Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Tehuti Networks(R) Network Driver
   3 * ethtool interface implementation
   4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * RX HW/SW interaction overview
  14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  15 * There are 2 types of RX communication channels between driver and NIC.
  16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  18 * info about buffer's location, size and ID. An ID field is used to identify a
  19 * buffer when it's returned with data via RXD Fifo (see below)
  20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  25 *
  26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  29 * filled with data, HW builds new RXD descriptor for it and push it into single
  30 * RXD Fifo.
  31 *
  32 * RX SW Data Structures
  33 * ~~~~~~~~~~~~~~~~~~~~~
  34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  35 * For RX case, ownership lasts from allocating new empty skb for RXF until
  36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  37 * skb db. Implemented as array with bitmask.
  38 * fifo - keeps info about fifo's size and location, relevant HW registers,
  39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  40 * Implemented as simple struct.
  41 *
  42 * RX SW Execution Flow
  43 * ~~~~~~~~~~~~~~~~~~~~
  44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  45 * relevant registers. At the end of init phase, driver enables interrupts.
  46 * NIC sees that there is no RXF buffers and raises
  47 * RD_INTR interrupt, isr fills skbs and Rx begins.
  48 * Driver has two receive operation modes:
  49 *    NAPI - interrupt-driven mixed with polling
  50 *    interrupt-driven only
  51 *
  52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  53 * interrupt and isr is called. isr collects all available packets
  54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  55
  56 * Rx buffer allocation note
  57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  58 * Driver cares to feed such amount of RxF descriptors that respective amount of
  59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  60 * overflow check in Bordeaux for RxD fifo free/used size.
  61 * FIXME: this is NOT fully implemented, more work should be done
  62 *
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66
  67#include "tehuti.h"
  68
  69static const struct pci_device_id bdx_pci_tbl[] = {
  70	{ PCI_VDEVICE(TEHUTI, 0x3009), },
  71	{ PCI_VDEVICE(TEHUTI, 0x3010), },
  72	{ PCI_VDEVICE(TEHUTI, 0x3014), },
  73	{ 0 }
  74};
  75
  76MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  77
  78/* Definitions needed by ISR or NAPI functions */
  79static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  80static void bdx_tx_cleanup(struct bdx_priv *priv);
  81static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  82
  83/* Definitions needed by FW loading */
  84static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  85
  86/* Definitions needed by hw_start */
  87static int bdx_tx_init(struct bdx_priv *priv);
  88static int bdx_rx_init(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_close */
  91static void bdx_rx_free(struct bdx_priv *priv);
  92static void bdx_tx_free(struct bdx_priv *priv);
  93
  94/* Definitions needed by bdx_probe */
  95static void bdx_set_ethtool_ops(struct net_device *netdev);
  96
  97/*************************************************************************
  98 *    Print Info                                                         *
  99 *************************************************************************/
 100
 101static void print_hw_id(struct pci_dev *pdev)
 102{
 103	struct pci_nic *nic = pci_get_drvdata(pdev);
 104	u16 pci_link_status = 0;
 105	u16 pci_ctrl = 0;
 106
 107	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 108	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 109
 110	pr_info("%s%s\n", BDX_NIC_NAME,
 111		nic->port_num == 1 ? "" : ", 2-Port");
 112	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 113		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 114		readl(nic->regs + FPGA_SEED),
 115		GET_LINK_STATUS_LANES(pci_link_status),
 116		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 117}
 118
 119static void print_fw_id(struct pci_nic *nic)
 120{
 121	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 122}
 123
 124static void print_eth_id(struct net_device *ndev)
 125{
 126	netdev_info(ndev, "%s, Port %c\n",
 127		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 128
 129}
 130
 131/*************************************************************************
 132 *    Code                                                               *
 133 *************************************************************************/
 134
 135#define bdx_enable_interrupts(priv)	\
 136	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 137#define bdx_disable_interrupts(priv)	\
 138	do { WRITE_REG(priv, regIMR, 0); } while (0)
 139
 140/**
 141 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 142 * @priv: NIC private structure
 143 * @f: fifo to initialize
 144 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 145 * @reg_XXX: offsets of registers relative to base address
 146 *
 147 * 1K extra space is allocated at the end of the fifo to simplify
 148 * processing of descriptors that wraps around fifo's end
 149 *
 150 * Returns 0 on success, negative value on failure
 151 *
 152 */
 153static int
 154bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 155	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 156{
 157	u16 memsz = FIFO_SIZE * (1 << fsz_type);
 158
 159	memset(f, 0, sizeof(struct fifo));
 160	/* pci_alloc_consistent gives us 4k-aligned memory */
 161	f->va = pci_alloc_consistent(priv->pdev,
 162				     memsz + FIFO_EXTRA_SPACE, &f->da);
 163	if (!f->va) {
 164		pr_err("pci_alloc_consistent failed\n");
 165		RET(-ENOMEM);
 166	}
 167	f->reg_CFG0 = reg_CFG0;
 168	f->reg_CFG1 = reg_CFG1;
 169	f->reg_RPTR = reg_RPTR;
 170	f->reg_WPTR = reg_WPTR;
 171	f->rptr = 0;
 172	f->wptr = 0;
 173	f->memsz = memsz;
 174	f->size_mask = memsz - 1;
 175	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 176	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 177
 178	RET(0);
 179}
 180
 181/**
 182 * bdx_fifo_free - free all resources used by fifo
 183 * @priv: NIC private structure
 184 * @f: fifo to release
 185 */
 186static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 187{
 188	ENTER;
 189	if (f->va) {
 190		pci_free_consistent(priv->pdev,
 191				    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 192		f->va = NULL;
 193	}
 194	RET();
 195}
 196
 197/**
 198 * bdx_link_changed - notifies OS about hw link state.
 199 * @priv: hw adapter structure
 200 */
 201static void bdx_link_changed(struct bdx_priv *priv)
 202{
 203	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 204
 205	if (!link) {
 206		if (netif_carrier_ok(priv->ndev)) {
 207			netif_stop_queue(priv->ndev);
 208			netif_carrier_off(priv->ndev);
 209			netdev_err(priv->ndev, "Link Down\n");
 210		}
 211	} else {
 212		if (!netif_carrier_ok(priv->ndev)) {
 213			netif_wake_queue(priv->ndev);
 214			netif_carrier_on(priv->ndev);
 215			netdev_err(priv->ndev, "Link Up\n");
 216		}
 217	}
 218}
 219
 220static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 221{
 222	if (isr & IR_RX_FREE_0) {
 223		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 224		DBG("RX_FREE_0\n");
 225	}
 226
 227	if (isr & IR_LNKCHG0)
 228		bdx_link_changed(priv);
 229
 230	if (isr & IR_PCIE_LINK)
 231		netdev_err(priv->ndev, "PCI-E Link Fault\n");
 232
 233	if (isr & IR_PCIE_TOUT)
 234		netdev_err(priv->ndev, "PCI-E Time Out\n");
 235
 236}
 237
 238/**
 239 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 240 * @irq: interrupt number
 241 * @dev: network device
 242 *
 243 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 244 *
 245 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 246 * Reasons of interest are:
 247 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 248 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 249 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 250 */
 251
 252static irqreturn_t bdx_isr_napi(int irq, void *dev)
 253{
 254	struct net_device *ndev = dev;
 255	struct bdx_priv *priv = netdev_priv(ndev);
 256	u32 isr;
 257
 258	ENTER;
 259	isr = (READ_REG(priv, regISR) & IR_RUN);
 260	if (unlikely(!isr)) {
 261		bdx_enable_interrupts(priv);
 262		return IRQ_NONE;	/* Not our interrupt */
 263	}
 264
 265	if (isr & IR_EXTRA)
 266		bdx_isr_extra(priv, isr);
 267
 268	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 269		if (likely(napi_schedule_prep(&priv->napi))) {
 270			__napi_schedule(&priv->napi);
 271			RET(IRQ_HANDLED);
 272		} else {
 273			/* NOTE: we get here if intr has slipped into window
 274			 * between these lines in bdx_poll:
 275			 *    bdx_enable_interrupts(priv);
 276			 *    return 0;
 277			 * currently intrs are disabled (since we read ISR),
 278			 * and we have failed to register next poll.
 279			 * so we read the regs to trigger chip
 280			 * and allow further interupts. */
 281			READ_REG(priv, regTXF_WPTR_0);
 282			READ_REG(priv, regRXD_WPTR_0);
 283		}
 284	}
 285
 286	bdx_enable_interrupts(priv);
 287	RET(IRQ_HANDLED);
 288}
 289
 290static int bdx_poll(struct napi_struct *napi, int budget)
 291{
 292	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 293	int work_done;
 294
 295	ENTER;
 296	bdx_tx_cleanup(priv);
 297	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 298	if ((work_done < budget) ||
 299	    (priv->napi_stop++ >= 30)) {
 300		DBG("rx poll is done. backing to isr-driven\n");
 301
 302		/* from time to time we exit to let NAPI layer release
 303		 * device lock and allow waiting tasks (eg rmmod) to advance) */
 304		priv->napi_stop = 0;
 305
 306		napi_complete_done(napi, work_done);
 307		bdx_enable_interrupts(priv);
 308	}
 309	return work_done;
 310}
 311
 312/**
 313 * bdx_fw_load - loads firmware to NIC
 314 * @priv: NIC private structure
 315 *
 316 * Firmware is loaded via TXD fifo, so it must be initialized first.
 317 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 318 * can have few of them). So all drivers use semaphore register to choose one
 319 * that will actually load FW to NIC.
 320 */
 321
 322static int bdx_fw_load(struct bdx_priv *priv)
 323{
 324	const struct firmware *fw = NULL;
 325	int master, i;
 326	int rc;
 327
 328	ENTER;
 329	master = READ_REG(priv, regINIT_SEMAPHORE);
 330	if (!READ_REG(priv, regINIT_STATUS) && master) {
 331		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 332		if (rc)
 333			goto out;
 334		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 335		mdelay(100);
 336	}
 337	for (i = 0; i < 200; i++) {
 338		if (READ_REG(priv, regINIT_STATUS)) {
 339			rc = 0;
 340			goto out;
 341		}
 342		mdelay(2);
 343	}
 344	rc = -EIO;
 345out:
 346	if (master)
 347		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 348
 349	release_firmware(fw);
 350
 351	if (rc) {
 352		netdev_err(priv->ndev, "firmware loading failed\n");
 353		if (rc == -EIO)
 354			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 355			    READ_REG(priv, regVPC),
 356			    READ_REG(priv, regVIC),
 357			    READ_REG(priv, regINIT_STATUS), i);
 358		RET(rc);
 359	} else {
 360		DBG("%s: firmware loading success\n", priv->ndev->name);
 361		RET(0);
 362	}
 363}
 364
 365static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 366{
 367	u32 val;
 368
 369	ENTER;
 370	DBG("mac0=%x mac1=%x mac2=%x\n",
 371	    READ_REG(priv, regUNC_MAC0_A),
 372	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 373
 374	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 375	WRITE_REG(priv, regUNC_MAC2_A, val);
 376	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 377	WRITE_REG(priv, regUNC_MAC1_A, val);
 378	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 379	WRITE_REG(priv, regUNC_MAC0_A, val);
 380
 381	DBG("mac0=%x mac1=%x mac2=%x\n",
 382	    READ_REG(priv, regUNC_MAC0_A),
 383	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 384	RET();
 385}
 386
 387/**
 388 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 389 * @priv: NIC private structure
 390 */
 391static int bdx_hw_start(struct bdx_priv *priv)
 392{
 393	int rc = -EIO;
 394	struct net_device *ndev = priv->ndev;
 395
 396	ENTER;
 397	bdx_link_changed(priv);
 398
 399	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 400	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 401	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 402	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 403	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 404	WRITE_REG(priv, regRX_FULLNESS, 0);
 405	WRITE_REG(priv, regTX_FULLNESS, 0);
 406	WRITE_REG(priv, regCTRLST,
 407		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 408
 409	WRITE_REG(priv, regVGLB, 0);
 410	WRITE_REG(priv, regMAX_FRAME_A,
 411		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 412
 413	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
 414	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 415	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
 416
 417	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
 418	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
 419
 420	/* Enable timer interrupt once in 2 secs. */
 421	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 422	bdx_restore_mac(priv->ndev, priv);
 423
 424	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 425		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 426
 427#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 428
 429	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 430			 ndev->name, ndev);
 431	if (rc)
 432		goto err_irq;
 433	bdx_enable_interrupts(priv);
 434
 435	RET(0);
 436
 437err_irq:
 438	RET(rc);
 439}
 440
 441static void bdx_hw_stop(struct bdx_priv *priv)
 442{
 443	ENTER;
 444	bdx_disable_interrupts(priv);
 445	free_irq(priv->pdev->irq, priv->ndev);
 446
 447	netif_carrier_off(priv->ndev);
 448	netif_stop_queue(priv->ndev);
 449
 450	RET();
 451}
 452
 453static int bdx_hw_reset_direct(void __iomem *regs)
 454{
 455	u32 val, i;
 456	ENTER;
 457
 458	/* reset sequences: read, write 1, read, write 0 */
 459	val = readl(regs + regCLKPLL);
 460	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 461	udelay(50);
 462	val = readl(regs + regCLKPLL);
 463	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 464
 465	/* check that the PLLs are locked and reset ended */
 466	for (i = 0; i < 70; i++, mdelay(10))
 467		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 468			/* do any PCI-E read transaction */
 469			readl(regs + regRXD_CFG0_0);
 470			return 0;
 471		}
 472	pr_err("HW reset failed\n");
 473	return 1;		/* failure */
 474}
 475
 476static int bdx_hw_reset(struct bdx_priv *priv)
 477{
 478	u32 val, i;
 479	ENTER;
 480
 481	if (priv->port == 0) {
 482		/* reset sequences: read, write 1, read, write 0 */
 483		val = READ_REG(priv, regCLKPLL);
 484		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 485		udelay(50);
 486		val = READ_REG(priv, regCLKPLL);
 487		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 488	}
 489	/* check that the PLLs are locked and reset ended */
 490	for (i = 0; i < 70; i++, mdelay(10))
 491		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 492			/* do any PCI-E read transaction */
 493			READ_REG(priv, regRXD_CFG0_0);
 494			return 0;
 495		}
 496	pr_err("HW reset failed\n");
 497	return 1;		/* failure */
 498}
 499
 500static int bdx_sw_reset(struct bdx_priv *priv)
 501{
 502	int i;
 503
 504	ENTER;
 505	/* 1. load MAC (obsolete) */
 506	/* 2. disable Rx (and Tx) */
 507	WRITE_REG(priv, regGMAC_RXF_A, 0);
 508	mdelay(100);
 509	/* 3. disable port */
 510	WRITE_REG(priv, regDIS_PORT, 1);
 511	/* 4. disable queue */
 512	WRITE_REG(priv, regDIS_QU, 1);
 513	/* 5. wait until hw is disabled */
 514	for (i = 0; i < 50; i++) {
 515		if (READ_REG(priv, regRST_PORT) & 1)
 516			break;
 517		mdelay(10);
 518	}
 519	if (i == 50)
 520		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 521
 522	/* 6. disable intrs */
 523	WRITE_REG(priv, regRDINTCM0, 0);
 524	WRITE_REG(priv, regTDINTCM0, 0);
 525	WRITE_REG(priv, regIMR, 0);
 526	READ_REG(priv, regISR);
 527
 528	/* 7. reset queue */
 529	WRITE_REG(priv, regRST_QU, 1);
 530	/* 8. reset port */
 531	WRITE_REG(priv, regRST_PORT, 1);
 532	/* 9. zero all read and write pointers */
 533	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 534		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 535	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 536		WRITE_REG(priv, i, 0);
 537	/* 10. unseet port disable */
 538	WRITE_REG(priv, regDIS_PORT, 0);
 539	/* 11. unset queue disable */
 540	WRITE_REG(priv, regDIS_QU, 0);
 541	/* 12. unset queue reset */
 542	WRITE_REG(priv, regRST_QU, 0);
 543	/* 13. unset port reset */
 544	WRITE_REG(priv, regRST_PORT, 0);
 545	/* 14. enable Rx */
 546	/* skiped. will be done later */
 547	/* 15. save MAC (obsolete) */
 548	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 549		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 550
 551	RET(0);
 552}
 553
 554/* bdx_reset - performs right type of reset depending on hw type */
 555static int bdx_reset(struct bdx_priv *priv)
 556{
 557	ENTER;
 558	RET((priv->pdev->device == 0x3009)
 559	    ? bdx_hw_reset(priv)
 560	    : bdx_sw_reset(priv));
 561}
 562
 563/**
 564 * bdx_close - Disables a network interface
 565 * @netdev: network interface device structure
 566 *
 567 * Returns 0, this is not allowed to fail
 568 *
 569 * The close entry point is called when an interface is de-activated
 570 * by the OS.  The hardware is still under the drivers control, but
 571 * needs to be disabled.  A global MAC reset is issued to stop the
 572 * hardware, and all transmit and receive resources are freed.
 573 **/
 574static int bdx_close(struct net_device *ndev)
 575{
 576	struct bdx_priv *priv = NULL;
 577
 578	ENTER;
 579	priv = netdev_priv(ndev);
 580
 581	napi_disable(&priv->napi);
 582
 583	bdx_reset(priv);
 584	bdx_hw_stop(priv);
 585	bdx_rx_free(priv);
 586	bdx_tx_free(priv);
 587	RET(0);
 588}
 589
 590/**
 591 * bdx_open - Called when a network interface is made active
 592 * @netdev: network interface device structure
 593 *
 594 * Returns 0 on success, negative value on failure
 595 *
 596 * The open entry point is called when a network interface is made
 597 * active by the system (IFF_UP).  At this point all resources needed
 598 * for transmit and receive operations are allocated, the interrupt
 599 * handler is registered with the OS, the watchdog timer is started,
 600 * and the stack is notified that the interface is ready.
 601 **/
 602static int bdx_open(struct net_device *ndev)
 603{
 604	struct bdx_priv *priv;
 605	int rc;
 606
 607	ENTER;
 608	priv = netdev_priv(ndev);
 609	bdx_reset(priv);
 610	if (netif_running(ndev))
 611		netif_stop_queue(priv->ndev);
 612
 613	if ((rc = bdx_tx_init(priv)) ||
 614	    (rc = bdx_rx_init(priv)) ||
 615	    (rc = bdx_fw_load(priv)))
 616		goto err;
 617
 618	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 619
 620	rc = bdx_hw_start(priv);
 621	if (rc)
 622		goto err;
 623
 624	napi_enable(&priv->napi);
 625
 626	print_fw_id(priv->nic);
 627
 628	RET(0);
 629
 630err:
 631	bdx_close(ndev);
 632	RET(rc);
 633}
 634
 635static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 636{
 637	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 638		-EINVAL : 0;
 639}
 640
 641static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 642{
 643	struct bdx_priv *priv = netdev_priv(ndev);
 644	u32 data[3];
 645	int error;
 646
 647	ENTER;
 648
 649	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 650	if (cmd != SIOCDEVPRIVATE) {
 651		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 652		if (error) {
 653			pr_err("can't copy from user\n");
 654			RET(-EFAULT);
 655		}
 656		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 657	} else {
 658		return -EOPNOTSUPP;
 659	}
 660
 661	if (!capable(CAP_SYS_RAWIO))
 662		return -EPERM;
 663
 664	switch (data[0]) {
 665
 666	case BDX_OP_READ:
 667		error = bdx_range_check(priv, data[1]);
 668		if (error < 0)
 669			return error;
 670		data[2] = READ_REG(priv, data[1]);
 671		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 672		    data[2]);
 673		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 674		if (error)
 675			RET(-EFAULT);
 676		break;
 677
 678	case BDX_OP_WRITE:
 679		error = bdx_range_check(priv, data[1]);
 680		if (error < 0)
 681			return error;
 682		WRITE_REG(priv, data[1], data[2]);
 683		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 684		break;
 685
 686	default:
 687		RET(-EOPNOTSUPP);
 688	}
 689	return 0;
 690}
 691
 692static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 693{
 694	ENTER;
 695	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 696		RET(bdx_ioctl_priv(ndev, ifr, cmd));
 697	else
 698		RET(-EOPNOTSUPP);
 699}
 700
 701/**
 702 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 703 * @ndev: network device
 704 * @vid:  VLAN vid
 705 * @op:   add or kill operation
 706 *
 707 * Passes VLAN filter table to hardware
 708 */
 709static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 710{
 711	struct bdx_priv *priv = netdev_priv(ndev);
 712	u32 reg, bit, val;
 713
 714	ENTER;
 715	DBG2("vid=%d value=%d\n", (int)vid, enable);
 716	if (unlikely(vid >= 4096)) {
 717		pr_err("invalid VID: %u (> 4096)\n", vid);
 718		RET();
 719	}
 720	reg = regVLAN_0 + (vid / 32) * 4;
 721	bit = 1 << vid % 32;
 722	val = READ_REG(priv, reg);
 723	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 724	if (enable)
 725		val |= bit;
 726	else
 727		val &= ~bit;
 728	DBG2("new val %x\n", val);
 729	WRITE_REG(priv, reg, val);
 730	RET();
 731}
 732
 733/**
 734 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 735 * @ndev: network device
 736 * @vid:  VLAN vid to add
 737 */
 738static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 739{
 740	__bdx_vlan_rx_vid(ndev, vid, 1);
 741	return 0;
 742}
 743
 744/**
 745 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 746 * @ndev: network device
 747 * @vid:  VLAN vid to kill
 748 */
 749static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 750{
 751	__bdx_vlan_rx_vid(ndev, vid, 0);
 752	return 0;
 753}
 754
 755/**
 756 * bdx_change_mtu - Change the Maximum Transfer Unit
 757 * @netdev: network interface device structure
 758 * @new_mtu: new value for maximum frame size
 759 *
 760 * Returns 0 on success, negative on failure
 761 */
 762static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 763{
 764	ENTER;
 765
 766	ndev->mtu = new_mtu;
 767	if (netif_running(ndev)) {
 768		bdx_close(ndev);
 769		bdx_open(ndev);
 770	}
 771	RET(0);
 772}
 773
 774static void bdx_setmulti(struct net_device *ndev)
 775{
 776	struct bdx_priv *priv = netdev_priv(ndev);
 777
 778	u32 rxf_val =
 779	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 780	int i;
 781
 782	ENTER;
 783	/* IMF - imperfect (hash) rx multicat filter */
 784	/* PMF - perfect rx multicat filter */
 785
 786	/* FIXME: RXE(OFF) */
 787	if (ndev->flags & IFF_PROMISC) {
 788		rxf_val |= GMAC_RX_FILTER_PRM;
 789	} else if (ndev->flags & IFF_ALLMULTI) {
 790		/* set IMF to accept all multicast frmaes */
 791		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 792			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 793	} else if (!netdev_mc_empty(ndev)) {
 794		u8 hash;
 795		struct netdev_hw_addr *ha;
 796		u32 reg, val;
 797
 798		/* set IMF to deny all multicast frames */
 799		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 800			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 801		/* set PMF to deny all multicast frames */
 802		for (i = 0; i < MAC_MCST_NUM; i++) {
 803			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 804			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 805		}
 806
 807		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
 808		/* TBD: sort addresses and write them in ascending order
 809		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 810		 * multicast frames throu IMF */
 811		/* accept the rest of addresses throu IMF */
 812		netdev_for_each_mc_addr(ha, ndev) {
 813			hash = 0;
 814			for (i = 0; i < ETH_ALEN; i++)
 815				hash ^= ha->addr[i];
 816			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 817			val = READ_REG(priv, reg);
 818			val |= (1 << (hash % 32));
 819			WRITE_REG(priv, reg, val);
 820		}
 821
 822	} else {
 823		DBG("only own mac %d\n", netdev_mc_count(ndev));
 824		rxf_val |= GMAC_RX_FILTER_AB;
 825	}
 826	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 827	/* enable RX */
 828	/* FIXME: RXE(ON) */
 829	RET();
 830}
 831
 832static int bdx_set_mac(struct net_device *ndev, void *p)
 833{
 834	struct bdx_priv *priv = netdev_priv(ndev);
 835	struct sockaddr *addr = p;
 836
 837	ENTER;
 838	/*
 839	   if (netif_running(dev))
 840	   return -EBUSY
 841	 */
 842	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 843	bdx_restore_mac(ndev, priv);
 844	RET(0);
 845}
 846
 847static int bdx_read_mac(struct bdx_priv *priv)
 848{
 849	u16 macAddress[3], i;
 850	ENTER;
 851
 852	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 853	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 854	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 855	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 856	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 857	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 858	for (i = 0; i < 3; i++) {
 859		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 860		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 861	}
 862	RET(0);
 863}
 864
 865static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 866{
 867	u64 val;
 868
 869	val = READ_REG(priv, reg);
 870	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 871	return val;
 872}
 873
 874/*Do the statistics-update work*/
 875static void bdx_update_stats(struct bdx_priv *priv)
 876{
 877	struct bdx_stats *stats = &priv->hw_stats;
 878	u64 *stats_vector = (u64 *) stats;
 879	int i;
 880	int addr;
 881
 882	/*Fill HW structure */
 883	addr = 0x7200;
 884	/*First 12 statistics - 0x7200 - 0x72B0 */
 885	for (i = 0; i < 12; i++) {
 886		stats_vector[i] = bdx_read_l2stat(priv, addr);
 887		addr += 0x10;
 888	}
 889	BDX_ASSERT(addr != 0x72C0);
 890	/* 0x72C0-0x72E0 RSRV */
 891	addr = 0x72F0;
 892	for (; i < 16; i++) {
 893		stats_vector[i] = bdx_read_l2stat(priv, addr);
 894		addr += 0x10;
 895	}
 896	BDX_ASSERT(addr != 0x7330);
 897	/* 0x7330-0x7360 RSRV */
 898	addr = 0x7370;
 899	for (; i < 19; i++) {
 900		stats_vector[i] = bdx_read_l2stat(priv, addr);
 901		addr += 0x10;
 902	}
 903	BDX_ASSERT(addr != 0x73A0);
 904	/* 0x73A0-0x73B0 RSRV */
 905	addr = 0x73C0;
 906	for (; i < 23; i++) {
 907		stats_vector[i] = bdx_read_l2stat(priv, addr);
 908		addr += 0x10;
 909	}
 910	BDX_ASSERT(addr != 0x7400);
 911	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 912}
 913
 914static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 915		       u16 rxd_vlan);
 916static void print_rxfd(struct rxf_desc *rxfd);
 917
 918/*************************************************************************
 919 *     Rx DB                                                             *
 920 *************************************************************************/
 921
 922static void bdx_rxdb_destroy(struct rxdb *db)
 923{
 924	vfree(db);
 925}
 926
 927static struct rxdb *bdx_rxdb_create(int nelem)
 928{
 929	struct rxdb *db;
 930	int i;
 931
 932	db = vmalloc(sizeof(struct rxdb)
 933		     + (nelem * sizeof(int))
 934		     + (nelem * sizeof(struct rx_map)));
 935	if (likely(db != NULL)) {
 936		db->stack = (int *)(db + 1);
 937		db->elems = (void *)(db->stack + nelem);
 938		db->nelem = nelem;
 939		db->top = nelem;
 940		for (i = 0; i < nelem; i++)
 941			db->stack[i] = nelem - i - 1;	/* to make first allocs
 942							   close to db struct*/
 943	}
 944
 945	return db;
 946}
 947
 948static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 949{
 950	BDX_ASSERT(db->top <= 0);
 951	return db->stack[--(db->top)];
 952}
 953
 954static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 955{
 956	BDX_ASSERT((n < 0) || (n >= db->nelem));
 957	return db->elems + n;
 958}
 959
 960static inline int bdx_rxdb_available(struct rxdb *db)
 961{
 962	return db->top;
 963}
 964
 965static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 966{
 967	BDX_ASSERT((n >= db->nelem) || (n < 0));
 968	db->stack[(db->top)++] = n;
 969}
 970
 971/*************************************************************************
 972 *     Rx Init                                                           *
 973 *************************************************************************/
 974
 975/**
 976 * bdx_rx_init - initialize RX all related HW and SW resources
 977 * @priv: NIC private structure
 978 *
 979 * Returns 0 on success, negative value on failure
 980 *
 981 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 982 * skb for rx. It assumes that Rx is desabled in HW
 983 * funcs are grouped for better cache usage
 984 *
 985 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 986 * filled and packets will be dropped by nic without getting into host or
 987 * cousing interrupt. Anyway, in that condition, host has no chance to process
 988 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 989 */
 990
 991/* TBD: ensure proper packet size */
 992
 993static int bdx_rx_init(struct bdx_priv *priv)
 994{
 995	ENTER;
 996
 997	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 998			  regRXD_CFG0_0, regRXD_CFG1_0,
 999			  regRXD_RPTR_0, regRXD_WPTR_0))
1000		goto err_mem;
1001	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1002			  regRXF_CFG0_0, regRXF_CFG1_0,
1003			  regRXF_RPTR_0, regRXF_WPTR_0))
1004		goto err_mem;
1005	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1006				     sizeof(struct rxf_desc));
1007	if (!priv->rxdb)
1008		goto err_mem;
1009
1010	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1011	return 0;
1012
1013err_mem:
1014	netdev_err(priv->ndev, "Rx init failed\n");
1015	return -ENOMEM;
1016}
1017
1018/**
1019 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1020 * @priv: NIC private structure
1021 * @f: RXF fifo
1022 */
1023static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1024{
1025	struct rx_map *dm;
1026	struct rxdb *db = priv->rxdb;
1027	u16 i;
1028
1029	ENTER;
1030	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1031	    db->nelem - bdx_rxdb_available(db));
1032	while (bdx_rxdb_available(db) > 0) {
1033		i = bdx_rxdb_alloc_elem(db);
1034		dm = bdx_rxdb_addr_elem(db, i);
1035		dm->dma = 0;
1036	}
1037	for (i = 0; i < db->nelem; i++) {
1038		dm = bdx_rxdb_addr_elem(db, i);
1039		if (dm->dma) {
1040			pci_unmap_single(priv->pdev,
1041					 dm->dma, f->m.pktsz,
1042					 PCI_DMA_FROMDEVICE);
1043			dev_kfree_skb(dm->skb);
1044		}
1045	}
1046}
1047
1048/**
1049 * bdx_rx_free - release all Rx resources
1050 * @priv: NIC private structure
1051 *
1052 * It assumes that Rx is desabled in HW
1053 */
1054static void bdx_rx_free(struct bdx_priv *priv)
1055{
1056	ENTER;
1057	if (priv->rxdb) {
1058		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1059		bdx_rxdb_destroy(priv->rxdb);
1060		priv->rxdb = NULL;
1061	}
1062	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1063	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1064
1065	RET();
1066}
1067
1068/*************************************************************************
1069 *     Rx Engine                                                         *
1070 *************************************************************************/
1071
1072/**
1073 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1074 * @priv: nic's private structure
1075 * @f: RXF fifo that needs skbs
1076 *
1077 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1078 * skb's virtual and physical addresses are stored in skb db.
1079 * To calculate free space, func uses cached values of RPTR and WPTR
1080 * When needed, it also updates RPTR and WPTR.
1081 */
1082
1083/* TBD: do not update WPTR if no desc were written */
1084
1085static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1086{
1087	struct sk_buff *skb;
1088	struct rxf_desc *rxfd;
1089	struct rx_map *dm;
1090	int dno, delta, idx;
1091	struct rxdb *db = priv->rxdb;
1092
1093	ENTER;
1094	dno = bdx_rxdb_available(db) - 1;
1095	while (dno > 0) {
1096		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1097		if (!skb)
1098			break;
1099
1100		skb_reserve(skb, NET_IP_ALIGN);
1101
1102		idx = bdx_rxdb_alloc_elem(db);
1103		dm = bdx_rxdb_addr_elem(db, idx);
1104		dm->dma = pci_map_single(priv->pdev,
1105					 skb->data, f->m.pktsz,
1106					 PCI_DMA_FROMDEVICE);
1107		dm->skb = skb;
1108		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1109		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1110		rxfd->va_lo = idx;
1111		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1112		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1113		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1114		print_rxfd(rxfd);
1115
1116		f->m.wptr += sizeof(struct rxf_desc);
1117		delta = f->m.wptr - f->m.memsz;
1118		if (unlikely(delta >= 0)) {
1119			f->m.wptr = delta;
1120			if (delta > 0) {
1121				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1122				DBG("wrapped descriptor\n");
1123			}
1124		}
1125		dno--;
1126	}
1127	/*TBD: to do - delayed rxf wptr like in txd */
1128	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1129	RET();
1130}
1131
1132static inline void
1133NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1134	     struct sk_buff *skb)
1135{
1136	ENTER;
1137	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1138	if (GET_RXD_VTAG(rxd_val1)) {
1139		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1140		    priv->ndev->name,
1141		    GET_RXD_VLAN_ID(rxd_vlan),
1142		    GET_RXD_VTAG(rxd_val1));
1143		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1144	}
1145	netif_receive_skb(skb);
1146}
1147
1148static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1149{
1150	struct rxf_desc *rxfd;
1151	struct rx_map *dm;
1152	struct rxf_fifo *f;
1153	struct rxdb *db;
1154	struct sk_buff *skb;
1155	int delta;
1156
1157	ENTER;
1158	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1159	f = &priv->rxf_fifo0;
1160	db = priv->rxdb;
1161	DBG("db=%p f=%p\n", db, f);
1162	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1163	DBG("dm=%p\n", dm);
1164	skb = dm->skb;
1165	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1166	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1167	rxfd->va_lo = rxdd->va_lo;
1168	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1169	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1170	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1171	print_rxfd(rxfd);
1172
1173	f->m.wptr += sizeof(struct rxf_desc);
1174	delta = f->m.wptr - f->m.memsz;
1175	if (unlikely(delta >= 0)) {
1176		f->m.wptr = delta;
1177		if (delta > 0) {
1178			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1179			DBG("wrapped descriptor\n");
1180		}
1181	}
1182	RET();
1183}
1184
1185/**
1186 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1187 * NOTE: a special treatment is given to non-continuous descriptors
1188 * that start near the end, wraps around and continue at the beginning. a second
1189 * part is copied right after the first, and then descriptor is interpreted as
1190 * normal. fifo has an extra space to allow such operations
1191 * @priv: nic's private structure
1192 * @f: RXF fifo that needs skbs
1193 * @budget: maximum number of packets to receive
1194 */
1195
1196/* TBD: replace memcpy func call by explicite inline asm */
1197
1198static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1199{
1200	struct net_device *ndev = priv->ndev;
1201	struct sk_buff *skb, *skb2;
1202	struct rxd_desc *rxdd;
1203	struct rx_map *dm;
1204	struct rxf_fifo *rxf_fifo;
1205	int tmp_len, size;
1206	int done = 0;
1207	int max_done = BDX_MAX_RX_DONE;
1208	struct rxdb *db = NULL;
1209	/* Unmarshalled descriptor - copy of descriptor in host order */
1210	u32 rxd_val1;
1211	u16 len;
1212	u16 rxd_vlan;
1213
1214	ENTER;
1215	max_done = budget;
1216
1217	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1218
1219	size = f->m.wptr - f->m.rptr;
1220	if (size < 0)
1221		size = f->m.memsz + size;	/* size is negative :-) */
1222
1223	while (size > 0) {
1224
1225		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1226		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1227
1228		len = CPU_CHIP_SWAP16(rxdd->len);
1229
1230		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1231
1232		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1233
1234		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1235		BDX_ASSERT(tmp_len <= 0);
1236		size -= tmp_len;
1237		if (size < 0)	/* test for partially arrived descriptor */
1238			break;
1239
1240		f->m.rptr += tmp_len;
1241
1242		tmp_len = f->m.rptr - f->m.memsz;
1243		if (unlikely(tmp_len >= 0)) {
1244			f->m.rptr = tmp_len;
1245			if (tmp_len > 0) {
1246				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1247				    f->m.rptr, tmp_len);
1248				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1249			}
1250		}
1251
1252		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1253			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1254			ndev->stats.rx_errors++;
1255			bdx_recycle_skb(priv, rxdd);
1256			continue;
1257		}
1258
1259		rxf_fifo = &priv->rxf_fifo0;
1260		db = priv->rxdb;
1261		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1262		skb = dm->skb;
1263
1264		if (len < BDX_COPYBREAK &&
1265		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1266			skb_reserve(skb2, NET_IP_ALIGN);
1267			/*skb_put(skb2, len); */
1268			pci_dma_sync_single_for_cpu(priv->pdev,
1269						    dm->dma, rxf_fifo->m.pktsz,
1270						    PCI_DMA_FROMDEVICE);
1271			memcpy(skb2->data, skb->data, len);
1272			bdx_recycle_skb(priv, rxdd);
1273			skb = skb2;
1274		} else {
1275			pci_unmap_single(priv->pdev,
1276					 dm->dma, rxf_fifo->m.pktsz,
1277					 PCI_DMA_FROMDEVICE);
1278			bdx_rxdb_free_elem(db, rxdd->va_lo);
1279		}
1280
1281		ndev->stats.rx_bytes += len;
1282
1283		skb_put(skb, len);
1284		skb->protocol = eth_type_trans(skb, ndev);
1285
1286		/* Non-IP packets aren't checksum-offloaded */
1287		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1288			skb_checksum_none_assert(skb);
1289		else
1290			skb->ip_summed = CHECKSUM_UNNECESSARY;
1291
1292		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1293
1294		if (++done >= max_done)
1295			break;
1296	}
1297
1298	ndev->stats.rx_packets += done;
1299
1300	/* FIXME: do smth to minimize pci accesses    */
1301	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1302
1303	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1304
1305	RET(done);
1306}
1307
1308/*************************************************************************
1309 * Debug / Temprorary Code                                               *
1310 *************************************************************************/
1311static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1312		       u16 rxd_vlan)
1313{
1314	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1315	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1316	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1317	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1318	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1319	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1320	    rxdd->va_hi);
1321}
1322
1323static void print_rxfd(struct rxf_desc *rxfd)
1324{
1325	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1326	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1327	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1328}
1329
1330/*
1331 * TX HW/SW interaction overview
1332 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1333 * There are 2 types of TX communication channels between driver and NIC.
1334 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1335 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1336 *
1337 * Currently NIC supports TSO, checksuming and gather DMA
1338 * UFO and IP fragmentation is on the way
1339 *
1340 * RX SW Data Structures
1341 * ~~~~~~~~~~~~~~~~~~~~~
1342 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1343 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1344 * acknowledges sent by TXF descriptors.
1345 * Implemented as cyclic buffer.
1346 * fifo - keeps info about fifo's size and location, relevant HW registers,
1347 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1348 * Implemented as simple struct.
1349 *
1350 * TX SW Execution Flow
1351 * ~~~~~~~~~~~~~~~~~~~~
1352 * OS calls driver's hard_xmit method with packet to sent.
1353 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1354 * by updating TXD WPTR.
1355 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1356 * To prevent TXD fifo overflow without reading HW registers every time,
1357 * SW deploys "tx level" technique.
1358 * Upon strart up, tx level is initialized to TXD fifo length.
1359 * For every sent packet, SW gets its TXD descriptor sizei
1360 * (from precalculated array) and substructs it from tx level.
1361 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1362 * original TXD descriptor from txdb and adds it to tx level.
1363 * When Tx level drops under some predefined treshhold, the driver
1364 * stops the TX queue. When TX level rises above that level,
1365 * the tx queue is enabled again.
1366 *
1367 * This technique avoids eccessive reading of RPTR and WPTR registers.
1368 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1369 */
1370
1371/*************************************************************************
1372 *     Tx DB                                                             *
1373 *************************************************************************/
1374static inline int bdx_tx_db_size(struct txdb *db)
1375{
1376	int taken = db->wptr - db->rptr;
1377	if (taken < 0)
1378		taken = db->size + 1 + taken;	/* (size + 1) equals memsz */
1379
1380	return db->size - taken;
1381}
1382
1383/**
1384 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1385 * @db: tx data base
1386 * @pptr: read or write pointer
1387 */
1388static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1389{
1390	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1391
1392	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1393		   *pptr != db->wptr);	/* or write pointer */
1394
1395	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1396		   *pptr >= db->end);	/* in range */
1397
1398	++*pptr;
1399	if (unlikely(*pptr == db->end))
1400		*pptr = db->start;
1401}
1402
1403/**
1404 * bdx_tx_db_inc_rptr - increment read pointer
1405 * @db: tx data base
1406 */
1407static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1408{
1409	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1410	__bdx_tx_db_ptr_next(db, &db->rptr);
1411}
1412
1413/**
1414 * bdx_tx_db_inc_wptr - increment write pointer
1415 * @db: tx data base
1416 */
1417static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1418{
1419	__bdx_tx_db_ptr_next(db, &db->wptr);
1420	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1421						   a result of write */
1422}
1423
1424/**
1425 * bdx_tx_db_init - creates and initializes tx db
1426 * @d: tx data base
1427 * @sz_type: size of tx fifo
1428 *
1429 * Returns 0 on success, error code otherwise
1430 */
1431static int bdx_tx_db_init(struct txdb *d, int sz_type)
1432{
1433	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1434
1435	d->start = vmalloc(memsz);
1436	if (!d->start)
1437		return -ENOMEM;
1438
1439	/*
1440	 * In order to differentiate between db is empty and db is full
1441	 * states at least one element should always be empty in order to
1442	 * avoid rptr == wptr which means db is empty
1443	 */
1444	d->size = memsz / sizeof(struct tx_map) - 1;
1445	d->end = d->start + d->size + 1;	/* just after last element */
1446
1447	/* all dbs are created equally empty */
1448	d->rptr = d->start;
1449	d->wptr = d->start;
1450
1451	return 0;
1452}
1453
1454/**
1455 * bdx_tx_db_close - closes tx db and frees all memory
1456 * @d: tx data base
1457 */
1458static void bdx_tx_db_close(struct txdb *d)
1459{
1460	BDX_ASSERT(d == NULL);
1461
1462	vfree(d->start);
1463	d->start = NULL;
1464}
1465
1466/*************************************************************************
1467 *     Tx Engine                                                         *
1468 *************************************************************************/
1469
1470/* sizes of tx desc (including padding if needed) as function
1471 * of skb's frag number */
1472static struct {
1473	u16 bytes;
1474	u16 qwords;		/* qword = 64 bit */
1475} txd_sizes[MAX_SKB_FRAGS + 1];
1476
1477/**
1478 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1479 * @priv: NIC private structure
1480 * @skb: socket buffer to map
1481 * @txdd: TX descriptor to use
1482 *
1483 * It makes dma mappings for skb's data blocks and writes them to PBL of
1484 * new tx descriptor. It also stores them in the tx db, so they could be
1485 * unmaped after data was sent. It is reponsibility of a caller to make
1486 * sure that there is enough space in the tx db. Last element holds pointer
1487 * to skb itself and marked with zero length
1488 */
1489static inline void
1490bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1491	       struct txd_desc *txdd)
1492{
1493	struct txdb *db = &priv->txdb;
1494	struct pbl *pbl = &txdd->pbl[0];
1495	int nr_frags = skb_shinfo(skb)->nr_frags;
1496	int i;
1497
1498	db->wptr->len = skb_headlen(skb);
1499	db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1500					    db->wptr->len, PCI_DMA_TODEVICE);
1501	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1502	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1503	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1504	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1505	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1506	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1507	bdx_tx_db_inc_wptr(db);
1508
1509	for (i = 0; i < nr_frags; i++) {
1510		const struct skb_frag_struct *frag;
1511
1512		frag = &skb_shinfo(skb)->frags[i];
1513		db->wptr->len = skb_frag_size(frag);
1514		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1515						      0, skb_frag_size(frag),
1516						      DMA_TO_DEVICE);
1517
1518		pbl++;
1519		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1520		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1521		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1522		bdx_tx_db_inc_wptr(db);
1523	}
1524
1525	/* add skb clean up info. */
1526	db->wptr->len = -txd_sizes[nr_frags].bytes;
1527	db->wptr->addr.skb = skb;
1528	bdx_tx_db_inc_wptr(db);
1529}
1530
1531/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1532 * number of frags is used as index to fetch correct descriptors size,
1533 * instead of calculating it each time */
1534static void __init init_txd_sizes(void)
1535{
1536	int i, lwords;
1537
1538	/* 7 - is number of lwords in txd with one phys buffer
1539	 * 3 - is number of lwords used for every additional phys buffer */
1540	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1541		lwords = 7 + (i * 3);
1542		if (lwords & 1)
1543			lwords++;	/* pad it with 1 lword */
1544		txd_sizes[i].qwords = lwords >> 1;
1545		txd_sizes[i].bytes = lwords << 2;
1546	}
1547}
1548
1549/* bdx_tx_init - initialize all Tx related stuff.
1550 * Namely, TXD and TXF fifos, database etc */
1551static int bdx_tx_init(struct bdx_priv *priv)
1552{
1553	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1554			  regTXD_CFG0_0,
1555			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1556		goto err_mem;
1557	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1558			  regTXF_CFG0_0,
1559			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1560		goto err_mem;
1561
1562	/* The TX db has to keep mappings for all packets sent (on TxD)
1563	 * and not yet reclaimed (on TxF) */
1564	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1565		goto err_mem;
1566
1567	priv->tx_level = BDX_MAX_TX_LEVEL;
1568#ifdef BDX_DELAY_WPTR
1569	priv->tx_update_mark = priv->tx_level - 1024;
1570#endif
1571	return 0;
1572
1573err_mem:
1574	netdev_err(priv->ndev, "Tx init failed\n");
1575	return -ENOMEM;
1576}
1577
1578/**
1579 * bdx_tx_space - calculates available space in TX fifo
1580 * @priv: NIC private structure
1581 *
1582 * Returns available space in TX fifo in bytes
1583 */
1584static inline int bdx_tx_space(struct bdx_priv *priv)
1585{
1586	struct txd_fifo *f = &priv->txd_fifo0;
1587	int fsize;
1588
1589	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1590	fsize = f->m.rptr - f->m.wptr;
1591	if (fsize <= 0)
1592		fsize = f->m.memsz + fsize;
1593	return fsize;
1594}
1595
1596/**
1597 * bdx_tx_transmit - send packet to NIC
1598 * @skb: packet to send
1599 * @ndev: network device assigned to NIC
1600 * Return codes:
1601 * o NETDEV_TX_OK everything ok.
1602 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1603 *   Usually a bug, means queue start/stop flow control is broken in
1604 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1605 */
1606static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1607				   struct net_device *ndev)
1608{
1609	struct bdx_priv *priv = netdev_priv(ndev);
1610	struct txd_fifo *f = &priv->txd_fifo0;
1611	int txd_checksum = 7;	/* full checksum */
1612	int txd_lgsnd = 0;
1613	int txd_vlan_id = 0;
1614	int txd_vtag = 0;
1615	int txd_mss = 0;
1616
1617	int nr_frags = skb_shinfo(skb)->nr_frags;
1618	struct txd_desc *txdd;
1619	int len;
1620	unsigned long flags;
1621
1622	ENTER;
1623	local_irq_save(flags);
1624	spin_lock(&priv->tx_lock);
1625
1626	/* build tx descriptor */
1627	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1628	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1629	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1630		txd_checksum = 0;
1631
1632	if (skb_shinfo(skb)->gso_size) {
1633		txd_mss = skb_shinfo(skb)->gso_size;
1634		txd_lgsnd = 1;
1635		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1636		    txd_mss);
1637	}
1638
1639	if (skb_vlan_tag_present(skb)) {
1640		/*Cut VLAN ID to 12 bits */
1641		txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1642		txd_vtag = 1;
1643	}
1644
1645	txdd->length = CPU_CHIP_SWAP16(skb->len);
1646	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1647	txdd->txd_val1 =
1648	    CPU_CHIP_SWAP32(TXD_W1_VAL
1649			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1650			     txd_lgsnd, txd_vlan_id));
1651	DBG("=== TxD desc =====================\n");
1652	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1653	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1654
1655	bdx_tx_map_skb(priv, skb, txdd);
1656
1657	/* increment TXD write pointer. In case of
1658	   fifo wrapping copy reminder of the descriptor
1659	   to the beginning */
1660	f->m.wptr += txd_sizes[nr_frags].bytes;
1661	len = f->m.wptr - f->m.memsz;
1662	if (unlikely(len >= 0)) {
1663		f->m.wptr = len;
1664		if (len > 0) {
1665			BDX_ASSERT(len > f->m.memsz);
1666			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1667		}
1668	}
1669	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1670
1671	priv->tx_level -= txd_sizes[nr_frags].bytes;
1672	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1673#ifdef BDX_DELAY_WPTR
1674	if (priv->tx_level > priv->tx_update_mark) {
1675		/* Force memory writes to complete before letting h/w
1676		   know there are new descriptors to fetch.
1677		   (might be needed on platforms like IA64)
1678		   wmb(); */
1679		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1680	} else {
1681		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1682			priv->tx_noupd = 0;
1683			WRITE_REG(priv, f->m.reg_WPTR,
1684				  f->m.wptr & TXF_WPTR_WR_PTR);
1685		}
1686	}
1687#else
1688	/* Force memory writes to complete before letting h/w
1689	   know there are new descriptors to fetch.
1690	   (might be needed on platforms like IA64)
1691	   wmb(); */
1692	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1693
1694#endif
1695#ifdef BDX_LLTX
1696	netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1697#endif
1698	ndev->stats.tx_packets++;
1699	ndev->stats.tx_bytes += skb->len;
1700
1701	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1702		DBG("%s: %s: TX Q STOP level %d\n",
1703		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1704		netif_stop_queue(ndev);
1705	}
1706
1707	spin_unlock_irqrestore(&priv->tx_lock, flags);
1708	return NETDEV_TX_OK;
1709}
1710
1711/**
1712 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1713 * @priv: bdx adapter
1714 *
1715 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1716 * that those packets were sent
1717 */
1718static void bdx_tx_cleanup(struct bdx_priv *priv)
1719{
1720	struct txf_fifo *f = &priv->txf_fifo0;
1721	struct txdb *db = &priv->txdb;
1722	int tx_level = 0;
1723
1724	ENTER;
1725	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1726	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1727
1728	while (f->m.wptr != f->m.rptr) {
1729		f->m.rptr += BDX_TXF_DESC_SZ;
1730		f->m.rptr &= f->m.size_mask;
1731
1732		/* unmap all the fragments */
1733		/* first has to come tx_maps containing dma */
1734		BDX_ASSERT(db->rptr->len == 0);
1735		do {
1736			BDX_ASSERT(db->rptr->addr.dma == 0);
1737			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1738				       db->rptr->len, PCI_DMA_TODEVICE);
1739			bdx_tx_db_inc_rptr(db);
1740		} while (db->rptr->len > 0);
1741		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1742
1743		/* now should come skb pointer - free it */
1744		dev_kfree_skb_irq(db->rptr->addr.skb);
1745		bdx_tx_db_inc_rptr(db);
1746	}
1747
1748	/* let h/w know which TXF descriptors were cleaned */
1749	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1750	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1751
1752	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1753	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1754	spin_lock(&priv->tx_lock);
1755	priv->tx_level += tx_level;
1756	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1757#ifdef BDX_DELAY_WPTR
1758	if (priv->tx_noupd) {
1759		priv->tx_noupd = 0;
1760		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1761			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1762	}
1763#endif
1764
1765	if (unlikely(netif_queue_stopped(priv->ndev) &&
1766		     netif_carrier_ok(priv->ndev) &&
1767		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1768		DBG("%s: %s: TX Q WAKE level %d\n",
1769		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1770		netif_wake_queue(priv->ndev);
1771	}
1772	spin_unlock(&priv->tx_lock);
1773}
1774
1775/**
1776 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1777 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1778 */
1779static void bdx_tx_free_skbs(struct bdx_priv *priv)
1780{
1781	struct txdb *db = &priv->txdb;
1782
1783	ENTER;
1784	while (db->rptr != db->wptr) {
1785		if (likely(db->rptr->len))
1786			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1787				       db->rptr->len, PCI_DMA_TODEVICE);
1788		else
1789			dev_kfree_skb(db->rptr->addr.skb);
1790		bdx_tx_db_inc_rptr(db);
1791	}
1792	RET();
1793}
1794
1795/* bdx_tx_free - frees all Tx resources */
1796static void bdx_tx_free(struct bdx_priv *priv)
1797{
1798	ENTER;
1799	bdx_tx_free_skbs(priv);
1800	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1801	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1802	bdx_tx_db_close(&priv->txdb);
1803}
1804
1805/**
1806 * bdx_tx_push_desc - push descriptor to TxD fifo
1807 * @priv: NIC private structure
1808 * @data: desc's data
1809 * @size: desc's size
1810 *
1811 * Pushes desc to TxD fifo and overlaps it if needed.
1812 * NOTE: this func does not check for available space. this is responsibility
1813 *    of the caller. Neither does it check that data size is smaller than
1814 *    fifo size.
1815 */
1816static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1817{
1818	struct txd_fifo *f = &priv->txd_fifo0;
1819	int i = f->m.memsz - f->m.wptr;
1820
1821	if (size == 0)
1822		return;
1823
1824	if (i > size) {
1825		memcpy(f->m.va + f->m.wptr, data, size);
1826		f->m.wptr += size;
1827	} else {
1828		memcpy(f->m.va + f->m.wptr, data, i);
1829		f->m.wptr = size - i;
1830		memcpy(f->m.va, data + i, f->m.wptr);
1831	}
1832	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1833}
1834
1835/**
1836 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1837 * @priv: NIC private structure
1838 * @data: desc's data
1839 * @size: desc's size
1840 *
1841 * NOTE: this func does check for available space and, if necessary, waits for
1842 *   NIC to read existing data before writing new one.
1843 */
1844static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1845{
1846	int timer = 0;
1847	ENTER;
1848
1849	while (size > 0) {
1850		/* we substruct 8 because when fifo is full rptr == wptr
1851		   which also means that fifo is empty, we can understand
1852		   the difference, but could hw do the same ??? :) */
1853		int avail = bdx_tx_space(priv) - 8;
1854		if (avail <= 0) {
1855			if (timer++ > 300) {	/* prevent endless loop */
1856				DBG("timeout while writing desc to TxD fifo\n");
1857				break;
1858			}
1859			udelay(50);	/* give hw a chance to clean fifo */
1860			continue;
1861		}
1862		avail = min(avail, size);
1863		DBG("about to push  %d bytes starting %p size %d\n", avail,
1864		    data, size);
1865		bdx_tx_push_desc(priv, data, avail);
1866		size -= avail;
1867		data += avail;
1868	}
1869	RET();
1870}
1871
1872static const struct net_device_ops bdx_netdev_ops = {
1873	.ndo_open		= bdx_open,
1874	.ndo_stop		= bdx_close,
1875	.ndo_start_xmit		= bdx_tx_transmit,
1876	.ndo_validate_addr	= eth_validate_addr,
1877	.ndo_do_ioctl		= bdx_ioctl,
1878	.ndo_set_rx_mode	= bdx_setmulti,
1879	.ndo_change_mtu		= bdx_change_mtu,
1880	.ndo_set_mac_address	= bdx_set_mac,
1881	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1882	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1883};
1884
1885/**
1886 * bdx_probe - Device Initialization Routine
1887 * @pdev: PCI device information struct
1888 * @ent: entry in bdx_pci_tbl
1889 *
1890 * Returns 0 on success, negative on failure
1891 *
1892 * bdx_probe initializes an adapter identified by a pci_dev structure.
1893 * The OS initialization, configuring of the adapter private structure,
1894 * and a hardware reset occur.
1895 *
1896 * functions and their order used as explained in
1897 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1898 *
1899 */
1900
1901/* TBD: netif_msg should be checked and implemented. I disable it for now */
1902static int
1903bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1904{
1905	struct net_device *ndev;
1906	struct bdx_priv *priv;
1907	int err, pci_using_dac, port;
1908	unsigned long pciaddr;
1909	u32 regionSize;
1910	struct pci_nic *nic;
1911
1912	ENTER;
1913
1914	nic = vmalloc(sizeof(*nic));
1915	if (!nic)
1916		RET(-ENOMEM);
1917
1918    /************** pci *****************/
1919	err = pci_enable_device(pdev);
1920	if (err)			/* it triggers interrupt, dunno why. */
1921		goto err_pci;		/* it's not a problem though */
1922
1923	if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1924	    !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1925		pci_using_dac = 1;
1926	} else {
1927		if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1928		    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1929			pr_err("No usable DMA configuration, aborting\n");
1930			goto err_dma;
1931		}
1932		pci_using_dac = 0;
1933	}
1934
1935	err = pci_request_regions(pdev, BDX_DRV_NAME);
1936	if (err)
1937		goto err_dma;
1938
1939	pci_set_master(pdev);
1940
1941	pciaddr = pci_resource_start(pdev, 0);
1942	if (!pciaddr) {
1943		err = -EIO;
1944		pr_err("no MMIO resource\n");
1945		goto err_out_res;
1946	}
1947	regionSize = pci_resource_len(pdev, 0);
1948	if (regionSize < BDX_REGS_SIZE) {
1949		err = -EIO;
1950		pr_err("MMIO resource (%x) too small\n", regionSize);
1951		goto err_out_res;
1952	}
1953
1954	nic->regs = ioremap(pciaddr, regionSize);
1955	if (!nic->regs) {
1956		err = -EIO;
1957		pr_err("ioremap failed\n");
1958		goto err_out_res;
1959	}
1960
1961	if (pdev->irq < 2) {
1962		err = -EIO;
1963		pr_err("invalid irq (%d)\n", pdev->irq);
1964		goto err_out_iomap;
1965	}
1966	pci_set_drvdata(pdev, nic);
1967
1968	if (pdev->device == 0x3014)
1969		nic->port_num = 2;
1970	else
1971		nic->port_num = 1;
1972
1973	print_hw_id(pdev);
1974
1975	bdx_hw_reset_direct(nic->regs);
1976
1977	nic->irq_type = IRQ_INTX;
1978#ifdef BDX_MSI
1979	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1980		err = pci_enable_msi(pdev);
1981		if (err)
1982			pr_err("Can't enable msi. error is %d\n", err);
1983		else
1984			nic->irq_type = IRQ_MSI;
1985	} else
1986		DBG("HW does not support MSI\n");
1987#endif
1988
1989    /************** netdev **************/
1990	for (port = 0; port < nic->port_num; port++) {
1991		ndev = alloc_etherdev(sizeof(struct bdx_priv));
1992		if (!ndev) {
1993			err = -ENOMEM;
1994			goto err_out_iomap;
1995		}
1996
1997		ndev->netdev_ops = &bdx_netdev_ops;
1998		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1999
2000		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
2001
2002		/* these fields are used for info purposes only
2003		 * so we can have them same for all ports of the board */
2004		ndev->if_port = port;
2005		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2006		    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2007		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2008		    ;
2009		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2010			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2011
2012		if (pci_using_dac)
2013			ndev->features |= NETIF_F_HIGHDMA;
2014
2015	/************** priv ****************/
2016		priv = nic->priv[port] = netdev_priv(ndev);
2017
2018		priv->pBdxRegs = nic->regs + port * 0x8000;
2019		priv->port = port;
2020		priv->pdev = pdev;
2021		priv->ndev = ndev;
2022		priv->nic = nic;
2023		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2024
2025		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2026
2027		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2028			DBG("HW statistics not supported\n");
2029			priv->stats_flag = 0;
2030		} else {
2031			priv->stats_flag = 1;
2032		}
2033
2034		/* Initialize fifo sizes. */
2035		priv->txd_size = 2;
2036		priv->txf_size = 2;
2037		priv->rxd_size = 2;
2038		priv->rxf_size = 3;
2039
2040		/* Initialize the initial coalescing registers. */
2041		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2042		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2043
2044		/* ndev->xmit_lock spinlock is not used.
2045		 * Private priv->tx_lock is used for synchronization
2046		 * between transmit and TX irq cleanup.  In addition
2047		 * set multicast list callback has to use priv->tx_lock.
2048		 */
2049#ifdef BDX_LLTX
2050		ndev->features |= NETIF_F_LLTX;
2051#endif
2052		/* MTU range: 60 - 16384 */
2053		ndev->min_mtu = ETH_ZLEN;
2054		ndev->max_mtu = BDX_MAX_MTU;
2055
2056		spin_lock_init(&priv->tx_lock);
2057
2058		/*bdx_hw_reset(priv); */
2059		if (bdx_read_mac(priv)) {
2060			pr_err("load MAC address failed\n");
2061			goto err_out_iomap;
2062		}
2063		SET_NETDEV_DEV(ndev, &pdev->dev);
2064		err = register_netdev(ndev);
2065		if (err) {
2066			pr_err("register_netdev failed\n");
2067			goto err_out_free;
2068		}
2069		netif_carrier_off(ndev);
2070		netif_stop_queue(ndev);
2071
2072		print_eth_id(ndev);
2073	}
2074	RET(0);
2075
2076err_out_free:
2077	free_netdev(ndev);
2078err_out_iomap:
2079	iounmap(nic->regs);
2080err_out_res:
2081	pci_release_regions(pdev);
2082err_dma:
2083	pci_disable_device(pdev);
2084err_pci:
2085	vfree(nic);
2086
2087	RET(err);
2088}
2089
2090/****************** Ethtool interface *********************/
2091/* get strings for statistics counters */
2092static const char
2093 bdx_stat_names[][ETH_GSTRING_LEN] = {
2094	"InUCast",		/* 0x7200 */
2095	"InMCast",		/* 0x7210 */
2096	"InBCast",		/* 0x7220 */
2097	"InPkts",		/* 0x7230 */
2098	"InErrors",		/* 0x7240 */
2099	"InDropped",		/* 0x7250 */
2100	"FrameTooLong",		/* 0x7260 */
2101	"FrameSequenceErrors",	/* 0x7270 */
2102	"InVLAN",		/* 0x7280 */
2103	"InDroppedDFE",		/* 0x7290 */
2104	"InDroppedIntFull",	/* 0x72A0 */
2105	"InFrameAlignErrors",	/* 0x72B0 */
2106
2107	/* 0x72C0-0x72E0 RSRV */
2108
2109	"OutUCast",		/* 0x72F0 */
2110	"OutMCast",		/* 0x7300 */
2111	"OutBCast",		/* 0x7310 */
2112	"OutPkts",		/* 0x7320 */
2113
2114	/* 0x7330-0x7360 RSRV */
2115
2116	"OutVLAN",		/* 0x7370 */
2117	"InUCastOctects",	/* 0x7380 */
2118	"OutUCastOctects",	/* 0x7390 */
2119
2120	/* 0x73A0-0x73B0 RSRV */
2121
2122	"InBCastOctects",	/* 0x73C0 */
2123	"OutBCastOctects",	/* 0x73D0 */
2124	"InOctects",		/* 0x73E0 */
2125	"OutOctects",		/* 0x73F0 */
2126};
2127
2128/*
2129 * bdx_get_link_ksettings - get device-specific settings
2130 * @netdev
2131 * @ecmd
2132 */
2133static int bdx_get_link_ksettings(struct net_device *netdev,
2134				  struct ethtool_link_ksettings *ecmd)
2135{
2136	ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2137	ethtool_link_ksettings_add_link_mode(ecmd, supported,
2138					     10000baseT_Full);
2139	ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2140	ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2141	ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2142					     10000baseT_Full);
2143	ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2144
2145	ecmd->base.speed = SPEED_10000;
2146	ecmd->base.duplex = DUPLEX_FULL;
2147	ecmd->base.port = PORT_FIBRE;
2148	ecmd->base.autoneg = AUTONEG_DISABLE;
2149
2150	return 0;
2151}
2152
2153/*
2154 * bdx_get_drvinfo - report driver information
2155 * @netdev
2156 * @drvinfo
2157 */
2158static void
2159bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2160{
2161	struct bdx_priv *priv = netdev_priv(netdev);
2162
2163	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2164	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2165	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2166	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2167		sizeof(drvinfo->bus_info));
2168}
2169
2170/*
2171 * bdx_get_coalesce - get interrupt coalescing parameters
2172 * @netdev
2173 * @ecoal
2174 */
2175static int
2176bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2177{
2178	u32 rdintcm;
2179	u32 tdintcm;
2180	struct bdx_priv *priv = netdev_priv(netdev);
2181
2182	rdintcm = priv->rdintcm;
2183	tdintcm = priv->tdintcm;
2184
2185	/* PCK_TH measures in multiples of FIFO bytes
2186	   We translate to packets */
2187	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2188	ecoal->rx_max_coalesced_frames =
2189	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2190
2191	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2192	ecoal->tx_max_coalesced_frames =
2193	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2194
2195	/* adaptive parameters ignored */
2196	return 0;
2197}
2198
2199/*
2200 * bdx_set_coalesce - set interrupt coalescing parameters
2201 * @netdev
2202 * @ecoal
2203 */
2204static int
2205bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2206{
2207	u32 rdintcm;
2208	u32 tdintcm;
2209	struct bdx_priv *priv = netdev_priv(netdev);
2210	int rx_coal;
2211	int tx_coal;
2212	int rx_max_coal;
2213	int tx_max_coal;
2214
2215	/* Check for valid input */
2216	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2217	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2218	rx_max_coal = ecoal->rx_max_coalesced_frames;
2219	tx_max_coal = ecoal->tx_max_coalesced_frames;
2220
2221	/* Translate from packets to multiples of FIFO bytes */
2222	rx_max_coal =
2223	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2224	     / PCK_TH_MULT);
2225	tx_max_coal =
2226	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2227	     / PCK_TH_MULT);
2228
2229	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2230	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2231		return -EINVAL;
2232
2233	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2234			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2235	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2236			      tx_max_coal);
2237
2238	priv->rdintcm = rdintcm;
2239	priv->tdintcm = tdintcm;
2240
2241	WRITE_REG(priv, regRDINTCM0, rdintcm);
2242	WRITE_REG(priv, regTDINTCM0, tdintcm);
2243
2244	return 0;
2245}
2246
2247/* Convert RX fifo size to number of pending packets */
2248static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2249{
2250	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2251}
2252
2253/* Convert TX fifo size to number of pending packets */
2254static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2255{
2256	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2257}
2258
2259/*
2260 * bdx_get_ringparam - report ring sizes
2261 * @netdev
2262 * @ring
2263 */
2264static void
2265bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2266{
2267	struct bdx_priv *priv = netdev_priv(netdev);
2268
2269	/*max_pending - the maximum-sized FIFO we allow */
2270	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2271	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2272	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2273	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2274}
2275
2276/*
2277 * bdx_set_ringparam - set ring sizes
2278 * @netdev
2279 * @ring
2280 */
2281static int
2282bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2283{
2284	struct bdx_priv *priv = netdev_priv(netdev);
2285	int rx_size = 0;
2286	int tx_size = 0;
2287
2288	for (; rx_size < 4; rx_size++) {
2289		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2290			break;
2291	}
2292	if (rx_size == 4)
2293		rx_size = 3;
2294
2295	for (; tx_size < 4; tx_size++) {
2296		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2297			break;
2298	}
2299	if (tx_size == 4)
2300		tx_size = 3;
2301
2302	/*Is there anything to do? */
2303	if ((rx_size == priv->rxf_size) &&
2304	    (tx_size == priv->txd_size))
2305		return 0;
2306
2307	priv->rxf_size = rx_size;
2308	if (rx_size > 1)
2309		priv->rxd_size = rx_size - 1;
2310	else
2311		priv->rxd_size = rx_size;
2312
2313	priv->txf_size = priv->txd_size = tx_size;
2314
2315	if (netif_running(netdev)) {
2316		bdx_close(netdev);
2317		bdx_open(netdev);
2318	}
2319	return 0;
2320}
2321
2322/*
2323 * bdx_get_strings - return a set of strings that describe the requested objects
2324 * @netdev
2325 * @data
2326 */
2327static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2328{
2329	switch (stringset) {
2330	case ETH_SS_STATS:
2331		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2332		break;
2333	}
2334}
2335
2336/*
2337 * bdx_get_sset_count - return number of statistics or tests
2338 * @netdev
2339 */
2340static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2341{
2342	struct bdx_priv *priv = netdev_priv(netdev);
2343
2344	switch (stringset) {
2345	case ETH_SS_STATS:
2346		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2347			   != sizeof(struct bdx_stats) / sizeof(u64));
2348		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2349	}
2350
2351	return -EINVAL;
2352}
2353
2354/*
2355 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2356 * @netdev
2357 * @stats
2358 * @data
2359 */
2360static void bdx_get_ethtool_stats(struct net_device *netdev,
2361				  struct ethtool_stats *stats, u64 *data)
2362{
2363	struct bdx_priv *priv = netdev_priv(netdev);
2364
2365	if (priv->stats_flag) {
2366
2367		/* Update stats from HW */
2368		bdx_update_stats(priv);
2369
2370		/* Copy data to user buffer */
2371		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2372	}
2373}
2374
2375/*
2376 * bdx_set_ethtool_ops - ethtool interface implementation
2377 * @netdev
2378 */
2379static void bdx_set_ethtool_ops(struct net_device *netdev)
2380{
2381	static const struct ethtool_ops bdx_ethtool_ops = {
2382		.get_drvinfo = bdx_get_drvinfo,
2383		.get_link = ethtool_op_get_link,
2384		.get_coalesce = bdx_get_coalesce,
2385		.set_coalesce = bdx_set_coalesce,
2386		.get_ringparam = bdx_get_ringparam,
2387		.set_ringparam = bdx_set_ringparam,
2388		.get_strings = bdx_get_strings,
2389		.get_sset_count = bdx_get_sset_count,
2390		.get_ethtool_stats = bdx_get_ethtool_stats,
2391		.get_link_ksettings = bdx_get_link_ksettings,
2392	};
2393
2394	netdev->ethtool_ops = &bdx_ethtool_ops;
2395}
2396
2397/**
2398 * bdx_remove - Device Removal Routine
2399 * @pdev: PCI device information struct
2400 *
2401 * bdx_remove is called by the PCI subsystem to alert the driver
2402 * that it should release a PCI device.  The could be caused by a
2403 * Hot-Plug event, or because the driver is going to be removed from
2404 * memory.
2405 **/
2406static void bdx_remove(struct pci_dev *pdev)
2407{
2408	struct pci_nic *nic = pci_get_drvdata(pdev);
2409	struct net_device *ndev;
2410	int port;
2411
2412	for (port = 0; port < nic->port_num; port++) {
2413		ndev = nic->priv[port]->ndev;
2414		unregister_netdev(ndev);
2415		free_netdev(ndev);
2416	}
2417
2418	/*bdx_hw_reset_direct(nic->regs); */
2419#ifdef BDX_MSI
2420	if (nic->irq_type == IRQ_MSI)
2421		pci_disable_msi(pdev);
2422#endif
2423
2424	iounmap(nic->regs);
2425	pci_release_regions(pdev);
2426	pci_disable_device(pdev);
2427	vfree(nic);
2428
2429	RET();
2430}
2431
2432static struct pci_driver bdx_pci_driver = {
2433	.name = BDX_DRV_NAME,
2434	.id_table = bdx_pci_tbl,
2435	.probe = bdx_probe,
2436	.remove = bdx_remove,
2437};
2438
2439/*
2440 * print_driver_id - print parameters of the driver build
2441 */
2442static void __init print_driver_id(void)
2443{
2444	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2445	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2446}
2447
2448static int __init bdx_module_init(void)
2449{
2450	ENTER;
2451	init_txd_sizes();
2452	print_driver_id();
2453	RET(pci_register_driver(&bdx_pci_driver));
2454}
2455
2456module_init(bdx_module_init);
2457
2458static void __exit bdx_module_exit(void)
2459{
2460	ENTER;
2461	pci_unregister_driver(&bdx_pci_driver);
2462	RET();
2463}
2464
2465module_exit(bdx_module_exit);
2466
2467MODULE_LICENSE("GPL");
2468MODULE_AUTHOR(DRIVER_AUTHOR);
2469MODULE_DESCRIPTION(BDX_DRV_DESC);
2470MODULE_FIRMWARE("tehuti/bdx.bin");