Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2 * PXA168 ethernet driver.
   3 * Most of the code is derived from mv643xx ethernet driver.
   4 *
   5 * Copyright (C) 2010 Marvell International Ltd.
   6 *		Sachin Sanap <ssanap@marvell.com>
   7 *		Zhangfei Gao <zgao6@marvell.com>
   8 *		Philip Rakity <prakity@marvell.com>
   9 *		Mark Brown <markb@marvell.com>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License
  13 * as published by the Free Software Foundation; either version 2
  14 * of the License, or (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/in.h>
  29#include <linux/ip.h>
  30#include <linux/tcp.h>
  31#include <linux/udp.h>
  32#include <linux/etherdevice.h>
  33#include <linux/bitops.h>
  34#include <linux/delay.h>
  35#include <linux/ethtool.h>
  36#include <linux/platform_device.h>
  37#include <linux/module.h>
  38#include <linux/kernel.h>
  39#include <linux/workqueue.h>
  40#include <linux/clk.h>
  41#include <linux/phy.h>
  42#include <linux/io.h>
  43#include <linux/interrupt.h>
  44#include <linux/types.h>
  45#include <asm/pgtable.h>
  46#include <asm/system.h>
  47#include <asm/cacheflush.h>
  48#include <linux/pxa168_eth.h>
  49
  50#define DRIVER_NAME	"pxa168-eth"
  51#define DRIVER_VERSION	"0.3"
  52
  53/*
  54 * Registers
  55 */
  56
  57#define PHY_ADDRESS		0x0000
  58#define SMI			0x0010
  59#define PORT_CONFIG		0x0400
  60#define PORT_CONFIG_EXT		0x0408
  61#define PORT_COMMAND		0x0410
  62#define PORT_STATUS		0x0418
  63#define HTPR			0x0428
  64#define SDMA_CONFIG		0x0440
  65#define SDMA_CMD		0x0448
  66#define INT_CAUSE		0x0450
  67#define INT_W_CLEAR		0x0454
  68#define INT_MASK		0x0458
  69#define ETH_F_RX_DESC_0		0x0480
  70#define ETH_C_RX_DESC_0		0x04A0
  71#define ETH_C_TX_DESC_1		0x04E4
  72
  73/* smi register */
  74#define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
  75#define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
  76#define SMI_OP_W		(0 << 26)	/* Write operation      */
  77#define SMI_OP_R		(1 << 26)	/* Read operation */
  78
  79#define PHY_WAIT_ITERATIONS	10
  80
  81#define PXA168_ETH_PHY_ADDR_DEFAULT	0
  82/* RX & TX descriptor command */
  83#define BUF_OWNED_BY_DMA	(1 << 31)
  84
  85/* RX descriptor status */
  86#define RX_EN_INT		(1 << 23)
  87#define RX_FIRST_DESC		(1 << 17)
  88#define RX_LAST_DESC		(1 << 16)
  89#define RX_ERROR		(1 << 15)
  90
  91/* TX descriptor command */
  92#define TX_EN_INT		(1 << 23)
  93#define TX_GEN_CRC		(1 << 22)
  94#define TX_ZERO_PADDING		(1 << 18)
  95#define TX_FIRST_DESC		(1 << 17)
  96#define TX_LAST_DESC		(1 << 16)
  97#define TX_ERROR		(1 << 15)
  98
  99/* SDMA_CMD */
 100#define SDMA_CMD_AT		(1 << 31)
 101#define SDMA_CMD_TXDL		(1 << 24)
 102#define SDMA_CMD_TXDH		(1 << 23)
 103#define SDMA_CMD_AR		(1 << 15)
 104#define SDMA_CMD_ERD		(1 << 7)
 105
 106/* Bit definitions of the Port Config Reg */
 107#define PCR_HS			(1 << 12)
 108#define PCR_EN			(1 << 7)
 109#define PCR_PM			(1 << 0)
 110
 111/* Bit definitions of the Port Config Extend Reg */
 112#define PCXR_2BSM		(1 << 28)
 113#define PCXR_DSCP_EN		(1 << 21)
 114#define PCXR_MFL_1518		(0 << 14)
 115#define PCXR_MFL_1536		(1 << 14)
 116#define PCXR_MFL_2048		(2 << 14)
 117#define PCXR_MFL_64K		(3 << 14)
 118#define PCXR_FLP		(1 << 11)
 119#define PCXR_PRIO_TX_OFF	3
 120#define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
 121
 122/* Bit definitions of the SDMA Config Reg */
 123#define SDCR_BSZ_OFF		12
 124#define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
 125#define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
 126#define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
 127#define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
 128#define SDCR_BLMR		(1 << 6)
 129#define SDCR_BLMT		(1 << 7)
 130#define SDCR_RIFB		(1 << 9)
 131#define SDCR_RC_OFF		2
 132#define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
 133
 134/*
 135 * Bit definitions of the Interrupt Cause Reg
 136 * and Interrupt MASK Reg is the same
 137 */
 138#define ICR_RXBUF		(1 << 0)
 139#define ICR_TXBUF_H		(1 << 2)
 140#define ICR_TXBUF_L		(1 << 3)
 141#define ICR_TXEND_H		(1 << 6)
 142#define ICR_TXEND_L		(1 << 7)
 143#define ICR_RXERR		(1 << 8)
 144#define ICR_TXERR_H		(1 << 10)
 145#define ICR_TXERR_L		(1 << 11)
 146#define ICR_TX_UDR		(1 << 13)
 147#define ICR_MII_CH		(1 << 28)
 148
 149#define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
 150				ICR_TXERR_H  | ICR_TXERR_L |\
 151				ICR_TXEND_H  | ICR_TXEND_L |\
 152				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
 153
 154#define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
 155
 156#define NUM_RX_DESCS		64
 157#define NUM_TX_DESCS		64
 158
 159#define HASH_ADD		0
 160#define HASH_DELETE		1
 161#define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
 162#define HOP_NUMBER		12
 163
 164/* Bit definitions for Port status */
 165#define PORT_SPEED_100		(1 << 0)
 166#define FULL_DUPLEX		(1 << 1)
 167#define FLOW_CONTROL_ENABLED	(1 << 2)
 168#define LINK_UP			(1 << 3)
 169
 170/* Bit definitions for work to be done */
 171#define WORK_LINK		(1 << 0)
 172#define WORK_TX_DONE		(1 << 1)
 173
 174/*
 175 * Misc definitions.
 176 */
 177#define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
 178
 179struct rx_desc {
 180	u32 cmd_sts;		/* Descriptor command status            */
 181	u16 byte_cnt;		/* Descriptor buffer byte count         */
 182	u16 buf_size;		/* Buffer size                          */
 183	u32 buf_ptr;		/* Descriptor buffer pointer            */
 184	u32 next_desc_ptr;	/* Next descriptor pointer              */
 185};
 186
 187struct tx_desc {
 188	u32 cmd_sts;		/* Command/status field                 */
 189	u16 reserved;
 190	u16 byte_cnt;		/* buffer byte count                    */
 191	u32 buf_ptr;		/* pointer to buffer for this descriptor */
 192	u32 next_desc_ptr;	/* Pointer to next descriptor           */
 193};
 194
 195struct pxa168_eth_private {
 196	int port_num;		/* User Ethernet port number    */
 197
 198	int rx_resource_err;	/* Rx ring resource error flag */
 199
 200	/* Next available and first returning Rx resource */
 201	int rx_curr_desc_q, rx_used_desc_q;
 202
 203	/* Next available and first returning Tx resource */
 204	int tx_curr_desc_q, tx_used_desc_q;
 205
 206	struct rx_desc *p_rx_desc_area;
 207	dma_addr_t rx_desc_dma;
 208	int rx_desc_area_size;
 209	struct sk_buff **rx_skb;
 210
 211	struct tx_desc *p_tx_desc_area;
 212	dma_addr_t tx_desc_dma;
 213	int tx_desc_area_size;
 214	struct sk_buff **tx_skb;
 215
 216	struct work_struct tx_timeout_task;
 217
 218	struct net_device *dev;
 219	struct napi_struct napi;
 220	u8 work_todo;
 221	int skb_size;
 222
 223	struct net_device_stats stats;
 224	/* Size of Tx Ring per queue */
 225	int tx_ring_size;
 226	/* Number of tx descriptors in use */
 227	int tx_desc_count;
 228	/* Size of Rx Ring per queue */
 229	int rx_ring_size;
 230	/* Number of rx descriptors in use */
 231	int rx_desc_count;
 232
 233	/*
 234	 * Used in case RX Ring is empty, which can occur when
 235	 * system does not have resources (skb's)
 236	 */
 237	struct timer_list timeout;
 238	struct mii_bus *smi_bus;
 239	struct phy_device *phy;
 240
 241	/* clock */
 242	struct clk *clk;
 243	struct pxa168_eth_platform_data *pd;
 244	/*
 245	 * Ethernet controller base address.
 246	 */
 247	void __iomem *base;
 248
 249	/* Pointer to the hardware address filter table */
 250	void *htpr;
 251	dma_addr_t htpr_dma;
 252};
 253
 254struct addr_table_entry {
 255	__le32 lo;
 256	__le32 hi;
 257};
 258
 259/* Bit fields of a Hash Table Entry */
 260enum hash_table_entry {
 261	HASH_ENTRY_VALID = 1,
 262	SKIP = 2,
 263	HASH_ENTRY_RECEIVE_DISCARD = 4,
 264	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
 265};
 266
 267static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 268static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 269static int pxa168_init_hw(struct pxa168_eth_private *pep);
 270static void eth_port_reset(struct net_device *dev);
 271static void eth_port_start(struct net_device *dev);
 272static int pxa168_eth_open(struct net_device *dev);
 273static int pxa168_eth_stop(struct net_device *dev);
 274static int ethernet_phy_setup(struct net_device *dev);
 275
 276static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
 277{
 278	return readl(pep->base + offset);
 279}
 280
 281static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
 282{
 283	writel(data, pep->base + offset);
 284}
 285
 286static void abort_dma(struct pxa168_eth_private *pep)
 287{
 288	int delay;
 289	int max_retries = 40;
 290
 291	do {
 292		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
 293		udelay(100);
 294
 295		delay = 10;
 296		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
 297		       && delay-- > 0) {
 298			udelay(10);
 299		}
 300	} while (max_retries-- > 0 && delay <= 0);
 301
 302	if (max_retries <= 0)
 303		printk(KERN_ERR "%s : DMA Stuck\n", __func__);
 304}
 305
 306static int ethernet_phy_get(struct pxa168_eth_private *pep)
 307{
 308	unsigned int reg_data;
 309
 310	reg_data = rdl(pep, PHY_ADDRESS);
 311
 312	return (reg_data >> (5 * pep->port_num)) & 0x1f;
 313}
 314
 315static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
 316{
 317	u32 reg_data;
 318	int addr_shift = 5 * pep->port_num;
 319
 320	reg_data = rdl(pep, PHY_ADDRESS);
 321	reg_data &= ~(0x1f << addr_shift);
 322	reg_data |= (phy_addr & 0x1f) << addr_shift;
 323	wrl(pep, PHY_ADDRESS, reg_data);
 324}
 325
 326static void ethernet_phy_reset(struct pxa168_eth_private *pep)
 327{
 328	int data;
 329
 330	data = phy_read(pep->phy, MII_BMCR);
 331	if (data < 0)
 332		return;
 333
 334	data |= BMCR_RESET;
 335	if (phy_write(pep->phy, MII_BMCR, data) < 0)
 336		return;
 337
 338	do {
 339		data = phy_read(pep->phy, MII_BMCR);
 340	} while (data >= 0 && data & BMCR_RESET);
 341}
 342
 343static void rxq_refill(struct net_device *dev)
 344{
 345	struct pxa168_eth_private *pep = netdev_priv(dev);
 346	struct sk_buff *skb;
 347	struct rx_desc *p_used_rx_desc;
 348	int used_rx_desc;
 349
 350	while (pep->rx_desc_count < pep->rx_ring_size) {
 351		int size;
 352
 353		skb = dev_alloc_skb(pep->skb_size);
 354		if (!skb)
 355			break;
 356		if (SKB_DMA_REALIGN)
 357			skb_reserve(skb, SKB_DMA_REALIGN);
 358		pep->rx_desc_count++;
 359		/* Get 'used' Rx descriptor */
 360		used_rx_desc = pep->rx_used_desc_q;
 361		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
 362		size = skb->end - skb->data;
 363		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
 364							 skb->data,
 365							 size,
 366							 DMA_FROM_DEVICE);
 367		p_used_rx_desc->buf_size = size;
 368		pep->rx_skb[used_rx_desc] = skb;
 369
 370		/* Return the descriptor to DMA ownership */
 371		wmb();
 372		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
 373		wmb();
 374
 375		/* Move the used descriptor pointer to the next descriptor */
 376		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
 377
 378		/* Any Rx return cancels the Rx resource error status */
 379		pep->rx_resource_err = 0;
 380
 381		skb_reserve(skb, ETH_HW_IP_ALIGN);
 382	}
 383
 384	/*
 385	 * If RX ring is empty of SKB, set a timer to try allocating
 386	 * again at a later time.
 387	 */
 388	if (pep->rx_desc_count == 0) {
 389		pep->timeout.expires = jiffies + (HZ / 10);
 390		add_timer(&pep->timeout);
 391	}
 392}
 393
 394static inline void rxq_refill_timer_wrapper(unsigned long data)
 395{
 396	struct pxa168_eth_private *pep = (void *)data;
 397	napi_schedule(&pep->napi);
 398}
 399
 400static inline u8 flip_8_bits(u8 x)
 401{
 402	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
 403	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
 404	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
 405	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
 406}
 407
 408static void nibble_swap_every_byte(unsigned char *mac_addr)
 409{
 410	int i;
 411	for (i = 0; i < ETH_ALEN; i++) {
 412		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
 413				((mac_addr[i] & 0xf0) >> 4);
 414	}
 415}
 416
 417static void inverse_every_nibble(unsigned char *mac_addr)
 418{
 419	int i;
 420	for (i = 0; i < ETH_ALEN; i++)
 421		mac_addr[i] = flip_8_bits(mac_addr[i]);
 422}
 423
 424/*
 425 * ----------------------------------------------------------------------------
 426 * This function will calculate the hash function of the address.
 427 * Inputs
 428 * mac_addr_orig    - MAC address.
 429 * Outputs
 430 * return the calculated entry.
 431 */
 432static u32 hash_function(unsigned char *mac_addr_orig)
 433{
 434	u32 hash_result;
 435	u32 addr0;
 436	u32 addr1;
 437	u32 addr2;
 438	u32 addr3;
 439	unsigned char mac_addr[ETH_ALEN];
 440
 441	/* Make a copy of MAC address since we are going to performe bit
 442	 * operations on it
 443	 */
 444	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
 445
 446	nibble_swap_every_byte(mac_addr);
 447	inverse_every_nibble(mac_addr);
 448
 449	addr0 = (mac_addr[5] >> 2) & 0x3f;
 450	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
 451	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
 452	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
 453
 454	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
 455	hash_result = hash_result & 0x07ff;
 456	return hash_result;
 457}
 458
 459/*
 460 * ----------------------------------------------------------------------------
 461 * This function will add/del an entry to the address table.
 462 * Inputs
 463 * pep - ETHERNET .
 464 * mac_addr - MAC address.
 465 * skip - if 1, skip this address.Used in case of deleting an entry which is a
 466 *	  part of chain in the hash table.We can't just delete the entry since
 467 *	  that will break the chain.We need to defragment the tables time to
 468 *	  time.
 469 * rd   - 0 Discard packet upon match.
 470 *	- 1 Receive packet upon match.
 471 * Outputs
 472 * address table entry is added/deleted.
 473 * 0 if success.
 474 * -ENOSPC if table full
 475 */
 476static int add_del_hash_entry(struct pxa168_eth_private *pep,
 477			      unsigned char *mac_addr,
 478			      u32 rd, u32 skip, int del)
 479{
 480	struct addr_table_entry *entry, *start;
 481	u32 new_high;
 482	u32 new_low;
 483	u32 i;
 484
 485	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
 486	    | (((mac_addr[1] >> 0) & 0xf) << 11)
 487	    | (((mac_addr[0] >> 4) & 0xf) << 7)
 488	    | (((mac_addr[0] >> 0) & 0xf) << 3)
 489	    | (((mac_addr[3] >> 4) & 0x1) << 31)
 490	    | (((mac_addr[3] >> 0) & 0xf) << 27)
 491	    | (((mac_addr[2] >> 4) & 0xf) << 23)
 492	    | (((mac_addr[2] >> 0) & 0xf) << 19)
 493	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
 494	    | HASH_ENTRY_VALID;
 495
 496	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
 497	    | (((mac_addr[5] >> 0) & 0xf) << 11)
 498	    | (((mac_addr[4] >> 4) & 0xf) << 7)
 499	    | (((mac_addr[4] >> 0) & 0xf) << 3)
 500	    | (((mac_addr[3] >> 5) & 0x7) << 0);
 501
 502	/*
 503	 * Pick the appropriate table, start scanning for free/reusable
 504	 * entries at the index obtained by hashing the specified MAC address
 505	 */
 506	start = pep->htpr;
 507	entry = start + hash_function(mac_addr);
 508	for (i = 0; i < HOP_NUMBER; i++) {
 509		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
 510			break;
 511		} else {
 512			/* if same address put in same position */
 513			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
 514				(new_low & 0xfffffff8)) &&
 515				(le32_to_cpu(entry->hi) == new_high)) {
 516				break;
 517			}
 518		}
 519		if (entry == start + 0x7ff)
 520			entry = start;
 521		else
 522			entry++;
 523	}
 524
 525	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
 526	    (le32_to_cpu(entry->hi) != new_high) && del)
 527		return 0;
 528
 529	if (i == HOP_NUMBER) {
 530		if (!del) {
 531			printk(KERN_INFO "%s: table section is full, need to "
 532					"move to 16kB implementation?\n",
 533					 __FILE__);
 534			return -ENOSPC;
 535		} else
 536			return 0;
 537	}
 538
 539	/*
 540	 * Update the selected entry
 541	 */
 542	if (del) {
 543		entry->hi = 0;
 544		entry->lo = 0;
 545	} else {
 546		entry->hi = cpu_to_le32(new_high);
 547		entry->lo = cpu_to_le32(new_low);
 548	}
 549
 550	return 0;
 551}
 552
 553/*
 554 * ----------------------------------------------------------------------------
 555 *  Create an addressTable entry from MAC address info
 556 *  found in the specifed net_device struct
 557 *
 558 *  Input : pointer to ethernet interface network device structure
 559 *  Output : N/A
 560 */
 561static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
 562					  unsigned char *oaddr,
 563					  unsigned char *addr)
 564{
 565	/* Delete old entry */
 566	if (oaddr)
 567		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
 568	/* Add new entry */
 569	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
 570}
 571
 572static int init_hash_table(struct pxa168_eth_private *pep)
 573{
 574	/*
 575	 * Hardware expects CPU to build a hash table based on a predefined
 576	 * hash function and populate it based on hardware address. The
 577	 * location of the hash table is identified by 32-bit pointer stored
 578	 * in HTPR internal register. Two possible sizes exists for the hash
 579	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
 580	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
 581	 * 1/2kB.
 582	 */
 583	/* TODO: Add support for 8kB hash table and alternative hash
 584	 * function.Driver can dynamically switch to them if the 1/2kB hash
 585	 * table is full.
 586	 */
 587	if (pep->htpr == NULL) {
 588		pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
 589					      HASH_ADDR_TABLE_SIZE,
 590					      &pep->htpr_dma, GFP_KERNEL);
 591		if (pep->htpr == NULL)
 592			return -ENOMEM;
 593	}
 594	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 595	wrl(pep, HTPR, pep->htpr_dma);
 596	return 0;
 597}
 598
 599static void pxa168_eth_set_rx_mode(struct net_device *dev)
 600{
 601	struct pxa168_eth_private *pep = netdev_priv(dev);
 602	struct netdev_hw_addr *ha;
 603	u32 val;
 604
 605	val = rdl(pep, PORT_CONFIG);
 606	if (dev->flags & IFF_PROMISC)
 607		val |= PCR_PM;
 608	else
 609		val &= ~PCR_PM;
 610	wrl(pep, PORT_CONFIG, val);
 611
 612	/*
 613	 * Remove the old list of MAC address and add dev->addr
 614	 * and multicast address.
 615	 */
 616	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 617	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
 618
 619	netdev_for_each_mc_addr(ha, dev)
 620		update_hash_table_mac_address(pep, NULL, ha->addr);
 621}
 622
 623static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
 624{
 625	struct sockaddr *sa = addr;
 626	struct pxa168_eth_private *pep = netdev_priv(dev);
 627	unsigned char oldMac[ETH_ALEN];
 628
 629	if (!is_valid_ether_addr(sa->sa_data))
 630		return -EINVAL;
 631	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
 632	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
 633	netif_addr_lock_bh(dev);
 634	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
 635	netif_addr_unlock_bh(dev);
 636	return 0;
 637}
 638
 639static void eth_port_start(struct net_device *dev)
 640{
 641	unsigned int val = 0;
 642	struct pxa168_eth_private *pep = netdev_priv(dev);
 643	int tx_curr_desc, rx_curr_desc;
 644
 645	/* Perform PHY reset, if there is a PHY. */
 646	if (pep->phy != NULL) {
 647		struct ethtool_cmd cmd;
 648
 649		pxa168_get_settings(pep->dev, &cmd);
 650		ethernet_phy_reset(pep);
 651		pxa168_set_settings(pep->dev, &cmd);
 652	}
 653
 654	/* Assignment of Tx CTRP of given queue */
 655	tx_curr_desc = pep->tx_curr_desc_q;
 656	wrl(pep, ETH_C_TX_DESC_1,
 657	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
 658
 659	/* Assignment of Rx CRDP of given queue */
 660	rx_curr_desc = pep->rx_curr_desc_q;
 661	wrl(pep, ETH_C_RX_DESC_0,
 662	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 663
 664	wrl(pep, ETH_F_RX_DESC_0,
 665	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 666
 667	/* Clear all interrupts */
 668	wrl(pep, INT_CAUSE, 0);
 669
 670	/* Enable all interrupts for receive, transmit and error. */
 671	wrl(pep, INT_MASK, ALL_INTS);
 672
 673	val = rdl(pep, PORT_CONFIG);
 674	val |= PCR_EN;
 675	wrl(pep, PORT_CONFIG, val);
 676
 677	/* Start RX DMA engine */
 678	val = rdl(pep, SDMA_CMD);
 679	val |= SDMA_CMD_ERD;
 680	wrl(pep, SDMA_CMD, val);
 681}
 682
 683static void eth_port_reset(struct net_device *dev)
 684{
 685	struct pxa168_eth_private *pep = netdev_priv(dev);
 686	unsigned int val = 0;
 687
 688	/* Stop all interrupts for receive, transmit and error. */
 689	wrl(pep, INT_MASK, 0);
 690
 691	/* Clear all interrupts */
 692	wrl(pep, INT_CAUSE, 0);
 693
 694	/* Stop RX DMA */
 695	val = rdl(pep, SDMA_CMD);
 696	val &= ~SDMA_CMD_ERD;	/* abort dma command */
 697
 698	/* Abort any transmit and receive operations and put DMA
 699	 * in idle state.
 700	 */
 701	abort_dma(pep);
 702
 703	/* Disable port */
 704	val = rdl(pep, PORT_CONFIG);
 705	val &= ~PCR_EN;
 706	wrl(pep, PORT_CONFIG, val);
 707}
 708
 709/*
 710 * txq_reclaim - Free the tx desc data for completed descriptors
 711 * If force is non-zero, frees uncompleted descriptors as well
 712 */
 713static int txq_reclaim(struct net_device *dev, int force)
 714{
 715	struct pxa168_eth_private *pep = netdev_priv(dev);
 716	struct tx_desc *desc;
 717	u32 cmd_sts;
 718	struct sk_buff *skb;
 719	int tx_index;
 720	dma_addr_t addr;
 721	int count;
 722	int released = 0;
 723
 724	netif_tx_lock(dev);
 725
 726	pep->work_todo &= ~WORK_TX_DONE;
 727	while (pep->tx_desc_count > 0) {
 728		tx_index = pep->tx_used_desc_q;
 729		desc = &pep->p_tx_desc_area[tx_index];
 730		cmd_sts = desc->cmd_sts;
 731		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
 732			if (released > 0) {
 733				goto txq_reclaim_end;
 734			} else {
 735				released = -1;
 736				goto txq_reclaim_end;
 737			}
 738		}
 739		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
 740		pep->tx_desc_count--;
 741		addr = desc->buf_ptr;
 742		count = desc->byte_cnt;
 743		skb = pep->tx_skb[tx_index];
 744		if (skb)
 745			pep->tx_skb[tx_index] = NULL;
 746
 747		if (cmd_sts & TX_ERROR) {
 748			if (net_ratelimit())
 749				printk(KERN_ERR "%s: Error in TX\n", dev->name);
 750			dev->stats.tx_errors++;
 751		}
 752		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
 753		if (skb)
 754			dev_kfree_skb_irq(skb);
 755		released++;
 756	}
 757txq_reclaim_end:
 758	netif_tx_unlock(dev);
 759	return released;
 760}
 761
 762static void pxa168_eth_tx_timeout(struct net_device *dev)
 763{
 764	struct pxa168_eth_private *pep = netdev_priv(dev);
 765
 766	printk(KERN_INFO "%s: TX timeout  desc_count %d\n",
 767	       dev->name, pep->tx_desc_count);
 768
 769	schedule_work(&pep->tx_timeout_task);
 770}
 771
 772static void pxa168_eth_tx_timeout_task(struct work_struct *work)
 773{
 774	struct pxa168_eth_private *pep = container_of(work,
 775						 struct pxa168_eth_private,
 776						 tx_timeout_task);
 777	struct net_device *dev = pep->dev;
 778	pxa168_eth_stop(dev);
 779	pxa168_eth_open(dev);
 780}
 781
 782static int rxq_process(struct net_device *dev, int budget)
 783{
 784	struct pxa168_eth_private *pep = netdev_priv(dev);
 785	struct net_device_stats *stats = &dev->stats;
 786	unsigned int received_packets = 0;
 787	struct sk_buff *skb;
 788
 789	while (budget-- > 0) {
 790		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
 791		struct rx_desc *rx_desc;
 792		unsigned int cmd_sts;
 793
 794		/* Do not process Rx ring in case of Rx ring resource error */
 795		if (pep->rx_resource_err)
 796			break;
 797		rx_curr_desc = pep->rx_curr_desc_q;
 798		rx_used_desc = pep->rx_used_desc_q;
 799		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
 800		cmd_sts = rx_desc->cmd_sts;
 801		rmb();
 802		if (cmd_sts & (BUF_OWNED_BY_DMA))
 803			break;
 804		skb = pep->rx_skb[rx_curr_desc];
 805		pep->rx_skb[rx_curr_desc] = NULL;
 806
 807		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
 808		pep->rx_curr_desc_q = rx_next_curr_desc;
 809
 810		/* Rx descriptors exhausted. */
 811		/* Set the Rx ring resource error flag */
 812		if (rx_next_curr_desc == rx_used_desc)
 813			pep->rx_resource_err = 1;
 814		pep->rx_desc_count--;
 815		dma_unmap_single(NULL, rx_desc->buf_ptr,
 816				 rx_desc->buf_size,
 817				 DMA_FROM_DEVICE);
 818		received_packets++;
 819		/*
 820		 * Update statistics.
 821		 * Note byte count includes 4 byte CRC count
 822		 */
 823		stats->rx_packets++;
 824		stats->rx_bytes += rx_desc->byte_cnt;
 825		/*
 826		 * In case received a packet without first / last bits on OR
 827		 * the error summary bit is on, the packets needs to be droped.
 828		 */
 829		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 830		     (RX_FIRST_DESC | RX_LAST_DESC))
 831		    || (cmd_sts & RX_ERROR)) {
 832
 833			stats->rx_dropped++;
 834			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 835			    (RX_FIRST_DESC | RX_LAST_DESC)) {
 836				if (net_ratelimit())
 837					printk(KERN_ERR
 838					       "%s: Rx pkt on multiple desc\n",
 839					       dev->name);
 840			}
 841			if (cmd_sts & RX_ERROR)
 842				stats->rx_errors++;
 843			dev_kfree_skb_irq(skb);
 844		} else {
 845			/*
 846			 * The -4 is for the CRC in the trailer of the
 847			 * received packet
 848			 */
 849			skb_put(skb, rx_desc->byte_cnt - 4);
 850			skb->protocol = eth_type_trans(skb, dev);
 851			netif_receive_skb(skb);
 852		}
 853	}
 854	/* Fill RX ring with skb's */
 855	rxq_refill(dev);
 856	return received_packets;
 857}
 858
 859static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
 860				     struct net_device *dev)
 861{
 862	u32 icr;
 863	int ret = 0;
 864
 865	icr = rdl(pep, INT_CAUSE);
 866	if (icr == 0)
 867		return IRQ_NONE;
 868
 869	wrl(pep, INT_CAUSE, ~icr);
 870	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
 871		pep->work_todo |= WORK_TX_DONE;
 872		ret = 1;
 873	}
 874	if (icr & ICR_RXBUF)
 875		ret = 1;
 876	if (icr & ICR_MII_CH) {
 877		pep->work_todo |= WORK_LINK;
 878		ret = 1;
 879	}
 880	return ret;
 881}
 882
 883static void handle_link_event(struct pxa168_eth_private *pep)
 884{
 885	struct net_device *dev = pep->dev;
 886	u32 port_status;
 887	int speed;
 888	int duplex;
 889	int fc;
 890
 891	port_status = rdl(pep, PORT_STATUS);
 892	if (!(port_status & LINK_UP)) {
 893		if (netif_carrier_ok(dev)) {
 894			printk(KERN_INFO "%s: link down\n", dev->name);
 895			netif_carrier_off(dev);
 896			txq_reclaim(dev, 1);
 897		}
 898		return;
 899	}
 900	if (port_status & PORT_SPEED_100)
 901		speed = 100;
 902	else
 903		speed = 10;
 904
 905	duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
 906	fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
 907	printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
 908	       "flow control %sabled\n", dev->name,
 909	       speed, duplex ? "full" : "half", fc ? "en" : "dis");
 910	if (!netif_carrier_ok(dev))
 911		netif_carrier_on(dev);
 912}
 913
 914static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
 915{
 916	struct net_device *dev = (struct net_device *)dev_id;
 917	struct pxa168_eth_private *pep = netdev_priv(dev);
 918
 919	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
 920		return IRQ_NONE;
 921	/* Disable interrupts */
 922	wrl(pep, INT_MASK, 0);
 923	napi_schedule(&pep->napi);
 924	return IRQ_HANDLED;
 925}
 926
 927static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
 928{
 929	int skb_size;
 930
 931	/*
 932	 * Reserve 2+14 bytes for an ethernet header (the hardware
 933	 * automatically prepends 2 bytes of dummy data to each
 934	 * received packet), 16 bytes for up to four VLAN tags, and
 935	 * 4 bytes for the trailing FCS -- 36 bytes total.
 936	 */
 937	skb_size = pep->dev->mtu + 36;
 938
 939	/*
 940	 * Make sure that the skb size is a multiple of 8 bytes, as
 941	 * the lower three bits of the receive descriptor's buffer
 942	 * size field are ignored by the hardware.
 943	 */
 944	pep->skb_size = (skb_size + 7) & ~7;
 945
 946	/*
 947	 * If NET_SKB_PAD is smaller than a cache line,
 948	 * netdev_alloc_skb() will cause skb->data to be misaligned
 949	 * to a cache line boundary.  If this is the case, include
 950	 * some extra space to allow re-aligning the data area.
 951	 */
 952	pep->skb_size += SKB_DMA_REALIGN;
 953
 954}
 955
 956static int set_port_config_ext(struct pxa168_eth_private *pep)
 957{
 958	int skb_size;
 959
 960	pxa168_eth_recalc_skb_size(pep);
 961	if  (pep->skb_size <= 1518)
 962		skb_size = PCXR_MFL_1518;
 963	else if (pep->skb_size <= 1536)
 964		skb_size = PCXR_MFL_1536;
 965	else if (pep->skb_size <= 2048)
 966		skb_size = PCXR_MFL_2048;
 967	else
 968		skb_size = PCXR_MFL_64K;
 969
 970	/* Extended Port Configuration */
 971	wrl(pep,
 972	    PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
 973	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
 974	    skb_size | PCXR_FLP |	 /* do not force link pass */
 975	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
 976
 977	return 0;
 978}
 979
 980static int pxa168_init_hw(struct pxa168_eth_private *pep)
 981{
 982	int err = 0;
 983
 984	/* Disable interrupts */
 985	wrl(pep, INT_MASK, 0);
 986	wrl(pep, INT_CAUSE, 0);
 987	/* Write to ICR to clear interrupts. */
 988	wrl(pep, INT_W_CLEAR, 0);
 989	/* Abort any transmit and receive operations and put DMA
 990	 * in idle state.
 991	 */
 992	abort_dma(pep);
 993	/* Initialize address hash table */
 994	err = init_hash_table(pep);
 995	if (err)
 996		return err;
 997	/* SDMA configuration */
 998	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
 999	    SDCR_RIFB |				/* Rx interrupt on frame */
1000	    SDCR_BLMT |				/* Little endian transmit */
1001	    SDCR_BLMR |				/* Little endian receive */
1002	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1003	/* Port Configuration */
1004	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1005	set_port_config_ext(pep);
1006
1007	return err;
1008}
1009
1010static int rxq_init(struct net_device *dev)
1011{
1012	struct pxa168_eth_private *pep = netdev_priv(dev);
1013	struct rx_desc *p_rx_desc;
1014	int size = 0, i = 0;
1015	int rx_desc_num = pep->rx_ring_size;
1016
1017	/* Allocate RX skb rings */
1018	pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1019			     GFP_KERNEL);
1020	if (!pep->rx_skb) {
1021		printk(KERN_ERR "%s: Cannot alloc RX skb ring\n", dev->name);
1022		return -ENOMEM;
1023	}
1024	/* Allocate RX ring */
1025	pep->rx_desc_count = 0;
1026	size = pep->rx_ring_size * sizeof(struct rx_desc);
1027	pep->rx_desc_area_size = size;
1028	pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1029						&pep->rx_desc_dma, GFP_KERNEL);
1030	if (!pep->p_rx_desc_area) {
1031		printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1032		       dev->name, size);
1033		goto out;
1034	}
1035	memset((void *)pep->p_rx_desc_area, 0, size);
1036	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1037	p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
1038	for (i = 0; i < rx_desc_num; i++) {
1039		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1040		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1041	}
1042	/* Save Rx desc pointer to driver struct. */
1043	pep->rx_curr_desc_q = 0;
1044	pep->rx_used_desc_q = 0;
1045	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1046	return 0;
1047out:
1048	kfree(pep->rx_skb);
1049	return -ENOMEM;
1050}
1051
1052static void rxq_deinit(struct net_device *dev)
1053{
1054	struct pxa168_eth_private *pep = netdev_priv(dev);
1055	int curr;
1056
1057	/* Free preallocated skb's on RX rings */
1058	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1059		if (pep->rx_skb[curr]) {
1060			dev_kfree_skb(pep->rx_skb[curr]);
1061			pep->rx_desc_count--;
1062		}
1063	}
1064	if (pep->rx_desc_count)
1065		printk(KERN_ERR
1066		       "Error in freeing Rx Ring. %d skb's still\n",
1067		       pep->rx_desc_count);
1068	/* Free RX ring */
1069	if (pep->p_rx_desc_area)
1070		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1071				  pep->p_rx_desc_area, pep->rx_desc_dma);
1072	kfree(pep->rx_skb);
1073}
1074
1075static int txq_init(struct net_device *dev)
1076{
1077	struct pxa168_eth_private *pep = netdev_priv(dev);
1078	struct tx_desc *p_tx_desc;
1079	int size = 0, i = 0;
1080	int tx_desc_num = pep->tx_ring_size;
1081
1082	pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1083			     GFP_KERNEL);
1084	if (!pep->tx_skb) {
1085		printk(KERN_ERR "%s: Cannot alloc TX skb ring\n", dev->name);
1086		return -ENOMEM;
1087	}
1088	/* Allocate TX ring */
1089	pep->tx_desc_count = 0;
1090	size = pep->tx_ring_size * sizeof(struct tx_desc);
1091	pep->tx_desc_area_size = size;
1092	pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1093						&pep->tx_desc_dma, GFP_KERNEL);
1094	if (!pep->p_tx_desc_area) {
1095		printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1096		       dev->name, size);
1097		goto out;
1098	}
1099	memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1100	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1101	p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
1102	for (i = 0; i < tx_desc_num; i++) {
1103		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1104		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1105	}
1106	pep->tx_curr_desc_q = 0;
1107	pep->tx_used_desc_q = 0;
1108	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1109	return 0;
1110out:
1111	kfree(pep->tx_skb);
1112	return -ENOMEM;
1113}
1114
1115static void txq_deinit(struct net_device *dev)
1116{
1117	struct pxa168_eth_private *pep = netdev_priv(dev);
1118
1119	/* Free outstanding skb's on TX ring */
1120	txq_reclaim(dev, 1);
1121	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1122	/* Free TX ring */
1123	if (pep->p_tx_desc_area)
1124		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1125				  pep->p_tx_desc_area, pep->tx_desc_dma);
1126	kfree(pep->tx_skb);
1127}
1128
1129static int pxa168_eth_open(struct net_device *dev)
1130{
1131	struct pxa168_eth_private *pep = netdev_priv(dev);
1132	int err;
1133
1134	err = request_irq(dev->irq, pxa168_eth_int_handler,
1135			  IRQF_DISABLED, dev->name, dev);
1136	if (err) {
1137		dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
1138		return -EAGAIN;
1139	}
1140	pep->rx_resource_err = 0;
1141	err = rxq_init(dev);
1142	if (err != 0)
1143		goto out_free_irq;
1144	err = txq_init(dev);
1145	if (err != 0)
1146		goto out_free_rx_skb;
1147	pep->rx_used_desc_q = 0;
1148	pep->rx_curr_desc_q = 0;
1149
1150	/* Fill RX ring with skb's */
1151	rxq_refill(dev);
1152	pep->rx_used_desc_q = 0;
1153	pep->rx_curr_desc_q = 0;
1154	netif_carrier_off(dev);
1155	eth_port_start(dev);
1156	napi_enable(&pep->napi);
1157	return 0;
1158out_free_rx_skb:
1159	rxq_deinit(dev);
1160out_free_irq:
1161	free_irq(dev->irq, dev);
1162	return err;
1163}
1164
1165static int pxa168_eth_stop(struct net_device *dev)
1166{
1167	struct pxa168_eth_private *pep = netdev_priv(dev);
1168	eth_port_reset(dev);
1169
1170	/* Disable interrupts */
1171	wrl(pep, INT_MASK, 0);
1172	wrl(pep, INT_CAUSE, 0);
1173	/* Write to ICR to clear interrupts. */
1174	wrl(pep, INT_W_CLEAR, 0);
1175	napi_disable(&pep->napi);
1176	del_timer_sync(&pep->timeout);
1177	netif_carrier_off(dev);
1178	free_irq(dev->irq, dev);
1179	rxq_deinit(dev);
1180	txq_deinit(dev);
1181
1182	return 0;
1183}
1184
1185static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1186{
1187	int retval;
1188	struct pxa168_eth_private *pep = netdev_priv(dev);
1189
1190	if ((mtu > 9500) || (mtu < 68))
1191		return -EINVAL;
1192
1193	dev->mtu = mtu;
1194	retval = set_port_config_ext(pep);
1195
1196	if (!netif_running(dev))
1197		return 0;
1198
1199	/*
1200	 * Stop and then re-open the interface. This will allocate RX
1201	 * skbs of the new MTU.
1202	 * There is a possible danger that the open will not succeed,
1203	 * due to memory being full.
1204	 */
1205	pxa168_eth_stop(dev);
1206	if (pxa168_eth_open(dev)) {
1207		dev_printk(KERN_ERR, &dev->dev,
1208			   "fatal error on re-opening device after "
1209			   "MTU change\n");
1210	}
1211
1212	return 0;
1213}
1214
1215static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1216{
1217	int tx_desc_curr;
1218
1219	tx_desc_curr = pep->tx_curr_desc_q;
1220	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1221	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1222	pep->tx_desc_count++;
1223
1224	return tx_desc_curr;
1225}
1226
1227static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1228{
1229	struct pxa168_eth_private *pep =
1230	    container_of(napi, struct pxa168_eth_private, napi);
1231	struct net_device *dev = pep->dev;
1232	int work_done = 0;
1233
1234	if (unlikely(pep->work_todo & WORK_LINK)) {
1235		pep->work_todo &= ~(WORK_LINK);
1236		handle_link_event(pep);
1237	}
1238	/*
1239	 * We call txq_reclaim every time since in NAPI interupts are disabled
1240	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1241	 * interrupt status register.
1242	 */
1243	txq_reclaim(dev, 0);
1244	if (netif_queue_stopped(dev)
1245	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1246		netif_wake_queue(dev);
1247	}
1248	work_done = rxq_process(dev, budget);
1249	if (work_done < budget) {
1250		napi_complete(napi);
1251		wrl(pep, INT_MASK, ALL_INTS);
1252	}
1253
1254	return work_done;
1255}
1256
1257static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1258{
1259	struct pxa168_eth_private *pep = netdev_priv(dev);
1260	struct net_device_stats *stats = &dev->stats;
1261	struct tx_desc *desc;
1262	int tx_index;
1263	int length;
1264
1265	tx_index = eth_alloc_tx_desc_index(pep);
1266	desc = &pep->p_tx_desc_area[tx_index];
1267	length = skb->len;
1268	pep->tx_skb[tx_index] = skb;
1269	desc->byte_cnt = length;
1270	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1271
1272	skb_tx_timestamp(skb);
1273
1274	wmb();
1275	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1276			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1277	wmb();
1278	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1279
1280	stats->tx_bytes += length;
1281	stats->tx_packets++;
1282	dev->trans_start = jiffies;
1283	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1284		/* We handled the current skb, but now we are out of space.*/
1285		netif_stop_queue(dev);
1286	}
1287
1288	return NETDEV_TX_OK;
1289}
1290
1291static int smi_wait_ready(struct pxa168_eth_private *pep)
1292{
1293	int i = 0;
1294
1295	/* wait for the SMI register to become available */
1296	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1297		if (i == PHY_WAIT_ITERATIONS)
1298			return -ETIMEDOUT;
1299		msleep(10);
1300	}
1301
1302	return 0;
1303}
1304
1305static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1306{
1307	struct pxa168_eth_private *pep = bus->priv;
1308	int i = 0;
1309	int val;
1310
1311	if (smi_wait_ready(pep)) {
1312		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1313		return -ETIMEDOUT;
1314	}
1315	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1316	/* now wait for the data to be valid */
1317	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1318		if (i == PHY_WAIT_ITERATIONS) {
1319			printk(KERN_WARNING
1320				"pxa168_eth: SMI bus read not valid\n");
1321			return -ENODEV;
1322		}
1323		msleep(10);
1324	}
1325
1326	return val & 0xffff;
1327}
1328
1329static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1330			    u16 value)
1331{
1332	struct pxa168_eth_private *pep = bus->priv;
1333
1334	if (smi_wait_ready(pep)) {
1335		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1336		return -ETIMEDOUT;
1337	}
1338
1339	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1340	    SMI_OP_W | (value & 0xffff));
1341
1342	if (smi_wait_ready(pep)) {
1343		printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1344		return -ETIMEDOUT;
1345	}
1346
1347	return 0;
1348}
1349
1350static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1351			       int cmd)
1352{
1353	struct pxa168_eth_private *pep = netdev_priv(dev);
1354	if (pep->phy != NULL)
1355		return phy_mii_ioctl(pep->phy, ifr, cmd);
1356
1357	return -EOPNOTSUPP;
1358}
1359
1360static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1361{
1362	struct mii_bus *bus = pep->smi_bus;
1363	struct phy_device *phydev;
1364	int start;
1365	int num;
1366	int i;
1367
1368	if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1369		/* Scan entire range */
1370		start = ethernet_phy_get(pep);
1371		num = 32;
1372	} else {
1373		/* Use phy addr specific to platform */
1374		start = phy_addr & 0x1f;
1375		num = 1;
1376	}
1377	phydev = NULL;
1378	for (i = 0; i < num; i++) {
1379		int addr = (start + i) & 0x1f;
1380		if (bus->phy_map[addr] == NULL)
1381			mdiobus_scan(bus, addr);
1382
1383		if (phydev == NULL) {
1384			phydev = bus->phy_map[addr];
1385			if (phydev != NULL)
1386				ethernet_phy_set_addr(pep, addr);
1387		}
1388	}
1389
1390	return phydev;
1391}
1392
1393static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1394{
1395	struct phy_device *phy = pep->phy;
1396	ethernet_phy_reset(pep);
1397
1398	phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1399
1400	if (speed == 0) {
1401		phy->autoneg = AUTONEG_ENABLE;
1402		phy->speed = 0;
1403		phy->duplex = 0;
1404		phy->supported &= PHY_BASIC_FEATURES;
1405		phy->advertising = phy->supported | ADVERTISED_Autoneg;
1406	} else {
1407		phy->autoneg = AUTONEG_DISABLE;
1408		phy->advertising = 0;
1409		phy->speed = speed;
1410		phy->duplex = duplex;
1411	}
1412	phy_start_aneg(phy);
1413}
1414
1415static int ethernet_phy_setup(struct net_device *dev)
1416{
1417	struct pxa168_eth_private *pep = netdev_priv(dev);
1418
1419	if (pep->pd->init)
1420		pep->pd->init();
1421	pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1422	if (pep->phy != NULL)
1423		phy_init(pep, pep->pd->speed, pep->pd->duplex);
1424	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1425
1426	return 0;
1427}
1428
1429static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1430{
1431	struct pxa168_eth_private *pep = netdev_priv(dev);
1432	int err;
1433
1434	err = phy_read_status(pep->phy);
1435	if (err == 0)
1436		err = phy_ethtool_gset(pep->phy, cmd);
1437
1438	return err;
1439}
1440
1441static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1442{
1443	struct pxa168_eth_private *pep = netdev_priv(dev);
1444
1445	return phy_ethtool_sset(pep->phy, cmd);
1446}
1447
1448static void pxa168_get_drvinfo(struct net_device *dev,
1449			       struct ethtool_drvinfo *info)
1450{
1451	strncpy(info->driver, DRIVER_NAME, 32);
1452	strncpy(info->version, DRIVER_VERSION, 32);
1453	strncpy(info->fw_version, "N/A", 32);
1454	strncpy(info->bus_info, "N/A", 32);
1455}
1456
1457static const struct ethtool_ops pxa168_ethtool_ops = {
1458	.get_settings = pxa168_get_settings,
1459	.set_settings = pxa168_set_settings,
1460	.get_drvinfo = pxa168_get_drvinfo,
1461	.get_link = ethtool_op_get_link,
1462};
1463
1464static const struct net_device_ops pxa168_eth_netdev_ops = {
1465	.ndo_open = pxa168_eth_open,
1466	.ndo_stop = pxa168_eth_stop,
1467	.ndo_start_xmit = pxa168_eth_start_xmit,
1468	.ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1469	.ndo_set_mac_address = pxa168_eth_set_mac_address,
1470	.ndo_validate_addr = eth_validate_addr,
1471	.ndo_do_ioctl = pxa168_eth_do_ioctl,
1472	.ndo_change_mtu = pxa168_eth_change_mtu,
1473	.ndo_tx_timeout = pxa168_eth_tx_timeout,
1474};
1475
1476static int pxa168_eth_probe(struct platform_device *pdev)
1477{
1478	struct pxa168_eth_private *pep = NULL;
1479	struct net_device *dev = NULL;
1480	struct resource *res;
1481	struct clk *clk;
1482	int err;
1483
1484	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1485
1486	clk = clk_get(&pdev->dev, "MFUCLK");
1487	if (IS_ERR(clk)) {
1488		printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1489			DRIVER_NAME);
1490		return -ENODEV;
1491	}
1492	clk_enable(clk);
1493
1494	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1495	if (!dev) {
1496		err = -ENOMEM;
1497		goto err_clk;
1498	}
1499
1500	platform_set_drvdata(pdev, dev);
1501	pep = netdev_priv(dev);
1502	pep->dev = dev;
1503	pep->clk = clk;
1504	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1505	if (res == NULL) {
1506		err = -ENODEV;
1507		goto err_netdev;
1508	}
1509	pep->base = ioremap(res->start, resource_size(res));
1510	if (pep->base == NULL) {
1511		err = -ENOMEM;
1512		goto err_netdev;
1513	}
1514	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1515	BUG_ON(!res);
1516	dev->irq = res->start;
1517	dev->netdev_ops = &pxa168_eth_netdev_ops;
1518	dev->watchdog_timeo = 2 * HZ;
1519	dev->base_addr = 0;
1520	SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1521
1522	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1523
1524	printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1525	random_ether_addr(dev->dev_addr);
1526
1527	pep->pd = pdev->dev.platform_data;
1528	pep->rx_ring_size = NUM_RX_DESCS;
1529	if (pep->pd->rx_queue_size)
1530		pep->rx_ring_size = pep->pd->rx_queue_size;
1531
1532	pep->tx_ring_size = NUM_TX_DESCS;
1533	if (pep->pd->tx_queue_size)
1534		pep->tx_ring_size = pep->pd->tx_queue_size;
1535
1536	pep->port_num = pep->pd->port_number;
1537	/* Hardware supports only 3 ports */
1538	BUG_ON(pep->port_num > 2);
1539	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1540
1541	memset(&pep->timeout, 0, sizeof(struct timer_list));
1542	init_timer(&pep->timeout);
1543	pep->timeout.function = rxq_refill_timer_wrapper;
1544	pep->timeout.data = (unsigned long)pep;
1545
1546	pep->smi_bus = mdiobus_alloc();
1547	if (pep->smi_bus == NULL) {
1548		err = -ENOMEM;
1549		goto err_base;
1550	}
1551	pep->smi_bus->priv = pep;
1552	pep->smi_bus->name = "pxa168_eth smi";
1553	pep->smi_bus->read = pxa168_smi_read;
1554	pep->smi_bus->write = pxa168_smi_write;
1555	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
1556	pep->smi_bus->parent = &pdev->dev;
1557	pep->smi_bus->phy_mask = 0xffffffff;
1558	err = mdiobus_register(pep->smi_bus);
1559	if (err)
1560		goto err_free_mdio;
1561
1562	pxa168_init_hw(pep);
1563	err = ethernet_phy_setup(dev);
1564	if (err)
1565		goto err_mdiobus;
1566	SET_NETDEV_DEV(dev, &pdev->dev);
1567	err = register_netdev(dev);
1568	if (err)
1569		goto err_mdiobus;
1570	return 0;
1571
1572err_mdiobus:
1573	mdiobus_unregister(pep->smi_bus);
1574err_free_mdio:
1575	mdiobus_free(pep->smi_bus);
1576err_base:
1577	iounmap(pep->base);
1578err_netdev:
1579	free_netdev(dev);
1580err_clk:
1581	clk_disable(clk);
1582	clk_put(clk);
1583	return err;
1584}
1585
1586static int pxa168_eth_remove(struct platform_device *pdev)
1587{
1588	struct net_device *dev = platform_get_drvdata(pdev);
1589	struct pxa168_eth_private *pep = netdev_priv(dev);
1590
1591	if (pep->htpr) {
1592		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1593				  pep->htpr, pep->htpr_dma);
1594		pep->htpr = NULL;
1595	}
1596	if (pep->clk) {
1597		clk_disable(pep->clk);
1598		clk_put(pep->clk);
1599		pep->clk = NULL;
1600	}
1601	if (pep->phy != NULL)
1602		phy_detach(pep->phy);
1603
1604	iounmap(pep->base);
1605	pep->base = NULL;
1606	mdiobus_unregister(pep->smi_bus);
1607	mdiobus_free(pep->smi_bus);
1608	unregister_netdev(dev);
1609	cancel_work_sync(&pep->tx_timeout_task);
1610	free_netdev(dev);
1611	platform_set_drvdata(pdev, NULL);
1612	return 0;
1613}
1614
1615static void pxa168_eth_shutdown(struct platform_device *pdev)
1616{
1617	struct net_device *dev = platform_get_drvdata(pdev);
1618	eth_port_reset(dev);
1619}
1620
1621#ifdef CONFIG_PM
1622static int pxa168_eth_resume(struct platform_device *pdev)
1623{
1624	return -ENOSYS;
1625}
1626
1627static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1628{
1629	return -ENOSYS;
1630}
1631
1632#else
1633#define pxa168_eth_resume NULL
1634#define pxa168_eth_suspend NULL
1635#endif
1636
1637static struct platform_driver pxa168_eth_driver = {
1638	.probe = pxa168_eth_probe,
1639	.remove = pxa168_eth_remove,
1640	.shutdown = pxa168_eth_shutdown,
1641	.resume = pxa168_eth_resume,
1642	.suspend = pxa168_eth_suspend,
1643	.driver = {
1644		   .name = DRIVER_NAME,
1645		   },
1646};
1647
1648static int __init pxa168_init_module(void)
1649{
1650	return platform_driver_register(&pxa168_eth_driver);
1651}
1652
1653static void __exit pxa168_cleanup_module(void)
1654{
1655	platform_driver_unregister(&pxa168_eth_driver);
1656}
1657
1658module_init(pxa168_init_module);
1659module_exit(pxa168_cleanup_module);
1660
1661MODULE_LICENSE("GPL");
1662MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1663MODULE_ALIAS("platform:pxa168_eth");