Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
  36#include <linux/debugfs.h>
  37#include <linux/bpf.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/block.h>
  41
  42#include "blk.h"
  43#include "blk-mq.h"
  44#include "blk-mq-sched.h"
  45#include "blk-wbt.h"
  46
  47#ifdef CONFIG_DEBUG_FS
  48struct dentry *blk_debugfs_root;
  49#endif
  50
  51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  56
  57DEFINE_IDA(blk_queue_ida);
  58
  59/*
  60 * For the allocated request tables
  61 */
  62struct kmem_cache *request_cachep;
  63
  64/*
  65 * For queue allocation
  66 */
  67struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  80{
  81	unsigned long flags;
  82
  83	spin_lock_irqsave(q->queue_lock, flags);
  84	queue_flag_set(flag, q);
  85	spin_unlock_irqrestore(q->queue_lock, flags);
  86}
  87EXPORT_SYMBOL(blk_queue_flag_set);
  88
  89/**
  90 * blk_queue_flag_clear - atomically clear a queue flag
  91 * @flag: flag to be cleared
  92 * @q: request queue
  93 */
  94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  95{
  96	unsigned long flags;
  97
  98	spin_lock_irqsave(q->queue_lock, flags);
  99	queue_flag_clear(flag, q);
 100	spin_unlock_irqrestore(q->queue_lock, flags);
 101}
 102EXPORT_SYMBOL(blk_queue_flag_clear);
 103
 104/**
 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 106 * @flag: flag to be set
 107 * @q: request queue
 108 *
 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 110 * the flag was already set.
 111 */
 112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 113{
 114	unsigned long flags;
 115	bool res;
 116
 117	spin_lock_irqsave(q->queue_lock, flags);
 118	res = queue_flag_test_and_set(flag, q);
 119	spin_unlock_irqrestore(q->queue_lock, flags);
 120
 121	return res;
 122}
 123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 124
 125/**
 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
 127 * @flag: flag to be cleared
 128 * @q: request queue
 129 *
 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 131 * the flag was set.
 132 */
 133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
 134{
 135	unsigned long flags;
 136	bool res;
 
 137
 138	spin_lock_irqsave(q->queue_lock, flags);
 139	res = queue_flag_test_and_clear(flag, q);
 140	spin_unlock_irqrestore(q->queue_lock, flags);
 141
 142	return res;
 143}
 144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
 145
 146static void blk_clear_congested(struct request_list *rl, int sync)
 147{
 148#ifdef CONFIG_CGROUP_WRITEBACK
 149	clear_wb_congested(rl->blkg->wb_congested, sync);
 150#else
 151	/*
 152	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
 153	 * flip its congestion state for events on other blkcgs.
 154	 */
 155	if (rl == &rl->q->root_rl)
 156		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
 157#endif
 158}
 
 
 
 
 
 
 
 
 159
 160static void blk_set_congested(struct request_list *rl, int sync)
 161{
 162#ifdef CONFIG_CGROUP_WRITEBACK
 163	set_wb_congested(rl->blkg->wb_congested, sync);
 164#else
 165	/* see blk_clear_congested() */
 166	if (rl == &rl->q->root_rl)
 167		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
 168#endif
 169}
 170
 171void blk_queue_congestion_threshold(struct request_queue *q)
 172{
 173	int nr;
 174
 175	nr = q->nr_requests - (q->nr_requests / 8) + 1;
 176	if (nr > q->nr_requests)
 177		nr = q->nr_requests;
 178	q->nr_congestion_on = nr;
 179
 180	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 181	if (nr < 1)
 182		nr = 1;
 183	q->nr_congestion_off = nr;
 184}
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186void blk_rq_init(struct request_queue *q, struct request *rq)
 187{
 188	memset(rq, 0, sizeof(*rq));
 189
 190	INIT_LIST_HEAD(&rq->queuelist);
 191	INIT_LIST_HEAD(&rq->timeout_list);
 192	rq->cpu = -1;
 193	rq->q = q;
 194	rq->__sector = (sector_t) -1;
 195	INIT_HLIST_NODE(&rq->hash);
 196	RB_CLEAR_NODE(&rq->rb_node);
 
 
 197	rq->tag = -1;
 198	rq->internal_tag = -1;
 199	rq->start_time = jiffies;
 200	set_start_time_ns(rq);
 201	rq->part = NULL;
 202	seqcount_init(&rq->gstate_seq);
 203	u64_stats_init(&rq->aborted_gstate_sync);
 204	/*
 205	 * See comment of blk_mq_init_request
 206	 */
 207	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
 208}
 209EXPORT_SYMBOL(blk_rq_init);
 210
 211static const struct {
 212	int		errno;
 213	const char	*name;
 214} blk_errors[] = {
 215	[BLK_STS_OK]		= { 0,		"" },
 216	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 217	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 218	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 219	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 220	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 221	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
 222	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 223	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 224	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 225	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 226	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 227
 228	/* device mapper special case, should not leak out: */
 229	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 230
 231	/* everything else not covered above: */
 232	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 233};
 234
 235blk_status_t errno_to_blk_status(int errno)
 236{
 237	int i;
 
 
 
 238
 239	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 240		if (blk_errors[i].errno == errno)
 241			return (__force blk_status_t)i;
 
 242	}
 243
 244	return BLK_STS_IOERR;
 245}
 246EXPORT_SYMBOL_GPL(errno_to_blk_status);
 247
 248int blk_status_to_errno(blk_status_t status)
 249{
 250	int idx = (__force int)status;
 251
 252	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 253		return -EIO;
 254	return blk_errors[idx].errno;
 255}
 256EXPORT_SYMBOL_GPL(blk_status_to_errno);
 257
 258static void print_req_error(struct request *req, blk_status_t status)
 259{
 260	int idx = (__force int)status;
 261
 262	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 263		return;
 264
 265	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
 266			   __func__, blk_errors[idx].name, req->rq_disk ?
 267			   req->rq_disk->disk_name : "?",
 268			   (unsigned long long)blk_rq_pos(req));
 269}
 270
 271static void req_bio_endio(struct request *rq, struct bio *bio,
 272			  unsigned int nbytes, blk_status_t error)
 273{
 274	if (error)
 275		bio->bi_status = error;
 276
 277	if (unlikely(rq->rq_flags & RQF_QUIET))
 278		bio_set_flag(bio, BIO_QUIET);
 279
 280	bio_advance(bio, nbytes);
 
 281
 282	/* don't actually finish bio if it's part of flush sequence */
 283	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 284		bio_endio(bio);
 285}
 286
 287void blk_dump_rq_flags(struct request *rq, char *msg)
 288{
 289	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 290		rq->rq_disk ? rq->rq_disk->disk_name : "?",
 291		(unsigned long long) rq->cmd_flags);
 
 
 292
 293	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 294	       (unsigned long long)blk_rq_pos(rq),
 295	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 296	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 297	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 
 
 
 
 
 
 
 298}
 299EXPORT_SYMBOL(blk_dump_rq_flags);
 300
 301static void blk_delay_work(struct work_struct *work)
 302{
 303	struct request_queue *q;
 304
 305	q = container_of(work, struct request_queue, delay_work.work);
 306	spin_lock_irq(q->queue_lock);
 307	__blk_run_queue(q);
 308	spin_unlock_irq(q->queue_lock);
 309}
 310
 311/**
 312 * blk_delay_queue - restart queueing after defined interval
 313 * @q:		The &struct request_queue in question
 314 * @msecs:	Delay in msecs
 315 *
 316 * Description:
 317 *   Sometimes queueing needs to be postponed for a little while, to allow
 318 *   resources to come back. This function will make sure that queueing is
 319 *   restarted around the specified time.
 320 */
 321void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 322{
 323	lockdep_assert_held(q->queue_lock);
 324	WARN_ON_ONCE(q->mq_ops);
 325
 326	if (likely(!blk_queue_dead(q)))
 327		queue_delayed_work(kblockd_workqueue, &q->delay_work,
 328				   msecs_to_jiffies(msecs));
 329}
 330EXPORT_SYMBOL(blk_delay_queue);
 331
 332/**
 333 * blk_start_queue_async - asynchronously restart a previously stopped queue
 334 * @q:    The &struct request_queue in question
 335 *
 336 * Description:
 337 *   blk_start_queue_async() will clear the stop flag on the queue, and
 338 *   ensure that the request_fn for the queue is run from an async
 339 *   context.
 340 **/
 341void blk_start_queue_async(struct request_queue *q)
 342{
 343	lockdep_assert_held(q->queue_lock);
 344	WARN_ON_ONCE(q->mq_ops);
 345
 346	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 347	blk_run_queue_async(q);
 348}
 349EXPORT_SYMBOL(blk_start_queue_async);
 350
 351/**
 352 * blk_start_queue - restart a previously stopped queue
 353 * @q:    The &struct request_queue in question
 354 *
 355 * Description:
 356 *   blk_start_queue() will clear the stop flag on the queue, and call
 357 *   the request_fn for the queue if it was in a stopped state when
 358 *   entered. Also see blk_stop_queue().
 359 **/
 360void blk_start_queue(struct request_queue *q)
 361{
 362	lockdep_assert_held(q->queue_lock);
 363	WARN_ON(!in_interrupt() && !irqs_disabled());
 364	WARN_ON_ONCE(q->mq_ops);
 365
 366	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 367	__blk_run_queue(q);
 368}
 369EXPORT_SYMBOL(blk_start_queue);
 370
 371/**
 372 * blk_stop_queue - stop a queue
 373 * @q:    The &struct request_queue in question
 374 *
 375 * Description:
 376 *   The Linux block layer assumes that a block driver will consume all
 377 *   entries on the request queue when the request_fn strategy is called.
 378 *   Often this will not happen, because of hardware limitations (queue
 379 *   depth settings). If a device driver gets a 'queue full' response,
 380 *   or if it simply chooses not to queue more I/O at one point, it can
 381 *   call this function to prevent the request_fn from being called until
 382 *   the driver has signalled it's ready to go again. This happens by calling
 383 *   blk_start_queue() to restart queue operations.
 384 **/
 385void blk_stop_queue(struct request_queue *q)
 386{
 387	lockdep_assert_held(q->queue_lock);
 388	WARN_ON_ONCE(q->mq_ops);
 389
 390	cancel_delayed_work(&q->delay_work);
 391	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 392}
 393EXPORT_SYMBOL(blk_stop_queue);
 394
 395/**
 396 * blk_sync_queue - cancel any pending callbacks on a queue
 397 * @q: the queue
 398 *
 399 * Description:
 400 *     The block layer may perform asynchronous callback activity
 401 *     on a queue, such as calling the unplug function after a timeout.
 402 *     A block device may call blk_sync_queue to ensure that any
 403 *     such activity is cancelled, thus allowing it to release resources
 404 *     that the callbacks might use. The caller must already have made sure
 405 *     that its ->make_request_fn will not re-add plugging prior to calling
 406 *     this function.
 407 *
 408 *     This function does not cancel any asynchronous activity arising
 409 *     out of elevator or throttling code. That would require elevator_exit()
 410 *     and blkcg_exit_queue() to be called with queue lock initialized.
 411 *
 412 */
 413void blk_sync_queue(struct request_queue *q)
 414{
 415	del_timer_sync(&q->timeout);
 416	cancel_work_sync(&q->timeout_work);
 417
 418	if (q->mq_ops) {
 419		struct blk_mq_hw_ctx *hctx;
 420		int i;
 421
 422		cancel_delayed_work_sync(&q->requeue_work);
 423		queue_for_each_hw_ctx(q, hctx, i)
 424			cancel_delayed_work_sync(&hctx->run_work);
 425	} else {
 426		cancel_delayed_work_sync(&q->delay_work);
 427	}
 428}
 429EXPORT_SYMBOL(blk_sync_queue);
 430
 431/**
 432 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
 433 * @q: request queue pointer
 434 *
 435 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
 436 * set and 1 if the flag was already set.
 437 */
 438int blk_set_preempt_only(struct request_queue *q)
 439{
 440	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
 441}
 442EXPORT_SYMBOL_GPL(blk_set_preempt_only);
 443
 444void blk_clear_preempt_only(struct request_queue *q)
 445{
 446	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
 447	wake_up_all(&q->mq_freeze_wq);
 448}
 449EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
 450
 451/**
 452 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 453 * @q:	The queue to run
 454 *
 455 * Description:
 456 *    Invoke request handling on a queue if there are any pending requests.
 457 *    May be used to restart request handling after a request has completed.
 458 *    This variant runs the queue whether or not the queue has been
 459 *    stopped. Must be called with the queue lock held and interrupts
 460 *    disabled. See also @blk_run_queue.
 461 */
 462inline void __blk_run_queue_uncond(struct request_queue *q)
 463{
 464	lockdep_assert_held(q->queue_lock);
 465	WARN_ON_ONCE(q->mq_ops);
 466
 467	if (unlikely(blk_queue_dead(q)))
 468		return;
 469
 470	/*
 471	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 472	 * the queue lock internally. As a result multiple threads may be
 473	 * running such a request function concurrently. Keep track of the
 474	 * number of active request_fn invocations such that blk_drain_queue()
 475	 * can wait until all these request_fn calls have finished.
 476	 */
 477	q->request_fn_active++;
 478	q->request_fn(q);
 479	q->request_fn_active--;
 480}
 481EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 482
 483/**
 484 * __blk_run_queue - run a single device queue
 485 * @q:	The queue to run
 486 *
 487 * Description:
 488 *    See @blk_run_queue.
 
 489 */
 490void __blk_run_queue(struct request_queue *q)
 491{
 492	lockdep_assert_held(q->queue_lock);
 493	WARN_ON_ONCE(q->mq_ops);
 494
 495	if (unlikely(blk_queue_stopped(q)))
 496		return;
 497
 498	__blk_run_queue_uncond(q);
 499}
 500EXPORT_SYMBOL(__blk_run_queue);
 501
 502/**
 503 * blk_run_queue_async - run a single device queue in workqueue context
 504 * @q:	The queue to run
 505 *
 506 * Description:
 507 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 508 *    of us.
 509 *
 510 * Note:
 511 *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
 512 *    has canceled q->delay_work, callers must hold the queue lock to avoid
 513 *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
 514 */
 515void blk_run_queue_async(struct request_queue *q)
 516{
 517	lockdep_assert_held(q->queue_lock);
 518	WARN_ON_ONCE(q->mq_ops);
 519
 520	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 521		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 522}
 523EXPORT_SYMBOL(blk_run_queue_async);
 524
 525/**
 526 * blk_run_queue - run a single device queue
 527 * @q: The queue to run
 528 *
 529 * Description:
 530 *    Invoke request handling on this queue, if it has pending work to do.
 531 *    May be used to restart queueing when a request has completed.
 532 */
 533void blk_run_queue(struct request_queue *q)
 534{
 535	unsigned long flags;
 536
 537	WARN_ON_ONCE(q->mq_ops);
 538
 539	spin_lock_irqsave(q->queue_lock, flags);
 540	__blk_run_queue(q);
 541	spin_unlock_irqrestore(q->queue_lock, flags);
 542}
 543EXPORT_SYMBOL(blk_run_queue);
 544
 545void blk_put_queue(struct request_queue *q)
 546{
 547	kobject_put(&q->kobj);
 548}
 549EXPORT_SYMBOL(blk_put_queue);
 550
 551/**
 552 * __blk_drain_queue - drain requests from request_queue
 553 * @q: queue to drain
 554 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 555 *
 556 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 557 * If not, only ELVPRIV requests are drained.  The caller is responsible
 558 * for ensuring that no new requests which need to be drained are queued.
 559 */
 560static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 561	__releases(q->queue_lock)
 562	__acquires(q->queue_lock)
 563{
 564	int i;
 565
 566	lockdep_assert_held(q->queue_lock);
 567	WARN_ON_ONCE(q->mq_ops);
 568
 569	while (true) {
 570		bool drain = false;
 571
 572		/*
 573		 * The caller might be trying to drain @q before its
 574		 * elevator is initialized.
 575		 */
 576		if (q->elevator)
 577			elv_drain_elevator(q);
 578
 579		blkcg_drain_queue(q);
 580
 581		/*
 582		 * This function might be called on a queue which failed
 583		 * driver init after queue creation or is not yet fully
 584		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 585		 * in such cases.  Kick queue iff dispatch queue has
 586		 * something on it and @q has request_fn set.
 587		 */
 588		if (!list_empty(&q->queue_head) && q->request_fn)
 589			__blk_run_queue(q);
 590
 591		drain |= q->nr_rqs_elvpriv;
 592		drain |= q->request_fn_active;
 593
 594		/*
 595		 * Unfortunately, requests are queued at and tracked from
 596		 * multiple places and there's no single counter which can
 597		 * be drained.  Check all the queues and counters.
 598		 */
 599		if (drain_all) {
 600			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 601			drain |= !list_empty(&q->queue_head);
 602			for (i = 0; i < 2; i++) {
 603				drain |= q->nr_rqs[i];
 604				drain |= q->in_flight[i];
 605				if (fq)
 606				    drain |= !list_empty(&fq->flush_queue[i]);
 607			}
 608		}
 609
 610		if (!drain)
 611			break;
 612
 613		spin_unlock_irq(q->queue_lock);
 614
 615		msleep(10);
 616
 617		spin_lock_irq(q->queue_lock);
 618	}
 619
 620	/*
 621	 * With queue marked dead, any woken up waiter will fail the
 622	 * allocation path, so the wakeup chaining is lost and we're
 623	 * left with hung waiters. We need to wake up those waiters.
 624	 */
 625	if (q->request_fn) {
 626		struct request_list *rl;
 627
 628		blk_queue_for_each_rl(rl, q)
 629			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 630				wake_up_all(&rl->wait[i]);
 631	}
 632}
 633
 634void blk_drain_queue(struct request_queue *q)
 635{
 636	spin_lock_irq(q->queue_lock);
 637	__blk_drain_queue(q, true);
 638	spin_unlock_irq(q->queue_lock);
 639}
 640
 641/**
 642 * blk_queue_bypass_start - enter queue bypass mode
 643 * @q: queue of interest
 644 *
 645 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 646 * function makes @q enter bypass mode and drains all requests which were
 647 * throttled or issued before.  On return, it's guaranteed that no request
 648 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 649 * inside queue or RCU read lock.
 650 */
 651void blk_queue_bypass_start(struct request_queue *q)
 652{
 653	WARN_ON_ONCE(q->mq_ops);
 654
 655	spin_lock_irq(q->queue_lock);
 656	q->bypass_depth++;
 657	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 658	spin_unlock_irq(q->queue_lock);
 659
 660	/*
 661	 * Queues start drained.  Skip actual draining till init is
 662	 * complete.  This avoids lenghty delays during queue init which
 663	 * can happen many times during boot.
 664	 */
 665	if (blk_queue_init_done(q)) {
 666		spin_lock_irq(q->queue_lock);
 667		__blk_drain_queue(q, false);
 668		spin_unlock_irq(q->queue_lock);
 669
 670		/* ensure blk_queue_bypass() is %true inside RCU read lock */
 671		synchronize_rcu();
 672	}
 673}
 674EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 675
 676/**
 677 * blk_queue_bypass_end - leave queue bypass mode
 678 * @q: queue of interest
 679 *
 680 * Leave bypass mode and restore the normal queueing behavior.
 681 *
 682 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
 683 * this function is called for both blk-sq and blk-mq queues.
 684 */
 685void blk_queue_bypass_end(struct request_queue *q)
 686{
 687	spin_lock_irq(q->queue_lock);
 688	if (!--q->bypass_depth)
 689		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 690	WARN_ON_ONCE(q->bypass_depth < 0);
 691	spin_unlock_irq(q->queue_lock);
 692}
 693EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 694
 695void blk_set_queue_dying(struct request_queue *q)
 696{
 697	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 698
 699	/*
 700	 * When queue DYING flag is set, we need to block new req
 701	 * entering queue, so we call blk_freeze_queue_start() to
 702	 * prevent I/O from crossing blk_queue_enter().
 703	 */
 704	blk_freeze_queue_start(q);
 705
 706	if (q->mq_ops)
 707		blk_mq_wake_waiters(q);
 708	else {
 709		struct request_list *rl;
 710
 711		spin_lock_irq(q->queue_lock);
 712		blk_queue_for_each_rl(rl, q) {
 713			if (rl->rq_pool) {
 714				wake_up_all(&rl->wait[BLK_RW_SYNC]);
 715				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
 716			}
 717		}
 718		spin_unlock_irq(q->queue_lock);
 719	}
 720
 721	/* Make blk_queue_enter() reexamine the DYING flag. */
 722	wake_up_all(&q->mq_freeze_wq);
 723}
 724EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 725
 726/**
 727 * blk_cleanup_queue - shutdown a request queue
 728 * @q: request queue to shutdown
 729 *
 730 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 731 * put it.  All future requests will be failed immediately with -ENODEV.
 732 */
 733void blk_cleanup_queue(struct request_queue *q)
 734{
 735	spinlock_t *lock = q->queue_lock;
 736
 737	/* mark @q DYING, no new request or merges will be allowed afterwards */
 738	mutex_lock(&q->sysfs_lock);
 739	blk_set_queue_dying(q);
 740	spin_lock_irq(lock);
 741
 742	/*
 743	 * A dying queue is permanently in bypass mode till released.  Note
 744	 * that, unlike blk_queue_bypass_start(), we aren't performing
 745	 * synchronize_rcu() after entering bypass mode to avoid the delay
 746	 * as some drivers create and destroy a lot of queues while
 747	 * probing.  This is still safe because blk_release_queue() will be
 748	 * called only after the queue refcnt drops to zero and nothing,
 749	 * RCU or not, would be traversing the queue by then.
 750	 */
 751	q->bypass_depth++;
 752	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 753
 754	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 755	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 756	queue_flag_set(QUEUE_FLAG_DYING, q);
 757	spin_unlock_irq(lock);
 758	mutex_unlock(&q->sysfs_lock);
 759
 760	/*
 761	 * Drain all requests queued before DYING marking. Set DEAD flag to
 762	 * prevent that q->request_fn() gets invoked after draining finished.
 763	 */
 764	blk_freeze_queue(q);
 765	spin_lock_irq(lock);
 766	queue_flag_set(QUEUE_FLAG_DEAD, q);
 767	spin_unlock_irq(lock);
 768
 769	/*
 770	 * make sure all in-progress dispatch are completed because
 771	 * blk_freeze_queue() can only complete all requests, and
 772	 * dispatch may still be in-progress since we dispatch requests
 773	 * from more than one contexts
 774	 */
 775	if (q->mq_ops)
 776		blk_mq_quiesce_queue(q);
 777
 778	/* for synchronous bio-based driver finish in-flight integrity i/o */
 779	blk_flush_integrity();
 780
 781	/* @q won't process any more request, flush async actions */
 782	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
 783	blk_sync_queue(q);
 784
 785	/*
 786	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
 787	 * has been removed.
 788	 */
 789	WARN_ON_ONCE(q->kobj.state_in_sysfs);
 790
 791	/*
 792	 * Since the I/O scheduler exit code may access cgroup information,
 793	 * perform I/O scheduler exit before disassociating from the block
 794	 * cgroup controller.
 795	 */
 796	if (q->elevator) {
 797		ioc_clear_queue(q);
 798		elevator_exit(q, q->elevator);
 799		q->elevator = NULL;
 800	}
 801
 802	/*
 803	 * Remove all references to @q from the block cgroup controller before
 804	 * restoring @q->queue_lock to avoid that restoring this pointer causes
 805	 * e.g. blkcg_print_blkgs() to crash.
 806	 */
 807	blkcg_exit_queue(q);
 808
 809	/*
 810	 * Since the cgroup code may dereference the @q->backing_dev_info
 811	 * pointer, only decrease its reference count after having removed the
 812	 * association with the block cgroup controller.
 813	 */
 814	bdi_put(q->backing_dev_info);
 815
 816	if (q->mq_ops)
 817		blk_mq_free_queue(q);
 818	percpu_ref_exit(&q->q_usage_counter);
 819
 820	spin_lock_irq(lock);
 821	if (q->queue_lock != &q->__queue_lock)
 822		q->queue_lock = &q->__queue_lock;
 823	spin_unlock_irq(lock);
 824
 825	/* @q is and will stay empty, shutdown and put */
 826	blk_put_queue(q);
 827}
 828EXPORT_SYMBOL(blk_cleanup_queue);
 829
 830/* Allocate memory local to the request queue */
 831static void *alloc_request_simple(gfp_t gfp_mask, void *data)
 832{
 833	struct request_queue *q = data;
 834
 835	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
 836}
 837
 838static void free_request_simple(void *element, void *data)
 839{
 840	kmem_cache_free(request_cachep, element);
 841}
 842
 843static void *alloc_request_size(gfp_t gfp_mask, void *data)
 844{
 845	struct request_queue *q = data;
 846	struct request *rq;
 847
 848	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
 849			q->node);
 850	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
 851		kfree(rq);
 852		rq = NULL;
 853	}
 854	return rq;
 855}
 856
 857static void free_request_size(void *element, void *data)
 858{
 859	struct request_queue *q = data;
 860
 861	if (q->exit_rq_fn)
 862		q->exit_rq_fn(q, element);
 863	kfree(element);
 864}
 865
 866int blk_init_rl(struct request_list *rl, struct request_queue *q,
 867		gfp_t gfp_mask)
 868{
 869	if (unlikely(rl->rq_pool) || q->mq_ops)
 870		return 0;
 871
 872	rl->q = q;
 873	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 874	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 
 875	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 876	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 877
 878	if (q->cmd_size) {
 879		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
 880				alloc_request_size, free_request_size,
 881				q, gfp_mask, q->node);
 882	} else {
 883		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
 884				alloc_request_simple, free_request_simple,
 885				q, gfp_mask, q->node);
 886	}
 887	if (!rl->rq_pool)
 888		return -ENOMEM;
 889
 890	if (rl != &q->root_rl)
 891		WARN_ON_ONCE(!blk_get_queue(q));
 892
 893	return 0;
 894}
 895
 896void blk_exit_rl(struct request_queue *q, struct request_list *rl)
 897{
 898	if (rl->rq_pool) {
 899		mempool_destroy(rl->rq_pool);
 900		if (rl != &q->root_rl)
 901			blk_put_queue(q);
 902	}
 903}
 904
 905struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 906{
 907	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
 908}
 909EXPORT_SYMBOL(blk_alloc_queue);
 910
 911/**
 912 * blk_queue_enter() - try to increase q->q_usage_counter
 913 * @q: request queue pointer
 914 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
 915 */
 916int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 917{
 918	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
 919
 920	while (true) {
 921		bool success = false;
 922
 923		rcu_read_lock();
 924		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
 925			/*
 926			 * The code that sets the PREEMPT_ONLY flag is
 927			 * responsible for ensuring that that flag is globally
 928			 * visible before the queue is unfrozen.
 929			 */
 930			if (preempt || !blk_queue_preempt_only(q)) {
 931				success = true;
 932			} else {
 933				percpu_ref_put(&q->q_usage_counter);
 934			}
 935		}
 936		rcu_read_unlock();
 937
 938		if (success)
 939			return 0;
 940
 941		if (flags & BLK_MQ_REQ_NOWAIT)
 942			return -EBUSY;
 943
 944		/*
 945		 * read pair of barrier in blk_freeze_queue_start(),
 946		 * we need to order reading __PERCPU_REF_DEAD flag of
 947		 * .q_usage_counter and reading .mq_freeze_depth or
 948		 * queue dying flag, otherwise the following wait may
 949		 * never return if the two reads are reordered.
 950		 */
 951		smp_rmb();
 952
 953		wait_event(q->mq_freeze_wq,
 954			   (atomic_read(&q->mq_freeze_depth) == 0 &&
 955			    (preempt || !blk_queue_preempt_only(q))) ||
 956			   blk_queue_dying(q));
 957		if (blk_queue_dying(q))
 958			return -ENODEV;
 959	}
 960}
 961
 962void blk_queue_exit(struct request_queue *q)
 963{
 964	percpu_ref_put(&q->q_usage_counter);
 965}
 966
 967static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 968{
 969	struct request_queue *q =
 970		container_of(ref, struct request_queue, q_usage_counter);
 971
 972	wake_up_all(&q->mq_freeze_wq);
 973}
 974
 975static void blk_rq_timed_out_timer(struct timer_list *t)
 976{
 977	struct request_queue *q = from_timer(q, t, timeout);
 978
 979	kblockd_schedule_work(&q->timeout_work);
 980}
 981
 982/**
 983 * blk_alloc_queue_node - allocate a request queue
 984 * @gfp_mask: memory allocation flags
 985 * @node_id: NUMA node to allocate memory from
 986 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
 987 *        serialize calls to the legacy .request_fn() callback. Ignored for
 988 *	  blk-mq request queues.
 989 *
 990 * Note: pass the queue lock as the third argument to this function instead of
 991 * setting the queue lock pointer explicitly to avoid triggering a sporadic
 992 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
 993 * the queue lock pointer must be set before blkcg_init_queue() is called.
 994 */
 995struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
 996					   spinlock_t *lock)
 997{
 998	struct request_queue *q;
 
 999
1000	q = kmem_cache_alloc_node(blk_requestq_cachep,
1001				gfp_mask | __GFP_ZERO, node_id);
1002	if (!q)
1003		return NULL;
1004
1005	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1006	if (q->id < 0)
1007		goto fail_q;
1008
1009	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1010	if (!q->bio_split)
1011		goto fail_id;
1012
1013	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1014	if (!q->backing_dev_info)
1015		goto fail_split;
1016
1017	q->stats = blk_alloc_queue_stats();
1018	if (!q->stats)
1019		goto fail_stats;
1020
1021	q->backing_dev_info->ra_pages =
1022			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1023	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1024	q->backing_dev_info->name = "block";
1025	q->node = node_id;
1026
1027	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1028		    laptop_mode_timer_fn, 0);
1029	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1030	INIT_WORK(&q->timeout_work, NULL);
1031	INIT_LIST_HEAD(&q->queue_head);
1032	INIT_LIST_HEAD(&q->timeout_list);
1033	INIT_LIST_HEAD(&q->icq_list);
1034#ifdef CONFIG_BLK_CGROUP
1035	INIT_LIST_HEAD(&q->blkg_list);
1036#endif
1037	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1038
1039	kobject_init(&q->kobj, &blk_queue_ktype);
1040
1041#ifdef CONFIG_BLK_DEV_IO_TRACE
1042	mutex_init(&q->blk_trace_mutex);
1043#endif
1044	mutex_init(&q->sysfs_lock);
1045	spin_lock_init(&q->__queue_lock);
1046
1047	if (!q->mq_ops)
1048		q->queue_lock = lock ? : &q->__queue_lock;
1049
1050	/*
1051	 * A queue starts its life with bypass turned on to avoid
1052	 * unnecessary bypass on/off overhead and nasty surprises during
1053	 * init.  The initial bypass will be finished when the queue is
1054	 * registered by blk_register_queue().
1055	 */
1056	q->bypass_depth = 1;
1057	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1058
1059	init_waitqueue_head(&q->mq_freeze_wq);
1060
1061	/*
1062	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1063	 * See blk_register_queue() for details.
1064	 */
1065	if (percpu_ref_init(&q->q_usage_counter,
1066				blk_queue_usage_counter_release,
1067				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1068		goto fail_bdi;
1069
1070	if (blkcg_init_queue(q))
1071		goto fail_ref;
1072
1073	return q;
1074
1075fail_ref:
1076	percpu_ref_exit(&q->q_usage_counter);
1077fail_bdi:
1078	blk_free_queue_stats(q->stats);
1079fail_stats:
1080	bdi_put(q->backing_dev_info);
1081fail_split:
1082	bioset_free(q->bio_split);
1083fail_id:
1084	ida_simple_remove(&blk_queue_ida, q->id);
1085fail_q:
1086	kmem_cache_free(blk_requestq_cachep, q);
1087	return NULL;
1088}
1089EXPORT_SYMBOL(blk_alloc_queue_node);
1090
1091/**
1092 * blk_init_queue  - prepare a request queue for use with a block device
1093 * @rfn:  The function to be called to process requests that have been
1094 *        placed on the queue.
1095 * @lock: Request queue spin lock
1096 *
1097 * Description:
1098 *    If a block device wishes to use the standard request handling procedures,
1099 *    which sorts requests and coalesces adjacent requests, then it must
1100 *    call blk_init_queue().  The function @rfn will be called when there
1101 *    are requests on the queue that need to be processed.  If the device
1102 *    supports plugging, then @rfn may not be called immediately when requests
1103 *    are available on the queue, but may be called at some time later instead.
1104 *    Plugged queues are generally unplugged when a buffer belonging to one
1105 *    of the requests on the queue is needed, or due to memory pressure.
1106 *
1107 *    @rfn is not required, or even expected, to remove all requests off the
1108 *    queue, but only as many as it can handle at a time.  If it does leave
1109 *    requests on the queue, it is responsible for arranging that the requests
1110 *    get dealt with eventually.
1111 *
1112 *    The queue spin lock must be held while manipulating the requests on the
1113 *    request queue; this lock will be taken also from interrupt context, so irq
1114 *    disabling is needed for it.
1115 *
1116 *    Function returns a pointer to the initialized request queue, or %NULL if
1117 *    it didn't succeed.
1118 *
1119 * Note:
1120 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1121 *    when the block device is deactivated (such as at module unload).
1122 **/
1123
1124struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1125{
1126	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1127}
1128EXPORT_SYMBOL(blk_init_queue);
1129
1130struct request_queue *
1131blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1132{
1133	struct request_queue *q;
1134
1135	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1136	if (!q)
1137		return NULL;
1138
1139	q->request_fn = rfn;
1140	if (blk_init_allocated_queue(q) < 0) {
1141		blk_cleanup_queue(q);
1142		return NULL;
1143	}
1144
1145	return q;
1146}
1147EXPORT_SYMBOL(blk_init_queue_node);
1148
1149static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1150
1151
1152int blk_init_allocated_queue(struct request_queue *q)
1153{
1154	WARN_ON_ONCE(q->mq_ops);
1155
1156	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1157	if (!q->fq)
1158		return -ENOMEM;
1159
1160	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1161		goto out_free_flush_queue;
 
 
 
 
1162
1163	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1164		goto out_exit_flush_rq;
 
1165
1166	INIT_WORK(&q->timeout_work, blk_timeout_work);
1167	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
 
 
 
 
 
 
1168
1169	/*
1170	 * This also sets hw/phys segments, boundary and size
1171	 */
1172	blk_queue_make_request(q, blk_queue_bio);
1173
1174	q->sg_reserved_size = INT_MAX;
1175
1176	/* Protect q->elevator from elevator_change */
1177	mutex_lock(&q->sysfs_lock);
1178
1179	/* init elevator */
1180	if (elevator_init(q, NULL)) {
1181		mutex_unlock(&q->sysfs_lock);
1182		goto out_exit_flush_rq;
1183	}
1184
1185	mutex_unlock(&q->sysfs_lock);
1186	return 0;
1187
1188out_exit_flush_rq:
1189	if (q->exit_rq_fn)
1190		q->exit_rq_fn(q, q->fq->flush_rq);
1191out_free_flush_queue:
1192	blk_free_flush_queue(q->fq);
1193	return -ENOMEM;
1194}
1195EXPORT_SYMBOL(blk_init_allocated_queue);
1196
1197bool blk_get_queue(struct request_queue *q)
1198{
1199	if (likely(!blk_queue_dying(q))) {
1200		__blk_get_queue(q);
1201		return true;
1202	}
1203
1204	return false;
1205}
1206EXPORT_SYMBOL(blk_get_queue);
1207
1208static inline void blk_free_request(struct request_list *rl, struct request *rq)
1209{
1210	if (rq->rq_flags & RQF_ELVPRIV) {
1211		elv_put_request(rl->q, rq);
1212		if (rq->elv.icq)
1213			put_io_context(rq->elv.icq->ioc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214	}
1215
1216	mempool_free(rq, rl->rq_pool);
1217}
1218
1219/*
1220 * ioc_batching returns true if the ioc is a valid batching request and
1221 * should be given priority access to a request.
1222 */
1223static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1224{
1225	if (!ioc)
1226		return 0;
1227
1228	/*
1229	 * Make sure the process is able to allocate at least 1 request
1230	 * even if the batch times out, otherwise we could theoretically
1231	 * lose wakeups.
1232	 */
1233	return ioc->nr_batch_requests == q->nr_batching ||
1234		(ioc->nr_batch_requests > 0
1235		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1236}
1237
1238/*
1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240 * will cause the process to be a "batcher" on all queues in the system. This
1241 * is the behaviour we want though - once it gets a wakeup it should be given
1242 * a nice run.
1243 */
1244static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1245{
1246	if (!ioc || ioc_batching(q, ioc))
1247		return;
1248
1249	ioc->nr_batch_requests = q->nr_batching;
1250	ioc->last_waited = jiffies;
1251}
1252
1253static void __freed_request(struct request_list *rl, int sync)
1254{
1255	struct request_queue *q = rl->q;
1256
1257	if (rl->count[sync] < queue_congestion_off_threshold(q))
1258		blk_clear_congested(rl, sync);
1259
1260	if (rl->count[sync] + 1 <= q->nr_requests) {
1261		if (waitqueue_active(&rl->wait[sync]))
1262			wake_up(&rl->wait[sync]);
1263
1264		blk_clear_rl_full(rl, sync);
1265	}
1266}
1267
1268/*
1269 * A request has just been released.  Account for it, update the full and
1270 * congestion status, wake up any waiters.   Called under q->queue_lock.
1271 */
1272static void freed_request(struct request_list *rl, bool sync,
1273		req_flags_t rq_flags)
1274{
1275	struct request_queue *q = rl->q;
1276
1277	q->nr_rqs[sync]--;
1278	rl->count[sync]--;
1279	if (rq_flags & RQF_ELVPRIV)
1280		q->nr_rqs_elvpriv--;
1281
1282	__freed_request(rl, sync);
1283
1284	if (unlikely(rl->starved[sync ^ 1]))
1285		__freed_request(rl, sync ^ 1);
1286}
1287
1288int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
 
 
 
 
1289{
1290	struct request_list *rl;
1291	int on_thresh, off_thresh;
1292
1293	WARN_ON_ONCE(q->mq_ops);
1294
1295	spin_lock_irq(q->queue_lock);
1296	q->nr_requests = nr;
1297	blk_queue_congestion_threshold(q);
1298	on_thresh = queue_congestion_on_threshold(q);
1299	off_thresh = queue_congestion_off_threshold(q);
1300
1301	blk_queue_for_each_rl(rl, q) {
1302		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1303			blk_set_congested(rl, BLK_RW_SYNC);
1304		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1305			blk_clear_congested(rl, BLK_RW_SYNC);
1306
1307		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1308			blk_set_congested(rl, BLK_RW_ASYNC);
1309		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1310			blk_clear_congested(rl, BLK_RW_ASYNC);
1311
1312		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1313			blk_set_rl_full(rl, BLK_RW_SYNC);
1314		} else {
1315			blk_clear_rl_full(rl, BLK_RW_SYNC);
1316			wake_up(&rl->wait[BLK_RW_SYNC]);
1317		}
1318
1319		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1320			blk_set_rl_full(rl, BLK_RW_ASYNC);
1321		} else {
1322			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1323			wake_up(&rl->wait[BLK_RW_ASYNC]);
1324		}
1325	}
1326
1327	spin_unlock_irq(q->queue_lock);
1328	return 0;
1329}
1330
1331/**
1332 * __get_request - get a free request
1333 * @rl: request list to allocate from
1334 * @op: operation and flags
1335 * @bio: bio to allocate request for (can be %NULL)
1336 * @flags: BLQ_MQ_REQ_* flags
1337 *
1338 * Get a free request from @q.  This function may fail under memory
1339 * pressure or if @q is dead.
1340 *
1341 * Must be called with @q->queue_lock held and,
1342 * Returns ERR_PTR on failure, with @q->queue_lock held.
1343 * Returns request pointer on success, with @q->queue_lock *not held*.
1344 */
1345static struct request *__get_request(struct request_list *rl, unsigned int op,
1346				     struct bio *bio, blk_mq_req_flags_t flags)
1347{
1348	struct request_queue *q = rl->q;
1349	struct request *rq;
1350	struct elevator_type *et = q->elevator->type;
1351	struct io_context *ioc = rq_ioc(bio);
1352	struct io_cq *icq = NULL;
1353	const bool is_sync = op_is_sync(op);
1354	int may_queue;
1355	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1356			 __GFP_DIRECT_RECLAIM;
1357	req_flags_t rq_flags = RQF_ALLOCED;
1358
1359	lockdep_assert_held(q->queue_lock);
1360
1361	if (unlikely(blk_queue_dying(q)))
1362		return ERR_PTR(-ENODEV);
1363
1364	may_queue = elv_may_queue(q, op);
1365	if (may_queue == ELV_MQUEUE_NO)
1366		goto rq_starved;
1367
1368	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1369		if (rl->count[is_sync]+1 >= q->nr_requests) {
 
1370			/*
1371			 * The queue will fill after this allocation, so set
1372			 * it as full, and mark this process as "batching".
1373			 * This process will be allowed to complete a batch of
1374			 * requests, others will be blocked.
1375			 */
1376			if (!blk_rl_full(rl, is_sync)) {
1377				ioc_set_batching(q, ioc);
1378				blk_set_rl_full(rl, is_sync);
1379			} else {
1380				if (may_queue != ELV_MQUEUE_MUST
1381						&& !ioc_batching(q, ioc)) {
1382					/*
1383					 * The queue is full and the allocating
1384					 * process is not a "batcher", and not
1385					 * exempted by the IO scheduler
1386					 */
1387					return ERR_PTR(-ENOMEM);
1388				}
1389			}
1390		}
1391		blk_set_congested(rl, is_sync);
1392	}
1393
1394	/*
1395	 * Only allow batching queuers to allocate up to 50% over the defined
1396	 * limit of requests, otherwise we could have thousands of requests
1397	 * allocated with any setting of ->nr_requests
1398	 */
1399	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1400		return ERR_PTR(-ENOMEM);
1401
1402	q->nr_rqs[is_sync]++;
1403	rl->count[is_sync]++;
1404	rl->starved[is_sync] = 0;
1405
1406	/*
1407	 * Decide whether the new request will be managed by elevator.  If
1408	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1409	 * prevent the current elevator from being destroyed until the new
1410	 * request is freed.  This guarantees icq's won't be destroyed and
1411	 * makes creating new ones safe.
1412	 *
1413	 * Flush requests do not use the elevator so skip initialization.
1414	 * This allows a request to share the flush and elevator data.
1415	 *
1416	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1417	 * it will be created after releasing queue_lock.
1418	 */
1419	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1420		rq_flags |= RQF_ELVPRIV;
1421		q->nr_rqs_elvpriv++;
1422		if (et->icq_cache && ioc)
1423			icq = ioc_lookup_icq(ioc, q);
1424	}
1425
1426	if (blk_queue_io_stat(q))
1427		rq_flags |= RQF_IO_STAT;
1428	spin_unlock_irq(q->queue_lock);
1429
1430	/* allocate and init request */
1431	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1432	if (!rq)
1433		goto fail_alloc;
 
 
 
 
 
 
 
1434
1435	blk_rq_init(q, rq);
1436	blk_rq_set_rl(rq, rl);
1437	rq->cmd_flags = op;
1438	rq->rq_flags = rq_flags;
1439	if (flags & BLK_MQ_REQ_PREEMPT)
1440		rq->rq_flags |= RQF_PREEMPT;
1441
1442	/* init elvpriv */
1443	if (rq_flags & RQF_ELVPRIV) {
1444		if (unlikely(et->icq_cache && !icq)) {
1445			if (ioc)
1446				icq = ioc_create_icq(ioc, q, gfp_mask);
1447			if (!icq)
1448				goto fail_elvpriv;
1449		}
1450
1451		rq->elv.icq = icq;
1452		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1453			goto fail_elvpriv;
1454
1455		/* @rq->elv.icq holds io_context until @rq is freed */
1456		if (icq)
1457			get_io_context(icq->ioc);
1458	}
1459out:
1460	/*
1461	 * ioc may be NULL here, and ioc_batching will be false. That's
1462	 * OK, if the queue is under the request limit then requests need
1463	 * not count toward the nr_batch_requests limit. There will always
1464	 * be some limit enforced by BLK_BATCH_TIME.
1465	 */
1466	if (ioc_batching(q, ioc))
1467		ioc->nr_batch_requests--;
1468
1469	trace_block_getrq(q, bio, op);
 
1470	return rq;
1471
1472fail_elvpriv:
1473	/*
1474	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1475	 * and may fail indefinitely under memory pressure and thus
1476	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1477	 * disturb iosched and blkcg but weird is bettern than dead.
1478	 */
1479	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1480			   __func__, dev_name(q->backing_dev_info->dev));
1481
1482	rq->rq_flags &= ~RQF_ELVPRIV;
1483	rq->elv.icq = NULL;
1484
1485	spin_lock_irq(q->queue_lock);
1486	q->nr_rqs_elvpriv--;
1487	spin_unlock_irq(q->queue_lock);
1488	goto out;
1489
1490fail_alloc:
1491	/*
1492	 * Allocation failed presumably due to memory. Undo anything we
1493	 * might have messed up.
1494	 *
1495	 * Allocating task should really be put onto the front of the wait
1496	 * queue, but this is pretty rare.
1497	 */
1498	spin_lock_irq(q->queue_lock);
1499	freed_request(rl, is_sync, rq_flags);
1500
1501	/*
1502	 * in the very unlikely event that allocation failed and no
1503	 * requests for this direction was pending, mark us starved so that
1504	 * freeing of a request in the other direction will notice
1505	 * us. another possible fix would be to split the rq mempool into
1506	 * READ and WRITE
1507	 */
1508rq_starved:
1509	if (unlikely(rl->count[is_sync] == 0))
1510		rl->starved[is_sync] = 1;
1511	return ERR_PTR(-ENOMEM);
1512}
1513
1514/**
1515 * get_request - get a free request
1516 * @q: request_queue to allocate request from
1517 * @op: operation and flags
1518 * @bio: bio to allocate request for (can be %NULL)
1519 * @flags: BLK_MQ_REQ_* flags.
1520 *
1521 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1522 * this function keeps retrying under memory pressure and fails iff @q is dead.
1523 *
1524 * Must be called with @q->queue_lock held and,
1525 * Returns ERR_PTR on failure, with @q->queue_lock held.
1526 * Returns request pointer on success, with @q->queue_lock *not held*.
1527 */
1528static struct request *get_request(struct request_queue *q, unsigned int op,
1529				   struct bio *bio, blk_mq_req_flags_t flags)
1530{
1531	const bool is_sync = op_is_sync(op);
1532	DEFINE_WAIT(wait);
1533	struct request_list *rl;
1534	struct request *rq;
1535
1536	lockdep_assert_held(q->queue_lock);
1537	WARN_ON_ONCE(q->mq_ops);
 
 
 
1538
1539	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1540retry:
1541	rq = __get_request(rl, op, bio, flags);
1542	if (!IS_ERR(rq))
1543		return rq;
1544
1545	if (op & REQ_NOWAIT) {
1546		blk_put_rl(rl);
1547		return ERR_PTR(-EAGAIN);
1548	}
1549
1550	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1551		blk_put_rl(rl);
1552		return rq;
1553	}
1554
1555	/* wait on @rl and retry */
1556	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1557				  TASK_UNINTERRUPTIBLE);
1558
1559	trace_block_sleeprq(q, bio, op);
1560
1561	spin_unlock_irq(q->queue_lock);
1562	io_schedule();
 
 
 
 
 
 
1563
1564	/*
1565	 * After sleeping, we become a "batching" process and will be able
1566	 * to allocate at least one request, and up to a big batch of them
1567	 * for a small period time.  See ioc_batching, ioc_set_batching
1568	 */
1569	ioc_set_batching(q, current->io_context);
1570
1571	spin_lock_irq(q->queue_lock);
1572	finish_wait(&rl->wait[is_sync], &wait);
1573
1574	goto retry;
1575}
1576
1577/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1578static struct request *blk_old_get_request(struct request_queue *q,
1579				unsigned int op, blk_mq_req_flags_t flags)
1580{
1581	struct request *rq;
1582	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1583			 __GFP_DIRECT_RECLAIM;
1584	int ret = 0;
1585
1586	WARN_ON_ONCE(q->mq_ops);
1587
1588	/* create ioc upfront */
1589	create_io_context(gfp_mask, q->node);
1590
1591	ret = blk_queue_enter(q, flags);
1592	if (ret)
1593		return ERR_PTR(ret);
1594	spin_lock_irq(q->queue_lock);
1595	rq = get_request(q, op, NULL, flags);
1596	if (IS_ERR(rq)) {
1597		spin_unlock_irq(q->queue_lock);
1598		blk_queue_exit(q);
1599		return rq;
 
1600	}
1601
1602	/* q->queue_lock is unlocked at this point */
1603	rq->__data_len = 0;
1604	rq->__sector = (sector_t) -1;
1605	rq->bio = rq->biotail = NULL;
1606	return rq;
1607}
 
1608
1609/**
1610 * blk_get_request_flags - allocate a request
1611 * @q: request queue to allocate a request for
1612 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1613 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614 */
1615struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1616				      blk_mq_req_flags_t flags)
1617{
1618	struct request *req;
1619
1620	WARN_ON_ONCE(op & REQ_NOWAIT);
1621	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1622
1623	if (q->mq_ops) {
1624		req = blk_mq_alloc_request(q, op, flags);
1625		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1626			q->mq_ops->initialize_rq_fn(req);
1627	} else {
1628		req = blk_old_get_request(q, op, flags);
1629		if (!IS_ERR(req) && q->initialize_rq_fn)
1630			q->initialize_rq_fn(req);
 
 
1631	}
1632
1633	return req;
1634}
1635EXPORT_SYMBOL(blk_get_request_flags);
1636
1637struct request *blk_get_request(struct request_queue *q, unsigned int op,
1638				gfp_t gfp_mask)
1639{
1640	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1641				     0 : BLK_MQ_REQ_NOWAIT);
1642}
1643EXPORT_SYMBOL(blk_get_request);
1644
1645/**
1646 * blk_requeue_request - put a request back on queue
1647 * @q:		request queue where request should be inserted
1648 * @rq:		request to be inserted
1649 *
1650 * Description:
1651 *    Drivers often keep queueing requests until the hardware cannot accept
1652 *    more, when that condition happens we need to put the request back
1653 *    on the queue. Must be called with queue lock held.
1654 */
1655void blk_requeue_request(struct request_queue *q, struct request *rq)
1656{
1657	lockdep_assert_held(q->queue_lock);
1658	WARN_ON_ONCE(q->mq_ops);
1659
1660	blk_delete_timer(rq);
1661	blk_clear_rq_complete(rq);
1662	trace_block_rq_requeue(q, rq);
1663	wbt_requeue(q->rq_wb, &rq->issue_stat);
1664
1665	if (rq->rq_flags & RQF_QUEUED)
1666		blk_queue_end_tag(q, rq);
1667
1668	BUG_ON(blk_queued_rq(rq));
1669
1670	elv_requeue_request(q, rq);
1671}
1672EXPORT_SYMBOL(blk_requeue_request);
1673
1674static void add_acct_request(struct request_queue *q, struct request *rq,
1675			     int where)
1676{
1677	blk_account_io_start(rq, true);
1678	__elv_add_request(q, rq, where);
1679}
1680
1681static void part_round_stats_single(struct request_queue *q, int cpu,
1682				    struct hd_struct *part, unsigned long now,
1683				    unsigned int inflight)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684{
1685	if (inflight) {
 
 
 
1686		__part_stat_add(cpu, part, time_in_queue,
1687				inflight * (now - part->stamp));
1688		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1689	}
1690	part->stamp = now;
1691}
1692
1693/**
1694 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1695 * @q: target block queue
1696 * @cpu: cpu number for stats access
1697 * @part: target partition
1698 *
1699 * The average IO queue length and utilisation statistics are maintained
1700 * by observing the current state of the queue length and the amount of
1701 * time it has been in this state for.
1702 *
1703 * Normally, that accounting is done on IO completion, but that can result
1704 * in more than a second's worth of IO being accounted for within any one
1705 * second, leading to >100% utilisation.  To deal with that, we call this
1706 * function to do a round-off before returning the results when reading
1707 * /proc/diskstats.  This accounts immediately for all queue usage up to
1708 * the current jiffies and restarts the counters again.
1709 */
1710void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1711{
1712	struct hd_struct *part2 = NULL;
1713	unsigned long now = jiffies;
1714	unsigned int inflight[2];
1715	int stats = 0;
1716
1717	if (part->stamp != now)
1718		stats |= 1;
1719
1720	if (part->partno) {
1721		part2 = &part_to_disk(part)->part0;
1722		if (part2->stamp != now)
1723			stats |= 2;
1724	}
1725
1726	if (!stats)
1727		return;
1728
1729	part_in_flight(q, part, inflight);
1730
1731	if (stats & 2)
1732		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1733	if (stats & 1)
1734		part_round_stats_single(q, cpu, part, now, inflight[0]);
1735}
1736EXPORT_SYMBOL_GPL(part_round_stats);
1737
1738#ifdef CONFIG_PM
1739static void blk_pm_put_request(struct request *rq)
1740{
1741	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1742		pm_runtime_mark_last_busy(rq->q->dev);
1743}
1744#else
1745static inline void blk_pm_put_request(struct request *rq) {}
1746#endif
1747
1748void __blk_put_request(struct request_queue *q, struct request *req)
1749{
1750	req_flags_t rq_flags = req->rq_flags;
1751
1752	if (unlikely(!q))
1753		return;
1754
1755	if (q->mq_ops) {
1756		blk_mq_free_request(req);
1757		return;
1758	}
1759
1760	lockdep_assert_held(q->queue_lock);
1761
1762	blk_req_zone_write_unlock(req);
1763	blk_pm_put_request(req);
1764
1765	elv_completed_request(q, req);
1766
1767	/* this is a bio leak */
1768	WARN_ON(req->bio != NULL);
1769
1770	wbt_done(q->rq_wb, &req->issue_stat);
1771
1772	/*
1773	 * Request may not have originated from ll_rw_blk. if not,
1774	 * it didn't come out of our reserved rq pools
1775	 */
1776	if (rq_flags & RQF_ALLOCED) {
1777		struct request_list *rl = blk_rq_rl(req);
1778		bool sync = op_is_sync(req->cmd_flags);
1779
1780		BUG_ON(!list_empty(&req->queuelist));
1781		BUG_ON(ELV_ON_HASH(req));
1782
1783		blk_free_request(rl, req);
1784		freed_request(rl, sync, rq_flags);
1785		blk_put_rl(rl);
1786		blk_queue_exit(q);
1787	}
1788}
1789EXPORT_SYMBOL_GPL(__blk_put_request);
1790
1791void blk_put_request(struct request *req)
1792{
 
1793	struct request_queue *q = req->q;
1794
1795	if (q->mq_ops)
1796		blk_mq_free_request(req);
1797	else {
1798		unsigned long flags;
1799
1800		spin_lock_irqsave(q->queue_lock, flags);
1801		__blk_put_request(q, req);
1802		spin_unlock_irqrestore(q->queue_lock, flags);
1803	}
1804}
1805EXPORT_SYMBOL(blk_put_request);
1806
1807bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1808			    struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
1809{
1810	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811
1812	if (!ll_back_merge_fn(q, req, bio))
1813		return false;
1814
1815	trace_block_bio_backmerge(q, req, bio);
1816
1817	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1818		blk_rq_set_mixed_merge(req);
1819
1820	req->biotail->bi_next = bio;
1821	req->biotail = bio;
1822	req->__data_len += bio->bi_iter.bi_size;
1823	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1824
1825	blk_account_io_start(req, false);
 
1826	return true;
1827}
1828
1829bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1830			     struct bio *bio)
1831{
1832	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1833
1834	if (!ll_front_merge_fn(q, req, bio))
1835		return false;
1836
1837	trace_block_bio_frontmerge(q, req, bio);
1838
1839	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1840		blk_rq_set_mixed_merge(req);
1841
1842	bio->bi_next = req->bio;
1843	req->bio = bio;
1844
1845	req->__sector = bio->bi_iter.bi_sector;
1846	req->__data_len += bio->bi_iter.bi_size;
1847	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1848
1849	blk_account_io_start(req, false);
1850	return true;
1851}
1852
1853bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1854		struct bio *bio)
1855{
1856	unsigned short segments = blk_rq_nr_discard_segments(req);
1857
1858	if (segments >= queue_max_discard_segments(q))
1859		goto no_merge;
1860	if (blk_rq_sectors(req) + bio_sectors(bio) >
1861	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1862		goto no_merge;
1863
1864	req->biotail->bi_next = bio;
1865	req->biotail = bio;
1866	req->__data_len += bio->bi_iter.bi_size;
1867	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1868	req->nr_phys_segments = segments + 1;
1869
1870	blk_account_io_start(req, false);
 
1871	return true;
1872no_merge:
1873	req_set_nomerge(q, req);
1874	return false;
1875}
1876
1877/**
1878 * blk_attempt_plug_merge - try to merge with %current's plugged list
1879 * @q: request_queue new bio is being queued at
1880 * @bio: new bio being queued
1881 * @request_count: out parameter for number of traversed plugged requests
1882 * @same_queue_rq: pointer to &struct request that gets filled in when
1883 * another request associated with @q is found on the plug list
1884 * (optional, may be %NULL)
1885 *
1886 * Determine whether @bio being queued on @q can be merged with a request
1887 * on %current's plugged list.  Returns %true if merge was successful,
1888 * otherwise %false.
1889 *
1890 * Plugging coalesces IOs from the same issuer for the same purpose without
1891 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1892 * than scheduling, and the request, while may have elvpriv data, is not
1893 * added on the elevator at this point.  In addition, we don't have
1894 * reliable access to the elevator outside queue lock.  Only check basic
1895 * merging parameters without querying the elevator.
1896 *
1897 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1898 */
1899bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1900			    unsigned int *request_count,
1901			    struct request **same_queue_rq)
1902{
1903	struct blk_plug *plug;
1904	struct request *rq;
1905	struct list_head *plug_list;
1906
1907	plug = current->plug;
1908	if (!plug)
1909		return false;
1910	*request_count = 0;
1911
1912	if (q->mq_ops)
1913		plug_list = &plug->mq_list;
1914	else
1915		plug_list = &plug->list;
1916
1917	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1918		bool merged = false;
1919
1920		if (rq->q == q) {
1921			(*request_count)++;
1922			/*
1923			 * Only blk-mq multiple hardware queues case checks the
1924			 * rq in the same queue, there should be only one such
1925			 * rq in a queue
1926			 **/
1927			if (same_queue_rq)
1928				*same_queue_rq = rq;
1929		}
1930
1931		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1932			continue;
1933
1934		switch (blk_try_merge(rq, bio)) {
1935		case ELEVATOR_BACK_MERGE:
1936			merged = bio_attempt_back_merge(q, rq, bio);
1937			break;
1938		case ELEVATOR_FRONT_MERGE:
1939			merged = bio_attempt_front_merge(q, rq, bio);
1940			break;
1941		case ELEVATOR_DISCARD_MERGE:
1942			merged = bio_attempt_discard_merge(q, rq, bio);
1943			break;
1944		default:
1945			break;
1946		}
1947
1948		if (merged)
1949			return true;
1950	}
1951
1952	return false;
1953}
1954
1955unsigned int blk_plug_queued_count(struct request_queue *q)
1956{
1957	struct blk_plug *plug;
1958	struct request *rq;
1959	struct list_head *plug_list;
1960	unsigned int ret = 0;
1961
1962	plug = current->plug;
1963	if (!plug)
1964		goto out;
1965
1966	if (q->mq_ops)
1967		plug_list = &plug->mq_list;
1968	else
1969		plug_list = &plug->list;
1970
1971	list_for_each_entry(rq, plug_list, queuelist) {
1972		if (rq->q == q)
1973			ret++;
1974	}
1975out:
1976	return ret;
1977}
1978
1979void blk_init_request_from_bio(struct request *req, struct bio *bio)
1980{
1981	struct io_context *ioc = rq_ioc(bio);
 
1982
1983	if (bio->bi_opf & REQ_RAHEAD)
 
1984		req->cmd_flags |= REQ_FAILFAST_MASK;
1985
1986	req->__sector = bio->bi_iter.bi_sector;
1987	if (ioprio_valid(bio_prio(bio)))
1988		req->ioprio = bio_prio(bio);
1989	else if (ioc)
1990		req->ioprio = ioc->ioprio;
1991	else
1992		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1993	req->write_hint = bio->bi_write_hint;
1994	blk_rq_bio_prep(req->q, req, bio);
1995}
1996EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1997
1998static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1999{
 
2000	struct blk_plug *plug;
2001	int where = ELEVATOR_INSERT_SORT;
2002	struct request *req, *free;
2003	unsigned int request_count = 0;
2004	unsigned int wb_acct;
2005
2006	/*
2007	 * low level driver can indicate that it wants pages above a
2008	 * certain limit bounced to low memory (ie for highmem, or even
2009	 * ISA dma in theory)
2010	 */
2011	blk_queue_bounce(q, &bio);
2012
2013	blk_queue_split(q, &bio);
2014
2015	if (!bio_integrity_prep(bio))
2016		return BLK_QC_T_NONE;
2017
2018	if (op_is_flush(bio->bi_opf)) {
2019		spin_lock_irq(q->queue_lock);
2020		where = ELEVATOR_INSERT_FLUSH;
2021		goto get_rq;
2022	}
2023
2024	/*
2025	 * Check if we can merge with the plugged list before grabbing
2026	 * any locks.
2027	 */
2028	if (!blk_queue_nomerges(q)) {
2029		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2030			return BLK_QC_T_NONE;
2031	} else
2032		request_count = blk_plug_queued_count(q);
2033
2034	spin_lock_irq(q->queue_lock);
2035
2036	switch (elv_merge(q, &req, bio)) {
2037	case ELEVATOR_BACK_MERGE:
2038		if (!bio_attempt_back_merge(q, req, bio))
2039			break;
2040		elv_bio_merged(q, req, bio);
2041		free = attempt_back_merge(q, req);
2042		if (free)
2043			__blk_put_request(q, free);
2044		else
2045			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2046		goto out_unlock;
2047	case ELEVATOR_FRONT_MERGE:
2048		if (!bio_attempt_front_merge(q, req, bio))
2049			break;
2050		elv_bio_merged(q, req, bio);
2051		free = attempt_front_merge(q, req);
2052		if (free)
2053			__blk_put_request(q, free);
2054		else
2055			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2056		goto out_unlock;
2057	default:
2058		break;
2059	}
2060
2061get_rq:
2062	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
 
 
 
 
 
 
 
2063
2064	/*
2065	 * Grab a free request. This is might sleep but can not fail.
2066	 * Returns with the queue unlocked.
2067	 */
2068	blk_queue_enter_live(q);
2069	req = get_request(q, bio->bi_opf, bio, 0);
2070	if (IS_ERR(req)) {
2071		blk_queue_exit(q);
2072		__wbt_done(q->rq_wb, wb_acct);
2073		if (PTR_ERR(req) == -ENOMEM)
2074			bio->bi_status = BLK_STS_RESOURCE;
2075		else
2076			bio->bi_status = BLK_STS_IOERR;
2077		bio_endio(bio);
2078		goto out_unlock;
2079	}
2080
2081	wbt_track(&req->issue_stat, wb_acct);
2082
2083	/*
2084	 * After dropping the lock and possibly sleeping here, our request
2085	 * may now be mergeable after it had proven unmergeable (above).
2086	 * We don't worry about that case for efficiency. It won't happen
2087	 * often, and the elevators are able to handle it.
2088	 */
2089	blk_init_request_from_bio(req, bio);
2090
2091	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
 
2092		req->cpu = raw_smp_processor_id();
2093
2094	plug = current->plug;
2095	if (plug) {
2096		/*
2097		 * If this is the first request added after a plug, fire
2098		 * of a plug trace.
2099		 *
2100		 * @request_count may become stale because of schedule
2101		 * out, so check plug list again.
2102		 */
2103		if (!request_count || list_empty(&plug->list))
2104			trace_block_plug(q);
2105		else {
2106			struct request *last = list_entry_rq(plug->list.prev);
2107			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2108			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2109				blk_flush_plug_list(plug, false);
2110				trace_block_plug(q);
2111			}
2112		}
 
 
2113		list_add_tail(&req->queuelist, &plug->list);
2114		blk_account_io_start(req, true);
2115	} else {
2116		spin_lock_irq(q->queue_lock);
2117		add_acct_request(q, req, where);
2118		__blk_run_queue(q);
2119out_unlock:
2120		spin_unlock_irq(q->queue_lock);
2121	}
 
 
 
2122
2123	return BLK_QC_T_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124}
2125
2126static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2127{
2128	char b[BDEVNAME_SIZE];
2129
2130	printk(KERN_INFO "attempt to access beyond end of device\n");
2131	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2132			bio_devname(bio, b), bio->bi_opf,
2133			(unsigned long long)bio_end_sector(bio),
2134			(long long)maxsector);
 
 
 
2135}
2136
2137#ifdef CONFIG_FAIL_MAKE_REQUEST
2138
2139static DECLARE_FAULT_ATTR(fail_make_request);
2140
2141static int __init setup_fail_make_request(char *str)
2142{
2143	return setup_fault_attr(&fail_make_request, str);
2144}
2145__setup("fail_make_request=", setup_fail_make_request);
2146
2147static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2148{
2149	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2150}
2151
2152static int __init fail_make_request_debugfs(void)
2153{
2154	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2155						NULL, &fail_make_request);
2156
2157	return PTR_ERR_OR_ZERO(dir);
2158}
2159
2160late_initcall(fail_make_request_debugfs);
2161
2162#else /* CONFIG_FAIL_MAKE_REQUEST */
2163
2164static inline bool should_fail_request(struct hd_struct *part,
2165					unsigned int bytes)
2166{
2167	return false;
2168}
2169
2170#endif /* CONFIG_FAIL_MAKE_REQUEST */
2171
2172static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
 
 
 
2173{
2174	if (part->policy && op_is_write(bio_op(bio))) {
2175		char b[BDEVNAME_SIZE];
2176
2177		printk(KERN_ERR
2178		       "generic_make_request: Trying to write "
2179			"to read-only block-device %s (partno %d)\n",
2180			bio_devname(bio, b), part->partno);
2181		return true;
2182	}
2183
2184	return false;
2185}
 
 
2186
2187static noinline int should_fail_bio(struct bio *bio)
2188{
2189	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2190		return -EIO;
2191	return 0;
2192}
2193ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2194
2195/*
2196 * Check whether this bio extends beyond the end of the device or partition.
2197 * This may well happen - the kernel calls bread() without checking the size of
2198 * the device, e.g., when mounting a file system.
2199 */
2200static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2201{
2202	unsigned int nr_sectors = bio_sectors(bio);
2203
2204	if (nr_sectors && maxsector &&
2205	    (nr_sectors > maxsector ||
2206	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2207		handle_bad_sector(bio, maxsector);
2208		return -EIO;
2209	}
 
2210	return 0;
2211}
2212
2213/*
2214 * Remap block n of partition p to block n+start(p) of the disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2215 */
2216static inline int blk_partition_remap(struct bio *bio)
2217{
2218	struct hd_struct *p;
2219	int ret = -EIO;
2220
2221	rcu_read_lock();
2222	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2223	if (unlikely(!p))
2224		goto out;
2225	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2226		goto out;
2227	if (unlikely(bio_check_ro(bio, p)))
2228		goto out;
2229
2230	/*
2231	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2232	 * Include a test for the reset op code and perform the remap if needed.
2233	 */
2234	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2235		if (bio_check_eod(bio, part_nr_sects_read(p)))
2236			goto out;
2237		bio->bi_iter.bi_sector += p->start_sect;
2238		bio->bi_partno = 0;
2239		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2240				      bio->bi_iter.bi_sector - p->start_sect);
2241	}
2242	ret = 0;
2243out:
2244	rcu_read_unlock();
2245	return ret;
2246}
2247
2248static noinline_for_stack bool
2249generic_make_request_checks(struct bio *bio)
2250{
2251	struct request_queue *q;
2252	int nr_sectors = bio_sectors(bio);
2253	blk_status_t status = BLK_STS_IOERR;
2254	char b[BDEVNAME_SIZE];
 
2255
2256	might_sleep();
2257
2258	q = bio->bi_disk->queue;
2259	if (unlikely(!q)) {
2260		printk(KERN_ERR
2261		       "generic_make_request: Trying to access "
2262			"nonexistent block-device %s (%Lu)\n",
2263			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2264		goto end_io;
2265	}
2266
2267	/*
2268	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2269	 * if queue is not a request based queue.
 
 
 
 
2270	 */
2271	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2272		goto not_supported;
 
 
 
2273
2274	if (should_fail_bio(bio))
2275		goto end_io;
 
 
 
 
 
 
 
2276
2277	if (bio->bi_partno) {
2278		if (unlikely(blk_partition_remap(bio)))
 
 
 
 
2279			goto end_io;
2280	} else {
2281		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
 
2282			goto end_io;
2283		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
 
 
 
 
2284			goto end_io;
2285	}
2286
2287	/*
2288	 * Filter flush bio's early so that make_request based
2289	 * drivers without flush support don't have to worry
2290	 * about them.
2291	 */
2292	if (op_is_flush(bio->bi_opf) &&
2293	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2294		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2295		if (!nr_sectors) {
2296			status = BLK_STS_OK;
2297			goto end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2298		}
2299	}
2300
2301	switch (bio_op(bio)) {
2302	case REQ_OP_DISCARD:
2303		if (!blk_queue_discard(q))
2304			goto not_supported;
2305		break;
2306	case REQ_OP_SECURE_ERASE:
2307		if (!blk_queue_secure_erase(q))
2308			goto not_supported;
2309		break;
2310	case REQ_OP_WRITE_SAME:
2311		if (!q->limits.max_write_same_sectors)
2312			goto not_supported;
2313		break;
2314	case REQ_OP_ZONE_REPORT:
2315	case REQ_OP_ZONE_RESET:
2316		if (!blk_queue_is_zoned(q))
2317			goto not_supported;
2318		break;
2319	case REQ_OP_WRITE_ZEROES:
2320		if (!q->limits.max_write_zeroes_sectors)
2321			goto not_supported;
2322		break;
2323	default:
2324		break;
2325	}
2326
2327	/*
2328	 * Various block parts want %current->io_context and lazy ioc
2329	 * allocation ends up trading a lot of pain for a small amount of
2330	 * memory.  Just allocate it upfront.  This may fail and block
2331	 * layer knows how to live with it.
2332	 */
2333	create_io_context(GFP_ATOMIC, q->node);
2334
2335	if (!blkcg_bio_issue_check(q, bio))
2336		return false;
 
 
 
 
2337
2338	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2339		trace_block_bio_queue(q, bio);
2340		/* Now that enqueuing has been traced, we need to trace
2341		 * completion as well.
2342		 */
2343		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2344	}
2345	return true;
2346
2347not_supported:
2348	status = BLK_STS_NOTSUPP;
 
 
 
2349end_io:
2350	bio->bi_status = status;
2351	bio_endio(bio);
2352	return false;
2353}
2354
2355/**
2356 * generic_make_request - hand a buffer to its device driver for I/O
2357 * @bio:  The bio describing the location in memory and on the device.
2358 *
2359 * generic_make_request() is used to make I/O requests of block
2360 * devices. It is passed a &struct bio, which describes the I/O that needs
2361 * to be done.
2362 *
2363 * generic_make_request() does not return any status.  The
2364 * success/failure status of the request, along with notification of
2365 * completion, is delivered asynchronously through the bio->bi_end_io
2366 * function described (one day) else where.
2367 *
2368 * The caller of generic_make_request must make sure that bi_io_vec
2369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2370 * set to describe the device address, and the
2371 * bi_end_io and optionally bi_private are set to describe how
2372 * completion notification should be signaled.
2373 *
2374 * generic_make_request and the drivers it calls may use bi_next if this
2375 * bio happens to be merged with someone else, and may resubmit the bio to
2376 * a lower device by calling into generic_make_request recursively, which
2377 * means the bio should NOT be touched after the call to ->make_request_fn.
2378 */
2379blk_qc_t generic_make_request(struct bio *bio)
2380{
2381	/*
2382	 * bio_list_on_stack[0] contains bios submitted by the current
2383	 * make_request_fn.
2384	 * bio_list_on_stack[1] contains bios that were submitted before
2385	 * the current make_request_fn, but that haven't been processed
2386	 * yet.
2387	 */
2388	struct bio_list bio_list_on_stack[2];
2389	blk_mq_req_flags_t flags = 0;
2390	struct request_queue *q = bio->bi_disk->queue;
2391	blk_qc_t ret = BLK_QC_T_NONE;
2392
2393	if (bio->bi_opf & REQ_NOWAIT)
2394		flags = BLK_MQ_REQ_NOWAIT;
2395	if (blk_queue_enter(q, flags) < 0) {
2396		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2397			bio_wouldblock_error(bio);
2398		else
2399			bio_io_error(bio);
2400		return ret;
2401	}
2402
2403	if (!generic_make_request_checks(bio))
2404		goto out;
2405
2406	/*
2407	 * We only want one ->make_request_fn to be active at a time, else
2408	 * stack usage with stacked devices could be a problem.  So use
2409	 * current->bio_list to keep a list of requests submited by a
2410	 * make_request_fn function.  current->bio_list is also used as a
2411	 * flag to say if generic_make_request is currently active in this
2412	 * task or not.  If it is NULL, then no make_request is active.  If
2413	 * it is non-NULL, then a make_request is active, and new requests
2414	 * should be added at the tail
2415	 */
2416	if (current->bio_list) {
2417		bio_list_add(&current->bio_list[0], bio);
2418		goto out;
 
2419	}
2420
2421	/* following loop may be a bit non-obvious, and so deserves some
2422	 * explanation.
2423	 * Before entering the loop, bio->bi_next is NULL (as all callers
2424	 * ensure that) so we have a list with a single bio.
2425	 * We pretend that we have just taken it off a longer list, so
2426	 * we assign bio_list to a pointer to the bio_list_on_stack,
2427	 * thus initialising the bio_list of new bios to be
2428	 * added.  ->make_request() may indeed add some more bios
2429	 * through a recursive call to generic_make_request.  If it
2430	 * did, we find a non-NULL value in bio_list and re-enter the loop
2431	 * from the top.  In this case we really did just take the bio
2432	 * of the top of the list (no pretending) and so remove it from
2433	 * bio_list, and call into ->make_request() again.
 
 
 
 
2434	 */
2435	BUG_ON(bio->bi_next);
2436	bio_list_init(&bio_list_on_stack[0]);
2437	current->bio_list = bio_list_on_stack;
2438	do {
2439		bool enter_succeeded = true;
2440
2441		if (unlikely(q != bio->bi_disk->queue)) {
2442			if (q)
2443				blk_queue_exit(q);
2444			q = bio->bi_disk->queue;
2445			flags = 0;
2446			if (bio->bi_opf & REQ_NOWAIT)
2447				flags = BLK_MQ_REQ_NOWAIT;
2448			if (blk_queue_enter(q, flags) < 0) {
2449				enter_succeeded = false;
2450				q = NULL;
2451			}
2452		}
2453
2454		if (enter_succeeded) {
2455			struct bio_list lower, same;
2456
2457			/* Create a fresh bio_list for all subordinate requests */
2458			bio_list_on_stack[1] = bio_list_on_stack[0];
2459			bio_list_init(&bio_list_on_stack[0]);
2460			ret = q->make_request_fn(q, bio);
2461
2462			/* sort new bios into those for a lower level
2463			 * and those for the same level
2464			 */
2465			bio_list_init(&lower);
2466			bio_list_init(&same);
2467			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2468				if (q == bio->bi_disk->queue)
2469					bio_list_add(&same, bio);
2470				else
2471					bio_list_add(&lower, bio);
2472			/* now assemble so we handle the lowest level first */
2473			bio_list_merge(&bio_list_on_stack[0], &lower);
2474			bio_list_merge(&bio_list_on_stack[0], &same);
2475			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2476		} else {
2477			if (unlikely(!blk_queue_dying(q) &&
2478					(bio->bi_opf & REQ_NOWAIT)))
2479				bio_wouldblock_error(bio);
2480			else
2481				bio_io_error(bio);
2482		}
2483		bio = bio_list_pop(&bio_list_on_stack[0]);
2484	} while (bio);
2485	current->bio_list = NULL; /* deactivate */
2486
2487out:
2488	if (q)
2489		blk_queue_exit(q);
2490	return ret;
2491}
2492EXPORT_SYMBOL(generic_make_request);
2493
2494/**
2495 * direct_make_request - hand a buffer directly to its device driver for I/O
2496 * @bio:  The bio describing the location in memory and on the device.
2497 *
2498 * This function behaves like generic_make_request(), but does not protect
2499 * against recursion.  Must only be used if the called driver is known
2500 * to not call generic_make_request (or direct_make_request) again from
2501 * its make_request function.  (Calling direct_make_request again from
2502 * a workqueue is perfectly fine as that doesn't recurse).
2503 */
2504blk_qc_t direct_make_request(struct bio *bio)
2505{
2506	struct request_queue *q = bio->bi_disk->queue;
2507	bool nowait = bio->bi_opf & REQ_NOWAIT;
2508	blk_qc_t ret;
2509
2510	if (!generic_make_request_checks(bio))
2511		return BLK_QC_T_NONE;
2512
2513	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2514		if (nowait && !blk_queue_dying(q))
2515			bio->bi_status = BLK_STS_AGAIN;
2516		else
2517			bio->bi_status = BLK_STS_IOERR;
2518		bio_endio(bio);
2519		return BLK_QC_T_NONE;
2520	}
2521
2522	ret = q->make_request_fn(q, bio);
2523	blk_queue_exit(q);
2524	return ret;
2525}
2526EXPORT_SYMBOL_GPL(direct_make_request);
2527
2528/**
2529 * submit_bio - submit a bio to the block device layer for I/O
 
2530 * @bio: The &struct bio which describes the I/O
2531 *
2532 * submit_bio() is very similar in purpose to generic_make_request(), and
2533 * uses that function to do most of the work. Both are fairly rough
2534 * interfaces; @bio must be presetup and ready for I/O.
2535 *
2536 */
2537blk_qc_t submit_bio(struct bio *bio)
2538{
 
 
 
 
2539	/*
2540	 * If it's a regular read/write or a barrier with data attached,
2541	 * go through the normal accounting stuff before submission.
2542	 */
2543	if (bio_has_data(bio)) {
2544		unsigned int count;
2545
2546		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2547			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2548		else
2549			count = bio_sectors(bio);
2550
2551		if (op_is_write(bio_op(bio))) {
2552			count_vm_events(PGPGOUT, count);
2553		} else {
2554			task_io_account_read(bio->bi_iter.bi_size);
2555			count_vm_events(PGPGIN, count);
2556		}
2557
2558		if (unlikely(block_dump)) {
2559			char b[BDEVNAME_SIZE];
2560			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2561			current->comm, task_pid_nr(current),
2562				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2563				(unsigned long long)bio->bi_iter.bi_sector,
2564				bio_devname(bio, b), count);
 
2565		}
2566	}
2567
2568	return generic_make_request(bio);
2569}
2570EXPORT_SYMBOL(submit_bio);
2571
2572bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2573{
2574	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2575		return false;
2576
2577	if (current->plug)
2578		blk_flush_plug_list(current->plug, false);
2579	return q->poll_fn(q, cookie);
2580}
2581EXPORT_SYMBOL_GPL(blk_poll);
2582
2583/**
2584 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2585 *                              for new the queue limits
2586 * @q:  the queue
2587 * @rq: the request being checked
2588 *
2589 * Description:
2590 *    @rq may have been made based on weaker limitations of upper-level queues
2591 *    in request stacking drivers, and it may violate the limitation of @q.
2592 *    Since the block layer and the underlying device driver trust @rq
2593 *    after it is inserted to @q, it should be checked against @q before
2594 *    the insertion using this generic function.
2595 *
 
 
2596 *    Request stacking drivers like request-based dm may change the queue
2597 *    limits when retrying requests on other queues. Those requests need
2598 *    to be checked against the new queue limits again during dispatch.
 
 
 
2599 */
2600static int blk_cloned_rq_check_limits(struct request_queue *q,
2601				      struct request *rq)
2602{
2603	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
 
 
 
 
2604		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2605		return -EIO;
2606	}
2607
2608	/*
2609	 * queue's settings related to segment counting like q->bounce_pfn
2610	 * may differ from that of other stacking queues.
2611	 * Recalculate it to check the request correctly on this queue's
2612	 * limitation.
2613	 */
2614	blk_recalc_rq_segments(rq);
2615	if (rq->nr_phys_segments > queue_max_segments(q)) {
2616		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2617		return -EIO;
2618	}
2619
2620	return 0;
2621}
 
2622
2623/**
2624 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2625 * @q:  the queue to submit the request
2626 * @rq: the request being queued
2627 */
2628blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2629{
2630	unsigned long flags;
2631	int where = ELEVATOR_INSERT_BACK;
2632
2633	if (blk_cloned_rq_check_limits(q, rq))
2634		return BLK_STS_IOERR;
2635
2636	if (rq->rq_disk &&
2637	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2638		return BLK_STS_IOERR;
2639
2640	if (q->mq_ops) {
2641		if (blk_queue_io_stat(q))
2642			blk_account_io_start(rq, true);
2643		/*
2644		 * Since we have a scheduler attached on the top device,
2645		 * bypass a potential scheduler on the bottom device for
2646		 * insert.
2647		 */
2648		return blk_mq_request_issue_directly(rq);
2649	}
2650
2651	spin_lock_irqsave(q->queue_lock, flags);
2652	if (unlikely(blk_queue_dying(q))) {
2653		spin_unlock_irqrestore(q->queue_lock, flags);
2654		return BLK_STS_IOERR;
2655	}
2656
2657	/*
2658	 * Submitting request must be dequeued before calling this function
2659	 * because it will be linked to another request_queue
2660	 */
2661	BUG_ON(blk_queued_rq(rq));
2662
2663	if (op_is_flush(rq->cmd_flags))
2664		where = ELEVATOR_INSERT_FLUSH;
2665
2666	add_acct_request(q, rq, where);
2667	if (where == ELEVATOR_INSERT_FLUSH)
2668		__blk_run_queue(q);
2669	spin_unlock_irqrestore(q->queue_lock, flags);
2670
2671	return BLK_STS_OK;
2672}
2673EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2674
2675/**
2676 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2677 * @rq: request to examine
2678 *
2679 * Description:
2680 *     A request could be merge of IOs which require different failure
2681 *     handling.  This function determines the number of bytes which
2682 *     can be failed from the beginning of the request without
2683 *     crossing into area which need to be retried further.
2684 *
2685 * Return:
2686 *     The number of bytes to fail.
 
 
 
2687 */
2688unsigned int blk_rq_err_bytes(const struct request *rq)
2689{
2690	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2691	unsigned int bytes = 0;
2692	struct bio *bio;
2693
2694	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2695		return blk_rq_bytes(rq);
2696
2697	/*
2698	 * Currently the only 'mixing' which can happen is between
2699	 * different fastfail types.  We can safely fail portions
2700	 * which have all the failfast bits that the first one has -
2701	 * the ones which are at least as eager to fail as the first
2702	 * one.
2703	 */
2704	for (bio = rq->bio; bio; bio = bio->bi_next) {
2705		if ((bio->bi_opf & ff) != ff)
2706			break;
2707		bytes += bio->bi_iter.bi_size;
2708	}
2709
2710	/* this could lead to infinite loop */
2711	BUG_ON(blk_rq_bytes(rq) && !bytes);
2712	return bytes;
2713}
2714EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2715
2716void blk_account_io_completion(struct request *req, unsigned int bytes)
2717{
2718	if (blk_do_io_stat(req)) {
2719		const int rw = rq_data_dir(req);
2720		struct hd_struct *part;
2721		int cpu;
2722
2723		cpu = part_stat_lock();
2724		part = req->part;
2725		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2726		part_stat_unlock();
2727	}
2728}
2729
2730void blk_account_io_done(struct request *req)
2731{
2732	/*
2733	 * Account IO completion.  flush_rq isn't accounted as a
2734	 * normal IO on queueing nor completion.  Accounting the
2735	 * containing request is enough.
2736	 */
2737	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2738		unsigned long duration = jiffies - req->start_time;
2739		const int rw = rq_data_dir(req);
2740		struct hd_struct *part;
2741		int cpu;
2742
2743		cpu = part_stat_lock();
2744		part = req->part;
2745
2746		part_stat_inc(cpu, part, ios[rw]);
2747		part_stat_add(cpu, part, ticks[rw], duration);
2748		part_round_stats(req->q, cpu, part);
2749		part_dec_in_flight(req->q, part, rw);
2750
2751		hd_struct_put(part);
2752		part_stat_unlock();
2753	}
2754}
2755
2756#ifdef CONFIG_PM
2757/*
2758 * Don't process normal requests when queue is suspended
2759 * or in the process of suspending/resuming
2760 */
2761static bool blk_pm_allow_request(struct request *rq)
2762{
2763	switch (rq->q->rpm_status) {
2764	case RPM_RESUMING:
2765	case RPM_SUSPENDING:
2766		return rq->rq_flags & RQF_PM;
2767	case RPM_SUSPENDED:
2768		return false;
2769	}
2770
2771	return true;
2772}
2773#else
2774static bool blk_pm_allow_request(struct request *rq)
2775{
2776	return true;
2777}
2778#endif
2779
2780void blk_account_io_start(struct request *rq, bool new_io)
2781{
2782	struct hd_struct *part;
2783	int rw = rq_data_dir(rq);
2784	int cpu;
2785
2786	if (!blk_do_io_stat(rq))
2787		return;
2788
2789	cpu = part_stat_lock();
2790
2791	if (!new_io) {
2792		part = rq->part;
2793		part_stat_inc(cpu, part, merges[rw]);
2794	} else {
2795		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2796		if (!hd_struct_try_get(part)) {
2797			/*
2798			 * The partition is already being removed,
2799			 * the request will be accounted on the disk only
2800			 *
2801			 * We take a reference on disk->part0 although that
2802			 * partition will never be deleted, so we can treat
2803			 * it as any other partition.
2804			 */
2805			part = &rq->rq_disk->part0;
2806			hd_struct_get(part);
2807		}
2808		part_round_stats(rq->q, cpu, part);
2809		part_inc_in_flight(rq->q, part, rw);
2810		rq->part = part;
2811	}
2812
2813	part_stat_unlock();
2814}
2815
2816static struct request *elv_next_request(struct request_queue *q)
2817{
2818	struct request *rq;
2819	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2820
2821	WARN_ON_ONCE(q->mq_ops);
2822
2823	while (1) {
2824		list_for_each_entry(rq, &q->queue_head, queuelist) {
2825			if (blk_pm_allow_request(rq))
2826				return rq;
2827
2828			if (rq->rq_flags & RQF_SOFTBARRIER)
2829				break;
2830		}
2831
2832		/*
2833		 * Flush request is running and flush request isn't queueable
2834		 * in the drive, we can hold the queue till flush request is
2835		 * finished. Even we don't do this, driver can't dispatch next
2836		 * requests and will requeue them. And this can improve
2837		 * throughput too. For example, we have request flush1, write1,
2838		 * flush 2. flush1 is dispatched, then queue is hold, write1
2839		 * isn't inserted to queue. After flush1 is finished, flush2
2840		 * will be dispatched. Since disk cache is already clean,
2841		 * flush2 will be finished very soon, so looks like flush2 is
2842		 * folded to flush1.
2843		 * Since the queue is hold, a flag is set to indicate the queue
2844		 * should be restarted later. Please see flush_end_io() for
2845		 * details.
2846		 */
2847		if (fq->flush_pending_idx != fq->flush_running_idx &&
2848				!queue_flush_queueable(q)) {
2849			fq->flush_queue_delayed = 1;
2850			return NULL;
2851		}
2852		if (unlikely(blk_queue_bypass(q)) ||
2853		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2854			return NULL;
2855	}
2856}
2857
2858/**
2859 * blk_peek_request - peek at the top of a request queue
2860 * @q: request queue to peek at
2861 *
2862 * Description:
2863 *     Return the request at the top of @q.  The returned request
2864 *     should be started using blk_start_request() before LLD starts
2865 *     processing it.
2866 *
2867 * Return:
2868 *     Pointer to the request at the top of @q if available.  Null
2869 *     otherwise.
 
 
 
2870 */
2871struct request *blk_peek_request(struct request_queue *q)
2872{
2873	struct request *rq;
2874	int ret;
2875
2876	lockdep_assert_held(q->queue_lock);
2877	WARN_ON_ONCE(q->mq_ops);
2878
2879	while ((rq = elv_next_request(q)) != NULL) {
2880		if (!(rq->rq_flags & RQF_STARTED)) {
2881			/*
2882			 * This is the first time the device driver
2883			 * sees this request (possibly after
2884			 * requeueing).  Notify IO scheduler.
2885			 */
2886			if (rq->rq_flags & RQF_SORTED)
2887				elv_activate_rq(q, rq);
2888
2889			/*
2890			 * just mark as started even if we don't start
2891			 * it, a request that has been delayed should
2892			 * not be passed by new incoming requests
2893			 */
2894			rq->rq_flags |= RQF_STARTED;
2895			trace_block_rq_issue(q, rq);
2896		}
2897
2898		if (!q->boundary_rq || q->boundary_rq == rq) {
2899			q->end_sector = rq_end_sector(rq);
2900			q->boundary_rq = NULL;
2901		}
2902
2903		if (rq->rq_flags & RQF_DONTPREP)
2904			break;
2905
2906		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2907			/*
2908			 * make sure space for the drain appears we
2909			 * know we can do this because max_hw_segments
2910			 * has been adjusted to be one fewer than the
2911			 * device can handle
2912			 */
2913			rq->nr_phys_segments++;
2914		}
2915
2916		if (!q->prep_rq_fn)
2917			break;
2918
2919		ret = q->prep_rq_fn(q, rq);
2920		if (ret == BLKPREP_OK) {
2921			break;
2922		} else if (ret == BLKPREP_DEFER) {
2923			/*
2924			 * the request may have been (partially) prepped.
2925			 * we need to keep this request in the front to
2926			 * avoid resource deadlock.  RQF_STARTED will
2927			 * prevent other fs requests from passing this one.
2928			 */
2929			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2930			    !(rq->rq_flags & RQF_DONTPREP)) {
2931				/*
2932				 * remove the space for the drain we added
2933				 * so that we don't add it again
2934				 */
2935				--rq->nr_phys_segments;
2936			}
2937
2938			rq = NULL;
2939			break;
2940		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2941			rq->rq_flags |= RQF_QUIET;
2942			/*
2943			 * Mark this request as started so we don't trigger
2944			 * any debug logic in the end I/O path.
2945			 */
2946			blk_start_request(rq);
2947			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2948					BLK_STS_TARGET : BLK_STS_IOERR);
2949		} else {
2950			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2951			break;
2952		}
2953	}
2954
2955	return rq;
2956}
2957EXPORT_SYMBOL(blk_peek_request);
2958
2959static void blk_dequeue_request(struct request *rq)
2960{
2961	struct request_queue *q = rq->q;
2962
2963	BUG_ON(list_empty(&rq->queuelist));
2964	BUG_ON(ELV_ON_HASH(rq));
2965
2966	list_del_init(&rq->queuelist);
2967
2968	/*
2969	 * the time frame between a request being removed from the lists
2970	 * and to it is freed is accounted as io that is in progress at
2971	 * the driver side.
2972	 */
2973	if (blk_account_rq(rq)) {
2974		q->in_flight[rq_is_sync(rq)]++;
2975		set_io_start_time_ns(rq);
2976	}
2977}
2978
2979/**
2980 * blk_start_request - start request processing on the driver
2981 * @req: request to dequeue
2982 *
2983 * Description:
2984 *     Dequeue @req and start timeout timer on it.  This hands off the
2985 *     request to the driver.
 
 
 
 
 
 
2986 */
2987void blk_start_request(struct request *req)
2988{
2989	lockdep_assert_held(req->q->queue_lock);
2990	WARN_ON_ONCE(req->q->mq_ops);
2991
2992	blk_dequeue_request(req);
2993
2994	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2995		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2996		req->rq_flags |= RQF_STATS;
2997		wbt_issue(req->q->rq_wb, &req->issue_stat);
2998	}
 
 
2999
3000	BUG_ON(blk_rq_is_complete(req));
3001	blk_add_timer(req);
3002}
3003EXPORT_SYMBOL(blk_start_request);
3004
3005/**
3006 * blk_fetch_request - fetch a request from a request queue
3007 * @q: request queue to fetch a request from
3008 *
3009 * Description:
3010 *     Return the request at the top of @q.  The request is started on
3011 *     return and LLD can start processing it immediately.
3012 *
3013 * Return:
3014 *     Pointer to the request at the top of @q if available.  Null
3015 *     otherwise.
 
 
 
3016 */
3017struct request *blk_fetch_request(struct request_queue *q)
3018{
3019	struct request *rq;
3020
3021	lockdep_assert_held(q->queue_lock);
3022	WARN_ON_ONCE(q->mq_ops);
3023
3024	rq = blk_peek_request(q);
3025	if (rq)
3026		blk_start_request(rq);
3027	return rq;
3028}
3029EXPORT_SYMBOL(blk_fetch_request);
3030
3031/*
3032 * Steal bios from a request and add them to a bio list.
3033 * The request must not have been partially completed before.
3034 */
3035void blk_steal_bios(struct bio_list *list, struct request *rq)
3036{
3037	if (rq->bio) {
3038		if (list->tail)
3039			list->tail->bi_next = rq->bio;
3040		else
3041			list->head = rq->bio;
3042		list->tail = rq->biotail;
3043
3044		rq->bio = NULL;
3045		rq->biotail = NULL;
3046	}
3047
3048	rq->__data_len = 0;
3049}
3050EXPORT_SYMBOL_GPL(blk_steal_bios);
3051
3052/**
3053 * blk_update_request - Special helper function for request stacking drivers
3054 * @req:      the request being processed
3055 * @error:    block status code
3056 * @nr_bytes: number of bytes to complete @req
3057 *
3058 * Description:
3059 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3060 *     the request structure even if @req doesn't have leftover.
3061 *     If @req has leftover, sets it up for the next range of segments.
3062 *
3063 *     This special helper function is only for request stacking drivers
3064 *     (e.g. request-based dm) so that they can handle partial completion.
3065 *     Actual device drivers should use blk_end_request instead.
3066 *
3067 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068 *     %false return from this function.
3069 *
3070 * Return:
3071 *     %false - this request doesn't have any more data
3072 *     %true  - this request has more data
3073 **/
3074bool blk_update_request(struct request *req, blk_status_t error,
3075		unsigned int nr_bytes)
3076{
3077	int total_bytes;
3078
3079	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3080
3081	if (!req->bio)
3082		return false;
3083
3084	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3085		     !(req->rq_flags & RQF_QUIET)))
3086		print_req_error(req, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3087
3088	blk_account_io_completion(req, nr_bytes);
3089
3090	total_bytes = 0;
3091	while (req->bio) {
3092		struct bio *bio = req->bio;
3093		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3094
3095		if (bio_bytes == bio->bi_iter.bi_size)
3096			req->bio = bio->bi_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
3097
3098		/* Completion has already been traced */
3099		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3100		req_bio_endio(req, bio, bio_bytes, error);
3101
3102		total_bytes += bio_bytes;
3103		nr_bytes -= bio_bytes;
 
 
 
 
 
 
3104
3105		if (!nr_bytes)
3106			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3107	}
3108
3109	/*
3110	 * completely done
3111	 */
3112	if (!req->bio) {
3113		/*
3114		 * Reset counters so that the request stacking driver
3115		 * can find how many bytes remain in the request
3116		 * later.
3117		 */
3118		req->__data_len = 0;
3119		return false;
3120	}
3121
 
 
 
 
 
 
 
 
 
 
3122	req->__data_len -= total_bytes;
 
3123
3124	/* update sector only for requests with clear definition of sector */
3125	if (!blk_rq_is_passthrough(req))
3126		req->__sector += total_bytes >> 9;
3127
3128	/* mixed attributes always follow the first bio */
3129	if (req->rq_flags & RQF_MIXED_MERGE) {
3130		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3131		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3132	}
3133
3134	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3135		/*
3136		 * If total number of sectors is less than the first segment
3137		 * size, something has gone terribly wrong.
3138		 */
3139		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3140			blk_dump_rq_flags(req, "request botched");
3141			req->__data_len = blk_rq_cur_bytes(req);
3142		}
3143
3144		/* recalculate the number of segments */
3145		blk_recalc_rq_segments(req);
3146	}
3147
 
 
 
3148	return true;
3149}
3150EXPORT_SYMBOL_GPL(blk_update_request);
3151
3152static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3153				    unsigned int nr_bytes,
3154				    unsigned int bidi_bytes)
3155{
3156	if (blk_update_request(rq, error, nr_bytes))
3157		return true;
3158
3159	/* Bidi request must be completed as a whole */
3160	if (unlikely(blk_bidi_rq(rq)) &&
3161	    blk_update_request(rq->next_rq, error, bidi_bytes))
3162		return true;
3163
3164	if (blk_queue_add_random(rq->q))
3165		add_disk_randomness(rq->rq_disk);
3166
3167	return false;
3168}
3169
3170/**
3171 * blk_unprep_request - unprepare a request
3172 * @req:	the request
3173 *
3174 * This function makes a request ready for complete resubmission (or
3175 * completion).  It happens only after all error handling is complete,
3176 * so represents the appropriate moment to deallocate any resources
3177 * that were allocated to the request in the prep_rq_fn.  The queue
3178 * lock is held when calling this.
3179 */
3180void blk_unprep_request(struct request *req)
3181{
3182	struct request_queue *q = req->q;
3183
3184	req->rq_flags &= ~RQF_DONTPREP;
3185	if (q->unprep_rq_fn)
3186		q->unprep_rq_fn(q, req);
3187}
3188EXPORT_SYMBOL_GPL(blk_unprep_request);
3189
3190void blk_finish_request(struct request *req, blk_status_t error)
 
 
 
3191{
3192	struct request_queue *q = req->q;
3193
3194	lockdep_assert_held(req->q->queue_lock);
3195	WARN_ON_ONCE(q->mq_ops);
3196
3197	if (req->rq_flags & RQF_STATS)
3198		blk_stat_add(req);
3199
3200	if (req->rq_flags & RQF_QUEUED)
3201		blk_queue_end_tag(q, req);
3202
3203	BUG_ON(blk_queued_rq(req));
3204
3205	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3206		laptop_io_completion(req->q->backing_dev_info);
3207
3208	blk_delete_timer(req);
3209
3210	if (req->rq_flags & RQF_DONTPREP)
3211		blk_unprep_request(req);
3212
 
3213	blk_account_io_done(req);
3214
3215	if (req->end_io) {
3216		wbt_done(req->q->rq_wb, &req->issue_stat);
3217		req->end_io(req, error);
3218	} else {
3219		if (blk_bidi_rq(req))
3220			__blk_put_request(req->next_rq->q, req->next_rq);
3221
3222		__blk_put_request(q, req);
3223	}
3224}
3225EXPORT_SYMBOL(blk_finish_request);
3226
3227/**
3228 * blk_end_bidi_request - Complete a bidi request
3229 * @rq:         the request to complete
3230 * @error:      block status code
3231 * @nr_bytes:   number of bytes to complete @rq
3232 * @bidi_bytes: number of bytes to complete @rq->next_rq
3233 *
3234 * Description:
3235 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3236 *     Drivers that supports bidi can safely call this member for any
3237 *     type of request, bidi or uni.  In the later case @bidi_bytes is
3238 *     just ignored.
3239 *
3240 * Return:
3241 *     %false - we are done with this request
3242 *     %true  - still buffers pending for this request
3243 **/
3244static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3245				 unsigned int nr_bytes, unsigned int bidi_bytes)
3246{
3247	struct request_queue *q = rq->q;
3248	unsigned long flags;
3249
3250	WARN_ON_ONCE(q->mq_ops);
3251
3252	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3253		return true;
3254
3255	spin_lock_irqsave(q->queue_lock, flags);
3256	blk_finish_request(rq, error);
3257	spin_unlock_irqrestore(q->queue_lock, flags);
3258
3259	return false;
3260}
3261
3262/**
3263 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3264 * @rq:         the request to complete
3265 * @error:      block status code
3266 * @nr_bytes:   number of bytes to complete @rq
3267 * @bidi_bytes: number of bytes to complete @rq->next_rq
3268 *
3269 * Description:
3270 *     Identical to blk_end_bidi_request() except that queue lock is
3271 *     assumed to be locked on entry and remains so on return.
3272 *
3273 * Return:
3274 *     %false - we are done with this request
3275 *     %true  - still buffers pending for this request
3276 **/
3277static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3278				   unsigned int nr_bytes, unsigned int bidi_bytes)
3279{
3280	lockdep_assert_held(rq->q->queue_lock);
3281	WARN_ON_ONCE(rq->q->mq_ops);
3282
3283	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3284		return true;
3285
3286	blk_finish_request(rq, error);
3287
3288	return false;
3289}
3290
3291/**
3292 * blk_end_request - Helper function for drivers to complete the request.
3293 * @rq:       the request being processed
3294 * @error:    block status code
3295 * @nr_bytes: number of bytes to complete
3296 *
3297 * Description:
3298 *     Ends I/O on a number of bytes attached to @rq.
3299 *     If @rq has leftover, sets it up for the next range of segments.
3300 *
3301 * Return:
3302 *     %false - we are done with this request
3303 *     %true  - still buffers pending for this request
3304 **/
3305bool blk_end_request(struct request *rq, blk_status_t error,
3306		unsigned int nr_bytes)
3307{
3308	WARN_ON_ONCE(rq->q->mq_ops);
3309	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3310}
3311EXPORT_SYMBOL(blk_end_request);
3312
3313/**
3314 * blk_end_request_all - Helper function for drives to finish the request.
3315 * @rq: the request to finish
3316 * @error: block status code
3317 *
3318 * Description:
3319 *     Completely finish @rq.
3320 */
3321void blk_end_request_all(struct request *rq, blk_status_t error)
3322{
3323	bool pending;
3324	unsigned int bidi_bytes = 0;
3325
3326	if (unlikely(blk_bidi_rq(rq)))
3327		bidi_bytes = blk_rq_bytes(rq->next_rq);
3328
3329	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3330	BUG_ON(pending);
3331}
3332EXPORT_SYMBOL(blk_end_request_all);
3333
3334/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3335 * __blk_end_request - Helper function for drivers to complete the request.
3336 * @rq:       the request being processed
3337 * @error:    block status code
3338 * @nr_bytes: number of bytes to complete
3339 *
3340 * Description:
3341 *     Must be called with queue lock held unlike blk_end_request().
3342 *
3343 * Return:
3344 *     %false - we are done with this request
3345 *     %true  - still buffers pending for this request
3346 **/
3347bool __blk_end_request(struct request *rq, blk_status_t error,
3348		unsigned int nr_bytes)
3349{
3350	lockdep_assert_held(rq->q->queue_lock);
3351	WARN_ON_ONCE(rq->q->mq_ops);
3352
3353	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3354}
3355EXPORT_SYMBOL(__blk_end_request);
3356
3357/**
3358 * __blk_end_request_all - Helper function for drives to finish the request.
3359 * @rq: the request to finish
3360 * @error:    block status code
3361 *
3362 * Description:
3363 *     Completely finish @rq.  Must be called with queue lock held.
3364 */
3365void __blk_end_request_all(struct request *rq, blk_status_t error)
3366{
3367	bool pending;
3368	unsigned int bidi_bytes = 0;
3369
3370	lockdep_assert_held(rq->q->queue_lock);
3371	WARN_ON_ONCE(rq->q->mq_ops);
3372
3373	if (unlikely(blk_bidi_rq(rq)))
3374		bidi_bytes = blk_rq_bytes(rq->next_rq);
3375
3376	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3377	BUG_ON(pending);
3378}
3379EXPORT_SYMBOL(__blk_end_request_all);
3380
3381/**
3382 * __blk_end_request_cur - Helper function to finish the current request chunk.
3383 * @rq: the request to finish the current chunk for
3384 * @error:    block status code
3385 *
3386 * Description:
3387 *     Complete the current consecutively mapped chunk from @rq.  Must
3388 *     be called with queue lock held.
3389 *
3390 * Return:
3391 *     %false - we are done with this request
3392 *     %true  - still buffers pending for this request
3393 */
3394bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3395{
3396	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3397}
3398EXPORT_SYMBOL(__blk_end_request_cur);
3399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3400void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3401		     struct bio *bio)
3402{
3403	if (bio_has_data(bio))
3404		rq->nr_phys_segments = bio_phys_segments(q, bio);
3405	else if (bio_op(bio) == REQ_OP_DISCARD)
3406		rq->nr_phys_segments = 1;
3407
3408	rq->__data_len = bio->bi_iter.bi_size;
 
 
 
 
3409	rq->bio = rq->biotail = bio;
3410
3411	if (bio->bi_disk)
3412		rq->rq_disk = bio->bi_disk;
3413}
3414
3415#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3416/**
3417 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3418 * @rq: the request to be flushed
3419 *
3420 * Description:
3421 *     Flush all pages in @rq.
3422 */
3423void rq_flush_dcache_pages(struct request *rq)
3424{
3425	struct req_iterator iter;
3426	struct bio_vec bvec;
3427
3428	rq_for_each_segment(bvec, rq, iter)
3429		flush_dcache_page(bvec.bv_page);
3430}
3431EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3432#endif
3433
3434/**
3435 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3436 * @q : the queue of the device being checked
3437 *
3438 * Description:
3439 *    Check if underlying low-level drivers of a device are busy.
3440 *    If the drivers want to export their busy state, they must set own
3441 *    exporting function using blk_queue_lld_busy() first.
3442 *
3443 *    Basically, this function is used only by request stacking drivers
3444 *    to stop dispatching requests to underlying devices when underlying
3445 *    devices are busy.  This behavior helps more I/O merging on the queue
3446 *    of the request stacking driver and prevents I/O throughput regression
3447 *    on burst I/O load.
3448 *
3449 * Return:
3450 *    0 - Not busy (The request stacking driver should dispatch request)
3451 *    1 - Busy (The request stacking driver should stop dispatching request)
3452 */
3453int blk_lld_busy(struct request_queue *q)
3454{
3455	if (q->lld_busy_fn)
3456		return q->lld_busy_fn(q);
3457
3458	return 0;
3459}
3460EXPORT_SYMBOL_GPL(blk_lld_busy);
3461
3462/**
3463 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3464 * @rq: the clone request to be cleaned up
3465 *
3466 * Description:
3467 *     Free all bios in @rq for a cloned request.
3468 */
3469void blk_rq_unprep_clone(struct request *rq)
3470{
3471	struct bio *bio;
3472
3473	while ((bio = rq->bio) != NULL) {
3474		rq->bio = bio->bi_next;
3475
3476		bio_put(bio);
3477	}
3478}
3479EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3480
3481/*
3482 * Copy attributes of the original request to the clone request.
3483 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3484 */
3485static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3486{
3487	dst->cpu = src->cpu;
 
 
3488	dst->__sector = blk_rq_pos(src);
3489	dst->__data_len = blk_rq_bytes(src);
3490	dst->nr_phys_segments = src->nr_phys_segments;
3491	dst->ioprio = src->ioprio;
3492	dst->extra_len = src->extra_len;
3493}
3494
3495/**
3496 * blk_rq_prep_clone - Helper function to setup clone request
3497 * @rq: the request to be setup
3498 * @rq_src: original request to be cloned
3499 * @bs: bio_set that bios for clone are allocated from
3500 * @gfp_mask: memory allocation mask for bio
3501 * @bio_ctr: setup function to be called for each clone bio.
3502 *           Returns %0 for success, non %0 for failure.
3503 * @data: private data to be passed to @bio_ctr
3504 *
3505 * Description:
3506 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3507 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3508 *     are not copied, and copying such parts is the caller's responsibility.
3509 *     Also, pages which the original bios are pointing to are not copied
3510 *     and the cloned bios just point same pages.
3511 *     So cloned bios must be completed before original bios, which means
3512 *     the caller must complete @rq before @rq_src.
3513 */
3514int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3515		      struct bio_set *bs, gfp_t gfp_mask,
3516		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3517		      void *data)
3518{
3519	struct bio *bio, *bio_src;
3520
3521	if (!bs)
3522		bs = fs_bio_set;
3523
 
 
3524	__rq_for_each_bio(bio_src, rq_src) {
3525		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3526		if (!bio)
3527			goto free_and_out;
3528
 
 
 
 
 
 
3529		if (bio_ctr && bio_ctr(bio, bio_src, data))
3530			goto free_and_out;
3531
3532		if (rq->bio) {
3533			rq->biotail->bi_next = bio;
3534			rq->biotail = bio;
3535		} else
3536			rq->bio = rq->biotail = bio;
3537	}
3538
3539	__blk_rq_prep_clone(rq, rq_src);
3540
3541	return 0;
3542
3543free_and_out:
3544	if (bio)
3545		bio_put(bio);
3546	blk_rq_unprep_clone(rq);
3547
3548	return -ENOMEM;
3549}
3550EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3551
3552int kblockd_schedule_work(struct work_struct *work)
3553{
3554	return queue_work(kblockd_workqueue, work);
3555}
3556EXPORT_SYMBOL(kblockd_schedule_work);
3557
3558int kblockd_schedule_work_on(int cpu, struct work_struct *work)
 
3559{
3560	return queue_work_on(cpu, kblockd_workqueue, work);
3561}
3562EXPORT_SYMBOL(kblockd_schedule_work_on);
3563
3564int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3565				unsigned long delay)
3566{
3567	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3568}
3569EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3570
3571/**
3572 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3573 * @plug:	The &struct blk_plug that needs to be initialized
3574 *
3575 * Description:
3576 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3577 *   pending I/O should the task end up blocking between blk_start_plug() and
3578 *   blk_finish_plug(). This is important from a performance perspective, but
3579 *   also ensures that we don't deadlock. For instance, if the task is blocking
3580 *   for a memory allocation, memory reclaim could end up wanting to free a
3581 *   page belonging to that request that is currently residing in our private
3582 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3583 *   this kind of deadlock.
3584 */
3585void blk_start_plug(struct blk_plug *plug)
3586{
3587	struct task_struct *tsk = current;
3588
3589	/*
3590	 * If this is a nested plug, don't actually assign it.
3591	 */
3592	if (tsk->plug)
3593		return;
3594
3595	INIT_LIST_HEAD(&plug->list);
3596	INIT_LIST_HEAD(&plug->mq_list);
3597	INIT_LIST_HEAD(&plug->cb_list);
 
 
3598	/*
3599	 * Store ordering should not be needed here, since a potential
3600	 * preempt will imply a full memory barrier
3601	 */
3602	tsk->plug = plug;
 
 
 
 
 
 
3603}
3604EXPORT_SYMBOL(blk_start_plug);
3605
3606static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3607{
3608	struct request *rqa = container_of(a, struct request, queuelist);
3609	struct request *rqb = container_of(b, struct request, queuelist);
3610
3611	return !(rqa->q < rqb->q ||
3612		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3613}
3614
3615/*
3616 * If 'from_schedule' is true, then postpone the dispatch of requests
3617 * until a safe kblockd context. We due this to avoid accidental big
3618 * additional stack usage in driver dispatch, in places where the originally
3619 * plugger did not intend it.
3620 */
3621static void queue_unplugged(struct request_queue *q, unsigned int depth,
3622			    bool from_schedule)
3623	__releases(q->queue_lock)
3624{
3625	lockdep_assert_held(q->queue_lock);
3626
3627	trace_block_unplug(q, depth, !from_schedule);
3628
3629	if (from_schedule)
 
 
 
 
 
 
3630		blk_run_queue_async(q);
3631	else
3632		__blk_run_queue(q);
3633	spin_unlock(q->queue_lock);
 
 
3634}
3635
3636static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3637{
3638	LIST_HEAD(callbacks);
3639
3640	while (!list_empty(&plug->cb_list)) {
3641		list_splice_init(&plug->cb_list, &callbacks);
 
 
3642
3643		while (!list_empty(&callbacks)) {
3644			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3645							  struct blk_plug_cb,
3646							  list);
3647			list_del(&cb->list);
3648			cb->callback(cb, from_schedule);
3649		}
3650	}
3651}
3652
3653struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3654				      int size)
3655{
3656	struct blk_plug *plug = current->plug;
3657	struct blk_plug_cb *cb;
3658
3659	if (!plug)
3660		return NULL;
3661
3662	list_for_each_entry(cb, &plug->cb_list, list)
3663		if (cb->callback == unplug && cb->data == data)
3664			return cb;
3665
3666	/* Not currently on the callback list */
3667	BUG_ON(size < sizeof(*cb));
3668	cb = kzalloc(size, GFP_ATOMIC);
3669	if (cb) {
3670		cb->data = data;
3671		cb->callback = unplug;
3672		list_add(&cb->list, &plug->cb_list);
3673	}
3674	return cb;
3675}
3676EXPORT_SYMBOL(blk_check_plugged);
3677
3678void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3679{
3680	struct request_queue *q;
3681	unsigned long flags;
3682	struct request *rq;
3683	LIST_HEAD(list);
3684	unsigned int depth;
3685
3686	flush_plug_callbacks(plug, from_schedule);
3687
3688	if (!list_empty(&plug->mq_list))
3689		blk_mq_flush_plug_list(plug, from_schedule);
3690
 
3691	if (list_empty(&plug->list))
3692		return;
3693
3694	list_splice_init(&plug->list, &list);
3695
3696	list_sort(NULL, &list, plug_rq_cmp);
 
 
 
3697
3698	q = NULL;
3699	depth = 0;
3700
3701	/*
3702	 * Save and disable interrupts here, to avoid doing it for every
3703	 * queue lock we have to take.
3704	 */
3705	local_irq_save(flags);
3706	while (!list_empty(&list)) {
3707		rq = list_entry_rq(list.next);
3708		list_del_init(&rq->queuelist);
3709		BUG_ON(!rq->q);
3710		if (rq->q != q) {
3711			/*
3712			 * This drops the queue lock
3713			 */
3714			if (q)
3715				queue_unplugged(q, depth, from_schedule);
3716			q = rq->q;
3717			depth = 0;
3718			spin_lock(q->queue_lock);
3719		}
3720
3721		/*
3722		 * Short-circuit if @q is dead
3723		 */
3724		if (unlikely(blk_queue_dying(q))) {
3725			__blk_end_request_all(rq, BLK_STS_IOERR);
3726			continue;
3727		}
3728
3729		/*
3730		 * rq is already accounted, so use raw insert
3731		 */
3732		if (op_is_flush(rq->cmd_flags))
3733			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3734		else
3735			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3736
3737		depth++;
3738	}
3739
3740	/*
3741	 * This drops the queue lock
3742	 */
3743	if (q)
3744		queue_unplugged(q, depth, from_schedule);
3745
3746	local_irq_restore(flags);
3747}
3748
3749void blk_finish_plug(struct blk_plug *plug)
3750{
3751	if (plug != current->plug)
3752		return;
3753	blk_flush_plug_list(plug, false);
3754
3755	current->plug = NULL;
 
3756}
3757EXPORT_SYMBOL(blk_finish_plug);
3758
3759#ifdef CONFIG_PM
3760/**
3761 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3762 * @q: the queue of the device
3763 * @dev: the device the queue belongs to
3764 *
3765 * Description:
3766 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3767 *    @dev. Drivers that want to take advantage of request-based runtime PM
3768 *    should call this function after @dev has been initialized, and its
3769 *    request queue @q has been allocated, and runtime PM for it can not happen
3770 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3771 *    cases, driver should call this function before any I/O has taken place.
3772 *
3773 *    This function takes care of setting up using auto suspend for the device,
3774 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3775 *    until an updated value is either set by user or by driver. Drivers do
3776 *    not need to touch other autosuspend settings.
3777 *
3778 *    The block layer runtime PM is request based, so only works for drivers
3779 *    that use request as their IO unit instead of those directly use bio's.
3780 */
3781void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3782{
3783	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3784	if (q->mq_ops)
3785		return;
3786
3787	q->dev = dev;
3788	q->rpm_status = RPM_ACTIVE;
3789	pm_runtime_set_autosuspend_delay(q->dev, -1);
3790	pm_runtime_use_autosuspend(q->dev);
3791}
3792EXPORT_SYMBOL(blk_pm_runtime_init);
3793
3794/**
3795 * blk_pre_runtime_suspend - Pre runtime suspend check
3796 * @q: the queue of the device
3797 *
3798 * Description:
3799 *    This function will check if runtime suspend is allowed for the device
3800 *    by examining if there are any requests pending in the queue. If there
3801 *    are requests pending, the device can not be runtime suspended; otherwise,
3802 *    the queue's status will be updated to SUSPENDING and the driver can
3803 *    proceed to suspend the device.
3804 *
3805 *    For the not allowed case, we mark last busy for the device so that
3806 *    runtime PM core will try to autosuspend it some time later.
3807 *
3808 *    This function should be called near the start of the device's
3809 *    runtime_suspend callback.
3810 *
3811 * Return:
3812 *    0		- OK to runtime suspend the device
3813 *    -EBUSY	- Device should not be runtime suspended
3814 */
3815int blk_pre_runtime_suspend(struct request_queue *q)
3816{
3817	int ret = 0;
3818
3819	if (!q->dev)
3820		return ret;
3821
3822	spin_lock_irq(q->queue_lock);
3823	if (q->nr_pending) {
3824		ret = -EBUSY;
3825		pm_runtime_mark_last_busy(q->dev);
3826	} else {
3827		q->rpm_status = RPM_SUSPENDING;
3828	}
3829	spin_unlock_irq(q->queue_lock);
3830	return ret;
3831}
3832EXPORT_SYMBOL(blk_pre_runtime_suspend);
3833
3834/**
3835 * blk_post_runtime_suspend - Post runtime suspend processing
3836 * @q: the queue of the device
3837 * @err: return value of the device's runtime_suspend function
3838 *
3839 * Description:
3840 *    Update the queue's runtime status according to the return value of the
3841 *    device's runtime suspend function and mark last busy for the device so
3842 *    that PM core will try to auto suspend the device at a later time.
3843 *
3844 *    This function should be called near the end of the device's
3845 *    runtime_suspend callback.
3846 */
3847void blk_post_runtime_suspend(struct request_queue *q, int err)
3848{
3849	if (!q->dev)
3850		return;
3851
3852	spin_lock_irq(q->queue_lock);
3853	if (!err) {
3854		q->rpm_status = RPM_SUSPENDED;
3855	} else {
3856		q->rpm_status = RPM_ACTIVE;
3857		pm_runtime_mark_last_busy(q->dev);
3858	}
3859	spin_unlock_irq(q->queue_lock);
3860}
3861EXPORT_SYMBOL(blk_post_runtime_suspend);
3862
3863/**
3864 * blk_pre_runtime_resume - Pre runtime resume processing
3865 * @q: the queue of the device
3866 *
3867 * Description:
3868 *    Update the queue's runtime status to RESUMING in preparation for the
3869 *    runtime resume of the device.
3870 *
3871 *    This function should be called near the start of the device's
3872 *    runtime_resume callback.
3873 */
3874void blk_pre_runtime_resume(struct request_queue *q)
3875{
3876	if (!q->dev)
3877		return;
3878
3879	spin_lock_irq(q->queue_lock);
3880	q->rpm_status = RPM_RESUMING;
3881	spin_unlock_irq(q->queue_lock);
3882}
3883EXPORT_SYMBOL(blk_pre_runtime_resume);
3884
3885/**
3886 * blk_post_runtime_resume - Post runtime resume processing
3887 * @q: the queue of the device
3888 * @err: return value of the device's runtime_resume function
3889 *
3890 * Description:
3891 *    Update the queue's runtime status according to the return value of the
3892 *    device's runtime_resume function. If it is successfully resumed, process
3893 *    the requests that are queued into the device's queue when it is resuming
3894 *    and then mark last busy and initiate autosuspend for it.
3895 *
3896 *    This function should be called near the end of the device's
3897 *    runtime_resume callback.
3898 */
3899void blk_post_runtime_resume(struct request_queue *q, int err)
3900{
3901	if (!q->dev)
3902		return;
3903
3904	spin_lock_irq(q->queue_lock);
3905	if (!err) {
3906		q->rpm_status = RPM_ACTIVE;
3907		__blk_run_queue(q);
3908		pm_runtime_mark_last_busy(q->dev);
3909		pm_request_autosuspend(q->dev);
3910	} else {
3911		q->rpm_status = RPM_SUSPENDED;
3912	}
3913	spin_unlock_irq(q->queue_lock);
3914}
3915EXPORT_SYMBOL(blk_post_runtime_resume);
3916
3917/**
3918 * blk_set_runtime_active - Force runtime status of the queue to be active
3919 * @q: the queue of the device
3920 *
3921 * If the device is left runtime suspended during system suspend the resume
3922 * hook typically resumes the device and corrects runtime status
3923 * accordingly. However, that does not affect the queue runtime PM status
3924 * which is still "suspended". This prevents processing requests from the
3925 * queue.
3926 *
3927 * This function can be used in driver's resume hook to correct queue
3928 * runtime PM status and re-enable peeking requests from the queue. It
3929 * should be called before first request is added to the queue.
3930 */
3931void blk_set_runtime_active(struct request_queue *q)
3932{
3933	spin_lock_irq(q->queue_lock);
3934	q->rpm_status = RPM_ACTIVE;
3935	pm_runtime_mark_last_busy(q->dev);
3936	pm_request_autosuspend(q->dev);
3937	spin_unlock_irq(q->queue_lock);
3938}
3939EXPORT_SYMBOL(blk_set_runtime_active);
3940#endif
3941
3942int __init blk_dev_init(void)
3943{
3944	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3945	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3946			FIELD_SIZEOF(struct request, cmd_flags));
3947	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3948			FIELD_SIZEOF(struct bio, bi_opf));
3949
3950	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3951	kblockd_workqueue = alloc_workqueue("kblockd",
3952					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3953	if (!kblockd_workqueue)
3954		panic("Failed to create kblockd\n");
3955
3956	request_cachep = kmem_cache_create("blkdev_requests",
3957			sizeof(struct request), 0, SLAB_PANIC, NULL);
3958
3959	blk_requestq_cachep = kmem_cache_create("request_queue",
3960			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3961
3962#ifdef CONFIG_DEBUG_FS
3963	blk_debugfs_root = debugfs_create_dir("block", NULL);
3964#endif
3965
3966	return 0;
3967}
v3.1
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
 
  19#include <linux/highmem.h>
  20#include <linux/mm.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/string.h>
  23#include <linux/init.h>
  24#include <linux/completion.h>
  25#include <linux/slab.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/task_io_accounting_ops.h>
  29#include <linux/fault-inject.h>
  30#include <linux/list_sort.h>
 
 
 
 
 
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/block.h>
  34
  35#include "blk.h"
 
 
 
 
 
 
 
  36
  37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
 
 
  40
  41static int __make_request(struct request_queue *q, struct bio *bio);
  42
  43/*
  44 * For the allocated request tables
  45 */
  46static struct kmem_cache *request_cachep;
  47
  48/*
  49 * For queue allocation
  50 */
  51struct kmem_cache *blk_requestq_cachep;
  52
  53/*
  54 * Controlling structure to kblockd
  55 */
  56static struct workqueue_struct *kblockd_workqueue;
  57
  58static void drive_stat_acct(struct request *rq, int new_io)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59{
  60	struct hd_struct *part;
  61	int rw = rq_data_dir(rq);
  62	int cpu;
  63
  64	if (!blk_do_io_stat(rq))
  65		return;
 
  66
  67	cpu = part_stat_lock();
 
 
  68
  69	if (!new_io) {
  70		part = rq->part;
  71		part_stat_inc(cpu, part, merges[rw]);
  72	} else {
  73		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
  74		if (!hd_struct_try_get(part)) {
  75			/*
  76			 * The partition is already being removed,
  77			 * the request will be accounted on the disk only
  78			 *
  79			 * We take a reference on disk->part0 although that
  80			 * partition will never be deleted, so we can treat
  81			 * it as any other partition.
  82			 */
  83			part = &rq->rq_disk->part0;
  84			hd_struct_get(part);
  85		}
  86		part_round_stats(cpu, part);
  87		part_inc_in_flight(part, rw);
  88		rq->part = part;
  89	}
  90
  91	part_stat_unlock();
 
 
 
 
 
 
 
 
  92}
  93
  94void blk_queue_congestion_threshold(struct request_queue *q)
  95{
  96	int nr;
  97
  98	nr = q->nr_requests - (q->nr_requests / 8) + 1;
  99	if (nr > q->nr_requests)
 100		nr = q->nr_requests;
 101	q->nr_congestion_on = nr;
 102
 103	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 104	if (nr < 1)
 105		nr = 1;
 106	q->nr_congestion_off = nr;
 107}
 108
 109/**
 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 111 * @bdev:	device
 112 *
 113 * Locates the passed device's request queue and returns the address of its
 114 * backing_dev_info
 115 *
 116 * Will return NULL if the request queue cannot be located.
 117 */
 118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 119{
 120	struct backing_dev_info *ret = NULL;
 121	struct request_queue *q = bdev_get_queue(bdev);
 122
 123	if (q)
 124		ret = &q->backing_dev_info;
 125	return ret;
 126}
 127EXPORT_SYMBOL(blk_get_backing_dev_info);
 128
 129void blk_rq_init(struct request_queue *q, struct request *rq)
 130{
 131	memset(rq, 0, sizeof(*rq));
 132
 133	INIT_LIST_HEAD(&rq->queuelist);
 134	INIT_LIST_HEAD(&rq->timeout_list);
 135	rq->cpu = -1;
 136	rq->q = q;
 137	rq->__sector = (sector_t) -1;
 138	INIT_HLIST_NODE(&rq->hash);
 139	RB_CLEAR_NODE(&rq->rb_node);
 140	rq->cmd = rq->__cmd;
 141	rq->cmd_len = BLK_MAX_CDB;
 142	rq->tag = -1;
 143	rq->ref_count = 1;
 144	rq->start_time = jiffies;
 145	set_start_time_ns(rq);
 146	rq->part = NULL;
 
 
 
 
 
 
 147}
 148EXPORT_SYMBOL(blk_rq_init);
 149
 150static void req_bio_endio(struct request *rq, struct bio *bio,
 151			  unsigned int nbytes, int error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 153	if (error)
 154		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 155	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 156		error = -EIO;
 157
 158	if (unlikely(nbytes > bio->bi_size)) {
 159		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
 160		       __func__, nbytes, bio->bi_size);
 161		nbytes = bio->bi_size;
 162	}
 163
 164	if (unlikely(rq->cmd_flags & REQ_QUIET))
 165		set_bit(BIO_QUIET, &bio->bi_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166
 167	bio->bi_size -= nbytes;
 168	bio->bi_sector += (nbytes >> 9);
 169
 170	if (bio_integrity(bio))
 171		bio_integrity_advance(bio, nbytes);
 172
 173	/* don't actually finish bio if it's part of flush sequence */
 174	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 175		bio_endio(bio, error);
 176}
 177
 178void blk_dump_rq_flags(struct request *rq, char *msg)
 179{
 180	int bit;
 181
 182	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
 183		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 184		rq->cmd_flags);
 185
 186	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 187	       (unsigned long long)blk_rq_pos(rq),
 188	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 189	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
 190	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
 191
 192	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 193		printk(KERN_INFO "  cdb: ");
 194		for (bit = 0; bit < BLK_MAX_CDB; bit++)
 195			printk("%02x ", rq->cmd[bit]);
 196		printk("\n");
 197	}
 198}
 199EXPORT_SYMBOL(blk_dump_rq_flags);
 200
 201static void blk_delay_work(struct work_struct *work)
 202{
 203	struct request_queue *q;
 204
 205	q = container_of(work, struct request_queue, delay_work.work);
 206	spin_lock_irq(q->queue_lock);
 207	__blk_run_queue(q);
 208	spin_unlock_irq(q->queue_lock);
 209}
 210
 211/**
 212 * blk_delay_queue - restart queueing after defined interval
 213 * @q:		The &struct request_queue in question
 214 * @msecs:	Delay in msecs
 215 *
 216 * Description:
 217 *   Sometimes queueing needs to be postponed for a little while, to allow
 218 *   resources to come back. This function will make sure that queueing is
 219 *   restarted around the specified time.
 220 */
 221void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 222{
 223	queue_delayed_work(kblockd_workqueue, &q->delay_work,
 224				msecs_to_jiffies(msecs));
 
 
 
 
 225}
 226EXPORT_SYMBOL(blk_delay_queue);
 227
 228/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229 * blk_start_queue - restart a previously stopped queue
 230 * @q:    The &struct request_queue in question
 231 *
 232 * Description:
 233 *   blk_start_queue() will clear the stop flag on the queue, and call
 234 *   the request_fn for the queue if it was in a stopped state when
 235 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 236 **/
 237void blk_start_queue(struct request_queue *q)
 238{
 239	WARN_ON(!irqs_disabled());
 
 
 240
 241	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 242	__blk_run_queue(q);
 243}
 244EXPORT_SYMBOL(blk_start_queue);
 245
 246/**
 247 * blk_stop_queue - stop a queue
 248 * @q:    The &struct request_queue in question
 249 *
 250 * Description:
 251 *   The Linux block layer assumes that a block driver will consume all
 252 *   entries on the request queue when the request_fn strategy is called.
 253 *   Often this will not happen, because of hardware limitations (queue
 254 *   depth settings). If a device driver gets a 'queue full' response,
 255 *   or if it simply chooses not to queue more I/O at one point, it can
 256 *   call this function to prevent the request_fn from being called until
 257 *   the driver has signalled it's ready to go again. This happens by calling
 258 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 259 **/
 260void blk_stop_queue(struct request_queue *q)
 261{
 262	__cancel_delayed_work(&q->delay_work);
 
 
 
 263	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 264}
 265EXPORT_SYMBOL(blk_stop_queue);
 266
 267/**
 268 * blk_sync_queue - cancel any pending callbacks on a queue
 269 * @q: the queue
 270 *
 271 * Description:
 272 *     The block layer may perform asynchronous callback activity
 273 *     on a queue, such as calling the unplug function after a timeout.
 274 *     A block device may call blk_sync_queue to ensure that any
 275 *     such activity is cancelled, thus allowing it to release resources
 276 *     that the callbacks might use. The caller must already have made sure
 277 *     that its ->make_request_fn will not re-add plugging prior to calling
 278 *     this function.
 279 *
 280 *     This function does not cancel any asynchronous activity arising
 281 *     out of elevator or throttling code. That would require elevaotor_exit()
 282 *     and blk_throtl_exit() to be called with queue lock initialized.
 283 *
 284 */
 285void blk_sync_queue(struct request_queue *q)
 286{
 287	del_timer_sync(&q->timeout);
 288	cancel_delayed_work_sync(&q->delay_work);
 
 
 
 
 
 
 
 
 
 
 
 289}
 290EXPORT_SYMBOL(blk_sync_queue);
 291
 292/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293 * __blk_run_queue - run a single device queue
 294 * @q:	The queue to run
 295 *
 296 * Description:
 297 *    See @blk_run_queue. This variant must be called with the queue lock
 298 *    held and interrupts disabled.
 299 */
 300void __blk_run_queue(struct request_queue *q)
 301{
 
 
 
 302	if (unlikely(blk_queue_stopped(q)))
 303		return;
 304
 305	q->request_fn(q);
 306}
 307EXPORT_SYMBOL(__blk_run_queue);
 308
 309/**
 310 * blk_run_queue_async - run a single device queue in workqueue context
 311 * @q:	The queue to run
 312 *
 313 * Description:
 314 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 315 *    of us.
 
 
 
 
 
 316 */
 317void blk_run_queue_async(struct request_queue *q)
 318{
 319	if (likely(!blk_queue_stopped(q))) {
 320		__cancel_delayed_work(&q->delay_work);
 321		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 322	}
 
 323}
 324EXPORT_SYMBOL(blk_run_queue_async);
 325
 326/**
 327 * blk_run_queue - run a single device queue
 328 * @q: The queue to run
 329 *
 330 * Description:
 331 *    Invoke request handling on this queue, if it has pending work to do.
 332 *    May be used to restart queueing when a request has completed.
 333 */
 334void blk_run_queue(struct request_queue *q)
 335{
 336	unsigned long flags;
 337
 
 
 338	spin_lock_irqsave(q->queue_lock, flags);
 339	__blk_run_queue(q);
 340	spin_unlock_irqrestore(q->queue_lock, flags);
 341}
 342EXPORT_SYMBOL(blk_run_queue);
 343
 344void blk_put_queue(struct request_queue *q)
 345{
 346	kobject_put(&q->kobj);
 347}
 348EXPORT_SYMBOL(blk_put_queue);
 349
 350/*
 351 * Note: If a driver supplied the queue lock, it is disconnected
 352 * by this function. The actual state of the lock doesn't matter
 353 * here as the request_queue isn't accessible after this point
 354 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355 */
 356void blk_cleanup_queue(struct request_queue *q)
 357{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358	/*
 359	 * We know we have process context here, so we can be a little
 360	 * cautious and ensure that pending block actions on this device
 361	 * are done before moving on. Going into this function, we should
 362	 * not have processes doing IO to this device.
 363	 */
 
 
 
 
 
 
 
 
 364	blk_sync_queue(q);
 365
 366	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 367	mutex_lock(&q->sysfs_lock);
 368	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
 369	mutex_unlock(&q->sysfs_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370
 
 371	if (q->queue_lock != &q->__queue_lock)
 372		q->queue_lock = &q->__queue_lock;
 
 373
 
 374	blk_put_queue(q);
 375}
 376EXPORT_SYMBOL(blk_cleanup_queue);
 377
 378static int blk_init_free_list(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379{
 380	struct request_list *rl = &q->rq;
 381
 382	if (unlikely(rl->rq_pool))
 
 
 
 
 
 
 
 
 383		return 0;
 384
 
 385	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 386	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 387	rl->elvpriv = 0;
 388	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 389	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 390
 391	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
 392				mempool_free_slab, request_cachep, q->node);
 393
 
 
 
 
 
 
 394	if (!rl->rq_pool)
 395		return -ENOMEM;
 396
 
 
 
 397	return 0;
 398}
 399
 
 
 
 
 
 
 
 
 
 400struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 401{
 402	return blk_alloc_queue_node(gfp_mask, -1);
 403}
 404EXPORT_SYMBOL(blk_alloc_queue);
 405
 406struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407{
 408	struct request_queue *q;
 409	int err;
 410
 411	q = kmem_cache_alloc_node(blk_requestq_cachep,
 412				gfp_mask | __GFP_ZERO, node_id);
 413	if (!q)
 414		return NULL;
 415
 416	q->backing_dev_info.ra_pages =
 417			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
 418	q->backing_dev_info.state = 0;
 419	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
 420	q->backing_dev_info.name = "block";
 421
 422	err = bdi_init(&q->backing_dev_info);
 423	if (err) {
 424		kmem_cache_free(blk_requestq_cachep, q);
 425		return NULL;
 426	}
 427
 428	if (blk_throtl_init(q)) {
 429		kmem_cache_free(blk_requestq_cachep, q);
 430		return NULL;
 431	}
 
 
 
 
 
 432
 433	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 434		    laptop_mode_timer_fn, (unsigned long) q);
 435	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 
 
 436	INIT_LIST_HEAD(&q->timeout_list);
 437	INIT_LIST_HEAD(&q->flush_queue[0]);
 438	INIT_LIST_HEAD(&q->flush_queue[1]);
 439	INIT_LIST_HEAD(&q->flush_data_in_flight);
 
 440	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 441
 442	kobject_init(&q->kobj, &blk_queue_ktype);
 443
 
 
 
 444	mutex_init(&q->sysfs_lock);
 445	spin_lock_init(&q->__queue_lock);
 446
 
 
 
 447	/*
 448	 * By default initialize queue_lock to internal lock and driver can
 449	 * override it later if need be.
 
 
 450	 */
 451	q->queue_lock = &q->__queue_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452
 453	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454}
 455EXPORT_SYMBOL(blk_alloc_queue_node);
 456
 457/**
 458 * blk_init_queue  - prepare a request queue for use with a block device
 459 * @rfn:  The function to be called to process requests that have been
 460 *        placed on the queue.
 461 * @lock: Request queue spin lock
 462 *
 463 * Description:
 464 *    If a block device wishes to use the standard request handling procedures,
 465 *    which sorts requests and coalesces adjacent requests, then it must
 466 *    call blk_init_queue().  The function @rfn will be called when there
 467 *    are requests on the queue that need to be processed.  If the device
 468 *    supports plugging, then @rfn may not be called immediately when requests
 469 *    are available on the queue, but may be called at some time later instead.
 470 *    Plugged queues are generally unplugged when a buffer belonging to one
 471 *    of the requests on the queue is needed, or due to memory pressure.
 472 *
 473 *    @rfn is not required, or even expected, to remove all requests off the
 474 *    queue, but only as many as it can handle at a time.  If it does leave
 475 *    requests on the queue, it is responsible for arranging that the requests
 476 *    get dealt with eventually.
 477 *
 478 *    The queue spin lock must be held while manipulating the requests on the
 479 *    request queue; this lock will be taken also from interrupt context, so irq
 480 *    disabling is needed for it.
 481 *
 482 *    Function returns a pointer to the initialized request queue, or %NULL if
 483 *    it didn't succeed.
 484 *
 485 * Note:
 486 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 487 *    when the block device is deactivated (such as at module unload).
 488 **/
 489
 490struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 491{
 492	return blk_init_queue_node(rfn, lock, -1);
 493}
 494EXPORT_SYMBOL(blk_init_queue);
 495
 496struct request_queue *
 497blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 498{
 499	struct request_queue *uninit_q, *q;
 500
 501	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 502	if (!uninit_q)
 503		return NULL;
 504
 505	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
 506	if (!q)
 507		blk_cleanup_queue(uninit_q);
 
 
 508
 509	return q;
 510}
 511EXPORT_SYMBOL(blk_init_queue_node);
 512
 513struct request_queue *
 514blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 515			 spinlock_t *lock)
 
 516{
 517	return blk_init_allocated_queue_node(q, rfn, lock, -1);
 518}
 519EXPORT_SYMBOL(blk_init_allocated_queue);
 
 
 520
 521struct request_queue *
 522blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
 523			      spinlock_t *lock, int node_id)
 524{
 525	if (!q)
 526		return NULL;
 527
 528	q->node = node_id;
 529	if (blk_init_free_list(q))
 530		return NULL;
 531
 532	q->request_fn		= rfn;
 533	q->prep_rq_fn		= NULL;
 534	q->unprep_rq_fn		= NULL;
 535	q->queue_flags		= QUEUE_FLAG_DEFAULT;
 536
 537	/* Override internal queue lock with supplied lock pointer */
 538	if (lock)
 539		q->queue_lock		= lock;
 540
 541	/*
 542	 * This also sets hw/phys segments, boundary and size
 543	 */
 544	blk_queue_make_request(q, __make_request);
 545
 546	q->sg_reserved_size = INT_MAX;
 547
 548	/*
 549	 * all done
 550	 */
 551	if (!elevator_init(q, NULL)) {
 552		blk_queue_congestion_threshold(q);
 553		return q;
 
 554	}
 555
 556	return NULL;
 
 
 
 
 
 
 
 
 557}
 558EXPORT_SYMBOL(blk_init_allocated_queue_node);
 559
 560int blk_get_queue(struct request_queue *q)
 561{
 562	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
 563		kobject_get(&q->kobj);
 564		return 0;
 565	}
 566
 567	return 1;
 568}
 569EXPORT_SYMBOL(blk_get_queue);
 570
 571static inline void blk_free_request(struct request_queue *q, struct request *rq)
 572{
 573	if (rq->cmd_flags & REQ_ELVPRIV)
 574		elv_put_request(q, rq);
 575	mempool_free(rq, q->rq.rq_pool);
 576}
 577
 578static struct request *
 579blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
 580{
 581	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
 582
 583	if (!rq)
 584		return NULL;
 585
 586	blk_rq_init(q, rq);
 587
 588	rq->cmd_flags = flags | REQ_ALLOCED;
 589
 590	if (priv) {
 591		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
 592			mempool_free(rq, q->rq.rq_pool);
 593			return NULL;
 594		}
 595		rq->cmd_flags |= REQ_ELVPRIV;
 596	}
 597
 598	return rq;
 599}
 600
 601/*
 602 * ioc_batching returns true if the ioc is a valid batching request and
 603 * should be given priority access to a request.
 604 */
 605static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 606{
 607	if (!ioc)
 608		return 0;
 609
 610	/*
 611	 * Make sure the process is able to allocate at least 1 request
 612	 * even if the batch times out, otherwise we could theoretically
 613	 * lose wakeups.
 614	 */
 615	return ioc->nr_batch_requests == q->nr_batching ||
 616		(ioc->nr_batch_requests > 0
 617		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 618}
 619
 620/*
 621 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 622 * will cause the process to be a "batcher" on all queues in the system. This
 623 * is the behaviour we want though - once it gets a wakeup it should be given
 624 * a nice run.
 625 */
 626static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 627{
 628	if (!ioc || ioc_batching(q, ioc))
 629		return;
 630
 631	ioc->nr_batch_requests = q->nr_batching;
 632	ioc->last_waited = jiffies;
 633}
 634
 635static void __freed_request(struct request_queue *q, int sync)
 636{
 637	struct request_list *rl = &q->rq;
 638
 639	if (rl->count[sync] < queue_congestion_off_threshold(q))
 640		blk_clear_queue_congested(q, sync);
 641
 642	if (rl->count[sync] + 1 <= q->nr_requests) {
 643		if (waitqueue_active(&rl->wait[sync]))
 644			wake_up(&rl->wait[sync]);
 645
 646		blk_clear_queue_full(q, sync);
 647	}
 648}
 649
 650/*
 651 * A request has just been released.  Account for it, update the full and
 652 * congestion status, wake up any waiters.   Called under q->queue_lock.
 653 */
 654static void freed_request(struct request_queue *q, int sync, int priv)
 
 655{
 656	struct request_list *rl = &q->rq;
 657
 
 658	rl->count[sync]--;
 659	if (priv)
 660		rl->elvpriv--;
 661
 662	__freed_request(q, sync);
 663
 664	if (unlikely(rl->starved[sync ^ 1]))
 665		__freed_request(q, sync ^ 1);
 666}
 667
 668/*
 669 * Determine if elevator data should be initialized when allocating the
 670 * request associated with @bio.
 671 */
 672static bool blk_rq_should_init_elevator(struct bio *bio)
 673{
 674	if (!bio)
 675		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676
 677	/*
 678	 * Flush requests do not use the elevator so skip initialization.
 679	 * This allows a request to share the flush and elevator data.
 680	 */
 681	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
 682		return false;
 
 683
 684	return true;
 
 685}
 686
 687/*
 688 * Get a free request, queue_lock must be held.
 689 * Returns NULL on failure, with queue_lock held.
 690 * Returns !NULL on success, with queue_lock *not held*.
 691 */
 692static struct request *get_request(struct request_queue *q, int rw_flags,
 693				   struct bio *bio, gfp_t gfp_mask)
 694{
 695	struct request *rq = NULL;
 696	struct request_list *rl = &q->rq;
 697	struct io_context *ioc = NULL;
 698	const bool is_sync = rw_is_sync(rw_flags) != 0;
 699	int may_queue, priv = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700
 701	may_queue = elv_may_queue(q, rw_flags);
 702	if (may_queue == ELV_MQUEUE_NO)
 703		goto rq_starved;
 704
 705	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
 706		if (rl->count[is_sync]+1 >= q->nr_requests) {
 707			ioc = current_io_context(GFP_ATOMIC, q->node);
 708			/*
 709			 * The queue will fill after this allocation, so set
 710			 * it as full, and mark this process as "batching".
 711			 * This process will be allowed to complete a batch of
 712			 * requests, others will be blocked.
 713			 */
 714			if (!blk_queue_full(q, is_sync)) {
 715				ioc_set_batching(q, ioc);
 716				blk_set_queue_full(q, is_sync);
 717			} else {
 718				if (may_queue != ELV_MQUEUE_MUST
 719						&& !ioc_batching(q, ioc)) {
 720					/*
 721					 * The queue is full and the allocating
 722					 * process is not a "batcher", and not
 723					 * exempted by the IO scheduler
 724					 */
 725					goto out;
 726				}
 727			}
 728		}
 729		blk_set_queue_congested(q, is_sync);
 730	}
 731
 732	/*
 733	 * Only allow batching queuers to allocate up to 50% over the defined
 734	 * limit of requests, otherwise we could have thousands of requests
 735	 * allocated with any setting of ->nr_requests
 736	 */
 737	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
 738		goto out;
 739
 
 740	rl->count[is_sync]++;
 741	rl->starved[is_sync] = 0;
 742
 743	if (blk_rq_should_init_elevator(bio)) {
 744		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
 745		if (priv)
 746			rl->elvpriv++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	}
 748
 749	if (blk_queue_io_stat(q))
 750		rw_flags |= REQ_IO_STAT;
 751	spin_unlock_irq(q->queue_lock);
 752
 753	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
 754	if (unlikely(!rq)) {
 755		/*
 756		 * Allocation failed presumably due to memory. Undo anything
 757		 * we might have messed up.
 758		 *
 759		 * Allocating task should really be put onto the front of the
 760		 * wait queue, but this is pretty rare.
 761		 */
 762		spin_lock_irq(q->queue_lock);
 763		freed_request(q, is_sync, priv);
 764
 765		/*
 766		 * in the very unlikely event that allocation failed and no
 767		 * requests for this direction was pending, mark us starved
 768		 * so that freeing of a request in the other direction will
 769		 * notice us. another possible fix would be to split the
 770		 * rq mempool into READ and WRITE
 771		 */
 772rq_starved:
 773		if (unlikely(rl->count[is_sync] == 0))
 774			rl->starved[is_sync] = 1;
 775
 776		goto out;
 
 
 
 
 
 
 
 
 
 
 
 777	}
 778
 779	/*
 780	 * ioc may be NULL here, and ioc_batching will be false. That's
 781	 * OK, if the queue is under the request limit then requests need
 782	 * not count toward the nr_batch_requests limit. There will always
 783	 * be some limit enforced by BLK_BATCH_TIME.
 784	 */
 785	if (ioc_batching(q, ioc))
 786		ioc->nr_batch_requests--;
 787
 788	trace_block_getrq(q, bio, rw_flags & 1);
 789out:
 790	return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791}
 792
 793/*
 794 * No available requests for this queue, wait for some requests to become
 795 * available.
 
 
 
 
 
 
 796 *
 797 * Called with q->queue_lock held, and returns with it unlocked.
 
 
 798 */
 799static struct request *get_request_wait(struct request_queue *q, int rw_flags,
 800					struct bio *bio)
 801{
 802	const bool is_sync = rw_is_sync(rw_flags) != 0;
 
 
 803	struct request *rq;
 804
 805	rq = get_request(q, rw_flags, bio, GFP_NOIO);
 806	while (!rq) {
 807		DEFINE_WAIT(wait);
 808		struct io_context *ioc;
 809		struct request_list *rl = &q->rq;
 810
 811		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
 812				TASK_UNINTERRUPTIBLE);
 
 
 
 813
 814		trace_block_sleeprq(q, bio, rw_flags & 1);
 
 
 
 815
 816		spin_unlock_irq(q->queue_lock);
 817		io_schedule();
 
 
 
 
 
 
 
 
 818
 819		/*
 820		 * After sleeping, we become a "batching" process and
 821		 * will be able to allocate at least one request, and
 822		 * up to a big batch of them for a small period time.
 823		 * See ioc_batching, ioc_set_batching
 824		 */
 825		ioc = current_io_context(GFP_NOIO, q->node);
 826		ioc_set_batching(q, ioc);
 827
 828		spin_lock_irq(q->queue_lock);
 829		finish_wait(&rl->wait[is_sync], &wait);
 
 
 
 
 830
 831		rq = get_request(q, rw_flags, bio, GFP_NOIO);
 832	};
 833
 834	return rq;
 835}
 836
 837struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
 
 
 838{
 839	struct request *rq;
 840
 841	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
 842		return NULL;
 843
 844	BUG_ON(rw != READ && rw != WRITE);
 845
 
 
 
 
 
 
 846	spin_lock_irq(q->queue_lock);
 847	if (gfp_mask & __GFP_WAIT) {
 848		rq = get_request_wait(q, rw, NULL);
 849	} else {
 850		rq = get_request(q, rw, NULL, gfp_mask);
 851		if (!rq)
 852			spin_unlock_irq(q->queue_lock);
 853	}
 
 854	/* q->queue_lock is unlocked at this point */
 855
 
 
 856	return rq;
 857}
 858EXPORT_SYMBOL(blk_get_request);
 859
 860/**
 861 * blk_make_request - given a bio, allocate a corresponding struct request.
 862 * @q: target request queue
 863 * @bio:  The bio describing the memory mappings that will be submitted for IO.
 864 *        It may be a chained-bio properly constructed by block/bio layer.
 865 * @gfp_mask: gfp flags to be used for memory allocation
 866 *
 867 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
 868 * type commands. Where the struct request needs to be farther initialized by
 869 * the caller. It is passed a &struct bio, which describes the memory info of
 870 * the I/O transfer.
 871 *
 872 * The caller of blk_make_request must make sure that bi_io_vec
 873 * are set to describe the memory buffers. That bio_data_dir() will return
 874 * the needed direction of the request. (And all bio's in the passed bio-chain
 875 * are properly set accordingly)
 876 *
 877 * If called under none-sleepable conditions, mapped bio buffers must not
 878 * need bouncing, by calling the appropriate masked or flagged allocator,
 879 * suitable for the target device. Otherwise the call to blk_queue_bounce will
 880 * BUG.
 881 *
 882 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
 883 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
 884 * anything but the first bio in the chain. Otherwise you risk waiting for IO
 885 * completion of a bio that hasn't been submitted yet, thus resulting in a
 886 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
 887 * of bio_alloc(), as that avoids the mempool deadlock.
 888 * If possible a big IO should be split into smaller parts when allocation
 889 * fails. Partial allocation should not be an error, or you risk a live-lock.
 890 */
 891struct request *blk_make_request(struct request_queue *q, struct bio *bio,
 892				 gfp_t gfp_mask)
 893{
 894	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
 895
 896	if (unlikely(!rq))
 897		return ERR_PTR(-ENOMEM);
 898
 899	for_each_bio(bio) {
 900		struct bio *bounce_bio = bio;
 901		int ret;
 902
 903		blk_queue_bounce(q, &bounce_bio);
 904		ret = blk_rq_append_bio(q, rq, bounce_bio);
 905		if (unlikely(ret)) {
 906			blk_put_request(rq);
 907			return ERR_PTR(ret);
 908		}
 909	}
 910
 911	return rq;
 
 
 
 
 
 
 
 
 912}
 913EXPORT_SYMBOL(blk_make_request);
 914
 915/**
 916 * blk_requeue_request - put a request back on queue
 917 * @q:		request queue where request should be inserted
 918 * @rq:		request to be inserted
 919 *
 920 * Description:
 921 *    Drivers often keep queueing requests until the hardware cannot accept
 922 *    more, when that condition happens we need to put the request back
 923 *    on the queue. Must be called with queue lock held.
 924 */
 925void blk_requeue_request(struct request_queue *q, struct request *rq)
 926{
 
 
 
 927	blk_delete_timer(rq);
 928	blk_clear_rq_complete(rq);
 929	trace_block_rq_requeue(q, rq);
 
 930
 931	if (blk_rq_tagged(rq))
 932		blk_queue_end_tag(q, rq);
 933
 934	BUG_ON(blk_queued_rq(rq));
 935
 936	elv_requeue_request(q, rq);
 937}
 938EXPORT_SYMBOL(blk_requeue_request);
 939
 940static void add_acct_request(struct request_queue *q, struct request *rq,
 941			     int where)
 942{
 943	drive_stat_acct(rq, 1);
 944	__elv_add_request(q, rq, where);
 945}
 946
 947/**
 948 * blk_insert_request - insert a special request into a request queue
 949 * @q:		request queue where request should be inserted
 950 * @rq:		request to be inserted
 951 * @at_head:	insert request at head or tail of queue
 952 * @data:	private data
 953 *
 954 * Description:
 955 *    Many block devices need to execute commands asynchronously, so they don't
 956 *    block the whole kernel from preemption during request execution.  This is
 957 *    accomplished normally by inserting aritficial requests tagged as
 958 *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
 959 *    be scheduled for actual execution by the request queue.
 960 *
 961 *    We have the option of inserting the head or the tail of the queue.
 962 *    Typically we use the tail for new ioctls and so forth.  We use the head
 963 *    of the queue for things like a QUEUE_FULL message from a device, or a
 964 *    host that is unable to accept a particular command.
 965 */
 966void blk_insert_request(struct request_queue *q, struct request *rq,
 967			int at_head, void *data)
 968{
 969	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
 970	unsigned long flags;
 971
 972	/*
 973	 * tell I/O scheduler that this isn't a regular read/write (ie it
 974	 * must not attempt merges on this) and that it acts as a soft
 975	 * barrier
 976	 */
 977	rq->cmd_type = REQ_TYPE_SPECIAL;
 978
 979	rq->special = data;
 980
 981	spin_lock_irqsave(q->queue_lock, flags);
 982
 983	/*
 984	 * If command is tagged, release the tag
 985	 */
 986	if (blk_rq_tagged(rq))
 987		blk_queue_end_tag(q, rq);
 988
 989	add_acct_request(q, rq, where);
 990	__blk_run_queue(q);
 991	spin_unlock_irqrestore(q->queue_lock, flags);
 992}
 993EXPORT_SYMBOL(blk_insert_request);
 994
 995static void part_round_stats_single(int cpu, struct hd_struct *part,
 996				    unsigned long now)
 997{
 998	if (now == part->stamp)
 999		return;
1000
1001	if (part_in_flight(part)) {
1002		__part_stat_add(cpu, part, time_in_queue,
1003				part_in_flight(part) * (now - part->stamp));
1004		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1005	}
1006	part->stamp = now;
1007}
1008
1009/**
1010 * part_round_stats() - Round off the performance stats on a struct disk_stats.
 
1011 * @cpu: cpu number for stats access
1012 * @part: target partition
1013 *
1014 * The average IO queue length and utilisation statistics are maintained
1015 * by observing the current state of the queue length and the amount of
1016 * time it has been in this state for.
1017 *
1018 * Normally, that accounting is done on IO completion, but that can result
1019 * in more than a second's worth of IO being accounted for within any one
1020 * second, leading to >100% utilisation.  To deal with that, we call this
1021 * function to do a round-off before returning the results when reading
1022 * /proc/diskstats.  This accounts immediately for all queue usage up to
1023 * the current jiffies and restarts the counters again.
1024 */
1025void part_round_stats(int cpu, struct hd_struct *part)
1026{
 
1027	unsigned long now = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
1029	if (part->partno)
1030		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1031	part_round_stats_single(cpu, part, now);
 
1032}
1033EXPORT_SYMBOL_GPL(part_round_stats);
1034
1035/*
1036 * queue lock must be held
1037 */
 
 
 
 
 
 
 
1038void __blk_put_request(struct request_queue *q, struct request *req)
1039{
 
 
1040	if (unlikely(!q))
1041		return;
1042	if (unlikely(--req->ref_count))
 
 
1043		return;
 
 
 
 
 
 
1044
1045	elv_completed_request(q, req);
1046
1047	/* this is a bio leak */
1048	WARN_ON(req->bio != NULL);
1049
 
 
1050	/*
1051	 * Request may not have originated from ll_rw_blk. if not,
1052	 * it didn't come out of our reserved rq pools
1053	 */
1054	if (req->cmd_flags & REQ_ALLOCED) {
1055		int is_sync = rq_is_sync(req) != 0;
1056		int priv = req->cmd_flags & REQ_ELVPRIV;
1057
1058		BUG_ON(!list_empty(&req->queuelist));
1059		BUG_ON(!hlist_unhashed(&req->hash));
1060
1061		blk_free_request(q, req);
1062		freed_request(q, is_sync, priv);
 
 
1063	}
1064}
1065EXPORT_SYMBOL_GPL(__blk_put_request);
1066
1067void blk_put_request(struct request *req)
1068{
1069	unsigned long flags;
1070	struct request_queue *q = req->q;
1071
1072	spin_lock_irqsave(q->queue_lock, flags);
1073	__blk_put_request(q, req);
1074	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
1075}
1076EXPORT_SYMBOL(blk_put_request);
1077
1078/**
1079 * blk_add_request_payload - add a payload to a request
1080 * @rq: request to update
1081 * @page: page backing the payload
1082 * @len: length of the payload.
1083 *
1084 * This allows to later add a payload to an already submitted request by
1085 * a block driver.  The driver needs to take care of freeing the payload
1086 * itself.
1087 *
1088 * Note that this is a quite horrible hack and nothing but handling of
1089 * discard requests should ever use it.
1090 */
1091void blk_add_request_payload(struct request *rq, struct page *page,
1092		unsigned int len)
1093{
1094	struct bio *bio = rq->bio;
1095
1096	bio->bi_io_vec->bv_page = page;
1097	bio->bi_io_vec->bv_offset = 0;
1098	bio->bi_io_vec->bv_len = len;
1099
1100	bio->bi_size = len;
1101	bio->bi_vcnt = 1;
1102	bio->bi_phys_segments = 1;
1103
1104	rq->__data_len = rq->resid_len = len;
1105	rq->nr_phys_segments = 1;
1106	rq->buffer = bio_data(bio);
1107}
1108EXPORT_SYMBOL_GPL(blk_add_request_payload);
1109
1110static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1111				   struct bio *bio)
1112{
1113	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1114
1115	if (!ll_back_merge_fn(q, req, bio))
1116		return false;
1117
1118	trace_block_bio_backmerge(q, bio);
1119
1120	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1121		blk_rq_set_mixed_merge(req);
1122
1123	req->biotail->bi_next = bio;
1124	req->biotail = bio;
1125	req->__data_len += bio->bi_size;
1126	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1127
1128	drive_stat_acct(req, 0);
1129	elv_bio_merged(q, req, bio);
1130	return true;
1131}
1132
1133static bool bio_attempt_front_merge(struct request_queue *q,
1134				    struct request *req, struct bio *bio)
1135{
1136	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1137
1138	if (!ll_front_merge_fn(q, req, bio))
1139		return false;
1140
1141	trace_block_bio_frontmerge(q, bio);
1142
1143	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1144		blk_rq_set_mixed_merge(req);
1145
1146	bio->bi_next = req->bio;
1147	req->bio = bio;
1148
1149	/*
1150	 * may not be valid. if the low level driver said
1151	 * it didn't need a bounce buffer then it better
1152	 * not touch req->buffer either...
1153	 */
1154	req->buffer = bio_data(bio);
1155	req->__sector = bio->bi_sector;
1156	req->__data_len += bio->bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
 
1158
1159	drive_stat_acct(req, 0);
1160	elv_bio_merged(q, req, bio);
1161	return true;
 
 
 
1162}
1163
1164/*
1165 * Attempts to merge with the plugged list in the current process. Returns
1166 * true if merge was successful, otherwise false.
1167 */
1168static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1169			       struct bio *bio, unsigned int *request_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170{
1171	struct blk_plug *plug;
1172	struct request *rq;
1173	bool ret = false;
1174
1175	plug = tsk->plug;
1176	if (!plug)
1177		goto out;
1178	*request_count = 0;
1179
1180	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1181		int el_ret;
 
 
 
 
 
1182
1183		(*request_count)++;
 
 
 
 
 
 
 
 
 
1184
1185		if (rq->q != q)
1186			continue;
1187
1188		el_ret = elv_try_merge(rq, bio);
1189		if (el_ret == ELEVATOR_BACK_MERGE) {
1190			ret = bio_attempt_back_merge(q, rq, bio);
1191			if (ret)
1192				break;
1193		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1194			ret = bio_attempt_front_merge(q, rq, bio);
1195			if (ret)
1196				break;
 
 
 
1197		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198	}
1199out:
1200	return ret;
1201}
1202
1203void init_request_from_bio(struct request *req, struct bio *bio)
1204{
1205	req->cpu = bio->bi_comp_cpu;
1206	req->cmd_type = REQ_TYPE_FS;
1207
1208	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1209	if (bio->bi_rw & REQ_RAHEAD)
1210		req->cmd_flags |= REQ_FAILFAST_MASK;
1211
1212	req->errors = 0;
1213	req->__sector = bio->bi_sector;
1214	req->ioprio = bio_prio(bio);
 
 
 
 
 
1215	blk_rq_bio_prep(req->q, req, bio);
1216}
 
1217
1218static int __make_request(struct request_queue *q, struct bio *bio)
1219{
1220	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1221	struct blk_plug *plug;
1222	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1223	struct request *req;
1224	unsigned int request_count = 0;
 
1225
1226	/*
1227	 * low level driver can indicate that it wants pages above a
1228	 * certain limit bounced to low memory (ie for highmem, or even
1229	 * ISA dma in theory)
1230	 */
1231	blk_queue_bounce(q, &bio);
1232
1233	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
 
 
 
 
 
1234		spin_lock_irq(q->queue_lock);
1235		where = ELEVATOR_INSERT_FLUSH;
1236		goto get_rq;
1237	}
1238
1239	/*
1240	 * Check if we can merge with the plugged list before grabbing
1241	 * any locks.
1242	 */
1243	if (attempt_plug_merge(current, q, bio, &request_count))
1244		goto out;
 
 
 
1245
1246	spin_lock_irq(q->queue_lock);
1247
1248	el_ret = elv_merge(q, &req, bio);
1249	if (el_ret == ELEVATOR_BACK_MERGE) {
1250		if (bio_attempt_back_merge(q, req, bio)) {
1251			if (!attempt_back_merge(q, req))
1252				elv_merged_request(q, req, el_ret);
1253			goto out_unlock;
1254		}
1255	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1256		if (bio_attempt_front_merge(q, req, bio)) {
1257			if (!attempt_front_merge(q, req))
1258				elv_merged_request(q, req, el_ret);
1259			goto out_unlock;
1260		}
 
 
 
 
 
 
 
 
 
 
1261	}
1262
1263get_rq:
1264	/*
1265	 * This sync check and mask will be re-done in init_request_from_bio(),
1266	 * but we need to set it earlier to expose the sync flag to the
1267	 * rq allocator and io schedulers.
1268	 */
1269	rw_flags = bio_data_dir(bio);
1270	if (sync)
1271		rw_flags |= REQ_SYNC;
1272
1273	/*
1274	 * Grab a free request. This is might sleep but can not fail.
1275	 * Returns with the queue unlocked.
1276	 */
1277	req = get_request_wait(q, rw_flags, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
1278
1279	/*
1280	 * After dropping the lock and possibly sleeping here, our request
1281	 * may now be mergeable after it had proven unmergeable (above).
1282	 * We don't worry about that case for efficiency. It won't happen
1283	 * often, and the elevators are able to handle it.
1284	 */
1285	init_request_from_bio(req, bio);
1286
1287	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1288	    bio_flagged(bio, BIO_CPU_AFFINE))
1289		req->cpu = raw_smp_processor_id();
1290
1291	plug = current->plug;
1292	if (plug) {
1293		/*
1294		 * If this is the first request added after a plug, fire
1295		 * of a plug trace. If others have been added before, check
1296		 * if we have multiple devices in this plug. If so, make a
1297		 * note to sort the list before dispatch.
 
1298		 */
1299		if (list_empty(&plug->list))
1300			trace_block_plug(q);
1301		else if (!plug->should_sort) {
1302			struct request *__rq;
1303
1304			__rq = list_entry_rq(plug->list.prev);
1305			if (__rq->q != q)
1306				plug->should_sort = 1;
 
1307		}
1308		if (request_count >= BLK_MAX_REQUEST_COUNT)
1309			blk_flush_plug_list(plug, false);
1310		list_add_tail(&req->queuelist, &plug->list);
1311		drive_stat_acct(req, 1);
1312	} else {
1313		spin_lock_irq(q->queue_lock);
1314		add_acct_request(q, req, where);
1315		__blk_run_queue(q);
1316out_unlock:
1317		spin_unlock_irq(q->queue_lock);
1318	}
1319out:
1320	return 0;
1321}
1322
1323/*
1324 * If bio->bi_dev is a partition, remap the location
1325 */
1326static inline void blk_partition_remap(struct bio *bio)
1327{
1328	struct block_device *bdev = bio->bi_bdev;
1329
1330	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1331		struct hd_struct *p = bdev->bd_part;
1332
1333		bio->bi_sector += p->start_sect;
1334		bio->bi_bdev = bdev->bd_contains;
1335
1336		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1337				      bdev->bd_dev,
1338				      bio->bi_sector - p->start_sect);
1339	}
1340}
1341
1342static void handle_bad_sector(struct bio *bio)
1343{
1344	char b[BDEVNAME_SIZE];
1345
1346	printk(KERN_INFO "attempt to access beyond end of device\n");
1347	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1348			bdevname(bio->bi_bdev, b),
1349			bio->bi_rw,
1350			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1351			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1352
1353	set_bit(BIO_EOF, &bio->bi_flags);
1354}
1355
1356#ifdef CONFIG_FAIL_MAKE_REQUEST
1357
1358static DECLARE_FAULT_ATTR(fail_make_request);
1359
1360static int __init setup_fail_make_request(char *str)
1361{
1362	return setup_fault_attr(&fail_make_request, str);
1363}
1364__setup("fail_make_request=", setup_fail_make_request);
1365
1366static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1367{
1368	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1369}
1370
1371static int __init fail_make_request_debugfs(void)
1372{
1373	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1374						NULL, &fail_make_request);
1375
1376	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1377}
1378
1379late_initcall(fail_make_request_debugfs);
1380
1381#else /* CONFIG_FAIL_MAKE_REQUEST */
1382
1383static inline bool should_fail_request(struct hd_struct *part,
1384					unsigned int bytes)
1385{
1386	return false;
1387}
1388
1389#endif /* CONFIG_FAIL_MAKE_REQUEST */
1390
1391/*
1392 * Check whether this bio extends beyond the end of the device.
1393 */
1394static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1395{
1396	sector_t maxsector;
 
1397
1398	if (!nr_sectors)
1399		return 0;
 
 
 
 
1400
1401	/* Test device or partition size, when known. */
1402	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1403	if (maxsector) {
1404		sector_t sector = bio->bi_sector;
1405
1406		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1407			/*
1408			 * This may well happen - the kernel calls bread()
1409			 * without checking the size of the device, e.g., when
1410			 * mounting a device.
1411			 */
1412			handle_bad_sector(bio);
1413			return 1;
1414		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1415	}
1416
1417	return 0;
1418}
1419
1420/**
1421 * generic_make_request - hand a buffer to its device driver for I/O
1422 * @bio:  The bio describing the location in memory and on the device.
1423 *
1424 * generic_make_request() is used to make I/O requests of block
1425 * devices. It is passed a &struct bio, which describes the I/O that needs
1426 * to be done.
1427 *
1428 * generic_make_request() does not return any status.  The
1429 * success/failure status of the request, along with notification of
1430 * completion, is delivered asynchronously through the bio->bi_end_io
1431 * function described (one day) else where.
1432 *
1433 * The caller of generic_make_request must make sure that bi_io_vec
1434 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1435 * set to describe the device address, and the
1436 * bi_end_io and optionally bi_private are set to describe how
1437 * completion notification should be signaled.
1438 *
1439 * generic_make_request and the drivers it calls may use bi_next if this
1440 * bio happens to be merged with someone else, and may change bi_dev and
1441 * bi_sector for remaps as it sees fit.  So the values of these fields
1442 * should NOT be depended on after the call to generic_make_request.
1443 */
1444static inline void __generic_make_request(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445{
1446	struct request_queue *q;
1447	sector_t old_sector;
1448	int ret, nr_sectors = bio_sectors(bio);
1449	dev_t old_dev;
1450	int err = -EIO;
1451
1452	might_sleep();
1453
1454	if (bio_check_eod(bio, nr_sectors))
 
 
 
 
 
1455		goto end_io;
 
1456
1457	/*
1458	 * Resolve the mapping until finished. (drivers are
1459	 * still free to implement/resolve their own stacking
1460	 * by explicitly returning 0)
1461	 *
1462	 * NOTE: we don't repeat the blk_size check for each new device.
1463	 * Stacking drivers are expected to know what they are doing.
1464	 */
1465	old_sector = -1;
1466	old_dev = 0;
1467	do {
1468		char b[BDEVNAME_SIZE];
1469		struct hd_struct *part;
1470
1471		q = bdev_get_queue(bio->bi_bdev);
1472		if (unlikely(!q)) {
1473			printk(KERN_ERR
1474			       "generic_make_request: Trying to access "
1475				"nonexistent block-device %s (%Lu)\n",
1476				bdevname(bio->bi_bdev, b),
1477				(long long) bio->bi_sector);
1478			goto end_io;
1479		}
1480
1481		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1482			     nr_sectors > queue_max_hw_sectors(q))) {
1483			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1484			       bdevname(bio->bi_bdev, b),
1485			       bio_sectors(bio),
1486			       queue_max_hw_sectors(q));
1487			goto end_io;
1488		}
1489
1490		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1491			goto end_io;
1492
1493		part = bio->bi_bdev->bd_part;
1494		if (should_fail_request(part, bio->bi_size) ||
1495		    should_fail_request(&part_to_disk(part)->part0,
1496					bio->bi_size))
1497			goto end_io;
 
1498
1499		/*
1500		 * If this device has partitions, remap block n
1501		 * of partition p to block n+start(p) of the disk.
1502		 */
1503		blk_partition_remap(bio);
1504
1505		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
 
 
 
1506			goto end_io;
1507
1508		if (old_sector != -1)
1509			trace_block_bio_remap(q, bio, old_dev, old_sector);
1510
1511		old_sector = bio->bi_sector;
1512		old_dev = bio->bi_bdev->bd_dev;
1513
1514		if (bio_check_eod(bio, nr_sectors))
1515			goto end_io;
1516
1517		/*
1518		 * Filter flush bio's early so that make_request based
1519		 * drivers without flush support don't have to worry
1520		 * about them.
1521		 */
1522		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1523			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1524			if (!nr_sectors) {
1525				err = 0;
1526				goto end_io;
1527			}
1528		}
 
1529
1530		if ((bio->bi_rw & REQ_DISCARD) &&
1531		    (!blk_queue_discard(q) ||
1532		     ((bio->bi_rw & REQ_SECURE) &&
1533		      !blk_queue_secdiscard(q)))) {
1534			err = -EOPNOTSUPP;
1535			goto end_io;
1536		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538		if (blk_throtl_bio(q, &bio))
1539			goto end_io;
 
 
 
 
 
1540
1541		/*
1542		 * If bio = NULL, bio has been throttled and will be submitted
1543		 * later.
1544		 */
1545		if (!bio)
1546			break;
1547
 
1548		trace_block_bio_queue(q, bio);
 
 
 
 
 
 
1549
1550		ret = q->make_request_fn(q, bio);
1551	} while (ret);
1552
1553	return;
1554
1555end_io:
1556	bio_endio(bio, err);
 
 
1557}
1558
1559/*
1560 * We only want one ->make_request_fn to be active at a time,
1561 * else stack usage with stacked devices could be a problem.
1562 * So use current->bio_list to keep a list of requests
1563 * submited by a make_request_fn function.
1564 * current->bio_list is also used as a flag to say if
1565 * generic_make_request is currently active in this task or not.
1566 * If it is NULL, then no make_request is active.  If it is non-NULL,
1567 * then a make_request is active, and new requests should be added
1568 * at the tail
1569 */
1570void generic_make_request(struct bio *bio)
1571{
1572	struct bio_list bio_list_on_stack;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573
 
 
 
 
 
 
 
 
 
 
1574	if (current->bio_list) {
1575		/* make_request is active */
1576		bio_list_add(current->bio_list, bio);
1577		return;
1578	}
 
1579	/* following loop may be a bit non-obvious, and so deserves some
1580	 * explanation.
1581	 * Before entering the loop, bio->bi_next is NULL (as all callers
1582	 * ensure that) so we have a list with a single bio.
1583	 * We pretend that we have just taken it off a longer list, so
1584	 * we assign bio_list to a pointer to the bio_list_on_stack,
1585	 * thus initialising the bio_list of new bios to be
1586	 * added.  __generic_make_request may indeed add some more bios
1587	 * through a recursive call to generic_make_request.  If it
1588	 * did, we find a non-NULL value in bio_list and re-enter the loop
1589	 * from the top.  In this case we really did just take the bio
1590	 * of the top of the list (no pretending) and so remove it from
1591	 * bio_list, and call into __generic_make_request again.
1592	 *
1593	 * The loop was structured like this to make only one call to
1594	 * __generic_make_request (which is important as it is large and
1595	 * inlined) and to keep the structure simple.
1596	 */
1597	BUG_ON(bio->bi_next);
1598	bio_list_init(&bio_list_on_stack);
1599	current->bio_list = &bio_list_on_stack;
1600	do {
1601		__generic_make_request(bio);
1602		bio = bio_list_pop(current->bio_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603	} while (bio);
1604	current->bio_list = NULL; /* deactivate */
 
 
 
 
 
1605}
1606EXPORT_SYMBOL(generic_make_request);
1607
1608/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609 * submit_bio - submit a bio to the block device layer for I/O
1610 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1611 * @bio: The &struct bio which describes the I/O
1612 *
1613 * submit_bio() is very similar in purpose to generic_make_request(), and
1614 * uses that function to do most of the work. Both are fairly rough
1615 * interfaces; @bio must be presetup and ready for I/O.
1616 *
1617 */
1618void submit_bio(int rw, struct bio *bio)
1619{
1620	int count = bio_sectors(bio);
1621
1622	bio->bi_rw |= rw;
1623
1624	/*
1625	 * If it's a regular read/write or a barrier with data attached,
1626	 * go through the normal accounting stuff before submission.
1627	 */
1628	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1629		if (rw & WRITE) {
 
 
 
 
 
 
 
1630			count_vm_events(PGPGOUT, count);
1631		} else {
1632			task_io_account_read(bio->bi_size);
1633			count_vm_events(PGPGIN, count);
1634		}
1635
1636		if (unlikely(block_dump)) {
1637			char b[BDEVNAME_SIZE];
1638			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1639			current->comm, task_pid_nr(current),
1640				(rw & WRITE) ? "WRITE" : "READ",
1641				(unsigned long long)bio->bi_sector,
1642				bdevname(bio->bi_bdev, b),
1643				count);
1644		}
1645	}
1646
1647	generic_make_request(bio);
1648}
1649EXPORT_SYMBOL(submit_bio);
1650
 
 
 
 
 
 
 
 
 
 
 
1651/**
1652 * blk_rq_check_limits - Helper function to check a request for the queue limit
 
1653 * @q:  the queue
1654 * @rq: the request being checked
1655 *
1656 * Description:
1657 *    @rq may have been made based on weaker limitations of upper-level queues
1658 *    in request stacking drivers, and it may violate the limitation of @q.
1659 *    Since the block layer and the underlying device driver trust @rq
1660 *    after it is inserted to @q, it should be checked against @q before
1661 *    the insertion using this generic function.
1662 *
1663 *    This function should also be useful for request stacking drivers
1664 *    in some cases below, so export this function.
1665 *    Request stacking drivers like request-based dm may change the queue
1666 *    limits while requests are in the queue (e.g. dm's table swapping).
1667 *    Such request stacking drivers should check those requests agaist
1668 *    the new queue limits again when they dispatch those requests,
1669 *    although such checkings are also done against the old queue limits
1670 *    when submitting requests.
1671 */
1672int blk_rq_check_limits(struct request_queue *q, struct request *rq)
 
1673{
1674	if (rq->cmd_flags & REQ_DISCARD)
1675		return 0;
1676
1677	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1678	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1679		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1680		return -EIO;
1681	}
1682
1683	/*
1684	 * queue's settings related to segment counting like q->bounce_pfn
1685	 * may differ from that of other stacking queues.
1686	 * Recalculate it to check the request correctly on this queue's
1687	 * limitation.
1688	 */
1689	blk_recalc_rq_segments(rq);
1690	if (rq->nr_phys_segments > queue_max_segments(q)) {
1691		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1692		return -EIO;
1693	}
1694
1695	return 0;
1696}
1697EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1698
1699/**
1700 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1701 * @q:  the queue to submit the request
1702 * @rq: the request being queued
1703 */
1704int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1705{
1706	unsigned long flags;
1707	int where = ELEVATOR_INSERT_BACK;
1708
1709	if (blk_rq_check_limits(q, rq))
1710		return -EIO;
1711
1712	if (rq->rq_disk &&
1713	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1714		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
1715
1716	spin_lock_irqsave(q->queue_lock, flags);
 
 
 
 
1717
1718	/*
1719	 * Submitting request must be dequeued before calling this function
1720	 * because it will be linked to another request_queue
1721	 */
1722	BUG_ON(blk_queued_rq(rq));
1723
1724	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1725		where = ELEVATOR_INSERT_FLUSH;
1726
1727	add_acct_request(q, rq, where);
 
 
1728	spin_unlock_irqrestore(q->queue_lock, flags);
1729
1730	return 0;
1731}
1732EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1733
1734/**
1735 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1736 * @rq: request to examine
1737 *
1738 * Description:
1739 *     A request could be merge of IOs which require different failure
1740 *     handling.  This function determines the number of bytes which
1741 *     can be failed from the beginning of the request without
1742 *     crossing into area which need to be retried further.
1743 *
1744 * Return:
1745 *     The number of bytes to fail.
1746 *
1747 * Context:
1748 *     queue_lock must be held.
1749 */
1750unsigned int blk_rq_err_bytes(const struct request *rq)
1751{
1752	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1753	unsigned int bytes = 0;
1754	struct bio *bio;
1755
1756	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1757		return blk_rq_bytes(rq);
1758
1759	/*
1760	 * Currently the only 'mixing' which can happen is between
1761	 * different fastfail types.  We can safely fail portions
1762	 * which have all the failfast bits that the first one has -
1763	 * the ones which are at least as eager to fail as the first
1764	 * one.
1765	 */
1766	for (bio = rq->bio; bio; bio = bio->bi_next) {
1767		if ((bio->bi_rw & ff) != ff)
1768			break;
1769		bytes += bio->bi_size;
1770	}
1771
1772	/* this could lead to infinite loop */
1773	BUG_ON(blk_rq_bytes(rq) && !bytes);
1774	return bytes;
1775}
1776EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1777
1778static void blk_account_io_completion(struct request *req, unsigned int bytes)
1779{
1780	if (blk_do_io_stat(req)) {
1781		const int rw = rq_data_dir(req);
1782		struct hd_struct *part;
1783		int cpu;
1784
1785		cpu = part_stat_lock();
1786		part = req->part;
1787		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1788		part_stat_unlock();
1789	}
1790}
1791
1792static void blk_account_io_done(struct request *req)
1793{
1794	/*
1795	 * Account IO completion.  flush_rq isn't accounted as a
1796	 * normal IO on queueing nor completion.  Accounting the
1797	 * containing request is enough.
1798	 */
1799	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1800		unsigned long duration = jiffies - req->start_time;
1801		const int rw = rq_data_dir(req);
1802		struct hd_struct *part;
1803		int cpu;
1804
1805		cpu = part_stat_lock();
1806		part = req->part;
1807
1808		part_stat_inc(cpu, part, ios[rw]);
1809		part_stat_add(cpu, part, ticks[rw], duration);
1810		part_round_stats(cpu, part);
1811		part_dec_in_flight(part, rw);
1812
1813		hd_struct_put(part);
1814		part_stat_unlock();
1815	}
1816}
1817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818/**
1819 * blk_peek_request - peek at the top of a request queue
1820 * @q: request queue to peek at
1821 *
1822 * Description:
1823 *     Return the request at the top of @q.  The returned request
1824 *     should be started using blk_start_request() before LLD starts
1825 *     processing it.
1826 *
1827 * Return:
1828 *     Pointer to the request at the top of @q if available.  Null
1829 *     otherwise.
1830 *
1831 * Context:
1832 *     queue_lock must be held.
1833 */
1834struct request *blk_peek_request(struct request_queue *q)
1835{
1836	struct request *rq;
1837	int ret;
1838
1839	while ((rq = __elv_next_request(q)) != NULL) {
1840		if (!(rq->cmd_flags & REQ_STARTED)) {
 
 
 
1841			/*
1842			 * This is the first time the device driver
1843			 * sees this request (possibly after
1844			 * requeueing).  Notify IO scheduler.
1845			 */
1846			if (rq->cmd_flags & REQ_SORTED)
1847				elv_activate_rq(q, rq);
1848
1849			/*
1850			 * just mark as started even if we don't start
1851			 * it, a request that has been delayed should
1852			 * not be passed by new incoming requests
1853			 */
1854			rq->cmd_flags |= REQ_STARTED;
1855			trace_block_rq_issue(q, rq);
1856		}
1857
1858		if (!q->boundary_rq || q->boundary_rq == rq) {
1859			q->end_sector = rq_end_sector(rq);
1860			q->boundary_rq = NULL;
1861		}
1862
1863		if (rq->cmd_flags & REQ_DONTPREP)
1864			break;
1865
1866		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1867			/*
1868			 * make sure space for the drain appears we
1869			 * know we can do this because max_hw_segments
1870			 * has been adjusted to be one fewer than the
1871			 * device can handle
1872			 */
1873			rq->nr_phys_segments++;
1874		}
1875
1876		if (!q->prep_rq_fn)
1877			break;
1878
1879		ret = q->prep_rq_fn(q, rq);
1880		if (ret == BLKPREP_OK) {
1881			break;
1882		} else if (ret == BLKPREP_DEFER) {
1883			/*
1884			 * the request may have been (partially) prepped.
1885			 * we need to keep this request in the front to
1886			 * avoid resource deadlock.  REQ_STARTED will
1887			 * prevent other fs requests from passing this one.
1888			 */
1889			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1890			    !(rq->cmd_flags & REQ_DONTPREP)) {
1891				/*
1892				 * remove the space for the drain we added
1893				 * so that we don't add it again
1894				 */
1895				--rq->nr_phys_segments;
1896			}
1897
1898			rq = NULL;
1899			break;
1900		} else if (ret == BLKPREP_KILL) {
1901			rq->cmd_flags |= REQ_QUIET;
1902			/*
1903			 * Mark this request as started so we don't trigger
1904			 * any debug logic in the end I/O path.
1905			 */
1906			blk_start_request(rq);
1907			__blk_end_request_all(rq, -EIO);
 
1908		} else {
1909			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1910			break;
1911		}
1912	}
1913
1914	return rq;
1915}
1916EXPORT_SYMBOL(blk_peek_request);
1917
1918void blk_dequeue_request(struct request *rq)
1919{
1920	struct request_queue *q = rq->q;
1921
1922	BUG_ON(list_empty(&rq->queuelist));
1923	BUG_ON(ELV_ON_HASH(rq));
1924
1925	list_del_init(&rq->queuelist);
1926
1927	/*
1928	 * the time frame between a request being removed from the lists
1929	 * and to it is freed is accounted as io that is in progress at
1930	 * the driver side.
1931	 */
1932	if (blk_account_rq(rq)) {
1933		q->in_flight[rq_is_sync(rq)]++;
1934		set_io_start_time_ns(rq);
1935	}
1936}
1937
1938/**
1939 * blk_start_request - start request processing on the driver
1940 * @req: request to dequeue
1941 *
1942 * Description:
1943 *     Dequeue @req and start timeout timer on it.  This hands off the
1944 *     request to the driver.
1945 *
1946 *     Block internal functions which don't want to start timer should
1947 *     call blk_dequeue_request().
1948 *
1949 * Context:
1950 *     queue_lock must be held.
1951 */
1952void blk_start_request(struct request *req)
1953{
 
 
 
1954	blk_dequeue_request(req);
1955
1956	/*
1957	 * We are now handing the request to the hardware, initialize
1958	 * resid_len to full count and add the timeout handler.
1959	 */
1960	req->resid_len = blk_rq_bytes(req);
1961	if (unlikely(blk_bidi_rq(req)))
1962		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1963
 
1964	blk_add_timer(req);
1965}
1966EXPORT_SYMBOL(blk_start_request);
1967
1968/**
1969 * blk_fetch_request - fetch a request from a request queue
1970 * @q: request queue to fetch a request from
1971 *
1972 * Description:
1973 *     Return the request at the top of @q.  The request is started on
1974 *     return and LLD can start processing it immediately.
1975 *
1976 * Return:
1977 *     Pointer to the request at the top of @q if available.  Null
1978 *     otherwise.
1979 *
1980 * Context:
1981 *     queue_lock must be held.
1982 */
1983struct request *blk_fetch_request(struct request_queue *q)
1984{
1985	struct request *rq;
1986
 
 
 
1987	rq = blk_peek_request(q);
1988	if (rq)
1989		blk_start_request(rq);
1990	return rq;
1991}
1992EXPORT_SYMBOL(blk_fetch_request);
1993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1994/**
1995 * blk_update_request - Special helper function for request stacking drivers
1996 * @req:      the request being processed
1997 * @error:    %0 for success, < %0 for error
1998 * @nr_bytes: number of bytes to complete @req
1999 *
2000 * Description:
2001 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2002 *     the request structure even if @req doesn't have leftover.
2003 *     If @req has leftover, sets it up for the next range of segments.
2004 *
2005 *     This special helper function is only for request stacking drivers
2006 *     (e.g. request-based dm) so that they can handle partial completion.
2007 *     Actual device drivers should use blk_end_request instead.
2008 *
2009 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2010 *     %false return from this function.
2011 *
2012 * Return:
2013 *     %false - this request doesn't have any more data
2014 *     %true  - this request has more data
2015 **/
2016bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
 
2017{
2018	int total_bytes, bio_nbytes, next_idx = 0;
2019	struct bio *bio;
 
2020
2021	if (!req->bio)
2022		return false;
2023
2024	trace_block_rq_complete(req->q, req);
2025
2026	/*
2027	 * For fs requests, rq is just carrier of independent bio's
2028	 * and each partial completion should be handled separately.
2029	 * Reset per-request error on each partial completion.
2030	 *
2031	 * TODO: tj: This is too subtle.  It would be better to let
2032	 * low level drivers do what they see fit.
2033	 */
2034	if (req->cmd_type == REQ_TYPE_FS)
2035		req->errors = 0;
2036
2037	if (error && req->cmd_type == REQ_TYPE_FS &&
2038	    !(req->cmd_flags & REQ_QUIET)) {
2039		char *error_type;
2040
2041		switch (error) {
2042		case -ENOLINK:
2043			error_type = "recoverable transport";
2044			break;
2045		case -EREMOTEIO:
2046			error_type = "critical target";
2047			break;
2048		case -EBADE:
2049			error_type = "critical nexus";
2050			break;
2051		case -EIO:
2052		default:
2053			error_type = "I/O";
2054			break;
2055		}
2056		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2057		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2058		       (unsigned long long)blk_rq_pos(req));
2059	}
2060
2061	blk_account_io_completion(req, nr_bytes);
2062
2063	total_bytes = bio_nbytes = 0;
2064	while ((bio = req->bio) != NULL) {
2065		int nbytes;
 
2066
2067		if (nr_bytes >= bio->bi_size) {
2068			req->bio = bio->bi_next;
2069			nbytes = bio->bi_size;
2070			req_bio_endio(req, bio, nbytes, error);
2071			next_idx = 0;
2072			bio_nbytes = 0;
2073		} else {
2074			int idx = bio->bi_idx + next_idx;
2075
2076			if (unlikely(idx >= bio->bi_vcnt)) {
2077				blk_dump_rq_flags(req, "__end_that");
2078				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2079				       __func__, idx, bio->bi_vcnt);
2080				break;
2081			}
2082
2083			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2084			BIO_BUG_ON(nbytes > bio->bi_size);
 
2085
2086			/*
2087			 * not a complete bvec done
2088			 */
2089			if (unlikely(nbytes > nr_bytes)) {
2090				bio_nbytes += nr_bytes;
2091				total_bytes += nr_bytes;
2092				break;
2093			}
2094
2095			/*
2096			 * advance to the next vector
2097			 */
2098			next_idx++;
2099			bio_nbytes += nbytes;
2100		}
2101
2102		total_bytes += nbytes;
2103		nr_bytes -= nbytes;
2104
2105		bio = req->bio;
2106		if (bio) {
2107			/*
2108			 * end more in this run, or just return 'not-done'
2109			 */
2110			if (unlikely(nr_bytes <= 0))
2111				break;
2112		}
2113	}
2114
2115	/*
2116	 * completely done
2117	 */
2118	if (!req->bio) {
2119		/*
2120		 * Reset counters so that the request stacking driver
2121		 * can find how many bytes remain in the request
2122		 * later.
2123		 */
2124		req->__data_len = 0;
2125		return false;
2126	}
2127
2128	/*
2129	 * if the request wasn't completed, update state
2130	 */
2131	if (bio_nbytes) {
2132		req_bio_endio(req, bio, bio_nbytes, error);
2133		bio->bi_idx += next_idx;
2134		bio_iovec(bio)->bv_offset += nr_bytes;
2135		bio_iovec(bio)->bv_len -= nr_bytes;
2136	}
2137
2138	req->__data_len -= total_bytes;
2139	req->buffer = bio_data(req->bio);
2140
2141	/* update sector only for requests with clear definition of sector */
2142	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2143		req->__sector += total_bytes >> 9;
2144
2145	/* mixed attributes always follow the first bio */
2146	if (req->cmd_flags & REQ_MIXED_MERGE) {
2147		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2148		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2149	}
2150
2151	/*
2152	 * If total number of sectors is less than the first segment
2153	 * size, something has gone terribly wrong.
2154	 */
2155	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2156		blk_dump_rq_flags(req, "request botched");
2157		req->__data_len = blk_rq_cur_bytes(req);
 
 
 
 
 
2158	}
2159
2160	/* recalculate the number of segments */
2161	blk_recalc_rq_segments(req);
2162
2163	return true;
2164}
2165EXPORT_SYMBOL_GPL(blk_update_request);
2166
2167static bool blk_update_bidi_request(struct request *rq, int error,
2168				    unsigned int nr_bytes,
2169				    unsigned int bidi_bytes)
2170{
2171	if (blk_update_request(rq, error, nr_bytes))
2172		return true;
2173
2174	/* Bidi request must be completed as a whole */
2175	if (unlikely(blk_bidi_rq(rq)) &&
2176	    blk_update_request(rq->next_rq, error, bidi_bytes))
2177		return true;
2178
2179	if (blk_queue_add_random(rq->q))
2180		add_disk_randomness(rq->rq_disk);
2181
2182	return false;
2183}
2184
2185/**
2186 * blk_unprep_request - unprepare a request
2187 * @req:	the request
2188 *
2189 * This function makes a request ready for complete resubmission (or
2190 * completion).  It happens only after all error handling is complete,
2191 * so represents the appropriate moment to deallocate any resources
2192 * that were allocated to the request in the prep_rq_fn.  The queue
2193 * lock is held when calling this.
2194 */
2195void blk_unprep_request(struct request *req)
2196{
2197	struct request_queue *q = req->q;
2198
2199	req->cmd_flags &= ~REQ_DONTPREP;
2200	if (q->unprep_rq_fn)
2201		q->unprep_rq_fn(q, req);
2202}
2203EXPORT_SYMBOL_GPL(blk_unprep_request);
2204
2205/*
2206 * queue lock must be held
2207 */
2208static void blk_finish_request(struct request *req, int error)
2209{
2210	if (blk_rq_tagged(req))
2211		blk_queue_end_tag(req->q, req);
 
 
 
 
 
 
 
 
2212
2213	BUG_ON(blk_queued_rq(req));
2214
2215	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2216		laptop_io_completion(&req->q->backing_dev_info);
2217
2218	blk_delete_timer(req);
2219
2220	if (req->cmd_flags & REQ_DONTPREP)
2221		blk_unprep_request(req);
2222
2223
2224	blk_account_io_done(req);
2225
2226	if (req->end_io)
 
2227		req->end_io(req, error);
2228	else {
2229		if (blk_bidi_rq(req))
2230			__blk_put_request(req->next_rq->q, req->next_rq);
2231
2232		__blk_put_request(req->q, req);
2233	}
2234}
 
2235
2236/**
2237 * blk_end_bidi_request - Complete a bidi request
2238 * @rq:         the request to complete
2239 * @error:      %0 for success, < %0 for error
2240 * @nr_bytes:   number of bytes to complete @rq
2241 * @bidi_bytes: number of bytes to complete @rq->next_rq
2242 *
2243 * Description:
2244 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2245 *     Drivers that supports bidi can safely call this member for any
2246 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2247 *     just ignored.
2248 *
2249 * Return:
2250 *     %false - we are done with this request
2251 *     %true  - still buffers pending for this request
2252 **/
2253static bool blk_end_bidi_request(struct request *rq, int error,
2254				 unsigned int nr_bytes, unsigned int bidi_bytes)
2255{
2256	struct request_queue *q = rq->q;
2257	unsigned long flags;
2258
 
 
2259	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2260		return true;
2261
2262	spin_lock_irqsave(q->queue_lock, flags);
2263	blk_finish_request(rq, error);
2264	spin_unlock_irqrestore(q->queue_lock, flags);
2265
2266	return false;
2267}
2268
2269/**
2270 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2271 * @rq:         the request to complete
2272 * @error:      %0 for success, < %0 for error
2273 * @nr_bytes:   number of bytes to complete @rq
2274 * @bidi_bytes: number of bytes to complete @rq->next_rq
2275 *
2276 * Description:
2277 *     Identical to blk_end_bidi_request() except that queue lock is
2278 *     assumed to be locked on entry and remains so on return.
2279 *
2280 * Return:
2281 *     %false - we are done with this request
2282 *     %true  - still buffers pending for this request
2283 **/
2284bool __blk_end_bidi_request(struct request *rq, int error,
2285				   unsigned int nr_bytes, unsigned int bidi_bytes)
2286{
 
 
 
2287	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2288		return true;
2289
2290	blk_finish_request(rq, error);
2291
2292	return false;
2293}
2294
2295/**
2296 * blk_end_request - Helper function for drivers to complete the request.
2297 * @rq:       the request being processed
2298 * @error:    %0 for success, < %0 for error
2299 * @nr_bytes: number of bytes to complete
2300 *
2301 * Description:
2302 *     Ends I/O on a number of bytes attached to @rq.
2303 *     If @rq has leftover, sets it up for the next range of segments.
2304 *
2305 * Return:
2306 *     %false - we are done with this request
2307 *     %true  - still buffers pending for this request
2308 **/
2309bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
 
2310{
 
2311	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2312}
2313EXPORT_SYMBOL(blk_end_request);
2314
2315/**
2316 * blk_end_request_all - Helper function for drives to finish the request.
2317 * @rq: the request to finish
2318 * @error: %0 for success, < %0 for error
2319 *
2320 * Description:
2321 *     Completely finish @rq.
2322 */
2323void blk_end_request_all(struct request *rq, int error)
2324{
2325	bool pending;
2326	unsigned int bidi_bytes = 0;
2327
2328	if (unlikely(blk_bidi_rq(rq)))
2329		bidi_bytes = blk_rq_bytes(rq->next_rq);
2330
2331	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2332	BUG_ON(pending);
2333}
2334EXPORT_SYMBOL(blk_end_request_all);
2335
2336/**
2337 * blk_end_request_cur - Helper function to finish the current request chunk.
2338 * @rq: the request to finish the current chunk for
2339 * @error: %0 for success, < %0 for error
2340 *
2341 * Description:
2342 *     Complete the current consecutively mapped chunk from @rq.
2343 *
2344 * Return:
2345 *     %false - we are done with this request
2346 *     %true  - still buffers pending for this request
2347 */
2348bool blk_end_request_cur(struct request *rq, int error)
2349{
2350	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2351}
2352EXPORT_SYMBOL(blk_end_request_cur);
2353
2354/**
2355 * blk_end_request_err - Finish a request till the next failure boundary.
2356 * @rq: the request to finish till the next failure boundary for
2357 * @error: must be negative errno
2358 *
2359 * Description:
2360 *     Complete @rq till the next failure boundary.
2361 *
2362 * Return:
2363 *     %false - we are done with this request
2364 *     %true  - still buffers pending for this request
2365 */
2366bool blk_end_request_err(struct request *rq, int error)
2367{
2368	WARN_ON(error >= 0);
2369	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2370}
2371EXPORT_SYMBOL_GPL(blk_end_request_err);
2372
2373/**
2374 * __blk_end_request - Helper function for drivers to complete the request.
2375 * @rq:       the request being processed
2376 * @error:    %0 for success, < %0 for error
2377 * @nr_bytes: number of bytes to complete
2378 *
2379 * Description:
2380 *     Must be called with queue lock held unlike blk_end_request().
2381 *
2382 * Return:
2383 *     %false - we are done with this request
2384 *     %true  - still buffers pending for this request
2385 **/
2386bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
 
2387{
 
 
 
2388	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2389}
2390EXPORT_SYMBOL(__blk_end_request);
2391
2392/**
2393 * __blk_end_request_all - Helper function for drives to finish the request.
2394 * @rq: the request to finish
2395 * @error: %0 for success, < %0 for error
2396 *
2397 * Description:
2398 *     Completely finish @rq.  Must be called with queue lock held.
2399 */
2400void __blk_end_request_all(struct request *rq, int error)
2401{
2402	bool pending;
2403	unsigned int bidi_bytes = 0;
2404
 
 
 
2405	if (unlikely(blk_bidi_rq(rq)))
2406		bidi_bytes = blk_rq_bytes(rq->next_rq);
2407
2408	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2409	BUG_ON(pending);
2410}
2411EXPORT_SYMBOL(__blk_end_request_all);
2412
2413/**
2414 * __blk_end_request_cur - Helper function to finish the current request chunk.
2415 * @rq: the request to finish the current chunk for
2416 * @error: %0 for success, < %0 for error
2417 *
2418 * Description:
2419 *     Complete the current consecutively mapped chunk from @rq.  Must
2420 *     be called with queue lock held.
2421 *
2422 * Return:
2423 *     %false - we are done with this request
2424 *     %true  - still buffers pending for this request
2425 */
2426bool __blk_end_request_cur(struct request *rq, int error)
2427{
2428	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2429}
2430EXPORT_SYMBOL(__blk_end_request_cur);
2431
2432/**
2433 * __blk_end_request_err - Finish a request till the next failure boundary.
2434 * @rq: the request to finish till the next failure boundary for
2435 * @error: must be negative errno
2436 *
2437 * Description:
2438 *     Complete @rq till the next failure boundary.  Must be called
2439 *     with queue lock held.
2440 *
2441 * Return:
2442 *     %false - we are done with this request
2443 *     %true  - still buffers pending for this request
2444 */
2445bool __blk_end_request_err(struct request *rq, int error)
2446{
2447	WARN_ON(error >= 0);
2448	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2449}
2450EXPORT_SYMBOL_GPL(__blk_end_request_err);
2451
2452void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2453		     struct bio *bio)
2454{
2455	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2456	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
 
 
2457
2458	if (bio_has_data(bio)) {
2459		rq->nr_phys_segments = bio_phys_segments(q, bio);
2460		rq->buffer = bio_data(bio);
2461	}
2462	rq->__data_len = bio->bi_size;
2463	rq->bio = rq->biotail = bio;
2464
2465	if (bio->bi_bdev)
2466		rq->rq_disk = bio->bi_bdev->bd_disk;
2467}
2468
2469#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2470/**
2471 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2472 * @rq: the request to be flushed
2473 *
2474 * Description:
2475 *     Flush all pages in @rq.
2476 */
2477void rq_flush_dcache_pages(struct request *rq)
2478{
2479	struct req_iterator iter;
2480	struct bio_vec *bvec;
2481
2482	rq_for_each_segment(bvec, rq, iter)
2483		flush_dcache_page(bvec->bv_page);
2484}
2485EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2486#endif
2487
2488/**
2489 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2490 * @q : the queue of the device being checked
2491 *
2492 * Description:
2493 *    Check if underlying low-level drivers of a device are busy.
2494 *    If the drivers want to export their busy state, they must set own
2495 *    exporting function using blk_queue_lld_busy() first.
2496 *
2497 *    Basically, this function is used only by request stacking drivers
2498 *    to stop dispatching requests to underlying devices when underlying
2499 *    devices are busy.  This behavior helps more I/O merging on the queue
2500 *    of the request stacking driver and prevents I/O throughput regression
2501 *    on burst I/O load.
2502 *
2503 * Return:
2504 *    0 - Not busy (The request stacking driver should dispatch request)
2505 *    1 - Busy (The request stacking driver should stop dispatching request)
2506 */
2507int blk_lld_busy(struct request_queue *q)
2508{
2509	if (q->lld_busy_fn)
2510		return q->lld_busy_fn(q);
2511
2512	return 0;
2513}
2514EXPORT_SYMBOL_GPL(blk_lld_busy);
2515
2516/**
2517 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2518 * @rq: the clone request to be cleaned up
2519 *
2520 * Description:
2521 *     Free all bios in @rq for a cloned request.
2522 */
2523void blk_rq_unprep_clone(struct request *rq)
2524{
2525	struct bio *bio;
2526
2527	while ((bio = rq->bio) != NULL) {
2528		rq->bio = bio->bi_next;
2529
2530		bio_put(bio);
2531	}
2532}
2533EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2534
2535/*
2536 * Copy attributes of the original request to the clone request.
2537 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2538 */
2539static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2540{
2541	dst->cpu = src->cpu;
2542	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2543	dst->cmd_type = src->cmd_type;
2544	dst->__sector = blk_rq_pos(src);
2545	dst->__data_len = blk_rq_bytes(src);
2546	dst->nr_phys_segments = src->nr_phys_segments;
2547	dst->ioprio = src->ioprio;
2548	dst->extra_len = src->extra_len;
2549}
2550
2551/**
2552 * blk_rq_prep_clone - Helper function to setup clone request
2553 * @rq: the request to be setup
2554 * @rq_src: original request to be cloned
2555 * @bs: bio_set that bios for clone are allocated from
2556 * @gfp_mask: memory allocation mask for bio
2557 * @bio_ctr: setup function to be called for each clone bio.
2558 *           Returns %0 for success, non %0 for failure.
2559 * @data: private data to be passed to @bio_ctr
2560 *
2561 * Description:
2562 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2563 *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2564 *     are not copied, and copying such parts is the caller's responsibility.
2565 *     Also, pages which the original bios are pointing to are not copied
2566 *     and the cloned bios just point same pages.
2567 *     So cloned bios must be completed before original bios, which means
2568 *     the caller must complete @rq before @rq_src.
2569 */
2570int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2571		      struct bio_set *bs, gfp_t gfp_mask,
2572		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2573		      void *data)
2574{
2575	struct bio *bio, *bio_src;
2576
2577	if (!bs)
2578		bs = fs_bio_set;
2579
2580	blk_rq_init(NULL, rq);
2581
2582	__rq_for_each_bio(bio_src, rq_src) {
2583		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2584		if (!bio)
2585			goto free_and_out;
2586
2587		__bio_clone(bio, bio_src);
2588
2589		if (bio_integrity(bio_src) &&
2590		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2591			goto free_and_out;
2592
2593		if (bio_ctr && bio_ctr(bio, bio_src, data))
2594			goto free_and_out;
2595
2596		if (rq->bio) {
2597			rq->biotail->bi_next = bio;
2598			rq->biotail = bio;
2599		} else
2600			rq->bio = rq->biotail = bio;
2601	}
2602
2603	__blk_rq_prep_clone(rq, rq_src);
2604
2605	return 0;
2606
2607free_and_out:
2608	if (bio)
2609		bio_free(bio, bs);
2610	blk_rq_unprep_clone(rq);
2611
2612	return -ENOMEM;
2613}
2614EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2615
2616int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2617{
2618	return queue_work(kblockd_workqueue, work);
2619}
2620EXPORT_SYMBOL(kblockd_schedule_work);
2621
2622int kblockd_schedule_delayed_work(struct request_queue *q,
2623			struct delayed_work *dwork, unsigned long delay)
2624{
2625	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2626}
2627EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2628
2629#define PLUG_MAGIC	0x91827364
 
 
 
 
 
2630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631void blk_start_plug(struct blk_plug *plug)
2632{
2633	struct task_struct *tsk = current;
2634
2635	plug->magic = PLUG_MAGIC;
 
 
 
 
 
2636	INIT_LIST_HEAD(&plug->list);
 
2637	INIT_LIST_HEAD(&plug->cb_list);
2638	plug->should_sort = 0;
2639
2640	/*
2641	 * If this is a nested plug, don't actually assign it. It will be
2642	 * flushed on its own.
2643	 */
2644	if (!tsk->plug) {
2645		/*
2646		 * Store ordering should not be needed here, since a potential
2647		 * preempt will imply a full memory barrier
2648		 */
2649		tsk->plug = plug;
2650	}
2651}
2652EXPORT_SYMBOL(blk_start_plug);
2653
2654static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2655{
2656	struct request *rqa = container_of(a, struct request, queuelist);
2657	struct request *rqb = container_of(b, struct request, queuelist);
2658
2659	return !(rqa->q <= rqb->q);
 
2660}
2661
2662/*
2663 * If 'from_schedule' is true, then postpone the dispatch of requests
2664 * until a safe kblockd context. We due this to avoid accidental big
2665 * additional stack usage in driver dispatch, in places where the originally
2666 * plugger did not intend it.
2667 */
2668static void queue_unplugged(struct request_queue *q, unsigned int depth,
2669			    bool from_schedule)
2670	__releases(q->queue_lock)
2671{
 
 
2672	trace_block_unplug(q, depth, !from_schedule);
2673
2674	/*
2675	 * If we are punting this to kblockd, then we can safely drop
2676	 * the queue_lock before waking kblockd (which needs to take
2677	 * this lock).
2678	 */
2679	if (from_schedule) {
2680		spin_unlock(q->queue_lock);
2681		blk_run_queue_async(q);
2682	} else {
2683		__blk_run_queue(q);
2684		spin_unlock(q->queue_lock);
2685	}
2686
2687}
2688
2689static void flush_plug_callbacks(struct blk_plug *plug)
2690{
2691	LIST_HEAD(callbacks);
2692
2693	if (list_empty(&plug->cb_list))
2694		return;
2695
2696	list_splice_init(&plug->cb_list, &callbacks);
2697
2698	while (!list_empty(&callbacks)) {
2699		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2700							  struct blk_plug_cb,
2701							  list);
2702		list_del(&cb->list);
2703		cb->callback(cb);
 
2704	}
2705}
2706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2708{
2709	struct request_queue *q;
2710	unsigned long flags;
2711	struct request *rq;
2712	LIST_HEAD(list);
2713	unsigned int depth;
2714
2715	BUG_ON(plug->magic != PLUG_MAGIC);
 
 
 
2716
2717	flush_plug_callbacks(plug);
2718	if (list_empty(&plug->list))
2719		return;
2720
2721	list_splice_init(&plug->list, &list);
2722
2723	if (plug->should_sort) {
2724		list_sort(NULL, &list, plug_rq_cmp);
2725		plug->should_sort = 0;
2726	}
2727
2728	q = NULL;
2729	depth = 0;
2730
2731	/*
2732	 * Save and disable interrupts here, to avoid doing it for every
2733	 * queue lock we have to take.
2734	 */
2735	local_irq_save(flags);
2736	while (!list_empty(&list)) {
2737		rq = list_entry_rq(list.next);
2738		list_del_init(&rq->queuelist);
2739		BUG_ON(!rq->q);
2740		if (rq->q != q) {
2741			/*
2742			 * This drops the queue lock
2743			 */
2744			if (q)
2745				queue_unplugged(q, depth, from_schedule);
2746			q = rq->q;
2747			depth = 0;
2748			spin_lock(q->queue_lock);
2749		}
 
 
 
 
 
 
 
 
 
2750		/*
2751		 * rq is already accounted, so use raw insert
2752		 */
2753		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2754			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2755		else
2756			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2757
2758		depth++;
2759	}
2760
2761	/*
2762	 * This drops the queue lock
2763	 */
2764	if (q)
2765		queue_unplugged(q, depth, from_schedule);
2766
2767	local_irq_restore(flags);
2768}
2769
2770void blk_finish_plug(struct blk_plug *plug)
2771{
 
 
2772	blk_flush_plug_list(plug, false);
2773
2774	if (plug == current->plug)
2775		current->plug = NULL;
2776}
2777EXPORT_SYMBOL(blk_finish_plug);
2778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779int __init blk_dev_init(void)
2780{
2781	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2782			sizeof(((struct request *)0)->cmd_flags));
 
 
 
2783
2784	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2785	kblockd_workqueue = alloc_workqueue("kblockd",
2786					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2787	if (!kblockd_workqueue)
2788		panic("Failed to create kblockd\n");
2789
2790	request_cachep = kmem_cache_create("blkdev_requests",
2791			sizeof(struct request), 0, SLAB_PANIC, NULL);
2792
2793	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2794			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
 
 
 
 
2795
2796	return 0;
2797}