Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2 *
   3 * Alchemy Au1x00 ethernet driver
   4 *
   5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   6 * Copyright 2002 TimeSys Corp.
   7 * Added ethtool/mii-tool support,
   8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
   9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  10 * or riemer@riemer-nt.de: fixed the link beat detection with
  11 * ioctls (SIOCGMIIPHY)
  12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  13 *  converted to use linux-2.6.x's PHY framework
  14 *
  15 * Author: MontaVista Software, Inc.
  16 *		ppopov@mvista.com or source@mvista.com
  17 *
  18 * ########################################################################
  19 *
  20 *  This program is free software; you can distribute it and/or modify it
  21 *  under the terms of the GNU General Public License (Version 2) as
  22 *  published by the Free Software Foundation.
  23 *
  24 *  This program is distributed in the hope it will be useful, but WITHOUT
  25 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  26 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  27 *  for more details.
  28 *
  29 *  You should have received a copy of the GNU General Public License along
  30 *  with this program; if not, write to the Free Software Foundation, Inc.,
  31 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  32 *
  33 * ########################################################################
  34 *
  35 *
  36 */
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/capability.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/module.h>
  42#include <linux/kernel.h>
  43#include <linux/string.h>
  44#include <linux/timer.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/ioport.h>
  48#include <linux/bitops.h>
  49#include <linux/slab.h>
  50#include <linux/interrupt.h>
  51#include <linux/init.h>
  52#include <linux/netdevice.h>
  53#include <linux/etherdevice.h>
  54#include <linux/ethtool.h>
  55#include <linux/mii.h>
  56#include <linux/skbuff.h>
  57#include <linux/delay.h>
  58#include <linux/crc32.h>
  59#include <linux/phy.h>
  60#include <linux/platform_device.h>
  61#include <linux/cpu.h>
  62#include <linux/io.h>
  63
  64#include <asm/mipsregs.h>
  65#include <asm/irq.h>
  66#include <asm/processor.h>
  67
  68#include <au1000.h>
  69#include <au1xxx_eth.h>
  70#include <prom.h>
  71
  72#include "au1000_eth.h"
  73
  74#ifdef AU1000_ETH_DEBUG
  75static int au1000_debug = 5;
  76#else
  77static int au1000_debug = 3;
  78#endif
  79
  80#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
  81				NETIF_MSG_PROBE	| \
  82				NETIF_MSG_LINK)
  83
  84#define DRV_NAME	"au1000_eth"
  85#define DRV_VERSION	"1.7"
  86#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
  87#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
  88
  89MODULE_AUTHOR(DRV_AUTHOR);
  90MODULE_DESCRIPTION(DRV_DESC);
  91MODULE_LICENSE("GPL");
  92MODULE_VERSION(DRV_VERSION);
  93
  94/*
  95 * Theory of operation
  96 *
  97 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
  98 * There are four receive and four transmit descriptors.  These
  99 * descriptors are not in memory; rather, they are just a set of
 100 * hardware registers.
 101 *
 102 * Since the Au1000 has a coherent data cache, the receive and
 103 * transmit buffers are allocated from the KSEG0 segment. The
 104 * hardware registers, however, are still mapped at KSEG1 to
 105 * make sure there's no out-of-order writes, and that all writes
 106 * complete immediately.
 107 */
 108
 109/*
 110 * board-specific configurations
 111 *
 112 * PHY detection algorithm
 113 *
 114 * If phy_static_config is undefined, the PHY setup is
 115 * autodetected:
 116 *
 117 * mii_probe() first searches the current MAC's MII bus for a PHY,
 118 * selecting the first (or last, if phy_search_highest_addr is
 119 * defined) PHY address not already claimed by another netdev.
 120 *
 121 * If nothing was found that way when searching for the 2nd ethernet
 122 * controller's PHY and phy1_search_mac0 is defined, then
 123 * the first MII bus is searched as well for an unclaimed PHY; this is
 124 * needed in case of a dual-PHY accessible only through the MAC0's MII
 125 * bus.
 126 *
 127 * Finally, if no PHY is found, then the corresponding ethernet
 128 * controller is not registered to the network subsystem.
 129 */
 130
 131/* autodetection defaults: phy1_search_mac0 */
 132
 133/* static PHY setup
 134 *
 135 * most boards PHY setup should be detectable properly with the
 136 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 137 * you have a switch attached, or want to use the PHY's interrupt
 138 * notification capabilities) you can provide a static PHY
 139 * configuration here
 140 *
 141 * IRQs may only be set, if a PHY address was configured
 142 * If a PHY address is given, also a bus id is required to be set
 143 *
 144 * ps: make sure the used irqs are configured properly in the board
 145 * specific irq-map
 146 */
 147
 148static void au1000_enable_mac(struct net_device *dev, int force_reset)
 149{
 150	unsigned long flags;
 151	struct au1000_private *aup = netdev_priv(dev);
 152
 153	spin_lock_irqsave(&aup->lock, flags);
 154
 155	if (force_reset || (!aup->mac_enabled)) {
 156		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 157		au_sync_delay(2);
 158		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 159				| MAC_EN_CLOCK_ENABLE), aup->enable);
 160		au_sync_delay(2);
 161
 162		aup->mac_enabled = 1;
 163	}
 164
 165	spin_unlock_irqrestore(&aup->lock, flags);
 166}
 167
 168/*
 169 * MII operations
 170 */
 171static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 172{
 173	struct au1000_private *aup = netdev_priv(dev);
 174	u32 *const mii_control_reg = &aup->mac->mii_control;
 175	u32 *const mii_data_reg = &aup->mac->mii_data;
 176	u32 timedout = 20;
 177	u32 mii_control;
 178
 179	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 180		mdelay(1);
 181		if (--timedout == 0) {
 182			netdev_err(dev, "read_MII busy timeout!!\n");
 183			return -1;
 184		}
 185	}
 186
 187	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 188		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 189
 190	writel(mii_control, mii_control_reg);
 191
 192	timedout = 20;
 193	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 194		mdelay(1);
 195		if (--timedout == 0) {
 196			netdev_err(dev, "mdio_read busy timeout!!\n");
 197			return -1;
 198		}
 199	}
 200	return readl(mii_data_reg);
 201}
 202
 203static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 204			      int reg, u16 value)
 205{
 206	struct au1000_private *aup = netdev_priv(dev);
 207	u32 *const mii_control_reg = &aup->mac->mii_control;
 208	u32 *const mii_data_reg = &aup->mac->mii_data;
 209	u32 timedout = 20;
 210	u32 mii_control;
 211
 212	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 213		mdelay(1);
 214		if (--timedout == 0) {
 215			netdev_err(dev, "mdio_write busy timeout!!\n");
 216			return;
 217		}
 218	}
 219
 220	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 221		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 222
 223	writel(value, mii_data_reg);
 224	writel(mii_control, mii_control_reg);
 225}
 226
 227static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 228{
 229	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
 230	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
 231	 */
 232	struct net_device *const dev = bus->priv;
 233
 234	/* make sure the MAC associated with this
 235	 * mii_bus is enabled
 236	 */
 237	au1000_enable_mac(dev, 0);
 238
 239	return au1000_mdio_read(dev, phy_addr, regnum);
 240}
 241
 242static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 243				u16 value)
 244{
 245	struct net_device *const dev = bus->priv;
 246
 247	/* make sure the MAC associated with this
 248	 * mii_bus is enabled
 249	 */
 250	au1000_enable_mac(dev, 0);
 251
 252	au1000_mdio_write(dev, phy_addr, regnum, value);
 253	return 0;
 254}
 255
 256static int au1000_mdiobus_reset(struct mii_bus *bus)
 257{
 258	struct net_device *const dev = bus->priv;
 259
 260	/* make sure the MAC associated with this
 261	 * mii_bus is enabled
 262	 */
 263	au1000_enable_mac(dev, 0);
 264
 265	return 0;
 266}
 267
 268static void au1000_hard_stop(struct net_device *dev)
 269{
 270	struct au1000_private *aup = netdev_priv(dev);
 271	u32 reg;
 272
 273	netif_dbg(aup, drv, dev, "hard stop\n");
 274
 275	reg = readl(&aup->mac->control);
 276	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 277	writel(reg, &aup->mac->control);
 278	au_sync_delay(10);
 279}
 280
 281static void au1000_enable_rx_tx(struct net_device *dev)
 282{
 283	struct au1000_private *aup = netdev_priv(dev);
 284	u32 reg;
 285
 286	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 287
 288	reg = readl(&aup->mac->control);
 289	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 290	writel(reg, &aup->mac->control);
 291	au_sync_delay(10);
 292}
 293
 294static void
 295au1000_adjust_link(struct net_device *dev)
 296{
 297	struct au1000_private *aup = netdev_priv(dev);
 298	struct phy_device *phydev = aup->phy_dev;
 299	unsigned long flags;
 300	u32 reg;
 301
 302	int status_change = 0;
 303
 304	BUG_ON(!aup->phy_dev);
 305
 306	spin_lock_irqsave(&aup->lock, flags);
 307
 308	if (phydev->link && (aup->old_speed != phydev->speed)) {
 309		/* speed changed */
 310
 311		switch (phydev->speed) {
 312		case SPEED_10:
 313		case SPEED_100:
 314			break;
 315		default:
 316			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 317							phydev->speed);
 318			break;
 319		}
 320
 321		aup->old_speed = phydev->speed;
 322
 323		status_change = 1;
 324	}
 325
 326	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 327		/* duplex mode changed */
 328
 329		/* switching duplex mode requires to disable rx and tx! */
 330		au1000_hard_stop(dev);
 331
 332		reg = readl(&aup->mac->control);
 333		if (DUPLEX_FULL == phydev->duplex) {
 334			reg |= MAC_FULL_DUPLEX;
 335			reg &= ~MAC_DISABLE_RX_OWN;
 336		} else {
 337			reg &= ~MAC_FULL_DUPLEX;
 338			reg |= MAC_DISABLE_RX_OWN;
 339		}
 340		writel(reg, &aup->mac->control);
 341		au_sync_delay(1);
 342
 343		au1000_enable_rx_tx(dev);
 344		aup->old_duplex = phydev->duplex;
 345
 346		status_change = 1;
 347	}
 348
 349	if (phydev->link != aup->old_link) {
 350		/* link state changed */
 351
 352		if (!phydev->link) {
 353			/* link went down */
 354			aup->old_speed = 0;
 355			aup->old_duplex = -1;
 356		}
 357
 358		aup->old_link = phydev->link;
 359		status_change = 1;
 360	}
 361
 362	spin_unlock_irqrestore(&aup->lock, flags);
 363
 364	if (status_change) {
 365		if (phydev->link)
 366			netdev_info(dev, "link up (%d/%s)\n",
 367			       phydev->speed,
 368			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 369		else
 370			netdev_info(dev, "link down\n");
 371	}
 372}
 373
 374static int au1000_mii_probe(struct net_device *dev)
 375{
 376	struct au1000_private *const aup = netdev_priv(dev);
 377	struct phy_device *phydev = NULL;
 378	int phy_addr;
 379
 380	if (aup->phy_static_config) {
 381		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 382
 383		if (aup->phy_addr)
 384			phydev = aup->mii_bus->phy_map[aup->phy_addr];
 385		else
 386			netdev_info(dev, "using PHY-less setup\n");
 387		return 0;
 388	}
 389
 390	/* find the first (lowest address) PHY
 391	 * on the current MAC's MII bus
 392	 */
 393	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 394		if (aup->mii_bus->phy_map[phy_addr]) {
 395			phydev = aup->mii_bus->phy_map[phy_addr];
 396			if (!aup->phy_search_highest_addr)
 397				/* break out with first one found */
 398				break;
 399		}
 400
 401	if (aup->phy1_search_mac0) {
 402		/* try harder to find a PHY */
 403		if (!phydev && (aup->mac_id == 1)) {
 404			/* no PHY found, maybe we have a dual PHY? */
 405			dev_info(&dev->dev, ": no PHY found on MAC1, "
 406				"let's see if it's attached to MAC0...\n");
 407
 408			/* find the first (lowest address) non-attached
 409			 * PHY on the MAC0 MII bus
 410			 */
 411			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 412				struct phy_device *const tmp_phydev =
 413					aup->mii_bus->phy_map[phy_addr];
 414
 415				if (aup->mac_id == 1)
 416					break;
 417
 418				/* no PHY here... */
 419				if (!tmp_phydev)
 420					continue;
 421
 422				/* already claimed by MAC0 */
 423				if (tmp_phydev->attached_dev)
 424					continue;
 425
 426				phydev = tmp_phydev;
 427				break; /* found it */
 428			}
 429		}
 430	}
 431
 432	if (!phydev) {
 433		netdev_err(dev, "no PHY found\n");
 434		return -1;
 435	}
 436
 437	/* now we are supposed to have a proper phydev, to attach to... */
 438	BUG_ON(phydev->attached_dev);
 439
 440	phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link,
 441			0, PHY_INTERFACE_MODE_MII);
 442
 443	if (IS_ERR(phydev)) {
 444		netdev_err(dev, "Could not attach to PHY\n");
 445		return PTR_ERR(phydev);
 446	}
 447
 448	/* mask with MAC supported features */
 449	phydev->supported &= (SUPPORTED_10baseT_Half
 450			      | SUPPORTED_10baseT_Full
 451			      | SUPPORTED_100baseT_Half
 452			      | SUPPORTED_100baseT_Full
 453			      | SUPPORTED_Autoneg
 454			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
 455			      | SUPPORTED_MII
 456			      | SUPPORTED_TP);
 457
 458	phydev->advertising = phydev->supported;
 459
 460	aup->old_link = 0;
 461	aup->old_speed = 0;
 462	aup->old_duplex = -1;
 463	aup->phy_dev = phydev;
 464
 465	netdev_info(dev, "attached PHY driver [%s] "
 466	       "(mii_bus:phy_addr=%s, irq=%d)\n",
 467	       phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
 468
 469	return 0;
 470}
 471
 472
 473/*
 474 * Buffer allocation/deallocation routines. The buffer descriptor returned
 475 * has the virtual and dma address of a buffer suitable for
 476 * both, receive and transmit operations.
 477 */
 478static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 479{
 480	struct db_dest *pDB;
 481	pDB = aup->pDBfree;
 482
 483	if (pDB)
 484		aup->pDBfree = pDB->pnext;
 485
 486	return pDB;
 487}
 488
 489void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 490{
 491	struct db_dest *pDBfree = aup->pDBfree;
 492	if (pDBfree)
 493		pDBfree->pnext = pDB;
 494	aup->pDBfree = pDB;
 495}
 496
 497static void au1000_reset_mac_unlocked(struct net_device *dev)
 498{
 499	struct au1000_private *const aup = netdev_priv(dev);
 500	int i;
 501
 502	au1000_hard_stop(dev);
 503
 504	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 505	au_sync_delay(2);
 506	writel(0, aup->enable);
 507	au_sync_delay(2);
 508
 509	aup->tx_full = 0;
 510	for (i = 0; i < NUM_RX_DMA; i++) {
 511		/* reset control bits */
 512		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 513	}
 514	for (i = 0; i < NUM_TX_DMA; i++) {
 515		/* reset control bits */
 516		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 517	}
 518
 519	aup->mac_enabled = 0;
 520
 521}
 522
 523static void au1000_reset_mac(struct net_device *dev)
 524{
 525	struct au1000_private *const aup = netdev_priv(dev);
 526	unsigned long flags;
 527
 528	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 529					(unsigned)aup);
 530
 531	spin_lock_irqsave(&aup->lock, flags);
 532
 533	au1000_reset_mac_unlocked(dev);
 534
 535	spin_unlock_irqrestore(&aup->lock, flags);
 536}
 537
 538/*
 539 * Setup the receive and transmit "rings".  These pointers are the addresses
 540 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 541 * these are not descriptors sitting in memory.
 542 */
 543static void
 544au1000_setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
 545{
 546	int i;
 547
 548	for (i = 0; i < NUM_RX_DMA; i++) {
 549		aup->rx_dma_ring[i] =
 550			(struct rx_dma *)
 551					(rx_base + sizeof(struct rx_dma)*i);
 552	}
 553	for (i = 0; i < NUM_TX_DMA; i++) {
 554		aup->tx_dma_ring[i] =
 555			(struct tx_dma *)
 556					(tx_base + sizeof(struct tx_dma)*i);
 557	}
 558}
 559
 560/*
 561 * ethtool operations
 562 */
 563
 564static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 565{
 566	struct au1000_private *aup = netdev_priv(dev);
 567
 568	if (aup->phy_dev)
 569		return phy_ethtool_gset(aup->phy_dev, cmd);
 570
 571	return -EINVAL;
 572}
 573
 574static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 575{
 576	struct au1000_private *aup = netdev_priv(dev);
 577
 578	if (!capable(CAP_NET_ADMIN))
 579		return -EPERM;
 580
 581	if (aup->phy_dev)
 582		return phy_ethtool_sset(aup->phy_dev, cmd);
 583
 584	return -EINVAL;
 585}
 586
 587static void
 588au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 589{
 590	struct au1000_private *aup = netdev_priv(dev);
 591
 592	strcpy(info->driver, DRV_NAME);
 593	strcpy(info->version, DRV_VERSION);
 594	info->fw_version[0] = '\0';
 595	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
 596	info->regdump_len = 0;
 597}
 598
 599static void au1000_set_msglevel(struct net_device *dev, u32 value)
 600{
 601	struct au1000_private *aup = netdev_priv(dev);
 602	aup->msg_enable = value;
 603}
 604
 605static u32 au1000_get_msglevel(struct net_device *dev)
 606{
 607	struct au1000_private *aup = netdev_priv(dev);
 608	return aup->msg_enable;
 609}
 610
 611static const struct ethtool_ops au1000_ethtool_ops = {
 612	.get_settings = au1000_get_settings,
 613	.set_settings = au1000_set_settings,
 614	.get_drvinfo = au1000_get_drvinfo,
 615	.get_link = ethtool_op_get_link,
 616	.get_msglevel = au1000_get_msglevel,
 617	.set_msglevel = au1000_set_msglevel,
 618};
 619
 620
 621/*
 622 * Initialize the interface.
 623 *
 624 * When the device powers up, the clocks are disabled and the
 625 * mac is in reset state.  When the interface is closed, we
 626 * do the same -- reset the device and disable the clocks to
 627 * conserve power. Thus, whenever au1000_init() is called,
 628 * the device should already be in reset state.
 629 */
 630static int au1000_init(struct net_device *dev)
 631{
 632	struct au1000_private *aup = netdev_priv(dev);
 633	unsigned long flags;
 634	int i;
 635	u32 control;
 636
 637	netif_dbg(aup, hw, dev, "au1000_init\n");
 638
 639	/* bring the device out of reset */
 640	au1000_enable_mac(dev, 1);
 641
 642	spin_lock_irqsave(&aup->lock, flags);
 643
 644	writel(0, &aup->mac->control);
 645	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 646	aup->tx_tail = aup->tx_head;
 647	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 648
 649	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 650					&aup->mac->mac_addr_high);
 651	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 652		dev->dev_addr[1]<<8 | dev->dev_addr[0],
 653					&aup->mac->mac_addr_low);
 654
 655
 656	for (i = 0; i < NUM_RX_DMA; i++)
 657		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 658
 659	au_sync();
 660
 661	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 662#ifndef CONFIG_CPU_LITTLE_ENDIAN
 663	control |= MAC_BIG_ENDIAN;
 664#endif
 665	if (aup->phy_dev) {
 666		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
 667			control |= MAC_FULL_DUPLEX;
 668		else
 669			control |= MAC_DISABLE_RX_OWN;
 670	} else { /* PHY-less op, assume full-duplex */
 671		control |= MAC_FULL_DUPLEX;
 672	}
 673
 674	writel(control, &aup->mac->control);
 675	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 676	au_sync();
 677
 678	spin_unlock_irqrestore(&aup->lock, flags);
 679	return 0;
 680}
 681
 682static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 683{
 684	struct net_device_stats *ps = &dev->stats;
 685
 686	ps->rx_packets++;
 687	if (status & RX_MCAST_FRAME)
 688		ps->multicast++;
 689
 690	if (status & RX_ERROR) {
 691		ps->rx_errors++;
 692		if (status & RX_MISSED_FRAME)
 693			ps->rx_missed_errors++;
 694		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 695			ps->rx_length_errors++;
 696		if (status & RX_CRC_ERROR)
 697			ps->rx_crc_errors++;
 698		if (status & RX_COLL)
 699			ps->collisions++;
 700	} else
 701		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 702
 703}
 704
 705/*
 706 * Au1000 receive routine.
 707 */
 708static int au1000_rx(struct net_device *dev)
 709{
 710	struct au1000_private *aup = netdev_priv(dev);
 711	struct sk_buff *skb;
 712	struct rx_dma *prxd;
 713	u32 buff_stat, status;
 714	struct db_dest *pDB;
 715	u32	frmlen;
 716
 717	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 718
 719	prxd = aup->rx_dma_ring[aup->rx_head];
 720	buff_stat = prxd->buff_stat;
 721	while (buff_stat & RX_T_DONE)  {
 722		status = prxd->status;
 723		pDB = aup->rx_db_inuse[aup->rx_head];
 724		au1000_update_rx_stats(dev, status);
 725		if (!(status & RX_ERROR))  {
 726
 727			/* good frame */
 728			frmlen = (status & RX_FRAME_LEN_MASK);
 729			frmlen -= 4; /* Remove FCS */
 730			skb = dev_alloc_skb(frmlen + 2);
 731			if (skb == NULL) {
 732				netdev_err(dev, "Memory squeeze, dropping packet.\n");
 733				dev->stats.rx_dropped++;
 734				continue;
 735			}
 736			skb_reserve(skb, 2);	/* 16 byte IP header align */
 737			skb_copy_to_linear_data(skb,
 738				(unsigned char *)pDB->vaddr, frmlen);
 739			skb_put(skb, frmlen);
 740			skb->protocol = eth_type_trans(skb, dev);
 741			netif_rx(skb);	/* pass the packet to upper layers */
 742		} else {
 743			if (au1000_debug > 4) {
 744				pr_err("rx_error(s):");
 745				if (status & RX_MISSED_FRAME)
 746					pr_cont(" miss");
 747				if (status & RX_WDOG_TIMER)
 748					pr_cont(" wdog");
 749				if (status & RX_RUNT)
 750					pr_cont(" runt");
 751				if (status & RX_OVERLEN)
 752					pr_cont(" overlen");
 753				if (status & RX_COLL)
 754					pr_cont(" coll");
 755				if (status & RX_MII_ERROR)
 756					pr_cont(" mii error");
 757				if (status & RX_CRC_ERROR)
 758					pr_cont(" crc error");
 759				if (status & RX_LEN_ERROR)
 760					pr_cont(" len error");
 761				if (status & RX_U_CNTRL_FRAME)
 762					pr_cont(" u control frame");
 763				pr_cont("\n");
 764			}
 765		}
 766		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 767		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 768		au_sync();
 769
 770		/* next descriptor */
 771		prxd = aup->rx_dma_ring[aup->rx_head];
 772		buff_stat = prxd->buff_stat;
 773	}
 774	return 0;
 775}
 776
 777static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 778{
 779	struct au1000_private *aup = netdev_priv(dev);
 780	struct net_device_stats *ps = &dev->stats;
 781
 782	if (status & TX_FRAME_ABORTED) {
 783		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
 784			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 785				/* any other tx errors are only valid
 786				 * in half duplex mode
 787				 */
 788				ps->tx_errors++;
 789				ps->tx_aborted_errors++;
 790			}
 791		} else {
 792			ps->tx_errors++;
 793			ps->tx_aborted_errors++;
 794			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 795				ps->tx_carrier_errors++;
 796		}
 797	}
 798}
 799
 800/*
 801 * Called from the interrupt service routine to acknowledge
 802 * the TX DONE bits.  This is a must if the irq is setup as
 803 * edge triggered.
 804 */
 805static void au1000_tx_ack(struct net_device *dev)
 806{
 807	struct au1000_private *aup = netdev_priv(dev);
 808	struct tx_dma *ptxd;
 809
 810	ptxd = aup->tx_dma_ring[aup->tx_tail];
 811
 812	while (ptxd->buff_stat & TX_T_DONE) {
 813		au1000_update_tx_stats(dev, ptxd->status);
 814		ptxd->buff_stat &= ~TX_T_DONE;
 815		ptxd->len = 0;
 816		au_sync();
 817
 818		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 819		ptxd = aup->tx_dma_ring[aup->tx_tail];
 820
 821		if (aup->tx_full) {
 822			aup->tx_full = 0;
 823			netif_wake_queue(dev);
 824		}
 825	}
 826}
 827
 828/*
 829 * Au1000 interrupt service routine.
 830 */
 831static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 832{
 833	struct net_device *dev = dev_id;
 834
 835	/* Handle RX interrupts first to minimize chance of overrun */
 836
 837	au1000_rx(dev);
 838	au1000_tx_ack(dev);
 839	return IRQ_RETVAL(1);
 840}
 841
 842static int au1000_open(struct net_device *dev)
 843{
 844	int retval;
 845	struct au1000_private *aup = netdev_priv(dev);
 846
 847	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 848
 849	retval = request_irq(dev->irq, au1000_interrupt, 0,
 850					dev->name, dev);
 851	if (retval) {
 852		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 853		return retval;
 854	}
 855
 856	retval = au1000_init(dev);
 857	if (retval) {
 858		netdev_err(dev, "error in au1000_init\n");
 859		free_irq(dev->irq, dev);
 860		return retval;
 861	}
 862
 863	if (aup->phy_dev) {
 864		/* cause the PHY state machine to schedule a link state check */
 865		aup->phy_dev->state = PHY_CHANGELINK;
 866		phy_start(aup->phy_dev);
 867	}
 868
 869	netif_start_queue(dev);
 870
 871	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 872
 873	return 0;
 874}
 875
 876static int au1000_close(struct net_device *dev)
 877{
 878	unsigned long flags;
 879	struct au1000_private *const aup = netdev_priv(dev);
 880
 881	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 882
 883	if (aup->phy_dev)
 884		phy_stop(aup->phy_dev);
 885
 886	spin_lock_irqsave(&aup->lock, flags);
 887
 888	au1000_reset_mac_unlocked(dev);
 889
 890	/* stop the device */
 891	netif_stop_queue(dev);
 892
 893	/* disable the interrupt */
 894	free_irq(dev->irq, dev);
 895	spin_unlock_irqrestore(&aup->lock, flags);
 896
 897	return 0;
 898}
 899
 900/*
 901 * Au1000 transmit routine.
 902 */
 903static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 904{
 905	struct au1000_private *aup = netdev_priv(dev);
 906	struct net_device_stats *ps = &dev->stats;
 907	struct tx_dma *ptxd;
 908	u32 buff_stat;
 909	struct db_dest *pDB;
 910	int i;
 911
 912	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 913				(unsigned)aup, skb->len,
 914				skb->data, aup->tx_head);
 915
 916	ptxd = aup->tx_dma_ring[aup->tx_head];
 917	buff_stat = ptxd->buff_stat;
 918	if (buff_stat & TX_DMA_ENABLE) {
 919		/* We've wrapped around and the transmitter is still busy */
 920		netif_stop_queue(dev);
 921		aup->tx_full = 1;
 922		return NETDEV_TX_BUSY;
 923	} else if (buff_stat & TX_T_DONE) {
 924		au1000_update_tx_stats(dev, ptxd->status);
 925		ptxd->len = 0;
 926	}
 927
 928	if (aup->tx_full) {
 929		aup->tx_full = 0;
 930		netif_wake_queue(dev);
 931	}
 932
 933	pDB = aup->tx_db_inuse[aup->tx_head];
 934	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 935	if (skb->len < ETH_ZLEN) {
 936		for (i = skb->len; i < ETH_ZLEN; i++)
 937			((char *)pDB->vaddr)[i] = 0;
 938
 939		ptxd->len = ETH_ZLEN;
 940	} else
 941		ptxd->len = skb->len;
 942
 943	ps->tx_packets++;
 944	ps->tx_bytes += ptxd->len;
 945
 946	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
 947	au_sync();
 948	dev_kfree_skb(skb);
 949	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
 950	return NETDEV_TX_OK;
 951}
 952
 953/*
 954 * The Tx ring has been full longer than the watchdog timeout
 955 * value. The transmitter must be hung?
 956 */
 957static void au1000_tx_timeout(struct net_device *dev)
 958{
 959	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
 960	au1000_reset_mac(dev);
 961	au1000_init(dev);
 962	dev->trans_start = jiffies; /* prevent tx timeout */
 963	netif_wake_queue(dev);
 964}
 965
 966static void au1000_multicast_list(struct net_device *dev)
 967{
 968	struct au1000_private *aup = netdev_priv(dev);
 969	u32 reg;
 970
 971	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
 972	reg = readl(&aup->mac->control);
 973	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
 974		reg |= MAC_PROMISCUOUS;
 975	} else if ((dev->flags & IFF_ALLMULTI)  ||
 976			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
 977		reg |= MAC_PASS_ALL_MULTI;
 978		reg &= ~MAC_PROMISCUOUS;
 979		netdev_info(dev, "Pass all multicast\n");
 980	} else {
 981		struct netdev_hw_addr *ha;
 982		u32 mc_filter[2];	/* Multicast hash filter */
 983
 984		mc_filter[1] = mc_filter[0] = 0;
 985		netdev_for_each_mc_addr(ha, dev)
 986			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
 987					(long *)mc_filter);
 988		writel(mc_filter[1], &aup->mac->multi_hash_high);
 989		writel(mc_filter[0], &aup->mac->multi_hash_low);
 990		reg &= ~MAC_PROMISCUOUS;
 991		reg |= MAC_HASH_MODE;
 992	}
 993	writel(reg, &aup->mac->control);
 994}
 995
 996static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 997{
 998	struct au1000_private *aup = netdev_priv(dev);
 999
1000	if (!netif_running(dev))
1001		return -EINVAL;
1002
1003	if (!aup->phy_dev)
1004		return -EINVAL; /* PHY not controllable */
1005
1006	return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1007}
1008
1009static const struct net_device_ops au1000_netdev_ops = {
1010	.ndo_open		= au1000_open,
1011	.ndo_stop		= au1000_close,
1012	.ndo_start_xmit		= au1000_tx,
1013	.ndo_set_multicast_list	= au1000_multicast_list,
1014	.ndo_do_ioctl		= au1000_ioctl,
1015	.ndo_tx_timeout		= au1000_tx_timeout,
1016	.ndo_set_mac_address	= eth_mac_addr,
1017	.ndo_validate_addr	= eth_validate_addr,
1018	.ndo_change_mtu		= eth_change_mtu,
1019};
1020
1021static int __devinit au1000_probe(struct platform_device *pdev)
1022{
1023	static unsigned version_printed;
1024	struct au1000_private *aup = NULL;
1025	struct au1000_eth_platform_data *pd;
1026	struct net_device *dev = NULL;
1027	struct db_dest *pDB, *pDBfree;
1028	int irq, i, err = 0;
1029	struct resource *base, *macen;
1030
1031	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1032	if (!base) {
1033		dev_err(&pdev->dev, "failed to retrieve base register\n");
1034		err = -ENODEV;
1035		goto out;
1036	}
1037
1038	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1039	if (!macen) {
1040		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1041		err = -ENODEV;
1042		goto out;
1043	}
1044
1045	irq = platform_get_irq(pdev, 0);
1046	if (irq < 0) {
1047		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1048		err = -ENODEV;
1049		goto out;
1050	}
1051
1052	if (!request_mem_region(base->start, resource_size(base),
1053							pdev->name)) {
1054		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1055		err = -ENXIO;
1056		goto out;
1057	}
1058
1059	if (!request_mem_region(macen->start, resource_size(macen),
1060							pdev->name)) {
1061		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1062		err = -ENXIO;
1063		goto err_request;
1064	}
1065
1066	dev = alloc_etherdev(sizeof(struct au1000_private));
1067	if (!dev) {
1068		dev_err(&pdev->dev, "alloc_etherdev failed\n");
1069		err = -ENOMEM;
1070		goto err_alloc;
1071	}
1072
1073	SET_NETDEV_DEV(dev, &pdev->dev);
1074	platform_set_drvdata(pdev, dev);
1075	aup = netdev_priv(dev);
1076
1077	spin_lock_init(&aup->lock);
1078	aup->msg_enable = (au1000_debug < 4 ?
1079				AU1000_DEF_MSG_ENABLE : au1000_debug);
1080
1081	/* Allocate the data buffers
1082	 * Snooping works fine with eth on all au1xxx
1083	 */
1084	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1085						(NUM_TX_BUFFS + NUM_RX_BUFFS),
1086						&aup->dma_addr,	0);
1087	if (!aup->vaddr) {
1088		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1089		err = -ENOMEM;
1090		goto err_vaddr;
1091	}
1092
1093	/* aup->mac is the base address of the MAC's registers */
1094	aup->mac = (struct mac_reg *)
1095			ioremap_nocache(base->start, resource_size(base));
1096	if (!aup->mac) {
1097		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1098		err = -ENXIO;
1099		goto err_remap1;
1100	}
1101
1102	/* Setup some variables for quick register address access */
1103	aup->enable = (u32 *)ioremap_nocache(macen->start,
1104						resource_size(macen));
1105	if (!aup->enable) {
1106		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1107		err = -ENXIO;
1108		goto err_remap2;
1109	}
1110	aup->mac_id = pdev->id;
1111
1112	if (pdev->id == 0)
1113		au1000_setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
1114	else if (pdev->id == 1)
1115		au1000_setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
1116
1117	/* set a random MAC now in case platform_data doesn't provide one */
1118	random_ether_addr(dev->dev_addr);
1119
1120	writel(0, aup->enable);
1121	aup->mac_enabled = 0;
1122
1123	pd = pdev->dev.platform_data;
1124	if (!pd) {
1125		dev_info(&pdev->dev, "no platform_data passed,"
1126					" PHY search on MAC0\n");
1127		aup->phy1_search_mac0 = 1;
1128	} else {
1129		if (is_valid_ether_addr(pd->mac))
1130			memcpy(dev->dev_addr, pd->mac, 6);
1131
1132		aup->phy_static_config = pd->phy_static_config;
1133		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1134		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1135		aup->phy_addr = pd->phy_addr;
1136		aup->phy_busid = pd->phy_busid;
1137		aup->phy_irq = pd->phy_irq;
1138	}
1139
1140	if (aup->phy_busid && aup->phy_busid > 0) {
1141		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1142		err = -ENODEV;
1143		goto err_mdiobus_alloc;
1144	}
1145
1146	aup->mii_bus = mdiobus_alloc();
1147	if (aup->mii_bus == NULL) {
1148		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1149		err = -ENOMEM;
1150		goto err_mdiobus_alloc;
1151	}
1152
1153	aup->mii_bus->priv = dev;
1154	aup->mii_bus->read = au1000_mdiobus_read;
1155	aup->mii_bus->write = au1000_mdiobus_write;
1156	aup->mii_bus->reset = au1000_mdiobus_reset;
1157	aup->mii_bus->name = "au1000_eth_mii";
1158	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id);
1159	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1160	if (aup->mii_bus->irq == NULL)
1161		goto err_out;
1162
1163	for (i = 0; i < PHY_MAX_ADDR; ++i)
1164		aup->mii_bus->irq[i] = PHY_POLL;
1165	/* if known, set corresponding PHY IRQs */
1166	if (aup->phy_static_config)
1167		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1168			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1169
1170	err = mdiobus_register(aup->mii_bus);
1171	if (err) {
1172		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1173		goto err_mdiobus_reg;
1174	}
1175
1176	if (au1000_mii_probe(dev) != 0)
1177		goto err_out;
1178
1179	pDBfree = NULL;
1180	/* setup the data buffer descriptors and attach a buffer to each one */
1181	pDB = aup->db;
1182	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1183		pDB->pnext = pDBfree;
1184		pDBfree = pDB;
1185		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1186		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1187		pDB++;
1188	}
1189	aup->pDBfree = pDBfree;
1190
1191	for (i = 0; i < NUM_RX_DMA; i++) {
1192		pDB = au1000_GetFreeDB(aup);
1193		if (!pDB)
1194			goto err_out;
1195
1196		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1197		aup->rx_db_inuse[i] = pDB;
1198	}
1199	for (i = 0; i < NUM_TX_DMA; i++) {
1200		pDB = au1000_GetFreeDB(aup);
1201		if (!pDB)
1202			goto err_out;
1203
1204		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1205		aup->tx_dma_ring[i]->len = 0;
1206		aup->tx_db_inuse[i] = pDB;
1207	}
1208
1209	dev->base_addr = base->start;
1210	dev->irq = irq;
1211	dev->netdev_ops = &au1000_netdev_ops;
1212	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1213	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1214
1215	/*
1216	 * The boot code uses the ethernet controller, so reset it to start
1217	 * fresh.  au1000_init() expects that the device is in reset state.
1218	 */
1219	au1000_reset_mac(dev);
1220
1221	err = register_netdev(dev);
1222	if (err) {
1223		netdev_err(dev, "Cannot register net device, aborting.\n");
1224		goto err_out;
1225	}
1226
1227	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1228			(unsigned long)base->start, irq);
1229	if (version_printed++ == 0)
1230		pr_info("%s version %s %s\n",
1231					DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1232
1233	return 0;
1234
1235err_out:
1236	if (aup->mii_bus != NULL)
1237		mdiobus_unregister(aup->mii_bus);
1238
1239	/* here we should have a valid dev plus aup-> register addresses
1240	 * so we can reset the mac properly.
1241	 */
1242	au1000_reset_mac(dev);
1243
1244	for (i = 0; i < NUM_RX_DMA; i++) {
1245		if (aup->rx_db_inuse[i])
1246			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1247	}
1248	for (i = 0; i < NUM_TX_DMA; i++) {
1249		if (aup->tx_db_inuse[i])
1250			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1251	}
1252err_mdiobus_reg:
1253	mdiobus_free(aup->mii_bus);
1254err_mdiobus_alloc:
1255	iounmap(aup->enable);
1256err_remap2:
1257	iounmap(aup->mac);
1258err_remap1:
1259	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1260			     (void *)aup->vaddr, aup->dma_addr);
1261err_vaddr:
1262	free_netdev(dev);
1263err_alloc:
1264	release_mem_region(macen->start, resource_size(macen));
1265err_request:
1266	release_mem_region(base->start, resource_size(base));
1267out:
1268	return err;
1269}
1270
1271static int __devexit au1000_remove(struct platform_device *pdev)
1272{
1273	struct net_device *dev = platform_get_drvdata(pdev);
1274	struct au1000_private *aup = netdev_priv(dev);
1275	int i;
1276	struct resource *base, *macen;
1277
1278	platform_set_drvdata(pdev, NULL);
1279
1280	unregister_netdev(dev);
1281	mdiobus_unregister(aup->mii_bus);
1282	mdiobus_free(aup->mii_bus);
1283
1284	for (i = 0; i < NUM_RX_DMA; i++)
1285		if (aup->rx_db_inuse[i])
1286			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1287
1288	for (i = 0; i < NUM_TX_DMA; i++)
1289		if (aup->tx_db_inuse[i])
1290			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1291
1292	dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1293			(NUM_TX_BUFFS + NUM_RX_BUFFS),
1294			(void *)aup->vaddr, aup->dma_addr);
1295
1296	iounmap(aup->mac);
1297	iounmap(aup->enable);
1298
1299	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1300	release_mem_region(base->start, resource_size(base));
1301
1302	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1303	release_mem_region(macen->start, resource_size(macen));
1304
1305	free_netdev(dev);
1306
1307	return 0;
1308}
1309
1310static struct platform_driver au1000_eth_driver = {
1311	.probe  = au1000_probe,
1312	.remove = __devexit_p(au1000_remove),
1313	.driver = {
1314		.name   = "au1000-eth",
1315		.owner  = THIS_MODULE,
1316	},
1317};
1318MODULE_ALIAS("platform:au1000-eth");
1319
1320
1321static int __init au1000_init_module(void)
1322{
1323	return platform_driver_register(&au1000_eth_driver);
1324}
1325
1326static void __exit au1000_exit_module(void)
1327{
1328	platform_driver_unregister(&au1000_eth_driver);
1329}
1330
1331module_init(au1000_init_module);
1332module_exit(au1000_exit_module);