Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/* Intel(R) Ethernet Switch Host Interface Driver
3 * Copyright(c) 2013 - 2018 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/aer.h>
25
26#include "fm10k.h"
27
28static const struct fm10k_info *fm10k_info_tbl[] = {
29 [fm10k_device_pf] = &fm10k_pf_info,
30 [fm10k_device_vf] = &fm10k_vf_info,
31};
32
33/*
34 * fm10k_pci_tbl - PCI Device ID Table
35 *
36 * Wildcard entries (PCI_ANY_ID) should come last
37 * Last entry must be all 0s
38 *
39 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40 * Class, Class Mask, private data (not used) }
41 */
42static const struct pci_device_id fm10k_pci_tbl[] = {
43 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
44 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
45 /* required last entry */
46 { 0, }
47};
48MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
49
50u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
51{
52 struct fm10k_intfc *interface = hw->back;
53 u16 value = 0;
54
55 if (FM10K_REMOVED(hw->hw_addr))
56 return ~value;
57
58 pci_read_config_word(interface->pdev, reg, &value);
59 if (value == 0xFFFF)
60 fm10k_write_flush(hw);
61
62 return value;
63}
64
65u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
66{
67 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
68 u32 value = 0;
69
70 if (FM10K_REMOVED(hw_addr))
71 return ~value;
72
73 value = readl(&hw_addr[reg]);
74 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
75 struct fm10k_intfc *interface = hw->back;
76 struct net_device *netdev = interface->netdev;
77
78 hw->hw_addr = NULL;
79 netif_device_detach(netdev);
80 netdev_err(netdev, "PCIe link lost, device now detached\n");
81 }
82
83 return value;
84}
85
86static int fm10k_hw_ready(struct fm10k_intfc *interface)
87{
88 struct fm10k_hw *hw = &interface->hw;
89
90 fm10k_write_flush(hw);
91
92 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
93}
94
95/**
96 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
97 * @interface: fm10k private interface structure
98 *
99 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
100 * started immediately, request that it be restarted when possible.
101 */
102void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
103{
104 /* Avoid processing the MAC/VLAN queue when the service task is
105 * disabled, or when we're resetting the device.
106 */
107 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
108 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
109 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
110 /* We delay the actual start of execution in order to allow
111 * multiple MAC/VLAN updates to accumulate before handling
112 * them, and to allow some time to let the mailbox drain
113 * between runs.
114 */
115 queue_delayed_work(fm10k_workqueue,
116 &interface->macvlan_task, 10);
117 } else {
118 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
119 }
120}
121
122/**
123 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
124 * @interface: fm10k private interface structure
125 *
126 * Wait until the MAC/VLAN queue task has stopped, and cancel any future
127 * requests.
128 */
129static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
130{
131 /* Disable the MAC/VLAN work item */
132 set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
133
134 /* Make sure we waited until any current invocations have stopped */
135 cancel_delayed_work_sync(&interface->macvlan_task);
136
137 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
138 * However, it may not be unset of the MAC/VLAN task never actually
139 * got a chance to run. Since we've canceled the task here, and it
140 * cannot be rescheuled right now, we need to ensure the scheduled bit
141 * gets unset.
142 */
143 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
144}
145
146/**
147 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
148 * @interface: fm10k private interface structure
149 *
150 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
151 * the MAC/VLAN work monitor.
152 */
153static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
154{
155 /* Re-enable the MAC/VLAN work item */
156 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
157
158 /* We might have received a MAC/VLAN request while disabled. If so,
159 * kick off the queue now.
160 */
161 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
162 fm10k_macvlan_schedule(interface);
163}
164
165void fm10k_service_event_schedule(struct fm10k_intfc *interface)
166{
167 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
168 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
169 clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
170 queue_work(fm10k_workqueue, &interface->service_task);
171 } else {
172 set_bit(__FM10K_SERVICE_REQUEST, interface->state);
173 }
174}
175
176static void fm10k_service_event_complete(struct fm10k_intfc *interface)
177{
178 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
179
180 /* flush memory to make sure state is correct before next watchog */
181 smp_mb__before_atomic();
182 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
183
184 /* If a service event was requested since we started, immediately
185 * re-schedule now. This ensures we don't drop a request until the
186 * next timer event.
187 */
188 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
189 fm10k_service_event_schedule(interface);
190}
191
192static void fm10k_stop_service_event(struct fm10k_intfc *interface)
193{
194 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
195 cancel_work_sync(&interface->service_task);
196
197 /* It's possible that cancel_work_sync stopped the service task from
198 * running before it could actually start. In this case the
199 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
200 * the service task cannot be running at this point, we need to clear
201 * the scheduled bit, as otherwise the service task may never be
202 * restarted.
203 */
204 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
205}
206
207static void fm10k_start_service_event(struct fm10k_intfc *interface)
208{
209 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
210 fm10k_service_event_schedule(interface);
211}
212
213/**
214 * fm10k_service_timer - Timer Call-back
215 * @t: pointer to timer data
216 **/
217static void fm10k_service_timer(struct timer_list *t)
218{
219 struct fm10k_intfc *interface = from_timer(interface, t,
220 service_timer);
221
222 /* Reset the timer */
223 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
224
225 fm10k_service_event_schedule(interface);
226}
227
228/**
229 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
230 * @interface: fm10k private data structure
231 *
232 * This function prepares for a device reset by shutting as much down as we
233 * can. It does nothing and returns false if __FM10K_RESETTING was already set
234 * prior to calling this function. It returns true if it actually did work.
235 */
236static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
237{
238 struct net_device *netdev = interface->netdev;
239
240 WARN_ON(in_interrupt());
241
242 /* put off any impending NetWatchDogTimeout */
243 netif_trans_update(netdev);
244
245 /* Nothing to do if a reset is already in progress */
246 if (test_and_set_bit(__FM10K_RESETTING, interface->state))
247 return false;
248
249 /* As the MAC/VLAN task will be accessing registers it must not be
250 * running while we reset. Although the task will not be scheduled
251 * once we start resetting it may already be running
252 */
253 fm10k_stop_macvlan_task(interface);
254
255 rtnl_lock();
256
257 fm10k_iov_suspend(interface->pdev);
258
259 if (netif_running(netdev))
260 fm10k_close(netdev);
261
262 fm10k_mbx_free_irq(interface);
263
264 /* free interrupts */
265 fm10k_clear_queueing_scheme(interface);
266
267 /* delay any future reset requests */
268 interface->last_reset = jiffies + (10 * HZ);
269
270 rtnl_unlock();
271
272 return true;
273}
274
275static int fm10k_handle_reset(struct fm10k_intfc *interface)
276{
277 struct net_device *netdev = interface->netdev;
278 struct fm10k_hw *hw = &interface->hw;
279 int err;
280
281 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
282
283 rtnl_lock();
284
285 pci_set_master(interface->pdev);
286
287 /* reset and initialize the hardware so it is in a known state */
288 err = hw->mac.ops.reset_hw(hw);
289 if (err) {
290 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
291 goto reinit_err;
292 }
293
294 err = hw->mac.ops.init_hw(hw);
295 if (err) {
296 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
297 goto reinit_err;
298 }
299
300 err = fm10k_init_queueing_scheme(interface);
301 if (err) {
302 dev_err(&interface->pdev->dev,
303 "init_queueing_scheme failed: %d\n", err);
304 goto reinit_err;
305 }
306
307 /* re-associate interrupts */
308 err = fm10k_mbx_request_irq(interface);
309 if (err)
310 goto err_mbx_irq;
311
312 err = fm10k_hw_ready(interface);
313 if (err)
314 goto err_open;
315
316 /* update hardware address for VFs if perm_addr has changed */
317 if (hw->mac.type == fm10k_mac_vf) {
318 if (is_valid_ether_addr(hw->mac.perm_addr)) {
319 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
320 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
321 ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
322 netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
323 }
324
325 if (hw->mac.vlan_override)
326 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
327 else
328 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
329 }
330
331 err = netif_running(netdev) ? fm10k_open(netdev) : 0;
332 if (err)
333 goto err_open;
334
335 fm10k_iov_resume(interface->pdev);
336
337 rtnl_unlock();
338
339 fm10k_resume_macvlan_task(interface);
340
341 clear_bit(__FM10K_RESETTING, interface->state);
342
343 return err;
344err_open:
345 fm10k_mbx_free_irq(interface);
346err_mbx_irq:
347 fm10k_clear_queueing_scheme(interface);
348reinit_err:
349 netif_device_detach(netdev);
350
351 rtnl_unlock();
352
353 clear_bit(__FM10K_RESETTING, interface->state);
354
355 return err;
356}
357
358static void fm10k_detach_subtask(struct fm10k_intfc *interface)
359{
360 struct net_device *netdev = interface->netdev;
361 u32 __iomem *hw_addr;
362 u32 value;
363 int err;
364
365 /* do nothing if netdev is still present or hw_addr is set */
366 if (netif_device_present(netdev) || interface->hw.hw_addr)
367 return;
368
369 /* We've lost the PCIe register space, and can no longer access the
370 * device. Shut everything except the detach subtask down and prepare
371 * to reset the device in case we recover. If we actually prepare for
372 * reset, indicate that we're detached.
373 */
374 if (fm10k_prepare_for_reset(interface))
375 set_bit(__FM10K_RESET_DETACHED, interface->state);
376
377 /* check the real address space to see if we've recovered */
378 hw_addr = READ_ONCE(interface->uc_addr);
379 value = readl(hw_addr);
380 if (~value) {
381 /* Make sure the reset was initiated because we detached,
382 * otherwise we might race with a different reset flow.
383 */
384 if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
385 interface->state))
386 return;
387
388 /* Restore the hardware address */
389 interface->hw.hw_addr = interface->uc_addr;
390
391 /* PCIe link has been restored, and the device is active
392 * again. Restore everything and reset the device.
393 */
394 err = fm10k_handle_reset(interface);
395 if (err) {
396 netdev_err(netdev, "Unable to reset device: %d\n", err);
397 interface->hw.hw_addr = NULL;
398 return;
399 }
400
401 /* Re-attach the netdev */
402 netif_device_attach(netdev);
403 netdev_warn(netdev, "PCIe link restored, device now attached\n");
404 return;
405 }
406}
407
408static void fm10k_reset_subtask(struct fm10k_intfc *interface)
409{
410 int err;
411
412 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
413 interface->flags))
414 return;
415
416 /* If another thread has already prepared to reset the device, we
417 * should not attempt to handle a reset here, since we'd race with
418 * that thread. This may happen if we suspend the device or if the
419 * PCIe link is lost. In this case, we'll just ignore the RESET
420 * request, as it will (eventually) be taken care of when the thread
421 * which actually started the reset is finished.
422 */
423 if (!fm10k_prepare_for_reset(interface))
424 return;
425
426 netdev_err(interface->netdev, "Reset interface\n");
427
428 err = fm10k_handle_reset(interface);
429 if (err)
430 dev_err(&interface->pdev->dev,
431 "fm10k_handle_reset failed: %d\n", err);
432}
433
434/**
435 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
436 * @interface: board private structure
437 *
438 * Configure the SWPRI to PC mapping for the port.
439 **/
440static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
441{
442 struct net_device *netdev = interface->netdev;
443 struct fm10k_hw *hw = &interface->hw;
444 int i;
445
446 /* clear flag indicating update is needed */
447 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
448
449 /* these registers are only available on the PF */
450 if (hw->mac.type != fm10k_mac_pf)
451 return;
452
453 /* configure SWPRI to PC map */
454 for (i = 0; i < FM10K_SWPRI_MAX; i++)
455 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
456 netdev_get_prio_tc_map(netdev, i));
457}
458
459/**
460 * fm10k_watchdog_update_host_state - Update the link status based on host.
461 * @interface: board private structure
462 **/
463static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
464{
465 struct fm10k_hw *hw = &interface->hw;
466 s32 err;
467
468 if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
469 interface->host_ready = false;
470 if (time_is_after_jiffies(interface->link_down_event))
471 return;
472 clear_bit(__FM10K_LINK_DOWN, interface->state);
473 }
474
475 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
476 if (rtnl_trylock()) {
477 fm10k_configure_swpri_map(interface);
478 rtnl_unlock();
479 }
480 }
481
482 /* lock the mailbox for transmit and receive */
483 fm10k_mbx_lock(interface);
484
485 err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
486 if (err && time_is_before_jiffies(interface->last_reset))
487 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
488
489 /* free the lock */
490 fm10k_mbx_unlock(interface);
491}
492
493/**
494 * fm10k_mbx_subtask - Process upstream and downstream mailboxes
495 * @interface: board private structure
496 *
497 * This function will process both the upstream and downstream mailboxes.
498 **/
499static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
500{
501 /* If we're resetting, bail out */
502 if (test_bit(__FM10K_RESETTING, interface->state))
503 return;
504
505 /* process upstream mailbox and update device state */
506 fm10k_watchdog_update_host_state(interface);
507
508 /* process downstream mailboxes */
509 fm10k_iov_mbx(interface);
510}
511
512/**
513 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
514 * @interface: board private structure
515 **/
516static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
517{
518 struct net_device *netdev = interface->netdev;
519
520 /* only continue if link state is currently down */
521 if (netif_carrier_ok(netdev))
522 return;
523
524 netif_info(interface, drv, netdev, "NIC Link is up\n");
525
526 netif_carrier_on(netdev);
527 netif_tx_wake_all_queues(netdev);
528}
529
530/**
531 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
532 * @interface: board private structure
533 **/
534static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
535{
536 struct net_device *netdev = interface->netdev;
537
538 /* only continue if link state is currently up */
539 if (!netif_carrier_ok(netdev))
540 return;
541
542 netif_info(interface, drv, netdev, "NIC Link is down\n");
543
544 netif_carrier_off(netdev);
545 netif_tx_stop_all_queues(netdev);
546}
547
548/**
549 * fm10k_update_stats - Update the board statistics counters.
550 * @interface: board private structure
551 **/
552void fm10k_update_stats(struct fm10k_intfc *interface)
553{
554 struct net_device_stats *net_stats = &interface->netdev->stats;
555 struct fm10k_hw *hw = &interface->hw;
556 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
557 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
558 u64 rx_link_errors = 0;
559 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
560 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
561 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
562 u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
563 u64 bytes, pkts;
564 int i;
565
566 /* ensure only one thread updates stats at a time */
567 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
568 return;
569
570 /* do not allow stats update via service task for next second */
571 interface->next_stats_update = jiffies + HZ;
572
573 /* gather some stats to the interface struct that are per queue */
574 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
575 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
576
577 if (!tx_ring)
578 continue;
579
580 restart_queue += tx_ring->tx_stats.restart_queue;
581 tx_busy += tx_ring->tx_stats.tx_busy;
582 tx_csum_errors += tx_ring->tx_stats.csum_err;
583 bytes += tx_ring->stats.bytes;
584 pkts += tx_ring->stats.packets;
585 hw_csum_tx_good += tx_ring->tx_stats.csum_good;
586 }
587
588 interface->restart_queue = restart_queue;
589 interface->tx_busy = tx_busy;
590 net_stats->tx_bytes = bytes;
591 net_stats->tx_packets = pkts;
592 interface->tx_csum_errors = tx_csum_errors;
593 interface->hw_csum_tx_good = hw_csum_tx_good;
594
595 /* gather some stats to the interface struct that are per queue */
596 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
597 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
598
599 if (!rx_ring)
600 continue;
601
602 bytes += rx_ring->stats.bytes;
603 pkts += rx_ring->stats.packets;
604 alloc_failed += rx_ring->rx_stats.alloc_failed;
605 rx_csum_errors += rx_ring->rx_stats.csum_err;
606 rx_errors += rx_ring->rx_stats.errors;
607 hw_csum_rx_good += rx_ring->rx_stats.csum_good;
608 rx_switch_errors += rx_ring->rx_stats.switch_errors;
609 rx_drops += rx_ring->rx_stats.drops;
610 rx_pp_errors += rx_ring->rx_stats.pp_errors;
611 rx_link_errors += rx_ring->rx_stats.link_errors;
612 rx_length_errors += rx_ring->rx_stats.length_errors;
613 }
614
615 net_stats->rx_bytes = bytes;
616 net_stats->rx_packets = pkts;
617 interface->alloc_failed = alloc_failed;
618 interface->rx_csum_errors = rx_csum_errors;
619 interface->hw_csum_rx_good = hw_csum_rx_good;
620 interface->rx_switch_errors = rx_switch_errors;
621 interface->rx_drops = rx_drops;
622 interface->rx_pp_errors = rx_pp_errors;
623 interface->rx_link_errors = rx_link_errors;
624 interface->rx_length_errors = rx_length_errors;
625
626 hw->mac.ops.update_hw_stats(hw, &interface->stats);
627
628 for (i = 0; i < hw->mac.max_queues; i++) {
629 struct fm10k_hw_stats_q *q = &interface->stats.q[i];
630
631 tx_bytes_nic += q->tx_bytes.count;
632 tx_pkts_nic += q->tx_packets.count;
633 rx_bytes_nic += q->rx_bytes.count;
634 rx_pkts_nic += q->rx_packets.count;
635 rx_drops_nic += q->rx_drops.count;
636 }
637
638 interface->tx_bytes_nic = tx_bytes_nic;
639 interface->tx_packets_nic = tx_pkts_nic;
640 interface->rx_bytes_nic = rx_bytes_nic;
641 interface->rx_packets_nic = rx_pkts_nic;
642 interface->rx_drops_nic = rx_drops_nic;
643
644 /* Fill out the OS statistics structure */
645 net_stats->rx_errors = rx_errors;
646 net_stats->rx_dropped = interface->stats.nodesc_drop.count;
647
648 clear_bit(__FM10K_UPDATING_STATS, interface->state);
649}
650
651/**
652 * fm10k_watchdog_flush_tx - flush queues on host not ready
653 * @interface: pointer to the device interface structure
654 **/
655static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
656{
657 int some_tx_pending = 0;
658 int i;
659
660 /* nothing to do if carrier is up */
661 if (netif_carrier_ok(interface->netdev))
662 return;
663
664 for (i = 0; i < interface->num_tx_queues; i++) {
665 struct fm10k_ring *tx_ring = interface->tx_ring[i];
666
667 if (tx_ring->next_to_use != tx_ring->next_to_clean) {
668 some_tx_pending = 1;
669 break;
670 }
671 }
672
673 /* We've lost link, so the controller stops DMA, but we've got
674 * queued Tx work that's never going to get done, so reset
675 * controller to flush Tx.
676 */
677 if (some_tx_pending)
678 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
679}
680
681/**
682 * fm10k_watchdog_subtask - check and bring link up
683 * @interface: pointer to the device interface structure
684 **/
685static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
686{
687 /* if interface is down do nothing */
688 if (test_bit(__FM10K_DOWN, interface->state) ||
689 test_bit(__FM10K_RESETTING, interface->state))
690 return;
691
692 if (interface->host_ready)
693 fm10k_watchdog_host_is_ready(interface);
694 else
695 fm10k_watchdog_host_not_ready(interface);
696
697 /* update stats only once every second */
698 if (time_is_before_jiffies(interface->next_stats_update))
699 fm10k_update_stats(interface);
700
701 /* flush any uncompleted work */
702 fm10k_watchdog_flush_tx(interface);
703}
704
705/**
706 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
707 * @interface: pointer to the device interface structure
708 *
709 * This function serves two purposes. First it strobes the interrupt lines
710 * in order to make certain interrupts are occurring. Secondly it sets the
711 * bits needed to check for TX hangs. As a result we should immediately
712 * determine if a hang has occurred.
713 */
714static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
715{
716 int i;
717
718 /* If we're down or resetting, just bail */
719 if (test_bit(__FM10K_DOWN, interface->state) ||
720 test_bit(__FM10K_RESETTING, interface->state))
721 return;
722
723 /* rate limit tx hang checks to only once every 2 seconds */
724 if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
725 return;
726 interface->next_tx_hang_check = jiffies + (2 * HZ);
727
728 if (netif_carrier_ok(interface->netdev)) {
729 /* Force detection of hung controller */
730 for (i = 0; i < interface->num_tx_queues; i++)
731 set_check_for_tx_hang(interface->tx_ring[i]);
732
733 /* Rearm all in-use q_vectors for immediate firing */
734 for (i = 0; i < interface->num_q_vectors; i++) {
735 struct fm10k_q_vector *qv = interface->q_vector[i];
736
737 if (!qv->tx.count && !qv->rx.count)
738 continue;
739 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
740 }
741 }
742}
743
744/**
745 * fm10k_service_task - manages and runs subtasks
746 * @work: pointer to work_struct containing our data
747 **/
748static void fm10k_service_task(struct work_struct *work)
749{
750 struct fm10k_intfc *interface;
751
752 interface = container_of(work, struct fm10k_intfc, service_task);
753
754 /* Check whether we're detached first */
755 fm10k_detach_subtask(interface);
756
757 /* tasks run even when interface is down */
758 fm10k_mbx_subtask(interface);
759 fm10k_reset_subtask(interface);
760
761 /* tasks only run when interface is up */
762 fm10k_watchdog_subtask(interface);
763 fm10k_check_hang_subtask(interface);
764
765 /* release lock on service events to allow scheduling next event */
766 fm10k_service_event_complete(interface);
767}
768
769/**
770 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
771 * @work: pointer to work_struct containing our data
772 *
773 * This work item handles sending MAC/VLAN updates to the switch manager. When
774 * the interface is up, it will attempt to queue mailbox messages to the
775 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
776 * mailbox is full, it will reschedule itself to try again in a short while.
777 * This ensures that the driver does not overload the switch mailbox with too
778 * many simultaneous requests, causing an unnecessary reset.
779 **/
780static void fm10k_macvlan_task(struct work_struct *work)
781{
782 struct fm10k_macvlan_request *item;
783 struct fm10k_intfc *interface;
784 struct delayed_work *dwork;
785 struct list_head *requests;
786 struct fm10k_hw *hw;
787 unsigned long flags;
788
789 dwork = to_delayed_work(work);
790 interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
791 hw = &interface->hw;
792 requests = &interface->macvlan_requests;
793
794 do {
795 /* Pop the first item off the list */
796 spin_lock_irqsave(&interface->macvlan_lock, flags);
797 item = list_first_entry_or_null(requests,
798 struct fm10k_macvlan_request,
799 list);
800 if (item)
801 list_del_init(&item->list);
802
803 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
804
805 /* We have no more items to process */
806 if (!item)
807 goto done;
808
809 fm10k_mbx_lock(interface);
810
811 /* Check that we have plenty of space to send the message. We
812 * want to ensure that the mailbox stays low enough to avoid a
813 * change in the host state, otherwise we may see spurious
814 * link up / link down notifications.
815 */
816 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
817 hw->mbx.ops.process(hw, &hw->mbx);
818 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
819 fm10k_mbx_unlock(interface);
820
821 /* Put the request back on the list */
822 spin_lock_irqsave(&interface->macvlan_lock, flags);
823 list_add(&item->list, requests);
824 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
825 break;
826 }
827
828 switch (item->type) {
829 case FM10K_MC_MAC_REQUEST:
830 hw->mac.ops.update_mc_addr(hw,
831 item->mac.glort,
832 item->mac.addr,
833 item->mac.vid,
834 item->set);
835 break;
836 case FM10K_UC_MAC_REQUEST:
837 hw->mac.ops.update_uc_addr(hw,
838 item->mac.glort,
839 item->mac.addr,
840 item->mac.vid,
841 item->set,
842 0);
843 break;
844 case FM10K_VLAN_REQUEST:
845 hw->mac.ops.update_vlan(hw,
846 item->vlan.vid,
847 item->vlan.vsi,
848 item->set);
849 break;
850 default:
851 break;
852 }
853
854 fm10k_mbx_unlock(interface);
855
856 /* Free the item now that we've sent the update */
857 kfree(item);
858 } while (true);
859
860done:
861 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
862
863 /* flush memory to make sure state is correct */
864 smp_mb__before_atomic();
865 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
866
867 /* If a MAC/VLAN request was scheduled since we started, we should
868 * re-schedule. However, there is no reason to re-schedule if there is
869 * no work to do.
870 */
871 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
872 fm10k_macvlan_schedule(interface);
873}
874
875/**
876 * fm10k_configure_tx_ring - Configure Tx ring after Reset
877 * @interface: board private structure
878 * @ring: structure containing ring specific data
879 *
880 * Configure the Tx descriptor ring after a reset.
881 **/
882static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
883 struct fm10k_ring *ring)
884{
885 struct fm10k_hw *hw = &interface->hw;
886 u64 tdba = ring->dma;
887 u32 size = ring->count * sizeof(struct fm10k_tx_desc);
888 u32 txint = FM10K_INT_MAP_DISABLE;
889 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
890 u8 reg_idx = ring->reg_idx;
891
892 /* disable queue to avoid issues while updating state */
893 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
894 fm10k_write_flush(hw);
895
896 /* possible poll here to verify ring resources have been cleaned */
897
898 /* set location and size for descriptor ring */
899 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
900 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
901 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
902
903 /* reset head and tail pointers */
904 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
905 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
906
907 /* store tail pointer */
908 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
909
910 /* reset ntu and ntc to place SW in sync with hardware */
911 ring->next_to_clean = 0;
912 ring->next_to_use = 0;
913
914 /* Map interrupt */
915 if (ring->q_vector) {
916 txint = ring->q_vector->v_idx + NON_Q_VECTORS(hw);
917 txint |= FM10K_INT_MAP_TIMER0;
918 }
919
920 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
921
922 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */
923 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
924 FM10K_PFVTCTL_FTAG_DESC_ENABLE);
925
926 /* Initialize XPS */
927 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
928 ring->q_vector)
929 netif_set_xps_queue(ring->netdev,
930 &ring->q_vector->affinity_mask,
931 ring->queue_index);
932
933 /* enable queue */
934 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
935}
936
937/**
938 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
939 * @interface: board private structure
940 * @ring: structure containing ring specific data
941 *
942 * Verify the Tx descriptor ring is ready for transmit.
943 **/
944static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
945 struct fm10k_ring *ring)
946{
947 struct fm10k_hw *hw = &interface->hw;
948 int wait_loop = 10;
949 u32 txdctl;
950 u8 reg_idx = ring->reg_idx;
951
952 /* if we are already enabled just exit */
953 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
954 return;
955
956 /* poll to verify queue is enabled */
957 do {
958 usleep_range(1000, 2000);
959 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
960 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
961 if (!wait_loop)
962 netif_err(interface, drv, interface->netdev,
963 "Could not enable Tx Queue %d\n", reg_idx);
964}
965
966/**
967 * fm10k_configure_tx - Configure Transmit Unit after Reset
968 * @interface: board private structure
969 *
970 * Configure the Tx unit of the MAC after a reset.
971 **/
972static void fm10k_configure_tx(struct fm10k_intfc *interface)
973{
974 int i;
975
976 /* Setup the HW Tx Head and Tail descriptor pointers */
977 for (i = 0; i < interface->num_tx_queues; i++)
978 fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
979
980 /* poll here to verify that Tx rings are now enabled */
981 for (i = 0; i < interface->num_tx_queues; i++)
982 fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
983}
984
985/**
986 * fm10k_configure_rx_ring - Configure Rx ring after Reset
987 * @interface: board private structure
988 * @ring: structure containing ring specific data
989 *
990 * Configure the Rx descriptor ring after a reset.
991 **/
992static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
993 struct fm10k_ring *ring)
994{
995 u64 rdba = ring->dma;
996 struct fm10k_hw *hw = &interface->hw;
997 u32 size = ring->count * sizeof(union fm10k_rx_desc);
998 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
999 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
1000 u32 rxint = FM10K_INT_MAP_DISABLE;
1001 u8 rx_pause = interface->rx_pause;
1002 u8 reg_idx = ring->reg_idx;
1003
1004 /* disable queue to avoid issues while updating state */
1005 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1006 rxqctl &= ~FM10K_RXQCTL_ENABLE;
1007 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1008 fm10k_write_flush(hw);
1009
1010 /* possible poll here to verify ring resources have been cleaned */
1011
1012 /* set location and size for descriptor ring */
1013 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1014 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1015 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1016
1017 /* reset head and tail pointers */
1018 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1019 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1020
1021 /* store tail pointer */
1022 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1023
1024 /* reset ntu and ntc to place SW in sync with hardware */
1025 ring->next_to_clean = 0;
1026 ring->next_to_use = 0;
1027 ring->next_to_alloc = 0;
1028
1029 /* Configure the Rx buffer size for one buff without split */
1030 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1031
1032 /* Configure the Rx ring to suppress loopback packets */
1033 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1034 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1035
1036 /* Enable drop on empty */
1037#ifdef CONFIG_DCB
1038 if (interface->pfc_en)
1039 rx_pause = interface->pfc_en;
1040#endif
1041 if (!(rx_pause & BIT(ring->qos_pc)))
1042 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1043
1044 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1045
1046 /* assign default VLAN to queue */
1047 ring->vid = hw->mac.default_vid;
1048
1049 /* if we have an active VLAN, disable default VLAN ID */
1050 if (test_bit(hw->mac.default_vid, interface->active_vlans))
1051 ring->vid |= FM10K_VLAN_CLEAR;
1052
1053 /* Map interrupt */
1054 if (ring->q_vector) {
1055 rxint = ring->q_vector->v_idx + NON_Q_VECTORS(hw);
1056 rxint |= FM10K_INT_MAP_TIMER1;
1057 }
1058
1059 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1060
1061 /* enable queue */
1062 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1063 rxqctl |= FM10K_RXQCTL_ENABLE;
1064 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1065
1066 /* place buffers on ring for receive data */
1067 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1068}
1069
1070/**
1071 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1072 * @interface: board private structure
1073 *
1074 * Configure the drop enable bits for the Rx rings.
1075 **/
1076void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1077{
1078 struct fm10k_hw *hw = &interface->hw;
1079 u8 rx_pause = interface->rx_pause;
1080 int i;
1081
1082#ifdef CONFIG_DCB
1083 if (interface->pfc_en)
1084 rx_pause = interface->pfc_en;
1085
1086#endif
1087 for (i = 0; i < interface->num_rx_queues; i++) {
1088 struct fm10k_ring *ring = interface->rx_ring[i];
1089 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1090 u8 reg_idx = ring->reg_idx;
1091
1092 if (!(rx_pause & BIT(ring->qos_pc)))
1093 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1094
1095 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1096 }
1097}
1098
1099/**
1100 * fm10k_configure_dglort - Configure Receive DGLORT after reset
1101 * @interface: board private structure
1102 *
1103 * Configure the DGLORT description and RSS tables.
1104 **/
1105static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1106{
1107 struct fm10k_dglort_cfg dglort = { 0 };
1108 struct fm10k_hw *hw = &interface->hw;
1109 int i;
1110 u32 mrqc;
1111
1112 /* Fill out hash function seeds */
1113 for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1114 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1115
1116 /* Write RETA table to hardware */
1117 for (i = 0; i < FM10K_RETA_SIZE; i++)
1118 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1119
1120 /* Generate RSS hash based on packet types, TCP/UDP
1121 * port numbers and/or IPv4/v6 src and dst addresses
1122 */
1123 mrqc = FM10K_MRQC_IPV4 |
1124 FM10K_MRQC_TCP_IPV4 |
1125 FM10K_MRQC_IPV6 |
1126 FM10K_MRQC_TCP_IPV6;
1127
1128 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1129 mrqc |= FM10K_MRQC_UDP_IPV4;
1130 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1131 mrqc |= FM10K_MRQC_UDP_IPV6;
1132
1133 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1134
1135 /* configure default DGLORT mapping for RSS/DCB */
1136 dglort.inner_rss = 1;
1137 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1138 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1139 hw->mac.ops.configure_dglort_map(hw, &dglort);
1140
1141 /* assign GLORT per queue for queue mapped testing */
1142 if (interface->glort_count > 64) {
1143 memset(&dglort, 0, sizeof(dglort));
1144 dglort.inner_rss = 1;
1145 dglort.glort = interface->glort + 64;
1146 dglort.idx = fm10k_dglort_pf_queue;
1147 dglort.queue_l = fls(interface->num_rx_queues - 1);
1148 hw->mac.ops.configure_dglort_map(hw, &dglort);
1149 }
1150
1151 /* assign glort value for RSS/DCB specific to this interface */
1152 memset(&dglort, 0, sizeof(dglort));
1153 dglort.inner_rss = 1;
1154 dglort.glort = interface->glort;
1155 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1156 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1157 /* configure DGLORT mapping for RSS/DCB */
1158 dglort.idx = fm10k_dglort_pf_rss;
1159 if (interface->l2_accel)
1160 dglort.shared_l = fls(interface->l2_accel->size);
1161 hw->mac.ops.configure_dglort_map(hw, &dglort);
1162}
1163
1164/**
1165 * fm10k_configure_rx - Configure Receive Unit after Reset
1166 * @interface: board private structure
1167 *
1168 * Configure the Rx unit of the MAC after a reset.
1169 **/
1170static void fm10k_configure_rx(struct fm10k_intfc *interface)
1171{
1172 int i;
1173
1174 /* Configure SWPRI to PC map */
1175 fm10k_configure_swpri_map(interface);
1176
1177 /* Configure RSS and DGLORT map */
1178 fm10k_configure_dglort(interface);
1179
1180 /* Setup the HW Rx Head and Tail descriptor pointers */
1181 for (i = 0; i < interface->num_rx_queues; i++)
1182 fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1183
1184 /* possible poll here to verify that Rx rings are now enabled */
1185}
1186
1187static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1188{
1189 struct fm10k_q_vector *q_vector;
1190 int q_idx;
1191
1192 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1193 q_vector = interface->q_vector[q_idx];
1194 napi_enable(&q_vector->napi);
1195 }
1196}
1197
1198static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1199{
1200 struct fm10k_q_vector *q_vector = data;
1201
1202 if (q_vector->rx.count || q_vector->tx.count)
1203 napi_schedule_irqoff(&q_vector->napi);
1204
1205 return IRQ_HANDLED;
1206}
1207
1208static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1209{
1210 struct fm10k_intfc *interface = data;
1211 struct fm10k_hw *hw = &interface->hw;
1212 struct fm10k_mbx_info *mbx = &hw->mbx;
1213
1214 /* re-enable mailbox interrupt and indicate 20us delay */
1215 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1216 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1217 FM10K_ITR_ENABLE);
1218
1219 /* service upstream mailbox */
1220 if (fm10k_mbx_trylock(interface)) {
1221 mbx->ops.process(hw, mbx);
1222 fm10k_mbx_unlock(interface);
1223 }
1224
1225 hw->mac.get_host_state = true;
1226 fm10k_service_event_schedule(interface);
1227
1228 return IRQ_HANDLED;
1229}
1230
1231#ifdef CONFIG_NET_POLL_CONTROLLER
1232/**
1233 * fm10k_netpoll - A Polling 'interrupt' handler
1234 * @netdev: network interface device structure
1235 *
1236 * This is used by netconsole to send skbs without having to re-enable
1237 * interrupts. It's not called while the normal interrupt routine is executing.
1238 **/
1239void fm10k_netpoll(struct net_device *netdev)
1240{
1241 struct fm10k_intfc *interface = netdev_priv(netdev);
1242 int i;
1243
1244 /* if interface is down do nothing */
1245 if (test_bit(__FM10K_DOWN, interface->state))
1246 return;
1247
1248 for (i = 0; i < interface->num_q_vectors; i++)
1249 fm10k_msix_clean_rings(0, interface->q_vector[i]);
1250}
1251
1252#endif
1253#define FM10K_ERR_MSG(type) case (type): error = #type; break
1254static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1255 struct fm10k_fault *fault)
1256{
1257 struct pci_dev *pdev = interface->pdev;
1258 struct fm10k_hw *hw = &interface->hw;
1259 struct fm10k_iov_data *iov_data = interface->iov_data;
1260 char *error;
1261
1262 switch (type) {
1263 case FM10K_PCA_FAULT:
1264 switch (fault->type) {
1265 default:
1266 error = "Unknown PCA error";
1267 break;
1268 FM10K_ERR_MSG(PCA_NO_FAULT);
1269 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1270 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1271 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1272 FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1273 FM10K_ERR_MSG(PCA_POISONED_TLP);
1274 FM10K_ERR_MSG(PCA_TLP_ABORT);
1275 }
1276 break;
1277 case FM10K_THI_FAULT:
1278 switch (fault->type) {
1279 default:
1280 error = "Unknown THI error";
1281 break;
1282 FM10K_ERR_MSG(THI_NO_FAULT);
1283 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1284 }
1285 break;
1286 case FM10K_FUM_FAULT:
1287 switch (fault->type) {
1288 default:
1289 error = "Unknown FUM error";
1290 break;
1291 FM10K_ERR_MSG(FUM_NO_FAULT);
1292 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1293 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1294 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1295 FM10K_ERR_MSG(FUM_RO_ERROR);
1296 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1297 FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1298 FM10K_ERR_MSG(FUM_INVALID_TYPE);
1299 FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1300 FM10K_ERR_MSG(FUM_INVALID_BE);
1301 FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1302 }
1303 break;
1304 default:
1305 error = "Undocumented fault";
1306 break;
1307 }
1308
1309 dev_warn(&pdev->dev,
1310 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1311 error, fault->address, fault->specinfo,
1312 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1313
1314 /* For VF faults, clear out the respective LPORT, reset the queue
1315 * resources, and then reconnect to the mailbox. This allows the
1316 * VF in question to resume behavior. For transient faults that are
1317 * the result of non-malicious behavior this will log the fault and
1318 * allow the VF to resume functionality. Obviously for malicious VFs
1319 * they will be able to attempt malicious behavior again. In this
1320 * case, the system administrator will need to step in and manually
1321 * remove or disable the VF in question.
1322 */
1323 if (fault->func && iov_data) {
1324 int vf = fault->func - 1;
1325 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1326
1327 hw->iov.ops.reset_lport(hw, vf_info);
1328 hw->iov.ops.reset_resources(hw, vf_info);
1329
1330 /* reset_lport disables the VF, so re-enable it */
1331 hw->iov.ops.set_lport(hw, vf_info, vf,
1332 FM10K_VF_FLAG_MULTI_CAPABLE);
1333
1334 /* reset_resources will disconnect from the mbx */
1335 vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1336 }
1337}
1338
1339static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1340{
1341 struct fm10k_hw *hw = &interface->hw;
1342 struct fm10k_fault fault = { 0 };
1343 int type, err;
1344
1345 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1346 eicr;
1347 eicr >>= 1, type += FM10K_FAULT_SIZE) {
1348 /* only check if there is an error reported */
1349 if (!(eicr & 0x1))
1350 continue;
1351
1352 /* retrieve fault info */
1353 err = hw->mac.ops.get_fault(hw, type, &fault);
1354 if (err) {
1355 dev_err(&interface->pdev->dev,
1356 "error reading fault\n");
1357 continue;
1358 }
1359
1360 fm10k_handle_fault(interface, type, &fault);
1361 }
1362}
1363
1364static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1365{
1366 struct fm10k_hw *hw = &interface->hw;
1367 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1368 u32 maxholdq;
1369 int q;
1370
1371 if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1372 return;
1373
1374 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1375 if (maxholdq)
1376 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1377 for (q = 255;;) {
1378 if (maxholdq & BIT(31)) {
1379 if (q < FM10K_MAX_QUEUES_PF) {
1380 interface->rx_overrun_pf++;
1381 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1382 } else {
1383 interface->rx_overrun_vf++;
1384 }
1385 }
1386
1387 maxholdq *= 2;
1388 if (!maxholdq)
1389 q &= ~(32 - 1);
1390
1391 if (!q)
1392 break;
1393
1394 if (q-- % 32)
1395 continue;
1396
1397 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1398 if (maxholdq)
1399 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1400 }
1401}
1402
1403static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1404{
1405 struct fm10k_intfc *interface = data;
1406 struct fm10k_hw *hw = &interface->hw;
1407 struct fm10k_mbx_info *mbx = &hw->mbx;
1408 u32 eicr;
1409 s32 err = 0;
1410
1411 /* unmask any set bits related to this interrupt */
1412 eicr = fm10k_read_reg(hw, FM10K_EICR);
1413 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1414 FM10K_EICR_SWITCHREADY |
1415 FM10K_EICR_SWITCHNOTREADY));
1416
1417 /* report any faults found to the message log */
1418 fm10k_report_fault(interface, eicr);
1419
1420 /* reset any queues disabled due to receiver overrun */
1421 fm10k_reset_drop_on_empty(interface, eicr);
1422
1423 /* service mailboxes */
1424 if (fm10k_mbx_trylock(interface)) {
1425 err = mbx->ops.process(hw, mbx);
1426 /* handle VFLRE events */
1427 fm10k_iov_event(interface);
1428 fm10k_mbx_unlock(interface);
1429 }
1430
1431 if (err == FM10K_ERR_RESET_REQUESTED)
1432 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1433
1434 /* if switch toggled state we should reset GLORTs */
1435 if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1436 /* force link down for at least 4 seconds */
1437 interface->link_down_event = jiffies + (4 * HZ);
1438 set_bit(__FM10K_LINK_DOWN, interface->state);
1439
1440 /* reset dglort_map back to no config */
1441 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1442 }
1443
1444 /* we should validate host state after interrupt event */
1445 hw->mac.get_host_state = true;
1446
1447 /* validate host state, and handle VF mailboxes in the service task */
1448 fm10k_service_event_schedule(interface);
1449
1450 /* re-enable mailbox interrupt and indicate 20us delay */
1451 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1452 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1453 FM10K_ITR_ENABLE);
1454
1455 return IRQ_HANDLED;
1456}
1457
1458void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1459{
1460 struct fm10k_hw *hw = &interface->hw;
1461 struct msix_entry *entry;
1462 int itr_reg;
1463
1464 /* no mailbox IRQ to free if MSI-X is not enabled */
1465 if (!interface->msix_entries)
1466 return;
1467
1468 entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1469
1470 /* disconnect the mailbox */
1471 hw->mbx.ops.disconnect(hw, &hw->mbx);
1472
1473 /* disable Mailbox cause */
1474 if (hw->mac.type == fm10k_mac_pf) {
1475 fm10k_write_reg(hw, FM10K_EIMR,
1476 FM10K_EIMR_DISABLE(PCA_FAULT) |
1477 FM10K_EIMR_DISABLE(FUM_FAULT) |
1478 FM10K_EIMR_DISABLE(MAILBOX) |
1479 FM10K_EIMR_DISABLE(SWITCHREADY) |
1480 FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1481 FM10K_EIMR_DISABLE(SRAMERROR) |
1482 FM10K_EIMR_DISABLE(VFLR) |
1483 FM10K_EIMR_DISABLE(MAXHOLDTIME));
1484 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1485 } else {
1486 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1487 }
1488
1489 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1490
1491 free_irq(entry->vector, interface);
1492}
1493
1494static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1495 struct fm10k_mbx_info *mbx)
1496{
1497 bool vlan_override = hw->mac.vlan_override;
1498 u16 default_vid = hw->mac.default_vid;
1499 struct fm10k_intfc *interface;
1500 s32 err;
1501
1502 err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1503 if (err)
1504 return err;
1505
1506 interface = container_of(hw, struct fm10k_intfc, hw);
1507
1508 /* MAC was changed so we need reset */
1509 if (is_valid_ether_addr(hw->mac.perm_addr) &&
1510 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1511 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1512
1513 /* VLAN override was changed, or default VLAN changed */
1514 if ((vlan_override != hw->mac.vlan_override) ||
1515 (default_vid != hw->mac.default_vid))
1516 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1517
1518 return 0;
1519}
1520
1521/* generic error handler for mailbox issues */
1522static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1523 struct fm10k_mbx_info __always_unused *mbx)
1524{
1525 struct fm10k_intfc *interface;
1526 struct pci_dev *pdev;
1527
1528 interface = container_of(hw, struct fm10k_intfc, hw);
1529 pdev = interface->pdev;
1530
1531 dev_err(&pdev->dev, "Unknown message ID %u\n",
1532 **results & FM10K_TLV_ID_MASK);
1533
1534 return 0;
1535}
1536
1537static const struct fm10k_msg_data vf_mbx_data[] = {
1538 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1539 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1540 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1541 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1542};
1543
1544static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1545{
1546 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1547 struct net_device *dev = interface->netdev;
1548 struct fm10k_hw *hw = &interface->hw;
1549 int err;
1550
1551 /* Use timer0 for interrupt moderation on the mailbox */
1552 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1553
1554 /* register mailbox handlers */
1555 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1556 if (err)
1557 return err;
1558
1559 /* request the IRQ */
1560 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1561 dev->name, interface);
1562 if (err) {
1563 netif_err(interface, probe, dev,
1564 "request_irq for msix_mbx failed: %d\n", err);
1565 return err;
1566 }
1567
1568 /* map all of the interrupt sources */
1569 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1570
1571 /* enable interrupt */
1572 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1573
1574 return 0;
1575}
1576
1577static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1578 struct fm10k_mbx_info *mbx)
1579{
1580 struct fm10k_intfc *interface;
1581 u32 dglort_map = hw->mac.dglort_map;
1582 s32 err;
1583
1584 interface = container_of(hw, struct fm10k_intfc, hw);
1585
1586 err = fm10k_msg_err_pf(hw, results, mbx);
1587 if (!err && hw->swapi.status) {
1588 /* force link down for a reasonable delay */
1589 interface->link_down_event = jiffies + (2 * HZ);
1590 set_bit(__FM10K_LINK_DOWN, interface->state);
1591
1592 /* reset dglort_map back to no config */
1593 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1594
1595 fm10k_service_event_schedule(interface);
1596
1597 /* prevent overloading kernel message buffer */
1598 if (interface->lport_map_failed)
1599 return 0;
1600
1601 interface->lport_map_failed = true;
1602
1603 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1604 dev_warn(&interface->pdev->dev,
1605 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1606 dev_warn(&interface->pdev->dev,
1607 "request logical port map failed: %d\n",
1608 hw->swapi.status);
1609
1610 return 0;
1611 }
1612
1613 err = fm10k_msg_lport_map_pf(hw, results, mbx);
1614 if (err)
1615 return err;
1616
1617 interface->lport_map_failed = false;
1618
1619 /* we need to reset if port count was just updated */
1620 if (dglort_map != hw->mac.dglort_map)
1621 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1622
1623 return 0;
1624}
1625
1626static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1627 struct fm10k_mbx_info __always_unused *mbx)
1628{
1629 struct fm10k_intfc *interface;
1630 u16 glort, pvid;
1631 u32 pvid_update;
1632 s32 err;
1633
1634 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1635 &pvid_update);
1636 if (err)
1637 return err;
1638
1639 /* extract values from the pvid update */
1640 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1641 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1642
1643 /* if glort is not valid return error */
1644 if (!fm10k_glort_valid_pf(hw, glort))
1645 return FM10K_ERR_PARAM;
1646
1647 /* verify VLAN ID is valid */
1648 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1649 return FM10K_ERR_PARAM;
1650
1651 interface = container_of(hw, struct fm10k_intfc, hw);
1652
1653 /* check to see if this belongs to one of the VFs */
1654 err = fm10k_iov_update_pvid(interface, glort, pvid);
1655 if (!err)
1656 return 0;
1657
1658 /* we need to reset if default VLAN was just updated */
1659 if (pvid != hw->mac.default_vid)
1660 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1661
1662 hw->mac.default_vid = pvid;
1663
1664 return 0;
1665}
1666
1667static const struct fm10k_msg_data pf_mbx_data[] = {
1668 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1669 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1670 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1671 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1672 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1673 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1674 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1675};
1676
1677static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1678{
1679 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1680 struct net_device *dev = interface->netdev;
1681 struct fm10k_hw *hw = &interface->hw;
1682 int err;
1683
1684 /* Use timer0 for interrupt moderation on the mailbox */
1685 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1686 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1687
1688 /* register mailbox handlers */
1689 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1690 if (err)
1691 return err;
1692
1693 /* request the IRQ */
1694 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1695 dev->name, interface);
1696 if (err) {
1697 netif_err(interface, probe, dev,
1698 "request_irq for msix_mbx failed: %d\n", err);
1699 return err;
1700 }
1701
1702 /* Enable interrupts w/ no moderation for "other" interrupts */
1703 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1704 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1705 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1706 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1707 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1708
1709 /* Enable interrupts w/ moderation for mailbox */
1710 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1711
1712 /* Enable individual interrupt causes */
1713 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1714 FM10K_EIMR_ENABLE(FUM_FAULT) |
1715 FM10K_EIMR_ENABLE(MAILBOX) |
1716 FM10K_EIMR_ENABLE(SWITCHREADY) |
1717 FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1718 FM10K_EIMR_ENABLE(SRAMERROR) |
1719 FM10K_EIMR_ENABLE(VFLR) |
1720 FM10K_EIMR_ENABLE(MAXHOLDTIME));
1721
1722 /* enable interrupt */
1723 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1724
1725 return 0;
1726}
1727
1728int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1729{
1730 struct fm10k_hw *hw = &interface->hw;
1731 int err;
1732
1733 /* enable Mailbox cause */
1734 if (hw->mac.type == fm10k_mac_pf)
1735 err = fm10k_mbx_request_irq_pf(interface);
1736 else
1737 err = fm10k_mbx_request_irq_vf(interface);
1738 if (err)
1739 return err;
1740
1741 /* connect mailbox */
1742 err = hw->mbx.ops.connect(hw, &hw->mbx);
1743
1744 /* if the mailbox failed to connect, then free IRQ */
1745 if (err)
1746 fm10k_mbx_free_irq(interface);
1747
1748 return err;
1749}
1750
1751/**
1752 * fm10k_qv_free_irq - release interrupts associated with queue vectors
1753 * @interface: board private structure
1754 *
1755 * Release all interrupts associated with this interface
1756 **/
1757void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1758{
1759 int vector = interface->num_q_vectors;
1760 struct fm10k_hw *hw = &interface->hw;
1761 struct msix_entry *entry;
1762
1763 entry = &interface->msix_entries[NON_Q_VECTORS(hw) + vector];
1764
1765 while (vector) {
1766 struct fm10k_q_vector *q_vector;
1767
1768 vector--;
1769 entry--;
1770 q_vector = interface->q_vector[vector];
1771
1772 if (!q_vector->tx.count && !q_vector->rx.count)
1773 continue;
1774
1775 /* clear the affinity_mask in the IRQ descriptor */
1776 irq_set_affinity_hint(entry->vector, NULL);
1777
1778 /* disable interrupts */
1779 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1780
1781 free_irq(entry->vector, q_vector);
1782 }
1783}
1784
1785/**
1786 * fm10k_qv_request_irq - initialize interrupts for queue vectors
1787 * @interface: board private structure
1788 *
1789 * Attempts to configure interrupts using the best available
1790 * capabilities of the hardware and kernel.
1791 **/
1792int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1793{
1794 struct net_device *dev = interface->netdev;
1795 struct fm10k_hw *hw = &interface->hw;
1796 struct msix_entry *entry;
1797 unsigned int ri = 0, ti = 0;
1798 int vector, err;
1799
1800 entry = &interface->msix_entries[NON_Q_VECTORS(hw)];
1801
1802 for (vector = 0; vector < interface->num_q_vectors; vector++) {
1803 struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1804
1805 /* name the vector */
1806 if (q_vector->tx.count && q_vector->rx.count) {
1807 snprintf(q_vector->name, sizeof(q_vector->name),
1808 "%s-TxRx-%u", dev->name, ri++);
1809 ti++;
1810 } else if (q_vector->rx.count) {
1811 snprintf(q_vector->name, sizeof(q_vector->name),
1812 "%s-rx-%u", dev->name, ri++);
1813 } else if (q_vector->tx.count) {
1814 snprintf(q_vector->name, sizeof(q_vector->name),
1815 "%s-tx-%u", dev->name, ti++);
1816 } else {
1817 /* skip this unused q_vector */
1818 continue;
1819 }
1820
1821 /* Assign ITR register to q_vector */
1822 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1823 &interface->uc_addr[FM10K_ITR(entry->entry)] :
1824 &interface->uc_addr[FM10K_VFITR(entry->entry)];
1825
1826 /* request the IRQ */
1827 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1828 q_vector->name, q_vector);
1829 if (err) {
1830 netif_err(interface, probe, dev,
1831 "request_irq failed for MSIX interrupt Error: %d\n",
1832 err);
1833 goto err_out;
1834 }
1835
1836 /* assign the mask for this irq */
1837 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1838
1839 /* Enable q_vector */
1840 writel(FM10K_ITR_ENABLE, q_vector->itr);
1841
1842 entry++;
1843 }
1844
1845 return 0;
1846
1847err_out:
1848 /* wind through the ring freeing all entries and vectors */
1849 while (vector) {
1850 struct fm10k_q_vector *q_vector;
1851
1852 entry--;
1853 vector--;
1854 q_vector = interface->q_vector[vector];
1855
1856 if (!q_vector->tx.count && !q_vector->rx.count)
1857 continue;
1858
1859 /* clear the affinity_mask in the IRQ descriptor */
1860 irq_set_affinity_hint(entry->vector, NULL);
1861
1862 /* disable interrupts */
1863 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1864
1865 free_irq(entry->vector, q_vector);
1866 }
1867
1868 return err;
1869}
1870
1871void fm10k_up(struct fm10k_intfc *interface)
1872{
1873 struct fm10k_hw *hw = &interface->hw;
1874
1875 /* Enable Tx/Rx DMA */
1876 hw->mac.ops.start_hw(hw);
1877
1878 /* configure Tx descriptor rings */
1879 fm10k_configure_tx(interface);
1880
1881 /* configure Rx descriptor rings */
1882 fm10k_configure_rx(interface);
1883
1884 /* configure interrupts */
1885 hw->mac.ops.update_int_moderator(hw);
1886
1887 /* enable statistics capture again */
1888 clear_bit(__FM10K_UPDATING_STATS, interface->state);
1889
1890 /* clear down bit to indicate we are ready to go */
1891 clear_bit(__FM10K_DOWN, interface->state);
1892
1893 /* enable polling cleanups */
1894 fm10k_napi_enable_all(interface);
1895
1896 /* re-establish Rx filters */
1897 fm10k_restore_rx_state(interface);
1898
1899 /* enable transmits */
1900 netif_tx_start_all_queues(interface->netdev);
1901
1902 /* kick off the service timer now */
1903 hw->mac.get_host_state = true;
1904 mod_timer(&interface->service_timer, jiffies);
1905}
1906
1907static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1908{
1909 struct fm10k_q_vector *q_vector;
1910 int q_idx;
1911
1912 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1913 q_vector = interface->q_vector[q_idx];
1914 napi_disable(&q_vector->napi);
1915 }
1916}
1917
1918void fm10k_down(struct fm10k_intfc *interface)
1919{
1920 struct net_device *netdev = interface->netdev;
1921 struct fm10k_hw *hw = &interface->hw;
1922 int err, i = 0, count = 0;
1923
1924 /* signal that we are down to the interrupt handler and service task */
1925 if (test_and_set_bit(__FM10K_DOWN, interface->state))
1926 return;
1927
1928 /* call carrier off first to avoid false dev_watchdog timeouts */
1929 netif_carrier_off(netdev);
1930
1931 /* disable transmits */
1932 netif_tx_stop_all_queues(netdev);
1933 netif_tx_disable(netdev);
1934
1935 /* reset Rx filters */
1936 fm10k_reset_rx_state(interface);
1937
1938 /* disable polling routines */
1939 fm10k_napi_disable_all(interface);
1940
1941 /* capture stats one last time before stopping interface */
1942 fm10k_update_stats(interface);
1943
1944 /* prevent updating statistics while we're down */
1945 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1946 usleep_range(1000, 2000);
1947
1948 /* skip waiting for TX DMA if we lost PCIe link */
1949 if (FM10K_REMOVED(hw->hw_addr))
1950 goto skip_tx_dma_drain;
1951
1952 /* In some rare circumstances it can take a while for Tx queues to
1953 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1954 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1955 * until the Tx queues have emptied, or until a number of retries. If
1956 * we fail to clear within the retry loop, we will issue a warning
1957 * indicating that Tx DMA is probably hung. Note this means we call
1958 * .stop_hw() twice but this shouldn't cause any problems.
1959 */
1960 err = hw->mac.ops.stop_hw(hw);
1961 if (err != FM10K_ERR_REQUESTS_PENDING)
1962 goto skip_tx_dma_drain;
1963
1964#define TX_DMA_DRAIN_RETRIES 25
1965 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1966 usleep_range(10000, 20000);
1967
1968 /* start checking at the last ring to have pending Tx */
1969 for (; i < interface->num_tx_queues; i++)
1970 if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1971 break;
1972
1973 /* if all the queues are drained, we can break now */
1974 if (i == interface->num_tx_queues)
1975 break;
1976 }
1977
1978 if (count >= TX_DMA_DRAIN_RETRIES)
1979 dev_err(&interface->pdev->dev,
1980 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1981 count);
1982skip_tx_dma_drain:
1983 /* Disable DMA engine for Tx/Rx */
1984 err = hw->mac.ops.stop_hw(hw);
1985 if (err == FM10K_ERR_REQUESTS_PENDING)
1986 dev_err(&interface->pdev->dev,
1987 "due to pending requests hw was not shut down gracefully\n");
1988 else if (err)
1989 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1990
1991 /* free any buffers still on the rings */
1992 fm10k_clean_all_tx_rings(interface);
1993 fm10k_clean_all_rx_rings(interface);
1994}
1995
1996/**
1997 * fm10k_sw_init - Initialize general software structures
1998 * @interface: host interface private structure to initialize
1999 * @ent: PCI device ID entry
2000 *
2001 * fm10k_sw_init initializes the interface private data structure.
2002 * Fields are initialized based on PCI device information and
2003 * OS network device settings (MTU size).
2004 **/
2005static int fm10k_sw_init(struct fm10k_intfc *interface,
2006 const struct pci_device_id *ent)
2007{
2008 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
2009 struct fm10k_hw *hw = &interface->hw;
2010 struct pci_dev *pdev = interface->pdev;
2011 struct net_device *netdev = interface->netdev;
2012 u32 rss_key[FM10K_RSSRK_SIZE];
2013 unsigned int rss;
2014 int err;
2015
2016 /* initialize back pointer */
2017 hw->back = interface;
2018 hw->hw_addr = interface->uc_addr;
2019
2020 /* PCI config space info */
2021 hw->vendor_id = pdev->vendor;
2022 hw->device_id = pdev->device;
2023 hw->revision_id = pdev->revision;
2024 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2025 hw->subsystem_device_id = pdev->subsystem_device;
2026
2027 /* Setup hw api */
2028 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
2029 hw->mac.type = fi->mac;
2030
2031 /* Setup IOV handlers */
2032 if (fi->iov_ops)
2033 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
2034
2035 /* Set common capability flags and settings */
2036 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
2037 interface->ring_feature[RING_F_RSS].limit = rss;
2038 fi->get_invariants(hw);
2039
2040 /* pick up the PCIe bus settings for reporting later */
2041 if (hw->mac.ops.get_bus_info)
2042 hw->mac.ops.get_bus_info(hw);
2043
2044 /* limit the usable DMA range */
2045 if (hw->mac.ops.set_dma_mask)
2046 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2047
2048 /* update netdev with DMA restrictions */
2049 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2050 netdev->features |= NETIF_F_HIGHDMA;
2051 netdev->vlan_features |= NETIF_F_HIGHDMA;
2052 }
2053
2054 /* reset and initialize the hardware so it is in a known state */
2055 err = hw->mac.ops.reset_hw(hw);
2056 if (err) {
2057 dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2058 return err;
2059 }
2060
2061 err = hw->mac.ops.init_hw(hw);
2062 if (err) {
2063 dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2064 return err;
2065 }
2066
2067 /* initialize hardware statistics */
2068 hw->mac.ops.update_hw_stats(hw, &interface->stats);
2069
2070 /* Set upper limit on IOV VFs that can be allocated */
2071 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2072
2073 /* Start with random Ethernet address */
2074 eth_random_addr(hw->mac.addr);
2075
2076 /* Initialize MAC address from hardware */
2077 err = hw->mac.ops.read_mac_addr(hw);
2078 if (err) {
2079 dev_warn(&pdev->dev,
2080 "Failed to obtain MAC address defaulting to random\n");
2081 /* tag address assignment as random */
2082 netdev->addr_assign_type |= NET_ADDR_RANDOM;
2083 }
2084
2085 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2086 ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2087
2088 if (!is_valid_ether_addr(netdev->perm_addr)) {
2089 dev_err(&pdev->dev, "Invalid MAC Address\n");
2090 return -EIO;
2091 }
2092
2093 /* initialize DCBNL interface */
2094 fm10k_dcbnl_set_ops(netdev);
2095
2096 /* set default ring sizes */
2097 interface->tx_ring_count = FM10K_DEFAULT_TXD;
2098 interface->rx_ring_count = FM10K_DEFAULT_RXD;
2099
2100 /* set default interrupt moderation */
2101 interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2102 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2103
2104 /* initialize udp port lists */
2105 INIT_LIST_HEAD(&interface->vxlan_port);
2106 INIT_LIST_HEAD(&interface->geneve_port);
2107
2108 /* Initialize the MAC/VLAN queue */
2109 INIT_LIST_HEAD(&interface->macvlan_requests);
2110
2111 netdev_rss_key_fill(rss_key, sizeof(rss_key));
2112 memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2113
2114 /* Initialize the mailbox lock */
2115 spin_lock_init(&interface->mbx_lock);
2116 spin_lock_init(&interface->macvlan_lock);
2117
2118 /* Start off interface as being down */
2119 set_bit(__FM10K_DOWN, interface->state);
2120 set_bit(__FM10K_UPDATING_STATS, interface->state);
2121
2122 return 0;
2123}
2124
2125/**
2126 * fm10k_probe - Device Initialization Routine
2127 * @pdev: PCI device information struct
2128 * @ent: entry in fm10k_pci_tbl
2129 *
2130 * Returns 0 on success, negative on failure
2131 *
2132 * fm10k_probe initializes an interface identified by a pci_dev structure.
2133 * The OS initialization, configuring of the interface private structure,
2134 * and a hardware reset occur.
2135 **/
2136static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2137{
2138 struct net_device *netdev;
2139 struct fm10k_intfc *interface;
2140 int err;
2141
2142 if (pdev->error_state != pci_channel_io_normal) {
2143 dev_err(&pdev->dev,
2144 "PCI device still in an error state. Unable to load...\n");
2145 return -EIO;
2146 }
2147
2148 err = pci_enable_device_mem(pdev);
2149 if (err) {
2150 dev_err(&pdev->dev,
2151 "PCI enable device failed: %d\n", err);
2152 return err;
2153 }
2154
2155 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2156 if (err)
2157 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2158 if (err) {
2159 dev_err(&pdev->dev,
2160 "DMA configuration failed: %d\n", err);
2161 goto err_dma;
2162 }
2163
2164 err = pci_request_mem_regions(pdev, fm10k_driver_name);
2165 if (err) {
2166 dev_err(&pdev->dev,
2167 "pci_request_selected_regions failed: %d\n", err);
2168 goto err_pci_reg;
2169 }
2170
2171 pci_enable_pcie_error_reporting(pdev);
2172
2173 pci_set_master(pdev);
2174 pci_save_state(pdev);
2175
2176 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2177 if (!netdev) {
2178 err = -ENOMEM;
2179 goto err_alloc_netdev;
2180 }
2181
2182 SET_NETDEV_DEV(netdev, &pdev->dev);
2183
2184 interface = netdev_priv(netdev);
2185 pci_set_drvdata(pdev, interface);
2186
2187 interface->netdev = netdev;
2188 interface->pdev = pdev;
2189
2190 interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2191 FM10K_UC_ADDR_SIZE);
2192 if (!interface->uc_addr) {
2193 err = -EIO;
2194 goto err_ioremap;
2195 }
2196
2197 err = fm10k_sw_init(interface, ent);
2198 if (err)
2199 goto err_sw_init;
2200
2201 /* enable debugfs support */
2202 fm10k_dbg_intfc_init(interface);
2203
2204 err = fm10k_init_queueing_scheme(interface);
2205 if (err)
2206 goto err_sw_init;
2207
2208 /* the mbx interrupt might attempt to schedule the service task, so we
2209 * must ensure it is disabled since we haven't yet requested the timer
2210 * or work item.
2211 */
2212 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2213
2214 err = fm10k_mbx_request_irq(interface);
2215 if (err)
2216 goto err_mbx_interrupt;
2217
2218 /* final check of hardware state before registering the interface */
2219 err = fm10k_hw_ready(interface);
2220 if (err)
2221 goto err_register;
2222
2223 err = register_netdev(netdev);
2224 if (err)
2225 goto err_register;
2226
2227 /* carrier off reporting is important to ethtool even BEFORE open */
2228 netif_carrier_off(netdev);
2229
2230 /* stop all the transmit queues from transmitting until link is up */
2231 netif_tx_stop_all_queues(netdev);
2232
2233 /* Initialize service timer and service task late in order to avoid
2234 * cleanup issues.
2235 */
2236 timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2237 INIT_WORK(&interface->service_task, fm10k_service_task);
2238
2239 /* Setup the MAC/VLAN queue */
2240 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2241
2242 /* kick off service timer now, even when interface is down */
2243 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2244
2245 /* print warning for non-optimal configurations */
2246 pcie_print_link_status(interface->pdev);
2247
2248 /* report MAC address for logging */
2249 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2250
2251 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2252 fm10k_iov_configure(pdev, 0);
2253
2254 /* clear the service task disable bit and kick off service task */
2255 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2256 fm10k_service_event_schedule(interface);
2257
2258 return 0;
2259
2260err_register:
2261 fm10k_mbx_free_irq(interface);
2262err_mbx_interrupt:
2263 fm10k_clear_queueing_scheme(interface);
2264err_sw_init:
2265 if (interface->sw_addr)
2266 iounmap(interface->sw_addr);
2267 iounmap(interface->uc_addr);
2268err_ioremap:
2269 free_netdev(netdev);
2270err_alloc_netdev:
2271 pci_release_mem_regions(pdev);
2272err_pci_reg:
2273err_dma:
2274 pci_disable_device(pdev);
2275 return err;
2276}
2277
2278/**
2279 * fm10k_remove - Device Removal Routine
2280 * @pdev: PCI device information struct
2281 *
2282 * fm10k_remove is called by the PCI subsystem to alert the driver
2283 * that it should release a PCI device. The could be caused by a
2284 * Hot-Plug event, or because the driver is going to be removed from
2285 * memory.
2286 **/
2287static void fm10k_remove(struct pci_dev *pdev)
2288{
2289 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2290 struct net_device *netdev = interface->netdev;
2291
2292 del_timer_sync(&interface->service_timer);
2293
2294 fm10k_stop_service_event(interface);
2295 fm10k_stop_macvlan_task(interface);
2296
2297 /* Remove all pending MAC/VLAN requests */
2298 fm10k_clear_macvlan_queue(interface, interface->glort, true);
2299
2300 /* free netdev, this may bounce the interrupts due to setup_tc */
2301 if (netdev->reg_state == NETREG_REGISTERED)
2302 unregister_netdev(netdev);
2303
2304 /* release VFs */
2305 fm10k_iov_disable(pdev);
2306
2307 /* disable mailbox interrupt */
2308 fm10k_mbx_free_irq(interface);
2309
2310 /* free interrupts */
2311 fm10k_clear_queueing_scheme(interface);
2312
2313 /* remove any debugfs interfaces */
2314 fm10k_dbg_intfc_exit(interface);
2315
2316 if (interface->sw_addr)
2317 iounmap(interface->sw_addr);
2318 iounmap(interface->uc_addr);
2319
2320 free_netdev(netdev);
2321
2322 pci_release_mem_regions(pdev);
2323
2324 pci_disable_pcie_error_reporting(pdev);
2325
2326 pci_disable_device(pdev);
2327}
2328
2329static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2330{
2331 /* the watchdog task reads from registers, which might appear like
2332 * a surprise remove if the PCIe device is disabled while we're
2333 * stopped. We stop the watchdog task until after we resume software
2334 * activity.
2335 *
2336 * Note that the MAC/VLAN task will be stopped as part of preparing
2337 * for reset so we don't need to handle it here.
2338 */
2339 fm10k_stop_service_event(interface);
2340
2341 if (fm10k_prepare_for_reset(interface))
2342 set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2343}
2344
2345static int fm10k_handle_resume(struct fm10k_intfc *interface)
2346{
2347 struct fm10k_hw *hw = &interface->hw;
2348 int err;
2349
2350 /* Even if we didn't properly prepare for reset in
2351 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2352 */
2353 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2354 dev_warn(&interface->pdev->dev,
2355 "Device was shut down as part of suspend... Attempting to recover\n");
2356
2357 /* reset statistics starting values */
2358 hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2359
2360 err = fm10k_handle_reset(interface);
2361 if (err)
2362 return err;
2363
2364 /* assume host is not ready, to prevent race with watchdog in case we
2365 * actually don't have connection to the switch
2366 */
2367 interface->host_ready = false;
2368 fm10k_watchdog_host_not_ready(interface);
2369
2370 /* force link to stay down for a second to prevent link flutter */
2371 interface->link_down_event = jiffies + (HZ);
2372 set_bit(__FM10K_LINK_DOWN, interface->state);
2373
2374 /* restart the service task */
2375 fm10k_start_service_event(interface);
2376
2377 /* Restart the MAC/VLAN request queue in-case of outstanding events */
2378 fm10k_macvlan_schedule(interface);
2379
2380 return err;
2381}
2382
2383/**
2384 * fm10k_resume - Generic PM resume hook
2385 * @dev: generic device structure
2386 *
2387 * Generic PM hook used when waking the device from a low power state after
2388 * suspend or hibernation. This function does not need to handle lower PCIe
2389 * device state as the stack takes care of that for us.
2390 **/
2391static int __maybe_unused fm10k_resume(struct device *dev)
2392{
2393 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev));
2394 struct net_device *netdev = interface->netdev;
2395 struct fm10k_hw *hw = &interface->hw;
2396 int err;
2397
2398 /* refresh hw_addr in case it was dropped */
2399 hw->hw_addr = interface->uc_addr;
2400
2401 err = fm10k_handle_resume(interface);
2402 if (err)
2403 return err;
2404
2405 netif_device_attach(netdev);
2406
2407 return 0;
2408}
2409
2410/**
2411 * fm10k_suspend - Generic PM suspend hook
2412 * @dev: generic device structure
2413 *
2414 * Generic PM hook used when setting the device into a low power state for
2415 * system suspend or hibernation. This function does not need to handle lower
2416 * PCIe device state as the stack takes care of that for us.
2417 **/
2418static int __maybe_unused fm10k_suspend(struct device *dev)
2419{
2420 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev));
2421 struct net_device *netdev = interface->netdev;
2422
2423 netif_device_detach(netdev);
2424
2425 fm10k_prepare_suspend(interface);
2426
2427 return 0;
2428}
2429
2430/**
2431 * fm10k_io_error_detected - called when PCI error is detected
2432 * @pdev: Pointer to PCI device
2433 * @state: The current pci connection state
2434 *
2435 * This function is called after a PCI bus error affecting
2436 * this device has been detected.
2437 */
2438static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2439 pci_channel_state_t state)
2440{
2441 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2442 struct net_device *netdev = interface->netdev;
2443
2444 netif_device_detach(netdev);
2445
2446 if (state == pci_channel_io_perm_failure)
2447 return PCI_ERS_RESULT_DISCONNECT;
2448
2449 fm10k_prepare_suspend(interface);
2450
2451 /* Request a slot reset. */
2452 return PCI_ERS_RESULT_NEED_RESET;
2453}
2454
2455/**
2456 * fm10k_io_slot_reset - called after the pci bus has been reset.
2457 * @pdev: Pointer to PCI device
2458 *
2459 * Restart the card from scratch, as if from a cold-boot.
2460 */
2461static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2462{
2463 pci_ers_result_t result;
2464
2465 if (pci_reenable_device(pdev)) {
2466 dev_err(&pdev->dev,
2467 "Cannot re-enable PCI device after reset.\n");
2468 result = PCI_ERS_RESULT_DISCONNECT;
2469 } else {
2470 pci_set_master(pdev);
2471 pci_restore_state(pdev);
2472
2473 /* After second error pci->state_saved is false, this
2474 * resets it so EEH doesn't break.
2475 */
2476 pci_save_state(pdev);
2477
2478 pci_wake_from_d3(pdev, false);
2479
2480 result = PCI_ERS_RESULT_RECOVERED;
2481 }
2482
2483 pci_cleanup_aer_uncorrect_error_status(pdev);
2484
2485 return result;
2486}
2487
2488/**
2489 * fm10k_io_resume - called when traffic can start flowing again.
2490 * @pdev: Pointer to PCI device
2491 *
2492 * This callback is called when the error recovery driver tells us that
2493 * its OK to resume normal operation.
2494 */
2495static void fm10k_io_resume(struct pci_dev *pdev)
2496{
2497 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2498 struct net_device *netdev = interface->netdev;
2499 int err;
2500
2501 err = fm10k_handle_resume(interface);
2502
2503 if (err)
2504 dev_warn(&pdev->dev,
2505 "%s failed: %d\n", __func__, err);
2506 else
2507 netif_device_attach(netdev);
2508}
2509
2510/**
2511 * fm10k_io_reset_prepare - called when PCI function is about to be reset
2512 * @pdev: Pointer to PCI device
2513 *
2514 * This callback is called when the PCI function is about to be reset,
2515 * allowing the device driver to prepare for it.
2516 */
2517static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2518{
2519 /* warn incase we have any active VF devices */
2520 if (pci_num_vf(pdev))
2521 dev_warn(&pdev->dev,
2522 "PCIe FLR may cause issues for any active VF devices\n");
2523 fm10k_prepare_suspend(pci_get_drvdata(pdev));
2524}
2525
2526/**
2527 * fm10k_io_reset_done - called when PCI function has finished resetting
2528 * @pdev: Pointer to PCI device
2529 *
2530 * This callback is called just after the PCI function is reset, such as via
2531 * /sys/class/net/<enpX>/device/reset or similar.
2532 */
2533static void fm10k_io_reset_done(struct pci_dev *pdev)
2534{
2535 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2536 int err = fm10k_handle_resume(interface);
2537
2538 if (err) {
2539 dev_warn(&pdev->dev,
2540 "%s failed: %d\n", __func__, err);
2541 netif_device_detach(interface->netdev);
2542 }
2543}
2544
2545static const struct pci_error_handlers fm10k_err_handler = {
2546 .error_detected = fm10k_io_error_detected,
2547 .slot_reset = fm10k_io_slot_reset,
2548 .resume = fm10k_io_resume,
2549 .reset_prepare = fm10k_io_reset_prepare,
2550 .reset_done = fm10k_io_reset_done,
2551};
2552
2553static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2554
2555static struct pci_driver fm10k_driver = {
2556 .name = fm10k_driver_name,
2557 .id_table = fm10k_pci_tbl,
2558 .probe = fm10k_probe,
2559 .remove = fm10k_remove,
2560 .driver = {
2561 .pm = &fm10k_pm_ops,
2562 },
2563 .sriov_configure = fm10k_iov_configure,
2564 .err_handler = &fm10k_err_handler
2565};
2566
2567/**
2568 * fm10k_register_pci_driver - register driver interface
2569 *
2570 * This function is called on module load in order to register the driver.
2571 **/
2572int fm10k_register_pci_driver(void)
2573{
2574 return pci_register_driver(&fm10k_driver);
2575}
2576
2577/**
2578 * fm10k_unregister_pci_driver - unregister driver interface
2579 *
2580 * This function is called on module unload in order to remove the driver.
2581 **/
2582void fm10k_unregister_pci_driver(void)
2583{
2584 pci_unregister_driver(&fm10k_driver);
2585}