Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18 *
  19 *
  20 * This driver is designed for the Broadcom SiByte SOC built-in
  21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  22 *
  23 * Updated to the driver model and the PHY abstraction layer
  24 * by Maciej W. Rozycki.
  25 */
  26
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/string.h>
  31#include <linux/timer.h>
  32#include <linux/errno.h>
  33#include <linux/ioport.h>
  34#include <linux/slab.h>
  35#include <linux/interrupt.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/skbuff.h>
  39#include <linux/init.h>
  40#include <linux/bitops.h>
  41#include <linux/err.h>
  42#include <linux/ethtool.h>
  43#include <linux/mii.h>
  44#include <linux/phy.h>
  45#include <linux/platform_device.h>
  46#include <linux/prefetch.h>
  47
  48#include <asm/cache.h>
  49#include <asm/io.h>
  50#include <asm/processor.h>	/* Processor type for cache alignment. */
  51
  52/* Operational parameters that usually are not changed. */
  53
  54#define CONFIG_SBMAC_COALESCE
  55
  56/* Time in jiffies before concluding the transmitter is hung. */
  57#define TX_TIMEOUT  (2*HZ)
  58
  59
  60MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  61MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  62
  63/* A few user-configurable values which may be modified when a driver
  64   module is loaded. */
  65
  66/* 1 normal messages, 0 quiet .. 7 verbose. */
  67static int debug = 1;
  68module_param(debug, int, S_IRUGO);
  69MODULE_PARM_DESC(debug, "Debug messages");
  70
  71#ifdef CONFIG_SBMAC_COALESCE
  72static int int_pktcnt_tx = 255;
  73module_param(int_pktcnt_tx, int, S_IRUGO);
  74MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  75
  76static int int_timeout_tx = 255;
  77module_param(int_timeout_tx, int, S_IRUGO);
  78MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  79
  80static int int_pktcnt_rx = 64;
  81module_param(int_pktcnt_rx, int, S_IRUGO);
  82MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  83
  84static int int_timeout_rx = 64;
  85module_param(int_timeout_rx, int, S_IRUGO);
  86MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  87#endif
  88
  89#include <asm/sibyte/board.h>
  90#include <asm/sibyte/sb1250.h>
  91#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  92#include <asm/sibyte/bcm1480_regs.h>
  93#include <asm/sibyte/bcm1480_int.h>
  94#define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
  95#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  96#include <asm/sibyte/sb1250_regs.h>
  97#include <asm/sibyte/sb1250_int.h>
  98#else
  99#error invalid SiByte MAC configuration
 100#endif
 101#include <asm/sibyte/sb1250_scd.h>
 102#include <asm/sibyte/sb1250_mac.h>
 103#include <asm/sibyte/sb1250_dma.h>
 104
 105#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 106#define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
 107#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 108#define UNIT_INT(n)		(K_INT_MAC_0 + (n))
 109#else
 110#error invalid SiByte MAC configuration
 111#endif
 112
 113#ifdef K_INT_PHY
 114#define SBMAC_PHY_INT			K_INT_PHY
 115#else
 116#define SBMAC_PHY_INT			PHY_POLL
 117#endif
 118
 119/**********************************************************************
 120 *  Simple types
 121 ********************************************************************* */
 122
 123enum sbmac_speed {
 124	sbmac_speed_none = 0,
 125	sbmac_speed_10 = SPEED_10,
 126	sbmac_speed_100 = SPEED_100,
 127	sbmac_speed_1000 = SPEED_1000,
 128};
 129
 130enum sbmac_duplex {
 131	sbmac_duplex_none = -1,
 132	sbmac_duplex_half = DUPLEX_HALF,
 133	sbmac_duplex_full = DUPLEX_FULL,
 134};
 135
 136enum sbmac_fc {
 137	sbmac_fc_none,
 138	sbmac_fc_disabled,
 139	sbmac_fc_frame,
 140	sbmac_fc_collision,
 141	sbmac_fc_carrier,
 142};
 143
 144enum sbmac_state {
 145	sbmac_state_uninit,
 146	sbmac_state_off,
 147	sbmac_state_on,
 148	sbmac_state_broken,
 149};
 150
 151
 152/**********************************************************************
 153 *  Macros
 154 ********************************************************************* */
 155
 156
 157#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 158			  (d)->sbdma_dscrtable : (d)->f+1)
 159
 160
 161#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 162
 163#define SBMAC_MAX_TXDESCR	256
 164#define SBMAC_MAX_RXDESCR	256
 165
 166#define ETHER_ADDR_LEN		6
 167#define ENET_PACKET_SIZE	1518
 168/*#define ENET_PACKET_SIZE	9216 */
 169
 170/**********************************************************************
 171 *  DMA Descriptor structure
 172 ********************************************************************* */
 173
 174struct sbdmadscr {
 175	uint64_t  dscr_a;
 176	uint64_t  dscr_b;
 177};
 178
 179/**********************************************************************
 180 *  DMA Controller structure
 181 ********************************************************************* */
 182
 183struct sbmacdma {
 184
 185	/*
 186	 * This stuff is used to identify the channel and the registers
 187	 * associated with it.
 188	 */
 189	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
 190						   MAC */
 191	int			sbdma_channel;	/* channel number */
 192	int			sbdma_txdir;	/* direction (1=transmit) */
 193	int			sbdma_maxdescr;	/* total # of descriptors
 194						   in ring */
 195#ifdef CONFIG_SBMAC_COALESCE
 196	int			sbdma_int_pktcnt;
 197						/* # descriptors rx/tx
 198						   before interrupt */
 199	int			sbdma_int_timeout;
 200						/* # usec rx/tx interrupt */
 201#endif
 202	void __iomem		*sbdma_config0;	/* DMA config register 0 */
 203	void __iomem		*sbdma_config1;	/* DMA config register 1 */
 204	void __iomem		*sbdma_dscrbase;
 205						/* descriptor base address */
 206	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
 207	void __iomem		*sbdma_curdscr;	/* current descriptor
 208						   address */
 209	void __iomem		*sbdma_oodpktlost;
 210						/* pkt drop (rx only) */
 211
 212	/*
 213	 * This stuff is for maintenance of the ring
 214	 */
 215	void			*sbdma_dscrtable_unaligned;
 216	struct sbdmadscr	*sbdma_dscrtable;
 217						/* base of descriptor table */
 218	struct sbdmadscr	*sbdma_dscrtable_end;
 219						/* end of descriptor table */
 220	struct sk_buff		**sbdma_ctxtable;
 221						/* context table, one
 222						   per descr */
 223	dma_addr_t		sbdma_dscrtable_phys;
 224						/* and also the phys addr */
 225	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
 226	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
 227						   to remove */
 228};
 229
 230
 231/**********************************************************************
 232 *  Ethernet softc structure
 233 ********************************************************************* */
 234
 235struct sbmac_softc {
 236
 237	/*
 238	 * Linux-specific things
 239	 */
 240	struct net_device	*sbm_dev;	/* pointer to linux device */
 241	struct napi_struct	napi;
 242	struct phy_device	*phy_dev;	/* the associated PHY device */
 243	struct mii_bus		*mii_bus;	/* the MII bus */
 244	int			phy_irq[PHY_MAX_ADDR];
 245	spinlock_t		sbm_lock;	/* spin lock */
 246	int			sbm_devflags;	/* current device flags */
 247
 248	/*
 249	 * Controller-specific things
 250	 */
 251	void __iomem		*sbm_base;	/* MAC's base address */
 252	enum sbmac_state	sbm_state;	/* current state */
 253
 254	void __iomem		*sbm_macenable;	/* MAC Enable Register */
 255	void __iomem		*sbm_maccfg;	/* MAC Config Register */
 256	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
 257	void __iomem		*sbm_framecfg;	/* Frame Config Register */
 258	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
 259	void __iomem		*sbm_isr;	/* Interrupt Status Register */
 260	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
 261	void __iomem		*sbm_mdio;	/* MDIO Register */
 262
 263	enum sbmac_speed	sbm_speed;	/* current speed */
 264	enum sbmac_duplex	sbm_duplex;	/* current duplex */
 265	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
 266	int			sbm_pause;	/* current pause setting */
 267	int			sbm_link;	/* current link state */
 268
 269	unsigned char		sbm_hwaddr[ETHER_ADDR_LEN];
 270
 271	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
 272	struct sbmacdma		sbm_rxdma;
 273	int			rx_hw_checksum;
 274	int			sbe_idx;
 275};
 276
 277
 278/**********************************************************************
 279 *  Externs
 280 ********************************************************************* */
 281
 282/**********************************************************************
 283 *  Prototypes
 284 ********************************************************************* */
 285
 286static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 287			  int txrx, int maxdescr);
 288static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 289static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 290			       struct sk_buff *m);
 291static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 292static void sbdma_emptyring(struct sbmacdma *d);
 293static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 294static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 295			    int work_to_do, int poll);
 296static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 297			     int poll);
 298static int sbmac_initctx(struct sbmac_softc *s);
 299static void sbmac_channel_start(struct sbmac_softc *s);
 300static void sbmac_channel_stop(struct sbmac_softc *s);
 301static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 302						enum sbmac_state);
 303static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 304static uint64_t sbmac_addr2reg(unsigned char *ptr);
 305static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 306static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 307static void sbmac_setmulti(struct sbmac_softc *sc);
 308static int sbmac_init(struct platform_device *pldev, long long base);
 309static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 310static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 311			    enum sbmac_fc fc);
 312
 313static int sbmac_open(struct net_device *dev);
 314static void sbmac_tx_timeout (struct net_device *dev);
 315static void sbmac_set_rx_mode(struct net_device *dev);
 316static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 317static int sbmac_close(struct net_device *dev);
 318static int sbmac_poll(struct napi_struct *napi, int budget);
 319
 320static void sbmac_mii_poll(struct net_device *dev);
 321static int sbmac_mii_probe(struct net_device *dev);
 322
 323static void sbmac_mii_sync(void __iomem *sbm_mdio);
 324static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 325			       int bitcnt);
 326static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 327static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 328			   u16 val);
 329
 330
 331/**********************************************************************
 332 *  Globals
 333 ********************************************************************* */
 334
 335static char sbmac_string[] = "sb1250-mac";
 336
 337static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 338
 339
 340/**********************************************************************
 341 *  MDIO constants
 342 ********************************************************************* */
 343
 344#define	MII_COMMAND_START	0x01
 345#define	MII_COMMAND_READ	0x02
 346#define	MII_COMMAND_WRITE	0x01
 347#define	MII_COMMAND_ACK		0x02
 348
 349#define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
 350
 351#define ENABLE 		1
 352#define DISABLE		0
 353
 354/**********************************************************************
 355 *  SBMAC_MII_SYNC(sbm_mdio)
 356 *
 357 *  Synchronize with the MII - send a pattern of bits to the MII
 358 *  that will guarantee that it is ready to accept a command.
 359 *
 360 *  Input parameters:
 361 *  	   sbm_mdio - address of the MAC's MDIO register
 362 *
 363 *  Return value:
 364 *  	   nothing
 365 ********************************************************************* */
 366
 367static void sbmac_mii_sync(void __iomem *sbm_mdio)
 368{
 369	int cnt;
 370	uint64_t bits;
 371	int mac_mdio_genc;
 372
 373	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 374
 375	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 376
 377	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 378
 379	for (cnt = 0; cnt < 32; cnt++) {
 380		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 381		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 382	}
 383}
 384
 385/**********************************************************************
 386 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 387 *
 388 *  Send some bits to the MII.  The bits to be sent are right-
 389 *  justified in the 'data' parameter.
 390 *
 391 *  Input parameters:
 392 *  	   sbm_mdio - address of the MAC's MDIO register
 393 *  	   data     - data to send
 394 *  	   bitcnt   - number of bits to send
 395 ********************************************************************* */
 396
 397static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 398			       int bitcnt)
 399{
 400	int i;
 401	uint64_t bits;
 402	unsigned int curmask;
 403	int mac_mdio_genc;
 404
 405	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 406
 407	bits = M_MAC_MDIO_DIR_OUTPUT;
 408	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 409
 410	curmask = 1 << (bitcnt - 1);
 411
 412	for (i = 0; i < bitcnt; i++) {
 413		if (data & curmask)
 414			bits |= M_MAC_MDIO_OUT;
 415		else bits &= ~M_MAC_MDIO_OUT;
 416		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 417		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 418		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 419		curmask >>= 1;
 420	}
 421}
 422
 423
 424
 425/**********************************************************************
 426 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 427 *  Read a PHY register.
 428 *
 429 *  Input parameters:
 430 *  	   bus     - MDIO bus handle
 431 *  	   phyaddr - PHY's address
 432 *  	   regnum  - index of register to read
 433 *
 434 *  Return value:
 435 *  	   value read, or 0xffff if an error occurred.
 436 ********************************************************************* */
 437
 438static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 439{
 440	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 441	void __iomem *sbm_mdio = sc->sbm_mdio;
 442	int idx;
 443	int error;
 444	int regval;
 445	int mac_mdio_genc;
 446
 447	/*
 448	 * Synchronize ourselves so that the PHY knows the next
 449	 * thing coming down is a command
 450	 */
 451	sbmac_mii_sync(sbm_mdio);
 452
 453	/*
 454	 * Send the data to the PHY.  The sequence is
 455	 * a "start" command (2 bits)
 456	 * a "read" command (2 bits)
 457	 * the PHY addr (5 bits)
 458	 * the register index (5 bits)
 459	 */
 460	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 461	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 462	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 463	sbmac_mii_senddata(sbm_mdio, regidx, 5);
 464
 465	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 466
 467	/*
 468	 * Switch the port around without a clock transition.
 469	 */
 470	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 471
 472	/*
 473	 * Send out a clock pulse to signal we want the status
 474	 */
 475	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 476		     sbm_mdio);
 477	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 478
 479	/*
 480	 * If an error occurred, the PHY will signal '1' back
 481	 */
 482	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 483
 484	/*
 485	 * Issue an 'idle' clock pulse, but keep the direction
 486	 * the same.
 487	 */
 488	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 489		     sbm_mdio);
 490	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 491
 492	regval = 0;
 493
 494	for (idx = 0; idx < 16; idx++) {
 495		regval <<= 1;
 496
 497		if (error == 0) {
 498			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 499				regval |= 1;
 500		}
 501
 502		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 503			     sbm_mdio);
 504		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 505	}
 506
 507	/* Switch back to output */
 508	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 509
 510	if (error == 0)
 511		return regval;
 512	return 0xffff;
 513}
 514
 515
 516/**********************************************************************
 517 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 518 *
 519 *  Write a value to a PHY register.
 520 *
 521 *  Input parameters:
 522 *  	   bus     - MDIO bus handle
 523 *  	   phyaddr - PHY to use
 524 *  	   regidx  - register within the PHY
 525 *  	   regval  - data to write to register
 526 *
 527 *  Return value:
 528 *  	   0 for success
 529 ********************************************************************* */
 530
 531static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 532			   u16 regval)
 533{
 534	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 535	void __iomem *sbm_mdio = sc->sbm_mdio;
 536	int mac_mdio_genc;
 537
 538	sbmac_mii_sync(sbm_mdio);
 539
 540	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 541	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 542	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 543	sbmac_mii_senddata(sbm_mdio, regidx, 5);
 544	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 545	sbmac_mii_senddata(sbm_mdio, regval, 16);
 546
 547	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 548
 549	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 550
 551	return 0;
 552}
 553
 554
 555
 556/**********************************************************************
 557 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 558 *
 559 *  Initialize a DMA channel context.  Since there are potentially
 560 *  eight DMA channels per MAC, it's nice to do this in a standard
 561 *  way.
 562 *
 563 *  Input parameters:
 564 *  	   d - struct sbmacdma (DMA channel context)
 565 *  	   s - struct sbmac_softc (pointer to a MAC)
 566 *  	   chan - channel number (0..1 right now)
 567 *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
 568 *      maxdescr - number of descriptors
 569 *
 570 *  Return value:
 571 *  	   nothing
 572 ********************************************************************* */
 573
 574static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 575			  int txrx, int maxdescr)
 576{
 577#ifdef CONFIG_SBMAC_COALESCE
 578	int int_pktcnt, int_timeout;
 579#endif
 580
 581	/*
 582	 * Save away interesting stuff in the structure
 583	 */
 584
 585	d->sbdma_eth       = s;
 586	d->sbdma_channel   = chan;
 587	d->sbdma_txdir     = txrx;
 588
 589#if 0
 590	/* RMON clearing */
 591	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 592#endif
 593
 594	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 595	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 596	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 597	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 598	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 599	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 600	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 601	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 602	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 603	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 604	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 605	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 606	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 607	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 608	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 609	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 610	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 611	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 612	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 613	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 614	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 615
 616	/*
 617	 * initialize register pointers
 618	 */
 619
 620	d->sbdma_config0 =
 621		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 622	d->sbdma_config1 =
 623		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 624	d->sbdma_dscrbase =
 625		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 626	d->sbdma_dscrcnt =
 627		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 628	d->sbdma_curdscr =
 629		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 630	if (d->sbdma_txdir)
 631		d->sbdma_oodpktlost = NULL;
 632	else
 633		d->sbdma_oodpktlost =
 634			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 635
 636	/*
 637	 * Allocate memory for the ring
 638	 */
 639
 640	d->sbdma_maxdescr = maxdescr;
 641
 642	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 643					       sizeof(*d->sbdma_dscrtable),
 644					       GFP_KERNEL);
 645
 646	/*
 647	 * The descriptor table must be aligned to at least 16 bytes or the
 648	 * MAC will corrupt it.
 649	 */
 650	d->sbdma_dscrtable = (struct sbdmadscr *)
 651			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 652				   sizeof(*d->sbdma_dscrtable));
 653
 654	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 655
 656	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 657
 658	/*
 659	 * And context table
 660	 */
 661
 662	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 663				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 664
 665#ifdef CONFIG_SBMAC_COALESCE
 666	/*
 667	 * Setup Rx/Tx DMA coalescing defaults
 668	 */
 669
 670	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 671	if ( int_pktcnt ) {
 672		d->sbdma_int_pktcnt = int_pktcnt;
 673	} else {
 674		d->sbdma_int_pktcnt = 1;
 675	}
 676
 677	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 678	if ( int_timeout ) {
 679		d->sbdma_int_timeout = int_timeout;
 680	} else {
 681		d->sbdma_int_timeout = 0;
 682	}
 683#endif
 684
 685}
 686
 687/**********************************************************************
 688 *  SBDMA_CHANNEL_START(d)
 689 *
 690 *  Initialize the hardware registers for a DMA channel.
 691 *
 692 *  Input parameters:
 693 *  	   d - DMA channel to init (context must be previously init'd
 694 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 695 *
 696 *  Return value:
 697 *  	   nothing
 698 ********************************************************************* */
 699
 700static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 701{
 702	/*
 703	 * Turn on the DMA channel
 704	 */
 705
 706#ifdef CONFIG_SBMAC_COALESCE
 707	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 708		       0, d->sbdma_config1);
 709	__raw_writeq(M_DMA_EOP_INT_EN |
 710		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 711		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 712		       0, d->sbdma_config0);
 713#else
 714	__raw_writeq(0, d->sbdma_config1);
 715	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 716		       0, d->sbdma_config0);
 717#endif
 718
 719	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 720
 721	/*
 722	 * Initialize ring pointers
 723	 */
 724
 725	d->sbdma_addptr = d->sbdma_dscrtable;
 726	d->sbdma_remptr = d->sbdma_dscrtable;
 727}
 728
 729/**********************************************************************
 730 *  SBDMA_CHANNEL_STOP(d)
 731 *
 732 *  Initialize the hardware registers for a DMA channel.
 733 *
 734 *  Input parameters:
 735 *  	   d - DMA channel to init (context must be previously init'd
 736 *
 737 *  Return value:
 738 *  	   nothing
 739 ********************************************************************* */
 740
 741static void sbdma_channel_stop(struct sbmacdma *d)
 742{
 743	/*
 744	 * Turn off the DMA channel
 745	 */
 746
 747	__raw_writeq(0, d->sbdma_config1);
 748
 749	__raw_writeq(0, d->sbdma_dscrbase);
 750
 751	__raw_writeq(0, d->sbdma_config0);
 752
 753	/*
 754	 * Zero ring pointers
 755	 */
 756
 757	d->sbdma_addptr = NULL;
 758	d->sbdma_remptr = NULL;
 759}
 760
 761static inline void sbdma_align_skb(struct sk_buff *skb,
 762				   unsigned int power2, unsigned int offset)
 763{
 764	unsigned char *addr = skb->data;
 765	unsigned char *newaddr = PTR_ALIGN(addr, power2);
 766
 767	skb_reserve(skb, newaddr - addr + offset);
 768}
 769
 770
 771/**********************************************************************
 772 *  SBDMA_ADD_RCVBUFFER(d,sb)
 773 *
 774 *  Add a buffer to the specified DMA channel.   For receive channels,
 775 *  this queues a buffer for inbound packets.
 776 *
 777 *  Input parameters:
 778 *	   sc - softc structure
 779 *  	    d - DMA channel descriptor
 780 * 	   sb - sk_buff to add, or NULL if we should allocate one
 781 *
 782 *  Return value:
 783 *  	   0 if buffer could not be added (ring is full)
 784 *  	   1 if buffer added successfully
 785 ********************************************************************* */
 786
 787
 788static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 789			       struct sk_buff *sb)
 790{
 791	struct net_device *dev = sc->sbm_dev;
 792	struct sbdmadscr *dsc;
 793	struct sbdmadscr *nextdsc;
 794	struct sk_buff *sb_new = NULL;
 795	int pktsize = ENET_PACKET_SIZE;
 796
 797	/* get pointer to our current place in the ring */
 798
 799	dsc = d->sbdma_addptr;
 800	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 801
 802	/*
 803	 * figure out if the ring is full - if the next descriptor
 804	 * is the same as the one that we're going to remove from
 805	 * the ring, the ring is full
 806	 */
 807
 808	if (nextdsc == d->sbdma_remptr) {
 809		return -ENOSPC;
 810	}
 811
 812	/*
 813	 * Allocate a sk_buff if we don't already have one.
 814	 * If we do have an sk_buff, reset it so that it's empty.
 815	 *
 816	 * Note: sk_buffs don't seem to be guaranteed to have any sort
 817	 * of alignment when they are allocated.  Therefore, allocate enough
 818	 * extra space to make sure that:
 819	 *
 820	 *    1. the data does not start in the middle of a cache line.
 821	 *    2. The data does not end in the middle of a cache line
 822	 *    3. The buffer can be aligned such that the IP addresses are
 823	 *       naturally aligned.
 824	 *
 825	 *  Remember, the SOCs MAC writes whole cache lines at a time,
 826	 *  without reading the old contents first.  So, if the sk_buff's
 827	 *  data portion starts in the middle of a cache line, the SOC
 828	 *  DMA will trash the beginning (and ending) portions.
 829	 */
 830
 831	if (sb == NULL) {
 832		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 833					       SMP_CACHE_BYTES * 2 +
 834					       NET_IP_ALIGN);
 835		if (sb_new == NULL) {
 836			pr_info("%s: sk_buff allocation failed\n",
 837			       d->sbdma_eth->sbm_dev->name);
 838			return -ENOBUFS;
 839		}
 840
 841		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 842	}
 843	else {
 844		sb_new = sb;
 845		/*
 846		 * nothing special to reinit buffer, it's already aligned
 847		 * and sb->data already points to a good place.
 848		 */
 849	}
 850
 851	/*
 852	 * fill in the descriptor
 853	 */
 854
 855#ifdef CONFIG_SBMAC_COALESCE
 856	/*
 857	 * Do not interrupt per DMA transfer.
 858	 */
 859	dsc->dscr_a = virt_to_phys(sb_new->data) |
 860		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 861#else
 862	dsc->dscr_a = virt_to_phys(sb_new->data) |
 863		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 864		M_DMA_DSCRA_INTERRUPT;
 865#endif
 866
 867	/* receiving: no options */
 868	dsc->dscr_b = 0;
 869
 870	/*
 871	 * fill in the context
 872	 */
 873
 874	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 875
 876	/*
 877	 * point at next packet
 878	 */
 879
 880	d->sbdma_addptr = nextdsc;
 881
 882	/*
 883	 * Give the buffer to the DMA engine.
 884	 */
 885
 886	__raw_writeq(1, d->sbdma_dscrcnt);
 887
 888	return 0;					/* we did it */
 889}
 890
 891/**********************************************************************
 892 *  SBDMA_ADD_TXBUFFER(d,sb)
 893 *
 894 *  Add a transmit buffer to the specified DMA channel, causing a
 895 *  transmit to start.
 896 *
 897 *  Input parameters:
 898 *  	   d - DMA channel descriptor
 899 * 	   sb - sk_buff to add
 900 *
 901 *  Return value:
 902 *  	   0 transmit queued successfully
 903 *  	   otherwise error code
 904 ********************************************************************* */
 905
 906
 907static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 908{
 909	struct sbdmadscr *dsc;
 910	struct sbdmadscr *nextdsc;
 911	uint64_t phys;
 912	uint64_t ncb;
 913	int length;
 914
 915	/* get pointer to our current place in the ring */
 916
 917	dsc = d->sbdma_addptr;
 918	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 919
 920	/*
 921	 * figure out if the ring is full - if the next descriptor
 922	 * is the same as the one that we're going to remove from
 923	 * the ring, the ring is full
 924	 */
 925
 926	if (nextdsc == d->sbdma_remptr) {
 927		return -ENOSPC;
 928	}
 929
 930	/*
 931	 * Under Linux, it's not necessary to copy/coalesce buffers
 932	 * like it is on NetBSD.  We think they're all contiguous,
 933	 * but that may not be true for GBE.
 934	 */
 935
 936	length = sb->len;
 937
 938	/*
 939	 * fill in the descriptor.  Note that the number of cache
 940	 * blocks in the descriptor is the number of blocks
 941	 * *spanned*, so we need to add in the offset (if any)
 942	 * while doing the calculation.
 943	 */
 944
 945	phys = virt_to_phys(sb->data);
 946	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 947
 948	dsc->dscr_a = phys |
 949		V_DMA_DSCRA_A_SIZE(ncb) |
 950#ifndef CONFIG_SBMAC_COALESCE
 951		M_DMA_DSCRA_INTERRUPT |
 952#endif
 953		M_DMA_ETHTX_SOP;
 954
 955	/* transmitting: set outbound options and length */
 956
 957	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 958		V_DMA_DSCRB_PKT_SIZE(length);
 959
 960	/*
 961	 * fill in the context
 962	 */
 963
 964	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 965
 966	/*
 967	 * point at next packet
 968	 */
 969
 970	d->sbdma_addptr = nextdsc;
 971
 972	/*
 973	 * Give the buffer to the DMA engine.
 974	 */
 975
 976	__raw_writeq(1, d->sbdma_dscrcnt);
 977
 978	return 0;					/* we did it */
 979}
 980
 981
 982
 983
 984/**********************************************************************
 985 *  SBDMA_EMPTYRING(d)
 986 *
 987 *  Free all allocated sk_buffs on the specified DMA channel;
 988 *
 989 *  Input parameters:
 990 *  	   d  - DMA channel
 991 *
 992 *  Return value:
 993 *  	   nothing
 994 ********************************************************************* */
 995
 996static void sbdma_emptyring(struct sbmacdma *d)
 997{
 998	int idx;
 999	struct sk_buff *sb;
1000
1001	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1002		sb = d->sbdma_ctxtable[idx];
1003		if (sb) {
1004			dev_kfree_skb(sb);
1005			d->sbdma_ctxtable[idx] = NULL;
1006		}
1007	}
1008}
1009
1010
1011/**********************************************************************
1012 *  SBDMA_FILLRING(d)
1013 *
1014 *  Fill the specified DMA channel (must be receive channel)
1015 *  with sk_buffs
1016 *
1017 *  Input parameters:
1018 *	   sc - softc structure
1019 *  	    d - DMA channel
1020 *
1021 *  Return value:
1022 *  	   nothing
1023 ********************************************************************* */
1024
1025static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1026{
1027	int idx;
1028
1029	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1030		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1031			break;
1032	}
1033}
1034
1035#ifdef CONFIG_NET_POLL_CONTROLLER
1036static void sbmac_netpoll(struct net_device *netdev)
1037{
1038	struct sbmac_softc *sc = netdev_priv(netdev);
1039	int irq = sc->sbm_dev->irq;
1040
1041	__raw_writeq(0, sc->sbm_imr);
1042
1043	sbmac_intr(irq, netdev);
1044
1045#ifdef CONFIG_SBMAC_COALESCE
1046	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1047	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1048	sc->sbm_imr);
1049#else
1050	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1051	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1052#endif
1053}
1054#endif
1055
1056/**********************************************************************
1057 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1058 *
1059 *  Process "completed" receive buffers on the specified DMA channel.
1060 *
1061 *  Input parameters:
1062 *            sc - softc structure
1063 *  	       d - DMA channel context
1064 *    work_to_do - no. of packets to process before enabling interrupt
1065 *                 again (for NAPI)
1066 *          poll - 1: using polling (for NAPI)
1067 *
1068 *  Return value:
1069 *  	   nothing
1070 ********************************************************************* */
1071
1072static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1073			    int work_to_do, int poll)
1074{
1075	struct net_device *dev = sc->sbm_dev;
1076	int curidx;
1077	int hwidx;
1078	struct sbdmadscr *dsc;
1079	struct sk_buff *sb;
1080	int len;
1081	int work_done = 0;
1082	int dropped = 0;
1083
1084	prefetch(d);
1085
1086again:
1087	/* Check if the HW dropped any frames */
1088	dev->stats.rx_fifo_errors
1089	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1090	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1091
1092	while (work_to_do-- > 0) {
1093		/*
1094		 * figure out where we are (as an index) and where
1095		 * the hardware is (also as an index)
1096		 *
1097		 * This could be done faster if (for example) the
1098		 * descriptor table was page-aligned and contiguous in
1099		 * both virtual and physical memory -- you could then
1100		 * just compare the low-order bits of the virtual address
1101		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1102		 */
1103
1104		dsc = d->sbdma_remptr;
1105		curidx = dsc - d->sbdma_dscrtable;
1106
1107		prefetch(dsc);
1108		prefetch(&d->sbdma_ctxtable[curidx]);
1109
1110		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1111			 d->sbdma_dscrtable_phys) /
1112			sizeof(*d->sbdma_dscrtable);
1113
1114		/*
1115		 * If they're the same, that means we've processed all
1116		 * of the descriptors up to (but not including) the one that
1117		 * the hardware is working on right now.
1118		 */
1119
1120		if (curidx == hwidx)
1121			goto done;
1122
1123		/*
1124		 * Otherwise, get the packet's sk_buff ptr back
1125		 */
1126
1127		sb = d->sbdma_ctxtable[curidx];
1128		d->sbdma_ctxtable[curidx] = NULL;
1129
1130		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1131
1132		/*
1133		 * Check packet status.  If good, process it.
1134		 * If not, silently drop it and put it back on the
1135		 * receive ring.
1136		 */
1137
1138		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1139
1140			/*
1141			 * Add a new buffer to replace the old one.  If we fail
1142			 * to allocate a buffer, we're going to drop this
1143			 * packet and put it right back on the receive ring.
1144			 */
1145
1146			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1147				     -ENOBUFS)) {
1148				dev->stats.rx_dropped++;
1149				/* Re-add old buffer */
1150				sbdma_add_rcvbuffer(sc, d, sb);
1151				/* No point in continuing at the moment */
1152				printk(KERN_ERR "dropped packet (1)\n");
1153				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1154				goto done;
1155			} else {
1156				/*
1157				 * Set length into the packet
1158				 */
1159				skb_put(sb,len);
1160
1161				/*
1162				 * Buffer has been replaced on the
1163				 * receive ring.  Pass the buffer to
1164				 * the kernel
1165				 */
1166				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1167				/* Check hw IPv4/TCP checksum if supported */
1168				if (sc->rx_hw_checksum == ENABLE) {
1169					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1170					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1171						sb->ip_summed = CHECKSUM_UNNECESSARY;
1172						/* don't need to set sb->csum */
1173					} else {
1174						skb_checksum_none_assert(sb);
1175					}
1176				}
1177				prefetch(sb->data);
1178				prefetch((const void *)(((char *)sb->data)+32));
1179				if (poll)
1180					dropped = netif_receive_skb(sb);
1181				else
1182					dropped = netif_rx(sb);
1183
1184				if (dropped == NET_RX_DROP) {
1185					dev->stats.rx_dropped++;
1186					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1187					goto done;
1188				}
1189				else {
1190					dev->stats.rx_bytes += len;
1191					dev->stats.rx_packets++;
1192				}
1193			}
1194		} else {
1195			/*
1196			 * Packet was mangled somehow.  Just drop it and
1197			 * put it back on the receive ring.
1198			 */
1199			dev->stats.rx_errors++;
1200			sbdma_add_rcvbuffer(sc, d, sb);
1201		}
1202
1203
1204		/*
1205		 * .. and advance to the next buffer.
1206		 */
1207
1208		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1209		work_done++;
1210	}
1211	if (!poll) {
1212		work_to_do = 32;
1213		goto again; /* collect fifo drop statistics again */
1214	}
1215done:
1216	return work_done;
1217}
1218
1219/**********************************************************************
1220 *  SBDMA_TX_PROCESS(sc,d)
1221 *
1222 *  Process "completed" transmit buffers on the specified DMA channel.
1223 *  This is normally called within the interrupt service routine.
1224 *  Note that this isn't really ideal for priority channels, since
1225 *  it processes all of the packets on a given channel before
1226 *  returning.
1227 *
1228 *  Input parameters:
1229 *      sc - softc structure
1230 *  	 d - DMA channel context
1231 *    poll - 1: using polling (for NAPI)
1232 *
1233 *  Return value:
1234 *  	   nothing
1235 ********************************************************************* */
1236
1237static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1238			     int poll)
1239{
1240	struct net_device *dev = sc->sbm_dev;
1241	int curidx;
1242	int hwidx;
1243	struct sbdmadscr *dsc;
1244	struct sk_buff *sb;
1245	unsigned long flags;
1246	int packets_handled = 0;
1247
1248	spin_lock_irqsave(&(sc->sbm_lock), flags);
1249
1250	if (d->sbdma_remptr == d->sbdma_addptr)
1251	  goto end_unlock;
1252
1253	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1254		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1255
1256	for (;;) {
1257		/*
1258		 * figure out where we are (as an index) and where
1259		 * the hardware is (also as an index)
1260		 *
1261		 * This could be done faster if (for example) the
1262		 * descriptor table was page-aligned and contiguous in
1263		 * both virtual and physical memory -- you could then
1264		 * just compare the low-order bits of the virtual address
1265		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1266		 */
1267
1268		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1269
1270		/*
1271		 * If they're the same, that means we've processed all
1272		 * of the descriptors up to (but not including) the one that
1273		 * the hardware is working on right now.
1274		 */
1275
1276		if (curidx == hwidx)
1277			break;
1278
1279		/*
1280		 * Otherwise, get the packet's sk_buff ptr back
1281		 */
1282
1283		dsc = &(d->sbdma_dscrtable[curidx]);
1284		sb = d->sbdma_ctxtable[curidx];
1285		d->sbdma_ctxtable[curidx] = NULL;
1286
1287		/*
1288		 * Stats
1289		 */
1290
1291		dev->stats.tx_bytes += sb->len;
1292		dev->stats.tx_packets++;
1293
1294		/*
1295		 * for transmits, we just free buffers.
1296		 */
1297
1298		dev_kfree_skb_irq(sb);
1299
1300		/*
1301		 * .. and advance to the next buffer.
1302		 */
1303
1304		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1305
1306		packets_handled++;
1307
1308	}
1309
1310	/*
1311	 * Decide if we should wake up the protocol or not.
1312	 * Other drivers seem to do this when we reach a low
1313	 * watermark on the transmit queue.
1314	 */
1315
1316	if (packets_handled)
1317		netif_wake_queue(d->sbdma_eth->sbm_dev);
1318
1319end_unlock:
1320	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1321
1322}
1323
1324
1325
1326/**********************************************************************
1327 *  SBMAC_INITCTX(s)
1328 *
1329 *  Initialize an Ethernet context structure - this is called
1330 *  once per MAC on the 1250.  Memory is allocated here, so don't
1331 *  call it again from inside the ioctl routines that bring the
1332 *  interface up/down
1333 *
1334 *  Input parameters:
1335 *  	   s - sbmac context structure
1336 *
1337 *  Return value:
1338 *  	   0
1339 ********************************************************************* */
1340
1341static int sbmac_initctx(struct sbmac_softc *s)
1342{
1343
1344	/*
1345	 * figure out the addresses of some ports
1346	 */
1347
1348	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1349	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1350	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1351	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1352	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1353	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1354	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1355	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1356
1357	/*
1358	 * Initialize the DMA channels.  Right now, only one per MAC is used
1359	 * Note: Only do this _once_, as it allocates memory from the kernel!
1360	 */
1361
1362	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1363	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1364
1365	/*
1366	 * initial state is OFF
1367	 */
1368
1369	s->sbm_state = sbmac_state_off;
1370
1371	return 0;
1372}
1373
1374
1375static void sbdma_uninitctx(struct sbmacdma *d)
1376{
1377	if (d->sbdma_dscrtable_unaligned) {
1378		kfree(d->sbdma_dscrtable_unaligned);
1379		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1380	}
1381
1382	if (d->sbdma_ctxtable) {
1383		kfree(d->sbdma_ctxtable);
1384		d->sbdma_ctxtable = NULL;
1385	}
1386}
1387
1388
1389static void sbmac_uninitctx(struct sbmac_softc *sc)
1390{
1391	sbdma_uninitctx(&(sc->sbm_txdma));
1392	sbdma_uninitctx(&(sc->sbm_rxdma));
1393}
1394
1395
1396/**********************************************************************
1397 *  SBMAC_CHANNEL_START(s)
1398 *
1399 *  Start packet processing on this MAC.
1400 *
1401 *  Input parameters:
1402 *  	   s - sbmac structure
1403 *
1404 *  Return value:
1405 *  	   nothing
1406 ********************************************************************* */
1407
1408static void sbmac_channel_start(struct sbmac_softc *s)
1409{
1410	uint64_t reg;
1411	void __iomem *port;
1412	uint64_t cfg,fifo,framecfg;
1413	int idx, th_value;
1414
1415	/*
1416	 * Don't do this if running
1417	 */
1418
1419	if (s->sbm_state == sbmac_state_on)
1420		return;
1421
1422	/*
1423	 * Bring the controller out of reset, but leave it off.
1424	 */
1425
1426	__raw_writeq(0, s->sbm_macenable);
1427
1428	/*
1429	 * Ignore all received packets
1430	 */
1431
1432	__raw_writeq(0, s->sbm_rxfilter);
1433
1434	/*
1435	 * Calculate values for various control registers.
1436	 */
1437
1438	cfg = M_MAC_RETRY_EN |
1439		M_MAC_TX_HOLD_SOP_EN |
1440		V_MAC_TX_PAUSE_CNT_16K |
1441		M_MAC_AP_STAT_EN |
1442		M_MAC_FAST_SYNC |
1443		M_MAC_SS_EN |
1444		0;
1445
1446	/*
1447	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1448	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1449	 * Use a larger RD_THRSH for gigabit
1450	 */
1451	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1452		th_value = 28;
1453	else
1454		th_value = 64;
1455
1456	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1457		((s->sbm_speed == sbmac_speed_1000)
1458		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1459		V_MAC_TX_RL_THRSH(4) |
1460		V_MAC_RX_PL_THRSH(4) |
1461		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1462		V_MAC_RX_RL_THRSH(8) |
1463		0;
1464
1465	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1466		V_MAC_MAX_FRAMESZ_DEFAULT |
1467		V_MAC_BACKOFF_SEL(1);
1468
1469	/*
1470	 * Clear out the hash address map
1471	 */
1472
1473	port = s->sbm_base + R_MAC_HASH_BASE;
1474	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1475		__raw_writeq(0, port);
1476		port += sizeof(uint64_t);
1477	}
1478
1479	/*
1480	 * Clear out the exact-match table
1481	 */
1482
1483	port = s->sbm_base + R_MAC_ADDR_BASE;
1484	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1485		__raw_writeq(0, port);
1486		port += sizeof(uint64_t);
1487	}
1488
1489	/*
1490	 * Clear out the DMA Channel mapping table registers
1491	 */
1492
1493	port = s->sbm_base + R_MAC_CHUP0_BASE;
1494	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495		__raw_writeq(0, port);
1496		port += sizeof(uint64_t);
1497	}
1498
1499
1500	port = s->sbm_base + R_MAC_CHLO0_BASE;
1501	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1502		__raw_writeq(0, port);
1503		port += sizeof(uint64_t);
1504	}
1505
1506	/*
1507	 * Program the hardware address.  It goes into the hardware-address
1508	 * register as well as the first filter register.
1509	 */
1510
1511	reg = sbmac_addr2reg(s->sbm_hwaddr);
1512
1513	port = s->sbm_base + R_MAC_ADDR_BASE;
1514	__raw_writeq(reg, port);
1515	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1516
1517#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1518	/*
1519	 * Pass1 SOCs do not receive packets addressed to the
1520	 * destination address in the R_MAC_ETHERNET_ADDR register.
1521	 * Set the value to zero.
1522	 */
1523	__raw_writeq(0, port);
1524#else
1525	__raw_writeq(reg, port);
1526#endif
1527
1528	/*
1529	 * Set the receive filter for no packets, and write values
1530	 * to the various config registers
1531	 */
1532
1533	__raw_writeq(0, s->sbm_rxfilter);
1534	__raw_writeq(0, s->sbm_imr);
1535	__raw_writeq(framecfg, s->sbm_framecfg);
1536	__raw_writeq(fifo, s->sbm_fifocfg);
1537	__raw_writeq(cfg, s->sbm_maccfg);
1538
1539	/*
1540	 * Initialize DMA channels (rings should be ok now)
1541	 */
1542
1543	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1544	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1545
1546	/*
1547	 * Configure the speed, duplex, and flow control
1548	 */
1549
1550	sbmac_set_speed(s,s->sbm_speed);
1551	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1552
1553	/*
1554	 * Fill the receive ring
1555	 */
1556
1557	sbdma_fillring(s, &(s->sbm_rxdma));
1558
1559	/*
1560	 * Turn on the rest of the bits in the enable register
1561	 */
1562
1563#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1564	__raw_writeq(M_MAC_RXDMA_EN0 |
1565		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1566#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1567	__raw_writeq(M_MAC_RXDMA_EN0 |
1568		       M_MAC_TXDMA_EN0 |
1569		       M_MAC_RX_ENABLE |
1570		       M_MAC_TX_ENABLE, s->sbm_macenable);
1571#else
1572#error invalid SiByte MAC configuration
1573#endif
1574
1575#ifdef CONFIG_SBMAC_COALESCE
1576	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1577		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1578#else
1579	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1580		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1581#endif
1582
1583	/*
1584	 * Enable receiving unicasts and broadcasts
1585	 */
1586
1587	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1588
1589	/*
1590	 * we're running now.
1591	 */
1592
1593	s->sbm_state = sbmac_state_on;
1594
1595	/*
1596	 * Program multicast addresses
1597	 */
1598
1599	sbmac_setmulti(s);
1600
1601	/*
1602	 * If channel was in promiscuous mode before, turn that on
1603	 */
1604
1605	if (s->sbm_devflags & IFF_PROMISC) {
1606		sbmac_promiscuous_mode(s,1);
1607	}
1608
1609}
1610
1611
1612/**********************************************************************
1613 *  SBMAC_CHANNEL_STOP(s)
1614 *
1615 *  Stop packet processing on this MAC.
1616 *
1617 *  Input parameters:
1618 *  	   s - sbmac structure
1619 *
1620 *  Return value:
1621 *  	   nothing
1622 ********************************************************************* */
1623
1624static void sbmac_channel_stop(struct sbmac_softc *s)
1625{
1626	/* don't do this if already stopped */
1627
1628	if (s->sbm_state == sbmac_state_off)
1629		return;
1630
1631	/* don't accept any packets, disable all interrupts */
1632
1633	__raw_writeq(0, s->sbm_rxfilter);
1634	__raw_writeq(0, s->sbm_imr);
1635
1636	/* Turn off ticker */
1637
1638	/* XXX */
1639
1640	/* turn off receiver and transmitter */
1641
1642	__raw_writeq(0, s->sbm_macenable);
1643
1644	/* We're stopped now. */
1645
1646	s->sbm_state = sbmac_state_off;
1647
1648	/*
1649	 * Stop DMA channels (rings should be ok now)
1650	 */
1651
1652	sbdma_channel_stop(&(s->sbm_rxdma));
1653	sbdma_channel_stop(&(s->sbm_txdma));
1654
1655	/* Empty the receive and transmit rings */
1656
1657	sbdma_emptyring(&(s->sbm_rxdma));
1658	sbdma_emptyring(&(s->sbm_txdma));
1659
1660}
1661
1662/**********************************************************************
1663 *  SBMAC_SET_CHANNEL_STATE(state)
1664 *
1665 *  Set the channel's state ON or OFF
1666 *
1667 *  Input parameters:
1668 *  	   state - new state
1669 *
1670 *  Return value:
1671 *  	   old state
1672 ********************************************************************* */
1673static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1674						enum sbmac_state state)
1675{
1676	enum sbmac_state oldstate = sc->sbm_state;
1677
1678	/*
1679	 * If same as previous state, return
1680	 */
1681
1682	if (state == oldstate) {
1683		return oldstate;
1684	}
1685
1686	/*
1687	 * If new state is ON, turn channel on
1688	 */
1689
1690	if (state == sbmac_state_on) {
1691		sbmac_channel_start(sc);
1692	}
1693	else {
1694		sbmac_channel_stop(sc);
1695	}
1696
1697	/*
1698	 * Return previous state
1699	 */
1700
1701	return oldstate;
1702}
1703
1704
1705/**********************************************************************
1706 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1707 *
1708 *  Turn on or off promiscuous mode
1709 *
1710 *  Input parameters:
1711 *  	   sc - softc
1712 *      onoff - 1 to turn on, 0 to turn off
1713 *
1714 *  Return value:
1715 *  	   nothing
1716 ********************************************************************* */
1717
1718static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1719{
1720	uint64_t reg;
1721
1722	if (sc->sbm_state != sbmac_state_on)
1723		return;
1724
1725	if (onoff) {
1726		reg = __raw_readq(sc->sbm_rxfilter);
1727		reg |= M_MAC_ALLPKT_EN;
1728		__raw_writeq(reg, sc->sbm_rxfilter);
1729	}
1730	else {
1731		reg = __raw_readq(sc->sbm_rxfilter);
1732		reg &= ~M_MAC_ALLPKT_EN;
1733		__raw_writeq(reg, sc->sbm_rxfilter);
1734	}
1735}
1736
1737/**********************************************************************
1738 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1739 *
1740 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1741 *
1742 *  Input parameters:
1743 *  	   sc - softc
1744 *
1745 *  Return value:
1746 *  	   nothing
1747 ********************************************************************* */
1748
1749static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1750{
1751	uint64_t reg;
1752
1753	/* Hard code the off set to 15 for now */
1754	reg = __raw_readq(sc->sbm_rxfilter);
1755	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1756	__raw_writeq(reg, sc->sbm_rxfilter);
1757
1758	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1759	   later does.  */
1760	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1761		sc->rx_hw_checksum = DISABLE;
1762	} else {
1763		sc->rx_hw_checksum = ENABLE;
1764	}
1765}
1766
1767
1768/**********************************************************************
1769 *  SBMAC_ADDR2REG(ptr)
1770 *
1771 *  Convert six bytes into the 64-bit register value that
1772 *  we typically write into the SBMAC's address/mcast registers
1773 *
1774 *  Input parameters:
1775 *  	   ptr - pointer to 6 bytes
1776 *
1777 *  Return value:
1778 *  	   register value
1779 ********************************************************************* */
1780
1781static uint64_t sbmac_addr2reg(unsigned char *ptr)
1782{
1783	uint64_t reg = 0;
1784
1785	ptr += 6;
1786
1787	reg |= (uint64_t) *(--ptr);
1788	reg <<= 8;
1789	reg |= (uint64_t) *(--ptr);
1790	reg <<= 8;
1791	reg |= (uint64_t) *(--ptr);
1792	reg <<= 8;
1793	reg |= (uint64_t) *(--ptr);
1794	reg <<= 8;
1795	reg |= (uint64_t) *(--ptr);
1796	reg <<= 8;
1797	reg |= (uint64_t) *(--ptr);
1798
1799	return reg;
1800}
1801
1802
1803/**********************************************************************
1804 *  SBMAC_SET_SPEED(s,speed)
1805 *
1806 *  Configure LAN speed for the specified MAC.
1807 *  Warning: must be called when MAC is off!
1808 *
1809 *  Input parameters:
1810 *  	   s - sbmac structure
1811 *  	   speed - speed to set MAC to (see enum sbmac_speed)
1812 *
1813 *  Return value:
1814 *  	   1 if successful
1815 *      0 indicates invalid parameters
1816 ********************************************************************* */
1817
1818static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1819{
1820	uint64_t cfg;
1821	uint64_t framecfg;
1822
1823	/*
1824	 * Save new current values
1825	 */
1826
1827	s->sbm_speed = speed;
1828
1829	if (s->sbm_state == sbmac_state_on)
1830		return 0;	/* save for next restart */
1831
1832	/*
1833	 * Read current register values
1834	 */
1835
1836	cfg = __raw_readq(s->sbm_maccfg);
1837	framecfg = __raw_readq(s->sbm_framecfg);
1838
1839	/*
1840	 * Mask out the stuff we want to change
1841	 */
1842
1843	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1844	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1845		      M_MAC_SLOT_SIZE);
1846
1847	/*
1848	 * Now add in the new bits
1849	 */
1850
1851	switch (speed) {
1852	case sbmac_speed_10:
1853		framecfg |= V_MAC_IFG_RX_10 |
1854			V_MAC_IFG_TX_10 |
1855			K_MAC_IFG_THRSH_10 |
1856			V_MAC_SLOT_SIZE_10;
1857		cfg |= V_MAC_SPEED_SEL_10MBPS;
1858		break;
1859
1860	case sbmac_speed_100:
1861		framecfg |= V_MAC_IFG_RX_100 |
1862			V_MAC_IFG_TX_100 |
1863			V_MAC_IFG_THRSH_100 |
1864			V_MAC_SLOT_SIZE_100;
1865		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1866		break;
1867
1868	case sbmac_speed_1000:
1869		framecfg |= V_MAC_IFG_RX_1000 |
1870			V_MAC_IFG_TX_1000 |
1871			V_MAC_IFG_THRSH_1000 |
1872			V_MAC_SLOT_SIZE_1000;
1873		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1874		break;
1875
1876	default:
1877		return 0;
1878	}
1879
1880	/*
1881	 * Send the bits back to the hardware
1882	 */
1883
1884	__raw_writeq(framecfg, s->sbm_framecfg);
1885	__raw_writeq(cfg, s->sbm_maccfg);
1886
1887	return 1;
1888}
1889
1890/**********************************************************************
1891 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1892 *
1893 *  Set Ethernet duplex and flow control options for this MAC
1894 *  Warning: must be called when MAC is off!
1895 *
1896 *  Input parameters:
1897 *  	   s - sbmac structure
1898 *  	   duplex - duplex setting (see enum sbmac_duplex)
1899 *  	   fc - flow control setting (see enum sbmac_fc)
1900 *
1901 *  Return value:
1902 *  	   1 if ok
1903 *  	   0 if an invalid parameter combination was specified
1904 ********************************************************************* */
1905
1906static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1907			    enum sbmac_fc fc)
1908{
1909	uint64_t cfg;
1910
1911	/*
1912	 * Save new current values
1913	 */
1914
1915	s->sbm_duplex = duplex;
1916	s->sbm_fc = fc;
1917
1918	if (s->sbm_state == sbmac_state_on)
1919		return 0;	/* save for next restart */
1920
1921	/*
1922	 * Read current register values
1923	 */
1924
1925	cfg = __raw_readq(s->sbm_maccfg);
1926
1927	/*
1928	 * Mask off the stuff we're about to change
1929	 */
1930
1931	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1932
1933
1934	switch (duplex) {
1935	case sbmac_duplex_half:
1936		switch (fc) {
1937		case sbmac_fc_disabled:
1938			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1939			break;
1940
1941		case sbmac_fc_collision:
1942			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1943			break;
1944
1945		case sbmac_fc_carrier:
1946			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1947			break;
1948
1949		case sbmac_fc_frame:		/* not valid in half duplex */
1950		default:			/* invalid selection */
1951			return 0;
1952		}
1953		break;
1954
1955	case sbmac_duplex_full:
1956		switch (fc) {
1957		case sbmac_fc_disabled:
1958			cfg |= V_MAC_FC_CMD_DISABLED;
1959			break;
1960
1961		case sbmac_fc_frame:
1962			cfg |= V_MAC_FC_CMD_ENABLED;
1963			break;
1964
1965		case sbmac_fc_collision:	/* not valid in full duplex */
1966		case sbmac_fc_carrier:		/* not valid in full duplex */
1967		default:
1968			return 0;
1969		}
1970		break;
1971	default:
1972		return 0;
1973	}
1974
1975	/*
1976	 * Send the bits back to the hardware
1977	 */
1978
1979	__raw_writeq(cfg, s->sbm_maccfg);
1980
1981	return 1;
1982}
1983
1984
1985
1986
1987/**********************************************************************
1988 *  SBMAC_INTR()
1989 *
1990 *  Interrupt handler for MAC interrupts
1991 *
1992 *  Input parameters:
1993 *  	   MAC structure
1994 *
1995 *  Return value:
1996 *  	   nothing
1997 ********************************************************************* */
1998static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1999{
2000	struct net_device *dev = (struct net_device *) dev_instance;
2001	struct sbmac_softc *sc = netdev_priv(dev);
2002	uint64_t isr;
2003	int handled = 0;
2004
2005	/*
2006	 * Read the ISR (this clears the bits in the real
2007	 * register, except for counter addr)
2008	 */
2009
2010	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2011
2012	if (isr == 0)
2013		return IRQ_RETVAL(0);
2014	handled = 1;
2015
2016	/*
2017	 * Transmits on channel 0
2018	 */
2019
2020	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2021		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2022
2023	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2024		if (napi_schedule_prep(&sc->napi)) {
2025			__raw_writeq(0, sc->sbm_imr);
2026			__napi_schedule(&sc->napi);
2027			/* Depend on the exit from poll to reenable intr */
2028		}
2029		else {
2030			/* may leave some packets behind */
2031			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2032					 SBMAC_MAX_RXDESCR * 2, 0);
2033		}
2034	}
2035	return IRQ_RETVAL(handled);
2036}
2037
2038/**********************************************************************
2039 *  SBMAC_START_TX(skb,dev)
2040 *
2041 *  Start output on the specified interface.  Basically, we
2042 *  queue as many buffers as we can until the ring fills up, or
2043 *  we run off the end of the queue, whichever comes first.
2044 *
2045 *  Input parameters:
2046 *
2047 *
2048 *  Return value:
2049 *  	   nothing
2050 ********************************************************************* */
2051static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2052{
2053	struct sbmac_softc *sc = netdev_priv(dev);
2054	unsigned long flags;
2055
2056	/* lock eth irq */
2057	spin_lock_irqsave(&sc->sbm_lock, flags);
2058
2059	/*
2060	 * Put the buffer on the transmit ring.  If we
2061	 * don't have room, stop the queue.
2062	 */
2063
2064	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2065		/* XXX save skb that we could not send */
2066		netif_stop_queue(dev);
2067		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2068
2069		return NETDEV_TX_BUSY;
2070	}
2071
2072	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2073
2074	return NETDEV_TX_OK;
2075}
2076
2077/**********************************************************************
2078 *  SBMAC_SETMULTI(sc)
2079 *
2080 *  Reprogram the multicast table into the hardware, given
2081 *  the list of multicasts associated with the interface
2082 *  structure.
2083 *
2084 *  Input parameters:
2085 *  	   sc - softc
2086 *
2087 *  Return value:
2088 *  	   nothing
2089 ********************************************************************* */
2090
2091static void sbmac_setmulti(struct sbmac_softc *sc)
2092{
2093	uint64_t reg;
2094	void __iomem *port;
2095	int idx;
2096	struct netdev_hw_addr *ha;
2097	struct net_device *dev = sc->sbm_dev;
2098
2099	/*
2100	 * Clear out entire multicast table.  We do this by nuking
2101	 * the entire hash table and all the direct matches except
2102	 * the first one, which is used for our station address
2103	 */
2104
2105	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2106		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2107		__raw_writeq(0, port);
2108	}
2109
2110	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2111		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2112		__raw_writeq(0, port);
2113	}
2114
2115	/*
2116	 * Clear the filter to say we don't want any multicasts.
2117	 */
2118
2119	reg = __raw_readq(sc->sbm_rxfilter);
2120	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2121	__raw_writeq(reg, sc->sbm_rxfilter);
2122
2123	if (dev->flags & IFF_ALLMULTI) {
2124		/*
2125		 * Enable ALL multicasts.  Do this by inverting the
2126		 * multicast enable bit.
2127		 */
2128		reg = __raw_readq(sc->sbm_rxfilter);
2129		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2130		__raw_writeq(reg, sc->sbm_rxfilter);
2131		return;
2132	}
2133
2134
2135	/*
2136	 * Progam new multicast entries.  For now, only use the
2137	 * perfect filter.  In the future we'll need to use the
2138	 * hash filter if the perfect filter overflows
2139	 */
2140
2141	/* XXX only using perfect filter for now, need to use hash
2142	 * XXX if the table overflows */
2143
2144	idx = 1;		/* skip station address */
2145	netdev_for_each_mc_addr(ha, dev) {
2146		if (idx == MAC_ADDR_COUNT)
2147			break;
2148		reg = sbmac_addr2reg(ha->addr);
2149		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2150		__raw_writeq(reg, port);
2151		idx++;
2152	}
2153
2154	/*
2155	 * Enable the "accept multicast bits" if we programmed at least one
2156	 * multicast.
2157	 */
2158
2159	if (idx > 1) {
2160		reg = __raw_readq(sc->sbm_rxfilter);
2161		reg |= M_MAC_MCAST_EN;
2162		__raw_writeq(reg, sc->sbm_rxfilter);
2163	}
2164}
2165
2166static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2167{
2168	if (new_mtu >  ENET_PACKET_SIZE)
2169		return -EINVAL;
2170	_dev->mtu = new_mtu;
2171	pr_info("changing the mtu to %d\n", new_mtu);
2172	return 0;
2173}
2174
2175static const struct net_device_ops sbmac_netdev_ops = {
2176	.ndo_open		= sbmac_open,
2177	.ndo_stop		= sbmac_close,
2178	.ndo_start_xmit		= sbmac_start_tx,
2179	.ndo_set_multicast_list	= sbmac_set_rx_mode,
2180	.ndo_tx_timeout		= sbmac_tx_timeout,
2181	.ndo_do_ioctl		= sbmac_mii_ioctl,
2182	.ndo_change_mtu		= sb1250_change_mtu,
2183	.ndo_validate_addr	= eth_validate_addr,
2184	.ndo_set_mac_address	= eth_mac_addr,
2185#ifdef CONFIG_NET_POLL_CONTROLLER
2186	.ndo_poll_controller	= sbmac_netpoll,
2187#endif
2188};
2189
2190/**********************************************************************
2191 *  SBMAC_INIT(dev)
2192 *
2193 *  Attach routine - init hardware and hook ourselves into linux
2194 *
2195 *  Input parameters:
2196 *  	   dev - net_device structure
2197 *
2198 *  Return value:
2199 *  	   status
2200 ********************************************************************* */
2201
2202static int sbmac_init(struct platform_device *pldev, long long base)
2203{
2204	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2205	int idx = pldev->id;
2206	struct sbmac_softc *sc = netdev_priv(dev);
2207	unsigned char *eaddr;
2208	uint64_t ea_reg;
2209	int i;
2210	int err;
2211
2212	sc->sbm_dev = dev;
2213	sc->sbe_idx = idx;
2214
2215	eaddr = sc->sbm_hwaddr;
2216
2217	/*
2218	 * Read the ethernet address.  The firmware left this programmed
2219	 * for us in the ethernet address register for each mac.
2220	 */
2221
2222	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2224	for (i = 0; i < 6; i++) {
2225		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2226		ea_reg >>= 8;
2227	}
2228
2229	for (i = 0; i < 6; i++) {
2230		dev->dev_addr[i] = eaddr[i];
2231	}
2232
2233	/*
2234	 * Initialize context (get pointers to registers and stuff), then
2235	 * allocate the memory for the descriptor tables.
2236	 */
2237
2238	sbmac_initctx(sc);
2239
2240	/*
2241	 * Set up Linux device callins
2242	 */
2243
2244	spin_lock_init(&(sc->sbm_lock));
2245
2246	dev->netdev_ops = &sbmac_netdev_ops;
2247	dev->watchdog_timeo = TX_TIMEOUT;
2248
2249	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2250
2251	dev->irq		= UNIT_INT(idx);
2252
2253	/* This is needed for PASS2 for Rx H/W checksum feature */
2254	sbmac_set_iphdr_offset(sc);
2255
2256	sc->mii_bus = mdiobus_alloc();
2257	if (sc->mii_bus == NULL) {
2258		err = -ENOMEM;
2259		goto uninit_ctx;
2260	}
2261
2262	sc->mii_bus->name = sbmac_mdio_string;
2263	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2264	sc->mii_bus->priv = sc;
2265	sc->mii_bus->read = sbmac_mii_read;
2266	sc->mii_bus->write = sbmac_mii_write;
2267	sc->mii_bus->irq = sc->phy_irq;
2268	for (i = 0; i < PHY_MAX_ADDR; ++i)
2269		sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2270
2271	sc->mii_bus->parent = &pldev->dev;
2272	/*
2273	 * Probe PHY address
2274	 */
2275	err = mdiobus_register(sc->mii_bus);
2276	if (err) {
2277		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278		       dev->name);
2279		goto free_mdio;
2280	}
2281	dev_set_drvdata(&pldev->dev, sc->mii_bus);
2282
2283	err = register_netdev(dev);
2284	if (err) {
2285		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286		       sbmac_string, idx);
2287		goto unreg_mdio;
2288	}
2289
2290	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2291
2292	if (sc->rx_hw_checksum == ENABLE)
2293		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2294
2295	/*
2296	 * Display Ethernet address (this is called during the config
2297	 * process so we need to finish off the config message that
2298	 * was being displayed)
2299	 */
2300	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301	       dev->name, base, eaddr);
2302
2303	return 0;
2304unreg_mdio:
2305	mdiobus_unregister(sc->mii_bus);
2306	dev_set_drvdata(&pldev->dev, NULL);
2307free_mdio:
2308	mdiobus_free(sc->mii_bus);
2309uninit_ctx:
2310	sbmac_uninitctx(sc);
2311	return err;
2312}
2313
2314
2315static int sbmac_open(struct net_device *dev)
2316{
2317	struct sbmac_softc *sc = netdev_priv(dev);
2318	int err;
2319
2320	if (debug > 1)
2321		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2322
2323	/*
2324	 * map/route interrupt (clear status first, in case something
2325	 * weird is pending; we haven't initialized the mac registers
2326	 * yet)
2327	 */
2328
2329	__raw_readq(sc->sbm_isr);
2330	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331	if (err) {
2332		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333		       dev->irq);
2334		goto out_err;
2335	}
2336
2337	sc->sbm_speed = sbmac_speed_none;
2338	sc->sbm_duplex = sbmac_duplex_none;
2339	sc->sbm_fc = sbmac_fc_none;
2340	sc->sbm_pause = -1;
2341	sc->sbm_link = 0;
2342
2343	/*
2344	 * Attach to the PHY
2345	 */
2346	err = sbmac_mii_probe(dev);
2347	if (err)
2348		goto out_unregister;
2349
2350	/*
2351	 * Turn on the channel
2352	 */
2353
2354	sbmac_set_channel_state(sc,sbmac_state_on);
2355
2356	netif_start_queue(dev);
2357
2358	sbmac_set_rx_mode(dev);
2359
2360	phy_start(sc->phy_dev);
2361
2362	napi_enable(&sc->napi);
2363
2364	return 0;
2365
2366out_unregister:
2367	free_irq(dev->irq, dev);
2368out_err:
2369	return err;
2370}
2371
2372static int sbmac_mii_probe(struct net_device *dev)
2373{
2374	struct sbmac_softc *sc = netdev_priv(dev);
2375	struct phy_device *phy_dev;
2376	int i;
2377
2378	for (i = 0; i < PHY_MAX_ADDR; i++) {
2379		phy_dev = sc->mii_bus->phy_map[i];
2380		if (phy_dev)
2381			break;
2382	}
2383	if (!phy_dev) {
2384		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385		return -ENXIO;
2386	}
2387
2388	phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2389			      PHY_INTERFACE_MODE_GMII);
2390	if (IS_ERR(phy_dev)) {
2391		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392		return PTR_ERR(phy_dev);
2393	}
2394
2395	/* Remove any features not supported by the controller */
2396	phy_dev->supported &= SUPPORTED_10baseT_Half |
2397			      SUPPORTED_10baseT_Full |
2398			      SUPPORTED_100baseT_Half |
2399			      SUPPORTED_100baseT_Full |
2400			      SUPPORTED_1000baseT_Half |
2401			      SUPPORTED_1000baseT_Full |
2402			      SUPPORTED_Autoneg |
2403			      SUPPORTED_MII |
2404			      SUPPORTED_Pause |
2405			      SUPPORTED_Asym_Pause;
2406	phy_dev->advertising = phy_dev->supported;
2407
2408	pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409		dev->name, phy_dev->drv->name,
2410		dev_name(&phy_dev->dev), phy_dev->irq);
2411
2412	sc->phy_dev = phy_dev;
2413
2414	return 0;
2415}
2416
2417
2418static void sbmac_mii_poll(struct net_device *dev)
2419{
2420	struct sbmac_softc *sc = netdev_priv(dev);
2421	struct phy_device *phy_dev = sc->phy_dev;
2422	unsigned long flags;
2423	enum sbmac_fc fc;
2424	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2425
2426	link_chg = (sc->sbm_link != phy_dev->link);
2427	speed_chg = (sc->sbm_speed != phy_dev->speed);
2428	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429	pause_chg = (sc->sbm_pause != phy_dev->pause);
2430
2431	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432		return;					/* Hmmm... */
2433
2434	if (!phy_dev->link) {
2435		if (link_chg) {
2436			sc->sbm_link = phy_dev->link;
2437			sc->sbm_speed = sbmac_speed_none;
2438			sc->sbm_duplex = sbmac_duplex_none;
2439			sc->sbm_fc = sbmac_fc_disabled;
2440			sc->sbm_pause = -1;
2441			pr_info("%s: link unavailable\n", dev->name);
2442		}
2443		return;
2444	}
2445
2446	if (phy_dev->duplex == DUPLEX_FULL) {
2447		if (phy_dev->pause)
2448			fc = sbmac_fc_frame;
2449		else
2450			fc = sbmac_fc_disabled;
2451	} else
2452		fc = sbmac_fc_collision;
2453	fc_chg = (sc->sbm_fc != fc);
2454
2455	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2457
2458	spin_lock_irqsave(&sc->sbm_lock, flags);
2459
2460	sc->sbm_speed = phy_dev->speed;
2461	sc->sbm_duplex = phy_dev->duplex;
2462	sc->sbm_fc = fc;
2463	sc->sbm_pause = phy_dev->pause;
2464	sc->sbm_link = phy_dev->link;
2465
2466	if ((speed_chg || duplex_chg || fc_chg) &&
2467	    sc->sbm_state != sbmac_state_off) {
2468		/*
2469		 * something changed, restart the channel
2470		 */
2471		if (debug > 1)
2472			pr_debug("%s: restarting channel "
2473				 "because PHY state changed\n", dev->name);
2474		sbmac_channel_stop(sc);
2475		sbmac_channel_start(sc);
2476	}
2477
2478	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479}
2480
2481
2482static void sbmac_tx_timeout (struct net_device *dev)
2483{
2484	struct sbmac_softc *sc = netdev_priv(dev);
2485	unsigned long flags;
2486
2487	spin_lock_irqsave(&sc->sbm_lock, flags);
2488
2489
2490	dev->trans_start = jiffies; /* prevent tx timeout */
2491	dev->stats.tx_errors++;
2492
2493	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2494
2495	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2496}
2497
2498
2499
2500
2501static void sbmac_set_rx_mode(struct net_device *dev)
2502{
2503	unsigned long flags;
2504	struct sbmac_softc *sc = netdev_priv(dev);
2505
2506	spin_lock_irqsave(&sc->sbm_lock, flags);
2507	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2508		/*
2509		 * Promiscuous changed.
2510		 */
2511
2512		if (dev->flags & IFF_PROMISC) {
2513			sbmac_promiscuous_mode(sc,1);
2514		}
2515		else {
2516			sbmac_promiscuous_mode(sc,0);
2517		}
2518	}
2519	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2520
2521	/*
2522	 * Program the multicasts.  Do this every time.
2523	 */
2524
2525	sbmac_setmulti(sc);
2526
2527}
2528
2529static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2530{
2531	struct sbmac_softc *sc = netdev_priv(dev);
2532
2533	if (!netif_running(dev) || !sc->phy_dev)
2534		return -EINVAL;
2535
2536	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2537}
2538
2539static int sbmac_close(struct net_device *dev)
2540{
2541	struct sbmac_softc *sc = netdev_priv(dev);
2542
2543	napi_disable(&sc->napi);
2544
2545	phy_stop(sc->phy_dev);
2546
2547	sbmac_set_channel_state(sc, sbmac_state_off);
2548
2549	netif_stop_queue(dev);
2550
2551	if (debug > 1)
2552		pr_debug("%s: Shutting down ethercard\n", dev->name);
2553
2554	phy_disconnect(sc->phy_dev);
2555	sc->phy_dev = NULL;
2556	free_irq(dev->irq, dev);
2557
2558	sbdma_emptyring(&(sc->sbm_txdma));
2559	sbdma_emptyring(&(sc->sbm_rxdma));
2560
2561	return 0;
2562}
2563
2564static int sbmac_poll(struct napi_struct *napi, int budget)
2565{
2566	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567	int work_done;
2568
2569	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2571
2572	if (work_done < budget) {
2573		napi_complete(napi);
2574
2575#ifdef CONFIG_SBMAC_COALESCE
2576		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2577			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2578			     sc->sbm_imr);
2579#else
2580		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2581			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2582#endif
2583	}
2584
2585	return work_done;
2586}
2587
2588
2589static int __devinit sbmac_probe(struct platform_device *pldev)
2590{
2591	struct net_device *dev;
2592	struct sbmac_softc *sc;
2593	void __iomem *sbm_base;
2594	struct resource *res;
2595	u64 sbmac_orig_hwaddr;
2596	int err;
2597
2598	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599	BUG_ON(!res);
2600	sbm_base = ioremap_nocache(res->start, resource_size(res));
2601	if (!sbm_base) {
2602		printk(KERN_ERR "%s: unable to map device registers\n",
2603		       dev_name(&pldev->dev));
2604		err = -ENOMEM;
2605		goto out_out;
2606	}
2607
2608	/*
2609	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610	 * value for us by the firmware if we're going to use this MAC.
2611	 * If we find a zero, skip this MAC.
2612	 */
2613	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616	if (sbmac_orig_hwaddr == 0) {
2617		err = 0;
2618		goto out_unmap;
2619	}
2620
2621	/*
2622	 * Okay, cool.  Initialize this MAC.
2623	 */
2624	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625	if (!dev) {
2626		printk(KERN_ERR "%s: unable to allocate etherdev\n",
2627		       dev_name(&pldev->dev));
2628		err = -ENOMEM;
2629		goto out_unmap;
2630	}
2631
2632	dev_set_drvdata(&pldev->dev, dev);
2633	SET_NETDEV_DEV(dev, &pldev->dev);
2634
2635	sc = netdev_priv(dev);
2636	sc->sbm_base = sbm_base;
2637
2638	err = sbmac_init(pldev, res->start);
2639	if (err)
2640		goto out_kfree;
2641
2642	return 0;
2643
2644out_kfree:
2645	free_netdev(dev);
2646	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2647
2648out_unmap:
2649	iounmap(sbm_base);
2650
2651out_out:
2652	return err;
2653}
2654
2655static int __exit sbmac_remove(struct platform_device *pldev)
2656{
2657	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2658	struct sbmac_softc *sc = netdev_priv(dev);
2659
2660	unregister_netdev(dev);
2661	sbmac_uninitctx(sc);
2662	mdiobus_unregister(sc->mii_bus);
2663	mdiobus_free(sc->mii_bus);
2664	iounmap(sc->sbm_base);
2665	free_netdev(dev);
2666
2667	return 0;
2668}
2669
2670static struct platform_driver sbmac_driver = {
2671	.probe = sbmac_probe,
2672	.remove = __exit_p(sbmac_remove),
2673	.driver = {
2674		.name = sbmac_string,
2675		.owner  = THIS_MODULE,
2676	},
2677};
2678
2679static int __init sbmac_init_module(void)
2680{
2681	return platform_driver_register(&sbmac_driver);
2682}
2683
2684static void __exit sbmac_cleanup_module(void)
2685{
2686	platform_driver_unregister(&sbmac_driver);
2687}
2688
2689module_init(sbmac_init_module);
2690module_exit(sbmac_cleanup_module);