Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
   3 *
   4 *  This file is free software: you may copy, redistribute and/or modify it
   5 *  under the terms of the GNU General Public License as published by the
   6 *  Free Software Foundation, either version 2 of the License, or (at your
   7 *  option) any later version.
   8 *
   9 *  This file is distributed in the hope that it will be useful, but
  10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 *  General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * This file incorporates work covered by the following copyright and
  18 * permission notice:
  19 *
  20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
  21 *
  22 * Permission to use, copy, modify, and/or distribute this software for any
  23 * purpose with or without fee is hereby granted, provided that the above
  24 * copyright notice and this permission notice appear in all copies.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/pci.h>
  37#include <linux/interrupt.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/if_vlan.h>
  41#include <linux/mdio.h>
  42#include <linux/aer.h>
  43#include <linux/bitops.h>
  44#include <linux/netdevice.h>
  45#include <linux/etherdevice.h>
  46#include <net/ip6_checksum.h>
  47#include <linux/crc32.h>
  48#include "alx.h"
  49#include "hw.h"
  50#include "reg.h"
  51
  52const char alx_drv_name[] = "alx";
  53
  54static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
  55{
  56	struct alx_buffer *txb = &txq->bufs[entry];
  57
  58	if (dma_unmap_len(txb, size)) {
  59		dma_unmap_single(txq->dev,
  60				 dma_unmap_addr(txb, dma),
  61				 dma_unmap_len(txb, size),
  62				 DMA_TO_DEVICE);
  63		dma_unmap_len_set(txb, size, 0);
  64	}
  65
  66	if (txb->skb) {
  67		dev_kfree_skb_any(txb->skb);
  68		txb->skb = NULL;
  69	}
  70}
  71
  72static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
  73{
  74	struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
  75	struct sk_buff *skb;
  76	struct alx_buffer *cur_buf;
  77	dma_addr_t dma;
  78	u16 cur, next, count = 0;
  79
  80	next = cur = rxq->write_idx;
  81	if (++next == alx->rx_ringsz)
  82		next = 0;
  83	cur_buf = &rxq->bufs[cur];
  84
  85	while (!cur_buf->skb && next != rxq->read_idx) {
  86		struct alx_rfd *rfd = &rxq->rfd[cur];
  87
  88		/*
  89		 * When DMA RX address is set to something like
  90		 * 0x....fc0, it will be very likely to cause DMA
  91		 * RFD overflow issue.
  92		 *
  93		 * To work around it, we apply rx skb with 64 bytes
  94		 * longer space, and offset the address whenever
  95		 * 0x....fc0 is detected.
  96		 */
  97		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
  98		if (!skb)
  99			break;
 100
 101		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
 102			skb_reserve(skb, 64);
 103
 104		dma = dma_map_single(&alx->hw.pdev->dev,
 105				     skb->data, alx->rxbuf_size,
 106				     DMA_FROM_DEVICE);
 107		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
 108			dev_kfree_skb(skb);
 109			break;
 110		}
 111
 112		/* Unfortunately, RX descriptor buffers must be 4-byte
 113		 * aligned, so we can't use IP alignment.
 114		 */
 115		if (WARN_ON(dma & 3)) {
 116			dev_kfree_skb(skb);
 117			break;
 118		}
 119
 120		cur_buf->skb = skb;
 121		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
 122		dma_unmap_addr_set(cur_buf, dma, dma);
 123		rfd->addr = cpu_to_le64(dma);
 124
 125		cur = next;
 126		if (++next == alx->rx_ringsz)
 127			next = 0;
 128		cur_buf = &rxq->bufs[cur];
 129		count++;
 130	}
 131
 132	if (count) {
 133		/* flush all updates before updating hardware */
 134		wmb();
 135		rxq->write_idx = cur;
 136		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
 137	}
 138
 139	return count;
 140}
 141
 142static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
 143						 struct sk_buff *skb)
 144{
 145	unsigned int r_idx = skb->queue_mapping;
 146
 147	if (r_idx >= alx->num_txq)
 148		r_idx = r_idx % alx->num_txq;
 149
 150	return alx->qnapi[r_idx]->txq;
 151}
 152
 153static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
 154{
 155	return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
 156}
 157
 158static inline int alx_tpd_avail(struct alx_tx_queue *txq)
 159{
 160	if (txq->write_idx >= txq->read_idx)
 161		return txq->count + txq->read_idx - txq->write_idx - 1;
 162	return txq->read_idx - txq->write_idx - 1;
 163}
 164
 165static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
 166{
 167	struct alx_priv *alx;
 168	struct netdev_queue *tx_queue;
 169	u16 hw_read_idx, sw_read_idx;
 170	unsigned int total_bytes = 0, total_packets = 0;
 171	int budget = ALX_DEFAULT_TX_WORK;
 172
 173	alx = netdev_priv(txq->netdev);
 174	tx_queue = alx_get_tx_queue(txq);
 175
 176	sw_read_idx = txq->read_idx;
 177	hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
 178
 179	if (sw_read_idx != hw_read_idx) {
 180		while (sw_read_idx != hw_read_idx && budget > 0) {
 181			struct sk_buff *skb;
 182
 183			skb = txq->bufs[sw_read_idx].skb;
 184			if (skb) {
 185				total_bytes += skb->len;
 186				total_packets++;
 187				budget--;
 188			}
 189
 190			alx_free_txbuf(txq, sw_read_idx);
 191
 192			if (++sw_read_idx == txq->count)
 193				sw_read_idx = 0;
 194		}
 195		txq->read_idx = sw_read_idx;
 196
 197		netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
 198	}
 199
 200	if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
 201	    alx_tpd_avail(txq) > txq->count / 4)
 202		netif_tx_wake_queue(tx_queue);
 203
 204	return sw_read_idx == hw_read_idx;
 205}
 206
 207static void alx_schedule_link_check(struct alx_priv *alx)
 208{
 209	schedule_work(&alx->link_check_wk);
 210}
 211
 212static void alx_schedule_reset(struct alx_priv *alx)
 213{
 214	schedule_work(&alx->reset_wk);
 215}
 216
 217static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
 218{
 219	struct alx_priv *alx;
 220	struct alx_rrd *rrd;
 221	struct alx_buffer *rxb;
 222	struct sk_buff *skb;
 223	u16 length, rfd_cleaned = 0;
 224	int work = 0;
 225
 226	alx = netdev_priv(rxq->netdev);
 227
 228	while (work < budget) {
 229		rrd = &rxq->rrd[rxq->rrd_read_idx];
 230		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
 231			break;
 232		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
 233
 234		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 235				  RRD_SI) != rxq->read_idx ||
 236		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 237				  RRD_NOR) != 1) {
 238			alx_schedule_reset(alx);
 239			return work;
 240		}
 241
 242		rxb = &rxq->bufs[rxq->read_idx];
 243		dma_unmap_single(rxq->dev,
 244				 dma_unmap_addr(rxb, dma),
 245				 dma_unmap_len(rxb, size),
 246				 DMA_FROM_DEVICE);
 247		dma_unmap_len_set(rxb, size, 0);
 248		skb = rxb->skb;
 249		rxb->skb = NULL;
 250
 251		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
 252		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
 253			rrd->word3 = 0;
 254			dev_kfree_skb_any(skb);
 255			goto next_pkt;
 256		}
 257
 258		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
 259				       RRD_PKTLEN) - ETH_FCS_LEN;
 260		skb_put(skb, length);
 261		skb->protocol = eth_type_trans(skb, rxq->netdev);
 262
 263		skb_checksum_none_assert(skb);
 264		if (alx->dev->features & NETIF_F_RXCSUM &&
 265		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
 266				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
 267			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
 268					      RRD_PID)) {
 269			case RRD_PID_IPV6UDP:
 270			case RRD_PID_IPV4UDP:
 271			case RRD_PID_IPV4TCP:
 272			case RRD_PID_IPV6TCP:
 273				skb->ip_summed = CHECKSUM_UNNECESSARY;
 274				break;
 275			}
 276		}
 277
 278		napi_gro_receive(&rxq->np->napi, skb);
 279		work++;
 280
 281next_pkt:
 282		if (++rxq->read_idx == rxq->count)
 283			rxq->read_idx = 0;
 284		if (++rxq->rrd_read_idx == rxq->count)
 285			rxq->rrd_read_idx = 0;
 286
 287		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
 288			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
 289	}
 290
 291	if (rfd_cleaned)
 292		alx_refill_rx_ring(alx, GFP_ATOMIC);
 293
 294	return work;
 295}
 296
 297static int alx_poll(struct napi_struct *napi, int budget)
 298{
 299	struct alx_napi *np = container_of(napi, struct alx_napi, napi);
 300	struct alx_priv *alx = np->alx;
 301	struct alx_hw *hw = &alx->hw;
 302	unsigned long flags;
 303	bool tx_complete = true;
 304	int work = 0;
 305
 306	if (np->txq)
 307		tx_complete = alx_clean_tx_irq(np->txq);
 308	if (np->rxq)
 309		work = alx_clean_rx_irq(np->rxq, budget);
 310
 311	if (!tx_complete || work == budget)
 312		return budget;
 313
 314	napi_complete_done(&np->napi, work);
 315
 316	/* enable interrupt */
 317	if (alx->hw.pdev->msix_enabled) {
 318		alx_mask_msix(hw, np->vec_idx, false);
 319	} else {
 320		spin_lock_irqsave(&alx->irq_lock, flags);
 321		alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
 322		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 323		spin_unlock_irqrestore(&alx->irq_lock, flags);
 324	}
 325
 326	alx_post_write(hw);
 327
 328	return work;
 329}
 330
 331static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
 332{
 333	struct alx_hw *hw = &alx->hw;
 334
 335	if (intr & ALX_ISR_FATAL) {
 336		netif_warn(alx, hw, alx->dev,
 337			   "fatal interrupt 0x%x, resetting\n", intr);
 338		alx_schedule_reset(alx);
 339		return true;
 340	}
 341
 342	if (intr & ALX_ISR_ALERT)
 343		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
 344
 345	if (intr & ALX_ISR_PHY) {
 346		/* suppress PHY interrupt, because the source
 347		 * is from PHY internal. only the internal status
 348		 * is cleared, the interrupt status could be cleared.
 349		 */
 350		alx->int_mask &= ~ALX_ISR_PHY;
 351		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 352		alx_schedule_link_check(alx);
 353	}
 354
 355	return false;
 356}
 357
 358static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
 359{
 360	struct alx_hw *hw = &alx->hw;
 361
 362	spin_lock(&alx->irq_lock);
 363
 364	/* ACK interrupt */
 365	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
 366	intr &= alx->int_mask;
 367
 368	if (alx_intr_handle_misc(alx, intr))
 369		goto out;
 370
 371	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
 372		napi_schedule(&alx->qnapi[0]->napi);
 373		/* mask rx/tx interrupt, enable them when napi complete */
 374		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 375		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 376	}
 377
 378	alx_write_mem32(hw, ALX_ISR, 0);
 379
 380 out:
 381	spin_unlock(&alx->irq_lock);
 382	return IRQ_HANDLED;
 383}
 384
 385static irqreturn_t alx_intr_msix_ring(int irq, void *data)
 386{
 387	struct alx_napi *np = data;
 388	struct alx_hw *hw = &np->alx->hw;
 389
 390	/* mask interrupt to ACK chip */
 391	alx_mask_msix(hw, np->vec_idx, true);
 392	/* clear interrupt status */
 393	alx_write_mem32(hw, ALX_ISR, np->vec_mask);
 394
 395	napi_schedule(&np->napi);
 396
 397	return IRQ_HANDLED;
 398}
 399
 400static irqreturn_t alx_intr_msix_misc(int irq, void *data)
 401{
 402	struct alx_priv *alx = data;
 403	struct alx_hw *hw = &alx->hw;
 404	u32 intr;
 405
 406	/* mask interrupt to ACK chip */
 407	alx_mask_msix(hw, 0, true);
 408
 409	/* read interrupt status */
 410	intr = alx_read_mem32(hw, ALX_ISR);
 411	intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
 412
 413	if (alx_intr_handle_misc(alx, intr))
 414		return IRQ_HANDLED;
 415
 416	/* clear interrupt status */
 417	alx_write_mem32(hw, ALX_ISR, intr);
 418
 419	/* enable interrupt again */
 420	alx_mask_msix(hw, 0, false);
 421
 422	return IRQ_HANDLED;
 423}
 424
 425static irqreturn_t alx_intr_msi(int irq, void *data)
 426{
 427	struct alx_priv *alx = data;
 428
 429	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
 430}
 431
 432static irqreturn_t alx_intr_legacy(int irq, void *data)
 433{
 434	struct alx_priv *alx = data;
 435	struct alx_hw *hw = &alx->hw;
 436	u32 intr;
 437
 438	intr = alx_read_mem32(hw, ALX_ISR);
 439
 440	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
 441		return IRQ_NONE;
 442
 443	return alx_intr_handle(alx, intr);
 444}
 445
 446static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
 447					ALX_TPD_PRI1_ADDR_LO,
 448					ALX_TPD_PRI2_ADDR_LO,
 449					ALX_TPD_PRI3_ADDR_LO};
 450
 451static void alx_init_ring_ptrs(struct alx_priv *alx)
 452{
 453	struct alx_hw *hw = &alx->hw;
 454	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
 455	struct alx_napi *np;
 456	int i;
 457
 458	for (i = 0; i < alx->num_napi; i++) {
 459		np = alx->qnapi[i];
 460		if (np->txq) {
 461			np->txq->read_idx = 0;
 462			np->txq->write_idx = 0;
 463			alx_write_mem32(hw,
 464					txring_header_reg[np->txq->queue_idx],
 465					np->txq->tpd_dma);
 466		}
 467
 468		if (np->rxq) {
 469			np->rxq->read_idx = 0;
 470			np->rxq->write_idx = 0;
 471			np->rxq->rrd_read_idx = 0;
 472			alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
 473			alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
 474		}
 475	}
 476
 477	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
 478	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
 479
 480	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
 481	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
 482	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
 483	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
 484
 485	/* load these pointers into the chip */
 486	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
 487}
 488
 489static void alx_free_txring_buf(struct alx_tx_queue *txq)
 490{
 491	int i;
 492
 493	if (!txq->bufs)
 494		return;
 495
 496	for (i = 0; i < txq->count; i++)
 497		alx_free_txbuf(txq, i);
 498
 499	memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
 500	memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
 501	txq->write_idx = 0;
 502	txq->read_idx = 0;
 503
 504	netdev_tx_reset_queue(alx_get_tx_queue(txq));
 505}
 506
 507static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
 508{
 509	struct alx_buffer *cur_buf;
 510	u16 i;
 511
 512	if (!rxq->bufs)
 513		return;
 514
 515	for (i = 0; i < rxq->count; i++) {
 516		cur_buf = rxq->bufs + i;
 517		if (cur_buf->skb) {
 518			dma_unmap_single(rxq->dev,
 519					 dma_unmap_addr(cur_buf, dma),
 520					 dma_unmap_len(cur_buf, size),
 521					 DMA_FROM_DEVICE);
 522			dev_kfree_skb(cur_buf->skb);
 523			cur_buf->skb = NULL;
 524			dma_unmap_len_set(cur_buf, size, 0);
 525			dma_unmap_addr_set(cur_buf, dma, 0);
 526		}
 527	}
 528
 529	rxq->write_idx = 0;
 530	rxq->read_idx = 0;
 531	rxq->rrd_read_idx = 0;
 532}
 533
 534static void alx_free_buffers(struct alx_priv *alx)
 535{
 536	int i;
 537
 538	for (i = 0; i < alx->num_txq; i++)
 539		if (alx->qnapi[i] && alx->qnapi[i]->txq)
 540			alx_free_txring_buf(alx->qnapi[i]->txq);
 541
 542	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 543		alx_free_rxring_buf(alx->qnapi[0]->rxq);
 544}
 545
 546static int alx_reinit_rings(struct alx_priv *alx)
 547{
 548	alx_free_buffers(alx);
 549
 550	alx_init_ring_ptrs(alx);
 551
 552	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
 553		return -ENOMEM;
 554
 555	return 0;
 556}
 557
 558static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
 559{
 560	u32 crc32, bit, reg;
 561
 562	crc32 = ether_crc(ETH_ALEN, addr);
 563	reg = (crc32 >> 31) & 0x1;
 564	bit = (crc32 >> 26) & 0x1F;
 565
 566	mc_hash[reg] |= BIT(bit);
 567}
 568
 569static void __alx_set_rx_mode(struct net_device *netdev)
 570{
 571	struct alx_priv *alx = netdev_priv(netdev);
 572	struct alx_hw *hw = &alx->hw;
 573	struct netdev_hw_addr *ha;
 574	u32 mc_hash[2] = {};
 575
 576	if (!(netdev->flags & IFF_ALLMULTI)) {
 577		netdev_for_each_mc_addr(ha, netdev)
 578			alx_add_mc_addr(hw, ha->addr, mc_hash);
 579
 580		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
 581		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
 582	}
 583
 584	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
 585	if (netdev->flags & IFF_PROMISC)
 586		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
 587	if (netdev->flags & IFF_ALLMULTI)
 588		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
 589
 590	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
 591}
 592
 593static void alx_set_rx_mode(struct net_device *netdev)
 594{
 595	__alx_set_rx_mode(netdev);
 596}
 597
 598static int alx_set_mac_address(struct net_device *netdev, void *data)
 599{
 600	struct alx_priv *alx = netdev_priv(netdev);
 601	struct alx_hw *hw = &alx->hw;
 602	struct sockaddr *addr = data;
 603
 604	if (!is_valid_ether_addr(addr->sa_data))
 605		return -EADDRNOTAVAIL;
 606
 607	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
 608		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
 609
 610	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 611	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
 612	alx_set_macaddr(hw, hw->mac_addr);
 613
 614	return 0;
 615}
 616
 617static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
 618			     int offset)
 619{
 620	txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 621	if (!txq->bufs)
 622		return -ENOMEM;
 623
 624	txq->tpd = alx->descmem.virt + offset;
 625	txq->tpd_dma = alx->descmem.dma + offset;
 626	offset += sizeof(struct alx_txd) * txq->count;
 627
 628	return offset;
 629}
 630
 631static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
 632			     int offset)
 633{
 634	rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 635	if (!rxq->bufs)
 636		return -ENOMEM;
 637
 638	rxq->rrd = alx->descmem.virt + offset;
 639	rxq->rrd_dma = alx->descmem.dma + offset;
 640	offset += sizeof(struct alx_rrd) * rxq->count;
 641
 642	rxq->rfd = alx->descmem.virt + offset;
 643	rxq->rfd_dma = alx->descmem.dma + offset;
 644	offset += sizeof(struct alx_rfd) * rxq->count;
 645
 646	return offset;
 647}
 648
 649static int alx_alloc_rings(struct alx_priv *alx)
 650{
 651	int i, offset = 0;
 652
 653	/* physical tx/rx ring descriptors
 654	 *
 655	 * Allocate them as a single chunk because they must not cross a
 656	 * 4G boundary (hardware has a single register for high 32 bits
 657	 * of addresses only)
 658	 */
 659	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
 660			    alx->num_txq +
 661			    sizeof(struct alx_rrd) * alx->rx_ringsz +
 662			    sizeof(struct alx_rfd) * alx->rx_ringsz;
 663	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
 664						alx->descmem.size,
 665						&alx->descmem.dma,
 666						GFP_KERNEL);
 667	if (!alx->descmem.virt)
 668		return -ENOMEM;
 669
 670	/* alignment requirements */
 671	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
 672	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
 673
 674	for (i = 0; i < alx->num_txq; i++) {
 675		offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
 676		if (offset < 0) {
 677			netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
 678			return -ENOMEM;
 679		}
 680	}
 681
 682	offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
 683	if (offset < 0) {
 684		netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
 685		return -ENOMEM;
 686	}
 687
 688	return 0;
 689}
 690
 691static void alx_free_rings(struct alx_priv *alx)
 692{
 693	int i;
 694
 695	alx_free_buffers(alx);
 696
 697	for (i = 0; i < alx->num_txq; i++)
 698		if (alx->qnapi[i] && alx->qnapi[i]->txq)
 699			kfree(alx->qnapi[i]->txq->bufs);
 700
 701	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 702		kfree(alx->qnapi[0]->rxq->bufs);
 703
 704	if (alx->descmem.virt)
 705		dma_free_coherent(&alx->hw.pdev->dev,
 706				  alx->descmem.size,
 707				  alx->descmem.virt,
 708				  alx->descmem.dma);
 709}
 710
 711static void alx_free_napis(struct alx_priv *alx)
 712{
 713	struct alx_napi *np;
 714	int i;
 715
 716	for (i = 0; i < alx->num_napi; i++) {
 717		np = alx->qnapi[i];
 718		if (!np)
 719			continue;
 720
 721		netif_napi_del(&np->napi);
 722		kfree(np->txq);
 723		kfree(np->rxq);
 724		kfree(np);
 725		alx->qnapi[i] = NULL;
 726	}
 727}
 728
 729static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
 730				  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
 731static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
 732				  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
 733static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
 734				   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
 735static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
 736				   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
 737				   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
 738				   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
 739
 740static int alx_alloc_napis(struct alx_priv *alx)
 741{
 742	struct alx_napi *np;
 743	struct alx_rx_queue *rxq;
 744	struct alx_tx_queue *txq;
 745	int i;
 746
 747	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 748
 749	/* allocate alx_napi structures */
 750	for (i = 0; i < alx->num_napi; i++) {
 751		np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
 752		if (!np)
 753			goto err_out;
 754
 755		np->alx = alx;
 756		netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
 757		alx->qnapi[i] = np;
 758	}
 759
 760	/* allocate tx queues */
 761	for (i = 0; i < alx->num_txq; i++) {
 762		np = alx->qnapi[i];
 763		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
 764		if (!txq)
 765			goto err_out;
 766
 767		np->txq = txq;
 768		txq->p_reg = tx_pidx_reg[i];
 769		txq->c_reg = tx_cidx_reg[i];
 770		txq->queue_idx = i;
 771		txq->count = alx->tx_ringsz;
 772		txq->netdev = alx->dev;
 773		txq->dev = &alx->hw.pdev->dev;
 774		np->vec_mask |= tx_vect_mask[i];
 775		alx->int_mask |= tx_vect_mask[i];
 776	}
 777
 778	/* allocate rx queues */
 779	np = alx->qnapi[0];
 780	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
 781	if (!rxq)
 782		goto err_out;
 783
 784	np->rxq = rxq;
 785	rxq->np = alx->qnapi[0];
 786	rxq->queue_idx = 0;
 787	rxq->count = alx->rx_ringsz;
 788	rxq->netdev = alx->dev;
 789	rxq->dev = &alx->hw.pdev->dev;
 790	np->vec_mask |= rx_vect_mask[0];
 791	alx->int_mask |= rx_vect_mask[0];
 792
 793	return 0;
 794
 795err_out:
 796	netdev_err(alx->dev, "error allocating internal structures\n");
 797	alx_free_napis(alx);
 798	return -ENOMEM;
 799}
 800
 801static const int txq_vec_mapping_shift[] = {
 802	0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
 803	0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
 804	1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
 805	1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
 806};
 807
 808static void alx_config_vector_mapping(struct alx_priv *alx)
 809{
 810	struct alx_hw *hw = &alx->hw;
 811	u32 tbl[2] = {0, 0};
 812	int i, vector, idx, shift;
 813
 814	if (alx->hw.pdev->msix_enabled) {
 815		/* tx mappings */
 816		for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
 817			idx = txq_vec_mapping_shift[i * 2];
 818			shift = txq_vec_mapping_shift[i * 2 + 1];
 819			tbl[idx] |= vector << shift;
 820		}
 821
 822		/* rx mapping */
 823		tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
 824	}
 825
 826	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
 827	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
 828	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
 829}
 830
 831static int alx_enable_msix(struct alx_priv *alx)
 832{
 833	int err, num_vec, num_txq, num_rxq;
 834
 835	num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
 836	num_rxq = 1;
 837	num_vec = max_t(int, num_txq, num_rxq) + 1;
 838
 839	err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
 840			PCI_IRQ_MSIX);
 841	if (err < 0) {
 842		netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
 843		return err;
 844	}
 845
 846	alx->num_vec = num_vec;
 847	alx->num_napi = num_vec - 1;
 848	alx->num_txq = num_txq;
 849	alx->num_rxq = num_rxq;
 850
 851	return err;
 852}
 853
 854static int alx_request_msix(struct alx_priv *alx)
 855{
 856	struct net_device *netdev = alx->dev;
 857	int i, err, vector = 0, free_vector = 0;
 858
 859	err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
 860			  0, netdev->name, alx);
 861	if (err)
 862		goto out_err;
 863
 864	for (i = 0; i < alx->num_napi; i++) {
 865		struct alx_napi *np = alx->qnapi[i];
 866
 867		vector++;
 868
 869		if (np->txq && np->rxq)
 870			sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
 871				np->txq->queue_idx);
 872		else if (np->txq)
 873			sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
 874				np->txq->queue_idx);
 875		else if (np->rxq)
 876			sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
 877				np->rxq->queue_idx);
 878		else
 879			sprintf(np->irq_lbl, "%s-unused", netdev->name);
 880
 881		np->vec_idx = vector;
 882		err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
 883				  alx_intr_msix_ring, 0, np->irq_lbl, np);
 884		if (err)
 885			goto out_free;
 886	}
 887	return 0;
 888
 889out_free:
 890	free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
 891
 892	vector--;
 893	for (i = 0; i < vector; i++)
 894		free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
 895			 alx->qnapi[i]);
 896
 897out_err:
 898	return err;
 899}
 900
 901static int alx_init_intr(struct alx_priv *alx)
 902{
 903	int ret;
 904
 905	ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
 906			PCI_IRQ_MSI | PCI_IRQ_LEGACY);
 907	if (ret < 0)
 908		return ret;
 909
 910	alx->num_vec = 1;
 911	alx->num_napi = 1;
 912	alx->num_txq = 1;
 913	alx->num_rxq = 1;
 914	return 0;
 915}
 916
 917static void alx_irq_enable(struct alx_priv *alx)
 918{
 919	struct alx_hw *hw = &alx->hw;
 920	int i;
 921
 922	/* level-1 interrupt switch */
 923	alx_write_mem32(hw, ALX_ISR, 0);
 924	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 925	alx_post_write(hw);
 926
 927	if (alx->hw.pdev->msix_enabled) {
 928		/* enable all msix irqs */
 929		for (i = 0; i < alx->num_vec; i++)
 930			alx_mask_msix(hw, i, false);
 931	}
 932}
 933
 934static void alx_irq_disable(struct alx_priv *alx)
 935{
 936	struct alx_hw *hw = &alx->hw;
 937	int i;
 938
 939	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
 940	alx_write_mem32(hw, ALX_IMR, 0);
 941	alx_post_write(hw);
 942
 943	if (alx->hw.pdev->msix_enabled) {
 944		for (i = 0; i < alx->num_vec; i++) {
 945			alx_mask_msix(hw, i, true);
 946			synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
 947		}
 948	} else {
 949		synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
 950	}
 951}
 952
 953static int alx_realloc_resources(struct alx_priv *alx)
 954{
 955	int err;
 956
 957	alx_free_rings(alx);
 958	alx_free_napis(alx);
 959	pci_free_irq_vectors(alx->hw.pdev);
 960
 961	err = alx_init_intr(alx);
 962	if (err)
 963		return err;
 964
 965	err = alx_alloc_napis(alx);
 966	if (err)
 967		return err;
 968
 969	err = alx_alloc_rings(alx);
 970	if (err)
 971		return err;
 972
 973	return 0;
 974}
 975
 976static int alx_request_irq(struct alx_priv *alx)
 977{
 978	struct pci_dev *pdev = alx->hw.pdev;
 979	struct alx_hw *hw = &alx->hw;
 980	int err;
 981	u32 msi_ctrl;
 982
 983	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
 984
 985	if (alx->hw.pdev->msix_enabled) {
 986		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
 987		err = alx_request_msix(alx);
 988		if (!err)
 989			goto out;
 990
 991		/* msix request failed, realloc resources */
 992		err = alx_realloc_resources(alx);
 993		if (err)
 994			goto out;
 995	}
 996
 997	if (alx->hw.pdev->msi_enabled) {
 998		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
 999				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
1000		err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
1001				  alx->dev->name, alx);
1002		if (!err)
1003			goto out;
1004
1005		/* fall back to legacy interrupt */
1006		pci_free_irq_vectors(alx->hw.pdev);
1007	}
1008
1009	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1010	err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1011			  alx->dev->name, alx);
1012out:
1013	if (!err)
1014		alx_config_vector_mapping(alx);
1015	else
1016		netdev_err(alx->dev, "IRQ registration failed!\n");
1017	return err;
1018}
1019
1020static void alx_free_irq(struct alx_priv *alx)
1021{
1022	struct pci_dev *pdev = alx->hw.pdev;
1023	int i;
1024
1025	free_irq(pci_irq_vector(pdev, 0), alx);
1026	if (alx->hw.pdev->msix_enabled) {
1027		for (i = 0; i < alx->num_napi; i++)
1028			free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1029	}
1030
1031	pci_free_irq_vectors(pdev);
1032}
1033
1034static int alx_identify_hw(struct alx_priv *alx)
1035{
1036	struct alx_hw *hw = &alx->hw;
1037	int rev = alx_hw_revision(hw);
1038
1039	if (rev > ALX_REV_C0)
1040		return -EINVAL;
1041
1042	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1043
1044	return 0;
1045}
1046
1047static int alx_init_sw(struct alx_priv *alx)
1048{
1049	struct pci_dev *pdev = alx->hw.pdev;
1050	struct alx_hw *hw = &alx->hw;
1051	int err;
1052
1053	err = alx_identify_hw(alx);
1054	if (err) {
1055		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1056		return err;
1057	}
1058
1059	alx->hw.lnk_patch =
1060		pdev->device == ALX_DEV_ID_AR8161 &&
1061		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1062		pdev->subsystem_device == 0x0091 &&
1063		pdev->revision == 0;
1064
1065	hw->smb_timer = 400;
1066	hw->mtu = alx->dev->mtu;
1067	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1068	/* MTU range: 34 - 9256 */
1069	alx->dev->min_mtu = 34;
1070	alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1071	alx->tx_ringsz = 256;
1072	alx->rx_ringsz = 512;
1073	hw->imt = 200;
1074	alx->int_mask = ALX_ISR_MISC;
1075	hw->dma_chnl = hw->max_dma_chnl;
1076	hw->ith_tpd = alx->tx_ringsz / 3;
1077	hw->link_speed = SPEED_UNKNOWN;
1078	hw->duplex = DUPLEX_UNKNOWN;
1079	hw->adv_cfg = ADVERTISED_Autoneg |
1080		      ADVERTISED_10baseT_Half |
1081		      ADVERTISED_10baseT_Full |
1082		      ADVERTISED_100baseT_Full |
1083		      ADVERTISED_100baseT_Half |
1084		      ADVERTISED_1000baseT_Full;
1085	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1086
1087	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1088		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1089		      ALX_MAC_CTRL_BRD_EN |
1090		      ALX_MAC_CTRL_PCRCE |
1091		      ALX_MAC_CTRL_CRCE |
1092		      ALX_MAC_CTRL_RXFC_EN |
1093		      ALX_MAC_CTRL_TXFC_EN |
1094		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1095
1096	return err;
1097}
1098
1099
1100static netdev_features_t alx_fix_features(struct net_device *netdev,
1101					  netdev_features_t features)
1102{
1103	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1104		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1105
1106	return features;
1107}
1108
1109static void alx_netif_stop(struct alx_priv *alx)
1110{
1111	int i;
1112
1113	netif_trans_update(alx->dev);
1114	if (netif_carrier_ok(alx->dev)) {
1115		netif_carrier_off(alx->dev);
1116		netif_tx_disable(alx->dev);
1117		for (i = 0; i < alx->num_napi; i++)
1118			napi_disable(&alx->qnapi[i]->napi);
1119	}
1120}
1121
1122static void alx_halt(struct alx_priv *alx)
1123{
1124	struct alx_hw *hw = &alx->hw;
1125
1126	alx_netif_stop(alx);
1127	hw->link_speed = SPEED_UNKNOWN;
1128	hw->duplex = DUPLEX_UNKNOWN;
1129
1130	alx_reset_mac(hw);
1131
1132	/* disable l0s/l1 */
1133	alx_enable_aspm(hw, false, false);
1134	alx_irq_disable(alx);
1135	alx_free_buffers(alx);
1136}
1137
1138static void alx_configure(struct alx_priv *alx)
1139{
1140	struct alx_hw *hw = &alx->hw;
1141
1142	alx_configure_basic(hw);
1143	alx_disable_rss(hw);
1144	__alx_set_rx_mode(alx->dev);
1145
1146	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1147}
1148
1149static void alx_activate(struct alx_priv *alx)
1150{
1151	/* hardware setting lost, restore it */
1152	alx_reinit_rings(alx);
1153	alx_configure(alx);
1154
1155	/* clear old interrupts */
1156	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1157
1158	alx_irq_enable(alx);
1159
1160	alx_schedule_link_check(alx);
1161}
1162
1163static void alx_reinit(struct alx_priv *alx)
1164{
1165	ASSERT_RTNL();
1166
1167	alx_halt(alx);
1168	alx_activate(alx);
1169}
1170
1171static int alx_change_mtu(struct net_device *netdev, int mtu)
1172{
1173	struct alx_priv *alx = netdev_priv(netdev);
1174	int max_frame = ALX_MAX_FRAME_LEN(mtu);
1175
1176	netdev->mtu = mtu;
1177	alx->hw.mtu = mtu;
1178	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1179	netdev_update_features(netdev);
1180	if (netif_running(netdev))
1181		alx_reinit(alx);
1182	return 0;
1183}
1184
1185static void alx_netif_start(struct alx_priv *alx)
1186{
1187	int i;
1188
1189	netif_tx_wake_all_queues(alx->dev);
1190	for (i = 0; i < alx->num_napi; i++)
1191		napi_enable(&alx->qnapi[i]->napi);
1192	netif_carrier_on(alx->dev);
1193}
1194
1195static int __alx_open(struct alx_priv *alx, bool resume)
1196{
1197	int err;
1198
1199	err = alx_enable_msix(alx);
1200	if (err < 0) {
1201		err = alx_init_intr(alx);
1202		if (err)
1203			return err;
1204	}
1205
1206	if (!resume)
1207		netif_carrier_off(alx->dev);
1208
1209	err = alx_alloc_napis(alx);
1210	if (err)
1211		goto out_disable_adv_intr;
1212
1213	err = alx_alloc_rings(alx);
1214	if (err)
1215		goto out_free_rings;
1216
1217	alx_configure(alx);
1218
1219	err = alx_request_irq(alx);
1220	if (err)
1221		goto out_free_rings;
1222
1223	/* must be called after alx_request_irq because the chip stops working
1224	 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1225	 * requesting msi-x interrupts failed
1226	 */
1227	alx_reinit_rings(alx);
1228
1229	netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1230	netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1231
1232	/* clear old interrupts */
1233	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1234
1235	alx_irq_enable(alx);
1236
1237	if (!resume)
1238		netif_tx_start_all_queues(alx->dev);
1239
1240	alx_schedule_link_check(alx);
1241	return 0;
1242
1243out_free_rings:
1244	alx_free_rings(alx);
1245	alx_free_napis(alx);
1246out_disable_adv_intr:
1247	pci_free_irq_vectors(alx->hw.pdev);
1248	return err;
1249}
1250
1251static void __alx_stop(struct alx_priv *alx)
1252{
1253	alx_halt(alx);
1254	alx_free_irq(alx);
1255	alx_free_rings(alx);
1256	alx_free_napis(alx);
1257}
1258
1259static const char *alx_speed_desc(struct alx_hw *hw)
1260{
1261	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1262	case ADVERTISED_1000baseT_Full:
1263		return "1 Gbps Full";
1264	case ADVERTISED_100baseT_Full:
1265		return "100 Mbps Full";
1266	case ADVERTISED_100baseT_Half:
1267		return "100 Mbps Half";
1268	case ADVERTISED_10baseT_Full:
1269		return "10 Mbps Full";
1270	case ADVERTISED_10baseT_Half:
1271		return "10 Mbps Half";
1272	default:
1273		return "Unknown speed";
1274	}
1275}
1276
1277static void alx_check_link(struct alx_priv *alx)
1278{
1279	struct alx_hw *hw = &alx->hw;
1280	unsigned long flags;
1281	int old_speed;
1282	u8 old_duplex;
1283	int err;
1284
1285	/* clear PHY internal interrupt status, otherwise the main
1286	 * interrupt status will be asserted forever
1287	 */
1288	alx_clear_phy_intr(hw);
1289
1290	old_speed = hw->link_speed;
1291	old_duplex = hw->duplex;
1292	err = alx_read_phy_link(hw);
1293	if (err < 0)
1294		goto reset;
1295
1296	spin_lock_irqsave(&alx->irq_lock, flags);
1297	alx->int_mask |= ALX_ISR_PHY;
1298	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1299	spin_unlock_irqrestore(&alx->irq_lock, flags);
1300
1301	if (old_speed == hw->link_speed)
1302		return;
1303
1304	if (hw->link_speed != SPEED_UNKNOWN) {
1305		netif_info(alx, link, alx->dev,
1306			   "NIC Up: %s\n", alx_speed_desc(hw));
1307		alx_post_phy_link(hw);
1308		alx_enable_aspm(hw, true, true);
1309		alx_start_mac(hw);
1310
1311		if (old_speed == SPEED_UNKNOWN)
1312			alx_netif_start(alx);
1313	} else {
1314		/* link is now down */
1315		alx_netif_stop(alx);
1316		netif_info(alx, link, alx->dev, "Link Down\n");
1317		err = alx_reset_mac(hw);
1318		if (err)
1319			goto reset;
1320		alx_irq_disable(alx);
1321
1322		/* MAC reset causes all HW settings to be lost, restore all */
1323		err = alx_reinit_rings(alx);
1324		if (err)
1325			goto reset;
1326		alx_configure(alx);
1327		alx_enable_aspm(hw, false, true);
1328		alx_post_phy_link(hw);
1329		alx_irq_enable(alx);
1330	}
1331
1332	return;
1333
1334reset:
1335	alx_schedule_reset(alx);
1336}
1337
1338static int alx_open(struct net_device *netdev)
1339{
1340	return __alx_open(netdev_priv(netdev), false);
1341}
1342
1343static int alx_stop(struct net_device *netdev)
1344{
1345	__alx_stop(netdev_priv(netdev));
1346	return 0;
1347}
1348
1349static void alx_link_check(struct work_struct *work)
1350{
1351	struct alx_priv *alx;
1352
1353	alx = container_of(work, struct alx_priv, link_check_wk);
1354
1355	rtnl_lock();
1356	alx_check_link(alx);
1357	rtnl_unlock();
1358}
1359
1360static void alx_reset(struct work_struct *work)
1361{
1362	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1363
1364	rtnl_lock();
1365	alx_reinit(alx);
1366	rtnl_unlock();
1367}
1368
1369static int alx_tpd_req(struct sk_buff *skb)
1370{
1371	int num;
1372
1373	num = skb_shinfo(skb)->nr_frags + 1;
1374	/* we need one extra descriptor for LSOv2 */
1375	if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1376		num++;
1377
1378	return num;
1379}
1380
1381static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1382{
1383	u8 cso, css;
1384
1385	if (skb->ip_summed != CHECKSUM_PARTIAL)
1386		return 0;
1387
1388	cso = skb_checksum_start_offset(skb);
1389	if (cso & 1)
1390		return -EINVAL;
1391
1392	css = cso + skb->csum_offset;
1393	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1394	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1395	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1396
1397	return 0;
1398}
1399
1400static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1401{
1402	int err;
1403
1404	if (skb->ip_summed != CHECKSUM_PARTIAL)
1405		return 0;
1406
1407	if (!skb_is_gso(skb))
1408		return 0;
1409
1410	err = skb_cow_head(skb, 0);
1411	if (err < 0)
1412		return err;
1413
1414	if (skb->protocol == htons(ETH_P_IP)) {
1415		struct iphdr *iph = ip_hdr(skb);
1416
1417		iph->check = 0;
1418		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1419							 0, IPPROTO_TCP, 0);
1420		first->word1 |= 1 << TPD_IPV4_SHIFT;
1421	} else if (skb_is_gso_v6(skb)) {
1422		ipv6_hdr(skb)->payload_len = 0;
1423		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1424						       &ipv6_hdr(skb)->daddr,
1425						       0, IPPROTO_TCP, 0);
1426		/* LSOv2: the first TPD only provides the packet length */
1427		first->adrl.l.pkt_len = skb->len;
1428		first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1429	}
1430
1431	first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1432	first->word1 |= (skb_transport_offset(skb) &
1433			 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1434	first->word1 |= (skb_shinfo(skb)->gso_size &
1435			 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1436	return 1;
1437}
1438
1439static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1440{
1441	struct alx_txd *tpd, *first_tpd;
1442	dma_addr_t dma;
1443	int maplen, f, first_idx = txq->write_idx;
1444
1445	first_tpd = &txq->tpd[txq->write_idx];
1446	tpd = first_tpd;
1447
1448	if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1449		if (++txq->write_idx == txq->count)
1450			txq->write_idx = 0;
1451
1452		tpd = &txq->tpd[txq->write_idx];
1453		tpd->len = first_tpd->len;
1454		tpd->vlan_tag = first_tpd->vlan_tag;
1455		tpd->word1 = first_tpd->word1;
1456	}
1457
1458	maplen = skb_headlen(skb);
1459	dma = dma_map_single(txq->dev, skb->data, maplen,
1460			     DMA_TO_DEVICE);
1461	if (dma_mapping_error(txq->dev, dma))
1462		goto err_dma;
1463
1464	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1465	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1466
1467	tpd->adrl.addr = cpu_to_le64(dma);
1468	tpd->len = cpu_to_le16(maplen);
1469
1470	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1471		struct skb_frag_struct *frag;
1472
1473		frag = &skb_shinfo(skb)->frags[f];
1474
1475		if (++txq->write_idx == txq->count)
1476			txq->write_idx = 0;
1477		tpd = &txq->tpd[txq->write_idx];
1478
1479		tpd->word1 = first_tpd->word1;
1480
1481		maplen = skb_frag_size(frag);
1482		dma = skb_frag_dma_map(txq->dev, frag, 0,
1483				       maplen, DMA_TO_DEVICE);
1484		if (dma_mapping_error(txq->dev, dma))
1485			goto err_dma;
1486		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1487		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1488
1489		tpd->adrl.addr = cpu_to_le64(dma);
1490		tpd->len = cpu_to_le16(maplen);
1491	}
1492
1493	/* last TPD, set EOP flag and store skb */
1494	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1495	txq->bufs[txq->write_idx].skb = skb;
1496
1497	if (++txq->write_idx == txq->count)
1498		txq->write_idx = 0;
1499
1500	return 0;
1501
1502err_dma:
1503	f = first_idx;
1504	while (f != txq->write_idx) {
1505		alx_free_txbuf(txq, f);
1506		if (++f == txq->count)
1507			f = 0;
1508	}
1509	return -ENOMEM;
1510}
1511
1512static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1513				       struct alx_tx_queue *txq)
1514{
1515	struct alx_priv *alx;
1516	struct alx_txd *first;
1517	int tso;
1518
1519	alx = netdev_priv(txq->netdev);
1520
1521	if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1522		netif_tx_stop_queue(alx_get_tx_queue(txq));
1523		goto drop;
1524	}
1525
1526	first = &txq->tpd[txq->write_idx];
1527	memset(first, 0, sizeof(*first));
1528
1529	tso = alx_tso(skb, first);
1530	if (tso < 0)
1531		goto drop;
1532	else if (!tso && alx_tx_csum(skb, first))
1533		goto drop;
1534
1535	if (alx_map_tx_skb(txq, skb) < 0)
1536		goto drop;
1537
1538	netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1539
1540	/* flush updates before updating hardware */
1541	wmb();
1542	alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1543
1544	if (alx_tpd_avail(txq) < txq->count / 8)
1545		netif_tx_stop_queue(alx_get_tx_queue(txq));
1546
1547	return NETDEV_TX_OK;
1548
1549drop:
1550	dev_kfree_skb_any(skb);
1551	return NETDEV_TX_OK;
1552}
1553
1554static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1555				  struct net_device *netdev)
1556{
1557	struct alx_priv *alx = netdev_priv(netdev);
1558	return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1559}
1560
1561static void alx_tx_timeout(struct net_device *dev)
1562{
1563	struct alx_priv *alx = netdev_priv(dev);
1564
1565	alx_schedule_reset(alx);
1566}
1567
1568static int alx_mdio_read(struct net_device *netdev,
1569			 int prtad, int devad, u16 addr)
1570{
1571	struct alx_priv *alx = netdev_priv(netdev);
1572	struct alx_hw *hw = &alx->hw;
1573	u16 val;
1574	int err;
1575
1576	if (prtad != hw->mdio.prtad)
1577		return -EINVAL;
1578
1579	if (devad == MDIO_DEVAD_NONE)
1580		err = alx_read_phy_reg(hw, addr, &val);
1581	else
1582		err = alx_read_phy_ext(hw, devad, addr, &val);
1583
1584	if (err)
1585		return err;
1586	return val;
1587}
1588
1589static int alx_mdio_write(struct net_device *netdev,
1590			  int prtad, int devad, u16 addr, u16 val)
1591{
1592	struct alx_priv *alx = netdev_priv(netdev);
1593	struct alx_hw *hw = &alx->hw;
1594
1595	if (prtad != hw->mdio.prtad)
1596		return -EINVAL;
1597
1598	if (devad == MDIO_DEVAD_NONE)
1599		return alx_write_phy_reg(hw, addr, val);
1600
1601	return alx_write_phy_ext(hw, devad, addr, val);
1602}
1603
1604static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1605{
1606	struct alx_priv *alx = netdev_priv(netdev);
1607
1608	if (!netif_running(netdev))
1609		return -EAGAIN;
1610
1611	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1612}
1613
1614#ifdef CONFIG_NET_POLL_CONTROLLER
1615static void alx_poll_controller(struct net_device *netdev)
1616{
1617	struct alx_priv *alx = netdev_priv(netdev);
1618	int i;
1619
1620	if (alx->hw.pdev->msix_enabled) {
1621		alx_intr_msix_misc(0, alx);
1622		for (i = 0; i < alx->num_txq; i++)
1623			alx_intr_msix_ring(0, alx->qnapi[i]);
1624	} else if (alx->hw.pdev->msi_enabled)
1625		alx_intr_msi(0, alx);
1626	else
1627		alx_intr_legacy(0, alx);
1628}
1629#endif
1630
1631static void alx_get_stats64(struct net_device *dev,
1632			    struct rtnl_link_stats64 *net_stats)
1633{
1634	struct alx_priv *alx = netdev_priv(dev);
1635	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1636
1637	spin_lock(&alx->stats_lock);
1638
1639	alx_update_hw_stats(&alx->hw);
1640
1641	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1642	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1643	net_stats->multicast  = hw_stats->rx_mcast;
1644	net_stats->collisions = hw_stats->tx_single_col +
1645				hw_stats->tx_multi_col +
1646				hw_stats->tx_late_col +
1647				hw_stats->tx_abort_col;
1648
1649	net_stats->rx_errors  = hw_stats->rx_frag +
1650				hw_stats->rx_fcs_err +
1651				hw_stats->rx_len_err +
1652				hw_stats->rx_ov_sz +
1653				hw_stats->rx_ov_rrd +
1654				hw_stats->rx_align_err +
1655				hw_stats->rx_ov_rxf;
1656
1657	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1658	net_stats->rx_length_errors = hw_stats->rx_len_err;
1659	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1660	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1661	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1662
1663	net_stats->tx_errors = hw_stats->tx_late_col +
1664			       hw_stats->tx_abort_col +
1665			       hw_stats->tx_underrun +
1666			       hw_stats->tx_trunc;
1667
1668	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1669	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1670	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1671
1672	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1673	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1674
1675	spin_unlock(&alx->stats_lock);
1676}
1677
1678static const struct net_device_ops alx_netdev_ops = {
1679	.ndo_open               = alx_open,
1680	.ndo_stop               = alx_stop,
1681	.ndo_start_xmit         = alx_start_xmit,
1682	.ndo_get_stats64        = alx_get_stats64,
1683	.ndo_set_rx_mode        = alx_set_rx_mode,
1684	.ndo_validate_addr      = eth_validate_addr,
1685	.ndo_set_mac_address    = alx_set_mac_address,
1686	.ndo_change_mtu         = alx_change_mtu,
1687	.ndo_do_ioctl           = alx_ioctl,
1688	.ndo_tx_timeout         = alx_tx_timeout,
1689	.ndo_fix_features	= alx_fix_features,
1690#ifdef CONFIG_NET_POLL_CONTROLLER
1691	.ndo_poll_controller    = alx_poll_controller,
1692#endif
1693};
1694
1695static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1696{
1697	struct net_device *netdev;
1698	struct alx_priv *alx;
1699	struct alx_hw *hw;
1700	bool phy_configured;
1701	int err;
1702
1703	err = pci_enable_device_mem(pdev);
1704	if (err)
1705		return err;
1706
1707	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1708	 * shared register for the high 32 bits, so only a single, aligned,
1709	 * 4 GB physical address range can be used for descriptors.
1710	 */
1711	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1712		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1713	} else {
1714		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1715		if (err) {
1716			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1717			goto out_pci_disable;
1718		}
1719	}
1720
1721	err = pci_request_mem_regions(pdev, alx_drv_name);
1722	if (err) {
1723		dev_err(&pdev->dev,
1724			"pci_request_mem_regions failed\n");
1725		goto out_pci_disable;
1726	}
1727
1728	pci_enable_pcie_error_reporting(pdev);
1729	pci_set_master(pdev);
1730
1731	if (!pdev->pm_cap) {
1732		dev_err(&pdev->dev,
1733			"Can't find power management capability, aborting\n");
1734		err = -EIO;
1735		goto out_pci_release;
1736	}
1737
1738	netdev = alloc_etherdev_mqs(sizeof(*alx),
1739				    ALX_MAX_TX_QUEUES, 1);
1740	if (!netdev) {
1741		err = -ENOMEM;
1742		goto out_pci_release;
1743	}
1744
1745	SET_NETDEV_DEV(netdev, &pdev->dev);
1746	alx = netdev_priv(netdev);
1747	spin_lock_init(&alx->hw.mdio_lock);
1748	spin_lock_init(&alx->irq_lock);
1749	spin_lock_init(&alx->stats_lock);
1750	alx->dev = netdev;
1751	alx->hw.pdev = pdev;
1752	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1753			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1754	hw = &alx->hw;
1755	pci_set_drvdata(pdev, alx);
1756
1757	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1758	if (!hw->hw_addr) {
1759		dev_err(&pdev->dev, "cannot map device registers\n");
1760		err = -EIO;
1761		goto out_free_netdev;
1762	}
1763
1764	netdev->netdev_ops = &alx_netdev_ops;
1765	netdev->ethtool_ops = &alx_ethtool_ops;
1766	netdev->irq = pci_irq_vector(pdev, 0);
1767	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1768
1769	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1770		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1771
1772	err = alx_init_sw(alx);
1773	if (err) {
1774		dev_err(&pdev->dev, "net device private data init failed\n");
1775		goto out_unmap;
1776	}
1777
1778	alx_reset_pcie(hw);
1779
1780	phy_configured = alx_phy_configured(hw);
1781
1782	if (!phy_configured)
1783		alx_reset_phy(hw);
1784
1785	err = alx_reset_mac(hw);
1786	if (err) {
1787		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1788		goto out_unmap;
1789	}
1790
1791	/* setup link to put it in a known good starting state */
1792	if (!phy_configured) {
1793		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1794		if (err) {
1795			dev_err(&pdev->dev,
1796				"failed to configure PHY speed/duplex (err=%d)\n",
1797				err);
1798			goto out_unmap;
1799		}
1800	}
1801
1802	netdev->hw_features = NETIF_F_SG |
1803			      NETIF_F_HW_CSUM |
1804			      NETIF_F_RXCSUM |
1805			      NETIF_F_TSO |
1806			      NETIF_F_TSO6;
1807
1808	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1809		dev_warn(&pdev->dev,
1810			 "Invalid permanent address programmed, using random one\n");
1811		eth_hw_addr_random(netdev);
1812		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1813	}
1814
1815	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1816	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1817	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1818
1819	hw->mdio.prtad = 0;
1820	hw->mdio.mmds = 0;
1821	hw->mdio.dev = netdev;
1822	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1823				MDIO_SUPPORTS_C22 |
1824				MDIO_EMULATE_C22;
1825	hw->mdio.mdio_read = alx_mdio_read;
1826	hw->mdio.mdio_write = alx_mdio_write;
1827
1828	if (!alx_get_phy_info(hw)) {
1829		dev_err(&pdev->dev, "failed to identify PHY\n");
1830		err = -EIO;
1831		goto out_unmap;
1832	}
1833
1834	INIT_WORK(&alx->link_check_wk, alx_link_check);
1835	INIT_WORK(&alx->reset_wk, alx_reset);
1836	netif_carrier_off(netdev);
1837
1838	err = register_netdev(netdev);
1839	if (err) {
1840		dev_err(&pdev->dev, "register netdevice failed\n");
1841		goto out_unmap;
1842	}
1843
1844	netdev_info(netdev,
1845		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1846		    netdev->dev_addr);
1847
1848	return 0;
1849
1850out_unmap:
1851	iounmap(hw->hw_addr);
1852out_free_netdev:
1853	free_netdev(netdev);
1854out_pci_release:
1855	pci_release_mem_regions(pdev);
1856out_pci_disable:
1857	pci_disable_device(pdev);
1858	return err;
1859}
1860
1861static void alx_remove(struct pci_dev *pdev)
1862{
1863	struct alx_priv *alx = pci_get_drvdata(pdev);
1864	struct alx_hw *hw = &alx->hw;
1865
1866	cancel_work_sync(&alx->link_check_wk);
1867	cancel_work_sync(&alx->reset_wk);
1868
1869	/* restore permanent mac address */
1870	alx_set_macaddr(hw, hw->perm_addr);
1871
1872	unregister_netdev(alx->dev);
1873	iounmap(hw->hw_addr);
1874	pci_release_mem_regions(pdev);
1875
1876	pci_disable_pcie_error_reporting(pdev);
1877	pci_disable_device(pdev);
1878
1879	free_netdev(alx->dev);
1880}
1881
1882#ifdef CONFIG_PM_SLEEP
1883static int alx_suspend(struct device *dev)
1884{
1885	struct pci_dev *pdev = to_pci_dev(dev);
1886	struct alx_priv *alx = pci_get_drvdata(pdev);
1887
1888	if (!netif_running(alx->dev))
1889		return 0;
1890	netif_device_detach(alx->dev);
1891	__alx_stop(alx);
1892	return 0;
1893}
1894
1895static int alx_resume(struct device *dev)
1896{
1897	struct pci_dev *pdev = to_pci_dev(dev);
1898	struct alx_priv *alx = pci_get_drvdata(pdev);
1899	struct alx_hw *hw = &alx->hw;
1900
1901	alx_reset_phy(hw);
1902
1903	if (!netif_running(alx->dev))
1904		return 0;
1905	netif_device_attach(alx->dev);
1906	return __alx_open(alx, true);
1907}
1908
1909static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1910#define ALX_PM_OPS      (&alx_pm_ops)
1911#else
1912#define ALX_PM_OPS      NULL
1913#endif
1914
1915
1916static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1917					       pci_channel_state_t state)
1918{
1919	struct alx_priv *alx = pci_get_drvdata(pdev);
1920	struct net_device *netdev = alx->dev;
1921	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1922
1923	dev_info(&pdev->dev, "pci error detected\n");
1924
1925	rtnl_lock();
1926
1927	if (netif_running(netdev)) {
1928		netif_device_detach(netdev);
1929		alx_halt(alx);
1930	}
1931
1932	if (state == pci_channel_io_perm_failure)
1933		rc = PCI_ERS_RESULT_DISCONNECT;
1934	else
1935		pci_disable_device(pdev);
1936
1937	rtnl_unlock();
1938
1939	return rc;
1940}
1941
1942static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1943{
1944	struct alx_priv *alx = pci_get_drvdata(pdev);
1945	struct alx_hw *hw = &alx->hw;
1946	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1947
1948	dev_info(&pdev->dev, "pci error slot reset\n");
1949
1950	rtnl_lock();
1951
1952	if (pci_enable_device(pdev)) {
1953		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1954		goto out;
1955	}
1956
1957	pci_set_master(pdev);
1958
1959	alx_reset_pcie(hw);
1960	if (!alx_reset_mac(hw))
1961		rc = PCI_ERS_RESULT_RECOVERED;
1962out:
1963	pci_cleanup_aer_uncorrect_error_status(pdev);
1964
1965	rtnl_unlock();
1966
1967	return rc;
1968}
1969
1970static void alx_pci_error_resume(struct pci_dev *pdev)
1971{
1972	struct alx_priv *alx = pci_get_drvdata(pdev);
1973	struct net_device *netdev = alx->dev;
1974
1975	dev_info(&pdev->dev, "pci error resume\n");
1976
1977	rtnl_lock();
1978
1979	if (netif_running(netdev)) {
1980		alx_activate(alx);
1981		netif_device_attach(netdev);
1982	}
1983
1984	rtnl_unlock();
1985}
1986
1987static const struct pci_error_handlers alx_err_handlers = {
1988	.error_detected = alx_pci_error_detected,
1989	.slot_reset     = alx_pci_error_slot_reset,
1990	.resume         = alx_pci_error_resume,
1991};
1992
1993static const struct pci_device_id alx_pci_tbl[] = {
1994	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1995	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1996	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1997	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1998	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1999	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2000	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2001	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2002	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2003	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2004	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2005	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2006	{}
2007};
2008
2009static struct pci_driver alx_driver = {
2010	.name        = alx_drv_name,
2011	.id_table    = alx_pci_tbl,
2012	.probe       = alx_probe,
2013	.remove      = alx_remove,
2014	.err_handler = &alx_err_handlers,
2015	.driver.pm   = ALX_PM_OPS,
2016};
2017
2018module_pci_driver(alx_driver);
2019MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2020MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2021MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2022MODULE_DESCRIPTION(
2023	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2024MODULE_LICENSE("GPL");