Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/**
   2 * drivers/net/ks8851_mll.c
   3 * Copyright (c) 2009 Micrel Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19/**
  20 * Supports:
  21 * KS8851 16bit MLL chip from Micrel Inc.
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/interrupt.h>
  27#include <linux/module.h>
  28#include <linux/kernel.h>
  29#include <linux/netdevice.h>
  30#include <linux/etherdevice.h>
  31#include <linux/ethtool.h>
  32#include <linux/cache.h>
  33#include <linux/crc32.h>
  34#include <linux/mii.h>
  35#include <linux/platform_device.h>
  36#include <linux/delay.h>
  37#include <linux/slab.h>
  38#include <asm/io.h>
  39
  40#define	DRV_NAME	"ks8851_mll"
  41
  42static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
  43#define MAX_RECV_FRAMES			32
  44#define MAX_BUF_SIZE			2048
  45#define TX_BUF_SIZE			2000
  46#define RX_BUF_SIZE			2000
  47
  48#define KS_CCR				0x08
  49#define CCR_EEPROM			(1 << 9)
  50#define CCR_SPI				(1 << 8)
  51#define CCR_8BIT			(1 << 7)
  52#define CCR_16BIT			(1 << 6)
  53#define CCR_32BIT			(1 << 5)
  54#define CCR_SHARED			(1 << 4)
  55#define CCR_32PIN			(1 << 0)
  56
  57/* MAC address registers */
  58#define KS_MARL				0x10
  59#define KS_MARM				0x12
  60#define KS_MARH				0x14
  61
  62#define KS_OBCR				0x20
  63#define OBCR_ODS_16MA			(1 << 6)
  64
  65#define KS_EEPCR			0x22
  66#define EEPCR_EESA			(1 << 4)
  67#define EEPCR_EESB			(1 << 3)
  68#define EEPCR_EEDO			(1 << 2)
  69#define EEPCR_EESCK			(1 << 1)
  70#define EEPCR_EECS			(1 << 0)
  71
  72#define KS_MBIR				0x24
  73#define MBIR_TXMBF			(1 << 12)
  74#define MBIR_TXMBFA			(1 << 11)
  75#define MBIR_RXMBF			(1 << 4)
  76#define MBIR_RXMBFA			(1 << 3)
  77
  78#define KS_GRR				0x26
  79#define GRR_QMU				(1 << 1)
  80#define GRR_GSR				(1 << 0)
  81
  82#define KS_WFCR				0x2A
  83#define WFCR_MPRXE			(1 << 7)
  84#define WFCR_WF3E			(1 << 3)
  85#define WFCR_WF2E			(1 << 2)
  86#define WFCR_WF1E			(1 << 1)
  87#define WFCR_WF0E			(1 << 0)
  88
  89#define KS_WF0CRC0			0x30
  90#define KS_WF0CRC1			0x32
  91#define KS_WF0BM0			0x34
  92#define KS_WF0BM1			0x36
  93#define KS_WF0BM2			0x38
  94#define KS_WF0BM3			0x3A
  95
  96#define KS_WF1CRC0			0x40
  97#define KS_WF1CRC1			0x42
  98#define KS_WF1BM0			0x44
  99#define KS_WF1BM1			0x46
 100#define KS_WF1BM2			0x48
 101#define KS_WF1BM3			0x4A
 102
 103#define KS_WF2CRC0			0x50
 104#define KS_WF2CRC1			0x52
 105#define KS_WF2BM0			0x54
 106#define KS_WF2BM1			0x56
 107#define KS_WF2BM2			0x58
 108#define KS_WF2BM3			0x5A
 109
 110#define KS_WF3CRC0			0x60
 111#define KS_WF3CRC1			0x62
 112#define KS_WF3BM0			0x64
 113#define KS_WF3BM1			0x66
 114#define KS_WF3BM2			0x68
 115#define KS_WF3BM3			0x6A
 116
 117#define KS_TXCR				0x70
 118#define TXCR_TCGICMP			(1 << 8)
 119#define TXCR_TCGUDP			(1 << 7)
 120#define TXCR_TCGTCP			(1 << 6)
 121#define TXCR_TCGIP			(1 << 5)
 122#define TXCR_FTXQ			(1 << 4)
 123#define TXCR_TXFCE			(1 << 3)
 124#define TXCR_TXPE			(1 << 2)
 125#define TXCR_TXCRC			(1 << 1)
 126#define TXCR_TXE			(1 << 0)
 127
 128#define KS_TXSR				0x72
 129#define TXSR_TXLC			(1 << 13)
 130#define TXSR_TXMC			(1 << 12)
 131#define TXSR_TXFID_MASK			(0x3f << 0)
 132#define TXSR_TXFID_SHIFT		(0)
 133#define TXSR_TXFID_GET(_v)		(((_v) >> 0) & 0x3f)
 134
 135
 136#define KS_RXCR1			0x74
 137#define RXCR1_FRXQ			(1 << 15)
 138#define RXCR1_RXUDPFCC			(1 << 14)
 139#define RXCR1_RXTCPFCC			(1 << 13)
 140#define RXCR1_RXIPFCC			(1 << 12)
 141#define RXCR1_RXPAFMA			(1 << 11)
 142#define RXCR1_RXFCE			(1 << 10)
 143#define RXCR1_RXEFE			(1 << 9)
 144#define RXCR1_RXMAFMA			(1 << 8)
 145#define RXCR1_RXBE			(1 << 7)
 146#define RXCR1_RXME			(1 << 6)
 147#define RXCR1_RXUE			(1 << 5)
 148#define RXCR1_RXAE			(1 << 4)
 149#define RXCR1_RXINVF			(1 << 1)
 150#define RXCR1_RXE			(1 << 0)
 151#define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
 152					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
 153
 154#define KS_RXCR2			0x76
 155#define RXCR2_SRDBL_MASK		(0x7 << 5)
 156#define RXCR2_SRDBL_SHIFT		(5)
 157#define RXCR2_SRDBL_4B			(0x0 << 5)
 158#define RXCR2_SRDBL_8B			(0x1 << 5)
 159#define RXCR2_SRDBL_16B			(0x2 << 5)
 160#define RXCR2_SRDBL_32B			(0x3 << 5)
 161/* #define RXCR2_SRDBL_FRAME		(0x4 << 5) */
 162#define RXCR2_IUFFP			(1 << 4)
 163#define RXCR2_RXIUFCEZ			(1 << 3)
 164#define RXCR2_UDPLFE			(1 << 2)
 165#define RXCR2_RXICMPFCC			(1 << 1)
 166#define RXCR2_RXSAF			(1 << 0)
 167
 168#define KS_TXMIR			0x78
 169
 170#define KS_RXFHSR			0x7C
 171#define RXFSHR_RXFV			(1 << 15)
 172#define RXFSHR_RXICMPFCS		(1 << 13)
 173#define RXFSHR_RXIPFCS			(1 << 12)
 174#define RXFSHR_RXTCPFCS			(1 << 11)
 175#define RXFSHR_RXUDPFCS			(1 << 10)
 176#define RXFSHR_RXBF			(1 << 7)
 177#define RXFSHR_RXMF			(1 << 6)
 178#define RXFSHR_RXUF			(1 << 5)
 179#define RXFSHR_RXMR			(1 << 4)
 180#define RXFSHR_RXFT			(1 << 3)
 181#define RXFSHR_RXFTL			(1 << 2)
 182#define RXFSHR_RXRF			(1 << 1)
 183#define RXFSHR_RXCE			(1 << 0)
 184#define	RXFSHR_ERR			(RXFSHR_RXCE | RXFSHR_RXRF |\
 185					RXFSHR_RXFTL | RXFSHR_RXMR |\
 186					RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
 187					RXFSHR_RXTCPFCS)
 188#define KS_RXFHBCR			0x7E
 189#define RXFHBCR_CNT_MASK		0x0FFF
 190
 191#define KS_TXQCR			0x80
 192#define TXQCR_AETFE			(1 << 2)
 193#define TXQCR_TXQMAM			(1 << 1)
 194#define TXQCR_METFE			(1 << 0)
 195
 196#define KS_RXQCR			0x82
 197#define RXQCR_RXDTTS			(1 << 12)
 198#define RXQCR_RXDBCTS			(1 << 11)
 199#define RXQCR_RXFCTS			(1 << 10)
 200#define RXQCR_RXIPHTOE			(1 << 9)
 201#define RXQCR_RXDTTE			(1 << 7)
 202#define RXQCR_RXDBCTE			(1 << 6)
 203#define RXQCR_RXFCTE			(1 << 5)
 204#define RXQCR_ADRFE			(1 << 4)
 205#define RXQCR_SDA			(1 << 3)
 206#define RXQCR_RRXEF			(1 << 0)
 207#define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)
 208
 209#define KS_TXFDPR			0x84
 210#define TXFDPR_TXFPAI			(1 << 14)
 211#define TXFDPR_TXFP_MASK		(0x7ff << 0)
 212#define TXFDPR_TXFP_SHIFT		(0)
 213
 214#define KS_RXFDPR			0x86
 215#define RXFDPR_RXFPAI			(1 << 14)
 216
 217#define KS_RXDTTR			0x8C
 218#define KS_RXDBCTR			0x8E
 219
 220#define KS_IER				0x90
 221#define KS_ISR				0x92
 222#define IRQ_LCI				(1 << 15)
 223#define IRQ_TXI				(1 << 14)
 224#define IRQ_RXI				(1 << 13)
 225#define IRQ_RXOI			(1 << 11)
 226#define IRQ_TXPSI			(1 << 9)
 227#define IRQ_RXPSI			(1 << 8)
 228#define IRQ_TXSAI			(1 << 6)
 229#define IRQ_RXWFDI			(1 << 5)
 230#define IRQ_RXMPDI			(1 << 4)
 231#define IRQ_LDI				(1 << 3)
 232#define IRQ_EDI				(1 << 2)
 233#define IRQ_SPIBEI			(1 << 1)
 234#define IRQ_DEDI			(1 << 0)
 235
 236#define KS_RXFCTR			0x9C
 237#define RXFCTR_THRESHOLD_MASK     	0x00FF
 238
 239#define KS_RXFC				0x9D
 240#define RXFCTR_RXFC_MASK		(0xff << 8)
 241#define RXFCTR_RXFC_SHIFT		(8)
 242#define RXFCTR_RXFC_GET(_v)		(((_v) >> 8) & 0xff)
 243#define RXFCTR_RXFCT_MASK		(0xff << 0)
 244#define RXFCTR_RXFCT_SHIFT		(0)
 245
 246#define KS_TXNTFSR			0x9E
 247
 248#define KS_MAHTR0			0xA0
 249#define KS_MAHTR1			0xA2
 250#define KS_MAHTR2			0xA4
 251#define KS_MAHTR3			0xA6
 252
 253#define KS_FCLWR			0xB0
 254#define KS_FCHWR			0xB2
 255#define KS_FCOWR			0xB4
 256
 257#define KS_CIDER			0xC0
 258#define CIDER_ID			0x8870
 259#define CIDER_REV_MASK			(0x7 << 1)
 260#define CIDER_REV_SHIFT			(1)
 261#define CIDER_REV_GET(_v)		(((_v) >> 1) & 0x7)
 262
 263#define KS_CGCR				0xC6
 264#define KS_IACR				0xC8
 265#define IACR_RDEN			(1 << 12)
 266#define IACR_TSEL_MASK			(0x3 << 10)
 267#define IACR_TSEL_SHIFT			(10)
 268#define IACR_TSEL_MIB			(0x3 << 10)
 269#define IACR_ADDR_MASK			(0x1f << 0)
 270#define IACR_ADDR_SHIFT			(0)
 271
 272#define KS_IADLR			0xD0
 273#define KS_IAHDR			0xD2
 274
 275#define KS_PMECR			0xD4
 276#define PMECR_PME_DELAY			(1 << 14)
 277#define PMECR_PME_POL			(1 << 12)
 278#define PMECR_WOL_WAKEUP		(1 << 11)
 279#define PMECR_WOL_MAGICPKT		(1 << 10)
 280#define PMECR_WOL_LINKUP		(1 << 9)
 281#define PMECR_WOL_ENERGY		(1 << 8)
 282#define PMECR_AUTO_WAKE_EN		(1 << 7)
 283#define PMECR_WAKEUP_NORMAL		(1 << 6)
 284#define PMECR_WKEVT_MASK		(0xf << 2)
 285#define PMECR_WKEVT_SHIFT		(2)
 286#define PMECR_WKEVT_GET(_v)		(((_v) >> 2) & 0xf)
 287#define PMECR_WKEVT_ENERGY		(0x1 << 2)
 288#define PMECR_WKEVT_LINK		(0x2 << 2)
 289#define PMECR_WKEVT_MAGICPKT		(0x4 << 2)
 290#define PMECR_WKEVT_FRAME		(0x8 << 2)
 291#define PMECR_PM_MASK			(0x3 << 0)
 292#define PMECR_PM_SHIFT			(0)
 293#define PMECR_PM_NORMAL			(0x0 << 0)
 294#define PMECR_PM_ENERGY			(0x1 << 0)
 295#define PMECR_PM_SOFTDOWN		(0x2 << 0)
 296#define PMECR_PM_POWERSAVE		(0x3 << 0)
 297
 298/* Standard MII PHY data */
 299#define KS_P1MBCR			0xE4
 300#define P1MBCR_FORCE_FDX		(1 << 8)
 301
 302#define KS_P1MBSR			0xE6
 303#define P1MBSR_AN_COMPLETE		(1 << 5)
 304#define P1MBSR_AN_CAPABLE		(1 << 3)
 305#define P1MBSR_LINK_UP			(1 << 2)
 306
 307#define KS_PHY1ILR			0xE8
 308#define KS_PHY1IHR			0xEA
 309#define KS_P1ANAR			0xEC
 310#define KS_P1ANLPR			0xEE
 311
 312#define KS_P1SCLMD			0xF4
 313#define P1SCLMD_LEDOFF			(1 << 15)
 314#define P1SCLMD_TXIDS			(1 << 14)
 315#define P1SCLMD_RESTARTAN		(1 << 13)
 316#define P1SCLMD_DISAUTOMDIX		(1 << 10)
 317#define P1SCLMD_FORCEMDIX		(1 << 9)
 318#define P1SCLMD_AUTONEGEN		(1 << 7)
 319#define P1SCLMD_FORCE100		(1 << 6)
 320#define P1SCLMD_FORCEFDX		(1 << 5)
 321#define P1SCLMD_ADV_FLOW		(1 << 4)
 322#define P1SCLMD_ADV_100BT_FDX		(1 << 3)
 323#define P1SCLMD_ADV_100BT_HDX		(1 << 2)
 324#define P1SCLMD_ADV_10BT_FDX		(1 << 1)
 325#define P1SCLMD_ADV_10BT_HDX		(1 << 0)
 326
 327#define KS_P1CR				0xF6
 328#define P1CR_HP_MDIX			(1 << 15)
 329#define P1CR_REV_POL			(1 << 13)
 330#define P1CR_OP_100M			(1 << 10)
 331#define P1CR_OP_FDX			(1 << 9)
 332#define P1CR_OP_MDI			(1 << 7)
 333#define P1CR_AN_DONE			(1 << 6)
 334#define P1CR_LINK_GOOD			(1 << 5)
 335#define P1CR_PNTR_FLOW			(1 << 4)
 336#define P1CR_PNTR_100BT_FDX		(1 << 3)
 337#define P1CR_PNTR_100BT_HDX		(1 << 2)
 338#define P1CR_PNTR_10BT_FDX		(1 << 1)
 339#define P1CR_PNTR_10BT_HDX		(1 << 0)
 340
 341/* TX Frame control */
 342
 343#define TXFR_TXIC			(1 << 15)
 344#define TXFR_TXFID_MASK			(0x3f << 0)
 345#define TXFR_TXFID_SHIFT		(0)
 346
 347#define KS_P1SR				0xF8
 348#define P1SR_HP_MDIX			(1 << 15)
 349#define P1SR_REV_POL			(1 << 13)
 350#define P1SR_OP_100M			(1 << 10)
 351#define P1SR_OP_FDX			(1 << 9)
 352#define P1SR_OP_MDI			(1 << 7)
 353#define P1SR_AN_DONE			(1 << 6)
 354#define P1SR_LINK_GOOD			(1 << 5)
 355#define P1SR_PNTR_FLOW			(1 << 4)
 356#define P1SR_PNTR_100BT_FDX		(1 << 3)
 357#define P1SR_PNTR_100BT_HDX		(1 << 2)
 358#define P1SR_PNTR_10BT_FDX		(1 << 1)
 359#define P1SR_PNTR_10BT_HDX		(1 << 0)
 360
 361#define	ENUM_BUS_NONE			0
 362#define	ENUM_BUS_8BIT			1
 363#define	ENUM_BUS_16BIT			2
 364#define	ENUM_BUS_32BIT			3
 365
 366#define MAX_MCAST_LST			32
 367#define HW_MCAST_SIZE			8
 368
 369/**
 370 * union ks_tx_hdr - tx header data
 371 * @txb: The header as bytes
 372 * @txw: The header as 16bit, little-endian words
 373 *
 374 * A dual representation of the tx header data to allow
 375 * access to individual bytes, and to allow 16bit accesses
 376 * with 16bit alignment.
 377 */
 378union ks_tx_hdr {
 379	u8      txb[4];
 380	__le16  txw[2];
 381};
 382
 383/**
 384 * struct ks_net - KS8851 driver private data
 385 * @net_device 	: The network device we're bound to
 386 * @hw_addr	: start address of data register.
 387 * @hw_addr_cmd	: start address of command register.
 388 * @txh    	: temporaly buffer to save status/length.
 389 * @lock	: Lock to ensure that the device is not accessed when busy.
 390 * @pdev	: Pointer to platform device.
 391 * @mii		: The MII state information for the mii calls.
 392 * @frame_head_info   	: frame header information for multi-pkt rx.
 393 * @statelock	: Lock on this structure for tx list.
 394 * @msg_enable	: The message flags controlling driver output (see ethtool).
 395 * @frame_cnt  	: number of frames received.
 396 * @bus_width  	: i/o bus width.
 397 * @irq    	: irq number assigned to this device.
 398 * @rc_rxqcr	: Cached copy of KS_RXQCR.
 399 * @rc_txcr	: Cached copy of KS_TXCR.
 400 * @rc_ier	: Cached copy of KS_IER.
 401 * @sharedbus  	: Multipex(addr and data bus) mode indicator.
 402 * @cmd_reg_cache	: command register cached.
 403 * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
 404 * @promiscuous	: promiscuous mode indicator.
 405 * @all_mcast  	: mutlicast indicator.
 406 * @mcast_lst_size   	: size of multicast list.
 407 * @mcast_lst    	: multicast list.
 408 * @mcast_bits    	: multicast enabed.
 409 * @mac_addr   		: MAC address assigned to this device.
 410 * @fid    		: frame id.
 411 * @extra_byte    	: number of extra byte prepended rx pkt.
 412 * @enabled    		: indicator this device works.
 413 *
 414 * The @lock ensures that the chip is protected when certain operations are
 415 * in progress. When the read or write packet transfer is in progress, most
 416 * of the chip registers are not accessible until the transfer is finished and
 417 * the DMA has been de-asserted.
 418 *
 419 * The @statelock is used to protect information in the structure which may
 420 * need to be accessed via several sources, such as the network driver layer
 421 * or one of the work queues.
 422 *
 423 */
 424
 425/* Receive multiplex framer header info */
 426struct type_frame_head {
 427	u16	sts;         /* Frame status */
 428	u16	len;         /* Byte count */
 429};
 430
 431struct ks_net {
 432	struct net_device	*netdev;
 433	void __iomem    	*hw_addr;
 434	void __iomem    	*hw_addr_cmd;
 435	union ks_tx_hdr		txh ____cacheline_aligned;
 436	struct mutex      	lock; /* spinlock to be interrupt safe */
 437	struct platform_device *pdev;
 438	struct mii_if_info	mii;
 439	struct type_frame_head	*frame_head_info;
 440	spinlock_t		statelock;
 441	u32			msg_enable;
 442	u32			frame_cnt;
 443	int			bus_width;
 444	int             	irq;
 445
 446	u16			rc_rxqcr;
 447	u16			rc_txcr;
 448	u16			rc_ier;
 449	u16			sharedbus;
 450	u16			cmd_reg_cache;
 451	u16			cmd_reg_cache_int;
 452	u16			promiscuous;
 453	u16			all_mcast;
 454	u16			mcast_lst_size;
 455	u8			mcast_lst[MAX_MCAST_LST][ETH_ALEN];
 456	u8			mcast_bits[HW_MCAST_SIZE];
 457	u8			mac_addr[6];
 458	u8                      fid;
 459	u8			extra_byte;
 460	u8			enabled;
 461};
 462
 463static int msg_enable;
 464
 465#define BE3             0x8000      /* Byte Enable 3 */
 466#define BE2             0x4000      /* Byte Enable 2 */
 467#define BE1             0x2000      /* Byte Enable 1 */
 468#define BE0             0x1000      /* Byte Enable 0 */
 469
 470/**
 471 * register read/write calls.
 472 *
 473 * All these calls issue transactions to access the chip's registers. They
 474 * all require that the necessary lock is held to prevent accesses when the
 475 * chip is busy transferring packet data (RX/TX FIFO accesses).
 476 */
 477
 478/**
 479 * ks_rdreg8 - read 8 bit register from device
 480 * @ks	  : The chip information
 481 * @offset: The register address
 482 *
 483 * Read a 8bit register from the chip, returning the result
 484 */
 485static u8 ks_rdreg8(struct ks_net *ks, int offset)
 486{
 487	u16 data;
 488	u8 shift_bit = offset & 0x03;
 489	u8 shift_data = (offset & 1) << 3;
 490	ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
 491	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 492	data  = ioread16(ks->hw_addr);
 493	return (u8)(data >> shift_data);
 494}
 495
 496/**
 497 * ks_rdreg16 - read 16 bit register from device
 498 * @ks	  : The chip information
 499 * @offset: The register address
 500 *
 501 * Read a 16bit register from the chip, returning the result
 502 */
 503
 504static u16 ks_rdreg16(struct ks_net *ks, int offset)
 505{
 506	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 507	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 508	return ioread16(ks->hw_addr);
 509}
 510
 511/**
 512 * ks_wrreg8 - write 8bit register value to chip
 513 * @ks: The chip information
 514 * @offset: The register address
 515 * @value: The value to write
 516 *
 517 */
 518static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
 519{
 520	u8  shift_bit = (offset & 0x03);
 521	u16 value_write = (u16)(value << ((offset & 1) << 3));
 522	ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
 523	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 524	iowrite16(value_write, ks->hw_addr);
 525}
 526
 527/**
 528 * ks_wrreg16 - write 16bit register value to chip
 529 * @ks: The chip information
 530 * @offset: The register address
 531 * @value: The value to write
 532 *
 533 */
 534
 535static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
 536{
 537	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 538	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 539	iowrite16(value, ks->hw_addr);
 540}
 541
 542/**
 543 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
 544 * @ks: The chip state
 545 * @wptr: buffer address to save data
 546 * @len: length in byte to read
 547 *
 548 */
 549static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
 550{
 551	len >>= 1;
 552	while (len--)
 553		*wptr++ = (u16)ioread16(ks->hw_addr);
 554}
 555
 556/**
 557 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
 558 * @ks: The chip information
 559 * @wptr: buffer address
 560 * @len: length in byte to write
 561 *
 562 */
 563static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
 564{
 565	len >>= 1;
 566	while (len--)
 567		iowrite16(*wptr++, ks->hw_addr);
 568}
 569
 570static void ks_disable_int(struct ks_net *ks)
 571{
 572	ks_wrreg16(ks, KS_IER, 0x0000);
 573}  /* ks_disable_int */
 574
 575static void ks_enable_int(struct ks_net *ks)
 576{
 577	ks_wrreg16(ks, KS_IER, ks->rc_ier);
 578}  /* ks_enable_int */
 579
 580/**
 581 * ks_tx_fifo_space - return the available hardware buffer size.
 582 * @ks: The chip information
 583 *
 584 */
 585static inline u16 ks_tx_fifo_space(struct ks_net *ks)
 586{
 587	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
 588}
 589
 590/**
 591 * ks_save_cmd_reg - save the command register from the cache.
 592 * @ks: The chip information
 593 *
 594 */
 595static inline void ks_save_cmd_reg(struct ks_net *ks)
 596{
 597	/*ks8851 MLL has a bug to read back the command register.
 598	* So rely on software to save the content of command register.
 599	*/
 600	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
 601}
 602
 603/**
 604 * ks_restore_cmd_reg - restore the command register from the cache and
 605 * 	write to hardware register.
 606 * @ks: The chip information
 607 *
 608 */
 609static inline void ks_restore_cmd_reg(struct ks_net *ks)
 610{
 611	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
 612	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 613}
 614
 615/**
 616 * ks_set_powermode - set power mode of the device
 617 * @ks: The chip information
 618 * @pwrmode: The power mode value to write to KS_PMECR.
 619 *
 620 * Change the power mode of the chip.
 621 */
 622static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
 623{
 624	unsigned pmecr;
 625
 626	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 627
 628	ks_rdreg16(ks, KS_GRR);
 629	pmecr = ks_rdreg16(ks, KS_PMECR);
 630	pmecr &= ~PMECR_PM_MASK;
 631	pmecr |= pwrmode;
 632
 633	ks_wrreg16(ks, KS_PMECR, pmecr);
 634}
 635
 636/**
 637 * ks_read_config - read chip configuration of bus width.
 638 * @ks: The chip information
 639 *
 640 */
 641static void ks_read_config(struct ks_net *ks)
 642{
 643	u16 reg_data = 0;
 644
 645	/* Regardless of bus width, 8 bit read should always work.*/
 646	reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
 647	reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
 648
 649	/* addr/data bus are multiplexed */
 650	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
 651
 652	/* There are garbage data when reading data from QMU,
 653	depending on bus-width.
 654	*/
 655
 656	if (reg_data & CCR_8BIT) {
 657		ks->bus_width = ENUM_BUS_8BIT;
 658		ks->extra_byte = 1;
 659	} else if (reg_data & CCR_16BIT) {
 660		ks->bus_width = ENUM_BUS_16BIT;
 661		ks->extra_byte = 2;
 662	} else {
 663		ks->bus_width = ENUM_BUS_32BIT;
 664		ks->extra_byte = 4;
 665	}
 666}
 667
 668/**
 669 * ks_soft_reset - issue one of the soft reset to the device
 670 * @ks: The device state.
 671 * @op: The bit(s) to set in the GRR
 672 *
 673 * Issue the relevant soft-reset command to the device's GRR register
 674 * specified by @op.
 675 *
 676 * Note, the delays are in there as a caution to ensure that the reset
 677 * has time to take effect and then complete. Since the datasheet does
 678 * not currently specify the exact sequence, we have chosen something
 679 * that seems to work with our device.
 680 */
 681static void ks_soft_reset(struct ks_net *ks, unsigned op)
 682{
 683	/* Disable interrupt first */
 684	ks_wrreg16(ks, KS_IER, 0x0000);
 685	ks_wrreg16(ks, KS_GRR, op);
 686	mdelay(10);	/* wait a short time to effect reset */
 687	ks_wrreg16(ks, KS_GRR, 0);
 688	mdelay(1);	/* wait for condition to clear */
 689}
 690
 691
 692void ks_enable_qmu(struct ks_net *ks)
 693{
 694	u16 w;
 695
 696	w = ks_rdreg16(ks, KS_TXCR);
 697	/* Enables QMU Transmit (TXCR). */
 698	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
 699
 700	/*
 701	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
 702	 * Enable
 703	 */
 704
 705	w = ks_rdreg16(ks, KS_RXQCR);
 706	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
 707
 708	/* Enables QMU Receive (RXCR1). */
 709	w = ks_rdreg16(ks, KS_RXCR1);
 710	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
 711	ks->enabled = true;
 712}  /* ks_enable_qmu */
 713
 714static void ks_disable_qmu(struct ks_net *ks)
 715{
 716	u16	w;
 717
 718	w = ks_rdreg16(ks, KS_TXCR);
 719
 720	/* Disables QMU Transmit (TXCR). */
 721	w  &= ~TXCR_TXE;
 722	ks_wrreg16(ks, KS_TXCR, w);
 723
 724	/* Disables QMU Receive (RXCR1). */
 725	w = ks_rdreg16(ks, KS_RXCR1);
 726	w &= ~RXCR1_RXE ;
 727	ks_wrreg16(ks, KS_RXCR1, w);
 728
 729	ks->enabled = false;
 730
 731}  /* ks_disable_qmu */
 732
 733/**
 734 * ks_read_qmu - read 1 pkt data from the QMU.
 735 * @ks: The chip information
 736 * @buf: buffer address to save 1 pkt
 737 * @len: Pkt length
 738 * Here is the sequence to read 1 pkt:
 739 *	1. set sudo DMA mode
 740 *	2. read prepend data
 741 *	3. read pkt data
 742 *	4. reset sudo DMA Mode
 743 */
 744static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
 745{
 746	u32 r =  ks->extra_byte & 0x1 ;
 747	u32 w = ks->extra_byte - r;
 748
 749	/* 1. set sudo DMA mode */
 750	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
 751	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
 752
 753	/* 2. read prepend data */
 754	/**
 755	 * read 4 + extra bytes and discard them.
 756	 * extra bytes for dummy, 2 for status, 2 for len
 757	 */
 758
 759	/* use likely(r) for 8 bit access for performance */
 760	if (unlikely(r))
 761		ioread8(ks->hw_addr);
 762	ks_inblk(ks, buf, w + 2 + 2);
 763
 764	/* 3. read pkt data */
 765	ks_inblk(ks, buf, ALIGN(len, 4));
 766
 767	/* 4. reset sudo DMA Mode */
 768	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
 769}
 770
 771/**
 772 * ks_rcv - read multiple pkts data from the QMU.
 773 * @ks: The chip information
 774 * @netdev: The network device being opened.
 775 *
 776 * Read all of header information before reading pkt content.
 777 * It is not allowed only port of pkts in QMU after issuing
 778 * interrupt ack.
 779 */
 780static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
 781{
 782	u32	i;
 783	struct type_frame_head *frame_hdr = ks->frame_head_info;
 784	struct sk_buff *skb;
 785
 786	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
 787
 788	/* read all header information */
 789	for (i = 0; i < ks->frame_cnt; i++) {
 790		/* Checking Received packet status */
 791		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
 792		/* Get packet len from hardware */
 793		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
 794		frame_hdr++;
 795	}
 796
 797	frame_hdr = ks->frame_head_info;
 798	while (ks->frame_cnt--) {
 799		skb = dev_alloc_skb(frame_hdr->len + 16);
 800		if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
 801			(frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
 802			skb_reserve(skb, 2);
 803			/* read data block including CRC 4 bytes */
 804			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
 805			skb_put(skb, frame_hdr->len);
 806			skb->protocol = eth_type_trans(skb, netdev);
 807			netif_rx(skb);
 808		} else {
 809			pr_err("%s: err:skb alloc\n", __func__);
 810			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
 811			if (skb)
 812				dev_kfree_skb_irq(skb);
 813		}
 814		frame_hdr++;
 815	}
 816}
 817
 818/**
 819 * ks_update_link_status - link status update.
 820 * @netdev: The network device being opened.
 821 * @ks: The chip information
 822 *
 823 */
 824
 825static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
 826{
 827	/* check the status of the link */
 828	u32 link_up_status;
 829	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
 830		netif_carrier_on(netdev);
 831		link_up_status = true;
 832	} else {
 833		netif_carrier_off(netdev);
 834		link_up_status = false;
 835	}
 836	netif_dbg(ks, link, ks->netdev,
 837		  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
 838}
 839
 840/**
 841 * ks_irq - device interrupt handler
 842 * @irq: Interrupt number passed from the IRQ hnalder.
 843 * @pw: The private word passed to register_irq(), our struct ks_net.
 844 *
 845 * This is the handler invoked to find out what happened
 846 *
 847 * Read the interrupt status, work out what needs to be done and then clear
 848 * any of the interrupts that are not needed.
 849 */
 850
 851static irqreturn_t ks_irq(int irq, void *pw)
 852{
 853	struct net_device *netdev = pw;
 854	struct ks_net *ks = netdev_priv(netdev);
 855	u16 status;
 856
 857	/*this should be the first in IRQ handler */
 858	ks_save_cmd_reg(ks);
 859
 860	status = ks_rdreg16(ks, KS_ISR);
 861	if (unlikely(!status)) {
 862		ks_restore_cmd_reg(ks);
 863		return IRQ_NONE;
 864	}
 865
 866	ks_wrreg16(ks, KS_ISR, status);
 867
 868	if (likely(status & IRQ_RXI))
 869		ks_rcv(ks, netdev);
 870
 871	if (unlikely(status & IRQ_LCI))
 872		ks_update_link_status(netdev, ks);
 873
 874	if (unlikely(status & IRQ_TXI))
 875		netif_wake_queue(netdev);
 876
 877	if (unlikely(status & IRQ_LDI)) {
 878
 879		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
 880		pmecr &= ~PMECR_WKEVT_MASK;
 881		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 882	}
 883
 884	/* this should be the last in IRQ handler*/
 885	ks_restore_cmd_reg(ks);
 886	return IRQ_HANDLED;
 887}
 888
 889
 890/**
 891 * ks_net_open - open network device
 892 * @netdev: The network device being opened.
 893 *
 894 * Called when the network device is marked active, such as a user executing
 895 * 'ifconfig up' on the device.
 896 */
 897static int ks_net_open(struct net_device *netdev)
 898{
 899	struct ks_net *ks = netdev_priv(netdev);
 900	int err;
 901
 902#define	KS_INT_FLAGS	(IRQF_DISABLED|IRQF_TRIGGER_LOW)
 903	/* lock the card, even if we may not actually do anything
 904	 * else at the moment.
 905	 */
 906
 907	netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
 908
 909	/* reset the HW */
 910	err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
 911
 912	if (err) {
 913		pr_err("Failed to request IRQ: %d: %d\n", ks->irq, err);
 914		return err;
 915	}
 916
 917	/* wake up powermode to normal mode */
 918	ks_set_powermode(ks, PMECR_PM_NORMAL);
 919	mdelay(1);	/* wait for normal mode to take effect */
 920
 921	ks_wrreg16(ks, KS_ISR, 0xffff);
 922	ks_enable_int(ks);
 923	ks_enable_qmu(ks);
 924	netif_start_queue(ks->netdev);
 925
 926	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 927
 928	return 0;
 929}
 930
 931/**
 932 * ks_net_stop - close network device
 933 * @netdev: The device being closed.
 934 *
 935 * Called to close down a network device which has been active. Cancell any
 936 * work, shutdown the RX and TX process and then place the chip into a low
 937 * power state whilst it is not being used.
 938 */
 939static int ks_net_stop(struct net_device *netdev)
 940{
 941	struct ks_net *ks = netdev_priv(netdev);
 942
 943	netif_info(ks, ifdown, netdev, "shutting down\n");
 944
 945	netif_stop_queue(netdev);
 946
 947	mutex_lock(&ks->lock);
 948
 949	/* turn off the IRQs and ack any outstanding */
 950	ks_wrreg16(ks, KS_IER, 0x0000);
 951	ks_wrreg16(ks, KS_ISR, 0xffff);
 952
 953	/* shutdown RX/TX QMU */
 954	ks_disable_qmu(ks);
 955
 956	/* set powermode to soft power down to save power */
 957	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
 958	free_irq(ks->irq, netdev);
 959	mutex_unlock(&ks->lock);
 960	return 0;
 961}
 962
 963
 964/**
 965 * ks_write_qmu - write 1 pkt data to the QMU.
 966 * @ks: The chip information
 967 * @pdata: buffer address to save 1 pkt
 968 * @len: Pkt length in byte
 969 * Here is the sequence to write 1 pkt:
 970 *	1. set sudo DMA mode
 971 *	2. write status/length
 972 *	3. write pkt data
 973 *	4. reset sudo DMA Mode
 974 *	5. reset sudo DMA mode
 975 *	6. Wait until pkt is out
 976 */
 977static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
 978{
 979	/* start header at txb[0] to align txw entries */
 980	ks->txh.txw[0] = 0;
 981	ks->txh.txw[1] = cpu_to_le16(len);
 982
 983	/* 1. set sudo-DMA mode */
 984	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
 985	/* 2. write status/lenth info */
 986	ks_outblk(ks, ks->txh.txw, 4);
 987	/* 3. write pkt data */
 988	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
 989	/* 4. reset sudo-DMA mode */
 990	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
 991	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
 992	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 993	/* 6. wait until TXQCR_METFE is auto-cleared */
 994	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
 995		;
 996}
 997
 998/**
 999 * ks_start_xmit - transmit packet
1000 * @skb		: The buffer to transmit
1001 * @netdev	: The device used to transmit the packet.
1002 *
1003 * Called by the network layer to transmit the @skb.
1004 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1005 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1006 */
1007static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1008{
1009	int retv = NETDEV_TX_OK;
1010	struct ks_net *ks = netdev_priv(netdev);
1011
1012	disable_irq(netdev->irq);
1013	ks_disable_int(ks);
1014	spin_lock(&ks->statelock);
1015
1016	/* Extra space are required:
1017	*  4 byte for alignment, 4 for status/length, 4 for CRC
1018	*/
1019
1020	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1021		ks_write_qmu(ks, skb->data, skb->len);
1022		dev_kfree_skb(skb);
1023	} else
1024		retv = NETDEV_TX_BUSY;
1025	spin_unlock(&ks->statelock);
1026	ks_enable_int(ks);
1027	enable_irq(netdev->irq);
1028	return retv;
1029}
1030
1031/**
1032 * ks_start_rx - ready to serve pkts
1033 * @ks		: The chip information
1034 *
1035 */
1036static void ks_start_rx(struct ks_net *ks)
1037{
1038	u16 cntl;
1039
1040	/* Enables QMU Receive (RXCR1). */
1041	cntl = ks_rdreg16(ks, KS_RXCR1);
1042	cntl |= RXCR1_RXE ;
1043	ks_wrreg16(ks, KS_RXCR1, cntl);
1044}  /* ks_start_rx */
1045
1046/**
1047 * ks_stop_rx - stop to serve pkts
1048 * @ks		: The chip information
1049 *
1050 */
1051static void ks_stop_rx(struct ks_net *ks)
1052{
1053	u16 cntl;
1054
1055	/* Disables QMU Receive (RXCR1). */
1056	cntl = ks_rdreg16(ks, KS_RXCR1);
1057	cntl &= ~RXCR1_RXE ;
1058	ks_wrreg16(ks, KS_RXCR1, cntl);
1059
1060}  /* ks_stop_rx */
1061
1062static unsigned long const ethernet_polynomial = 0x04c11db7U;
1063
1064static unsigned long ether_gen_crc(int length, u8 *data)
1065{
1066	long crc = -1;
1067	while (--length >= 0) {
1068		u8 current_octet = *data++;
1069		int bit;
1070
1071		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1072			crc = (crc << 1) ^
1073				((crc < 0) ^ (current_octet & 1) ?
1074			ethernet_polynomial : 0);
1075		}
1076	}
1077	return (unsigned long)crc;
1078}  /* ether_gen_crc */
1079
1080/**
1081* ks_set_grpaddr - set multicast information
1082* @ks : The chip information
1083*/
1084
1085static void ks_set_grpaddr(struct ks_net *ks)
1086{
1087	u8	i;
1088	u32	index, position, value;
1089
1090	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1091
1092	for (i = 0; i < ks->mcast_lst_size; i++) {
1093		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1094		index = position >> 3;
1095		value = 1 << (position & 7);
1096		ks->mcast_bits[index] |= (u8)value;
1097	}
1098
1099	for (i  = 0; i < HW_MCAST_SIZE; i++) {
1100		if (i & 1) {
1101			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1102				(ks->mcast_bits[i] << 8) |
1103				ks->mcast_bits[i - 1]);
1104		}
1105	}
1106}  /* ks_set_grpaddr */
1107
1108/*
1109* ks_clear_mcast - clear multicast information
1110*
1111* @ks : The chip information
1112* This routine removes all mcast addresses set in the hardware.
1113*/
1114
1115static void ks_clear_mcast(struct ks_net *ks)
1116{
1117	u16	i, mcast_size;
1118	for (i = 0; i < HW_MCAST_SIZE; i++)
1119		ks->mcast_bits[i] = 0;
1120
1121	mcast_size = HW_MCAST_SIZE >> 2;
1122	for (i = 0; i < mcast_size; i++)
1123		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1124}
1125
1126static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1127{
1128	u16		cntl;
1129	ks->promiscuous = promiscuous_mode;
1130	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1131	cntl = ks_rdreg16(ks, KS_RXCR1);
1132
1133	cntl &= ~RXCR1_FILTER_MASK;
1134	if (promiscuous_mode)
1135		/* Enable Promiscuous mode */
1136		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1137	else
1138		/* Disable Promiscuous mode (default normal mode) */
1139		cntl |= RXCR1_RXPAFMA;
1140
1141	ks_wrreg16(ks, KS_RXCR1, cntl);
1142
1143	if (ks->enabled)
1144		ks_start_rx(ks);
1145
1146}  /* ks_set_promis */
1147
1148static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1149{
1150	u16	cntl;
1151
1152	ks->all_mcast = mcast;
1153	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1154	cntl = ks_rdreg16(ks, KS_RXCR1);
1155	cntl &= ~RXCR1_FILTER_MASK;
1156	if (mcast)
1157		/* Enable "Perfect with Multicast address passed mode" */
1158		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1159	else
1160		/**
1161		 * Disable "Perfect with Multicast address passed
1162		 * mode" (normal mode).
1163		 */
1164		cntl |= RXCR1_RXPAFMA;
1165
1166	ks_wrreg16(ks, KS_RXCR1, cntl);
1167
1168	if (ks->enabled)
1169		ks_start_rx(ks);
1170}  /* ks_set_mcast */
1171
1172static void ks_set_rx_mode(struct net_device *netdev)
1173{
1174	struct ks_net *ks = netdev_priv(netdev);
1175	struct netdev_hw_addr *ha;
1176
1177	/* Turn on/off promiscuous mode. */
1178	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1179		ks_set_promis(ks,
1180			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1181	/* Turn on/off all mcast mode. */
1182	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1183		ks_set_mcast(ks,
1184			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1185	else
1186		ks_set_promis(ks, false);
1187
1188	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1189		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1190			int i = 0;
1191
1192			netdev_for_each_mc_addr(ha, netdev) {
1193				if (i >= MAX_MCAST_LST)
1194					break;
1195				memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1196			}
1197			ks->mcast_lst_size = (u8)i;
1198			ks_set_grpaddr(ks);
1199		} else {
1200			/**
1201			 * List too big to support so
1202			 * turn on all mcast mode.
1203			 */
1204			ks->mcast_lst_size = MAX_MCAST_LST;
1205			ks_set_mcast(ks, true);
1206		}
1207	} else {
1208		ks->mcast_lst_size = 0;
1209		ks_clear_mcast(ks);
1210	}
1211} /* ks_set_rx_mode */
1212
1213static void ks_set_mac(struct ks_net *ks, u8 *data)
1214{
1215	u16 *pw = (u16 *)data;
1216	u16 w, u;
1217
1218	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1219
1220	u = *pw++;
1221	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1222	ks_wrreg16(ks, KS_MARH, w);
1223
1224	u = *pw++;
1225	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1226	ks_wrreg16(ks, KS_MARM, w);
1227
1228	u = *pw;
1229	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1230	ks_wrreg16(ks, KS_MARL, w);
1231
1232	memcpy(ks->mac_addr, data, 6);
1233
1234	if (ks->enabled)
1235		ks_start_rx(ks);
1236}
1237
1238static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1239{
1240	struct ks_net *ks = netdev_priv(netdev);
1241	struct sockaddr *addr = paddr;
1242	u8 *da;
1243
1244	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1245
1246	da = (u8 *)netdev->dev_addr;
1247
1248	ks_set_mac(ks, da);
1249	return 0;
1250}
1251
1252static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1253{
1254	struct ks_net *ks = netdev_priv(netdev);
1255
1256	if (!netif_running(netdev))
1257		return -EINVAL;
1258
1259	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1260}
1261
1262static const struct net_device_ops ks_netdev_ops = {
1263	.ndo_open		= ks_net_open,
1264	.ndo_stop		= ks_net_stop,
1265	.ndo_do_ioctl		= ks_net_ioctl,
1266	.ndo_start_xmit		= ks_start_xmit,
1267	.ndo_set_mac_address	= ks_set_mac_address,
1268	.ndo_set_rx_mode	= ks_set_rx_mode,
1269	.ndo_change_mtu		= eth_change_mtu,
1270	.ndo_validate_addr	= eth_validate_addr,
1271};
1272
1273/* ethtool support */
1274
1275static void ks_get_drvinfo(struct net_device *netdev,
1276			       struct ethtool_drvinfo *di)
1277{
1278	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1279	strlcpy(di->version, "1.00", sizeof(di->version));
1280	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1281		sizeof(di->bus_info));
1282}
1283
1284static u32 ks_get_msglevel(struct net_device *netdev)
1285{
1286	struct ks_net *ks = netdev_priv(netdev);
1287	return ks->msg_enable;
1288}
1289
1290static void ks_set_msglevel(struct net_device *netdev, u32 to)
1291{
1292	struct ks_net *ks = netdev_priv(netdev);
1293	ks->msg_enable = to;
1294}
1295
1296static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1297{
1298	struct ks_net *ks = netdev_priv(netdev);
1299	return mii_ethtool_gset(&ks->mii, cmd);
1300}
1301
1302static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1303{
1304	struct ks_net *ks = netdev_priv(netdev);
1305	return mii_ethtool_sset(&ks->mii, cmd);
1306}
1307
1308static u32 ks_get_link(struct net_device *netdev)
1309{
1310	struct ks_net *ks = netdev_priv(netdev);
1311	return mii_link_ok(&ks->mii);
1312}
1313
1314static int ks_nway_reset(struct net_device *netdev)
1315{
1316	struct ks_net *ks = netdev_priv(netdev);
1317	return mii_nway_restart(&ks->mii);
1318}
1319
1320static const struct ethtool_ops ks_ethtool_ops = {
1321	.get_drvinfo	= ks_get_drvinfo,
1322	.get_msglevel	= ks_get_msglevel,
1323	.set_msglevel	= ks_set_msglevel,
1324	.get_settings	= ks_get_settings,
1325	.set_settings	= ks_set_settings,
1326	.get_link	= ks_get_link,
1327	.nway_reset	= ks_nway_reset,
1328};
1329
1330/* MII interface controls */
1331
1332/**
1333 * ks_phy_reg - convert MII register into a KS8851 register
1334 * @reg: MII register number.
1335 *
1336 * Return the KS8851 register number for the corresponding MII PHY register
1337 * if possible. Return zero if the MII register has no direct mapping to the
1338 * KS8851 register set.
1339 */
1340static int ks_phy_reg(int reg)
1341{
1342	switch (reg) {
1343	case MII_BMCR:
1344		return KS_P1MBCR;
1345	case MII_BMSR:
1346		return KS_P1MBSR;
1347	case MII_PHYSID1:
1348		return KS_PHY1ILR;
1349	case MII_PHYSID2:
1350		return KS_PHY1IHR;
1351	case MII_ADVERTISE:
1352		return KS_P1ANAR;
1353	case MII_LPA:
1354		return KS_P1ANLPR;
1355	}
1356
1357	return 0x0;
1358}
1359
1360/**
1361 * ks_phy_read - MII interface PHY register read.
1362 * @netdev: The network device the PHY is on.
1363 * @phy_addr: Address of PHY (ignored as we only have one)
1364 * @reg: The register to read.
1365 *
1366 * This call reads data from the PHY register specified in @reg. Since the
1367 * device does not support all the MII registers, the non-existent values
1368 * are always returned as zero.
1369 *
1370 * We return zero for unsupported registers as the MII code does not check
1371 * the value returned for any error status, and simply returns it to the
1372 * caller. The mii-tool that the driver was tested with takes any -ve error
1373 * as real PHY capabilities, thus displaying incorrect data to the user.
1374 */
1375static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1376{
1377	struct ks_net *ks = netdev_priv(netdev);
1378	int ksreg;
1379	int result;
1380
1381	ksreg = ks_phy_reg(reg);
1382	if (!ksreg)
1383		return 0x0;	/* no error return allowed, so use zero */
1384
1385	mutex_lock(&ks->lock);
1386	result = ks_rdreg16(ks, ksreg);
1387	mutex_unlock(&ks->lock);
1388
1389	return result;
1390}
1391
1392static void ks_phy_write(struct net_device *netdev,
1393			     int phy, int reg, int value)
1394{
1395	struct ks_net *ks = netdev_priv(netdev);
1396	int ksreg;
1397
1398	ksreg = ks_phy_reg(reg);
1399	if (ksreg) {
1400		mutex_lock(&ks->lock);
1401		ks_wrreg16(ks, ksreg, value);
1402		mutex_unlock(&ks->lock);
1403	}
1404}
1405
1406/**
1407 * ks_read_selftest - read the selftest memory info.
1408 * @ks: The device state
1409 *
1410 * Read and check the TX/RX memory selftest information.
1411 */
1412static int ks_read_selftest(struct ks_net *ks)
1413{
1414	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1415	int ret = 0;
1416	unsigned rd;
1417
1418	rd = ks_rdreg16(ks, KS_MBIR);
1419
1420	if ((rd & both_done) != both_done) {
1421		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1422		return 0;
1423	}
1424
1425	if (rd & MBIR_TXMBFA) {
1426		netdev_err(ks->netdev, "TX memory selftest fails\n");
1427		ret |= 1;
1428	}
1429
1430	if (rd & MBIR_RXMBFA) {
1431		netdev_err(ks->netdev, "RX memory selftest fails\n");
1432		ret |= 2;
1433	}
1434
1435	netdev_info(ks->netdev, "the selftest passes\n");
1436	return ret;
1437}
1438
1439static void ks_setup(struct ks_net *ks)
1440{
1441	u16	w;
1442
1443	/**
1444	 * Configure QMU Transmit
1445	 */
1446
1447	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1448	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1449
1450	/* Setup Receive Frame Data Pointer Auto-Increment */
1451	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1452
1453	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1454	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1455
1456	/* Setup RxQ Command Control (RXQCR) */
1457	ks->rc_rxqcr = RXQCR_CMD_CNTL;
1458	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1459
1460	/**
1461	 * set the force mode to half duplex, default is full duplex
1462	 *  because if the auto-negotiation fails, most switch uses
1463	 *  half-duplex.
1464	 */
1465
1466	w = ks_rdreg16(ks, KS_P1MBCR);
1467	w &= ~P1MBCR_FORCE_FDX;
1468	ks_wrreg16(ks, KS_P1MBCR, w);
1469
1470	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1471	ks_wrreg16(ks, KS_TXCR, w);
1472
1473	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1474
1475	if (ks->promiscuous)         /* bPromiscuous */
1476		w |= (RXCR1_RXAE | RXCR1_RXINVF);
1477	else if (ks->all_mcast) /* Multicast address passed mode */
1478		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1479	else                                   /* Normal mode */
1480		w |= RXCR1_RXPAFMA;
1481
1482	ks_wrreg16(ks, KS_RXCR1, w);
1483}  /*ks_setup */
1484
1485
1486static void ks_setup_int(struct ks_net *ks)
1487{
1488	ks->rc_ier = 0x00;
1489	/* Clear the interrupts status of the hardware. */
1490	ks_wrreg16(ks, KS_ISR, 0xffff);
1491
1492	/* Enables the interrupts of the hardware. */
1493	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1494}  /* ks_setup_int */
1495
1496static int ks_hw_init(struct ks_net *ks)
1497{
1498#define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1499	ks->promiscuous = 0;
1500	ks->all_mcast = 0;
1501	ks->mcast_lst_size = 0;
1502
1503	ks->frame_head_info = (struct type_frame_head *) \
1504		kmalloc(MHEADER_SIZE, GFP_KERNEL);
1505	if (!ks->frame_head_info) {
1506		pr_err("Error: Fail to allocate frame memory\n");
1507		return false;
1508	}
1509
1510	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1511	return true;
1512}
1513
1514
1515static int __devinit ks8851_probe(struct platform_device *pdev)
1516{
1517	int err = -ENOMEM;
1518	struct resource *io_d, *io_c;
1519	struct net_device *netdev;
1520	struct ks_net *ks;
1521	u16 id, data;
1522
1523	io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1524	io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1525
1526	if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
1527		goto err_mem_region;
1528
1529	if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
1530		goto err_mem_region1;
1531
1532	netdev = alloc_etherdev(sizeof(struct ks_net));
1533	if (!netdev)
1534		goto err_alloc_etherdev;
1535
1536	SET_NETDEV_DEV(netdev, &pdev->dev);
1537
1538	ks = netdev_priv(netdev);
1539	ks->netdev = netdev;
1540	ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
1541
1542	if (!ks->hw_addr)
1543		goto err_ioremap;
1544
1545	ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
1546	if (!ks->hw_addr_cmd)
1547		goto err_ioremap1;
1548
1549	ks->irq = platform_get_irq(pdev, 0);
1550
1551	if (ks->irq < 0) {
1552		err = ks->irq;
1553		goto err_get_irq;
1554	}
1555
1556	ks->pdev = pdev;
1557
1558	mutex_init(&ks->lock);
1559	spin_lock_init(&ks->statelock);
1560
1561	netdev->netdev_ops = &ks_netdev_ops;
1562	netdev->ethtool_ops = &ks_ethtool_ops;
1563
1564	/* setup mii state */
1565	ks->mii.dev             = netdev;
1566	ks->mii.phy_id          = 1,
1567	ks->mii.phy_id_mask     = 1;
1568	ks->mii.reg_num_mask    = 0xf;
1569	ks->mii.mdio_read       = ks_phy_read;
1570	ks->mii.mdio_write      = ks_phy_write;
1571
1572	netdev_info(netdev, "message enable is %d\n", msg_enable);
1573	/* set the default message enable */
1574	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1575						     NETIF_MSG_PROBE |
1576						     NETIF_MSG_LINK));
1577	ks_read_config(ks);
1578
1579	/* simple check for a valid chip being connected to the bus */
1580	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1581		netdev_err(netdev, "failed to read device ID\n");
1582		err = -ENODEV;
1583		goto err_register;
1584	}
1585
1586	if (ks_read_selftest(ks)) {
1587		netdev_err(netdev, "failed to read device ID\n");
1588		err = -ENODEV;
1589		goto err_register;
1590	}
1591
1592	err = register_netdev(netdev);
1593	if (err)
1594		goto err_register;
1595
1596	platform_set_drvdata(pdev, netdev);
1597
1598	ks_soft_reset(ks, GRR_GSR);
1599	ks_hw_init(ks);
1600	ks_disable_qmu(ks);
1601	ks_setup(ks);
1602	ks_setup_int(ks);
1603	memcpy(netdev->dev_addr, ks->mac_addr, 6);
1604
1605	data = ks_rdreg16(ks, KS_OBCR);
1606	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1607
1608	/**
1609	 * If you want to use the default MAC addr,
1610	 * comment out the 2 functions below.
1611	 */
1612
1613	random_ether_addr(netdev->dev_addr);
1614	ks_set_mac(ks, netdev->dev_addr);
1615
1616	id = ks_rdreg16(ks, KS_CIDER);
1617
1618	netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1619		    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1620	return 0;
1621
1622err_register:
1623err_get_irq:
1624	iounmap(ks->hw_addr_cmd);
1625err_ioremap1:
1626	iounmap(ks->hw_addr);
1627err_ioremap:
1628	free_netdev(netdev);
1629err_alloc_etherdev:
1630	release_mem_region(io_c->start, resource_size(io_c));
1631err_mem_region1:
1632	release_mem_region(io_d->start, resource_size(io_d));
1633err_mem_region:
1634	return err;
1635}
1636
1637static int __devexit ks8851_remove(struct platform_device *pdev)
1638{
1639	struct net_device *netdev = platform_get_drvdata(pdev);
1640	struct ks_net *ks = netdev_priv(netdev);
1641	struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1642
1643	kfree(ks->frame_head_info);
1644	unregister_netdev(netdev);
1645	iounmap(ks->hw_addr);
1646	free_netdev(netdev);
1647	release_mem_region(iomem->start, resource_size(iomem));
1648	platform_set_drvdata(pdev, NULL);
1649	return 0;
1650
1651}
1652
1653static struct platform_driver ks8851_platform_driver = {
1654	.driver = {
1655		.name = DRV_NAME,
1656		.owner = THIS_MODULE,
1657	},
1658	.probe = ks8851_probe,
1659	.remove = __devexit_p(ks8851_remove),
1660};
1661
1662static int __init ks8851_init(void)
1663{
1664	return platform_driver_register(&ks8851_platform_driver);
1665}
1666
1667static void __exit ks8851_exit(void)
1668{
1669	platform_driver_unregister(&ks8851_platform_driver);
1670}
1671
1672module_init(ks8851_init);
1673module_exit(ks8851_exit);
1674
1675MODULE_DESCRIPTION("KS8851 MLL Network driver");
1676MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1677MODULE_LICENSE("GPL");
1678module_param_named(message, msg_enable, int, 0);
1679MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1680