Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * bio-integrity.c - bio data integrity extensions
  3 *
  4 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
  5 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License version
  9 * 2 as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful, but
 12 * WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14 * General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program; see the file COPYING.  If not, write to
 18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
 19 * USA.
 20 *
 21 */
 22
 23#include <linux/blkdev.h>
 24#include <linux/mempool.h>
 25#include <linux/export.h>
 26#include <linux/bio.h>
 27#include <linux/workqueue.h>
 28#include <linux/slab.h>
 29#include "blk.h"
 30
 31#define BIP_INLINE_VECS	4
 32
 33static struct kmem_cache *bip_slab;
 34static struct workqueue_struct *kintegrityd_wq;
 35
 36void blk_flush_integrity(void)
 37{
 38	flush_workqueue(kintegrityd_wq);
 39}
 40
 41/**
 42 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
 43 * @bio:	bio to attach integrity metadata to
 44 * @gfp_mask:	Memory allocation mask
 45 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 46 *
 47 * Description: This function prepares a bio for attaching integrity
 48 * metadata.  nr_vecs specifies the maximum number of pages containing
 49 * integrity metadata that can be attached.
 50 */
 51struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
 52						  gfp_t gfp_mask,
 53						  unsigned int nr_vecs)
 54{
 55	struct bio_integrity_payload *bip;
 56	struct bio_set *bs = bio->bi_pool;
 57	unsigned inline_vecs;
 58
 59	if (!bs || !bs->bio_integrity_pool) {
 60		bip = kmalloc(sizeof(struct bio_integrity_payload) +
 61			      sizeof(struct bio_vec) * nr_vecs, gfp_mask);
 62		inline_vecs = nr_vecs;
 63	} else {
 64		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
 65		inline_vecs = BIP_INLINE_VECS;
 66	}
 67
 68	if (unlikely(!bip))
 69		return ERR_PTR(-ENOMEM);
 70
 71	memset(bip, 0, sizeof(*bip));
 72
 73	if (nr_vecs > inline_vecs) {
 74		unsigned long idx = 0;
 75
 76		bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
 77					  bs->bvec_integrity_pool);
 78		if (!bip->bip_vec)
 79			goto err;
 80		bip->bip_max_vcnt = bvec_nr_vecs(idx);
 81		bip->bip_slab = idx;
 82	} else {
 83		bip->bip_vec = bip->bip_inline_vecs;
 84		bip->bip_max_vcnt = inline_vecs;
 85	}
 86
 87	bip->bip_bio = bio;
 88	bio->bi_integrity = bip;
 89	bio->bi_opf |= REQ_INTEGRITY;
 90
 91	return bip;
 92err:
 93	mempool_free(bip, bs->bio_integrity_pool);
 94	return ERR_PTR(-ENOMEM);
 95}
 96EXPORT_SYMBOL(bio_integrity_alloc);
 97
 98/**
 99 * bio_integrity_free - Free bio integrity payload
100 * @bio:	bio containing bip to be freed
101 *
102 * Description: Used to free the integrity portion of a bio. Usually
103 * called from bio_free().
104 */
105static void bio_integrity_free(struct bio *bio)
106{
107	struct bio_integrity_payload *bip = bio_integrity(bio);
108	struct bio_set *bs = bio->bi_pool;
109
110	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
111		kfree(page_address(bip->bip_vec->bv_page) +
112		      bip->bip_vec->bv_offset);
113
114	if (bs && bs->bio_integrity_pool) {
115		bvec_free(bs->bvec_integrity_pool, bip->bip_vec, bip->bip_slab);
116
117		mempool_free(bip, bs->bio_integrity_pool);
118	} else {
119		kfree(bip);
120	}
121
122	bio->bi_integrity = NULL;
123	bio->bi_opf &= ~REQ_INTEGRITY;
124}
125
126/**
127 * bio_integrity_add_page - Attach integrity metadata
128 * @bio:	bio to update
129 * @page:	page containing integrity metadata
130 * @len:	number of bytes of integrity metadata in page
131 * @offset:	start offset within page
132 *
133 * Description: Attach a page containing integrity metadata to bio.
134 */
135int bio_integrity_add_page(struct bio *bio, struct page *page,
136			   unsigned int len, unsigned int offset)
137{
138	struct bio_integrity_payload *bip = bio_integrity(bio);
139	struct bio_vec *iv;
140
141	if (bip->bip_vcnt >= bip->bip_max_vcnt) {
142		printk(KERN_ERR "%s: bip_vec full\n", __func__);
143		return 0;
144	}
145
146	iv = bip->bip_vec + bip->bip_vcnt;
147
148	if (bip->bip_vcnt &&
149	    bvec_gap_to_prev(bio->bi_disk->queue,
150			     &bip->bip_vec[bip->bip_vcnt - 1], offset))
151		return 0;
152
153	iv->bv_page = page;
154	iv->bv_len = len;
155	iv->bv_offset = offset;
156	bip->bip_vcnt++;
157
158	return len;
159}
160EXPORT_SYMBOL(bio_integrity_add_page);
161
162/**
163 * bio_integrity_intervals - Return number of integrity intervals for a bio
164 * @bi:		blk_integrity profile for device
165 * @sectors:	Size of the bio in 512-byte sectors
166 *
167 * Description: The block layer calculates everything in 512 byte
168 * sectors but integrity metadata is done in terms of the data integrity
169 * interval size of the storage device.  Convert the block layer sectors
170 * to the appropriate number of integrity intervals.
171 */
172static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
173						   unsigned int sectors)
174{
175	return sectors >> (bi->interval_exp - 9);
176}
177
178static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
179					       unsigned int sectors)
180{
181	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
182}
183
184/**
185 * bio_integrity_process - Process integrity metadata for a bio
186 * @bio:	bio to generate/verify integrity metadata for
187 * @proc_iter:  iterator to process
188 * @proc_fn:	Pointer to the relevant processing function
189 */
190static blk_status_t bio_integrity_process(struct bio *bio,
191		struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn)
192{
193	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
194	struct blk_integrity_iter iter;
195	struct bvec_iter bviter;
196	struct bio_vec bv;
197	struct bio_integrity_payload *bip = bio_integrity(bio);
198	blk_status_t ret = BLK_STS_OK;
199	void *prot_buf = page_address(bip->bip_vec->bv_page) +
200		bip->bip_vec->bv_offset;
201
202	iter.disk_name = bio->bi_disk->disk_name;
203	iter.interval = 1 << bi->interval_exp;
204	iter.seed = proc_iter->bi_sector;
205	iter.prot_buf = prot_buf;
206
207	__bio_for_each_segment(bv, bio, bviter, *proc_iter) {
208		void *kaddr = kmap_atomic(bv.bv_page);
209
210		iter.data_buf = kaddr + bv.bv_offset;
211		iter.data_size = bv.bv_len;
212
213		ret = proc_fn(&iter);
214		if (ret) {
215			kunmap_atomic(kaddr);
216			return ret;
217		}
218
219		kunmap_atomic(kaddr);
220	}
221	return ret;
222}
223
224/**
225 * bio_integrity_prep - Prepare bio for integrity I/O
226 * @bio:	bio to prepare
227 *
228 * Description:  Checks if the bio already has an integrity payload attached.
229 * If it does, the payload has been generated by another kernel subsystem,
230 * and we just pass it through. Otherwise allocates integrity payload.
231 * The bio must have data direction, target device and start sector set priot
232 * to calling.  In the WRITE case, integrity metadata will be generated using
233 * the block device's integrity function.  In the READ case, the buffer
234 * will be prepared for DMA and a suitable end_io handler set up.
235 */
236bool bio_integrity_prep(struct bio *bio)
237{
238	struct bio_integrity_payload *bip;
239	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
240	struct request_queue *q = bio->bi_disk->queue;
241	void *buf;
242	unsigned long start, end;
243	unsigned int len, nr_pages;
244	unsigned int bytes, offset, i;
245	unsigned int intervals;
246	blk_status_t status;
247
248	if (!bi)
249		return true;
250
251	if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE)
252		return true;
253
254	if (!bio_sectors(bio))
255		return true;
256
257	/* Already protected? */
258	if (bio_integrity(bio))
259		return true;
260
261	if (bio_data_dir(bio) == READ) {
262		if (!bi->profile->verify_fn ||
263		    !(bi->flags & BLK_INTEGRITY_VERIFY))
264			return true;
265	} else {
266		if (!bi->profile->generate_fn ||
267		    !(bi->flags & BLK_INTEGRITY_GENERATE))
268			return true;
269	}
270	intervals = bio_integrity_intervals(bi, bio_sectors(bio));
271
272	/* Allocate kernel buffer for protection data */
273	len = intervals * bi->tuple_size;
274	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
275	status = BLK_STS_RESOURCE;
276	if (unlikely(buf == NULL)) {
277		printk(KERN_ERR "could not allocate integrity buffer\n");
278		goto err_end_io;
279	}
280
281	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
282	start = ((unsigned long) buf) >> PAGE_SHIFT;
283	nr_pages = end - start;
284
285	/* Allocate bio integrity payload and integrity vectors */
286	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
287	if (IS_ERR(bip)) {
288		printk(KERN_ERR "could not allocate data integrity bioset\n");
289		kfree(buf);
290		status = BLK_STS_RESOURCE;
291		goto err_end_io;
292	}
293
294	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
295	bip->bip_iter.bi_size = len;
296	bip_set_seed(bip, bio->bi_iter.bi_sector);
297
298	if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
299		bip->bip_flags |= BIP_IP_CHECKSUM;
300
301	/* Map it */
302	offset = offset_in_page(buf);
303	for (i = 0 ; i < nr_pages ; i++) {
304		int ret;
305		bytes = PAGE_SIZE - offset;
306
307		if (len <= 0)
308			break;
309
310		if (bytes > len)
311			bytes = len;
312
313		ret = bio_integrity_add_page(bio, virt_to_page(buf),
314					     bytes, offset);
315
316		if (ret == 0)
317			return false;
318
319		if (ret < bytes)
320			break;
321
322		buf += bytes;
323		len -= bytes;
324		offset = 0;
325	}
326
327	/* Auto-generate integrity metadata if this is a write */
328	if (bio_data_dir(bio) == WRITE) {
329		bio_integrity_process(bio, &bio->bi_iter,
330				      bi->profile->generate_fn);
331	}
332	return true;
333
334err_end_io:
335	bio->bi_status = status;
336	bio_endio(bio);
337	return false;
338
339}
340EXPORT_SYMBOL(bio_integrity_prep);
341
342/**
343 * bio_integrity_verify_fn - Integrity I/O completion worker
344 * @work:	Work struct stored in bio to be verified
345 *
346 * Description: This workqueue function is called to complete a READ
347 * request.  The function verifies the transferred integrity metadata
348 * and then calls the original bio end_io function.
349 */
350static void bio_integrity_verify_fn(struct work_struct *work)
351{
352	struct bio_integrity_payload *bip =
353		container_of(work, struct bio_integrity_payload, bip_work);
354	struct bio *bio = bip->bip_bio;
355	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
356	struct bvec_iter iter = bio->bi_iter;
357
358	/*
359	 * At the moment verify is called bio's iterator was advanced
360	 * during split and completion, we need to rewind iterator to
361	 * it's original position.
362	 */
363	if (bio_rewind_iter(bio, &iter, iter.bi_done)) {
364		bio->bi_status = bio_integrity_process(bio, &iter,
365						       bi->profile->verify_fn);
366	} else {
367		bio->bi_status = BLK_STS_IOERR;
368	}
369
370	bio_integrity_free(bio);
371	bio_endio(bio);
372}
373
374/**
375 * __bio_integrity_endio - Integrity I/O completion function
376 * @bio:	Protected bio
377 *
378 * Description: Completion for integrity I/O
379 *
380 * Normally I/O completion is done in interrupt context.  However,
381 * verifying I/O integrity is a time-consuming task which must be run
382 * in process context.	This function postpones completion
383 * accordingly.
384 */
385bool __bio_integrity_endio(struct bio *bio)
386{
387	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
388	struct bio_integrity_payload *bip = bio_integrity(bio);
389
390	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status &&
391	    (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) {
392		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
393		queue_work(kintegrityd_wq, &bip->bip_work);
394		return false;
395	}
396
397	bio_integrity_free(bio);
398	return true;
399}
400
401/**
402 * bio_integrity_advance - Advance integrity vector
403 * @bio:	bio whose integrity vector to update
404 * @bytes_done:	number of data bytes that have been completed
405 *
406 * Description: This function calculates how many integrity bytes the
407 * number of completed data bytes correspond to and advances the
408 * integrity vector accordingly.
409 */
410void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
411{
412	struct bio_integrity_payload *bip = bio_integrity(bio);
413	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
414	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
415
416	bip->bip_iter.bi_sector += bytes_done >> 9;
417	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
418}
419EXPORT_SYMBOL(bio_integrity_advance);
420
421/**
422 * bio_integrity_trim - Trim integrity vector
423 * @bio:	bio whose integrity vector to update
424 *
425 * Description: Used to trim the integrity vector in a cloned bio.
426 */
427void bio_integrity_trim(struct bio *bio)
428{
429	struct bio_integrity_payload *bip = bio_integrity(bio);
430	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
431
432	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
433}
434EXPORT_SYMBOL(bio_integrity_trim);
435
436/**
437 * bio_integrity_clone - Callback for cloning bios with integrity metadata
438 * @bio:	New bio
439 * @bio_src:	Original bio
440 * @gfp_mask:	Memory allocation mask
441 *
442 * Description:	Called to allocate a bip when cloning a bio
443 */
444int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
445			gfp_t gfp_mask)
446{
447	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
448	struct bio_integrity_payload *bip;
449
450	BUG_ON(bip_src == NULL);
451
452	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
453	if (IS_ERR(bip))
454		return PTR_ERR(bip);
455
456	memcpy(bip->bip_vec, bip_src->bip_vec,
457	       bip_src->bip_vcnt * sizeof(struct bio_vec));
458
459	bip->bip_vcnt = bip_src->bip_vcnt;
460	bip->bip_iter = bip_src->bip_iter;
461
462	return 0;
463}
464EXPORT_SYMBOL(bio_integrity_clone);
465
466int bioset_integrity_create(struct bio_set *bs, int pool_size)
467{
468	if (bs->bio_integrity_pool)
469		return 0;
470
471	bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
472	if (!bs->bio_integrity_pool)
473		return -1;
474
475	bs->bvec_integrity_pool = biovec_create_pool(pool_size);
476	if (!bs->bvec_integrity_pool) {
477		mempool_destroy(bs->bio_integrity_pool);
478		return -1;
479	}
480
481	return 0;
482}
483EXPORT_SYMBOL(bioset_integrity_create);
484
485void bioset_integrity_free(struct bio_set *bs)
486{
487	mempool_destroy(bs->bio_integrity_pool);
488	mempool_destroy(bs->bvec_integrity_pool);
489}
490EXPORT_SYMBOL(bioset_integrity_free);
491
492void __init bio_integrity_init(void)
493{
494	/*
495	 * kintegrityd won't block much but may burn a lot of CPU cycles.
496	 * Make it highpri CPU intensive wq with max concurrency of 1.
497	 */
498	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
499					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
500	if (!kintegrityd_wq)
501		panic("Failed to create kintegrityd\n");
502
503	bip_slab = kmem_cache_create("bio_integrity_payload",
504				     sizeof(struct bio_integrity_payload) +
505				     sizeof(struct bio_vec) * BIP_INLINE_VECS,
506				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
507}