Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v4.17.
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 82562G 10/100 Network Connection
  31 * 82562G-2 10/100 Network Connection
  32 * 82562GT 10/100 Network Connection
  33 * 82562GT-2 10/100 Network Connection
  34 * 82562V 10/100 Network Connection
  35 * 82562V-2 10/100 Network Connection
  36 * 82566DC-2 Gigabit Network Connection
  37 * 82566DC Gigabit Network Connection
  38 * 82566DM-2 Gigabit Network Connection
  39 * 82566DM Gigabit Network Connection
  40 * 82566MC Gigabit Network Connection
  41 * 82566MM Gigabit Network Connection
  42 * 82567LM Gigabit Network Connection
  43 * 82567LF Gigabit Network Connection
  44 * 82567V Gigabit Network Connection
  45 * 82567LM-2 Gigabit Network Connection
  46 * 82567LF-2 Gigabit Network Connection
  47 * 82567V-2 Gigabit Network Connection
  48 * 82567LF-3 Gigabit Network Connection
  49 * 82567LM-3 Gigabit Network Connection
  50 * 82567LM-4 Gigabit Network Connection
  51 * 82577LM Gigabit Network Connection
  52 * 82577LC Gigabit Network Connection
  53 * 82578DM Gigabit Network Connection
  54 * 82578DC Gigabit Network Connection
  55 * 82579LM Gigabit Network Connection
  56 * 82579V Gigabit Network Connection
  57 */
  58
  59#include "e1000.h"
  60
  61#define ICH_FLASH_GFPREG		0x0000
  62#define ICH_FLASH_HSFSTS		0x0004
  63#define ICH_FLASH_HSFCTL		0x0006
  64#define ICH_FLASH_FADDR			0x0008
  65#define ICH_FLASH_FDATA0		0x0010
  66#define ICH_FLASH_PR0			0x0074
  67
  68#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
  69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
  70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
  71#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
  72#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
  73
  74#define ICH_CYCLE_READ			0
  75#define ICH_CYCLE_WRITE			2
  76#define ICH_CYCLE_ERASE			3
  77
  78#define FLASH_GFPREG_BASE_MASK		0x1FFF
  79#define FLASH_SECTOR_ADDR_SHIFT		12
  80
  81#define ICH_FLASH_SEG_SIZE_256		256
  82#define ICH_FLASH_SEG_SIZE_4K		4096
  83#define ICH_FLASH_SEG_SIZE_8K		8192
  84#define ICH_FLASH_SEG_SIZE_64K		65536
  85
  86
  87#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
  88/* FW established a valid mode */
  89#define E1000_ICH_FWSM_FW_VALID		0x00008000
  90
  91#define E1000_ICH_MNG_IAMT_MODE		0x2
  92
  93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
  94				 (ID_LED_DEF1_OFF2 <<  8) | \
  95				 (ID_LED_DEF1_ON2  <<  4) | \
  96				 (ID_LED_DEF1_DEF2))
  97
  98#define E1000_ICH_NVM_SIG_WORD		0x13
  99#define E1000_ICH_NVM_SIG_MASK		0xC000
 100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
 101#define E1000_ICH_NVM_SIG_VALUE         0x80
 102
 103#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
 104
 105#define E1000_FEXTNVM_SW_CONFIG		1
 106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
 107
 108#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
 109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
 110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
 111
 112#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
 113
 114#define E1000_ICH_RAR_ENTRIES		7
 115
 116#define PHY_PAGE_SHIFT 5
 117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
 118			   ((reg) & MAX_PHY_REG_ADDRESS))
 119#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
 120#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
 121
 122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
 123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
 124#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
 125
 126#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
 127
 128#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
 129
 130/* SMBus Address Phy Register */
 131#define HV_SMB_ADDR            PHY_REG(768, 26)
 132#define HV_SMB_ADDR_MASK       0x007F
 133#define HV_SMB_ADDR_PEC_EN     0x0200
 134#define HV_SMB_ADDR_VALID      0x0080
 135
 136/* PHY Power Management Control */
 137#define HV_PM_CTRL		PHY_REG(770, 17)
 138
 139/* PHY Low Power Idle Control */
 140#define I82579_LPI_CTRL				PHY_REG(772, 20)
 141#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
 142#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
 143
 144/* EMI Registers */
 145#define I82579_EMI_ADDR         0x10
 146#define I82579_EMI_DATA         0x11
 147#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
 148
 149/* Strapping Option Register - RO */
 150#define E1000_STRAP                     0x0000C
 151#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
 152#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
 153
 154/* OEM Bits Phy Register */
 155#define HV_OEM_BITS            PHY_REG(768, 25)
 156#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
 157#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
 158#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
 159
 160#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
 161#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
 162
 163/* KMRN Mode Control */
 164#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
 165#define HV_KMRN_MDIO_SLOW      0x0400
 166
 167/* KMRN FIFO Control and Status */
 168#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
 169#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
 170#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
 171
 172/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
 173/* Offset 04h HSFSTS */
 174union ich8_hws_flash_status {
 175	struct ich8_hsfsts {
 176		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
 177		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
 178		u16 dael       :1; /* bit 2 Direct Access error Log */
 179		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
 180		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
 181		u16 reserved1  :2; /* bit 13:6 Reserved */
 182		u16 reserved2  :6; /* bit 13:6 Reserved */
 183		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
 184		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
 185	} hsf_status;
 186	u16 regval;
 187};
 188
 189/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
 190/* Offset 06h FLCTL */
 191union ich8_hws_flash_ctrl {
 192	struct ich8_hsflctl {
 193		u16 flcgo      :1;   /* 0 Flash Cycle Go */
 194		u16 flcycle    :2;   /* 2:1 Flash Cycle */
 195		u16 reserved   :5;   /* 7:3 Reserved  */
 196		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
 197		u16 flockdn    :6;   /* 15:10 Reserved */
 198	} hsf_ctrl;
 199	u16 regval;
 200};
 201
 202/* ICH Flash Region Access Permissions */
 203union ich8_hws_flash_regacc {
 204	struct ich8_flracc {
 205		u32 grra      :8; /* 0:7 GbE region Read Access */
 206		u32 grwa      :8; /* 8:15 GbE region Write Access */
 207		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
 208		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
 209	} hsf_flregacc;
 210	u16 regval;
 211};
 212
 213/* ICH Flash Protected Region */
 214union ich8_flash_protected_range {
 215	struct ich8_pr {
 216		u32 base:13;     /* 0:12 Protected Range Base */
 217		u32 reserved1:2; /* 13:14 Reserved */
 218		u32 rpe:1;       /* 15 Read Protection Enable */
 219		u32 limit:13;    /* 16:28 Protected Range Limit */
 220		u32 reserved2:2; /* 29:30 Reserved */
 221		u32 wpe:1;       /* 31 Write Protection Enable */
 222	} range;
 223	u32 regval;
 224};
 225
 226static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
 227static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 228static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 229static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 230static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 231						u32 offset, u8 byte);
 232static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 233					 u8 *data);
 234static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 235					 u16 *data);
 236static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 237					 u8 size, u16 *data);
 238static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
 239static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 240static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
 241static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 242static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 243static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 244static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 245static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 246static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 247static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 248static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 249static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 250static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 251static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 252static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 253static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 254static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 255static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 256static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 257static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 258
 259static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 260{
 261	return readw(hw->flash_address + reg);
 262}
 263
 264static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 265{
 266	return readl(hw->flash_address + reg);
 267}
 268
 269static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 270{
 271	writew(val, hw->flash_address + reg);
 272}
 273
 274static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 275{
 276	writel(val, hw->flash_address + reg);
 277}
 278
 279#define er16flash(reg)		__er16flash(hw, (reg))
 280#define er32flash(reg)		__er32flash(hw, (reg))
 281#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
 282#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
 283
 284static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
 285{
 286	u32 ctrl;
 287
 288	ctrl = er32(CTRL);
 289	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
 290	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
 291	ew32(CTRL, ctrl);
 292	e1e_flush();
 293	udelay(10);
 294	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 295	ew32(CTRL, ctrl);
 296}
 297
 298/**
 299 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 300 *  @hw: pointer to the HW structure
 301 *
 302 *  Initialize family-specific PHY parameters and function pointers.
 303 **/
 304static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 305{
 306	struct e1000_phy_info *phy = &hw->phy;
 307	u32 fwsm;
 308	s32 ret_val = 0;
 309
 310	phy->addr                     = 1;
 311	phy->reset_delay_us           = 100;
 312
 313	phy->ops.set_page             = e1000_set_page_igp;
 314	phy->ops.read_reg             = e1000_read_phy_reg_hv;
 315	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
 316	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
 317	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
 318	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
 319	phy->ops.write_reg            = e1000_write_phy_reg_hv;
 320	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
 321	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
 322	phy->ops.power_up             = e1000_power_up_phy_copper;
 323	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
 324	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 325
 326	/*
 327	 * The MAC-PHY interconnect may still be in SMBus mode
 328	 * after Sx->S0.  If the manageability engine (ME) is
 329	 * disabled, then toggle the LANPHYPC Value bit to force
 330	 * the interconnect to PCIe mode.
 331	 */
 332	fwsm = er32(FWSM);
 333	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
 334		e1000_toggle_lanphypc_value_ich8lan(hw);
 335		msleep(50);
 336
 337		/*
 338		 * Gate automatic PHY configuration by hardware on
 339		 * non-managed 82579
 340		 */
 341		if (hw->mac.type == e1000_pch2lan)
 342			e1000_gate_hw_phy_config_ich8lan(hw, true);
 343	}
 344
 345	/*
 346	 * Reset the PHY before any access to it.  Doing so, ensures that
 347	 * the PHY is in a known good state before we read/write PHY registers.
 348	 * The generic reset is sufficient here, because we haven't determined
 349	 * the PHY type yet.
 350	 */
 351	ret_val = e1000e_phy_hw_reset_generic(hw);
 352	if (ret_val)
 353		goto out;
 354
 355	/* Ungate automatic PHY configuration on non-managed 82579 */
 356	if ((hw->mac.type == e1000_pch2lan) &&
 357	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 358		usleep_range(10000, 20000);
 359		e1000_gate_hw_phy_config_ich8lan(hw, false);
 360	}
 361
 362	phy->id = e1000_phy_unknown;
 363	switch (hw->mac.type) {
 364	default:
 365		ret_val = e1000e_get_phy_id(hw);
 366		if (ret_val)
 367			goto out;
 368		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 369			break;
 370		/* fall-through */
 371	case e1000_pch2lan:
 372		/*
 373		 * In case the PHY needs to be in mdio slow mode,
 374		 * set slow mode and try to get the PHY id again.
 375		 */
 376		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 377		if (ret_val)
 378			goto out;
 379		ret_val = e1000e_get_phy_id(hw);
 380		if (ret_val)
 381			goto out;
 382		break;
 383	}
 384	phy->type = e1000e_get_phy_type_from_id(phy->id);
 385
 386	switch (phy->type) {
 387	case e1000_phy_82577:
 388	case e1000_phy_82579:
 389		phy->ops.check_polarity = e1000_check_polarity_82577;
 390		phy->ops.force_speed_duplex =
 391		    e1000_phy_force_speed_duplex_82577;
 392		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 393		phy->ops.get_info = e1000_get_phy_info_82577;
 394		phy->ops.commit = e1000e_phy_sw_reset;
 395		break;
 396	case e1000_phy_82578:
 397		phy->ops.check_polarity = e1000_check_polarity_m88;
 398		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 399		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 400		phy->ops.get_info = e1000e_get_phy_info_m88;
 401		break;
 402	default:
 403		ret_val = -E1000_ERR_PHY;
 404		break;
 405	}
 406
 407out:
 408	return ret_val;
 409}
 410
 411/**
 412 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 413 *  @hw: pointer to the HW structure
 414 *
 415 *  Initialize family-specific PHY parameters and function pointers.
 416 **/
 417static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 418{
 419	struct e1000_phy_info *phy = &hw->phy;
 420	s32 ret_val;
 421	u16 i = 0;
 422
 423	phy->addr			= 1;
 424	phy->reset_delay_us		= 100;
 425
 426	phy->ops.power_up               = e1000_power_up_phy_copper;
 427	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
 428
 429	/*
 430	 * We may need to do this twice - once for IGP and if that fails,
 431	 * we'll set BM func pointers and try again
 432	 */
 433	ret_val = e1000e_determine_phy_address(hw);
 434	if (ret_val) {
 435		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 436		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
 437		ret_val = e1000e_determine_phy_address(hw);
 438		if (ret_val) {
 439			e_dbg("Cannot determine PHY addr. Erroring out\n");
 440			return ret_val;
 441		}
 442	}
 443
 444	phy->id = 0;
 445	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 446	       (i++ < 100)) {
 447		usleep_range(1000, 2000);
 448		ret_val = e1000e_get_phy_id(hw);
 449		if (ret_val)
 450			return ret_val;
 451	}
 452
 453	/* Verify phy id */
 454	switch (phy->id) {
 455	case IGP03E1000_E_PHY_ID:
 456		phy->type = e1000_phy_igp_3;
 457		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 458		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 459		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 460		phy->ops.get_info = e1000e_get_phy_info_igp;
 461		phy->ops.check_polarity = e1000_check_polarity_igp;
 462		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 463		break;
 464	case IFE_E_PHY_ID:
 465	case IFE_PLUS_E_PHY_ID:
 466	case IFE_C_E_PHY_ID:
 467		phy->type = e1000_phy_ife;
 468		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 469		phy->ops.get_info = e1000_get_phy_info_ife;
 470		phy->ops.check_polarity = e1000_check_polarity_ife;
 471		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 472		break;
 473	case BME1000_E_PHY_ID:
 474		phy->type = e1000_phy_bm;
 475		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 476		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 477		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 478		phy->ops.commit = e1000e_phy_sw_reset;
 479		phy->ops.get_info = e1000e_get_phy_info_m88;
 480		phy->ops.check_polarity = e1000_check_polarity_m88;
 481		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 482		break;
 483	default:
 484		return -E1000_ERR_PHY;
 485		break;
 486	}
 487
 488	return 0;
 489}
 490
 491/**
 492 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 493 *  @hw: pointer to the HW structure
 494 *
 495 *  Initialize family-specific NVM parameters and function
 496 *  pointers.
 497 **/
 498static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 499{
 500	struct e1000_nvm_info *nvm = &hw->nvm;
 501	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 502	u32 gfpreg, sector_base_addr, sector_end_addr;
 503	u16 i;
 504
 505	/* Can't read flash registers if the register set isn't mapped. */
 506	if (!hw->flash_address) {
 507		e_dbg("ERROR: Flash registers not mapped\n");
 508		return -E1000_ERR_CONFIG;
 509	}
 510
 511	nvm->type = e1000_nvm_flash_sw;
 512
 513	gfpreg = er32flash(ICH_FLASH_GFPREG);
 514
 515	/*
 516	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
 517	 * Add 1 to sector_end_addr since this sector is included in
 518	 * the overall size.
 519	 */
 520	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 521	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 522
 523	/* flash_base_addr is byte-aligned */
 524	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 525
 526	/*
 527	 * find total size of the NVM, then cut in half since the total
 528	 * size represents two separate NVM banks.
 529	 */
 530	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
 531				<< FLASH_SECTOR_ADDR_SHIFT;
 532	nvm->flash_bank_size /= 2;
 533	/* Adjust to word count */
 534	nvm->flash_bank_size /= sizeof(u16);
 535
 536	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 537
 538	/* Clear shadow ram */
 539	for (i = 0; i < nvm->word_size; i++) {
 540		dev_spec->shadow_ram[i].modified = false;
 541		dev_spec->shadow_ram[i].value    = 0xFFFF;
 542	}
 543
 544	return 0;
 545}
 546
 547/**
 548 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 549 *  @hw: pointer to the HW structure
 550 *
 551 *  Initialize family-specific MAC parameters and function
 552 *  pointers.
 553 **/
 554static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
 555{
 556	struct e1000_hw *hw = &adapter->hw;
 557	struct e1000_mac_info *mac = &hw->mac;
 558
 559	/* Set media type function pointer */
 560	hw->phy.media_type = e1000_media_type_copper;
 561
 562	/* Set mta register count */
 563	mac->mta_reg_count = 32;
 564	/* Set rar entry count */
 565	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 566	if (mac->type == e1000_ich8lan)
 567		mac->rar_entry_count--;
 568	/* FWSM register */
 569	mac->has_fwsm = true;
 570	/* ARC subsystem not supported */
 571	mac->arc_subsystem_valid = false;
 572	/* Adaptive IFS supported */
 573	mac->adaptive_ifs = true;
 574
 575	/* LED operations */
 576	switch (mac->type) {
 577	case e1000_ich8lan:
 578	case e1000_ich9lan:
 579	case e1000_ich10lan:
 580		/* check management mode */
 581		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 582		/* ID LED init */
 583		mac->ops.id_led_init = e1000e_id_led_init;
 584		/* blink LED */
 585		mac->ops.blink_led = e1000e_blink_led_generic;
 586		/* setup LED */
 587		mac->ops.setup_led = e1000e_setup_led_generic;
 588		/* cleanup LED */
 589		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 590		/* turn on/off LED */
 591		mac->ops.led_on = e1000_led_on_ich8lan;
 592		mac->ops.led_off = e1000_led_off_ich8lan;
 593		break;
 594	case e1000_pchlan:
 595	case e1000_pch2lan:
 596		/* check management mode */
 597		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 598		/* ID LED init */
 599		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 600		/* setup LED */
 601		mac->ops.setup_led = e1000_setup_led_pchlan;
 602		/* cleanup LED */
 603		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 604		/* turn on/off LED */
 605		mac->ops.led_on = e1000_led_on_pchlan;
 606		mac->ops.led_off = e1000_led_off_pchlan;
 607		break;
 608	default:
 609		break;
 610	}
 611
 612	/* Enable PCS Lock-loss workaround for ICH8 */
 613	if (mac->type == e1000_ich8lan)
 614		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 615
 616	/* Gate automatic PHY configuration by hardware on managed 82579 */
 617	if ((mac->type == e1000_pch2lan) &&
 618	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 619		e1000_gate_hw_phy_config_ich8lan(hw, true);
 620
 621	return 0;
 622}
 623
 624/**
 625 *  e1000_set_eee_pchlan - Enable/disable EEE support
 626 *  @hw: pointer to the HW structure
 627 *
 628 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 629 *  the LPI Control register will remain set only if/when link is up.
 630 **/
 631static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 632{
 633	s32 ret_val = 0;
 634	u16 phy_reg;
 635
 636	if (hw->phy.type != e1000_phy_82579)
 637		goto out;
 638
 639	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
 640	if (ret_val)
 641		goto out;
 642
 643	if (hw->dev_spec.ich8lan.eee_disable)
 644		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
 645	else
 646		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
 647
 648	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
 649out:
 650	return ret_val;
 651}
 652
 653/**
 654 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 655 *  @hw: pointer to the HW structure
 656 *
 657 *  Checks to see of the link status of the hardware has changed.  If a
 658 *  change in link status has been detected, then we read the PHY registers
 659 *  to get the current speed/duplex if link exists.
 660 **/
 661static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
 662{
 663	struct e1000_mac_info *mac = &hw->mac;
 664	s32 ret_val;
 665	bool link;
 666	u16 phy_reg;
 667
 668	/*
 669	 * We only want to go out to the PHY registers to see if Auto-Neg
 670	 * has completed and/or if our link status has changed.  The
 671	 * get_link_status flag is set upon receiving a Link Status
 672	 * Change or Rx Sequence Error interrupt.
 673	 */
 674	if (!mac->get_link_status) {
 675		ret_val = 0;
 676		goto out;
 677	}
 678
 679	/*
 680	 * First we want to see if the MII Status Register reports
 681	 * link.  If so, then we want to get the current speed/duplex
 682	 * of the PHY.
 683	 */
 684	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 685	if (ret_val)
 686		goto out;
 687
 688	if (hw->mac.type == e1000_pchlan) {
 689		ret_val = e1000_k1_gig_workaround_hv(hw, link);
 690		if (ret_val)
 691			goto out;
 692	}
 693
 694	if (!link)
 695		goto out; /* No link detected */
 696
 697	mac->get_link_status = false;
 698
 699	switch (hw->mac.type) {
 700	case e1000_pch2lan:
 701		ret_val = e1000_k1_workaround_lv(hw);
 702		if (ret_val)
 703			goto out;
 704		/* fall-thru */
 705	case e1000_pchlan:
 706		if (hw->phy.type == e1000_phy_82578) {
 707			ret_val = e1000_link_stall_workaround_hv(hw);
 708			if (ret_val)
 709				goto out;
 710		}
 711
 712		/*
 713		 * Workaround for PCHx parts in half-duplex:
 714		 * Set the number of preambles removed from the packet
 715		 * when it is passed from the PHY to the MAC to prevent
 716		 * the MAC from misinterpreting the packet type.
 717		 */
 718		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
 719		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
 720
 721		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
 722			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
 723
 724		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
 725		break;
 726	default:
 727		break;
 728	}
 729
 730	/*
 731	 * Check if there was DownShift, must be checked
 732	 * immediately after link-up
 733	 */
 734	e1000e_check_downshift(hw);
 735
 736	/* Enable/Disable EEE after link up */
 737	ret_val = e1000_set_eee_pchlan(hw);
 738	if (ret_val)
 739		goto out;
 740
 741	/*
 742	 * If we are forcing speed/duplex, then we simply return since
 743	 * we have already determined whether we have link or not.
 744	 */
 745	if (!mac->autoneg) {
 746		ret_val = -E1000_ERR_CONFIG;
 747		goto out;
 748	}
 749
 750	/*
 751	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 752	 * of MAC speed/duplex configuration.  So we only need to
 753	 * configure Collision Distance in the MAC.
 754	 */
 755	e1000e_config_collision_dist(hw);
 756
 757	/*
 758	 * Configure Flow Control now that Auto-Neg has completed.
 759	 * First, we need to restore the desired flow control
 760	 * settings because we may have had to re-autoneg with a
 761	 * different link partner.
 762	 */
 763	ret_val = e1000e_config_fc_after_link_up(hw);
 764	if (ret_val)
 765		e_dbg("Error configuring flow control\n");
 766
 767out:
 768	return ret_val;
 769}
 770
 771static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
 772{
 773	struct e1000_hw *hw = &adapter->hw;
 774	s32 rc;
 775
 776	rc = e1000_init_mac_params_ich8lan(adapter);
 777	if (rc)
 778		return rc;
 779
 780	rc = e1000_init_nvm_params_ich8lan(hw);
 781	if (rc)
 782		return rc;
 783
 784	switch (hw->mac.type) {
 785	case e1000_ich8lan:
 786	case e1000_ich9lan:
 787	case e1000_ich10lan:
 788		rc = e1000_init_phy_params_ich8lan(hw);
 789		break;
 790	case e1000_pchlan:
 791	case e1000_pch2lan:
 792		rc = e1000_init_phy_params_pchlan(hw);
 793		break;
 794	default:
 795		break;
 796	}
 797	if (rc)
 798		return rc;
 799
 800	/*
 801	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
 802	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
 803	 */
 804	if ((adapter->hw.phy.type == e1000_phy_ife) ||
 805	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
 806	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
 807		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
 808		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
 809
 810		hw->mac.ops.blink_led = NULL;
 811	}
 812
 813	if ((adapter->hw.mac.type == e1000_ich8lan) &&
 814	    (adapter->hw.phy.type == e1000_phy_igp_3))
 815		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
 816
 817	/* Enable workaround for 82579 w/ ME enabled */
 818	if ((adapter->hw.mac.type == e1000_pch2lan) &&
 819	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 820		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
 821
 822	/* Disable EEE by default until IEEE802.3az spec is finalized */
 823	if (adapter->flags2 & FLAG2_HAS_EEE)
 824		adapter->hw.dev_spec.ich8lan.eee_disable = true;
 825
 826	return 0;
 827}
 828
 829static DEFINE_MUTEX(nvm_mutex);
 830
 831/**
 832 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 833 *  @hw: pointer to the HW structure
 834 *
 835 *  Acquires the mutex for performing NVM operations.
 836 **/
 837static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
 838{
 839	mutex_lock(&nvm_mutex);
 840
 841	return 0;
 842}
 843
 844/**
 845 *  e1000_release_nvm_ich8lan - Release NVM mutex
 846 *  @hw: pointer to the HW structure
 847 *
 848 *  Releases the mutex used while performing NVM operations.
 849 **/
 850static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
 851{
 852	mutex_unlock(&nvm_mutex);
 853}
 854
 855static DEFINE_MUTEX(swflag_mutex);
 856
 857/**
 858 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 859 *  @hw: pointer to the HW structure
 860 *
 861 *  Acquires the software control flag for performing PHY and select
 862 *  MAC CSR accesses.
 863 **/
 864static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
 865{
 866	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
 867	s32 ret_val = 0;
 868
 869	mutex_lock(&swflag_mutex);
 870
 871	while (timeout) {
 872		extcnf_ctrl = er32(EXTCNF_CTRL);
 873		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
 874			break;
 875
 876		mdelay(1);
 877		timeout--;
 878	}
 879
 880	if (!timeout) {
 881		e_dbg("SW/FW/HW has locked the resource for too long.\n");
 882		ret_val = -E1000_ERR_CONFIG;
 883		goto out;
 884	}
 885
 886	timeout = SW_FLAG_TIMEOUT;
 887
 888	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
 889	ew32(EXTCNF_CTRL, extcnf_ctrl);
 890
 891	while (timeout) {
 892		extcnf_ctrl = er32(EXTCNF_CTRL);
 893		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
 894			break;
 895
 896		mdelay(1);
 897		timeout--;
 898	}
 899
 900	if (!timeout) {
 901		e_dbg("Failed to acquire the semaphore.\n");
 902		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
 903		ew32(EXTCNF_CTRL, extcnf_ctrl);
 904		ret_val = -E1000_ERR_CONFIG;
 905		goto out;
 906	}
 907
 908out:
 909	if (ret_val)
 910		mutex_unlock(&swflag_mutex);
 911
 912	return ret_val;
 913}
 914
 915/**
 916 *  e1000_release_swflag_ich8lan - Release software control flag
 917 *  @hw: pointer to the HW structure
 918 *
 919 *  Releases the software control flag for performing PHY and select
 920 *  MAC CSR accesses.
 921 **/
 922static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
 923{
 924	u32 extcnf_ctrl;
 925
 926	extcnf_ctrl = er32(EXTCNF_CTRL);
 927
 928	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
 929		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
 930		ew32(EXTCNF_CTRL, extcnf_ctrl);
 931	} else {
 932		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
 933	}
 934
 935	mutex_unlock(&swflag_mutex);
 936}
 937
 938/**
 939 *  e1000_check_mng_mode_ich8lan - Checks management mode
 940 *  @hw: pointer to the HW structure
 941 *
 942 *  This checks if the adapter has any manageability enabled.
 943 *  This is a function pointer entry point only called by read/write
 944 *  routines for the PHY and NVM parts.
 945 **/
 946static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
 947{
 948	u32 fwsm;
 949
 950	fwsm = er32(FWSM);
 951	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
 952	       ((fwsm & E1000_FWSM_MODE_MASK) ==
 953		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
 954}
 955
 956/**
 957 *  e1000_check_mng_mode_pchlan - Checks management mode
 958 *  @hw: pointer to the HW structure
 959 *
 960 *  This checks if the adapter has iAMT enabled.
 961 *  This is a function pointer entry point only called by read/write
 962 *  routines for the PHY and NVM parts.
 963 **/
 964static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
 965{
 966	u32 fwsm;
 967
 968	fwsm = er32(FWSM);
 969	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
 970	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
 971}
 972
 973/**
 974 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 975 *  @hw: pointer to the HW structure
 976 *
 977 *  Checks if firmware is blocking the reset of the PHY.
 978 *  This is a function pointer entry point only called by
 979 *  reset routines.
 980 **/
 981static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
 982{
 983	u32 fwsm;
 984
 985	fwsm = er32(FWSM);
 986
 987	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
 988}
 989
 990/**
 991 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 992 *  @hw: pointer to the HW structure
 993 *
 994 *  Assumes semaphore already acquired.
 995 *
 996 **/
 997static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
 998{
 999	u16 phy_data;
1000	u32 strap = er32(STRAP);
1001	s32 ret_val = 0;
1002
1003	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1004
1005	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1006	if (ret_val)
1007		goto out;
1008
1009	phy_data &= ~HV_SMB_ADDR_MASK;
1010	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1011	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1012	ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1013
1014out:
1015	return ret_val;
1016}
1017
1018/**
1019 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1020 *  @hw:   pointer to the HW structure
1021 *
1022 *  SW should configure the LCD from the NVM extended configuration region
1023 *  as a workaround for certain parts.
1024 **/
1025static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1026{
1027	struct e1000_phy_info *phy = &hw->phy;
1028	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1029	s32 ret_val = 0;
1030	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1031
1032	/*
1033	 * Initialize the PHY from the NVM on ICH platforms.  This
1034	 * is needed due to an issue where the NVM configuration is
1035	 * not properly autoloaded after power transitions.
1036	 * Therefore, after each PHY reset, we will load the
1037	 * configuration data out of the NVM manually.
1038	 */
1039	switch (hw->mac.type) {
1040	case e1000_ich8lan:
1041		if (phy->type != e1000_phy_igp_3)
1042			return ret_val;
1043
1044		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1045		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1046			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1047			break;
1048		}
1049		/* Fall-thru */
1050	case e1000_pchlan:
1051	case e1000_pch2lan:
1052		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1053		break;
1054	default:
1055		return ret_val;
1056	}
1057
1058	ret_val = hw->phy.ops.acquire(hw);
1059	if (ret_val)
1060		return ret_val;
1061
1062	data = er32(FEXTNVM);
1063	if (!(data & sw_cfg_mask))
1064		goto out;
1065
1066	/*
1067	 * Make sure HW does not configure LCD from PHY
1068	 * extended configuration before SW configuration
1069	 */
1070	data = er32(EXTCNF_CTRL);
1071	if (!(hw->mac.type == e1000_pch2lan)) {
1072		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1073			goto out;
1074	}
1075
1076	cnf_size = er32(EXTCNF_SIZE);
1077	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1078	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1079	if (!cnf_size)
1080		goto out;
1081
1082	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1083	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1084
1085	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1086	    (hw->mac.type == e1000_pchlan)) ||
1087	     (hw->mac.type == e1000_pch2lan)) {
1088		/*
1089		 * HW configures the SMBus address and LEDs when the
1090		 * OEM and LCD Write Enable bits are set in the NVM.
1091		 * When both NVM bits are cleared, SW will configure
1092		 * them instead.
1093		 */
1094		ret_val = e1000_write_smbus_addr(hw);
1095		if (ret_val)
1096			goto out;
1097
1098		data = er32(LEDCTL);
1099		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1100							(u16)data);
1101		if (ret_val)
1102			goto out;
1103	}
1104
1105	/* Configure LCD from extended configuration region. */
1106
1107	/* cnf_base_addr is in DWORD */
1108	word_addr = (u16)(cnf_base_addr << 1);
1109
1110	for (i = 0; i < cnf_size; i++) {
1111		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1112					 &reg_data);
1113		if (ret_val)
1114			goto out;
1115
1116		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1117					 1, &reg_addr);
1118		if (ret_val)
1119			goto out;
1120
1121		/* Save off the PHY page for future writes. */
1122		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1123			phy_page = reg_data;
1124			continue;
1125		}
1126
1127		reg_addr &= PHY_REG_MASK;
1128		reg_addr |= phy_page;
1129
1130		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1131						    reg_data);
1132		if (ret_val)
1133			goto out;
1134	}
1135
1136out:
1137	hw->phy.ops.release(hw);
1138	return ret_val;
1139}
1140
1141/**
1142 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1143 *  @hw:   pointer to the HW structure
1144 *  @link: link up bool flag
1145 *
1146 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1147 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1148 *  If link is down, the function will restore the default K1 setting located
1149 *  in the NVM.
1150 **/
1151static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1152{
1153	s32 ret_val = 0;
1154	u16 status_reg = 0;
1155	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1156
1157	if (hw->mac.type != e1000_pchlan)
1158		goto out;
1159
1160	/* Wrap the whole flow with the sw flag */
1161	ret_val = hw->phy.ops.acquire(hw);
1162	if (ret_val)
1163		goto out;
1164
1165	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1166	if (link) {
1167		if (hw->phy.type == e1000_phy_82578) {
1168			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1169			                                          &status_reg);
1170			if (ret_val)
1171				goto release;
1172
1173			status_reg &= BM_CS_STATUS_LINK_UP |
1174			              BM_CS_STATUS_RESOLVED |
1175			              BM_CS_STATUS_SPEED_MASK;
1176
1177			if (status_reg == (BM_CS_STATUS_LINK_UP |
1178			                   BM_CS_STATUS_RESOLVED |
1179			                   BM_CS_STATUS_SPEED_1000))
1180				k1_enable = false;
1181		}
1182
1183		if (hw->phy.type == e1000_phy_82577) {
1184			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1185			                                          &status_reg);
1186			if (ret_val)
1187				goto release;
1188
1189			status_reg &= HV_M_STATUS_LINK_UP |
1190			              HV_M_STATUS_AUTONEG_COMPLETE |
1191			              HV_M_STATUS_SPEED_MASK;
1192
1193			if (status_reg == (HV_M_STATUS_LINK_UP |
1194			                   HV_M_STATUS_AUTONEG_COMPLETE |
1195			                   HV_M_STATUS_SPEED_1000))
1196				k1_enable = false;
1197		}
1198
1199		/* Link stall fix for link up */
1200		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1201		                                           0x0100);
1202		if (ret_val)
1203			goto release;
1204
1205	} else {
1206		/* Link stall fix for link down */
1207		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1208		                                           0x4100);
1209		if (ret_val)
1210			goto release;
1211	}
1212
1213	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1214
1215release:
1216	hw->phy.ops.release(hw);
1217out:
1218	return ret_val;
1219}
1220
1221/**
1222 *  e1000_configure_k1_ich8lan - Configure K1 power state
1223 *  @hw: pointer to the HW structure
1224 *  @enable: K1 state to configure
1225 *
1226 *  Configure the K1 power state based on the provided parameter.
1227 *  Assumes semaphore already acquired.
1228 *
1229 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1230 **/
1231s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1232{
1233	s32 ret_val = 0;
1234	u32 ctrl_reg = 0;
1235	u32 ctrl_ext = 0;
1236	u32 reg = 0;
1237	u16 kmrn_reg = 0;
1238
1239	ret_val = e1000e_read_kmrn_reg_locked(hw,
1240	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
1241	                                     &kmrn_reg);
1242	if (ret_val)
1243		goto out;
1244
1245	if (k1_enable)
1246		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1247	else
1248		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1249
1250	ret_val = e1000e_write_kmrn_reg_locked(hw,
1251	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
1252	                                      kmrn_reg);
1253	if (ret_val)
1254		goto out;
1255
1256	udelay(20);
1257	ctrl_ext = er32(CTRL_EXT);
1258	ctrl_reg = er32(CTRL);
1259
1260	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1261	reg |= E1000_CTRL_FRCSPD;
1262	ew32(CTRL, reg);
1263
1264	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1265	e1e_flush();
1266	udelay(20);
1267	ew32(CTRL, ctrl_reg);
1268	ew32(CTRL_EXT, ctrl_ext);
1269	e1e_flush();
1270	udelay(20);
1271
1272out:
1273	return ret_val;
1274}
1275
1276/**
1277 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1278 *  @hw:       pointer to the HW structure
1279 *  @d0_state: boolean if entering d0 or d3 device state
1280 *
1281 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1282 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1283 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1284 **/
1285static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1286{
1287	s32 ret_val = 0;
1288	u32 mac_reg;
1289	u16 oem_reg;
1290
1291	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1292		return ret_val;
1293
1294	ret_val = hw->phy.ops.acquire(hw);
1295	if (ret_val)
1296		return ret_val;
1297
1298	if (!(hw->mac.type == e1000_pch2lan)) {
1299		mac_reg = er32(EXTCNF_CTRL);
1300		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1301			goto out;
1302	}
1303
1304	mac_reg = er32(FEXTNVM);
1305	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1306		goto out;
1307
1308	mac_reg = er32(PHY_CTRL);
1309
1310	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1311	if (ret_val)
1312		goto out;
1313
1314	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1315
1316	if (d0_state) {
1317		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1318			oem_reg |= HV_OEM_BITS_GBE_DIS;
1319
1320		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1321			oem_reg |= HV_OEM_BITS_LPLU;
1322	} else {
1323		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1324			oem_reg |= HV_OEM_BITS_GBE_DIS;
1325
1326		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1327			oem_reg |= HV_OEM_BITS_LPLU;
1328	}
1329	/* Restart auto-neg to activate the bits */
1330	if (!e1000_check_reset_block(hw))
1331		oem_reg |= HV_OEM_BITS_RESTART_AN;
1332	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1333
1334out:
1335	hw->phy.ops.release(hw);
1336
1337	return ret_val;
1338}
1339
1340
1341/**
1342 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1343 *  @hw:   pointer to the HW structure
1344 **/
1345static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1346{
1347	s32 ret_val;
1348	u16 data;
1349
1350	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1351	if (ret_val)
1352		return ret_val;
1353
1354	data |= HV_KMRN_MDIO_SLOW;
1355
1356	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1357
1358	return ret_val;
1359}
1360
1361/**
1362 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1363 *  done after every PHY reset.
1364 **/
1365static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1366{
1367	s32 ret_val = 0;
1368	u16 phy_data;
1369
1370	if (hw->mac.type != e1000_pchlan)
1371		return ret_val;
1372
1373	/* Set MDIO slow mode before any other MDIO access */
1374	if (hw->phy.type == e1000_phy_82577) {
1375		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1376		if (ret_val)
1377			goto out;
1378	}
1379
1380	if (((hw->phy.type == e1000_phy_82577) &&
1381	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1382	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1383		/* Disable generation of early preamble */
1384		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1385		if (ret_val)
1386			return ret_val;
1387
1388		/* Preamble tuning for SSC */
1389		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1390		if (ret_val)
1391			return ret_val;
1392	}
1393
1394	if (hw->phy.type == e1000_phy_82578) {
1395		/*
1396		 * Return registers to default by doing a soft reset then
1397		 * writing 0x3140 to the control register.
1398		 */
1399		if (hw->phy.revision < 2) {
1400			e1000e_phy_sw_reset(hw);
1401			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1402		}
1403	}
1404
1405	/* Select page 0 */
1406	ret_val = hw->phy.ops.acquire(hw);
1407	if (ret_val)
1408		return ret_val;
1409
1410	hw->phy.addr = 1;
1411	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1412	hw->phy.ops.release(hw);
1413	if (ret_val)
1414		goto out;
1415
1416	/*
1417	 * Configure the K1 Si workaround during phy reset assuming there is
1418	 * link so that it disables K1 if link is in 1Gbps.
1419	 */
1420	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1421	if (ret_val)
1422		goto out;
1423
1424	/* Workaround for link disconnects on a busy hub in half duplex */
1425	ret_val = hw->phy.ops.acquire(hw);
1426	if (ret_val)
1427		goto out;
1428	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1429	if (ret_val)
1430		goto release;
1431	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1432					       phy_data & 0x00FF);
1433release:
1434	hw->phy.ops.release(hw);
1435out:
1436	return ret_val;
1437}
1438
1439/**
1440 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1441 *  @hw:   pointer to the HW structure
1442 **/
1443void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1444{
1445	u32 mac_reg;
1446	u16 i, phy_reg = 0;
1447	s32 ret_val;
1448
1449	ret_val = hw->phy.ops.acquire(hw);
1450	if (ret_val)
1451		return;
1452	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1453	if (ret_val)
1454		goto release;
1455
1456	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1457	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1458		mac_reg = er32(RAL(i));
1459		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1460					   (u16)(mac_reg & 0xFFFF));
1461		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1462					   (u16)((mac_reg >> 16) & 0xFFFF));
1463
1464		mac_reg = er32(RAH(i));
1465		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1466					   (u16)(mac_reg & 0xFFFF));
1467		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1468					   (u16)((mac_reg & E1000_RAH_AV)
1469						 >> 16));
1470	}
1471
1472	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1473
1474release:
1475	hw->phy.ops.release(hw);
1476}
1477
1478/**
1479 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1480 *  with 82579 PHY
1481 *  @hw: pointer to the HW structure
1482 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1483 **/
1484s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1485{
1486	s32 ret_val = 0;
1487	u16 phy_reg, data;
1488	u32 mac_reg;
1489	u16 i;
1490
1491	if (hw->mac.type != e1000_pch2lan)
1492		goto out;
1493
1494	/* disable Rx path while enabling/disabling workaround */
1495	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1496	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1497	if (ret_val)
1498		goto out;
1499
1500	if (enable) {
1501		/*
1502		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1503		 * SHRAL/H) and initial CRC values to the MAC
1504		 */
1505		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1506			u8 mac_addr[ETH_ALEN] = {0};
1507			u32 addr_high, addr_low;
1508
1509			addr_high = er32(RAH(i));
1510			if (!(addr_high & E1000_RAH_AV))
1511				continue;
1512			addr_low = er32(RAL(i));
1513			mac_addr[0] = (addr_low & 0xFF);
1514			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1515			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1516			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1517			mac_addr[4] = (addr_high & 0xFF);
1518			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1519
1520			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1521		}
1522
1523		/* Write Rx addresses to the PHY */
1524		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1525
1526		/* Enable jumbo frame workaround in the MAC */
1527		mac_reg = er32(FFLT_DBG);
1528		mac_reg &= ~(1 << 14);
1529		mac_reg |= (7 << 15);
1530		ew32(FFLT_DBG, mac_reg);
1531
1532		mac_reg = er32(RCTL);
1533		mac_reg |= E1000_RCTL_SECRC;
1534		ew32(RCTL, mac_reg);
1535
1536		ret_val = e1000e_read_kmrn_reg(hw,
1537						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1538						&data);
1539		if (ret_val)
1540			goto out;
1541		ret_val = e1000e_write_kmrn_reg(hw,
1542						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1543						data | (1 << 0));
1544		if (ret_val)
1545			goto out;
1546		ret_val = e1000e_read_kmrn_reg(hw,
1547						E1000_KMRNCTRLSTA_HD_CTRL,
1548						&data);
1549		if (ret_val)
1550			goto out;
1551		data &= ~(0xF << 8);
1552		data |= (0xB << 8);
1553		ret_val = e1000e_write_kmrn_reg(hw,
1554						E1000_KMRNCTRLSTA_HD_CTRL,
1555						data);
1556		if (ret_val)
1557			goto out;
1558
1559		/* Enable jumbo frame workaround in the PHY */
1560		e1e_rphy(hw, PHY_REG(769, 23), &data);
1561		data &= ~(0x7F << 5);
1562		data |= (0x37 << 5);
1563		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1564		if (ret_val)
1565			goto out;
1566		e1e_rphy(hw, PHY_REG(769, 16), &data);
1567		data &= ~(1 << 13);
1568		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1569		if (ret_val)
1570			goto out;
1571		e1e_rphy(hw, PHY_REG(776, 20), &data);
1572		data &= ~(0x3FF << 2);
1573		data |= (0x1A << 2);
1574		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1575		if (ret_val)
1576			goto out;
1577		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1578		if (ret_val)
1579			goto out;
1580		e1e_rphy(hw, HV_PM_CTRL, &data);
1581		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1582		if (ret_val)
1583			goto out;
1584	} else {
1585		/* Write MAC register values back to h/w defaults */
1586		mac_reg = er32(FFLT_DBG);
1587		mac_reg &= ~(0xF << 14);
1588		ew32(FFLT_DBG, mac_reg);
1589
1590		mac_reg = er32(RCTL);
1591		mac_reg &= ~E1000_RCTL_SECRC;
1592		ew32(RCTL, mac_reg);
1593
1594		ret_val = e1000e_read_kmrn_reg(hw,
1595						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1596						&data);
1597		if (ret_val)
1598			goto out;
1599		ret_val = e1000e_write_kmrn_reg(hw,
1600						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1601						data & ~(1 << 0));
1602		if (ret_val)
1603			goto out;
1604		ret_val = e1000e_read_kmrn_reg(hw,
1605						E1000_KMRNCTRLSTA_HD_CTRL,
1606						&data);
1607		if (ret_val)
1608			goto out;
1609		data &= ~(0xF << 8);
1610		data |= (0xB << 8);
1611		ret_val = e1000e_write_kmrn_reg(hw,
1612						E1000_KMRNCTRLSTA_HD_CTRL,
1613						data);
1614		if (ret_val)
1615			goto out;
1616
1617		/* Write PHY register values back to h/w defaults */
1618		e1e_rphy(hw, PHY_REG(769, 23), &data);
1619		data &= ~(0x7F << 5);
1620		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1621		if (ret_val)
1622			goto out;
1623		e1e_rphy(hw, PHY_REG(769, 16), &data);
1624		data |= (1 << 13);
1625		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1626		if (ret_val)
1627			goto out;
1628		e1e_rphy(hw, PHY_REG(776, 20), &data);
1629		data &= ~(0x3FF << 2);
1630		data |= (0x8 << 2);
1631		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1632		if (ret_val)
1633			goto out;
1634		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1635		if (ret_val)
1636			goto out;
1637		e1e_rphy(hw, HV_PM_CTRL, &data);
1638		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1639		if (ret_val)
1640			goto out;
1641	}
1642
1643	/* re-enable Rx path after enabling/disabling workaround */
1644	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1645
1646out:
1647	return ret_val;
1648}
1649
1650/**
1651 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1652 *  done after every PHY reset.
1653 **/
1654static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1655{
1656	s32 ret_val = 0;
1657
1658	if (hw->mac.type != e1000_pch2lan)
1659		goto out;
1660
1661	/* Set MDIO slow mode before any other MDIO access */
1662	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1663
1664out:
1665	return ret_val;
1666}
1667
1668/**
1669 *  e1000_k1_gig_workaround_lv - K1 Si workaround
1670 *  @hw:   pointer to the HW structure
1671 *
1672 *  Workaround to set the K1 beacon duration for 82579 parts
1673 **/
1674static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1675{
1676	s32 ret_val = 0;
1677	u16 status_reg = 0;
1678	u32 mac_reg;
1679	u16 phy_reg;
1680
1681	if (hw->mac.type != e1000_pch2lan)
1682		goto out;
1683
1684	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
1685	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1686	if (ret_val)
1687		goto out;
1688
1689	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1690	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1691		mac_reg = er32(FEXTNVM4);
1692		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1693
1694		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1695		if (ret_val)
1696			goto out;
1697
1698		if (status_reg & HV_M_STATUS_SPEED_1000) {
1699			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1700			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1701		} else {
1702			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1703			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1704		}
1705		ew32(FEXTNVM4, mac_reg);
1706		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1707	}
1708
1709out:
1710	return ret_val;
1711}
1712
1713/**
1714 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1715 *  @hw:   pointer to the HW structure
1716 *  @gate: boolean set to true to gate, false to ungate
1717 *
1718 *  Gate/ungate the automatic PHY configuration via hardware; perform
1719 *  the configuration via software instead.
1720 **/
1721static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1722{
1723	u32 extcnf_ctrl;
1724
1725	if (hw->mac.type != e1000_pch2lan)
1726		return;
1727
1728	extcnf_ctrl = er32(EXTCNF_CTRL);
1729
1730	if (gate)
1731		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1732	else
1733		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1734
1735	ew32(EXTCNF_CTRL, extcnf_ctrl);
1736	return;
1737}
1738
1739/**
1740 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1741 *  @hw: pointer to the HW structure
1742 *
1743 *  Check the appropriate indication the MAC has finished configuring the
1744 *  PHY after a software reset.
1745 **/
1746static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1747{
1748	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1749
1750	/* Wait for basic configuration completes before proceeding */
1751	do {
1752		data = er32(STATUS);
1753		data &= E1000_STATUS_LAN_INIT_DONE;
1754		udelay(100);
1755	} while ((!data) && --loop);
1756
1757	/*
1758	 * If basic configuration is incomplete before the above loop
1759	 * count reaches 0, loading the configuration from NVM will
1760	 * leave the PHY in a bad state possibly resulting in no link.
1761	 */
1762	if (loop == 0)
1763		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1764
1765	/* Clear the Init Done bit for the next init event */
1766	data = er32(STATUS);
1767	data &= ~E1000_STATUS_LAN_INIT_DONE;
1768	ew32(STATUS, data);
1769}
1770
1771/**
1772 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1773 *  @hw: pointer to the HW structure
1774 **/
1775static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1776{
1777	s32 ret_val = 0;
1778	u16 reg;
1779
1780	if (e1000_check_reset_block(hw))
1781		goto out;
1782
1783	/* Allow time for h/w to get to quiescent state after reset */
1784	usleep_range(10000, 20000);
1785
1786	/* Perform any necessary post-reset workarounds */
1787	switch (hw->mac.type) {
1788	case e1000_pchlan:
1789		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1790		if (ret_val)
1791			goto out;
1792		break;
1793	case e1000_pch2lan:
1794		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1795		if (ret_val)
1796			goto out;
1797		break;
1798	default:
1799		break;
1800	}
1801
1802	/* Clear the host wakeup bit after lcd reset */
1803	if (hw->mac.type >= e1000_pchlan) {
1804		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1805		reg &= ~BM_WUC_HOST_WU_BIT;
1806		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1807	}
1808
1809	/* Configure the LCD with the extended configuration region in NVM */
1810	ret_val = e1000_sw_lcd_config_ich8lan(hw);
1811	if (ret_val)
1812		goto out;
1813
1814	/* Configure the LCD with the OEM bits in NVM */
1815	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1816
1817	if (hw->mac.type == e1000_pch2lan) {
1818		/* Ungate automatic PHY configuration on non-managed 82579 */
1819		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1820			usleep_range(10000, 20000);
1821			e1000_gate_hw_phy_config_ich8lan(hw, false);
1822		}
1823
1824		/* Set EEE LPI Update Timer to 200usec */
1825		ret_val = hw->phy.ops.acquire(hw);
1826		if (ret_val)
1827			goto out;
1828		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1829						       I82579_LPI_UPDATE_TIMER);
1830		if (ret_val)
1831			goto release;
1832		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1833						       0x1387);
1834release:
1835		hw->phy.ops.release(hw);
1836	}
1837
1838out:
1839	return ret_val;
1840}
1841
1842/**
1843 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1844 *  @hw: pointer to the HW structure
1845 *
1846 *  Resets the PHY
1847 *  This is a function pointer entry point called by drivers
1848 *  or other shared routines.
1849 **/
1850static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1851{
1852	s32 ret_val = 0;
1853
1854	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
1855	if ((hw->mac.type == e1000_pch2lan) &&
1856	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1857		e1000_gate_hw_phy_config_ich8lan(hw, true);
1858
1859	ret_val = e1000e_phy_hw_reset_generic(hw);
1860	if (ret_val)
1861		goto out;
1862
1863	ret_val = e1000_post_phy_reset_ich8lan(hw);
1864
1865out:
1866	return ret_val;
1867}
1868
1869/**
1870 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1871 *  @hw: pointer to the HW structure
1872 *  @active: true to enable LPLU, false to disable
1873 *
1874 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1875 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1876 *  the phy speed. This function will manually set the LPLU bit and restart
1877 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1878 *  since it configures the same bit.
1879 **/
1880static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1881{
1882	s32 ret_val = 0;
1883	u16 oem_reg;
1884
1885	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1886	if (ret_val)
1887		goto out;
1888
1889	if (active)
1890		oem_reg |= HV_OEM_BITS_LPLU;
1891	else
1892		oem_reg &= ~HV_OEM_BITS_LPLU;
1893
1894	oem_reg |= HV_OEM_BITS_RESTART_AN;
1895	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1896
1897out:
1898	return ret_val;
1899}
1900
1901/**
1902 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1903 *  @hw: pointer to the HW structure
1904 *  @active: true to enable LPLU, false to disable
1905 *
1906 *  Sets the LPLU D0 state according to the active flag.  When
1907 *  activating LPLU this function also disables smart speed
1908 *  and vice versa.  LPLU will not be activated unless the
1909 *  device autonegotiation advertisement meets standards of
1910 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1911 *  This is a function pointer entry point only called by
1912 *  PHY setup routines.
1913 **/
1914static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1915{
1916	struct e1000_phy_info *phy = &hw->phy;
1917	u32 phy_ctrl;
1918	s32 ret_val = 0;
1919	u16 data;
1920
1921	if (phy->type == e1000_phy_ife)
1922		return ret_val;
1923
1924	phy_ctrl = er32(PHY_CTRL);
1925
1926	if (active) {
1927		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1928		ew32(PHY_CTRL, phy_ctrl);
1929
1930		if (phy->type != e1000_phy_igp_3)
1931			return 0;
1932
1933		/*
1934		 * Call gig speed drop workaround on LPLU before accessing
1935		 * any PHY registers
1936		 */
1937		if (hw->mac.type == e1000_ich8lan)
1938			e1000e_gig_downshift_workaround_ich8lan(hw);
1939
1940		/* When LPLU is enabled, we should disable SmartSpeed */
1941		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1942		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1943		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1944		if (ret_val)
1945			return ret_val;
1946	} else {
1947		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1948		ew32(PHY_CTRL, phy_ctrl);
1949
1950		if (phy->type != e1000_phy_igp_3)
1951			return 0;
1952
1953		/*
1954		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1955		 * during Dx states where the power conservation is most
1956		 * important.  During driver activity we should enable
1957		 * SmartSpeed, so performance is maintained.
1958		 */
1959		if (phy->smart_speed == e1000_smart_speed_on) {
1960			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1961					   &data);
1962			if (ret_val)
1963				return ret_val;
1964
1965			data |= IGP01E1000_PSCFR_SMART_SPEED;
1966			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1967					   data);
1968			if (ret_val)
1969				return ret_val;
1970		} else if (phy->smart_speed == e1000_smart_speed_off) {
1971			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1972					   &data);
1973			if (ret_val)
1974				return ret_val;
1975
1976			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1977			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1978					   data);
1979			if (ret_val)
1980				return ret_val;
1981		}
1982	}
1983
1984	return 0;
1985}
1986
1987/**
1988 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1989 *  @hw: pointer to the HW structure
1990 *  @active: true to enable LPLU, false to disable
1991 *
1992 *  Sets the LPLU D3 state according to the active flag.  When
1993 *  activating LPLU this function also disables smart speed
1994 *  and vice versa.  LPLU will not be activated unless the
1995 *  device autonegotiation advertisement meets standards of
1996 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1997 *  This is a function pointer entry point only called by
1998 *  PHY setup routines.
1999 **/
2000static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2001{
2002	struct e1000_phy_info *phy = &hw->phy;
2003	u32 phy_ctrl;
2004	s32 ret_val;
2005	u16 data;
2006
2007	phy_ctrl = er32(PHY_CTRL);
2008
2009	if (!active) {
2010		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2011		ew32(PHY_CTRL, phy_ctrl);
2012
2013		if (phy->type != e1000_phy_igp_3)
2014			return 0;
2015
2016		/*
2017		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2018		 * during Dx states where the power conservation is most
2019		 * important.  During driver activity we should enable
2020		 * SmartSpeed, so performance is maintained.
2021		 */
2022		if (phy->smart_speed == e1000_smart_speed_on) {
2023			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2024					   &data);
2025			if (ret_val)
2026				return ret_val;
2027
2028			data |= IGP01E1000_PSCFR_SMART_SPEED;
2029			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2030					   data);
2031			if (ret_val)
2032				return ret_val;
2033		} else if (phy->smart_speed == e1000_smart_speed_off) {
2034			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2035					   &data);
2036			if (ret_val)
2037				return ret_val;
2038
2039			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2040			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2041					   data);
2042			if (ret_val)
2043				return ret_val;
2044		}
2045	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2046		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2047		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2048		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2049		ew32(PHY_CTRL, phy_ctrl);
2050
2051		if (phy->type != e1000_phy_igp_3)
2052			return 0;
2053
2054		/*
2055		 * Call gig speed drop workaround on LPLU before accessing
2056		 * any PHY registers
2057		 */
2058		if (hw->mac.type == e1000_ich8lan)
2059			e1000e_gig_downshift_workaround_ich8lan(hw);
2060
2061		/* When LPLU is enabled, we should disable SmartSpeed */
2062		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2063		if (ret_val)
2064			return ret_val;
2065
2066		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2067		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2068	}
2069
2070	return 0;
2071}
2072
2073/**
2074 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2075 *  @hw: pointer to the HW structure
2076 *  @bank:  pointer to the variable that returns the active bank
2077 *
2078 *  Reads signature byte from the NVM using the flash access registers.
2079 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2080 **/
2081static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2082{
2083	u32 eecd;
2084	struct e1000_nvm_info *nvm = &hw->nvm;
2085	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2086	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2087	u8 sig_byte = 0;
2088	s32 ret_val = 0;
2089
2090	switch (hw->mac.type) {
2091	case e1000_ich8lan:
2092	case e1000_ich9lan:
2093		eecd = er32(EECD);
2094		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2095		    E1000_EECD_SEC1VAL_VALID_MASK) {
2096			if (eecd & E1000_EECD_SEC1VAL)
2097				*bank = 1;
2098			else
2099				*bank = 0;
2100
2101			return 0;
2102		}
2103		e_dbg("Unable to determine valid NVM bank via EEC - "
2104		       "reading flash signature\n");
2105		/* fall-thru */
2106	default:
2107		/* set bank to 0 in case flash read fails */
2108		*bank = 0;
2109
2110		/* Check bank 0 */
2111		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2112		                                        &sig_byte);
2113		if (ret_val)
2114			return ret_val;
2115		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2116		    E1000_ICH_NVM_SIG_VALUE) {
2117			*bank = 0;
2118			return 0;
2119		}
2120
2121		/* Check bank 1 */
2122		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2123		                                        bank1_offset,
2124		                                        &sig_byte);
2125		if (ret_val)
2126			return ret_val;
2127		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2128		    E1000_ICH_NVM_SIG_VALUE) {
2129			*bank = 1;
2130			return 0;
2131		}
2132
2133		e_dbg("ERROR: No valid NVM bank present\n");
2134		return -E1000_ERR_NVM;
2135	}
2136
2137	return 0;
2138}
2139
2140/**
2141 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2142 *  @hw: pointer to the HW structure
2143 *  @offset: The offset (in bytes) of the word(s) to read.
2144 *  @words: Size of data to read in words
2145 *  @data: Pointer to the word(s) to read at offset.
2146 *
2147 *  Reads a word(s) from the NVM using the flash access registers.
2148 **/
2149static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2150				  u16 *data)
2151{
2152	struct e1000_nvm_info *nvm = &hw->nvm;
2153	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2154	u32 act_offset;
2155	s32 ret_val = 0;
2156	u32 bank = 0;
2157	u16 i, word;
2158
2159	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2160	    (words == 0)) {
2161		e_dbg("nvm parameter(s) out of bounds\n");
2162		ret_val = -E1000_ERR_NVM;
2163		goto out;
2164	}
2165
2166	nvm->ops.acquire(hw);
2167
2168	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2169	if (ret_val) {
2170		e_dbg("Could not detect valid bank, assuming bank 0\n");
2171		bank = 0;
2172	}
2173
2174	act_offset = (bank) ? nvm->flash_bank_size : 0;
2175	act_offset += offset;
2176
2177	ret_val = 0;
2178	for (i = 0; i < words; i++) {
2179		if (dev_spec->shadow_ram[offset+i].modified) {
2180			data[i] = dev_spec->shadow_ram[offset+i].value;
2181		} else {
2182			ret_val = e1000_read_flash_word_ich8lan(hw,
2183								act_offset + i,
2184								&word);
2185			if (ret_val)
2186				break;
2187			data[i] = word;
2188		}
2189	}
2190
2191	nvm->ops.release(hw);
2192
2193out:
2194	if (ret_val)
2195		e_dbg("NVM read error: %d\n", ret_val);
2196
2197	return ret_val;
2198}
2199
2200/**
2201 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2202 *  @hw: pointer to the HW structure
2203 *
2204 *  This function does initial flash setup so that a new read/write/erase cycle
2205 *  can be started.
2206 **/
2207static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2208{
2209	union ich8_hws_flash_status hsfsts;
2210	s32 ret_val = -E1000_ERR_NVM;
2211
2212	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2213
2214	/* Check if the flash descriptor is valid */
2215	if (hsfsts.hsf_status.fldesvalid == 0) {
2216		e_dbg("Flash descriptor invalid.  "
2217			 "SW Sequencing must be used.\n");
2218		return -E1000_ERR_NVM;
2219	}
2220
2221	/* Clear FCERR and DAEL in hw status by writing 1 */
2222	hsfsts.hsf_status.flcerr = 1;
2223	hsfsts.hsf_status.dael = 1;
2224
2225	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2226
2227	/*
2228	 * Either we should have a hardware SPI cycle in progress
2229	 * bit to check against, in order to start a new cycle or
2230	 * FDONE bit should be changed in the hardware so that it
2231	 * is 1 after hardware reset, which can then be used as an
2232	 * indication whether a cycle is in progress or has been
2233	 * completed.
2234	 */
2235
2236	if (hsfsts.hsf_status.flcinprog == 0) {
2237		/*
2238		 * There is no cycle running at present,
2239		 * so we can start a cycle.
2240		 * Begin by setting Flash Cycle Done.
2241		 */
2242		hsfsts.hsf_status.flcdone = 1;
2243		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2244		ret_val = 0;
2245	} else {
2246		s32 i = 0;
2247
2248		/*
2249		 * Otherwise poll for sometime so the current
2250		 * cycle has a chance to end before giving up.
2251		 */
2252		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2253			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2254			if (hsfsts.hsf_status.flcinprog == 0) {
2255				ret_val = 0;
2256				break;
2257			}
2258			udelay(1);
2259		}
2260		if (ret_val == 0) {
2261			/*
2262			 * Successful in waiting for previous cycle to timeout,
2263			 * now set the Flash Cycle Done.
2264			 */
2265			hsfsts.hsf_status.flcdone = 1;
2266			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2267		} else {
2268			e_dbg("Flash controller busy, cannot get access\n");
2269		}
2270	}
2271
2272	return ret_val;
2273}
2274
2275/**
2276 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2277 *  @hw: pointer to the HW structure
2278 *  @timeout: maximum time to wait for completion
2279 *
2280 *  This function starts a flash cycle and waits for its completion.
2281 **/
2282static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2283{
2284	union ich8_hws_flash_ctrl hsflctl;
2285	union ich8_hws_flash_status hsfsts;
2286	s32 ret_val = -E1000_ERR_NVM;
2287	u32 i = 0;
2288
2289	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2290	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2291	hsflctl.hsf_ctrl.flcgo = 1;
2292	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2293
2294	/* wait till FDONE bit is set to 1 */
2295	do {
2296		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2297		if (hsfsts.hsf_status.flcdone == 1)
2298			break;
2299		udelay(1);
2300	} while (i++ < timeout);
2301
2302	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2303		return 0;
2304
2305	return ret_val;
2306}
2307
2308/**
2309 *  e1000_read_flash_word_ich8lan - Read word from flash
2310 *  @hw: pointer to the HW structure
2311 *  @offset: offset to data location
2312 *  @data: pointer to the location for storing the data
2313 *
2314 *  Reads the flash word at offset into data.  Offset is converted
2315 *  to bytes before read.
2316 **/
2317static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2318					 u16 *data)
2319{
2320	/* Must convert offset into bytes. */
2321	offset <<= 1;
2322
2323	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2324}
2325
2326/**
2327 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2328 *  @hw: pointer to the HW structure
2329 *  @offset: The offset of the byte to read.
2330 *  @data: Pointer to a byte to store the value read.
2331 *
2332 *  Reads a single byte from the NVM using the flash access registers.
2333 **/
2334static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2335					 u8 *data)
2336{
2337	s32 ret_val;
2338	u16 word = 0;
2339
2340	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2341	if (ret_val)
2342		return ret_val;
2343
2344	*data = (u8)word;
2345
2346	return 0;
2347}
2348
2349/**
2350 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2351 *  @hw: pointer to the HW structure
2352 *  @offset: The offset (in bytes) of the byte or word to read.
2353 *  @size: Size of data to read, 1=byte 2=word
2354 *  @data: Pointer to the word to store the value read.
2355 *
2356 *  Reads a byte or word from the NVM using the flash access registers.
2357 **/
2358static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2359					 u8 size, u16 *data)
2360{
2361	union ich8_hws_flash_status hsfsts;
2362	union ich8_hws_flash_ctrl hsflctl;
2363	u32 flash_linear_addr;
2364	u32 flash_data = 0;
2365	s32 ret_val = -E1000_ERR_NVM;
2366	u8 count = 0;
2367
2368	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2369		return -E1000_ERR_NVM;
2370
2371	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2372			    hw->nvm.flash_base_addr;
2373
2374	do {
2375		udelay(1);
2376		/* Steps */
2377		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2378		if (ret_val != 0)
2379			break;
2380
2381		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2382		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2383		hsflctl.hsf_ctrl.fldbcount = size - 1;
2384		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2385		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2386
2387		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2388
2389		ret_val = e1000_flash_cycle_ich8lan(hw,
2390						ICH_FLASH_READ_COMMAND_TIMEOUT);
2391
2392		/*
2393		 * Check if FCERR is set to 1, if set to 1, clear it
2394		 * and try the whole sequence a few more times, else
2395		 * read in (shift in) the Flash Data0, the order is
2396		 * least significant byte first msb to lsb
2397		 */
2398		if (ret_val == 0) {
2399			flash_data = er32flash(ICH_FLASH_FDATA0);
2400			if (size == 1)
2401				*data = (u8)(flash_data & 0x000000FF);
2402			else if (size == 2)
2403				*data = (u16)(flash_data & 0x0000FFFF);
2404			break;
2405		} else {
2406			/*
2407			 * If we've gotten here, then things are probably
2408			 * completely hosed, but if the error condition is
2409			 * detected, it won't hurt to give it another try...
2410			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2411			 */
2412			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2413			if (hsfsts.hsf_status.flcerr == 1) {
2414				/* Repeat for some time before giving up. */
2415				continue;
2416			} else if (hsfsts.hsf_status.flcdone == 0) {
2417				e_dbg("Timeout error - flash cycle "
2418					 "did not complete.\n");
2419				break;
2420			}
2421		}
2422	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2423
2424	return ret_val;
2425}
2426
2427/**
2428 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2429 *  @hw: pointer to the HW structure
2430 *  @offset: The offset (in bytes) of the word(s) to write.
2431 *  @words: Size of data to write in words
2432 *  @data: Pointer to the word(s) to write at offset.
2433 *
2434 *  Writes a byte or word to the NVM using the flash access registers.
2435 **/
2436static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2437				   u16 *data)
2438{
2439	struct e1000_nvm_info *nvm = &hw->nvm;
2440	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2441	u16 i;
2442
2443	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2444	    (words == 0)) {
2445		e_dbg("nvm parameter(s) out of bounds\n");
2446		return -E1000_ERR_NVM;
2447	}
2448
2449	nvm->ops.acquire(hw);
2450
2451	for (i = 0; i < words; i++) {
2452		dev_spec->shadow_ram[offset+i].modified = true;
2453		dev_spec->shadow_ram[offset+i].value = data[i];
2454	}
2455
2456	nvm->ops.release(hw);
2457
2458	return 0;
2459}
2460
2461/**
2462 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2463 *  @hw: pointer to the HW structure
2464 *
2465 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2466 *  which writes the checksum to the shadow ram.  The changes in the shadow
2467 *  ram are then committed to the EEPROM by processing each bank at a time
2468 *  checking for the modified bit and writing only the pending changes.
2469 *  After a successful commit, the shadow ram is cleared and is ready for
2470 *  future writes.
2471 **/
2472static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2473{
2474	struct e1000_nvm_info *nvm = &hw->nvm;
2475	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2476	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2477	s32 ret_val;
2478	u16 data;
2479
2480	ret_val = e1000e_update_nvm_checksum_generic(hw);
2481	if (ret_val)
2482		goto out;
2483
2484	if (nvm->type != e1000_nvm_flash_sw)
2485		goto out;
2486
2487	nvm->ops.acquire(hw);
2488
2489	/*
2490	 * We're writing to the opposite bank so if we're on bank 1,
2491	 * write to bank 0 etc.  We also need to erase the segment that
2492	 * is going to be written
2493	 */
2494	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2495	if (ret_val) {
2496		e_dbg("Could not detect valid bank, assuming bank 0\n");
2497		bank = 0;
2498	}
2499
2500	if (bank == 0) {
2501		new_bank_offset = nvm->flash_bank_size;
2502		old_bank_offset = 0;
2503		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2504		if (ret_val)
2505			goto release;
2506	} else {
2507		old_bank_offset = nvm->flash_bank_size;
2508		new_bank_offset = 0;
2509		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2510		if (ret_val)
2511			goto release;
2512	}
2513
2514	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2515		/*
2516		 * Determine whether to write the value stored
2517		 * in the other NVM bank or a modified value stored
2518		 * in the shadow RAM
2519		 */
2520		if (dev_spec->shadow_ram[i].modified) {
2521			data = dev_spec->shadow_ram[i].value;
2522		} else {
2523			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2524			                                        old_bank_offset,
2525			                                        &data);
2526			if (ret_val)
2527				break;
2528		}
2529
2530		/*
2531		 * If the word is 0x13, then make sure the signature bits
2532		 * (15:14) are 11b until the commit has completed.
2533		 * This will allow us to write 10b which indicates the
2534		 * signature is valid.  We want to do this after the write
2535		 * has completed so that we don't mark the segment valid
2536		 * while the write is still in progress
2537		 */
2538		if (i == E1000_ICH_NVM_SIG_WORD)
2539			data |= E1000_ICH_NVM_SIG_MASK;
2540
2541		/* Convert offset to bytes. */
2542		act_offset = (i + new_bank_offset) << 1;
2543
2544		udelay(100);
2545		/* Write the bytes to the new bank. */
2546		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2547							       act_offset,
2548							       (u8)data);
2549		if (ret_val)
2550			break;
2551
2552		udelay(100);
2553		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2554							  act_offset + 1,
2555							  (u8)(data >> 8));
2556		if (ret_val)
2557			break;
2558	}
2559
2560	/*
2561	 * Don't bother writing the segment valid bits if sector
2562	 * programming failed.
2563	 */
2564	if (ret_val) {
2565		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2566		e_dbg("Flash commit failed.\n");
2567		goto release;
2568	}
2569
2570	/*
2571	 * Finally validate the new segment by setting bit 15:14
2572	 * to 10b in word 0x13 , this can be done without an
2573	 * erase as well since these bits are 11 to start with
2574	 * and we need to change bit 14 to 0b
2575	 */
2576	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2577	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2578	if (ret_val)
2579		goto release;
2580
2581	data &= 0xBFFF;
2582	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2583						       act_offset * 2 + 1,
2584						       (u8)(data >> 8));
2585	if (ret_val)
2586		goto release;
2587
2588	/*
2589	 * And invalidate the previously valid segment by setting
2590	 * its signature word (0x13) high_byte to 0b. This can be
2591	 * done without an erase because flash erase sets all bits
2592	 * to 1's. We can write 1's to 0's without an erase
2593	 */
2594	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2595	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2596	if (ret_val)
2597		goto release;
2598
2599	/* Great!  Everything worked, we can now clear the cached entries. */
2600	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2601		dev_spec->shadow_ram[i].modified = false;
2602		dev_spec->shadow_ram[i].value = 0xFFFF;
2603	}
2604
2605release:
2606	nvm->ops.release(hw);
2607
2608	/*
2609	 * Reload the EEPROM, or else modifications will not appear
2610	 * until after the next adapter reset.
2611	 */
2612	if (!ret_val) {
2613		e1000e_reload_nvm(hw);
2614		usleep_range(10000, 20000);
2615	}
2616
2617out:
2618	if (ret_val)
2619		e_dbg("NVM update error: %d\n", ret_val);
2620
2621	return ret_val;
2622}
2623
2624/**
2625 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2626 *  @hw: pointer to the HW structure
2627 *
2628 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2629 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2630 *  calculated, in which case we need to calculate the checksum and set bit 6.
2631 **/
2632static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2633{
2634	s32 ret_val;
2635	u16 data;
2636
2637	/*
2638	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2639	 * needs to be fixed.  This bit is an indication that the NVM
2640	 * was prepared by OEM software and did not calculate the
2641	 * checksum...a likely scenario.
2642	 */
2643	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2644	if (ret_val)
2645		return ret_val;
2646
2647	if ((data & 0x40) == 0) {
2648		data |= 0x40;
2649		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2650		if (ret_val)
2651			return ret_val;
2652		ret_val = e1000e_update_nvm_checksum(hw);
2653		if (ret_val)
2654			return ret_val;
2655	}
2656
2657	return e1000e_validate_nvm_checksum_generic(hw);
2658}
2659
2660/**
2661 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2662 *  @hw: pointer to the HW structure
2663 *
2664 *  To prevent malicious write/erase of the NVM, set it to be read-only
2665 *  so that the hardware ignores all write/erase cycles of the NVM via
2666 *  the flash control registers.  The shadow-ram copy of the NVM will
2667 *  still be updated, however any updates to this copy will not stick
2668 *  across driver reloads.
2669 **/
2670void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2671{
2672	struct e1000_nvm_info *nvm = &hw->nvm;
2673	union ich8_flash_protected_range pr0;
2674	union ich8_hws_flash_status hsfsts;
2675	u32 gfpreg;
2676
2677	nvm->ops.acquire(hw);
2678
2679	gfpreg = er32flash(ICH_FLASH_GFPREG);
2680
2681	/* Write-protect GbE Sector of NVM */
2682	pr0.regval = er32flash(ICH_FLASH_PR0);
2683	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2684	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2685	pr0.range.wpe = true;
2686	ew32flash(ICH_FLASH_PR0, pr0.regval);
2687
2688	/*
2689	 * Lock down a subset of GbE Flash Control Registers, e.g.
2690	 * PR0 to prevent the write-protection from being lifted.
2691	 * Once FLOCKDN is set, the registers protected by it cannot
2692	 * be written until FLOCKDN is cleared by a hardware reset.
2693	 */
2694	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2695	hsfsts.hsf_status.flockdn = true;
2696	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2697
2698	nvm->ops.release(hw);
2699}
2700
2701/**
2702 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2703 *  @hw: pointer to the HW structure
2704 *  @offset: The offset (in bytes) of the byte/word to read.
2705 *  @size: Size of data to read, 1=byte 2=word
2706 *  @data: The byte(s) to write to the NVM.
2707 *
2708 *  Writes one/two bytes to the NVM using the flash access registers.
2709 **/
2710static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2711					  u8 size, u16 data)
2712{
2713	union ich8_hws_flash_status hsfsts;
2714	union ich8_hws_flash_ctrl hsflctl;
2715	u32 flash_linear_addr;
2716	u32 flash_data = 0;
2717	s32 ret_val;
2718	u8 count = 0;
2719
2720	if (size < 1 || size > 2 || data > size * 0xff ||
2721	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
2722		return -E1000_ERR_NVM;
2723
2724	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2725			    hw->nvm.flash_base_addr;
2726
2727	do {
2728		udelay(1);
2729		/* Steps */
2730		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2731		if (ret_val)
2732			break;
2733
2734		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2735		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2736		hsflctl.hsf_ctrl.fldbcount = size -1;
2737		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2738		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2739
2740		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2741
2742		if (size == 1)
2743			flash_data = (u32)data & 0x00FF;
2744		else
2745			flash_data = (u32)data;
2746
2747		ew32flash(ICH_FLASH_FDATA0, flash_data);
2748
2749		/*
2750		 * check if FCERR is set to 1 , if set to 1, clear it
2751		 * and try the whole sequence a few more times else done
2752		 */
2753		ret_val = e1000_flash_cycle_ich8lan(hw,
2754					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2755		if (!ret_val)
2756			break;
2757
2758		/*
2759		 * If we're here, then things are most likely
2760		 * completely hosed, but if the error condition
2761		 * is detected, it won't hurt to give it another
2762		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2763		 */
2764		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2765		if (hsfsts.hsf_status.flcerr == 1)
2766			/* Repeat for some time before giving up. */
2767			continue;
2768		if (hsfsts.hsf_status.flcdone == 0) {
2769			e_dbg("Timeout error - flash cycle "
2770				 "did not complete.");
2771			break;
2772		}
2773	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2774
2775	return ret_val;
2776}
2777
2778/**
2779 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2780 *  @hw: pointer to the HW structure
2781 *  @offset: The index of the byte to read.
2782 *  @data: The byte to write to the NVM.
2783 *
2784 *  Writes a single byte to the NVM using the flash access registers.
2785 **/
2786static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2787					  u8 data)
2788{
2789	u16 word = (u16)data;
2790
2791	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2792}
2793
2794/**
2795 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2796 *  @hw: pointer to the HW structure
2797 *  @offset: The offset of the byte to write.
2798 *  @byte: The byte to write to the NVM.
2799 *
2800 *  Writes a single byte to the NVM using the flash access registers.
2801 *  Goes through a retry algorithm before giving up.
2802 **/
2803static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2804						u32 offset, u8 byte)
2805{
2806	s32 ret_val;
2807	u16 program_retries;
2808
2809	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2810	if (!ret_val)
2811		return ret_val;
2812
2813	for (program_retries = 0; program_retries < 100; program_retries++) {
2814		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2815		udelay(100);
2816		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2817		if (!ret_val)
2818			break;
2819	}
2820	if (program_retries == 100)
2821		return -E1000_ERR_NVM;
2822
2823	return 0;
2824}
2825
2826/**
2827 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2828 *  @hw: pointer to the HW structure
2829 *  @bank: 0 for first bank, 1 for second bank, etc.
2830 *
2831 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2832 *  bank N is 4096 * N + flash_reg_addr.
2833 **/
2834static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2835{
2836	struct e1000_nvm_info *nvm = &hw->nvm;
2837	union ich8_hws_flash_status hsfsts;
2838	union ich8_hws_flash_ctrl hsflctl;
2839	u32 flash_linear_addr;
2840	/* bank size is in 16bit words - adjust to bytes */
2841	u32 flash_bank_size = nvm->flash_bank_size * 2;
2842	s32 ret_val;
2843	s32 count = 0;
2844	s32 j, iteration, sector_size;
2845
2846	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2847
2848	/*
2849	 * Determine HW Sector size: Read BERASE bits of hw flash status
2850	 * register
2851	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2852	 *     consecutive sectors.  The start index for the nth Hw sector
2853	 *     can be calculated as = bank * 4096 + n * 256
2854	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2855	 *     The start index for the nth Hw sector can be calculated
2856	 *     as = bank * 4096
2857	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2858	 *     (ich9 only, otherwise error condition)
2859	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2860	 */
2861	switch (hsfsts.hsf_status.berasesz) {
2862	case 0:
2863		/* Hw sector size 256 */
2864		sector_size = ICH_FLASH_SEG_SIZE_256;
2865		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2866		break;
2867	case 1:
2868		sector_size = ICH_FLASH_SEG_SIZE_4K;
2869		iteration = 1;
2870		break;
2871	case 2:
2872		sector_size = ICH_FLASH_SEG_SIZE_8K;
2873		iteration = 1;
2874		break;
2875	case 3:
2876		sector_size = ICH_FLASH_SEG_SIZE_64K;
2877		iteration = 1;
2878		break;
2879	default:
2880		return -E1000_ERR_NVM;
2881	}
2882
2883	/* Start with the base address, then add the sector offset. */
2884	flash_linear_addr = hw->nvm.flash_base_addr;
2885	flash_linear_addr += (bank) ? flash_bank_size : 0;
2886
2887	for (j = 0; j < iteration ; j++) {
2888		do {
2889			/* Steps */
2890			ret_val = e1000_flash_cycle_init_ich8lan(hw);
2891			if (ret_val)
2892				return ret_val;
2893
2894			/*
2895			 * Write a value 11 (block Erase) in Flash
2896			 * Cycle field in hw flash control
2897			 */
2898			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2899			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2900			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2901
2902			/*
2903			 * Write the last 24 bits of an index within the
2904			 * block into Flash Linear address field in Flash
2905			 * Address.
2906			 */
2907			flash_linear_addr += (j * sector_size);
2908			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2909
2910			ret_val = e1000_flash_cycle_ich8lan(hw,
2911					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2912			if (ret_val == 0)
2913				break;
2914
2915			/*
2916			 * Check if FCERR is set to 1.  If 1,
2917			 * clear it and try the whole sequence
2918			 * a few more times else Done
2919			 */
2920			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2921			if (hsfsts.hsf_status.flcerr == 1)
2922				/* repeat for some time before giving up */
2923				continue;
2924			else if (hsfsts.hsf_status.flcdone == 0)
2925				return ret_val;
2926		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2927	}
2928
2929	return 0;
2930}
2931
2932/**
2933 *  e1000_valid_led_default_ich8lan - Set the default LED settings
2934 *  @hw: pointer to the HW structure
2935 *  @data: Pointer to the LED settings
2936 *
2937 *  Reads the LED default settings from the NVM to data.  If the NVM LED
2938 *  settings is all 0's or F's, set the LED default to a valid LED default
2939 *  setting.
2940 **/
2941static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2942{
2943	s32 ret_val;
2944
2945	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2946	if (ret_val) {
2947		e_dbg("NVM Read Error\n");
2948		return ret_val;
2949	}
2950
2951	if (*data == ID_LED_RESERVED_0000 ||
2952	    *data == ID_LED_RESERVED_FFFF)
2953		*data = ID_LED_DEFAULT_ICH8LAN;
2954
2955	return 0;
2956}
2957
2958/**
2959 *  e1000_id_led_init_pchlan - store LED configurations
2960 *  @hw: pointer to the HW structure
2961 *
2962 *  PCH does not control LEDs via the LEDCTL register, rather it uses
2963 *  the PHY LED configuration register.
2964 *
2965 *  PCH also does not have an "always on" or "always off" mode which
2966 *  complicates the ID feature.  Instead of using the "on" mode to indicate
2967 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2968 *  use "link_up" mode.  The LEDs will still ID on request if there is no
2969 *  link based on logic in e1000_led_[on|off]_pchlan().
2970 **/
2971static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2972{
2973	struct e1000_mac_info *mac = &hw->mac;
2974	s32 ret_val;
2975	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2976	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2977	u16 data, i, temp, shift;
2978
2979	/* Get default ID LED modes */
2980	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2981	if (ret_val)
2982		goto out;
2983
2984	mac->ledctl_default = er32(LEDCTL);
2985	mac->ledctl_mode1 = mac->ledctl_default;
2986	mac->ledctl_mode2 = mac->ledctl_default;
2987
2988	for (i = 0; i < 4; i++) {
2989		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2990		shift = (i * 5);
2991		switch (temp) {
2992		case ID_LED_ON1_DEF2:
2993		case ID_LED_ON1_ON2:
2994		case ID_LED_ON1_OFF2:
2995			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2996			mac->ledctl_mode1 |= (ledctl_on << shift);
2997			break;
2998		case ID_LED_OFF1_DEF2:
2999		case ID_LED_OFF1_ON2:
3000		case ID_LED_OFF1_OFF2:
3001			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3002			mac->ledctl_mode1 |= (ledctl_off << shift);
3003			break;
3004		default:
3005			/* Do nothing */
3006			break;
3007		}
3008		switch (temp) {
3009		case ID_LED_DEF1_ON2:
3010		case ID_LED_ON1_ON2:
3011		case ID_LED_OFF1_ON2:
3012			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3013			mac->ledctl_mode2 |= (ledctl_on << shift);
3014			break;
3015		case ID_LED_DEF1_OFF2:
3016		case ID_LED_ON1_OFF2:
3017		case ID_LED_OFF1_OFF2:
3018			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3019			mac->ledctl_mode2 |= (ledctl_off << shift);
3020			break;
3021		default:
3022			/* Do nothing */
3023			break;
3024		}
3025	}
3026
3027out:
3028	return ret_val;
3029}
3030
3031/**
3032 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3033 *  @hw: pointer to the HW structure
3034 *
3035 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3036 *  register, so the the bus width is hard coded.
3037 **/
3038static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3039{
3040	struct e1000_bus_info *bus = &hw->bus;
3041	s32 ret_val;
3042
3043	ret_val = e1000e_get_bus_info_pcie(hw);
3044
3045	/*
3046	 * ICH devices are "PCI Express"-ish.  They have
3047	 * a configuration space, but do not contain
3048	 * PCI Express Capability registers, so bus width
3049	 * must be hardcoded.
3050	 */
3051	if (bus->width == e1000_bus_width_unknown)
3052		bus->width = e1000_bus_width_pcie_x1;
3053
3054	return ret_val;
3055}
3056
3057/**
3058 *  e1000_reset_hw_ich8lan - Reset the hardware
3059 *  @hw: pointer to the HW structure
3060 *
3061 *  Does a full reset of the hardware which includes a reset of the PHY and
3062 *  MAC.
3063 **/
3064static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3065{
3066	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3067	u16 reg;
3068	u32 ctrl, kab;
3069	s32 ret_val;
3070
3071	/*
3072	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3073	 * on the last TLP read/write transaction when MAC is reset.
3074	 */
3075	ret_val = e1000e_disable_pcie_master(hw);
3076	if (ret_val)
3077		e_dbg("PCI-E Master disable polling has failed.\n");
3078
3079	e_dbg("Masking off all interrupts\n");
3080	ew32(IMC, 0xffffffff);
3081
3082	/*
3083	 * Disable the Transmit and Receive units.  Then delay to allow
3084	 * any pending transactions to complete before we hit the MAC
3085	 * with the global reset.
3086	 */
3087	ew32(RCTL, 0);
3088	ew32(TCTL, E1000_TCTL_PSP);
3089	e1e_flush();
3090
3091	usleep_range(10000, 20000);
3092
3093	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3094	if (hw->mac.type == e1000_ich8lan) {
3095		/* Set Tx and Rx buffer allocation to 8k apiece. */
3096		ew32(PBA, E1000_PBA_8K);
3097		/* Set Packet Buffer Size to 16k. */
3098		ew32(PBS, E1000_PBS_16K);
3099	}
3100
3101	if (hw->mac.type == e1000_pchlan) {
3102		/* Save the NVM K1 bit setting*/
3103		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3104		if (ret_val)
3105			return ret_val;
3106
3107		if (reg & E1000_NVM_K1_ENABLE)
3108			dev_spec->nvm_k1_enabled = true;
3109		else
3110			dev_spec->nvm_k1_enabled = false;
3111	}
3112
3113	ctrl = er32(CTRL);
3114
3115	if (!e1000_check_reset_block(hw)) {
3116		/*
3117		 * Full-chip reset requires MAC and PHY reset at the same
3118		 * time to make sure the interface between MAC and the
3119		 * external PHY is reset.
3120		 */
3121		ctrl |= E1000_CTRL_PHY_RST;
3122
3123		/*
3124		 * Gate automatic PHY configuration by hardware on
3125		 * non-managed 82579
3126		 */
3127		if ((hw->mac.type == e1000_pch2lan) &&
3128		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3129			e1000_gate_hw_phy_config_ich8lan(hw, true);
3130	}
3131	ret_val = e1000_acquire_swflag_ich8lan(hw);
3132	e_dbg("Issuing a global reset to ich8lan\n");
3133	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3134	/* cannot issue a flush here because it hangs the hardware */
3135	msleep(20);
3136
3137	if (!ret_val)
3138		mutex_unlock(&swflag_mutex);
3139
3140	if (ctrl & E1000_CTRL_PHY_RST) {
3141		ret_val = hw->phy.ops.get_cfg_done(hw);
3142		if (ret_val)
3143			goto out;
3144
3145		ret_val = e1000_post_phy_reset_ich8lan(hw);
3146		if (ret_val)
3147			goto out;
3148	}
3149
3150	/*
3151	 * For PCH, this write will make sure that any noise
3152	 * will be detected as a CRC error and be dropped rather than show up
3153	 * as a bad packet to the DMA engine.
3154	 */
3155	if (hw->mac.type == e1000_pchlan)
3156		ew32(CRC_OFFSET, 0x65656565);
3157
3158	ew32(IMC, 0xffffffff);
3159	er32(ICR);
3160
3161	kab = er32(KABGTXD);
3162	kab |= E1000_KABGTXD_BGSQLBIAS;
3163	ew32(KABGTXD, kab);
3164
3165out:
3166	return ret_val;
3167}
3168
3169/**
3170 *  e1000_init_hw_ich8lan - Initialize the hardware
3171 *  @hw: pointer to the HW structure
3172 *
3173 *  Prepares the hardware for transmit and receive by doing the following:
3174 *   - initialize hardware bits
3175 *   - initialize LED identification
3176 *   - setup receive address registers
3177 *   - setup flow control
3178 *   - setup transmit descriptors
3179 *   - clear statistics
3180 **/
3181static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3182{
3183	struct e1000_mac_info *mac = &hw->mac;
3184	u32 ctrl_ext, txdctl, snoop;
3185	s32 ret_val;
3186	u16 i;
3187
3188	e1000_initialize_hw_bits_ich8lan(hw);
3189
3190	/* Initialize identification LED */
3191	ret_val = mac->ops.id_led_init(hw);
3192	if (ret_val)
3193		e_dbg("Error initializing identification LED\n");
3194		/* This is not fatal and we should not stop init due to this */
3195
3196	/* Setup the receive address. */
3197	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3198
3199	/* Zero out the Multicast HASH table */
3200	e_dbg("Zeroing the MTA\n");
3201	for (i = 0; i < mac->mta_reg_count; i++)
3202		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3203
3204	/*
3205	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3206	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3207	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3208	 */
3209	if (hw->phy.type == e1000_phy_82578) {
3210		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3211		i &= ~BM_WUC_HOST_WU_BIT;
3212		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3213		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3214		if (ret_val)
3215			return ret_val;
3216	}
3217
3218	/* Setup link and flow control */
3219	ret_val = e1000_setup_link_ich8lan(hw);
3220
3221	/* Set the transmit descriptor write-back policy for both queues */
3222	txdctl = er32(TXDCTL(0));
3223	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3224		 E1000_TXDCTL_FULL_TX_DESC_WB;
3225	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3226		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3227	ew32(TXDCTL(0), txdctl);
3228	txdctl = er32(TXDCTL(1));
3229	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3230		 E1000_TXDCTL_FULL_TX_DESC_WB;
3231	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3232		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3233	ew32(TXDCTL(1), txdctl);
3234
3235	/*
3236	 * ICH8 has opposite polarity of no_snoop bits.
3237	 * By default, we should use snoop behavior.
3238	 */
3239	if (mac->type == e1000_ich8lan)
3240		snoop = PCIE_ICH8_SNOOP_ALL;
3241	else
3242		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3243	e1000e_set_pcie_no_snoop(hw, snoop);
3244
3245	ctrl_ext = er32(CTRL_EXT);
3246	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3247	ew32(CTRL_EXT, ctrl_ext);
3248
3249	/*
3250	 * Clear all of the statistics registers (clear on read).  It is
3251	 * important that we do this after we have tried to establish link
3252	 * because the symbol error count will increment wildly if there
3253	 * is no link.
3254	 */
3255	e1000_clear_hw_cntrs_ich8lan(hw);
3256
3257	return 0;
3258}
3259/**
3260 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3261 *  @hw: pointer to the HW structure
3262 *
3263 *  Sets/Clears required hardware bits necessary for correctly setting up the
3264 *  hardware for transmit and receive.
3265 **/
3266static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3267{
3268	u32 reg;
3269
3270	/* Extended Device Control */
3271	reg = er32(CTRL_EXT);
3272	reg |= (1 << 22);
3273	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3274	if (hw->mac.type >= e1000_pchlan)
3275		reg |= E1000_CTRL_EXT_PHYPDEN;
3276	ew32(CTRL_EXT, reg);
3277
3278	/* Transmit Descriptor Control 0 */
3279	reg = er32(TXDCTL(0));
3280	reg |= (1 << 22);
3281	ew32(TXDCTL(0), reg);
3282
3283	/* Transmit Descriptor Control 1 */
3284	reg = er32(TXDCTL(1));
3285	reg |= (1 << 22);
3286	ew32(TXDCTL(1), reg);
3287
3288	/* Transmit Arbitration Control 0 */
3289	reg = er32(TARC(0));
3290	if (hw->mac.type == e1000_ich8lan)
3291		reg |= (1 << 28) | (1 << 29);
3292	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3293	ew32(TARC(0), reg);
3294
3295	/* Transmit Arbitration Control 1 */
3296	reg = er32(TARC(1));
3297	if (er32(TCTL) & E1000_TCTL_MULR)
3298		reg &= ~(1 << 28);
3299	else
3300		reg |= (1 << 28);
3301	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3302	ew32(TARC(1), reg);
3303
3304	/* Device Status */
3305	if (hw->mac.type == e1000_ich8lan) {
3306		reg = er32(STATUS);
3307		reg &= ~(1 << 31);
3308		ew32(STATUS, reg);
3309	}
3310
3311	/*
3312	 * work-around descriptor data corruption issue during nfs v2 udp
3313	 * traffic, just disable the nfs filtering capability
3314	 */
3315	reg = er32(RFCTL);
3316	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3317	ew32(RFCTL, reg);
3318}
3319
3320/**
3321 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3322 *  @hw: pointer to the HW structure
3323 *
3324 *  Determines which flow control settings to use, then configures flow
3325 *  control.  Calls the appropriate media-specific link configuration
3326 *  function.  Assuming the adapter has a valid link partner, a valid link
3327 *  should be established.  Assumes the hardware has previously been reset
3328 *  and the transmitter and receiver are not enabled.
3329 **/
3330static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3331{
3332	s32 ret_val;
3333
3334	if (e1000_check_reset_block(hw))
3335		return 0;
3336
3337	/*
3338	 * ICH parts do not have a word in the NVM to determine
3339	 * the default flow control setting, so we explicitly
3340	 * set it to full.
3341	 */
3342	if (hw->fc.requested_mode == e1000_fc_default) {
3343		/* Workaround h/w hang when Tx flow control enabled */
3344		if (hw->mac.type == e1000_pchlan)
3345			hw->fc.requested_mode = e1000_fc_rx_pause;
3346		else
3347			hw->fc.requested_mode = e1000_fc_full;
3348	}
3349
3350	/*
3351	 * Save off the requested flow control mode for use later.  Depending
3352	 * on the link partner's capabilities, we may or may not use this mode.
3353	 */
3354	hw->fc.current_mode = hw->fc.requested_mode;
3355
3356	e_dbg("After fix-ups FlowControl is now = %x\n",
3357		hw->fc.current_mode);
3358
3359	/* Continue to configure the copper link. */
3360	ret_val = e1000_setup_copper_link_ich8lan(hw);
3361	if (ret_val)
3362		return ret_val;
3363
3364	ew32(FCTTV, hw->fc.pause_time);
3365	if ((hw->phy.type == e1000_phy_82578) ||
3366	    (hw->phy.type == e1000_phy_82579) ||
3367	    (hw->phy.type == e1000_phy_82577)) {
3368		ew32(FCRTV_PCH, hw->fc.refresh_time);
3369
3370		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3371				   hw->fc.pause_time);
3372		if (ret_val)
3373			return ret_val;
3374	}
3375
3376	return e1000e_set_fc_watermarks(hw);
3377}
3378
3379/**
3380 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3381 *  @hw: pointer to the HW structure
3382 *
3383 *  Configures the kumeran interface to the PHY to wait the appropriate time
3384 *  when polling the PHY, then call the generic setup_copper_link to finish
3385 *  configuring the copper link.
3386 **/
3387static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3388{
3389	u32 ctrl;
3390	s32 ret_val;
3391	u16 reg_data;
3392
3393	ctrl = er32(CTRL);
3394	ctrl |= E1000_CTRL_SLU;
3395	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3396	ew32(CTRL, ctrl);
3397
3398	/*
3399	 * Set the mac to wait the maximum time between each iteration
3400	 * and increase the max iterations when polling the phy;
3401	 * this fixes erroneous timeouts at 10Mbps.
3402	 */
3403	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3404	if (ret_val)
3405		return ret_val;
3406	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3407	                               &reg_data);
3408	if (ret_val)
3409		return ret_val;
3410	reg_data |= 0x3F;
3411	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3412	                                reg_data);
3413	if (ret_val)
3414		return ret_val;
3415
3416	switch (hw->phy.type) {
3417	case e1000_phy_igp_3:
3418		ret_val = e1000e_copper_link_setup_igp(hw);
3419		if (ret_val)
3420			return ret_val;
3421		break;
3422	case e1000_phy_bm:
3423	case e1000_phy_82578:
3424		ret_val = e1000e_copper_link_setup_m88(hw);
3425		if (ret_val)
3426			return ret_val;
3427		break;
3428	case e1000_phy_82577:
3429	case e1000_phy_82579:
3430		ret_val = e1000_copper_link_setup_82577(hw);
3431		if (ret_val)
3432			return ret_val;
3433		break;
3434	case e1000_phy_ife:
3435		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3436		if (ret_val)
3437			return ret_val;
3438
3439		reg_data &= ~IFE_PMC_AUTO_MDIX;
3440
3441		switch (hw->phy.mdix) {
3442		case 1:
3443			reg_data &= ~IFE_PMC_FORCE_MDIX;
3444			break;
3445		case 2:
3446			reg_data |= IFE_PMC_FORCE_MDIX;
3447			break;
3448		case 0:
3449		default:
3450			reg_data |= IFE_PMC_AUTO_MDIX;
3451			break;
3452		}
3453		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3454		if (ret_val)
3455			return ret_val;
3456		break;
3457	default:
3458		break;
3459	}
3460	return e1000e_setup_copper_link(hw);
3461}
3462
3463/**
3464 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3465 *  @hw: pointer to the HW structure
3466 *  @speed: pointer to store current link speed
3467 *  @duplex: pointer to store the current link duplex
3468 *
3469 *  Calls the generic get_speed_and_duplex to retrieve the current link
3470 *  information and then calls the Kumeran lock loss workaround for links at
3471 *  gigabit speeds.
3472 **/
3473static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3474					  u16 *duplex)
3475{
3476	s32 ret_val;
3477
3478	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3479	if (ret_val)
3480		return ret_val;
3481
3482	if ((hw->mac.type == e1000_ich8lan) &&
3483	    (hw->phy.type == e1000_phy_igp_3) &&
3484	    (*speed == SPEED_1000)) {
3485		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3486	}
3487
3488	return ret_val;
3489}
3490
3491/**
3492 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3493 *  @hw: pointer to the HW structure
3494 *
3495 *  Work-around for 82566 Kumeran PCS lock loss:
3496 *  On link status change (i.e. PCI reset, speed change) and link is up and
3497 *  speed is gigabit-
3498 *    0) if workaround is optionally disabled do nothing
3499 *    1) wait 1ms for Kumeran link to come up
3500 *    2) check Kumeran Diagnostic register PCS lock loss bit
3501 *    3) if not set the link is locked (all is good), otherwise...
3502 *    4) reset the PHY
3503 *    5) repeat up to 10 times
3504 *  Note: this is only called for IGP3 copper when speed is 1gb.
3505 **/
3506static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3507{
3508	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3509	u32 phy_ctrl;
3510	s32 ret_val;
3511	u16 i, data;
3512	bool link;
3513
3514	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3515		return 0;
3516
3517	/*
3518	 * Make sure link is up before proceeding.  If not just return.
3519	 * Attempting this while link is negotiating fouled up link
3520	 * stability
3521	 */
3522	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3523	if (!link)
3524		return 0;
3525
3526	for (i = 0; i < 10; i++) {
3527		/* read once to clear */
3528		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3529		if (ret_val)
3530			return ret_val;
3531		/* and again to get new status */
3532		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3533		if (ret_val)
3534			return ret_val;
3535
3536		/* check for PCS lock */
3537		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3538			return 0;
3539
3540		/* Issue PHY reset */
3541		e1000_phy_hw_reset(hw);
3542		mdelay(5);
3543	}
3544	/* Disable GigE link negotiation */
3545	phy_ctrl = er32(PHY_CTRL);
3546	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3547		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3548	ew32(PHY_CTRL, phy_ctrl);
3549
3550	/*
3551	 * Call gig speed drop workaround on Gig disable before accessing
3552	 * any PHY registers
3553	 */
3554	e1000e_gig_downshift_workaround_ich8lan(hw);
3555
3556	/* unable to acquire PCS lock */
3557	return -E1000_ERR_PHY;
3558}
3559
3560/**
3561 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3562 *  @hw: pointer to the HW structure
3563 *  @state: boolean value used to set the current Kumeran workaround state
3564 *
3565 *  If ICH8, set the current Kumeran workaround state (enabled - true
3566 *  /disabled - false).
3567 **/
3568void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3569						 bool state)
3570{
3571	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3572
3573	if (hw->mac.type != e1000_ich8lan) {
3574		e_dbg("Workaround applies to ICH8 only.\n");
3575		return;
3576	}
3577
3578	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3579}
3580
3581/**
3582 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3583 *  @hw: pointer to the HW structure
3584 *
3585 *  Workaround for 82566 power-down on D3 entry:
3586 *    1) disable gigabit link
3587 *    2) write VR power-down enable
3588 *    3) read it back
3589 *  Continue if successful, else issue LCD reset and repeat
3590 **/
3591void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3592{
3593	u32 reg;
3594	u16 data;
3595	u8  retry = 0;
3596
3597	if (hw->phy.type != e1000_phy_igp_3)
3598		return;
3599
3600	/* Try the workaround twice (if needed) */
3601	do {
3602		/* Disable link */
3603		reg = er32(PHY_CTRL);
3604		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3605			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3606		ew32(PHY_CTRL, reg);
3607
3608		/*
3609		 * Call gig speed drop workaround on Gig disable before
3610		 * accessing any PHY registers
3611		 */
3612		if (hw->mac.type == e1000_ich8lan)
3613			e1000e_gig_downshift_workaround_ich8lan(hw);
3614
3615		/* Write VR power-down enable */
3616		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3617		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3618		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3619
3620		/* Read it back and test */
3621		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3622		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3623		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3624			break;
3625
3626		/* Issue PHY reset and repeat at most one more time */
3627		reg = er32(CTRL);
3628		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3629		retry++;
3630	} while (retry);
3631}
3632
3633/**
3634 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3635 *  @hw: pointer to the HW structure
3636 *
3637 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3638 *  LPLU, Gig disable, MDIC PHY reset):
3639 *    1) Set Kumeran Near-end loopback
3640 *    2) Clear Kumeran Near-end loopback
3641 *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3642 **/
3643void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3644{
3645	s32 ret_val;
3646	u16 reg_data;
3647
3648	if ((hw->mac.type != e1000_ich8lan) ||
3649	    (hw->phy.type != e1000_phy_igp_3))
3650		return;
3651
3652	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3653				      &reg_data);
3654	if (ret_val)
3655		return;
3656	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3657	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3658				       reg_data);
3659	if (ret_val)
3660		return;
3661	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3662	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3663				       reg_data);
3664}
3665
3666/**
3667 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3668 *  @hw: pointer to the HW structure
3669 *
3670 *  During S0 to Sx transition, it is possible the link remains at gig
3671 *  instead of negotiating to a lower speed.  Before going to Sx, set
3672 *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3673 *  to a lower speed.  For PCH and newer parts, the OEM bits PHY register
3674 *  (LED, GbE disable and LPLU configurations) also needs to be written.
3675 **/
3676void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3677{
3678	u32 phy_ctrl;
3679	s32 ret_val;
3680
3681	phy_ctrl = er32(PHY_CTRL);
3682	phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3683	ew32(PHY_CTRL, phy_ctrl);
3684
3685	if (hw->mac.type >= e1000_pchlan) {
3686		e1000_oem_bits_config_ich8lan(hw, false);
3687		ret_val = hw->phy.ops.acquire(hw);
3688		if (ret_val)
3689			return;
3690		e1000_write_smbus_addr(hw);
3691		hw->phy.ops.release(hw);
3692	}
3693}
3694
3695/**
3696 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3697 *  @hw: pointer to the HW structure
3698 *
3699 *  During Sx to S0 transitions on non-managed devices or managed devices
3700 *  on which PHY resets are not blocked, if the PHY registers cannot be
3701 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3702 *  the PHY.
3703 **/
3704void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3705{
3706	u32 fwsm;
3707
3708	if (hw->mac.type != e1000_pch2lan)
3709		return;
3710
3711	fwsm = er32(FWSM);
3712	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3713		u16 phy_id1, phy_id2;
3714		s32 ret_val;
3715
3716		ret_val = hw->phy.ops.acquire(hw);
3717		if (ret_val) {
3718			e_dbg("Failed to acquire PHY semaphore in resume\n");
3719			return;
3720		}
3721
3722		/* Test access to the PHY registers by reading the ID regs */
3723		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3724		if (ret_val)
3725			goto release;
3726		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3727		if (ret_val)
3728			goto release;
3729
3730		if (hw->phy.id == ((u32)(phy_id1 << 16) |
3731				   (u32)(phy_id2 & PHY_REVISION_MASK)))
3732			goto release;
3733
3734		e1000_toggle_lanphypc_value_ich8lan(hw);
3735
3736		hw->phy.ops.release(hw);
3737		msleep(50);
3738		e1000_phy_hw_reset(hw);
3739		msleep(50);
3740		return;
3741	}
3742
3743release:
3744	hw->phy.ops.release(hw);
3745
3746	return;
3747}
3748
3749/**
3750 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3751 *  @hw: pointer to the HW structure
3752 *
3753 *  Return the LED back to the default configuration.
3754 **/
3755static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3756{
3757	if (hw->phy.type == e1000_phy_ife)
3758		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3759
3760	ew32(LEDCTL, hw->mac.ledctl_default);
3761	return 0;
3762}
3763
3764/**
3765 *  e1000_led_on_ich8lan - Turn LEDs on
3766 *  @hw: pointer to the HW structure
3767 *
3768 *  Turn on the LEDs.
3769 **/
3770static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3771{
3772	if (hw->phy.type == e1000_phy_ife)
3773		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3774				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3775
3776	ew32(LEDCTL, hw->mac.ledctl_mode2);
3777	return 0;
3778}
3779
3780/**
3781 *  e1000_led_off_ich8lan - Turn LEDs off
3782 *  @hw: pointer to the HW structure
3783 *
3784 *  Turn off the LEDs.
3785 **/
3786static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3787{
3788	if (hw->phy.type == e1000_phy_ife)
3789		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3790				(IFE_PSCL_PROBE_MODE |
3791				 IFE_PSCL_PROBE_LEDS_OFF));
3792
3793	ew32(LEDCTL, hw->mac.ledctl_mode1);
3794	return 0;
3795}
3796
3797/**
3798 *  e1000_setup_led_pchlan - Configures SW controllable LED
3799 *  @hw: pointer to the HW structure
3800 *
3801 *  This prepares the SW controllable LED for use.
3802 **/
3803static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3804{
3805	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3806}
3807
3808/**
3809 *  e1000_cleanup_led_pchlan - Restore the default LED operation
3810 *  @hw: pointer to the HW structure
3811 *
3812 *  Return the LED back to the default configuration.
3813 **/
3814static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3815{
3816	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3817}
3818
3819/**
3820 *  e1000_led_on_pchlan - Turn LEDs on
3821 *  @hw: pointer to the HW structure
3822 *
3823 *  Turn on the LEDs.
3824 **/
3825static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3826{
3827	u16 data = (u16)hw->mac.ledctl_mode2;
3828	u32 i, led;
3829
3830	/*
3831	 * If no link, then turn LED on by setting the invert bit
3832	 * for each LED that's mode is "link_up" in ledctl_mode2.
3833	 */
3834	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3835		for (i = 0; i < 3; i++) {
3836			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3837			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3838			    E1000_LEDCTL_MODE_LINK_UP)
3839				continue;
3840			if (led & E1000_PHY_LED0_IVRT)
3841				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3842			else
3843				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3844		}
3845	}
3846
3847	return e1e_wphy(hw, HV_LED_CONFIG, data);
3848}
3849
3850/**
3851 *  e1000_led_off_pchlan - Turn LEDs off
3852 *  @hw: pointer to the HW structure
3853 *
3854 *  Turn off the LEDs.
3855 **/
3856static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3857{
3858	u16 data = (u16)hw->mac.ledctl_mode1;
3859	u32 i, led;
3860
3861	/*
3862	 * If no link, then turn LED off by clearing the invert bit
3863	 * for each LED that's mode is "link_up" in ledctl_mode1.
3864	 */
3865	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3866		for (i = 0; i < 3; i++) {
3867			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3868			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3869			    E1000_LEDCTL_MODE_LINK_UP)
3870				continue;
3871			if (led & E1000_PHY_LED0_IVRT)
3872				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3873			else
3874				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3875		}
3876	}
3877
3878	return e1e_wphy(hw, HV_LED_CONFIG, data);
3879}
3880
3881/**
3882 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3883 *  @hw: pointer to the HW structure
3884 *
3885 *  Read appropriate register for the config done bit for completion status
3886 *  and configure the PHY through s/w for EEPROM-less parts.
3887 *
3888 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3889 *  config done bit, so only an error is logged and continues.  If we were
3890 *  to return with error, EEPROM-less silicon would not be able to be reset
3891 *  or change link.
3892 **/
3893static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3894{
3895	s32 ret_val = 0;
3896	u32 bank = 0;
3897	u32 status;
3898
3899	e1000e_get_cfg_done(hw);
3900
3901	/* Wait for indication from h/w that it has completed basic config */
3902	if (hw->mac.type >= e1000_ich10lan) {
3903		e1000_lan_init_done_ich8lan(hw);
3904	} else {
3905		ret_val = e1000e_get_auto_rd_done(hw);
3906		if (ret_val) {
3907			/*
3908			 * When auto config read does not complete, do not
3909			 * return with an error. This can happen in situations
3910			 * where there is no eeprom and prevents getting link.
3911			 */
3912			e_dbg("Auto Read Done did not complete\n");
3913			ret_val = 0;
3914		}
3915	}
3916
3917	/* Clear PHY Reset Asserted bit */
3918	status = er32(STATUS);
3919	if (status & E1000_STATUS_PHYRA)
3920		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3921	else
3922		e_dbg("PHY Reset Asserted not set - needs delay\n");
3923
3924	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3925	if (hw->mac.type <= e1000_ich9lan) {
3926		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3927		    (hw->phy.type == e1000_phy_igp_3)) {
3928			e1000e_phy_init_script_igp3(hw);
3929		}
3930	} else {
3931		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3932			/* Maybe we should do a basic PHY config */
3933			e_dbg("EEPROM not present\n");
3934			ret_val = -E1000_ERR_CONFIG;
3935		}
3936	}
3937
3938	return ret_val;
3939}
3940
3941/**
3942 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3943 * @hw: pointer to the HW structure
3944 *
3945 * In the case of a PHY power down to save power, or to turn off link during a
3946 * driver unload, or wake on lan is not enabled, remove the link.
3947 **/
3948static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3949{
3950	/* If the management interface is not enabled, then power down */
3951	if (!(hw->mac.ops.check_mng_mode(hw) ||
3952	      hw->phy.ops.check_reset_block(hw)))
3953		e1000_power_down_phy_copper(hw);
3954}
3955
3956/**
3957 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3958 *  @hw: pointer to the HW structure
3959 *
3960 *  Clears hardware counters specific to the silicon family and calls
3961 *  clear_hw_cntrs_generic to clear all general purpose counters.
3962 **/
3963static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3964{
3965	u16 phy_data;
3966	s32 ret_val;
3967
3968	e1000e_clear_hw_cntrs_base(hw);
3969
3970	er32(ALGNERRC);
3971	er32(RXERRC);
3972	er32(TNCRS);
3973	er32(CEXTERR);
3974	er32(TSCTC);
3975	er32(TSCTFC);
3976
3977	er32(MGTPRC);
3978	er32(MGTPDC);
3979	er32(MGTPTC);
3980
3981	er32(IAC);
3982	er32(ICRXOC);
3983
3984	/* Clear PHY statistics registers */
3985	if ((hw->phy.type == e1000_phy_82578) ||
3986	    (hw->phy.type == e1000_phy_82579) ||
3987	    (hw->phy.type == e1000_phy_82577)) {
3988		ret_val = hw->phy.ops.acquire(hw);
3989		if (ret_val)
3990			return;
3991		ret_val = hw->phy.ops.set_page(hw,
3992					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
3993		if (ret_val)
3994			goto release;
3995		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3996		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3997		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3998		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3999		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4000		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4001		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4002		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4003		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4004		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4005		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4006		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4007		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4008		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4009release:
4010		hw->phy.ops.release(hw);
4011	}
4012}
4013
4014static struct e1000_mac_operations ich8_mac_ops = {
4015	.id_led_init		= e1000e_id_led_init,
4016	/* check_mng_mode dependent on mac type */
4017	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4018	/* cleanup_led dependent on mac type */
4019	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4020	.get_bus_info		= e1000_get_bus_info_ich8lan,
4021	.set_lan_id		= e1000_set_lan_id_single_port,
4022	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4023	/* led_on dependent on mac type */
4024	/* led_off dependent on mac type */
4025	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4026	.reset_hw		= e1000_reset_hw_ich8lan,
4027	.init_hw		= e1000_init_hw_ich8lan,
4028	.setup_link		= e1000_setup_link_ich8lan,
4029	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4030	/* id_led_init dependent on mac type */
4031};
4032
4033static struct e1000_phy_operations ich8_phy_ops = {
4034	.acquire		= e1000_acquire_swflag_ich8lan,
4035	.check_reset_block	= e1000_check_reset_block_ich8lan,
4036	.commit			= NULL,
4037	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4038	.get_cable_length	= e1000e_get_cable_length_igp_2,
4039	.read_reg		= e1000e_read_phy_reg_igp,
4040	.release		= e1000_release_swflag_ich8lan,
4041	.reset			= e1000_phy_hw_reset_ich8lan,
4042	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4043	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4044	.write_reg		= e1000e_write_phy_reg_igp,
4045};
4046
4047static struct e1000_nvm_operations ich8_nvm_ops = {
4048	.acquire		= e1000_acquire_nvm_ich8lan,
4049	.read		 	= e1000_read_nvm_ich8lan,
4050	.release		= e1000_release_nvm_ich8lan,
4051	.update			= e1000_update_nvm_checksum_ich8lan,
4052	.valid_led_default	= e1000_valid_led_default_ich8lan,
4053	.validate		= e1000_validate_nvm_checksum_ich8lan,
4054	.write			= e1000_write_nvm_ich8lan,
4055};
4056
4057struct e1000_info e1000_ich8_info = {
4058	.mac			= e1000_ich8lan,
4059	.flags			= FLAG_HAS_WOL
4060				  | FLAG_IS_ICH
4061				  | FLAG_RX_CSUM_ENABLED
4062				  | FLAG_HAS_CTRLEXT_ON_LOAD
4063				  | FLAG_HAS_AMT
4064				  | FLAG_HAS_FLASH
4065				  | FLAG_APME_IN_WUC,
4066	.pba			= 8,
4067	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4068	.get_variants		= e1000_get_variants_ich8lan,
4069	.mac_ops		= &ich8_mac_ops,
4070	.phy_ops		= &ich8_phy_ops,
4071	.nvm_ops		= &ich8_nvm_ops,
4072};
4073
4074struct e1000_info e1000_ich9_info = {
4075	.mac			= e1000_ich9lan,
4076	.flags			= FLAG_HAS_JUMBO_FRAMES
4077				  | FLAG_IS_ICH
4078				  | FLAG_HAS_WOL
4079				  | FLAG_RX_CSUM_ENABLED
4080				  | FLAG_HAS_CTRLEXT_ON_LOAD
4081				  | FLAG_HAS_AMT
4082				  | FLAG_HAS_ERT
4083				  | FLAG_HAS_FLASH
4084				  | FLAG_APME_IN_WUC,
4085	.pba			= 10,
4086	.max_hw_frame_size	= DEFAULT_JUMBO,
4087	.get_variants		= e1000_get_variants_ich8lan,
4088	.mac_ops		= &ich8_mac_ops,
4089	.phy_ops		= &ich8_phy_ops,
4090	.nvm_ops		= &ich8_nvm_ops,
4091};
4092
4093struct e1000_info e1000_ich10_info = {
4094	.mac			= e1000_ich10lan,
4095	.flags			= FLAG_HAS_JUMBO_FRAMES
4096				  | FLAG_IS_ICH
4097				  | FLAG_HAS_WOL
4098				  | FLAG_RX_CSUM_ENABLED
4099				  | FLAG_HAS_CTRLEXT_ON_LOAD
4100				  | FLAG_HAS_AMT
4101				  | FLAG_HAS_ERT
4102				  | FLAG_HAS_FLASH
4103				  | FLAG_APME_IN_WUC,
4104	.pba			= 10,
4105	.max_hw_frame_size	= DEFAULT_JUMBO,
4106	.get_variants		= e1000_get_variants_ich8lan,
4107	.mac_ops		= &ich8_mac_ops,
4108	.phy_ops		= &ich8_phy_ops,
4109	.nvm_ops		= &ich8_nvm_ops,
4110};
4111
4112struct e1000_info e1000_pch_info = {
4113	.mac			= e1000_pchlan,
4114	.flags			= FLAG_IS_ICH
4115				  | FLAG_HAS_WOL
4116				  | FLAG_RX_CSUM_ENABLED
4117				  | FLAG_HAS_CTRLEXT_ON_LOAD
4118				  | FLAG_HAS_AMT
4119				  | FLAG_HAS_FLASH
4120				  | FLAG_HAS_JUMBO_FRAMES
4121				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4122				  | FLAG_APME_IN_WUC,
4123	.flags2			= FLAG2_HAS_PHY_STATS,
4124	.pba			= 26,
4125	.max_hw_frame_size	= 4096,
4126	.get_variants		= e1000_get_variants_ich8lan,
4127	.mac_ops		= &ich8_mac_ops,
4128	.phy_ops		= &ich8_phy_ops,
4129	.nvm_ops		= &ich8_nvm_ops,
4130};
4131
4132struct e1000_info e1000_pch2_info = {
4133	.mac			= e1000_pch2lan,
4134	.flags			= FLAG_IS_ICH
4135				  | FLAG_HAS_WOL
4136				  | FLAG_RX_CSUM_ENABLED
4137				  | FLAG_HAS_CTRLEXT_ON_LOAD
4138				  | FLAG_HAS_AMT
4139				  | FLAG_HAS_FLASH
4140				  | FLAG_HAS_JUMBO_FRAMES
4141				  | FLAG_APME_IN_WUC,
4142	.flags2			= FLAG2_HAS_PHY_STATS
4143				  | FLAG2_HAS_EEE,
4144	.pba			= 26,
4145	.max_hw_frame_size	= DEFAULT_JUMBO,
4146	.get_variants		= e1000_get_variants_ich8lan,
4147	.mac_ops		= &ich8_mac_ops,
4148	.phy_ops		= &ich8_phy_ops,
4149	.nvm_ops		= &ich8_nvm_ops,
4150};