Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
Note: File does not exist in v4.17.
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/pci.h>
  29#include <linux/delay.h>
  30#include <linux/sched.h>
  31#include <linux/netdevice.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_common.h"
  35#include "ixgbe_phy.h"
  36
  37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  43                                        u16 count);
  44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  48
  49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  50static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
  51static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
  52static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
  53static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
  54static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
  55			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
  56static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
  57static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  58static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  59					     u16 words, u16 *data);
  60static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  61					     u16 words, u16 *data);
  62static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  63						 u16 offset);
  64
  65/**
  66 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
  67 *  @hw: pointer to hardware structure
  68 *
  69 *  Starts the hardware by filling the bus info structure and media type, clears
  70 *  all on chip counters, initializes receive address registers, multicast
  71 *  table, VLAN filter table, calls routine to set up link and flow control
  72 *  settings, and leaves transmit and receive units disabled and uninitialized
  73 **/
  74s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
  75{
  76	u32 ctrl_ext;
  77
  78	/* Set the media type */
  79	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
  80
  81	/* Identify the PHY */
  82	hw->phy.ops.identify(hw);
  83
  84	/* Clear the VLAN filter table */
  85	hw->mac.ops.clear_vfta(hw);
  86
  87	/* Clear statistics registers */
  88	hw->mac.ops.clear_hw_cntrs(hw);
  89
  90	/* Set No Snoop Disable */
  91	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
  92	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
  93	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
  94	IXGBE_WRITE_FLUSH(hw);
  95
  96	/* Setup flow control */
  97	ixgbe_setup_fc(hw, 0);
  98
  99	/* Clear adapter stopped flag */
 100	hw->adapter_stopped = false;
 101
 102	return 0;
 103}
 104
 105/**
 106 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 107 *  @hw: pointer to hw structure
 108 *
 109 * Performs the init sequence common to the second generation
 110 * of 10 GbE devices.
 111 * Devices in the second generation:
 112 *     82599
 113 *     X540
 114 **/
 115s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 116{
 117	u32 i;
 118	u32 regval;
 119
 120	/* Clear the rate limiters */
 121	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 122		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 123		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 124	}
 125	IXGBE_WRITE_FLUSH(hw);
 126
 127	/* Disable relaxed ordering */
 128	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 129		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 130		regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
 131		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 132	}
 133
 134	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 135		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 136		regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
 137					IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
 138		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 139	}
 140
 141	return 0;
 142}
 143
 144/**
 145 *  ixgbe_init_hw_generic - Generic hardware initialization
 146 *  @hw: pointer to hardware structure
 147 *
 148 *  Initialize the hardware by resetting the hardware, filling the bus info
 149 *  structure and media type, clears all on chip counters, initializes receive
 150 *  address registers, multicast table, VLAN filter table, calls routine to set
 151 *  up link and flow control settings, and leaves transmit and receive units
 152 *  disabled and uninitialized
 153 **/
 154s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 155{
 156	s32 status;
 157
 158	/* Reset the hardware */
 159	status = hw->mac.ops.reset_hw(hw);
 160
 161	if (status == 0) {
 162		/* Start the HW */
 163		status = hw->mac.ops.start_hw(hw);
 164	}
 165
 166	return status;
 167}
 168
 169/**
 170 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 171 *  @hw: pointer to hardware structure
 172 *
 173 *  Clears all hardware statistics counters by reading them from the hardware
 174 *  Statistics counters are clear on read.
 175 **/
 176s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 177{
 178	u16 i = 0;
 179
 180	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 181	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 182	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 183	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 184	for (i = 0; i < 8; i++)
 185		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 186
 187	IXGBE_READ_REG(hw, IXGBE_MLFC);
 188	IXGBE_READ_REG(hw, IXGBE_MRFC);
 189	IXGBE_READ_REG(hw, IXGBE_RLEC);
 190	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 191	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 192	if (hw->mac.type >= ixgbe_mac_82599EB) {
 193		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 194		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 195	} else {
 196		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 197		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 198	}
 199
 200	for (i = 0; i < 8; i++) {
 201		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 202		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 203		if (hw->mac.type >= ixgbe_mac_82599EB) {
 204			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 205			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 206		} else {
 207			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 208			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 209		}
 210	}
 211	if (hw->mac.type >= ixgbe_mac_82599EB)
 212		for (i = 0; i < 8; i++)
 213			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 214	IXGBE_READ_REG(hw, IXGBE_PRC64);
 215	IXGBE_READ_REG(hw, IXGBE_PRC127);
 216	IXGBE_READ_REG(hw, IXGBE_PRC255);
 217	IXGBE_READ_REG(hw, IXGBE_PRC511);
 218	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 219	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 220	IXGBE_READ_REG(hw, IXGBE_GPRC);
 221	IXGBE_READ_REG(hw, IXGBE_BPRC);
 222	IXGBE_READ_REG(hw, IXGBE_MPRC);
 223	IXGBE_READ_REG(hw, IXGBE_GPTC);
 224	IXGBE_READ_REG(hw, IXGBE_GORCL);
 225	IXGBE_READ_REG(hw, IXGBE_GORCH);
 226	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 227	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 228	for (i = 0; i < 8; i++)
 229		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 230	IXGBE_READ_REG(hw, IXGBE_RUC);
 231	IXGBE_READ_REG(hw, IXGBE_RFC);
 232	IXGBE_READ_REG(hw, IXGBE_ROC);
 233	IXGBE_READ_REG(hw, IXGBE_RJC);
 234	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 235	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 236	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 237	IXGBE_READ_REG(hw, IXGBE_TORL);
 238	IXGBE_READ_REG(hw, IXGBE_TORH);
 239	IXGBE_READ_REG(hw, IXGBE_TPR);
 240	IXGBE_READ_REG(hw, IXGBE_TPT);
 241	IXGBE_READ_REG(hw, IXGBE_PTC64);
 242	IXGBE_READ_REG(hw, IXGBE_PTC127);
 243	IXGBE_READ_REG(hw, IXGBE_PTC255);
 244	IXGBE_READ_REG(hw, IXGBE_PTC511);
 245	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 246	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 247	IXGBE_READ_REG(hw, IXGBE_MPTC);
 248	IXGBE_READ_REG(hw, IXGBE_BPTC);
 249	for (i = 0; i < 16; i++) {
 250		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 251		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 252		if (hw->mac.type >= ixgbe_mac_82599EB) {
 253			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 254			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 255			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 256			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 257			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 258		} else {
 259			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 260			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 261		}
 262	}
 263
 264	if (hw->mac.type == ixgbe_mac_X540) {
 265		if (hw->phy.id == 0)
 266			hw->phy.ops.identify(hw);
 267		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
 268		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
 269		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
 270		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
 271	}
 272
 273	return 0;
 274}
 275
 276/**
 277 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 278 *  @hw: pointer to hardware structure
 279 *  @pba_num: stores the part number string from the EEPROM
 280 *  @pba_num_size: part number string buffer length
 281 *
 282 *  Reads the part number string from the EEPROM.
 283 **/
 284s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 285                                  u32 pba_num_size)
 286{
 287	s32 ret_val;
 288	u16 data;
 289	u16 pba_ptr;
 290	u16 offset;
 291	u16 length;
 292
 293	if (pba_num == NULL) {
 294		hw_dbg(hw, "PBA string buffer was null\n");
 295		return IXGBE_ERR_INVALID_ARGUMENT;
 296	}
 297
 298	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 299	if (ret_val) {
 300		hw_dbg(hw, "NVM Read Error\n");
 301		return ret_val;
 302	}
 303
 304	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 305	if (ret_val) {
 306		hw_dbg(hw, "NVM Read Error\n");
 307		return ret_val;
 308	}
 309
 310	/*
 311	 * if data is not ptr guard the PBA must be in legacy format which
 312	 * means pba_ptr is actually our second data word for the PBA number
 313	 * and we can decode it into an ascii string
 314	 */
 315	if (data != IXGBE_PBANUM_PTR_GUARD) {
 316		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 317
 318		/* we will need 11 characters to store the PBA */
 319		if (pba_num_size < 11) {
 320			hw_dbg(hw, "PBA string buffer too small\n");
 321			return IXGBE_ERR_NO_SPACE;
 322		}
 323
 324		/* extract hex string from data and pba_ptr */
 325		pba_num[0] = (data >> 12) & 0xF;
 326		pba_num[1] = (data >> 8) & 0xF;
 327		pba_num[2] = (data >> 4) & 0xF;
 328		pba_num[3] = data & 0xF;
 329		pba_num[4] = (pba_ptr >> 12) & 0xF;
 330		pba_num[5] = (pba_ptr >> 8) & 0xF;
 331		pba_num[6] = '-';
 332		pba_num[7] = 0;
 333		pba_num[8] = (pba_ptr >> 4) & 0xF;
 334		pba_num[9] = pba_ptr & 0xF;
 335
 336		/* put a null character on the end of our string */
 337		pba_num[10] = '\0';
 338
 339		/* switch all the data but the '-' to hex char */
 340		for (offset = 0; offset < 10; offset++) {
 341			if (pba_num[offset] < 0xA)
 342				pba_num[offset] += '0';
 343			else if (pba_num[offset] < 0x10)
 344				pba_num[offset] += 'A' - 0xA;
 345		}
 346
 347		return 0;
 348	}
 349
 350	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 351	if (ret_val) {
 352		hw_dbg(hw, "NVM Read Error\n");
 353		return ret_val;
 354	}
 355
 356	if (length == 0xFFFF || length == 0) {
 357		hw_dbg(hw, "NVM PBA number section invalid length\n");
 358		return IXGBE_ERR_PBA_SECTION;
 359	}
 360
 361	/* check if pba_num buffer is big enough */
 362	if (pba_num_size  < (((u32)length * 2) - 1)) {
 363		hw_dbg(hw, "PBA string buffer too small\n");
 364		return IXGBE_ERR_NO_SPACE;
 365	}
 366
 367	/* trim pba length from start of string */
 368	pba_ptr++;
 369	length--;
 370
 371	for (offset = 0; offset < length; offset++) {
 372		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 373		if (ret_val) {
 374			hw_dbg(hw, "NVM Read Error\n");
 375			return ret_val;
 376		}
 377		pba_num[offset * 2] = (u8)(data >> 8);
 378		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 379	}
 380	pba_num[offset * 2] = '\0';
 381
 382	return 0;
 383}
 384
 385/**
 386 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 387 *  @hw: pointer to hardware structure
 388 *  @mac_addr: Adapter MAC address
 389 *
 390 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 391 *  A reset of the adapter must be performed prior to calling this function
 392 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 393 **/
 394s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 395{
 396	u32 rar_high;
 397	u32 rar_low;
 398	u16 i;
 399
 400	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 401	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 402
 403	for (i = 0; i < 4; i++)
 404		mac_addr[i] = (u8)(rar_low >> (i*8));
 405
 406	for (i = 0; i < 2; i++)
 407		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 408
 409	return 0;
 410}
 411
 412/**
 413 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 414 *  @hw: pointer to hardware structure
 415 *
 416 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 417 **/
 418s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 419{
 420	struct ixgbe_adapter *adapter = hw->back;
 421	struct ixgbe_mac_info *mac = &hw->mac;
 422	u16 link_status;
 423
 424	hw->bus.type = ixgbe_bus_type_pci_express;
 425
 426	/* Get the negotiated link width and speed from PCI config space */
 427	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 428	                     &link_status);
 429
 430	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 431	case IXGBE_PCI_LINK_WIDTH_1:
 432		hw->bus.width = ixgbe_bus_width_pcie_x1;
 433		break;
 434	case IXGBE_PCI_LINK_WIDTH_2:
 435		hw->bus.width = ixgbe_bus_width_pcie_x2;
 436		break;
 437	case IXGBE_PCI_LINK_WIDTH_4:
 438		hw->bus.width = ixgbe_bus_width_pcie_x4;
 439		break;
 440	case IXGBE_PCI_LINK_WIDTH_8:
 441		hw->bus.width = ixgbe_bus_width_pcie_x8;
 442		break;
 443	default:
 444		hw->bus.width = ixgbe_bus_width_unknown;
 445		break;
 446	}
 447
 448	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 449	case IXGBE_PCI_LINK_SPEED_2500:
 450		hw->bus.speed = ixgbe_bus_speed_2500;
 451		break;
 452	case IXGBE_PCI_LINK_SPEED_5000:
 453		hw->bus.speed = ixgbe_bus_speed_5000;
 454		break;
 455	default:
 456		hw->bus.speed = ixgbe_bus_speed_unknown;
 457		break;
 458	}
 459
 460	mac->ops.set_lan_id(hw);
 461
 462	return 0;
 463}
 464
 465/**
 466 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 467 *  @hw: pointer to the HW structure
 468 *
 469 *  Determines the LAN function id by reading memory-mapped registers
 470 *  and swaps the port value if requested.
 471 **/
 472void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 473{
 474	struct ixgbe_bus_info *bus = &hw->bus;
 475	u32 reg;
 476
 477	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 478	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 479	bus->lan_id = bus->func;
 480
 481	/* check for a port swap */
 482	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 483	if (reg & IXGBE_FACTPS_LFS)
 484		bus->func ^= 0x1;
 485}
 486
 487/**
 488 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 489 *  @hw: pointer to hardware structure
 490 *
 491 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 492 *  disables transmit and receive units. The adapter_stopped flag is used by
 493 *  the shared code and drivers to determine if the adapter is in a stopped
 494 *  state and should not touch the hardware.
 495 **/
 496s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 497{
 498	u32 number_of_queues;
 499	u32 reg_val;
 500	u16 i;
 501
 502	/*
 503	 * Set the adapter_stopped flag so other driver functions stop touching
 504	 * the hardware
 505	 */
 506	hw->adapter_stopped = true;
 507
 508	/* Disable the receive unit */
 509	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
 510	reg_val &= ~(IXGBE_RXCTRL_RXEN);
 511	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
 512	IXGBE_WRITE_FLUSH(hw);
 513	usleep_range(2000, 4000);
 514
 515	/* Clear interrupt mask to stop from interrupts being generated */
 516	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 517
 518	/* Clear any pending interrupts */
 519	IXGBE_READ_REG(hw, IXGBE_EICR);
 520
 521	/* Disable the transmit unit.  Each queue must be disabled. */
 522	number_of_queues = hw->mac.max_tx_queues;
 523	for (i = 0; i < number_of_queues; i++) {
 524		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
 525		if (reg_val & IXGBE_TXDCTL_ENABLE) {
 526			reg_val &= ~IXGBE_TXDCTL_ENABLE;
 527			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
 528		}
 529	}
 530
 531	/*
 532	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 533	 * access and verify no pending requests
 534	 */
 535	ixgbe_disable_pcie_master(hw);
 536
 537	return 0;
 538}
 539
 540/**
 541 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 542 *  @hw: pointer to hardware structure
 543 *  @index: led number to turn on
 544 **/
 545s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 546{
 547	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 548
 549	/* To turn on the LED, set mode to ON. */
 550	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 551	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 552	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 553	IXGBE_WRITE_FLUSH(hw);
 554
 555	return 0;
 556}
 557
 558/**
 559 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 560 *  @hw: pointer to hardware structure
 561 *  @index: led number to turn off
 562 **/
 563s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 564{
 565	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 566
 567	/* To turn off the LED, set mode to OFF. */
 568	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 569	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 570	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 571	IXGBE_WRITE_FLUSH(hw);
 572
 573	return 0;
 574}
 575
 576/**
 577 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 578 *  @hw: pointer to hardware structure
 579 *
 580 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 581 *  ixgbe_hw struct in order to set up EEPROM access.
 582 **/
 583s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 584{
 585	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 586	u32 eec;
 587	u16 eeprom_size;
 588
 589	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 590		eeprom->type = ixgbe_eeprom_none;
 591		/* Set default semaphore delay to 10ms which is a well
 592		 * tested value */
 593		eeprom->semaphore_delay = 10;
 594		/* Clear EEPROM page size, it will be initialized as needed */
 595		eeprom->word_page_size = 0;
 596
 597		/*
 598		 * Check for EEPROM present first.
 599		 * If not present leave as none
 600		 */
 601		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 602		if (eec & IXGBE_EEC_PRES) {
 603			eeprom->type = ixgbe_eeprom_spi;
 604
 605			/*
 606			 * SPI EEPROM is assumed here.  This code would need to
 607			 * change if a future EEPROM is not SPI.
 608			 */
 609			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 610					    IXGBE_EEC_SIZE_SHIFT);
 611			eeprom->word_size = 1 << (eeprom_size +
 612						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 613		}
 614
 615		if (eec & IXGBE_EEC_ADDR_SIZE)
 616			eeprom->address_bits = 16;
 617		else
 618			eeprom->address_bits = 8;
 619		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 620			  "%d\n", eeprom->type, eeprom->word_size,
 621			  eeprom->address_bits);
 622	}
 623
 624	return 0;
 625}
 626
 627/**
 628 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 629 *  @hw: pointer to hardware structure
 630 *  @offset: offset within the EEPROM to write
 631 *  @words: number of words
 632 *  @data: 16 bit word(s) to write to EEPROM
 633 *
 634 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 635 **/
 636s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 637					       u16 words, u16 *data)
 638{
 639	s32 status = 0;
 640	u16 i, count;
 641
 642	hw->eeprom.ops.init_params(hw);
 643
 644	if (words == 0) {
 645		status = IXGBE_ERR_INVALID_ARGUMENT;
 646		goto out;
 647	}
 648
 649	if (offset + words > hw->eeprom.word_size) {
 650		status = IXGBE_ERR_EEPROM;
 651		goto out;
 652	}
 653
 654	/*
 655	 * The EEPROM page size cannot be queried from the chip. We do lazy
 656	 * initialization. It is worth to do that when we write large buffer.
 657	 */
 658	if ((hw->eeprom.word_page_size == 0) &&
 659	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 660		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 661
 662	/*
 663	 * We cannot hold synchronization semaphores for too long
 664	 * to avoid other entity starvation. However it is more efficient
 665	 * to read in bursts than synchronizing access for each word.
 666	 */
 667	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 668		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 669			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 670		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 671							    count, &data[i]);
 672
 673		if (status != 0)
 674			break;
 675	}
 676
 677out:
 678	return status;
 679}
 680
 681/**
 682 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 683 *  @hw: pointer to hardware structure
 684 *  @offset: offset within the EEPROM to be written to
 685 *  @words: number of word(s)
 686 *  @data: 16 bit word(s) to be written to the EEPROM
 687 *
 688 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 689 *  EEPROM will most likely contain an invalid checksum.
 690 **/
 691static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 692					      u16 words, u16 *data)
 693{
 694	s32 status;
 695	u16 word;
 696	u16 page_size;
 697	u16 i;
 698	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 699
 700	/* Prepare the EEPROM for writing  */
 701	status = ixgbe_acquire_eeprom(hw);
 702
 703	if (status == 0) {
 704		if (ixgbe_ready_eeprom(hw) != 0) {
 705			ixgbe_release_eeprom(hw);
 706			status = IXGBE_ERR_EEPROM;
 707		}
 708	}
 709
 710	if (status == 0) {
 711		for (i = 0; i < words; i++) {
 712			ixgbe_standby_eeprom(hw);
 713
 714			/*  Send the WRITE ENABLE command (8 bit opcode )  */
 715			ixgbe_shift_out_eeprom_bits(hw,
 716						  IXGBE_EEPROM_WREN_OPCODE_SPI,
 717						  IXGBE_EEPROM_OPCODE_BITS);
 718
 719			ixgbe_standby_eeprom(hw);
 720
 721			/*
 722			 * Some SPI eeproms use the 8th address bit embedded
 723			 * in the opcode
 724			 */
 725			if ((hw->eeprom.address_bits == 8) &&
 726			    ((offset + i) >= 128))
 727				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 728
 729			/* Send the Write command (8-bit opcode + addr) */
 730			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 731						    IXGBE_EEPROM_OPCODE_BITS);
 732			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 733						    hw->eeprom.address_bits);
 734
 735			page_size = hw->eeprom.word_page_size;
 736
 737			/* Send the data in burst via SPI*/
 738			do {
 739				word = data[i];
 740				word = (word >> 8) | (word << 8);
 741				ixgbe_shift_out_eeprom_bits(hw, word, 16);
 742
 743				if (page_size == 0)
 744					break;
 745
 746				/* do not wrap around page */
 747				if (((offset + i) & (page_size - 1)) ==
 748				    (page_size - 1))
 749					break;
 750			} while (++i < words);
 751
 752			ixgbe_standby_eeprom(hw);
 753			usleep_range(10000, 20000);
 754		}
 755		/* Done with writing - release the EEPROM */
 756		ixgbe_release_eeprom(hw);
 757	}
 758
 759	return status;
 760}
 761
 762/**
 763 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 764 *  @hw: pointer to hardware structure
 765 *  @offset: offset within the EEPROM to be written to
 766 *  @data: 16 bit word to be written to the EEPROM
 767 *
 768 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 769 *  EEPROM will most likely contain an invalid checksum.
 770 **/
 771s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 772{
 773	s32 status;
 774
 775	hw->eeprom.ops.init_params(hw);
 776
 777	if (offset >= hw->eeprom.word_size) {
 778		status = IXGBE_ERR_EEPROM;
 779		goto out;
 780	}
 781
 782	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 783
 784out:
 785	return status;
 786}
 787
 788/**
 789 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 790 *  @hw: pointer to hardware structure
 791 *  @offset: offset within the EEPROM to be read
 792 *  @words: number of word(s)
 793 *  @data: read 16 bit words(s) from EEPROM
 794 *
 795 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 796 **/
 797s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 798					      u16 words, u16 *data)
 799{
 800	s32 status = 0;
 801	u16 i, count;
 802
 803	hw->eeprom.ops.init_params(hw);
 804
 805	if (words == 0) {
 806		status = IXGBE_ERR_INVALID_ARGUMENT;
 807		goto out;
 808	}
 809
 810	if (offset + words > hw->eeprom.word_size) {
 811		status = IXGBE_ERR_EEPROM;
 812		goto out;
 813	}
 814
 815	/*
 816	 * We cannot hold synchronization semaphores for too long
 817	 * to avoid other entity starvation. However it is more efficient
 818	 * to read in bursts than synchronizing access for each word.
 819	 */
 820	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 821		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 822			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 823
 824		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
 825							   count, &data[i]);
 826
 827		if (status != 0)
 828			break;
 829	}
 830
 831out:
 832	return status;
 833}
 834
 835/**
 836 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 837 *  @hw: pointer to hardware structure
 838 *  @offset: offset within the EEPROM to be read
 839 *  @words: number of word(s)
 840 *  @data: read 16 bit word(s) from EEPROM
 841 *
 842 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 843 **/
 844static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 845					     u16 words, u16 *data)
 846{
 847	s32 status;
 848	u16 word_in;
 849	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
 850	u16 i;
 851
 852	/* Prepare the EEPROM for reading  */
 853	status = ixgbe_acquire_eeprom(hw);
 854
 855	if (status == 0) {
 856		if (ixgbe_ready_eeprom(hw) != 0) {
 857			ixgbe_release_eeprom(hw);
 858			status = IXGBE_ERR_EEPROM;
 859		}
 860	}
 861
 862	if (status == 0) {
 863		for (i = 0; i < words; i++) {
 864			ixgbe_standby_eeprom(hw);
 865			/*
 866			 * Some SPI eeproms use the 8th address bit embedded
 867			 * in the opcode
 868			 */
 869			if ((hw->eeprom.address_bits == 8) &&
 870			    ((offset + i) >= 128))
 871				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 872
 873			/* Send the READ command (opcode + addr) */
 874			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
 875						    IXGBE_EEPROM_OPCODE_BITS);
 876			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 877						    hw->eeprom.address_bits);
 878
 879			/* Read the data. */
 880			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
 881			data[i] = (word_in >> 8) | (word_in << 8);
 882		}
 883
 884		/* End this read operation */
 885		ixgbe_release_eeprom(hw);
 886	}
 887
 888	return status;
 889}
 890
 891/**
 892 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 893 *  @hw: pointer to hardware structure
 894 *  @offset: offset within the EEPROM to be read
 895 *  @data: read 16 bit value from EEPROM
 896 *
 897 *  Reads 16 bit value from EEPROM through bit-bang method
 898 **/
 899s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 900				       u16 *data)
 901{
 902	s32 status;
 903
 904	hw->eeprom.ops.init_params(hw);
 905
 906	if (offset >= hw->eeprom.word_size) {
 907		status = IXGBE_ERR_EEPROM;
 908		goto out;
 909	}
 910
 911	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
 912
 913out:
 914	return status;
 915}
 916
 917/**
 918 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
 919 *  @hw: pointer to hardware structure
 920 *  @offset: offset of word in the EEPROM to read
 921 *  @words: number of word(s)
 922 *  @data: 16 bit word(s) from the EEPROM
 923 *
 924 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
 925 **/
 926s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
 927				   u16 words, u16 *data)
 928{
 929	u32 eerd;
 930	s32 status = 0;
 931	u32 i;
 932
 933	hw->eeprom.ops.init_params(hw);
 934
 935	if (words == 0) {
 936		status = IXGBE_ERR_INVALID_ARGUMENT;
 937		goto out;
 938	}
 939
 940	if (offset >= hw->eeprom.word_size) {
 941		status = IXGBE_ERR_EEPROM;
 942		goto out;
 943	}
 944
 945	for (i = 0; i < words; i++) {
 946		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
 947		       IXGBE_EEPROM_RW_REG_START;
 948
 949		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
 950		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
 951
 952		if (status == 0) {
 953			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
 954				   IXGBE_EEPROM_RW_REG_DATA);
 955		} else {
 956			hw_dbg(hw, "Eeprom read timed out\n");
 957			goto out;
 958		}
 959	}
 960out:
 961	return status;
 962}
 963
 964/**
 965 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 966 *  @hw: pointer to hardware structure
 967 *  @offset: offset within the EEPROM to be used as a scratch pad
 968 *
 969 *  Discover EEPROM page size by writing marching data at given offset.
 970 *  This function is called only when we are writing a new large buffer
 971 *  at given offset so the data would be overwritten anyway.
 972 **/
 973static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
 974						 u16 offset)
 975{
 976	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
 977	s32 status = 0;
 978	u16 i;
 979
 980	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
 981		data[i] = i;
 982
 983	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
 984	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
 985					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
 986	hw->eeprom.word_page_size = 0;
 987	if (status != 0)
 988		goto out;
 989
 990	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
 991	if (status != 0)
 992		goto out;
 993
 994	/*
 995	 * When writing in burst more than the actual page size
 996	 * EEPROM address wraps around current page.
 997	 */
 998	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
 999
1000	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1001	       hw->eeprom.word_page_size);
1002out:
1003	return status;
1004}
1005
1006/**
1007 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1008 *  @hw: pointer to hardware structure
1009 *  @offset: offset of  word in the EEPROM to read
1010 *  @data: word read from the EEPROM
1011 *
1012 *  Reads a 16 bit word from the EEPROM using the EERD register.
1013 **/
1014s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1015{
1016	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1017}
1018
1019/**
1020 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1021 *  @hw: pointer to hardware structure
1022 *  @offset: offset of  word in the EEPROM to write
1023 *  @words: number of words
1024 *  @data: word(s) write to the EEPROM
1025 *
1026 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1027 **/
1028s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1029				    u16 words, u16 *data)
1030{
1031	u32 eewr;
1032	s32 status = 0;
1033	u16 i;
1034
1035	hw->eeprom.ops.init_params(hw);
1036
1037	if (words == 0) {
1038		status = IXGBE_ERR_INVALID_ARGUMENT;
1039		goto out;
1040	}
1041
1042	if (offset >= hw->eeprom.word_size) {
1043		status = IXGBE_ERR_EEPROM;
1044		goto out;
1045	}
1046
1047	for (i = 0; i < words; i++) {
1048		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1049		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1050		       IXGBE_EEPROM_RW_REG_START;
1051
1052		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1053		if (status != 0) {
1054			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1055			goto out;
1056		}
1057
1058		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1059
1060		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1061		if (status != 0) {
1062			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1063			goto out;
1064		}
1065	}
1066
1067out:
1068	return status;
1069}
1070
1071/**
1072 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1073 *  @hw: pointer to hardware structure
1074 *  @offset: offset of  word in the EEPROM to write
1075 *  @data: word write to the EEPROM
1076 *
1077 *  Write a 16 bit word to the EEPROM using the EEWR register.
1078 **/
1079s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1080{
1081	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1082}
1083
1084/**
1085 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1086 *  @hw: pointer to hardware structure
1087 *  @ee_reg: EEPROM flag for polling
1088 *
1089 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1090 *  read or write is done respectively.
1091 **/
1092static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1093{
1094	u32 i;
1095	u32 reg;
1096	s32 status = IXGBE_ERR_EEPROM;
1097
1098	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1099		if (ee_reg == IXGBE_NVM_POLL_READ)
1100			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1101		else
1102			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1103
1104		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1105			status = 0;
1106			break;
1107		}
1108		udelay(5);
1109	}
1110	return status;
1111}
1112
1113/**
1114 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1115 *  @hw: pointer to hardware structure
1116 *
1117 *  Prepares EEPROM for access using bit-bang method. This function should
1118 *  be called before issuing a command to the EEPROM.
1119 **/
1120static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1121{
1122	s32 status = 0;
1123	u32 eec;
1124	u32 i;
1125
1126	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1127		status = IXGBE_ERR_SWFW_SYNC;
1128
1129	if (status == 0) {
1130		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1131
1132		/* Request EEPROM Access */
1133		eec |= IXGBE_EEC_REQ;
1134		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1135
1136		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1137			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1138			if (eec & IXGBE_EEC_GNT)
1139				break;
1140			udelay(5);
1141		}
1142
1143		/* Release if grant not acquired */
1144		if (!(eec & IXGBE_EEC_GNT)) {
1145			eec &= ~IXGBE_EEC_REQ;
1146			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1147			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1148
1149			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1150			status = IXGBE_ERR_EEPROM;
1151		}
1152
1153		/* Setup EEPROM for Read/Write */
1154		if (status == 0) {
1155			/* Clear CS and SK */
1156			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1157			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1158			IXGBE_WRITE_FLUSH(hw);
1159			udelay(1);
1160		}
1161	}
1162	return status;
1163}
1164
1165/**
1166 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1167 *  @hw: pointer to hardware structure
1168 *
1169 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1170 **/
1171static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1172{
1173	s32 status = IXGBE_ERR_EEPROM;
1174	u32 timeout = 2000;
1175	u32 i;
1176	u32 swsm;
1177
1178	/* Get SMBI software semaphore between device drivers first */
1179	for (i = 0; i < timeout; i++) {
1180		/*
1181		 * If the SMBI bit is 0 when we read it, then the bit will be
1182		 * set and we have the semaphore
1183		 */
1184		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1185		if (!(swsm & IXGBE_SWSM_SMBI)) {
1186			status = 0;
1187			break;
1188		}
1189		udelay(50);
1190	}
1191
1192	if (i == timeout) {
1193		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1194		       "not granted.\n");
1195		/*
1196		 * this release is particularly important because our attempts
1197		 * above to get the semaphore may have succeeded, and if there
1198		 * was a timeout, we should unconditionally clear the semaphore
1199		 * bits to free the driver to make progress
1200		 */
1201		ixgbe_release_eeprom_semaphore(hw);
1202
1203		udelay(50);
1204		/*
1205		 * one last try
1206		 * If the SMBI bit is 0 when we read it, then the bit will be
1207		 * set and we have the semaphore
1208		 */
1209		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1210		if (!(swsm & IXGBE_SWSM_SMBI))
1211			status = 0;
1212	}
1213
1214	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1215	if (status == 0) {
1216		for (i = 0; i < timeout; i++) {
1217			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1218
1219			/* Set the SW EEPROM semaphore bit to request access */
1220			swsm |= IXGBE_SWSM_SWESMBI;
1221			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1222
1223			/*
1224			 * If we set the bit successfully then we got the
1225			 * semaphore.
1226			 */
1227			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1228			if (swsm & IXGBE_SWSM_SWESMBI)
1229				break;
1230
1231			udelay(50);
1232		}
1233
1234		/*
1235		 * Release semaphores and return error if SW EEPROM semaphore
1236		 * was not granted because we don't have access to the EEPROM
1237		 */
1238		if (i >= timeout) {
1239			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1240			       "not granted.\n");
1241			ixgbe_release_eeprom_semaphore(hw);
1242			status = IXGBE_ERR_EEPROM;
1243		}
1244	} else {
1245		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1246		       "not granted.\n");
1247	}
1248
1249	return status;
1250}
1251
1252/**
1253 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1254 *  @hw: pointer to hardware structure
1255 *
1256 *  This function clears hardware semaphore bits.
1257 **/
1258static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1259{
1260	u32 swsm;
1261
1262	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1263
1264	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1265	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1266	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1267	IXGBE_WRITE_FLUSH(hw);
1268}
1269
1270/**
1271 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1272 *  @hw: pointer to hardware structure
1273 **/
1274static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1275{
1276	s32 status = 0;
1277	u16 i;
1278	u8 spi_stat_reg;
1279
1280	/*
1281	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1282	 * EEPROM will signal that the command has been completed by clearing
1283	 * bit 0 of the internal status register.  If it's not cleared within
1284	 * 5 milliseconds, then error out.
1285	 */
1286	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1287		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1288		                            IXGBE_EEPROM_OPCODE_BITS);
1289		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1290		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1291			break;
1292
1293		udelay(5);
1294		ixgbe_standby_eeprom(hw);
1295	}
1296
1297	/*
1298	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1299	 * devices (and only 0-5mSec on 5V devices)
1300	 */
1301	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1302		hw_dbg(hw, "SPI EEPROM Status error\n");
1303		status = IXGBE_ERR_EEPROM;
1304	}
1305
1306	return status;
1307}
1308
1309/**
1310 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1311 *  @hw: pointer to hardware structure
1312 **/
1313static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1314{
1315	u32 eec;
1316
1317	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1318
1319	/* Toggle CS to flush commands */
1320	eec |= IXGBE_EEC_CS;
1321	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1322	IXGBE_WRITE_FLUSH(hw);
1323	udelay(1);
1324	eec &= ~IXGBE_EEC_CS;
1325	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1326	IXGBE_WRITE_FLUSH(hw);
1327	udelay(1);
1328}
1329
1330/**
1331 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1332 *  @hw: pointer to hardware structure
1333 *  @data: data to send to the EEPROM
1334 *  @count: number of bits to shift out
1335 **/
1336static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1337                                        u16 count)
1338{
1339	u32 eec;
1340	u32 mask;
1341	u32 i;
1342
1343	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1344
1345	/*
1346	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1347	 * one bit at a time.  Determine the starting bit based on count
1348	 */
1349	mask = 0x01 << (count - 1);
1350
1351	for (i = 0; i < count; i++) {
1352		/*
1353		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1354		 * "1", and then raising and then lowering the clock (the SK
1355		 * bit controls the clock input to the EEPROM).  A "0" is
1356		 * shifted out to the EEPROM by setting "DI" to "0" and then
1357		 * raising and then lowering the clock.
1358		 */
1359		if (data & mask)
1360			eec |= IXGBE_EEC_DI;
1361		else
1362			eec &= ~IXGBE_EEC_DI;
1363
1364		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1365		IXGBE_WRITE_FLUSH(hw);
1366
1367		udelay(1);
1368
1369		ixgbe_raise_eeprom_clk(hw, &eec);
1370		ixgbe_lower_eeprom_clk(hw, &eec);
1371
1372		/*
1373		 * Shift mask to signify next bit of data to shift in to the
1374		 * EEPROM
1375		 */
1376		mask = mask >> 1;
1377	}
1378
1379	/* We leave the "DI" bit set to "0" when we leave this routine. */
1380	eec &= ~IXGBE_EEC_DI;
1381	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1382	IXGBE_WRITE_FLUSH(hw);
1383}
1384
1385/**
1386 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1387 *  @hw: pointer to hardware structure
1388 **/
1389static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1390{
1391	u32 eec;
1392	u32 i;
1393	u16 data = 0;
1394
1395	/*
1396	 * In order to read a register from the EEPROM, we need to shift
1397	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1398	 * the clock input to the EEPROM (setting the SK bit), and then reading
1399	 * the value of the "DO" bit.  During this "shifting in" process the
1400	 * "DI" bit should always be clear.
1401	 */
1402	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1403
1404	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1405
1406	for (i = 0; i < count; i++) {
1407		data = data << 1;
1408		ixgbe_raise_eeprom_clk(hw, &eec);
1409
1410		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1411
1412		eec &= ~(IXGBE_EEC_DI);
1413		if (eec & IXGBE_EEC_DO)
1414			data |= 1;
1415
1416		ixgbe_lower_eeprom_clk(hw, &eec);
1417	}
1418
1419	return data;
1420}
1421
1422/**
1423 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1424 *  @hw: pointer to hardware structure
1425 *  @eec: EEC register's current value
1426 **/
1427static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1428{
1429	/*
1430	 * Raise the clock input to the EEPROM
1431	 * (setting the SK bit), then delay
1432	 */
1433	*eec = *eec | IXGBE_EEC_SK;
1434	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1435	IXGBE_WRITE_FLUSH(hw);
1436	udelay(1);
1437}
1438
1439/**
1440 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1441 *  @hw: pointer to hardware structure
1442 *  @eecd: EECD's current value
1443 **/
1444static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1445{
1446	/*
1447	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1448	 * delay
1449	 */
1450	*eec = *eec & ~IXGBE_EEC_SK;
1451	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1452	IXGBE_WRITE_FLUSH(hw);
1453	udelay(1);
1454}
1455
1456/**
1457 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1458 *  @hw: pointer to hardware structure
1459 **/
1460static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1461{
1462	u32 eec;
1463
1464	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1465
1466	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1467	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1468
1469	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470	IXGBE_WRITE_FLUSH(hw);
1471
1472	udelay(1);
1473
1474	/* Stop requesting EEPROM access */
1475	eec &= ~IXGBE_EEC_REQ;
1476	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1477
1478	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1479
1480	/*
1481	 * Delay before attempt to obtain semaphore again to allow FW
1482	 * access. semaphore_delay is in ms we need us for usleep_range
1483	 */
1484	usleep_range(hw->eeprom.semaphore_delay * 1000,
1485		     hw->eeprom.semaphore_delay * 2000);
1486}
1487
1488/**
1489 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1490 *  @hw: pointer to hardware structure
1491 **/
1492u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1493{
1494	u16 i;
1495	u16 j;
1496	u16 checksum = 0;
1497	u16 length = 0;
1498	u16 pointer = 0;
1499	u16 word = 0;
1500
1501	/* Include 0x0-0x3F in the checksum */
1502	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1503		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1504			hw_dbg(hw, "EEPROM read failed\n");
1505			break;
1506		}
1507		checksum += word;
1508	}
1509
1510	/* Include all data from pointers except for the fw pointer */
1511	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1512		hw->eeprom.ops.read(hw, i, &pointer);
1513
1514		/* Make sure the pointer seems valid */
1515		if (pointer != 0xFFFF && pointer != 0) {
1516			hw->eeprom.ops.read(hw, pointer, &length);
1517
1518			if (length != 0xFFFF && length != 0) {
1519				for (j = pointer+1; j <= pointer+length; j++) {
1520					hw->eeprom.ops.read(hw, j, &word);
1521					checksum += word;
1522				}
1523			}
1524		}
1525	}
1526
1527	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1528
1529	return checksum;
1530}
1531
1532/**
1533 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1534 *  @hw: pointer to hardware structure
1535 *  @checksum_val: calculated checksum
1536 *
1537 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1538 *  caller does not need checksum_val, the value can be NULL.
1539 **/
1540s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1541                                           u16 *checksum_val)
1542{
1543	s32 status;
1544	u16 checksum;
1545	u16 read_checksum = 0;
1546
1547	/*
1548	 * Read the first word from the EEPROM. If this times out or fails, do
1549	 * not continue or we could be in for a very long wait while every
1550	 * EEPROM read fails
1551	 */
1552	status = hw->eeprom.ops.read(hw, 0, &checksum);
1553
1554	if (status == 0) {
1555		checksum = hw->eeprom.ops.calc_checksum(hw);
1556
1557		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1558
1559		/*
1560		 * Verify read checksum from EEPROM is the same as
1561		 * calculated checksum
1562		 */
1563		if (read_checksum != checksum)
1564			status = IXGBE_ERR_EEPROM_CHECKSUM;
1565
1566		/* If the user cares, return the calculated checksum */
1567		if (checksum_val)
1568			*checksum_val = checksum;
1569	} else {
1570		hw_dbg(hw, "EEPROM read failed\n");
1571	}
1572
1573	return status;
1574}
1575
1576/**
1577 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1578 *  @hw: pointer to hardware structure
1579 **/
1580s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1581{
1582	s32 status;
1583	u16 checksum;
1584
1585	/*
1586	 * Read the first word from the EEPROM. If this times out or fails, do
1587	 * not continue or we could be in for a very long wait while every
1588	 * EEPROM read fails
1589	 */
1590	status = hw->eeprom.ops.read(hw, 0, &checksum);
1591
1592	if (status == 0) {
1593		checksum = hw->eeprom.ops.calc_checksum(hw);
1594		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1595					      checksum);
1596	} else {
1597		hw_dbg(hw, "EEPROM read failed\n");
1598	}
1599
1600	return status;
1601}
1602
1603/**
1604 *  ixgbe_validate_mac_addr - Validate MAC address
1605 *  @mac_addr: pointer to MAC address.
1606 *
1607 *  Tests a MAC address to ensure it is a valid Individual Address
1608 **/
1609s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1610{
1611	s32 status = 0;
1612
1613	/* Make sure it is not a multicast address */
1614	if (IXGBE_IS_MULTICAST(mac_addr))
1615		status = IXGBE_ERR_INVALID_MAC_ADDR;
1616	/* Not a broadcast address */
1617	else if (IXGBE_IS_BROADCAST(mac_addr))
1618		status = IXGBE_ERR_INVALID_MAC_ADDR;
1619	/* Reject the zero address */
1620	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1621	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1622		status = IXGBE_ERR_INVALID_MAC_ADDR;
1623
1624	return status;
1625}
1626
1627/**
1628 *  ixgbe_set_rar_generic - Set Rx address register
1629 *  @hw: pointer to hardware structure
1630 *  @index: Receive address register to write
1631 *  @addr: Address to put into receive address register
1632 *  @vmdq: VMDq "set" or "pool" index
1633 *  @enable_addr: set flag that address is active
1634 *
1635 *  Puts an ethernet address into a receive address register.
1636 **/
1637s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1638                          u32 enable_addr)
1639{
1640	u32 rar_low, rar_high;
1641	u32 rar_entries = hw->mac.num_rar_entries;
1642
1643	/* Make sure we are using a valid rar index range */
1644	if (index >= rar_entries) {
1645		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1646		return IXGBE_ERR_INVALID_ARGUMENT;
1647	}
1648
1649	/* setup VMDq pool selection before this RAR gets enabled */
1650	hw->mac.ops.set_vmdq(hw, index, vmdq);
1651
1652	/*
1653	 * HW expects these in little endian so we reverse the byte
1654	 * order from network order (big endian) to little endian
1655	 */
1656	rar_low = ((u32)addr[0] |
1657		   ((u32)addr[1] << 8) |
1658		   ((u32)addr[2] << 16) |
1659		   ((u32)addr[3] << 24));
1660	/*
1661	 * Some parts put the VMDq setting in the extra RAH bits,
1662	 * so save everything except the lower 16 bits that hold part
1663	 * of the address and the address valid bit.
1664	 */
1665	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1666	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1667	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1668
1669	if (enable_addr != 0)
1670		rar_high |= IXGBE_RAH_AV;
1671
1672	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1673	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1674
1675	return 0;
1676}
1677
1678/**
1679 *  ixgbe_clear_rar_generic - Remove Rx address register
1680 *  @hw: pointer to hardware structure
1681 *  @index: Receive address register to write
1682 *
1683 *  Clears an ethernet address from a receive address register.
1684 **/
1685s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1686{
1687	u32 rar_high;
1688	u32 rar_entries = hw->mac.num_rar_entries;
1689
1690	/* Make sure we are using a valid rar index range */
1691	if (index >= rar_entries) {
1692		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1693		return IXGBE_ERR_INVALID_ARGUMENT;
1694	}
1695
1696	/*
1697	 * Some parts put the VMDq setting in the extra RAH bits,
1698	 * so save everything except the lower 16 bits that hold part
1699	 * of the address and the address valid bit.
1700	 */
1701	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1702	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1703
1704	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1705	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1706
1707	/* clear VMDq pool/queue selection for this RAR */
1708	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1709
1710	return 0;
1711}
1712
1713/**
1714 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1715 *  @hw: pointer to hardware structure
1716 *
1717 *  Places the MAC address in receive address register 0 and clears the rest
1718 *  of the receive address registers. Clears the multicast table. Assumes
1719 *  the receiver is in reset when the routine is called.
1720 **/
1721s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1722{
1723	u32 i;
1724	u32 rar_entries = hw->mac.num_rar_entries;
1725
1726	/*
1727	 * If the current mac address is valid, assume it is a software override
1728	 * to the permanent address.
1729	 * Otherwise, use the permanent address from the eeprom.
1730	 */
1731	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1732	    IXGBE_ERR_INVALID_MAC_ADDR) {
1733		/* Get the MAC address from the RAR0 for later reference */
1734		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1735
1736		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1737	} else {
1738		/* Setup the receive address. */
1739		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1740		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1741
1742		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1743
1744		/*  clear VMDq pool/queue selection for RAR 0 */
1745		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1746	}
1747	hw->addr_ctrl.overflow_promisc = 0;
1748
1749	hw->addr_ctrl.rar_used_count = 1;
1750
1751	/* Zero out the other receive addresses. */
1752	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1753	for (i = 1; i < rar_entries; i++) {
1754		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1755		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1756	}
1757
1758	/* Clear the MTA */
1759	hw->addr_ctrl.mta_in_use = 0;
1760	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1761
1762	hw_dbg(hw, " Clearing MTA\n");
1763	for (i = 0; i < hw->mac.mcft_size; i++)
1764		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1765
1766	if (hw->mac.ops.init_uta_tables)
1767		hw->mac.ops.init_uta_tables(hw);
1768
1769	return 0;
1770}
1771
1772/**
1773 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1774 *  @hw: pointer to hardware structure
1775 *  @mc_addr: the multicast address
1776 *
1777 *  Extracts the 12 bits, from a multicast address, to determine which
1778 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1779 *  incoming rx multicast addresses, to determine the bit-vector to check in
1780 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1781 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1782 *  to mc_filter_type.
1783 **/
1784static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1785{
1786	u32 vector = 0;
1787
1788	switch (hw->mac.mc_filter_type) {
1789	case 0:   /* use bits [47:36] of the address */
1790		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1791		break;
1792	case 1:   /* use bits [46:35] of the address */
1793		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1794		break;
1795	case 2:   /* use bits [45:34] of the address */
1796		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1797		break;
1798	case 3:   /* use bits [43:32] of the address */
1799		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1800		break;
1801	default:  /* Invalid mc_filter_type */
1802		hw_dbg(hw, "MC filter type param set incorrectly\n");
1803		break;
1804	}
1805
1806	/* vector can only be 12-bits or boundary will be exceeded */
1807	vector &= 0xFFF;
1808	return vector;
1809}
1810
1811/**
1812 *  ixgbe_set_mta - Set bit-vector in multicast table
1813 *  @hw: pointer to hardware structure
1814 *  @hash_value: Multicast address hash value
1815 *
1816 *  Sets the bit-vector in the multicast table.
1817 **/
1818static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1819{
1820	u32 vector;
1821	u32 vector_bit;
1822	u32 vector_reg;
1823
1824	hw->addr_ctrl.mta_in_use++;
1825
1826	vector = ixgbe_mta_vector(hw, mc_addr);
1827	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1828
1829	/*
1830	 * The MTA is a register array of 128 32-bit registers. It is treated
1831	 * like an array of 4096 bits.  We want to set bit
1832	 * BitArray[vector_value]. So we figure out what register the bit is
1833	 * in, read it, OR in the new bit, then write back the new value.  The
1834	 * register is determined by the upper 7 bits of the vector value and
1835	 * the bit within that register are determined by the lower 5 bits of
1836	 * the value.
1837	 */
1838	vector_reg = (vector >> 5) & 0x7F;
1839	vector_bit = vector & 0x1F;
1840	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1841}
1842
1843/**
1844 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1845 *  @hw: pointer to hardware structure
1846 *  @netdev: pointer to net device structure
1847 *
1848 *  The given list replaces any existing list. Clears the MC addrs from receive
1849 *  address registers and the multicast table. Uses unused receive address
1850 *  registers for the first multicast addresses, and hashes the rest into the
1851 *  multicast table.
1852 **/
1853s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1854				      struct net_device *netdev)
1855{
1856	struct netdev_hw_addr *ha;
1857	u32 i;
1858
1859	/*
1860	 * Set the new number of MC addresses that we are being requested to
1861	 * use.
1862	 */
1863	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1864	hw->addr_ctrl.mta_in_use = 0;
1865
1866	/* Clear mta_shadow */
1867	hw_dbg(hw, " Clearing MTA\n");
1868	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1869
1870	/* Update mta shadow */
1871	netdev_for_each_mc_addr(ha, netdev) {
1872		hw_dbg(hw, " Adding the multicast addresses:\n");
1873		ixgbe_set_mta(hw, ha->addr);
1874	}
1875
1876	/* Enable mta */
1877	for (i = 0; i < hw->mac.mcft_size; i++)
1878		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1879				      hw->mac.mta_shadow[i]);
1880
1881	if (hw->addr_ctrl.mta_in_use > 0)
1882		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1883		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1884
1885	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1886	return 0;
1887}
1888
1889/**
1890 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1891 *  @hw: pointer to hardware structure
1892 *
1893 *  Enables multicast address in RAR and the use of the multicast hash table.
1894 **/
1895s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1896{
1897	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1898
1899	if (a->mta_in_use > 0)
1900		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1901		                hw->mac.mc_filter_type);
1902
1903	return 0;
1904}
1905
1906/**
1907 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1908 *  @hw: pointer to hardware structure
1909 *
1910 *  Disables multicast address in RAR and the use of the multicast hash table.
1911 **/
1912s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1913{
1914	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1915
1916	if (a->mta_in_use > 0)
1917		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1918
1919	return 0;
1920}
1921
1922/**
1923 *  ixgbe_fc_enable_generic - Enable flow control
1924 *  @hw: pointer to hardware structure
1925 *  @packetbuf_num: packet buffer number (0-7)
1926 *
1927 *  Enable flow control according to the current settings.
1928 **/
1929s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1930{
1931	s32 ret_val = 0;
1932	u32 mflcn_reg, fccfg_reg;
1933	u32 reg;
1934	u32 rx_pba_size;
1935	u32 fcrtl, fcrth;
1936
1937#ifdef CONFIG_DCB
1938	if (hw->fc.requested_mode == ixgbe_fc_pfc)
1939		goto out;
1940
1941#endif /* CONFIG_DCB */
1942	/* Negotiate the fc mode to use */
1943	ret_val = ixgbe_fc_autoneg(hw);
1944	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1945		goto out;
1946
1947	/* Disable any previous flow control settings */
1948	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1949	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1950
1951	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1952	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1953
1954	/*
1955	 * The possible values of fc.current_mode are:
1956	 * 0: Flow control is completely disabled
1957	 * 1: Rx flow control is enabled (we can receive pause frames,
1958	 *    but not send pause frames).
1959	 * 2: Tx flow control is enabled (we can send pause frames but
1960	 *    we do not support receiving pause frames).
1961	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1962#ifdef CONFIG_DCB
1963	 * 4: Priority Flow Control is enabled.
1964#endif
1965	 * other: Invalid.
1966	 */
1967	switch (hw->fc.current_mode) {
1968	case ixgbe_fc_none:
1969		/*
1970		 * Flow control is disabled by software override or autoneg.
1971		 * The code below will actually disable it in the HW.
1972		 */
1973		break;
1974	case ixgbe_fc_rx_pause:
1975		/*
1976		 * Rx Flow control is enabled and Tx Flow control is
1977		 * disabled by software override. Since there really
1978		 * isn't a way to advertise that we are capable of RX
1979		 * Pause ONLY, we will advertise that we support both
1980		 * symmetric and asymmetric Rx PAUSE.  Later, we will
1981		 * disable the adapter's ability to send PAUSE frames.
1982		 */
1983		mflcn_reg |= IXGBE_MFLCN_RFCE;
1984		break;
1985	case ixgbe_fc_tx_pause:
1986		/*
1987		 * Tx Flow control is enabled, and Rx Flow control is
1988		 * disabled by software override.
1989		 */
1990		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1991		break;
1992	case ixgbe_fc_full:
1993		/* Flow control (both Rx and Tx) is enabled by SW override. */
1994		mflcn_reg |= IXGBE_MFLCN_RFCE;
1995		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1996		break;
1997#ifdef CONFIG_DCB
1998	case ixgbe_fc_pfc:
1999		goto out;
2000		break;
2001#endif /* CONFIG_DCB */
2002	default:
2003		hw_dbg(hw, "Flow control param set incorrectly\n");
2004		ret_val = IXGBE_ERR_CONFIG;
2005		goto out;
2006		break;
2007	}
2008
2009	/* Set 802.3x based flow control settings. */
2010	mflcn_reg |= IXGBE_MFLCN_DPF;
2011	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2012	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2013
2014	rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
2015	rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
2016
2017	fcrth = (rx_pba_size - hw->fc.high_water) << 10;
2018	fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
2019
2020	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
2021		fcrth |= IXGBE_FCRTH_FCEN;
2022		if (hw->fc.send_xon)
2023			fcrtl |= IXGBE_FCRTL_XONE;
2024	}
2025
2026	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2027	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2028
2029	/* Configure pause time (2 TCs per register) */
2030	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
2031	if ((packetbuf_num & 1) == 0)
2032		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2033	else
2034		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2035	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2036
2037	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2038
2039out:
2040	return ret_val;
2041}
2042
2043/**
2044 *  ixgbe_fc_autoneg - Configure flow control
2045 *  @hw: pointer to hardware structure
2046 *
2047 *  Compares our advertised flow control capabilities to those advertised by
2048 *  our link partner, and determines the proper flow control mode to use.
2049 **/
2050s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2051{
2052	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2053	ixgbe_link_speed speed;
2054	bool link_up;
2055
2056	if (hw->fc.disable_fc_autoneg)
2057		goto out;
2058
2059	/*
2060	 * AN should have completed when the cable was plugged in.
2061	 * Look for reasons to bail out.  Bail out if:
2062	 * - FC autoneg is disabled, or if
2063	 * - link is not up.
2064	 *
2065	 * Since we're being called from an LSC, link is already known to be up.
2066	 * So use link_up_wait_to_complete=false.
2067	 */
2068	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2069	if (!link_up) {
2070		ret_val = IXGBE_ERR_FLOW_CONTROL;
2071		goto out;
2072	}
2073
2074	switch (hw->phy.media_type) {
2075	/* Autoneg flow control on fiber adapters */
2076	case ixgbe_media_type_fiber:
2077		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2078			ret_val = ixgbe_fc_autoneg_fiber(hw);
2079		break;
2080
2081	/* Autoneg flow control on backplane adapters */
2082	case ixgbe_media_type_backplane:
2083		ret_val = ixgbe_fc_autoneg_backplane(hw);
2084		break;
2085
2086	/* Autoneg flow control on copper adapters */
2087	case ixgbe_media_type_copper:
2088		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2089			ret_val = ixgbe_fc_autoneg_copper(hw);
2090		break;
2091
2092	default:
2093		break;
2094	}
2095
2096out:
2097	if (ret_val == 0) {
2098		hw->fc.fc_was_autonegged = true;
2099	} else {
2100		hw->fc.fc_was_autonegged = false;
2101		hw->fc.current_mode = hw->fc.requested_mode;
2102	}
2103	return ret_val;
2104}
2105
2106/**
2107 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2108 *  @hw: pointer to hardware structure
2109 *
2110 *  Enable flow control according on 1 gig fiber.
2111 **/
2112static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2113{
2114	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2115	s32 ret_val;
2116
2117	/*
2118	 * On multispeed fiber at 1g, bail out if
2119	 * - link is up but AN did not complete, or if
2120	 * - link is up and AN completed but timed out
2121	 */
2122
2123	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2124	if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2125	    ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2126		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2127		goto out;
2128	}
2129
2130	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2131	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2132
2133	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2134			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2135			       IXGBE_PCS1GANA_ASM_PAUSE,
2136			       IXGBE_PCS1GANA_SYM_PAUSE,
2137			       IXGBE_PCS1GANA_ASM_PAUSE);
2138
2139out:
2140	return ret_val;
2141}
2142
2143/**
2144 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2145 *  @hw: pointer to hardware structure
2146 *
2147 *  Enable flow control according to IEEE clause 37.
2148 **/
2149static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2150{
2151	u32 links2, anlp1_reg, autoc_reg, links;
2152	s32 ret_val;
2153
2154	/*
2155	 * On backplane, bail out if
2156	 * - backplane autoneg was not completed, or if
2157	 * - we are 82599 and link partner is not AN enabled
2158	 */
2159	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2160	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2161		hw->fc.fc_was_autonegged = false;
2162		hw->fc.current_mode = hw->fc.requested_mode;
2163		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2164		goto out;
2165	}
2166
2167	if (hw->mac.type == ixgbe_mac_82599EB) {
2168		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2169		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2170			hw->fc.fc_was_autonegged = false;
2171			hw->fc.current_mode = hw->fc.requested_mode;
2172			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2173			goto out;
2174		}
2175	}
2176	/*
2177	 * Read the 10g AN autoc and LP ability registers and resolve
2178	 * local flow control settings accordingly
2179	 */
2180	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2181	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2182
2183	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2184		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2185		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2186
2187out:
2188	return ret_val;
2189}
2190
2191/**
2192 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2193 *  @hw: pointer to hardware structure
2194 *
2195 *  Enable flow control according to IEEE clause 37.
2196 **/
2197static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2198{
2199	u16 technology_ability_reg = 0;
2200	u16 lp_technology_ability_reg = 0;
2201
2202	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2203			     MDIO_MMD_AN,
2204			     &technology_ability_reg);
2205	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2206			     MDIO_MMD_AN,
2207			     &lp_technology_ability_reg);
2208
2209	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2210				  (u32)lp_technology_ability_reg,
2211				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2212				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2213}
2214
2215/**
2216 *  ixgbe_negotiate_fc - Negotiate flow control
2217 *  @hw: pointer to hardware structure
2218 *  @adv_reg: flow control advertised settings
2219 *  @lp_reg: link partner's flow control settings
2220 *  @adv_sym: symmetric pause bit in advertisement
2221 *  @adv_asm: asymmetric pause bit in advertisement
2222 *  @lp_sym: symmetric pause bit in link partner advertisement
2223 *  @lp_asm: asymmetric pause bit in link partner advertisement
2224 *
2225 *  Find the intersection between advertised settings and link partner's
2226 *  advertised settings
2227 **/
2228static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2229			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2230{
2231	if ((!(adv_reg)) ||  (!(lp_reg)))
2232		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2233
2234	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2235		/*
2236		 * Now we need to check if the user selected Rx ONLY
2237		 * of pause frames.  In this case, we had to advertise
2238		 * FULL flow control because we could not advertise RX
2239		 * ONLY. Hence, we must now check to see if we need to
2240		 * turn OFF the TRANSMISSION of PAUSE frames.
2241		 */
2242		if (hw->fc.requested_mode == ixgbe_fc_full) {
2243			hw->fc.current_mode = ixgbe_fc_full;
2244			hw_dbg(hw, "Flow Control = FULL.\n");
2245		} else {
2246			hw->fc.current_mode = ixgbe_fc_rx_pause;
2247			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2248		}
2249	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2250		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2251		hw->fc.current_mode = ixgbe_fc_tx_pause;
2252		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2253	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2254		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2255		hw->fc.current_mode = ixgbe_fc_rx_pause;
2256		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2257	} else {
2258		hw->fc.current_mode = ixgbe_fc_none;
2259		hw_dbg(hw, "Flow Control = NONE.\n");
2260	}
2261	return 0;
2262}
2263
2264/**
2265 *  ixgbe_setup_fc - Set up flow control
2266 *  @hw: pointer to hardware structure
2267 *
2268 *  Called at init time to set up flow control.
2269 **/
2270static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2271{
2272	s32 ret_val = 0;
2273	u32 reg = 0, reg_bp = 0;
2274	u16 reg_cu = 0;
2275
2276#ifdef CONFIG_DCB
2277	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
2278		hw->fc.current_mode = hw->fc.requested_mode;
2279		goto out;
2280	}
2281
2282#endif /* CONFIG_DCB */
2283	/* Validate the packetbuf configuration */
2284	if (packetbuf_num < 0 || packetbuf_num > 7) {
2285		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
2286		       "is 0-7\n", packetbuf_num);
2287		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2288		goto out;
2289	}
2290
2291	/*
2292	 * Validate the water mark configuration.  Zero water marks are invalid
2293	 * because it causes the controller to just blast out fc packets.
2294	 */
2295	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
2296		hw_dbg(hw, "Invalid water mark configuration\n");
2297		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2298		goto out;
2299	}
2300
2301	/*
2302	 * Validate the requested mode.  Strict IEEE mode does not allow
2303	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2304	 */
2305	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2306		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
2307		       "IEEE mode\n");
2308		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2309		goto out;
2310	}
2311
2312	/*
2313	 * 10gig parts do not have a word in the EEPROM to determine the
2314	 * default flow control setting, so we explicitly set it to full.
2315	 */
2316	if (hw->fc.requested_mode == ixgbe_fc_default)
2317		hw->fc.requested_mode = ixgbe_fc_full;
2318
2319	/*
2320	 * Set up the 1G and 10G flow control advertisement registers so the
2321	 * HW will be able to do fc autoneg once the cable is plugged in.  If
2322	 * we link at 10G, the 1G advertisement is harmless and vice versa.
2323	 */
2324
2325	switch (hw->phy.media_type) {
2326	case ixgbe_media_type_fiber:
2327	case ixgbe_media_type_backplane:
2328		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2329		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2330		break;
2331
2332	case ixgbe_media_type_copper:
2333		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2334					MDIO_MMD_AN, &reg_cu);
2335		break;
2336
2337	default:
2338		;
2339	}
2340
2341	/*
2342	 * The possible values of fc.requested_mode are:
2343	 * 0: Flow control is completely disabled
2344	 * 1: Rx flow control is enabled (we can receive pause frames,
2345	 *    but not send pause frames).
2346	 * 2: Tx flow control is enabled (we can send pause frames but
2347	 *    we do not support receiving pause frames).
2348	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2349#ifdef CONFIG_DCB
2350	 * 4: Priority Flow Control is enabled.
2351#endif
2352	 * other: Invalid.
2353	 */
2354	switch (hw->fc.requested_mode) {
2355	case ixgbe_fc_none:
2356		/* Flow control completely disabled by software override. */
2357		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2358		if (hw->phy.media_type == ixgbe_media_type_backplane)
2359			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2360				    IXGBE_AUTOC_ASM_PAUSE);
2361		else if (hw->phy.media_type == ixgbe_media_type_copper)
2362			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2363		break;
2364	case ixgbe_fc_rx_pause:
2365		/*
2366		 * Rx Flow control is enabled and Tx Flow control is
2367		 * disabled by software override. Since there really
2368		 * isn't a way to advertise that we are capable of RX
2369		 * Pause ONLY, we will advertise that we support both
2370		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2371		 * disable the adapter's ability to send PAUSE frames.
2372		 */
2373		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2374		if (hw->phy.media_type == ixgbe_media_type_backplane)
2375			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2376				   IXGBE_AUTOC_ASM_PAUSE);
2377		else if (hw->phy.media_type == ixgbe_media_type_copper)
2378			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2379		break;
2380	case ixgbe_fc_tx_pause:
2381		/*
2382		 * Tx Flow control is enabled, and Rx Flow control is
2383		 * disabled by software override.
2384		 */
2385		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2386		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2387		if (hw->phy.media_type == ixgbe_media_type_backplane) {
2388			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2389			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2390		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
2391			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2392			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2393		}
2394		break;
2395	case ixgbe_fc_full:
2396		/* Flow control (both Rx and Tx) is enabled by SW override. */
2397		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2398		if (hw->phy.media_type == ixgbe_media_type_backplane)
2399			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2400				   IXGBE_AUTOC_ASM_PAUSE);
2401		else if (hw->phy.media_type == ixgbe_media_type_copper)
2402			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2403		break;
2404#ifdef CONFIG_DCB
2405	case ixgbe_fc_pfc:
2406		goto out;
2407		break;
2408#endif /* CONFIG_DCB */
2409	default:
2410		hw_dbg(hw, "Flow control param set incorrectly\n");
2411		ret_val = IXGBE_ERR_CONFIG;
2412		goto out;
2413		break;
2414	}
2415
2416	if (hw->mac.type != ixgbe_mac_X540) {
2417		/*
2418		 * Enable auto-negotiation between the MAC & PHY;
2419		 * the MAC will advertise clause 37 flow control.
2420		 */
2421		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2422		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2423
2424		/* Disable AN timeout */
2425		if (hw->fc.strict_ieee)
2426			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2427
2428		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2429		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2430	}
2431
2432	/*
2433	 * AUTOC restart handles negotiation of 1G and 10G on backplane
2434	 * and copper. There is no need to set the PCS1GCTL register.
2435	 *
2436	 */
2437	if (hw->phy.media_type == ixgbe_media_type_backplane) {
2438		reg_bp |= IXGBE_AUTOC_AN_RESTART;
2439		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2440	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2441		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2442		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2443				      MDIO_MMD_AN, reg_cu);
2444	}
2445
2446	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2447out:
2448	return ret_val;
2449}
2450
2451/**
2452 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2453 *  @hw: pointer to hardware structure
2454 *
2455 *  Disables PCI-Express master access and verifies there are no pending
2456 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2457 *  bit hasn't caused the master requests to be disabled, else 0
2458 *  is returned signifying master requests disabled.
2459 **/
2460s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2461{
2462	struct ixgbe_adapter *adapter = hw->back;
2463	u32 i;
2464	u32 reg_val;
2465	u32 number_of_queues;
2466	s32 status = 0;
2467	u16 dev_status = 0;
2468
2469	/* Just jump out if bus mastering is already disabled */
2470	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2471		goto out;
2472
2473	/* Disable the receive unit by stopping each queue */
2474	number_of_queues = hw->mac.max_rx_queues;
2475	for (i = 0; i < number_of_queues; i++) {
2476		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2477		if (reg_val & IXGBE_RXDCTL_ENABLE) {
2478			reg_val &= ~IXGBE_RXDCTL_ENABLE;
2479			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2480		}
2481	}
2482
2483	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2484	reg_val |= IXGBE_CTRL_GIO_DIS;
2485	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2486
2487	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2488		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2489			goto check_device_status;
2490		udelay(100);
2491	}
2492
2493	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2494	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2495
2496	/*
2497	 * Before proceeding, make sure that the PCIe block does not have
2498	 * transactions pending.
2499	 */
2500check_device_status:
2501	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2502		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2503							 &dev_status);
2504		if (!(dev_status & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2505			break;
2506		udelay(100);
2507	}
2508
2509	if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
2510		hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511	else
2512		goto out;
2513
2514	/*
2515	 * Two consecutive resets are required via CTRL.RST per datasheet
2516	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2517	 * of this need.  The first reset prevents new master requests from
2518	 * being issued by our device.  We then must wait 1usec for any
2519	 * remaining completions from the PCIe bus to trickle in, and then reset
2520	 * again to clear out any effects they may have had on our device.
2521	 */
2522	 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2523
2524out:
2525	return status;
2526}
2527
2528
2529/**
2530 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2531 *  @hw: pointer to hardware structure
2532 *  @mask: Mask to specify which semaphore to acquire
2533 *
2534 *  Acquires the SWFW semaphore through the GSSR register for the specified
2535 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2536 **/
2537s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2538{
2539	u32 gssr;
2540	u32 swmask = mask;
2541	u32 fwmask = mask << 5;
2542	s32 timeout = 200;
2543
2544	while (timeout) {
2545		/*
2546		 * SW EEPROM semaphore bit is used for access to all
2547		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2548		 */
2549		if (ixgbe_get_eeprom_semaphore(hw))
2550			return IXGBE_ERR_SWFW_SYNC;
2551
2552		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2553		if (!(gssr & (fwmask | swmask)))
2554			break;
2555
2556		/*
2557		 * Firmware currently using resource (fwmask) or other software
2558		 * thread currently using resource (swmask)
2559		 */
2560		ixgbe_release_eeprom_semaphore(hw);
2561		usleep_range(5000, 10000);
2562		timeout--;
2563	}
2564
2565	if (!timeout) {
2566		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2567		return IXGBE_ERR_SWFW_SYNC;
2568	}
2569
2570	gssr |= swmask;
2571	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2572
2573	ixgbe_release_eeprom_semaphore(hw);
2574	return 0;
2575}
2576
2577/**
2578 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2579 *  @hw: pointer to hardware structure
2580 *  @mask: Mask to specify which semaphore to release
2581 *
2582 *  Releases the SWFW semaphore through the GSSR register for the specified
2583 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2584 **/
2585void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2586{
2587	u32 gssr;
2588	u32 swmask = mask;
2589
2590	ixgbe_get_eeprom_semaphore(hw);
2591
2592	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593	gssr &= ~swmask;
2594	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2595
2596	ixgbe_release_eeprom_semaphore(hw);
2597}
2598
2599/**
2600 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2601 *  @hw: pointer to hardware structure
2602 *  @regval: register value to write to RXCTRL
2603 *
2604 *  Enables the Rx DMA unit
2605 **/
2606s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2607{
2608	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2609
2610	return 0;
2611}
2612
2613/**
2614 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2615 *  @hw: pointer to hardware structure
2616 *  @index: led number to blink
2617 **/
2618s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2619{
2620	ixgbe_link_speed speed = 0;
2621	bool link_up = 0;
2622	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2623	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2624
2625	/*
2626	 * Link must be up to auto-blink the LEDs;
2627	 * Force it if link is down.
2628	 */
2629	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2630
2631	if (!link_up) {
2632		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2633		autoc_reg |= IXGBE_AUTOC_FLU;
2634		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2635		IXGBE_WRITE_FLUSH(hw);
2636		usleep_range(10000, 20000);
2637	}
2638
2639	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2640	led_reg |= IXGBE_LED_BLINK(index);
2641	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2642	IXGBE_WRITE_FLUSH(hw);
2643
2644	return 0;
2645}
2646
2647/**
2648 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2649 *  @hw: pointer to hardware structure
2650 *  @index: led number to stop blinking
2651 **/
2652s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2653{
2654	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2655	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2656
2657	autoc_reg &= ~IXGBE_AUTOC_FLU;
2658	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2659	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2660
2661	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2662	led_reg &= ~IXGBE_LED_BLINK(index);
2663	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2664	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2665	IXGBE_WRITE_FLUSH(hw);
2666
2667	return 0;
2668}
2669
2670/**
2671 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2672 *  @hw: pointer to hardware structure
2673 *  @san_mac_offset: SAN MAC address offset
2674 *
2675 *  This function will read the EEPROM location for the SAN MAC address
2676 *  pointer, and returns the value at that location.  This is used in both
2677 *  get and set mac_addr routines.
2678 **/
2679static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2680                                        u16 *san_mac_offset)
2681{
2682	/*
2683	 * First read the EEPROM pointer to see if the MAC addresses are
2684	 * available.
2685	 */
2686	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2687
2688	return 0;
2689}
2690
2691/**
2692 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2693 *  @hw: pointer to hardware structure
2694 *  @san_mac_addr: SAN MAC address
2695 *
2696 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2697 *  per-port, so set_lan_id() must be called before reading the addresses.
2698 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2699 *  upon for non-SFP connections, so we must call it here.
2700 **/
2701s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2702{
2703	u16 san_mac_data, san_mac_offset;
2704	u8 i;
2705
2706	/*
2707	 * First read the EEPROM pointer to see if the MAC addresses are
2708	 * available.  If they're not, no point in calling set_lan_id() here.
2709	 */
2710	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2711
2712	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2713		/*
2714		 * No addresses available in this EEPROM.  It's not an
2715		 * error though, so just wipe the local address and return.
2716		 */
2717		for (i = 0; i < 6; i++)
2718			san_mac_addr[i] = 0xFF;
2719
2720		goto san_mac_addr_out;
2721	}
2722
2723	/* make sure we know which port we need to program */
2724	hw->mac.ops.set_lan_id(hw);
2725	/* apply the port offset to the address offset */
2726	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2727	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2728	for (i = 0; i < 3; i++) {
2729		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2730		san_mac_addr[i * 2] = (u8)(san_mac_data);
2731		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2732		san_mac_offset++;
2733	}
2734
2735san_mac_addr_out:
2736	return 0;
2737}
2738
2739/**
2740 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2741 *  @hw: pointer to hardware structure
2742 *
2743 *  Read PCIe configuration space, and get the MSI-X vector count from
2744 *  the capabilities table.
2745 **/
2746u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2747{
2748	struct ixgbe_adapter *adapter = hw->back;
2749	u16 msix_count;
2750	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2751	                     &msix_count);
2752	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2753
2754	/* MSI-X count is zero-based in HW, so increment to give proper value */
2755	msix_count++;
2756
2757	return msix_count;
2758}
2759
2760/**
2761 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2762 *  @hw: pointer to hardware struct
2763 *  @rar: receive address register index to disassociate
2764 *  @vmdq: VMDq pool index to remove from the rar
2765 **/
2766s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2767{
2768	u32 mpsar_lo, mpsar_hi;
2769	u32 rar_entries = hw->mac.num_rar_entries;
2770
2771	/* Make sure we are using a valid rar index range */
2772	if (rar >= rar_entries) {
2773		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2774		return IXGBE_ERR_INVALID_ARGUMENT;
2775	}
2776
2777	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2778	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2779
2780	if (!mpsar_lo && !mpsar_hi)
2781		goto done;
2782
2783	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2784		if (mpsar_lo) {
2785			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2786			mpsar_lo = 0;
2787		}
2788		if (mpsar_hi) {
2789			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2790			mpsar_hi = 0;
2791		}
2792	} else if (vmdq < 32) {
2793		mpsar_lo &= ~(1 << vmdq);
2794		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2795	} else {
2796		mpsar_hi &= ~(1 << (vmdq - 32));
2797		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2798	}
2799
2800	/* was that the last pool using this rar? */
2801	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2802		hw->mac.ops.clear_rar(hw, rar);
2803done:
2804	return 0;
2805}
2806
2807/**
2808 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2809 *  @hw: pointer to hardware struct
2810 *  @rar: receive address register index to associate with a VMDq index
2811 *  @vmdq: VMDq pool index
2812 **/
2813s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2814{
2815	u32 mpsar;
2816	u32 rar_entries = hw->mac.num_rar_entries;
2817
2818	/* Make sure we are using a valid rar index range */
2819	if (rar >= rar_entries) {
2820		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2821		return IXGBE_ERR_INVALID_ARGUMENT;
2822	}
2823
2824	if (vmdq < 32) {
2825		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2826		mpsar |= 1 << vmdq;
2827		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2828	} else {
2829		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2830		mpsar |= 1 << (vmdq - 32);
2831		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2832	}
2833	return 0;
2834}
2835
2836/**
2837 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2838 *  @hw: pointer to hardware structure
2839 **/
2840s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2841{
2842	int i;
2843
2844	for (i = 0; i < 128; i++)
2845		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2846
2847	return 0;
2848}
2849
2850/**
2851 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2852 *  @hw: pointer to hardware structure
2853 *  @vlan: VLAN id to write to VLAN filter
2854 *
2855 *  return the VLVF index where this VLAN id should be placed
2856 *
2857 **/
2858static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2859{
2860	u32 bits = 0;
2861	u32 first_empty_slot = 0;
2862	s32 regindex;
2863
2864	/* short cut the special case */
2865	if (vlan == 0)
2866		return 0;
2867
2868	/*
2869	  * Search for the vlan id in the VLVF entries. Save off the first empty
2870	  * slot found along the way
2871	  */
2872	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2873		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2874		if (!bits && !(first_empty_slot))
2875			first_empty_slot = regindex;
2876		else if ((bits & 0x0FFF) == vlan)
2877			break;
2878	}
2879
2880	/*
2881	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2882	  * in the VLVF. Else use the first empty VLVF register for this
2883	  * vlan id.
2884	  */
2885	if (regindex >= IXGBE_VLVF_ENTRIES) {
2886		if (first_empty_slot)
2887			regindex = first_empty_slot;
2888		else {
2889			hw_dbg(hw, "No space in VLVF.\n");
2890			regindex = IXGBE_ERR_NO_SPACE;
2891		}
2892	}
2893
2894	return regindex;
2895}
2896
2897/**
2898 *  ixgbe_set_vfta_generic - Set VLAN filter table
2899 *  @hw: pointer to hardware structure
2900 *  @vlan: VLAN id to write to VLAN filter
2901 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2902 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2903 *
2904 *  Turn on/off specified VLAN in the VLAN filter table.
2905 **/
2906s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2907                           bool vlan_on)
2908{
2909	s32 regindex;
2910	u32 bitindex;
2911	u32 vfta;
2912	u32 bits;
2913	u32 vt;
2914	u32 targetbit;
2915	bool vfta_changed = false;
2916
2917	if (vlan > 4095)
2918		return IXGBE_ERR_PARAM;
2919
2920	/*
2921	 * this is a 2 part operation - first the VFTA, then the
2922	 * VLVF and VLVFB if VT Mode is set
2923	 * We don't write the VFTA until we know the VLVF part succeeded.
2924	 */
2925
2926	/* Part 1
2927	 * The VFTA is a bitstring made up of 128 32-bit registers
2928	 * that enable the particular VLAN id, much like the MTA:
2929	 *    bits[11-5]: which register
2930	 *    bits[4-0]:  which bit in the register
2931	 */
2932	regindex = (vlan >> 5) & 0x7F;
2933	bitindex = vlan & 0x1F;
2934	targetbit = (1 << bitindex);
2935	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2936
2937	if (vlan_on) {
2938		if (!(vfta & targetbit)) {
2939			vfta |= targetbit;
2940			vfta_changed = true;
2941		}
2942	} else {
2943		if ((vfta & targetbit)) {
2944			vfta &= ~targetbit;
2945			vfta_changed = true;
2946		}
2947	}
2948
2949	/* Part 2
2950	 * If VT Mode is set
2951	 *   Either vlan_on
2952	 *     make sure the vlan is in VLVF
2953	 *     set the vind bit in the matching VLVFB
2954	 *   Or !vlan_on
2955	 *     clear the pool bit and possibly the vind
2956	 */
2957	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2958	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2959		s32 vlvf_index;
2960
2961		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2962		if (vlvf_index < 0)
2963			return vlvf_index;
2964
2965		if (vlan_on) {
2966			/* set the pool bit */
2967			if (vind < 32) {
2968				bits = IXGBE_READ_REG(hw,
2969						IXGBE_VLVFB(vlvf_index*2));
2970				bits |= (1 << vind);
2971				IXGBE_WRITE_REG(hw,
2972						IXGBE_VLVFB(vlvf_index*2),
2973						bits);
2974			} else {
2975				bits = IXGBE_READ_REG(hw,
2976						IXGBE_VLVFB((vlvf_index*2)+1));
2977				bits |= (1 << (vind-32));
2978				IXGBE_WRITE_REG(hw,
2979						IXGBE_VLVFB((vlvf_index*2)+1),
2980						bits);
2981			}
2982		} else {
2983			/* clear the pool bit */
2984			if (vind < 32) {
2985				bits = IXGBE_READ_REG(hw,
2986						IXGBE_VLVFB(vlvf_index*2));
2987				bits &= ~(1 << vind);
2988				IXGBE_WRITE_REG(hw,
2989						IXGBE_VLVFB(vlvf_index*2),
2990						bits);
2991				bits |= IXGBE_READ_REG(hw,
2992						IXGBE_VLVFB((vlvf_index*2)+1));
2993			} else {
2994				bits = IXGBE_READ_REG(hw,
2995						IXGBE_VLVFB((vlvf_index*2)+1));
2996				bits &= ~(1 << (vind-32));
2997				IXGBE_WRITE_REG(hw,
2998						IXGBE_VLVFB((vlvf_index*2)+1),
2999						bits);
3000				bits |= IXGBE_READ_REG(hw,
3001						IXGBE_VLVFB(vlvf_index*2));
3002			}
3003		}
3004
3005		/*
3006		 * If there are still bits set in the VLVFB registers
3007		 * for the VLAN ID indicated we need to see if the
3008		 * caller is requesting that we clear the VFTA entry bit.
3009		 * If the caller has requested that we clear the VFTA
3010		 * entry bit but there are still pools/VFs using this VLAN
3011		 * ID entry then ignore the request.  We're not worried
3012		 * about the case where we're turning the VFTA VLAN ID
3013		 * entry bit on, only when requested to turn it off as
3014		 * there may be multiple pools and/or VFs using the
3015		 * VLAN ID entry.  In that case we cannot clear the
3016		 * VFTA bit until all pools/VFs using that VLAN ID have also
3017		 * been cleared.  This will be indicated by "bits" being
3018		 * zero.
3019		 */
3020		if (bits) {
3021			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3022					(IXGBE_VLVF_VIEN | vlan));
3023			if (!vlan_on) {
3024				/* someone wants to clear the vfta entry
3025				 * but some pools/VFs are still using it.
3026				 * Ignore it. */
3027				vfta_changed = false;
3028			}
3029		}
3030		else
3031			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3032	}
3033
3034	if (vfta_changed)
3035		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3036
3037	return 0;
3038}
3039
3040/**
3041 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3042 *  @hw: pointer to hardware structure
3043 *
3044 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3045 **/
3046s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3047{
3048	u32 offset;
3049
3050	for (offset = 0; offset < hw->mac.vft_size; offset++)
3051		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3052
3053	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3054		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3055		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3056		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3057	}
3058
3059	return 0;
3060}
3061
3062/**
3063 *  ixgbe_check_mac_link_generic - Determine link and speed status
3064 *  @hw: pointer to hardware structure
3065 *  @speed: pointer to link speed
3066 *  @link_up: true when link is up
3067 *  @link_up_wait_to_complete: bool used to wait for link up or not
3068 *
3069 *  Reads the links register to determine if link is up and the current speed
3070 **/
3071s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3072				 bool *link_up, bool link_up_wait_to_complete)
3073{
3074	u32 links_reg, links_orig;
3075	u32 i;
3076
3077	/* clear the old state */
3078	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3079
3080	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3081
3082	if (links_orig != links_reg) {
3083		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3084		       links_orig, links_reg);
3085	}
3086
3087	if (link_up_wait_to_complete) {
3088		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3089			if (links_reg & IXGBE_LINKS_UP) {
3090				*link_up = true;
3091				break;
3092			} else {
3093				*link_up = false;
3094			}
3095			msleep(100);
3096			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3097		}
3098	} else {
3099		if (links_reg & IXGBE_LINKS_UP)
3100			*link_up = true;
3101		else
3102			*link_up = false;
3103	}
3104
3105	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3106	    IXGBE_LINKS_SPEED_10G_82599)
3107		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3108	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3109		 IXGBE_LINKS_SPEED_1G_82599)
3110		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3111	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3112		 IXGBE_LINKS_SPEED_100_82599)
3113		*speed = IXGBE_LINK_SPEED_100_FULL;
3114	else
3115		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3116
3117	/* if link is down, zero out the current_mode */
3118	if (*link_up == false) {
3119		hw->fc.current_mode = ixgbe_fc_none;
3120		hw->fc.fc_was_autonegged = false;
3121	}
3122
3123	return 0;
3124}
3125
3126/**
3127 *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3128 *  the EEPROM
3129 *  @hw: pointer to hardware structure
3130 *  @wwnn_prefix: the alternative WWNN prefix
3131 *  @wwpn_prefix: the alternative WWPN prefix
3132 *
3133 *  This function will read the EEPROM from the alternative SAN MAC address
3134 *  block to check the support for the alternative WWNN/WWPN prefix support.
3135 **/
3136s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3137                                        u16 *wwpn_prefix)
3138{
3139	u16 offset, caps;
3140	u16 alt_san_mac_blk_offset;
3141
3142	/* clear output first */
3143	*wwnn_prefix = 0xFFFF;
3144	*wwpn_prefix = 0xFFFF;
3145
3146	/* check if alternative SAN MAC is supported */
3147	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3148	                    &alt_san_mac_blk_offset);
3149
3150	if ((alt_san_mac_blk_offset == 0) ||
3151	    (alt_san_mac_blk_offset == 0xFFFF))
3152		goto wwn_prefix_out;
3153
3154	/* check capability in alternative san mac address block */
3155	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3156	hw->eeprom.ops.read(hw, offset, &caps);
3157	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3158		goto wwn_prefix_out;
3159
3160	/* get the corresponding prefix for WWNN/WWPN */
3161	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3162	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3163
3164	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3165	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3166
3167wwn_prefix_out:
3168	return 0;
3169}
3170
3171/**
3172 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3173 *  control
3174 *  @hw: pointer to hardware structure
3175 *
3176 *  There are several phys that do not support autoneg flow control. This
3177 *  function check the device id to see if the associated phy supports
3178 *  autoneg flow control.
3179 **/
3180static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3181{
3182
3183	switch (hw->device_id) {
3184	case IXGBE_DEV_ID_X540T:
3185		return 0;
3186	case IXGBE_DEV_ID_82599_T3_LOM:
3187		return 0;
3188	default:
3189		return IXGBE_ERR_FC_NOT_SUPPORTED;
3190	}
3191}
3192
3193/**
3194 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3195 *  @hw: pointer to hardware structure
3196 *  @enable: enable or disable switch for anti-spoofing
3197 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3198 *
3199 **/
3200void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3201{
3202	int j;
3203	int pf_target_reg = pf >> 3;
3204	int pf_target_shift = pf % 8;
3205	u32 pfvfspoof = 0;
3206
3207	if (hw->mac.type == ixgbe_mac_82598EB)
3208		return;
3209
3210	if (enable)
3211		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3212
3213	/*
3214	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3215	 * MAC anti-spoof enables in each register array element.
3216	 */
3217	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3218		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3219
3220	/* If not enabling anti-spoofing then done */
3221	if (!enable)
3222		return;
3223
3224	/*
3225	 * The PF should be allowed to spoof so that it can support
3226	 * emulation mode NICs.  Reset the bit assigned to the PF
3227	 */
3228	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3229	pfvfspoof ^= (1 << pf_target_shift);
3230	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3231}
3232
3233/**
3234 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3235 *  @hw: pointer to hardware structure
3236 *  @enable: enable or disable switch for VLAN anti-spoofing
3237 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3238 *
3239 **/
3240void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3241{
3242	int vf_target_reg = vf >> 3;
3243	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3244	u32 pfvfspoof;
3245
3246	if (hw->mac.type == ixgbe_mac_82598EB)
3247		return;
3248
3249	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3250	if (enable)
3251		pfvfspoof |= (1 << vf_target_shift);
3252	else
3253		pfvfspoof &= ~(1 << vf_target_shift);
3254	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3255}
3256
3257/**
3258 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3259 *  @hw: pointer to hardware structure
3260 *  @device_caps: the EEPROM word with the extra device capabilities
3261 *
3262 *  This function will read the EEPROM location for the device capabilities,
3263 *  and return the word through device_caps.
3264 **/
3265s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3266{
3267	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3268
3269	return 0;
3270}
3271
3272/**
3273 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3274 * @hw: pointer to hardware structure
3275 * @num_pb: number of packet buffers to allocate
3276 * @headroom: reserve n KB of headroom
3277 * @strategy: packet buffer allocation strategy
3278 **/
3279void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3280			     int num_pb,
3281			     u32 headroom,
3282			     int strategy)
3283{
3284	u32 pbsize = hw->mac.rx_pb_size;
3285	int i = 0;
3286	u32 rxpktsize, txpktsize, txpbthresh;
3287
3288	/* Reserve headroom */
3289	pbsize -= headroom;
3290
3291	if (!num_pb)
3292		num_pb = 1;
3293
3294	/* Divide remaining packet buffer space amongst the number
3295	 * of packet buffers requested using supplied strategy.
3296	 */
3297	switch (strategy) {
3298	case (PBA_STRATEGY_WEIGHTED):
3299		/* pba_80_48 strategy weight first half of packet buffer with
3300		 * 5/8 of the packet buffer space.
3301		 */
3302		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3303		pbsize -= rxpktsize * (num_pb / 2);
3304		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3305		for (; i < (num_pb / 2); i++)
3306			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3307		/* Fall through to configure remaining packet buffers */
3308	case (PBA_STRATEGY_EQUAL):
3309		/* Divide the remaining Rx packet buffer evenly among the TCs */
3310		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3311		for (; i < num_pb; i++)
3312			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3313		break;
3314	default:
3315		break;
3316	}
3317
3318	/*
3319	 * Setup Tx packet buffer and threshold equally for all TCs
3320	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3321	 * 10 since the largest packet we support is just over 9K.
3322	 */
3323	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3324	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3325	for (i = 0; i < num_pb; i++) {
3326		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3327		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3328	}
3329
3330	/* Clear unused TCs, if any, to zero buffer size*/
3331	for (; i < IXGBE_MAX_PB; i++) {
3332		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3333		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3334		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3335	}
3336}
3337
3338/**
3339 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3340 *  @buffer: pointer to EEPROM
3341 *  @length: size of EEPROM to calculate a checksum for
3342 *  Calculates the checksum for some buffer on a specified length.  The
3343 *  checksum calculated is returned.
3344 **/
3345static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3346{
3347	u32 i;
3348	u8 sum = 0;
3349
3350	if (!buffer)
3351		return 0;
3352
3353	for (i = 0; i < length; i++)
3354		sum += buffer[i];
3355
3356	return (u8) (0 - sum);
3357}
3358
3359/**
3360 *  ixgbe_host_interface_command - Issue command to manageability block
3361 *  @hw: pointer to the HW structure
3362 *  @buffer: contains the command to write and where the return status will
3363 *           be placed
3364 *  @lenght: lenght of buffer, must be multiple of 4 bytes
3365 *
3366 *  Communicates with the manageability block.  On success return 0
3367 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3368 **/
3369static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u8 *buffer,
3370					u32 length)
3371{
3372	u32 hicr, i;
3373	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3374	u8 buf_len, dword_len;
3375
3376	s32 ret_val = 0;
3377
3378	if (length == 0 || length & 0x3 ||
3379	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3380		hw_dbg(hw, "Buffer length failure.\n");
3381		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3382		goto out;
3383	}
3384
3385	/* Check that the host interface is enabled. */
3386	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3387	if ((hicr & IXGBE_HICR_EN) == 0) {
3388		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3389		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3390		goto out;
3391	}
3392
3393	/* Calculate length in DWORDs */
3394	dword_len = length >> 2;
3395
3396	/*
3397	 * The device driver writes the relevant command block
3398	 * into the ram area.
3399	 */
3400	for (i = 0; i < dword_len; i++)
3401		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3402				      i, *((u32 *)buffer + i));
3403
3404	/* Setting this bit tells the ARC that a new command is pending. */
3405	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3406
3407	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3408		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3409		if (!(hicr & IXGBE_HICR_C))
3410			break;
3411		usleep_range(1000, 2000);
3412	}
3413
3414	/* Check command successful completion. */
3415	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3416	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3417		hw_dbg(hw, "Command has failed with no status valid.\n");
3418		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3419		goto out;
3420	}
3421
3422	/* Calculate length in DWORDs */
3423	dword_len = hdr_size >> 2;
3424
3425	/* first pull in the header so we know the buffer length */
3426	for (i = 0; i < dword_len; i++)
3427		*((u32 *)buffer + i) =
3428			IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, i);
3429
3430	/* If there is any thing in data position pull it in */
3431	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3432	if (buf_len == 0)
3433		goto out;
3434
3435	if (length < (buf_len + hdr_size)) {
3436		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3437		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3438		goto out;
3439	}
3440
3441	/* Calculate length in DWORDs, add one for odd lengths */
3442	dword_len = (buf_len + 1) >> 2;
3443
3444	/* Pull in the rest of the buffer (i is where we left off)*/
3445	for (; i < buf_len; i++)
3446		*((u32 *)buffer + i) =
3447			IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, i);
3448
3449out:
3450	return ret_val;
3451}
3452
3453/**
3454 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3455 *  @hw: pointer to the HW structure
3456 *  @maj: driver version major number
3457 *  @min: driver version minor number
3458 *  @build: driver version build number
3459 *  @sub: driver version sub build number
3460 *
3461 *  Sends driver version number to firmware through the manageability
3462 *  block.  On success return 0
3463 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3464 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3465 **/
3466s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3467				 u8 build, u8 sub)
3468{
3469	struct ixgbe_hic_drv_info fw_cmd;
3470	int i;
3471	s32 ret_val = 0;
3472
3473	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3474		ret_val = IXGBE_ERR_SWFW_SYNC;
3475		goto out;
3476	}
3477
3478	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3479	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3480	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3481	fw_cmd.port_num = (u8)hw->bus.func;
3482	fw_cmd.ver_maj = maj;
3483	fw_cmd.ver_min = min;
3484	fw_cmd.ver_build = build;
3485	fw_cmd.ver_sub = sub;
3486	fw_cmd.hdr.checksum = 0;
3487	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3488				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3489	fw_cmd.pad = 0;
3490	fw_cmd.pad2 = 0;
3491
3492	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3493		ret_val = ixgbe_host_interface_command(hw, (u8 *)&fw_cmd,
3494						       sizeof(fw_cmd));
3495		if (ret_val != 0)
3496			continue;
3497
3498		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3499		    FW_CEM_RESP_STATUS_SUCCESS)
3500			ret_val = 0;
3501		else
3502			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3503
3504		break;
3505	}
3506
3507	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3508out:
3509	return ret_val;
3510}