efx))
1383		pci_clear_master(nic_data->pci_dev2);
1384	efx_nic_disable_interrupts(efx);
1385
1386	/* Count errors and reset or disable the NIC accordingly */
1387	if (efx->int_error_count == 0 ||
1388	    time_after(jiffies, efx->int_error_expire)) {
1389		efx->int_error_count = 0;
1390		efx->int_error_expire =
1391			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1392	}
1393	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1394		netif_err(efx, hw, efx->net_dev,
1395			  "SYSTEM ERROR - reset scheduled\n");
1396		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1397	} else {
1398		netif_err(efx, hw, efx->net_dev,
1399			  "SYSTEM ERROR - max number of errors seen."
1400			  "NIC will be disabled\n");
1401		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1402	}
1403
1404	return IRQ_HANDLED;
1405}
1406
1407/* Handle a legacy interrupt
1408 * Acknowledges the interrupt and schedule event queue processing.
1409 */
1410static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1411{
1412	struct efx_nic *efx = dev_id;
1413	efx_oword_t *int_ker = efx->irq_status.addr;
1414	irqreturn_t result = IRQ_NONE;
1415	struct efx_channel *channel;
1416	efx_dword_t reg;
1417	u32 queues;
1418	int syserr;
1419
1420	/* Could this be ours?  If interrupts are disabled then the
1421	 * channel state may not be valid.
1422	 */
1423	if (!efx->legacy_irq_enabled)
1424		return result;
1425
1426	/* Read the ISR which also ACKs the interrupts */
1427	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1428	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1429
1430	/* Check to see if we have a serious error condition */
1431	if (queues & (1U << efx->fatal_irq_level)) {
1432		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1433		if (unlikely(syserr))
1434			return efx_nic_fatal_interrupt(efx);
1435	}
1436
1437	if (queues != 0) {
1438		if (EFX_WORKAROUND_15783(efx))
1439			efx->irq_zero_count = 0;
1440
1441		/* Schedule processing of any interrupting queues */
1442		efx_for_each_channel(channel, efx) {
1443			if (queues & 1)
1444				efx_schedule_channel(channel);
1445			queues >>= 1;
1446		}
1447		result = IRQ_HANDLED;
1448
1449	} else if (EFX_WORKAROUND_15783(efx)) {
1450		efx_qword_t *event;
1451
1452		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1453		 * because this might be a shared interrupt. */
1454		if (efx->irq_zero_count++ == 0)
1455			result = IRQ_HANDLED;
1456
1457		/* Ensure we schedule or rearm all event queues */
1458		efx_for_each_channel(channel, efx) {
1459			event = efx_event(channel, channel->eventq_read_ptr);
1460			if (efx_event_present(event))
1461				efx_schedule_channel(channel);
1462			else
1463				efx_nic_eventq_read_ack(channel);
1464		}
1465	}
1466
1467	if (result == IRQ_HANDLED) {
1468		efx->last_irq_cpu = raw_smp_processor_id();
1469		netif_vdbg(efx, intr, efx->net_dev,
1470			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1471			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1472	}
1473
1474	return result;
1475}
1476
1477/* Handle an MSI interrupt
1478 *
1479 * Handle an MSI hardware interrupt.  This routine schedules event
1480 * queue processing.  No interrupt acknowledgement cycle is necessary.
1481 * Also, we never need to check that the interrupt is for us, since
1482 * MSI interrupts cannot be shared.
1483 */
1484static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1485{
1486	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1487	struct efx_nic *efx = channel->efx;
1488	efx_oword_t *int_ker = efx->irq_status.addr;
1489	int syserr;
1490
1491	efx->last_irq_cpu = raw_smp_processor_id();
1492	netif_vdbg(efx, intr, efx->net_dev,
1493		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1494		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1495
1496	/* Check to see if we have a serious error condition */
1497	if (channel->channel == efx->fatal_irq_level) {
1498		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1499		if (unlikely(syserr))
1500			return efx_nic_fatal_interrupt(efx);
1501	}
1502
1503	/* Schedule processing of the channel */
1504	efx_schedule_channel(channel);
1505
1506	return IRQ_HANDLED;
1507}
1508
1509
1510/* Setup RSS indirection table.
1511 * This maps from the hash value of the packet to RXQ
1512 */
1513void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1514{
1515	size_t i = 0;
1516	efx_dword_t dword;
1517
1518	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1519		return;
1520
1521	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1522		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1523
1524	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1525		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1526				     efx->rx_indir_table[i]);
1527		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1528	}
1529}
1530
1531/* Hook interrupt handler(s)
1532 * Try MSI and then legacy interrupts.
1533 */
1534int efx_nic_init_interrupt(struct efx_nic *efx)
1535{
1536	struct efx_channel *channel;
1537	int rc;
1538
1539	if (!EFX_INT_MODE_USE_MSI(efx)) {
1540		irq_handler_t handler;
1541		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1542			handler = efx_legacy_interrupt;
1543		else
1544			handler = falcon_legacy_interrupt_a1;
1545
1546		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1547				 efx->name, efx);
1548		if (rc) {
1549			netif_err(efx, drv, efx->net_dev,
1550				  "failed to hook legacy IRQ %d\n",
1551				  efx->pci_dev->irq);
1552			goto fail1;
1553		}
1554		return 0;
1555	}
1556
1557	/* Hook MSI or MSI-X interrupt */
1558	efx_for_each_channel(channel, efx) {
1559		rc = request_irq(channel->irq, efx_msi_interrupt,
1560				 IRQF_PROBE_SHARED, /* Not shared */
1561				 efx->channel_name[channel->channel],
1562				 &efx->channel[channel->channel]);
1563		if (rc) {
1564			netif_err(efx, drv, efx->net_dev,
1565				  "failed to hook IRQ %d\n", channel->irq);
1566			goto fail2;
1567		}
1568	}
1569
1570	return 0;
1571
1572 fail2:
1573	efx_for_each_channel(channel, efx)
1574		free_irq(channel->irq, &efx->channel[channel->channel]);
1575 fail1:
1576	return rc;
1577}
1578
1579void efx_nic_fini_interrupt(struct efx_nic *efx)
1580{
1581	struct efx_channel *channel;
1582	efx_oword_t reg;
1583
1584	/* Disable MSI/MSI-X interrupts */
1585	efx_for_each_channel(channel, efx) {
1586		if (channel->irq)
1587			free_irq(channel->irq, &efx->channel[channel->channel]);
1588	}
1589
1590	/* ACK legacy interrupt */
1591	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1592		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1593	else
1594		falcon_irq_ack_a1(efx);
1595
1596	/* Disable legacy interrupt */
1597	if (efx->legacy_irq)
1598		free_irq(efx->legacy_irq, efx);
1599}
1600
1601u32 efx_nic_fpga_ver(struct efx_nic *efx)
1602{
1603	efx_oword_t altera_build;
1604	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1605	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1606}
1607
1608void efx_nic_init_common(struct efx_nic *efx)
1609{
1610	efx_oword_t temp;
1611
1612	/* Set positions of descriptor caches in SRAM. */
1613	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1614			     efx->type->tx_dc_base / 8);
1615	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1616	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1617			     efx->type->rx_dc_base / 8);
1618	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1619
1620	/* Set TX descriptor cache size. */
1621	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1622	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1623	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1624
1625	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1626	 * this allows most efficient prefetching.
1627	 */
1628	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1629	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1630	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1631	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1632	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1633
1634	/* Program INT_KER address */
1635	EFX_POPULATE_OWORD_2(temp,
1636			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1637			     EFX_INT_MODE_USE_MSI(efx),
1638			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1639	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1640
1641	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1642		/* Use an interrupt level unused by event queues */
1643		efx->fatal_irq_level = 0x1f;
1644	else
1645		/* Use a valid MSI-X vector */
1646		efx->fatal_irq_level = 0;
1647
1648	/* Enable all the genuinely fatal interrupts.  (They are still
1649	 * masked by the overall interrupt mask, controlled by
1650	 * falcon_interrupts()).
1651	 *
1652	 * Note: All other fatal interrupts are enabled
1653	 */
1654	EFX_POPULATE_OWORD_3(temp,
1655			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1656			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1657			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1658	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1659		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1660	EFX_INVERT_OWORD(temp);
1661	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1662
1663	efx_nic_push_rx_indir_table(efx);
1664
1665	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1666	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1667	 */
1668	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1669	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1670	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1671	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1672	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1673	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1674	/* Enable SW_EV to inherit in char driver - assume harmless here */
1675	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1676	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1677	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1678	/* Disable hardware watchdog which can misfire */
1679	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1680	/* Squash TX of packets of 16 bytes or less */
1681	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1682		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1683	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1684
1685	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1686		EFX_POPULATE_OWORD_4(temp,
1687				     /* Default values */
1688				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1689				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1690				     FRF_BZ_TX_PACE_FB_BASE, 0,
1691				     /* Allow large pace values in the
1692				      * fast bin. */
1693				     FRF_BZ_TX_PACE_BIN_TH,
1694				     FFE_BZ_TX_PACE_RESERVED);
1695		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1696	}
1697}
1698
1699/* Register dump */
1700
1701#define REGISTER_REVISION_A	1
1702#define REGISTER_REVISION_B	2
1703#define REGISTER_REVISION_C	3
1704#define REGISTER_REVISION_Z	3	/* latest revision */
1705
1706struct efx_nic_reg {
1707	u32 offset:24;
1708	u32 min_revision:2, max_revision:2;
1709};
1710
1711#define REGISTER(name, min_rev, max_rev) {				\
1712	FR_ ## min_rev ## max_rev ## _ ## name,				\
1713	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1714}
1715#define REGISTER_AA(name) REGISTER(name, A, A)
1716#define REGISTER_AB(name) REGISTER(name, A, B)
1717#define REGISTER_AZ(name) REGISTER(name, A, Z)
1718#define REGISTER_BB(name) REGISTER(name, B, B)
1719#define REGISTER_BZ(name) REGISTER(name, B, Z)
1720#define REGISTER_CZ(name) REGISTER(name, C, Z)
1721
1722static const struct efx_nic_reg efx_nic_regs[] = {
1723	REGISTER_AZ(ADR_REGION),
1724	REGISTER_AZ(INT_EN_KER),
1725	REGISTER_BZ(INT_EN_CHAR),
1726	REGISTER_AZ(INT_ADR_KER),
1727	REGISTER_BZ(INT_ADR_CHAR),
1728	/* INT_ACK_KER is WO */
1729	/* INT_ISR0 is RC */
1730	REGISTER_AZ(HW_INIT),
1731	REGISTER_CZ(USR_EV_CFG),
1732	REGISTER_AB(EE_SPI_HCMD),
1733	REGISTER_AB(EE_SPI_HADR),
1734	REGISTER_AB(EE_SPI_HDATA),
1735	REGISTER_AB(EE_BASE_PAGE),
1736	REGISTER_AB(EE_VPD_CFG0),
1737	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1738	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1739	/* PCIE_CORE_INDIRECT is indirect */
1740	REGISTER_AB(NIC_STAT),
1741	REGISTER_AB(GPIO_CTL),
1742	REGISTER_AB(GLB_CTL),
1743	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1744	REGISTER_BZ(DP_CTRL),
1745	REGISTER_AZ(MEM_STAT),
1746	REGISTER_AZ(CS_DEBUG),
1747	REGISTER_AZ(ALTERA_BUILD),
1748	REGISTER_AZ(CSR_SPARE),
1749	REGISTER_AB(PCIE_SD_CTL0123),
1750	REGISTER_AB(PCIE_SD_CTL45),
1751	REGISTER_AB(PCIE_PCS_CTL_STAT),
1752	/* DEBUG_DATA_OUT is not used */
1753	/* DRV_EV is WO */
1754	REGISTER_AZ(EVQ_CTL),
1755	REGISTER_AZ(EVQ_CNT1),
1756	REGISTER_AZ(EVQ_CNT2),
1757	REGISTER_AZ(BUF_TBL_CFG),
1758	REGISTER_AZ(SRM_RX_DC_CFG),
1759	REGISTER_AZ(SRM_TX_DC_CFG),
1760	REGISTER_AZ(SRM_CFG),
1761	/* BUF_TBL_UPD is WO */
1762	REGISTER_AZ(SRM_UPD_EVQ),
1763	REGISTER_AZ(SRAM_PARITY),
1764	REGISTER_AZ(RX_CFG),
1765	REGISTER_BZ(RX_FILTER_CTL),
1766	/* RX_FLUSH_DESCQ is WO */
1767	REGISTER_AZ(RX_DC_CFG),
1768	REGISTER_AZ(RX_DC_PF_WM),
1769	REGISTER_BZ(RX_RSS_TKEY),
1770	/* RX_NODESC_DROP is RC */
1771	REGISTER_AA(RX_SELF_RST),
1772	/* RX_DEBUG, RX_PUSH_DROP are not used */
1773	REGISTER_CZ(RX_RSS_IPV6_REG1),
1774	REGISTER_CZ(RX_RSS_IPV6_REG2),
1775	REGISTER_CZ(RX_RSS_IPV6_REG3),
1776	/* TX_FLUSH_DESCQ is WO */
1777	REGISTER_AZ(TX_DC_CFG),
1778	REGISTER_AA(TX_CHKSM_CFG),
1779	REGISTER_AZ(TX_CFG),
1780	/* TX_PUSH_DROP is not used */
1781	REGISTER_AZ(TX_RESERVED),
1782	REGISTER_BZ(TX_PACE),
1783	/* TX_PACE_DROP_QID is RC */
1784	REGISTER_BB(TX_VLAN),
1785	REGISTER_BZ(TX_IPFIL_PORTEN),
1786	REGISTER_AB(MD_TXD),
1787	REGISTER_AB(MD_RXD),
1788	REGISTER_AB(MD_CS),
1789	REGISTER_AB(MD_PHY_ADR),
1790	REGISTER_AB(MD_ID),
1791	/* MD_STAT is RC */
1792	REGISTER_AB(MAC_STAT_DMA),
1793	REGISTER_AB(MAC_CTRL),
1794	REGISTER_BB(GEN_MODE),
1795	REGISTER_AB(MAC_MC_HASH_REG0),
1796	REGISTER_AB(MAC_MC_HASH_REG1),
1797	REGISTER_AB(GM_CFG1),
1798	REGISTER_AB(GM_CFG2),
1799	/* GM_IPG and GM_HD are not used */
1800	REGISTER_AB(GM_MAX_FLEN),
1801	/* GM_TEST is not used */
1802	REGISTER_AB(GM_ADR1),
1803	REGISTER_AB(GM_ADR2),
1804	REGISTER_AB(GMF_CFG0),
1805	REGISTER_AB(GMF_CFG1),
1806	REGISTER_AB(GMF_CFG2),
1807	REGISTER_AB(GMF_CFG3),
1808	REGISTER_AB(GMF_CFG4),
1809	REGISTER_AB(GMF_CFG5),
1810	REGISTER_BB(TX_SRC_MAC_CTL),
1811	REGISTER_AB(XM_ADR_LO),
1812	REGISTER_AB(XM_ADR_HI),
1813	REGISTER_AB(XM_GLB_CFG),
1814	REGISTER_AB(XM_TX_CFG),
1815	REGISTER_AB(XM_RX_CFG),
1816	REGISTER_AB(XM_MGT_INT_MASK),
1817	REGISTER_AB(XM_FC),
1818	REGISTER_AB(XM_PAUSE_TIME),
1819	REGISTER_AB(XM_TX_PARAM),
1820	REGISTER_AB(XM_RX_PARAM),
1821	/* XM_MGT_INT_MSK (note no 'A') is RC */
1822	REGISTER_AB(XX_PWR_RST),
1823	REGISTER_AB(XX_SD_CTL),
1824	REGISTER_AB(XX_TXDRV_CTL),
1825	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1826	/* XX_CORE_STAT is partly RC */
1827};
1828
1829struct efx_nic_reg_table {
1830	u32 offset:24;
1831	u32 min_revision:2, max_revision:2;
1832	u32 step:6, rows:21;
1833};
1834
1835#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1836	offset,								\
1837	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1838	step, rows							\
1839}
1840#define REGISTER_TABLE(name, min_rev, max_rev) 				\
1841	REGISTER_TABLE_DIMENSIONS(					\
1842		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1843		min_rev, max_rev,					\
1844		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1845		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1846#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1847#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1848#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1849#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1850#define REGISTER_TABLE_BB_CZ(name)					\
1851	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1852				  FR_BZ_ ## name ## _STEP,		\
1853				  FR_BB_ ## name ## _ROWS),		\
1854	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1855				  FR_BZ_ ## name ## _STEP,		\
1856				  FR_CZ_ ## name ## _ROWS)
1857#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1858
1859static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1860	/* DRIVER is not used */
1861	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1862	REGISTER_TABLE_BB(TX_IPFIL_TBL),
1863	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1864	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1865	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1866	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1867	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1868	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1869	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1870	/* We can't reasonably read all of the buffer table (up to 8MB!).
1871	 * However this driver will only use a few entries.  Reading
1872	 * 1K entries allows for some expansion of queue count and
1873	 * size before we need to change the version. */
1874	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1875				  A, A, 8, 1024),
1876	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1877				  B, Z, 8, 1024),
1878	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1879	REGISTER_TABLE_BB_CZ(TIMER_TBL),
1880	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1881	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1882	/* TX_FILTER_TBL0 is huge and not used by this driver */
1883	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1884	REGISTER_TABLE_CZ(MC_TREG_SMEM),
1885	/* MSIX_PBA_TABLE is not mapped */
1886	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1887	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1888};
1889
1890size_t efx_nic_get_regs_len(struct efx_nic *efx)
1891{
1892	const struct efx_nic_reg *reg;
1893	const struct efx_nic_reg_table *table;
1894	size_t len = 0;
1895
1896	for (reg = efx_nic_regs;
1897	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1898	     reg++)
1899		if (efx->type->revision >= reg->min_revision &&
1900		    efx->type->revision <= reg->max_revision)
1901			len += sizeof(efx_oword_t);
1902
1903	for (table = efx_nic_reg_tables;
1904	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1905	     table++)
1906		if (efx->type->revision >= table->min_revision &&
1907		    efx->type->revision <= table->max_revision)
1908			len += table->rows * min_t(size_t, table->step, 16);
1909
1910	return len;
1911}
1912
1913void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1914{
1915	const struct efx_nic_reg *reg;
1916	const struct efx_nic_reg_table *table;
1917
1918	for (reg = efx_nic_regs;
1919	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1920	     reg++) {
1921		if (efx->type->revision >= reg->min_revision &&
1922		    efx->type->revision <= reg->max_revision) {
1923			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1924			buf += sizeof(efx_oword_t);
1925		}
1926	}
1927
1928	for (table = efx_nic_reg_tables;
1929	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1930	     table++) {
1931		size_t size, i;
1932
1933		if (!(efx->type->revision >= table->min_revision &&
1934		      efx->type->revision <= table->max_revision))
1935			continue;
1936
1937		size = min_t(size_t, table->step, 16);
1938
1939		for (i = 0; i < table->rows; i++) {
1940			switch (table->step) {
1941			case 4: /* 32-bit register or SRAM */
1942				efx_readd_table(efx, buf, table->offset, i);
1943				break;
1944			case 8: /* 64-bit SRAM */
1945				efx_sram_readq(efx,
1946					       efx->membase + table->offset,
1947					       buf, i);
1948				break;
1949			case 16: /* 128-bit register */
1950				efx_reado_table(efx, buf, table->offset, i);
1951				break;
1952			case 32: /* 128-bit register, interleaved */
1953				efx_reado_table(efx, buf, table->offset, 2 * i);
1954				break;
1955			default:
1956				WARN_ON(1);
1957				return;
1958			}
1959			buf += size;
1960		}
1961	}
1962}