Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*******************************************************************************
   2
   3  Copyright(c) 2006 Tundra Semiconductor Corporation.
   4
   5  This program is free software; you can redistribute it and/or modify it
   6  under the terms of the GNU General Public License as published by the Free
   7  Software Foundation; either version 2 of the License, or (at your option)
   8  any later version.
   9
  10  This program is distributed in the hope that it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc., 59
  17  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18
  19*******************************************************************************/
  20
  21/* This driver is based on the driver code originally developed
  22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
  23 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
  24 *
  25 * Currently changes from original version are:
  26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
  27 * - modifications to handle two ports independently and support for
  28 *   additional PHY devices (alexandre.bounine@tundra.com)
  29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
  30 *
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/interrupt.h>
  36#include <linux/net.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/ethtool.h>
  40#include <linux/skbuff.h>
  41#include <linux/spinlock.h>
  42#include <linux/delay.h>
  43#include <linux/crc32.h>
  44#include <linux/mii.h>
  45#include <linux/device.h>
  46#include <linux/pci.h>
  47#include <linux/rtnetlink.h>
  48#include <linux/timer.h>
  49#include <linux/platform_device.h>
  50#include <linux/gfp.h>
  51
  52#include <asm/io.h>
  53#include <asm/tsi108.h>
  54
  55#include "tsi108_eth.h"
  56
  57#define MII_READ_DELAY 10000	/* max link wait time in msec */
  58
  59#define TSI108_RXRING_LEN     256
  60
  61/* NOTE: The driver currently does not support receiving packets
  62 * larger than the buffer size, so don't decrease this (unless you
  63 * want to add such support).
  64 */
  65#define TSI108_RXBUF_SIZE     1536
  66
  67#define TSI108_TXRING_LEN     256
  68
  69#define TSI108_TX_INT_FREQ    64
  70
  71/* Check the phy status every half a second. */
  72#define CHECK_PHY_INTERVAL (HZ/2)
  73
  74static int tsi108_init_one(struct platform_device *pdev);
  75static int tsi108_ether_remove(struct platform_device *pdev);
  76
  77struct tsi108_prv_data {
  78	void  __iomem *regs;	/* Base of normal regs */
  79	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
  80
  81	struct net_device *dev;
  82	struct napi_struct napi;
  83
  84	unsigned int phy;		/* Index of PHY for this interface */
  85	unsigned int irq_num;
  86	unsigned int id;
  87	unsigned int phy_type;
  88
  89	struct timer_list timer;/* Timer that triggers the check phy function */
  90	unsigned int rxtail;	/* Next entry in rxring to read */
  91	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
  92	unsigned int rxfree;	/* Number of free, allocated RX buffers */
  93
  94	unsigned int rxpending;	/* Non-zero if there are still descriptors
  95				 * to be processed from a previous descriptor
  96				 * interrupt condition that has been cleared */
  97
  98	unsigned int txtail;	/* Next TX descriptor to check status on */
  99	unsigned int txhead;	/* Next TX descriptor to use */
 100
 101	/* Number of free TX descriptors.  This could be calculated from
 102	 * rxhead and rxtail if one descriptor were left unused to disambiguate
 103	 * full and empty conditions, but it's simpler to just keep track
 104	 * explicitly. */
 105
 106	unsigned int txfree;
 107
 108	unsigned int phy_ok;		/* The PHY is currently powered on. */
 109
 110	/* PHY status (duplex is 1 for half, 2 for full,
 111	 * so that the default 0 indicates that neither has
 112	 * yet been configured). */
 113
 114	unsigned int link_up;
 115	unsigned int speed;
 116	unsigned int duplex;
 117
 118	tx_desc *txring;
 119	rx_desc *rxring;
 120	struct sk_buff *txskbs[TSI108_TXRING_LEN];
 121	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 122
 123	dma_addr_t txdma, rxdma;
 124
 125	/* txlock nests in misclock and phy_lock */
 126
 127	spinlock_t txlock, misclock;
 128
 129	/* stats is used to hold the upper bits of each hardware counter,
 130	 * and tmpstats is used to hold the full values for returning
 131	 * to the caller of get_stats().  They must be separate in case
 132	 * an overflow interrupt occurs before the stats are consumed.
 133	 */
 134
 135	struct net_device_stats stats;
 136	struct net_device_stats tmpstats;
 137
 138	/* These stats are kept separate in hardware, thus require individual
 139	 * fields for handling carry.  They are combined in get_stats.
 140	 */
 141
 142	unsigned long rx_fcs;	/* Add to rx_frame_errors */
 143	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
 144	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
 145	unsigned long rx_underruns;	/* Add to rx_length_errors */
 146	unsigned long rx_overruns;	/* Add to rx_length_errors */
 147
 148	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
 149	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
 150
 151	unsigned long mc_hash[16];
 152	u32 msg_enable;			/* debug message level */
 153	struct mii_if_info mii_if;
 154	unsigned int init_media;
 155
 156	struct platform_device *pdev;
 157};
 158
 159/* Structure for a device driver */
 160
 161static struct platform_driver tsi_eth_driver = {
 162	.probe = tsi108_init_one,
 163	.remove = tsi108_ether_remove,
 164	.driver	= {
 165		.name = "tsi-ethernet",
 166	},
 167};
 168
 169static void tsi108_timed_checker(struct timer_list *t);
 170
 171#ifdef DEBUG
 172static void dump_eth_one(struct net_device *dev)
 173{
 174	struct tsi108_prv_data *data = netdev_priv(dev);
 175
 176	printk("Dumping %s...\n", dev->name);
 177	printk("intstat %x intmask %x phy_ok %d"
 178	       " link %d speed %d duplex %d\n",
 179	       TSI_READ(TSI108_EC_INTSTAT),
 180	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 181	       data->link_up, data->speed, data->duplex);
 182
 183	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 184	       data->txhead, data->txtail, data->txfree,
 185	       TSI_READ(TSI108_EC_TXSTAT),
 186	       TSI_READ(TSI108_EC_TXESTAT),
 187	       TSI_READ(TSI108_EC_TXERR));
 188
 189	printk("RX: head %d, tail %d, free %d, stat %x,"
 190	       " estat %x, err %x, pending %d\n\n",
 191	       data->rxhead, data->rxtail, data->rxfree,
 192	       TSI_READ(TSI108_EC_RXSTAT),
 193	       TSI_READ(TSI108_EC_RXESTAT),
 194	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
 195}
 196#endif
 197
 198/* Synchronization is needed between the thread and up/down events.
 199 * Note that the PHY is accessed through the same registers for both
 200 * interfaces, so this can't be made interface-specific.
 201 */
 202
 203static DEFINE_SPINLOCK(phy_lock);
 204
 205static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 206{
 207	unsigned i;
 208
 209	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 210				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
 211				(reg << TSI108_MAC_MII_ADDR_REG));
 212	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 213	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 214	for (i = 0; i < 100; i++) {
 215		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 216		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 217			break;
 218		udelay(10);
 219	}
 220
 221	if (i == 100)
 222		return 0xffff;
 223	else
 224		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
 225}
 226
 227static void tsi108_write_mii(struct tsi108_prv_data *data,
 228				int reg, u16 val)
 229{
 230	unsigned i = 100;
 231	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 232				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
 233				(reg << TSI108_MAC_MII_ADDR_REG));
 234	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 235	while (i--) {
 236		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 237			TSI108_MAC_MII_IND_BUSY))
 238			break;
 239		udelay(10);
 240	}
 241}
 242
 243static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 244{
 245	struct tsi108_prv_data *data = netdev_priv(dev);
 246	return tsi108_read_mii(data, reg);
 247}
 248
 249static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 250{
 251	struct tsi108_prv_data *data = netdev_priv(dev);
 252	tsi108_write_mii(data, reg, val);
 253}
 254
 255static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 256					int reg, u16 val)
 257{
 258	unsigned i = 1000;
 259	TSI_WRITE(TSI108_MAC_MII_ADDR,
 260			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
 261			     | (reg << TSI108_MAC_MII_ADDR_REG));
 262	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 263	while(i--) {
 264		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 265			return;
 266		udelay(10);
 267	}
 268	printk(KERN_ERR "%s function time out\n", __func__);
 269}
 270
 271static int mii_speed(struct mii_if_info *mii)
 272{
 273	int advert, lpa, val, media;
 274	int lpa2 = 0;
 275	int speed;
 276
 277	if (!mii_link_ok(mii))
 278		return 0;
 279
 280	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 281	if ((val & BMSR_ANEGCOMPLETE) == 0)
 282		return 0;
 283
 284	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 285	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 286	media = mii_nway_result(advert & lpa);
 287
 288	if (mii->supports_gmii)
 289		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 290
 291	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 292			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 293	return speed;
 294}
 295
 296static void tsi108_check_phy(struct net_device *dev)
 297{
 298	struct tsi108_prv_data *data = netdev_priv(dev);
 299	u32 mac_cfg2_reg, portctrl_reg;
 300	u32 duplex;
 301	u32 speed;
 302	unsigned long flags;
 303
 304	spin_lock_irqsave(&phy_lock, flags);
 305
 306	if (!data->phy_ok)
 307		goto out;
 308
 309	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 310	data->init_media = 0;
 311
 312	if (netif_carrier_ok(dev)) {
 313
 314		speed = mii_speed(&data->mii_if);
 315
 316		if ((speed != data->speed) || duplex) {
 317
 318			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 319			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 320
 321			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 322
 323			if (speed == 1000) {
 324				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 325				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 326			} else {
 327				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 328				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 329			}
 330
 331			data->speed = speed;
 332
 333			if (data->mii_if.full_duplex) {
 334				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 335				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 336				data->duplex = 2;
 337			} else {
 338				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 339				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 340				data->duplex = 1;
 341			}
 342
 343			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 344			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 345		}
 346
 347		if (data->link_up == 0) {
 348			/* The manual says it can take 3-4 usecs for the speed change
 349			 * to take effect.
 350			 */
 351			udelay(5);
 352
 353			spin_lock(&data->txlock);
 354			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 355				netif_wake_queue(dev);
 356
 357			data->link_up = 1;
 358			spin_unlock(&data->txlock);
 359		}
 360	} else {
 361		if (data->link_up == 1) {
 362			netif_stop_queue(dev);
 363			data->link_up = 0;
 364			printk(KERN_NOTICE "%s : link is down\n", dev->name);
 365		}
 366
 367		goto out;
 368	}
 369
 370
 371out:
 372	spin_unlock_irqrestore(&phy_lock, flags);
 373}
 374
 375static inline void
 376tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 377		      unsigned long *upper)
 378{
 379	if (carry & carry_bit)
 380		*upper += carry_shift;
 381}
 382
 383static void tsi108_stat_carry(struct net_device *dev)
 384{
 385	struct tsi108_prv_data *data = netdev_priv(dev);
 386	u32 carry1, carry2;
 387
 388	spin_lock_irq(&data->misclock);
 389
 390	carry1 = TSI_READ(TSI108_STAT_CARRY1);
 391	carry2 = TSI_READ(TSI108_STAT_CARRY2);
 392
 393	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 394	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 395
 396	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 397			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 398
 399	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 400			      TSI108_STAT_RXPKTS_CARRY,
 401			      &data->stats.rx_packets);
 402
 403	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 404			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 405
 406	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 407			      TSI108_STAT_RXMCAST_CARRY,
 408			      &data->stats.multicast);
 409
 410	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 411			      TSI108_STAT_RXALIGN_CARRY,
 412			      &data->stats.rx_frame_errors);
 413
 414	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 415			      TSI108_STAT_RXLENGTH_CARRY,
 416			      &data->stats.rx_length_errors);
 417
 418	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 419			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 420
 421	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 422			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 423
 424	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 425			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 426
 427	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 428			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 429
 430	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 431			      TSI108_STAT_RXDROP_CARRY,
 432			      &data->stats.rx_missed_errors);
 433
 434	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 435			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 436
 437	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 438			      TSI108_STAT_TXPKTS_CARRY,
 439			      &data->stats.tx_packets);
 440
 441	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 442			      TSI108_STAT_TXEXDEF_CARRY,
 443			      &data->stats.tx_aborted_errors);
 444
 445	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 446			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 447
 448	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 449			      TSI108_STAT_TXTCOL_CARRY,
 450			      &data->stats.collisions);
 451
 452	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 453			      TSI108_STAT_TXPAUSEDROP_CARRY,
 454			      &data->tx_pause_drop);
 455
 456	spin_unlock_irq(&data->misclock);
 457}
 458
 459/* Read a stat counter atomically with respect to carries.
 460 * data->misclock must be held.
 461 */
 462static inline unsigned long
 463tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 464		 int carry_shift, unsigned long *upper)
 465{
 466	int carryreg;
 467	unsigned long val;
 468
 469	if (reg < 0xb0)
 470		carryreg = TSI108_STAT_CARRY1;
 471	else
 472		carryreg = TSI108_STAT_CARRY2;
 473
 474      again:
 475	val = TSI_READ(reg) | *upper;
 476
 477	/* Check to see if it overflowed, but the interrupt hasn't
 478	 * been serviced yet.  If so, handle the carry here, and
 479	 * try again.
 480	 */
 481
 482	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 483		*upper += carry_shift;
 484		TSI_WRITE(carryreg, carry_bit);
 485		goto again;
 486	}
 487
 488	return val;
 489}
 490
 491static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 492{
 493	unsigned long excol;
 494
 495	struct tsi108_prv_data *data = netdev_priv(dev);
 496	spin_lock_irq(&data->misclock);
 497
 498	data->tmpstats.rx_packets =
 499	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 500			     TSI108_STAT_CARRY1_RXPKTS,
 501			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 502
 503	data->tmpstats.tx_packets =
 504	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 505			     TSI108_STAT_CARRY2_TXPKTS,
 506			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 507
 508	data->tmpstats.rx_bytes =
 509	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 510			     TSI108_STAT_CARRY1_RXBYTES,
 511			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 512
 513	data->tmpstats.tx_bytes =
 514	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 515			     TSI108_STAT_CARRY2_TXBYTES,
 516			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 517
 518	data->tmpstats.multicast =
 519	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 520			     TSI108_STAT_CARRY1_RXMCAST,
 521			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 522
 523	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 524				 TSI108_STAT_CARRY2_TXEXCOL,
 525				 TSI108_STAT_TXEXCOL_CARRY,
 526				 &data->tx_coll_abort);
 527
 528	data->tmpstats.collisions =
 529	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 530			     TSI108_STAT_CARRY2_TXTCOL,
 531			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 532
 533	data->tmpstats.collisions += excol;
 534
 535	data->tmpstats.rx_length_errors =
 536	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 537			     TSI108_STAT_CARRY1_RXLENGTH,
 538			     TSI108_STAT_RXLENGTH_CARRY,
 539			     &data->stats.rx_length_errors);
 540
 541	data->tmpstats.rx_length_errors +=
 542	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 543			     TSI108_STAT_CARRY1_RXRUNT,
 544			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 545
 546	data->tmpstats.rx_length_errors +=
 547	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 548			     TSI108_STAT_CARRY1_RXJUMBO,
 549			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 550
 551	data->tmpstats.rx_frame_errors =
 552	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 553			     TSI108_STAT_CARRY1_RXALIGN,
 554			     TSI108_STAT_RXALIGN_CARRY,
 555			     &data->stats.rx_frame_errors);
 556
 557	data->tmpstats.rx_frame_errors +=
 558	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
 559			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 560			     &data->rx_fcs);
 561
 562	data->tmpstats.rx_frame_errors +=
 563	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 564			     TSI108_STAT_CARRY1_RXFRAG,
 565			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 566
 567	data->tmpstats.rx_missed_errors =
 568	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
 569			     TSI108_STAT_CARRY1_RXDROP,
 570			     TSI108_STAT_RXDROP_CARRY,
 571			     &data->stats.rx_missed_errors);
 572
 573	/* These three are maintained by software. */
 574	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 575	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 576
 577	data->tmpstats.tx_aborted_errors =
 578	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 579			     TSI108_STAT_CARRY2_TXEXDEF,
 580			     TSI108_STAT_TXEXDEF_CARRY,
 581			     &data->stats.tx_aborted_errors);
 582
 583	data->tmpstats.tx_aborted_errors +=
 584	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 585			     TSI108_STAT_CARRY2_TXPAUSE,
 586			     TSI108_STAT_TXPAUSEDROP_CARRY,
 587			     &data->tx_pause_drop);
 588
 589	data->tmpstats.tx_aborted_errors += excol;
 590
 591	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 592	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 593	    data->tmpstats.rx_crc_errors +
 594	    data->tmpstats.rx_frame_errors +
 595	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 596
 597	spin_unlock_irq(&data->misclock);
 598	return &data->tmpstats;
 599}
 600
 601static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 602{
 603	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 604			     TSI108_EC_RXQ_PTRHIGH_VALID);
 605
 606	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 607			     | TSI108_EC_RXCTRL_QUEUE0);
 608}
 609
 610static void tsi108_restart_tx(struct tsi108_prv_data * data)
 611{
 612	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 613			     TSI108_EC_TXQ_PTRHIGH_VALID);
 614
 615	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 616			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 617}
 618
 619/* txlock must be held by caller, with IRQs disabled, and
 620 * with permission to re-enable them when the lock is dropped.
 621 */
 622static void tsi108_complete_tx(struct net_device *dev)
 623{
 624	struct tsi108_prv_data *data = netdev_priv(dev);
 625	int tx;
 626	struct sk_buff *skb;
 627	int release = 0;
 628
 629	while (!data->txfree || data->txhead != data->txtail) {
 630		tx = data->txtail;
 631
 632		if (data->txring[tx].misc & TSI108_TX_OWN)
 633			break;
 634
 635		skb = data->txskbs[tx];
 636
 637		if (!(data->txring[tx].misc & TSI108_TX_OK))
 638			printk("%s: bad tx packet, misc %x\n",
 639			       dev->name, data->txring[tx].misc);
 640
 641		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 642		data->txfree++;
 643
 644		if (data->txring[tx].misc & TSI108_TX_EOF) {
 645			dev_kfree_skb_any(skb);
 646			release++;
 647		}
 648	}
 649
 650	if (release) {
 651		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 652			netif_wake_queue(dev);
 653	}
 654}
 655
 656static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 657{
 658	struct tsi108_prv_data *data = netdev_priv(dev);
 659	int frags = skb_shinfo(skb)->nr_frags + 1;
 660	int i;
 661
 662	if (!data->phy_ok && net_ratelimit())
 663		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 664
 665	if (!data->link_up) {
 666		printk(KERN_ERR "%s: Transmit while link is down!\n",
 667		       dev->name);
 668		netif_stop_queue(dev);
 669		return NETDEV_TX_BUSY;
 670	}
 671
 672	if (data->txfree < MAX_SKB_FRAGS + 1) {
 673		netif_stop_queue(dev);
 674
 675		if (net_ratelimit())
 676			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 677			       dev->name);
 678		return NETDEV_TX_BUSY;
 679	}
 680
 681	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 682		netif_stop_queue(dev);
 683	}
 684
 685	spin_lock_irq(&data->txlock);
 686
 687	for (i = 0; i < frags; i++) {
 688		int misc = 0;
 689		int tx = data->txhead;
 690
 691		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 692		 * the interrupt bit.  TX descriptor-complete interrupts are
 693		 * enabled when the queue fills up, and masked when there is
 694		 * still free space.  This way, when saturating the outbound
 695		 * link, the tx interrupts are kept to a reasonable level.
 696		 * When the queue is not full, reclamation of skbs still occurs
 697		 * as new packets are transmitted, or on a queue-empty
 698		 * interrupt.
 699		 */
 700
 701		if ((tx % TSI108_TX_INT_FREQ == 0) &&
 702		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 703			misc = TSI108_TX_INT;
 704
 705		data->txskbs[tx] = skb;
 706
 707		if (i == 0) {
 708			data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
 709					skb->data, skb_headlen(skb),
 710					DMA_TO_DEVICE);
 711			data->txring[tx].len = skb_headlen(skb);
 712			misc |= TSI108_TX_SOF;
 713		} else {
 714			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 715
 716			data->txring[tx].buf0 =
 717				skb_frag_dma_map(&data->pdev->dev, frag,
 718						0, skb_frag_size(frag),
 719						DMA_TO_DEVICE);
 720			data->txring[tx].len = skb_frag_size(frag);
 721		}
 722
 723		if (i == frags - 1)
 724			misc |= TSI108_TX_EOF;
 725
 726		if (netif_msg_pktdata(data)) {
 727			int i;
 728			printk("%s: Tx Frame contents (%d)\n", dev->name,
 729			       skb->len);
 730			for (i = 0; i < skb->len; i++)
 731				printk(" %2.2x", skb->data[i]);
 732			printk(".\n");
 733		}
 734		data->txring[tx].misc = misc | TSI108_TX_OWN;
 735
 736		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 737		data->txfree--;
 738	}
 739
 740	tsi108_complete_tx(dev);
 741
 742	/* This must be done after the check for completed tx descriptors,
 743	 * so that the tail pointer is correct.
 744	 */
 745
 746	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 747		tsi108_restart_tx(data);
 748
 749	spin_unlock_irq(&data->txlock);
 750	return NETDEV_TX_OK;
 751}
 752
 753static int tsi108_complete_rx(struct net_device *dev, int budget)
 754{
 755	struct tsi108_prv_data *data = netdev_priv(dev);
 756	int done = 0;
 757
 758	while (data->rxfree && done != budget) {
 759		int rx = data->rxtail;
 760		struct sk_buff *skb;
 761
 762		if (data->rxring[rx].misc & TSI108_RX_OWN)
 763			break;
 764
 765		skb = data->rxskbs[rx];
 766		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 767		data->rxfree--;
 768		done++;
 769
 770		if (data->rxring[rx].misc & TSI108_RX_BAD) {
 771			spin_lock_irq(&data->misclock);
 772
 773			if (data->rxring[rx].misc & TSI108_RX_CRC)
 774				data->stats.rx_crc_errors++;
 775			if (data->rxring[rx].misc & TSI108_RX_OVER)
 776				data->stats.rx_fifo_errors++;
 777
 778			spin_unlock_irq(&data->misclock);
 779
 780			dev_kfree_skb_any(skb);
 781			continue;
 782		}
 783		if (netif_msg_pktdata(data)) {
 784			int i;
 785			printk("%s: Rx Frame contents (%d)\n",
 786			       dev->name, data->rxring[rx].len);
 787			for (i = 0; i < data->rxring[rx].len; i++)
 788				printk(" %2.2x", skb->data[i]);
 789			printk(".\n");
 790		}
 791
 792		skb_put(skb, data->rxring[rx].len);
 793		skb->protocol = eth_type_trans(skb, dev);
 794		netif_receive_skb(skb);
 795	}
 796
 797	return done;
 798}
 799
 800static int tsi108_refill_rx(struct net_device *dev, int budget)
 801{
 802	struct tsi108_prv_data *data = netdev_priv(dev);
 803	int done = 0;
 804
 805	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 806		int rx = data->rxhead;
 807		struct sk_buff *skb;
 808
 809		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 810		data->rxskbs[rx] = skb;
 811		if (!skb)
 812			break;
 813
 814		data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
 815				skb->data, TSI108_RX_SKB_SIZE,
 816				DMA_FROM_DEVICE);
 817
 818		/* Sometimes the hardware sets blen to zero after packet
 819		 * reception, even though the manual says that it's only ever
 820		 * modified by the driver.
 821		 */
 822
 823		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 824		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 825
 826		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 827		data->rxfree++;
 828		done++;
 829	}
 830
 831	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 832			   TSI108_EC_RXSTAT_QUEUE0))
 833		tsi108_restart_rx(data, dev);
 834
 835	return done;
 836}
 837
 838static int tsi108_poll(struct napi_struct *napi, int budget)
 839{
 840	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 841	struct net_device *dev = data->dev;
 842	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 843	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 844	int num_received = 0, num_filled = 0;
 845
 846	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 847	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 848
 849	TSI_WRITE(TSI108_EC_RXESTAT, estat);
 850	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 851
 852	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 853		num_received = tsi108_complete_rx(dev, budget);
 854
 855	/* This should normally fill no more slots than the number of
 856	 * packets received in tsi108_complete_rx().  The exception
 857	 * is when we previously ran out of memory for RX SKBs.  In that
 858	 * case, it's helpful to obey the budget, not only so that the
 859	 * CPU isn't hogged, but so that memory (which may still be low)
 860	 * is not hogged by one device.
 861	 *
 862	 * A work unit is considered to be two SKBs to allow us to catch
 863	 * up when the ring has shrunk due to out-of-memory but we're
 864	 * still removing the full budget's worth of packets each time.
 865	 */
 866
 867	if (data->rxfree < TSI108_RXRING_LEN)
 868		num_filled = tsi108_refill_rx(dev, budget * 2);
 869
 870	if (intstat & TSI108_INT_RXERROR) {
 871		u32 err = TSI_READ(TSI108_EC_RXERR);
 872		TSI_WRITE(TSI108_EC_RXERR, err);
 873
 874		if (err) {
 875			if (net_ratelimit())
 876				printk(KERN_DEBUG "%s: RX error %x\n",
 877				       dev->name, err);
 878
 879			if (!(TSI_READ(TSI108_EC_RXSTAT) &
 880			      TSI108_EC_RXSTAT_QUEUE0))
 881				tsi108_restart_rx(data, dev);
 882		}
 883	}
 884
 885	if (intstat & TSI108_INT_RXOVERRUN) {
 886		spin_lock_irq(&data->misclock);
 887		data->stats.rx_fifo_errors++;
 888		spin_unlock_irq(&data->misclock);
 889	}
 890
 891	if (num_received < budget) {
 892		data->rxpending = 0;
 893		napi_complete_done(napi, num_received);
 894
 895		TSI_WRITE(TSI108_EC_INTMASK,
 896				     TSI_READ(TSI108_EC_INTMASK)
 897				     & ~(TSI108_INT_RXQUEUE0
 898					 | TSI108_INT_RXTHRESH |
 899					 TSI108_INT_RXOVERRUN |
 900					 TSI108_INT_RXERROR |
 901					 TSI108_INT_RXWAIT));
 902	} else {
 903		data->rxpending = 1;
 904	}
 905
 906	return num_received;
 907}
 908
 909static void tsi108_rx_int(struct net_device *dev)
 910{
 911	struct tsi108_prv_data *data = netdev_priv(dev);
 912
 913	/* A race could cause dev to already be scheduled, so it's not an
 914	 * error if that happens (and interrupts shouldn't be re-masked,
 915	 * because that can cause harmful races, if poll has already
 916	 * unmasked them but not cleared LINK_STATE_SCHED).
 917	 *
 918	 * This can happen if this code races with tsi108_poll(), which masks
 919	 * the interrupts after tsi108_irq_one() read the mask, but before
 920	 * napi_schedule is called.  It could also happen due to calls
 921	 * from tsi108_check_rxring().
 922	 */
 923
 924	if (napi_schedule_prep(&data->napi)) {
 925		/* Mask, rather than ack, the receive interrupts.  The ack
 926		 * will happen in tsi108_poll().
 927		 */
 928
 929		TSI_WRITE(TSI108_EC_INTMASK,
 930				     TSI_READ(TSI108_EC_INTMASK) |
 931				     TSI108_INT_RXQUEUE0
 932				     | TSI108_INT_RXTHRESH |
 933				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 934				     TSI108_INT_RXWAIT);
 935		__napi_schedule(&data->napi);
 936	} else {
 937		if (!netif_running(dev)) {
 938			/* This can happen if an interrupt occurs while the
 939			 * interface is being brought down, as the START
 940			 * bit is cleared before the stop function is called.
 941			 *
 942			 * In this case, the interrupts must be masked, or
 943			 * they will continue indefinitely.
 944			 *
 945			 * There's a race here if the interface is brought down
 946			 * and then up in rapid succession, as the device could
 947			 * be made running after the above check and before
 948			 * the masking below.  This will only happen if the IRQ
 949			 * thread has a lower priority than the task brining
 950			 * up the interface.  Fixing this race would likely
 951			 * require changes in generic code.
 952			 */
 953
 954			TSI_WRITE(TSI108_EC_INTMASK,
 955					     TSI_READ
 956					     (TSI108_EC_INTMASK) |
 957					     TSI108_INT_RXQUEUE0 |
 958					     TSI108_INT_RXTHRESH |
 959					     TSI108_INT_RXOVERRUN |
 960					     TSI108_INT_RXERROR |
 961					     TSI108_INT_RXWAIT);
 962		}
 963	}
 964}
 965
 966/* If the RX ring has run out of memory, try periodically
 967 * to allocate some more, as otherwise poll would never
 968 * get called (apart from the initial end-of-queue condition).
 969 *
 970 * This is called once per second (by default) from the thread.
 971 */
 972
 973static void tsi108_check_rxring(struct net_device *dev)
 974{
 975	struct tsi108_prv_data *data = netdev_priv(dev);
 976
 977	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
 978	 * directly, so as to keep the receive path single-threaded
 979	 * (and thus not needing a lock).
 980	 */
 981
 982	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 983		tsi108_rx_int(dev);
 984}
 985
 986static void tsi108_tx_int(struct net_device *dev)
 987{
 988	struct tsi108_prv_data *data = netdev_priv(dev);
 989	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 990
 991	TSI_WRITE(TSI108_EC_TXESTAT, estat);
 992	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 993			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 994	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 995		u32 err = TSI_READ(TSI108_EC_TXERR);
 996		TSI_WRITE(TSI108_EC_TXERR, err);
 997
 998		if (err && net_ratelimit())
 999			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1000	}
1001
1002	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1003		spin_lock(&data->txlock);
1004		tsi108_complete_tx(dev);
1005		spin_unlock(&data->txlock);
1006	}
1007}
1008
1009
1010static irqreturn_t tsi108_irq(int irq, void *dev_id)
1011{
1012	struct net_device *dev = dev_id;
1013	struct tsi108_prv_data *data = netdev_priv(dev);
1014	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1015
1016	if (!(stat & TSI108_INT_ANY))
1017		return IRQ_NONE;	/* Not our interrupt */
1018
1019	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1020
1021	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1022		    TSI108_INT_TXERROR))
1023		tsi108_tx_int(dev);
1024	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1025		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1026		    TSI108_INT_RXERROR))
1027		tsi108_rx_int(dev);
1028
1029	if (stat & TSI108_INT_SFN) {
1030		if (net_ratelimit())
1031			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1032		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1033	}
1034
1035	if (stat & TSI108_INT_STATCARRY) {
1036		tsi108_stat_carry(dev);
1037		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1038	}
1039
1040	return IRQ_HANDLED;
1041}
1042
1043static void tsi108_stop_ethernet(struct net_device *dev)
1044{
1045	struct tsi108_prv_data *data = netdev_priv(dev);
1046	int i = 1000;
1047	/* Disable all TX and RX queues ... */
1048	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1049	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1050
1051	/* ...and wait for them to become idle */
1052	while(i--) {
1053		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1054			break;
1055		udelay(10);
1056	}
1057	i = 1000;
1058	while(i--){
1059		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1060			return;
1061		udelay(10);
1062	}
1063	printk(KERN_ERR "%s function time out\n", __func__);
1064}
1065
1066static void tsi108_reset_ether(struct tsi108_prv_data * data)
1067{
1068	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1069	udelay(100);
1070	TSI_WRITE(TSI108_MAC_CFG1, 0);
1071
1072	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1073	udelay(100);
1074	TSI_WRITE(TSI108_EC_PORTCTRL,
1075			     TSI_READ(TSI108_EC_PORTCTRL) &
1076			     ~TSI108_EC_PORTCTRL_STATRST);
1077
1078	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1079	udelay(100);
1080	TSI_WRITE(TSI108_EC_TXCFG,
1081			     TSI_READ(TSI108_EC_TXCFG) &
1082			     ~TSI108_EC_TXCFG_RST);
1083
1084	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1085	udelay(100);
1086	TSI_WRITE(TSI108_EC_RXCFG,
1087			     TSI_READ(TSI108_EC_RXCFG) &
1088			     ~TSI108_EC_RXCFG_RST);
1089
1090	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1091			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1092			     TSI108_MAC_MII_MGMT_RST);
1093	udelay(100);
1094	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1095			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1096			     ~(TSI108_MAC_MII_MGMT_RST |
1097			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1098}
1099
1100static int tsi108_get_mac(struct net_device *dev)
1101{
1102	struct tsi108_prv_data *data = netdev_priv(dev);
1103	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1104	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1105
1106	/* Note that the octets are reversed from what the manual says,
1107	 * producing an even weirder ordering...
1108	 */
1109	if (word2 == 0 && word1 == 0) {
1110		dev->dev_addr[0] = 0x00;
1111		dev->dev_addr[1] = 0x06;
1112		dev->dev_addr[2] = 0xd2;
1113		dev->dev_addr[3] = 0x00;
1114		dev->dev_addr[4] = 0x00;
1115		if (0x8 == data->phy)
1116			dev->dev_addr[5] = 0x01;
1117		else
1118			dev->dev_addr[5] = 0x02;
1119
1120		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1121
1122		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1123		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1124
1125		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1126		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1127	} else {
1128		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1129		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1130		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1131		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1132		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1133		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1134	}
1135
1136	if (!is_valid_ether_addr(dev->dev_addr)) {
1137		printk(KERN_ERR
1138		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1139		       dev->name, word1, word2);
1140		return -EINVAL;
1141	}
1142
1143	return 0;
1144}
1145
1146static int tsi108_set_mac(struct net_device *dev, void *addr)
1147{
1148	struct tsi108_prv_data *data = netdev_priv(dev);
1149	u32 word1, word2;
1150	int i;
1151
1152	if (!is_valid_ether_addr(addr))
1153		return -EADDRNOTAVAIL;
1154
1155	for (i = 0; i < 6; i++)
1156		/* +2 is for the offset of the HW addr type */
1157		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1158
1159	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1160
1161	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1162	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1163
1164	spin_lock_irq(&data->misclock);
1165	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1166	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1167	spin_lock(&data->txlock);
1168
1169	if (data->txfree && data->link_up)
1170		netif_wake_queue(dev);
1171
1172	spin_unlock(&data->txlock);
1173	spin_unlock_irq(&data->misclock);
1174	return 0;
1175}
1176
1177/* Protected by dev->xmit_lock. */
1178static void tsi108_set_rx_mode(struct net_device *dev)
1179{
1180	struct tsi108_prv_data *data = netdev_priv(dev);
1181	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1182
1183	if (dev->flags & IFF_PROMISC) {
1184		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1185		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1186		goto out;
1187	}
1188
1189	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1190
1191	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1192		int i;
1193		struct netdev_hw_addr *ha;
1194		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1195
1196		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1197
1198		netdev_for_each_mc_addr(ha, dev) {
1199			u32 hash, crc;
1200
1201			crc = ether_crc(6, ha->addr);
1202			hash = crc >> 23;
1203			__set_bit(hash, &data->mc_hash[0]);
1204		}
1205
1206		TSI_WRITE(TSI108_EC_HASHADDR,
1207				     TSI108_EC_HASHADDR_AUTOINC |
1208				     TSI108_EC_HASHADDR_MCAST);
1209
1210		for (i = 0; i < 16; i++) {
1211			/* The manual says that the hardware may drop
1212			 * back-to-back writes to the data register.
1213			 */
1214			udelay(1);
1215			TSI_WRITE(TSI108_EC_HASHDATA,
1216					     data->mc_hash[i]);
1217		}
1218	}
1219
1220      out:
1221	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1222}
1223
1224static void tsi108_init_phy(struct net_device *dev)
1225{
1226	struct tsi108_prv_data *data = netdev_priv(dev);
1227	u32 i = 0;
1228	u16 phyval = 0;
1229	unsigned long flags;
1230
1231	spin_lock_irqsave(&phy_lock, flags);
1232
1233	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1234	while (--i) {
1235		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1236			break;
1237		udelay(10);
1238	}
1239	if (i == 0)
1240		printk(KERN_ERR "%s function time out\n", __func__);
1241
1242	if (data->phy_type == TSI108_PHY_BCM54XX) {
1243		tsi108_write_mii(data, 0x09, 0x0300);
1244		tsi108_write_mii(data, 0x10, 0x1020);
1245		tsi108_write_mii(data, 0x1c, 0x8c00);
1246	}
1247
1248	tsi108_write_mii(data,
1249			 MII_BMCR,
1250			 BMCR_ANENABLE | BMCR_ANRESTART);
1251	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1252		cpu_relax();
1253
1254	/* Set G/MII mode and receive clock select in TBI control #2.  The
1255	 * second port won't work if this isn't done, even though we don't
1256	 * use TBI mode.
1257	 */
1258
1259	tsi108_write_tbi(data, 0x11, 0x30);
1260
1261	/* FIXME: It seems to take more than 2 back-to-back reads to the
1262	 * PHY_STAT register before the link up status bit is set.
1263	 */
1264
1265	data->link_up = 0;
1266
1267	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1268		 BMSR_LSTATUS)) {
1269		if (i++ > (MII_READ_DELAY / 10)) {
1270			break;
1271		}
1272		spin_unlock_irqrestore(&phy_lock, flags);
1273		msleep(10);
1274		spin_lock_irqsave(&phy_lock, flags);
1275	}
1276
1277	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1278	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1279	data->phy_ok = 1;
1280	data->init_media = 1;
1281	spin_unlock_irqrestore(&phy_lock, flags);
1282}
1283
1284static void tsi108_kill_phy(struct net_device *dev)
1285{
1286	struct tsi108_prv_data *data = netdev_priv(dev);
1287	unsigned long flags;
1288
1289	spin_lock_irqsave(&phy_lock, flags);
1290	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1291	data->phy_ok = 0;
1292	spin_unlock_irqrestore(&phy_lock, flags);
1293}
1294
1295static int tsi108_open(struct net_device *dev)
1296{
1297	int i;
1298	struct tsi108_prv_data *data = netdev_priv(dev);
1299	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1300	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1301
1302	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1303	if (i != 0) {
1304		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1305		       data->id, data->irq_num);
1306		return i;
1307	} else {
1308		dev->irq = data->irq_num;
1309		printk(KERN_NOTICE
1310		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1311		       data->id, dev->irq, dev->name);
1312	}
1313
1314	data->rxring = dma_zalloc_coherent(&data->pdev->dev, rxring_size,
1315			&data->rxdma, GFP_KERNEL);
1316	if (!data->rxring)
1317		return -ENOMEM;
1318
1319	data->txring = dma_zalloc_coherent(&data->pdev->dev, txring_size,
1320			&data->txdma, GFP_KERNEL);
1321	if (!data->txring) {
1322		dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1323				    data->rxdma);
1324		return -ENOMEM;
1325	}
1326
1327	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1328		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1329		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1330		data->rxring[i].vlan = 0;
1331	}
1332
1333	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1334
1335	data->rxtail = 0;
1336	data->rxhead = 0;
1337
1338	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1339		struct sk_buff *skb;
1340
1341		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1342		if (!skb) {
1343			/* Bah.  No memory for now, but maybe we'll get
1344			 * some more later.
1345			 * For now, we'll live with the smaller ring.
1346			 */
1347			printk(KERN_WARNING
1348			       "%s: Could only allocate %d receive skb(s).\n",
1349			       dev->name, i);
1350			data->rxhead = i;
1351			break;
1352		}
1353
1354		data->rxskbs[i] = skb;
1355		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1356		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1357	}
1358
1359	data->rxfree = i;
1360	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1361
1362	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1363		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1364		data->txring[i].misc = 0;
1365	}
1366
1367	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1368	data->txtail = 0;
1369	data->txhead = 0;
1370	data->txfree = TSI108_TXRING_LEN;
1371	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1372	tsi108_init_phy(dev);
1373
1374	napi_enable(&data->napi);
1375
1376	timer_setup(&data->timer, tsi108_timed_checker, 0);
1377	mod_timer(&data->timer, jiffies + 1);
1378
1379	tsi108_restart_rx(data, dev);
1380
1381	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1382
1383	TSI_WRITE(TSI108_EC_INTMASK,
1384			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1385			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1386			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1387			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1388
1389	TSI_WRITE(TSI108_MAC_CFG1,
1390			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1391	netif_start_queue(dev);
1392	return 0;
1393}
1394
1395static int tsi108_close(struct net_device *dev)
1396{
1397	struct tsi108_prv_data *data = netdev_priv(dev);
1398
1399	netif_stop_queue(dev);
1400	napi_disable(&data->napi);
1401
1402	del_timer_sync(&data->timer);
1403
1404	tsi108_stop_ethernet(dev);
1405	tsi108_kill_phy(dev);
1406	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1407	TSI_WRITE(TSI108_MAC_CFG1, 0);
1408
1409	/* Check for any pending TX packets, and drop them. */
1410
1411	while (!data->txfree || data->txhead != data->txtail) {
1412		int tx = data->txtail;
1413		struct sk_buff *skb;
1414		skb = data->txskbs[tx];
1415		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1416		data->txfree++;
1417		dev_kfree_skb(skb);
1418	}
1419
1420	free_irq(data->irq_num, dev);
1421
1422	/* Discard the RX ring. */
1423
1424	while (data->rxfree) {
1425		int rx = data->rxtail;
1426		struct sk_buff *skb;
1427
1428		skb = data->rxskbs[rx];
1429		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1430		data->rxfree--;
1431		dev_kfree_skb(skb);
1432	}
1433
1434	dma_free_coherent(&data->pdev->dev,
1435			    TSI108_RXRING_LEN * sizeof(rx_desc),
1436			    data->rxring, data->rxdma);
1437	dma_free_coherent(&data->pdev->dev,
1438			    TSI108_TXRING_LEN * sizeof(tx_desc),
1439			    data->txring, data->txdma);
1440
1441	return 0;
1442}
1443
1444static void tsi108_init_mac(struct net_device *dev)
1445{
1446	struct tsi108_prv_data *data = netdev_priv(dev);
1447
1448	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1449			     TSI108_MAC_CFG2_PADCRC);
1450
1451	TSI_WRITE(TSI108_EC_TXTHRESH,
1452			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1453			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1454
1455	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1456			     ~(TSI108_STAT_CARRY1_RXBYTES |
1457			       TSI108_STAT_CARRY1_RXPKTS |
1458			       TSI108_STAT_CARRY1_RXFCS |
1459			       TSI108_STAT_CARRY1_RXMCAST |
1460			       TSI108_STAT_CARRY1_RXALIGN |
1461			       TSI108_STAT_CARRY1_RXLENGTH |
1462			       TSI108_STAT_CARRY1_RXRUNT |
1463			       TSI108_STAT_CARRY1_RXJUMBO |
1464			       TSI108_STAT_CARRY1_RXFRAG |
1465			       TSI108_STAT_CARRY1_RXJABBER |
1466			       TSI108_STAT_CARRY1_RXDROP));
1467
1468	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1469			     ~(TSI108_STAT_CARRY2_TXBYTES |
1470			       TSI108_STAT_CARRY2_TXPKTS |
1471			       TSI108_STAT_CARRY2_TXEXDEF |
1472			       TSI108_STAT_CARRY2_TXEXCOL |
1473			       TSI108_STAT_CARRY2_TXTCOL |
1474			       TSI108_STAT_CARRY2_TXPAUSE));
1475
1476	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1477	TSI_WRITE(TSI108_MAC_CFG1, 0);
1478
1479	TSI_WRITE(TSI108_EC_RXCFG,
1480			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1481
1482	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1483			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1484			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1485						TSI108_EC_TXQ_CFG_SFNPORT));
1486
1487	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1488			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1489			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1490						TSI108_EC_RXQ_CFG_SFNPORT));
1491
1492	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1493			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1494			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1495						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1496
1497	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1498			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1499			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1500						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1501
1502	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1503}
1504
1505static int tsi108_get_link_ksettings(struct net_device *dev,
1506				     struct ethtool_link_ksettings *cmd)
1507{
1508	struct tsi108_prv_data *data = netdev_priv(dev);
1509	unsigned long flags;
1510
1511	spin_lock_irqsave(&data->txlock, flags);
1512	mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1513	spin_unlock_irqrestore(&data->txlock, flags);
1514
1515	return 0;
1516}
1517
1518static int tsi108_set_link_ksettings(struct net_device *dev,
1519				     const struct ethtool_link_ksettings *cmd)
1520{
1521	struct tsi108_prv_data *data = netdev_priv(dev);
1522	unsigned long flags;
1523	int rc;
1524
1525	spin_lock_irqsave(&data->txlock, flags);
1526	rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1527	spin_unlock_irqrestore(&data->txlock, flags);
1528
1529	return rc;
1530}
1531
1532static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1533{
1534	struct tsi108_prv_data *data = netdev_priv(dev);
1535	if (!netif_running(dev))
1536		return -EINVAL;
1537	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1538}
1539
1540static const struct ethtool_ops tsi108_ethtool_ops = {
1541	.get_link 	= ethtool_op_get_link,
1542	.get_link_ksettings	= tsi108_get_link_ksettings,
1543	.set_link_ksettings	= tsi108_set_link_ksettings,
1544};
1545
1546static const struct net_device_ops tsi108_netdev_ops = {
1547	.ndo_open		= tsi108_open,
1548	.ndo_stop		= tsi108_close,
1549	.ndo_start_xmit		= tsi108_send_packet,
1550	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1551	.ndo_get_stats		= tsi108_get_stats,
1552	.ndo_do_ioctl		= tsi108_do_ioctl,
1553	.ndo_set_mac_address	= tsi108_set_mac,
1554	.ndo_validate_addr	= eth_validate_addr,
1555};
1556
1557static int
1558tsi108_init_one(struct platform_device *pdev)
1559{
1560	struct net_device *dev = NULL;
1561	struct tsi108_prv_data *data = NULL;
1562	hw_info *einfo;
1563	int err = 0;
1564
1565	einfo = dev_get_platdata(&pdev->dev);
1566
1567	if (NULL == einfo) {
1568		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1569		       pdev->id);
1570		return -ENODEV;
1571	}
1572
1573	/* Create an ethernet device instance */
1574
1575	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1576	if (!dev)
1577		return -ENOMEM;
1578
1579	printk("tsi108_eth%d: probe...\n", pdev->id);
1580	data = netdev_priv(dev);
1581	data->dev = dev;
1582	data->pdev = pdev;
1583
1584	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1585			pdev->id, einfo->regs, einfo->phyregs,
1586			einfo->phy, einfo->irq_num);
1587
1588	data->regs = ioremap(einfo->regs, 0x400);
1589	if (NULL == data->regs) {
1590		err = -ENOMEM;
1591		goto regs_fail;
1592	}
1593
1594	data->phyregs = ioremap(einfo->phyregs, 0x400);
1595	if (NULL == data->phyregs) {
1596		err = -ENOMEM;
1597		goto phyregs_fail;
1598	}
1599/* MII setup */
1600	data->mii_if.dev = dev;
1601	data->mii_if.mdio_read = tsi108_mdio_read;
1602	data->mii_if.mdio_write = tsi108_mdio_write;
1603	data->mii_if.phy_id = einfo->phy;
1604	data->mii_if.phy_id_mask = 0x1f;
1605	data->mii_if.reg_num_mask = 0x1f;
1606
1607	data->phy = einfo->phy;
1608	data->phy_type = einfo->phy_type;
1609	data->irq_num = einfo->irq_num;
1610	data->id = pdev->id;
1611	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1612	dev->netdev_ops = &tsi108_netdev_ops;
1613	dev->ethtool_ops = &tsi108_ethtool_ops;
1614
1615	/* Apparently, the Linux networking code won't use scatter-gather
1616	 * if the hardware doesn't do checksums.  However, it's faster
1617	 * to checksum in place and use SG, as (among other reasons)
1618	 * the cache won't be dirtied (which then has to be flushed
1619	 * before DMA).  The checksumming is done by the driver (via
1620	 * a new function skb_csum_dev() in net/core/skbuff.c).
1621	 */
1622
1623	dev->features = NETIF_F_HIGHDMA;
1624
1625	spin_lock_init(&data->txlock);
1626	spin_lock_init(&data->misclock);
1627
1628	tsi108_reset_ether(data);
1629	tsi108_kill_phy(dev);
1630
1631	if ((err = tsi108_get_mac(dev)) != 0) {
1632		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1633		       dev->name);
1634		goto register_fail;
1635	}
1636
1637	tsi108_init_mac(dev);
1638	err = register_netdev(dev);
1639	if (err) {
1640		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1641				dev->name);
1642		goto register_fail;
1643	}
1644
1645	platform_set_drvdata(pdev, dev);
1646	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1647	       dev->name, dev->dev_addr);
1648#ifdef DEBUG
1649	data->msg_enable = DEBUG;
1650	dump_eth_one(dev);
1651#endif
1652
1653	return 0;
1654
1655register_fail:
1656	iounmap(data->phyregs);
1657
1658phyregs_fail:
1659	iounmap(data->regs);
1660
1661regs_fail:
1662	free_netdev(dev);
1663	return err;
1664}
1665
1666/* There's no way to either get interrupts from the PHY when
1667 * something changes, or to have the Tsi108 automatically communicate
1668 * with the PHY to reconfigure itself.
1669 *
1670 * Thus, we have to do it using a timer.
1671 */
1672
1673static void tsi108_timed_checker(struct timer_list *t)
1674{
1675	struct tsi108_prv_data *data = from_timer(data, t, timer);
1676	struct net_device *dev = data->dev;
1677
1678	tsi108_check_phy(dev);
1679	tsi108_check_rxring(dev);
1680	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1681}
1682
1683static int tsi108_ether_remove(struct platform_device *pdev)
1684{
1685	struct net_device *dev = platform_get_drvdata(pdev);
1686	struct tsi108_prv_data *priv = netdev_priv(dev);
1687
1688	unregister_netdev(dev);
1689	tsi108_stop_ethernet(dev);
1690	iounmap(priv->regs);
1691	iounmap(priv->phyregs);
1692	free_netdev(dev);
1693
1694	return 0;
1695}
1696module_platform_driver(tsi_eth_driver);
1697
1698MODULE_AUTHOR("Tundra Semiconductor Corporation");
1699MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1700MODULE_LICENSE("GPL");
1701MODULE_ALIAS("platform:tsi-ethernet");