Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v4.17
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 25#include <linux/hardirq.h>
 26#include <linux/memblock.h>
 27#include <linux/sched.h>
 28#include <linux/sched/clock.h>
 29
 30#include <asm/mem_encrypt.h>
 31#include <asm/x86_init.h>
 32#include <asm/reboot.h>
 33#include <asm/kvmclock.h>
 34
 35static int kvmclock __ro_after_init = 1;
 36static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 37static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 38static u64 kvm_sched_clock_offset;
 39
 40static int parse_no_kvmclock(char *arg)
 41{
 42	kvmclock = 0;
 43	return 0;
 44}
 45early_param("no-kvmclock", parse_no_kvmclock);
 46
 47/* The hypervisor will put information about time periodically here */
 48static struct pvclock_vsyscall_time_info *hv_clock;
 49static struct pvclock_wall_clock *wall_clock;
 50
 51/*
 52 * The wallclock is the time of day when we booted. Since then, some time may
 53 * have elapsed since the hypervisor wrote the data. So we try to account for
 54 * that with system time
 55 */
 56static void kvm_get_wallclock(struct timespec *now)
 57{
 58	struct pvclock_vcpu_time_info *vcpu_time;
 
 59	int low, high;
 60	int cpu;
 61
 62	low = (int)slow_virt_to_phys(wall_clock);
 63	high = ((u64)slow_virt_to_phys(wall_clock) >> 32);
 64
 65	native_write_msr(msr_kvm_wall_clock, low, high);
 66
 67	cpu = get_cpu();
 
 
 68
 69	vcpu_time = &hv_clock[cpu].pvti;
 70	pvclock_read_wallclock(wall_clock, vcpu_time, now);
 71
 72	put_cpu();
 73}
 74
 75static int kvm_set_wallclock(const struct timespec *now)
 76{
 77	return -ENODEV;
 78}
 79
 80static u64 kvm_clock_read(void)
 81{
 82	struct pvclock_vcpu_time_info *src;
 83	u64 ret;
 84	int cpu;
 85
 86	preempt_disable_notrace();
 87	cpu = smp_processor_id();
 88	src = &hv_clock[cpu].pvti;
 89	ret = pvclock_clocksource_read(src);
 90	preempt_enable_notrace();
 91	return ret;
 92}
 93
 94static u64 kvm_clock_get_cycles(struct clocksource *cs)
 95{
 96	return kvm_clock_read();
 97}
 98
 99static u64 kvm_sched_clock_read(void)
100{
101	return kvm_clock_read() - kvm_sched_clock_offset;
102}
103
104static inline void kvm_sched_clock_init(bool stable)
105{
106	if (!stable) {
107		pv_time_ops.sched_clock = kvm_clock_read;
108		clear_sched_clock_stable();
109		return;
110	}
111
112	kvm_sched_clock_offset = kvm_clock_read();
113	pv_time_ops.sched_clock = kvm_sched_clock_read;
114
115	printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
116			kvm_sched_clock_offset);
117
118	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
119	         sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
120}
121
122/*
123 * If we don't do that, there is the possibility that the guest
124 * will calibrate under heavy load - thus, getting a lower lpj -
125 * and execute the delays themselves without load. This is wrong,
126 * because no delay loop can finish beforehand.
127 * Any heuristics is subject to fail, because ultimately, a large
128 * poll of guests can be running and trouble each other. So we preset
129 * lpj here
130 */
131static unsigned long kvm_get_tsc_khz(void)
132{
133	struct pvclock_vcpu_time_info *src;
134	int cpu;
135	unsigned long tsc_khz;
136
137	cpu = get_cpu();
138	src = &hv_clock[cpu].pvti;
139	tsc_khz = pvclock_tsc_khz(src);
140	put_cpu();
141	return tsc_khz;
142}
143
144static void kvm_get_preset_lpj(void)
145{
146	unsigned long khz;
147	u64 lpj;
148
149	khz = kvm_get_tsc_khz();
150
151	lpj = ((u64)khz * 1000);
152	do_div(lpj, HZ);
153	preset_lpj = lpj;
154}
155
156bool kvm_check_and_clear_guest_paused(void)
157{
158	bool ret = false;
159	struct pvclock_vcpu_time_info *src;
160	int cpu = smp_processor_id();
161
162	if (!hv_clock)
163		return ret;
164
165	src = &hv_clock[cpu].pvti;
166	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
167		src->flags &= ~PVCLOCK_GUEST_STOPPED;
168		pvclock_touch_watchdogs();
169		ret = true;
170	}
171
172	return ret;
173}
174
175struct clocksource kvm_clock = {
176	.name = "kvm-clock",
177	.read = kvm_clock_get_cycles,
178	.rating = 400,
179	.mask = CLOCKSOURCE_MASK(64),
180	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
181};
182EXPORT_SYMBOL_GPL(kvm_clock);
183
184int kvm_register_clock(char *txt)
185{
186	int cpu = smp_processor_id();
187	int low, high, ret;
188	struct pvclock_vcpu_time_info *src;
189
190	if (!hv_clock)
191		return 0;
192
193	src = &hv_clock[cpu].pvti;
194	low = (int)slow_virt_to_phys(src) | 1;
195	high = ((u64)slow_virt_to_phys(src) >> 32);
196	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
197	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
198	       cpu, high, low, txt);
199
200	return ret;
201}
202
203static void kvm_save_sched_clock_state(void)
204{
205}
206
207static void kvm_restore_sched_clock_state(void)
208{
209	kvm_register_clock("primary cpu clock, resume");
210}
211
212#ifdef CONFIG_X86_LOCAL_APIC
213static void kvm_setup_secondary_clock(void)
214{
215	/*
216	 * Now that the first cpu already had this clocksource initialized,
217	 * we shouldn't fail.
218	 */
219	WARN_ON(kvm_register_clock("secondary cpu clock"));
 
 
220}
221#endif
222
223/*
224 * After the clock is registered, the host will keep writing to the
225 * registered memory location. If the guest happens to shutdown, this memory
226 * won't be valid. In cases like kexec, in which you install a new kernel, this
227 * means a random memory location will be kept being written. So before any
228 * kind of shutdown from our side, we unregister the clock by writing anything
229 * that does not have the 'enable' bit set in the msr
230 */
231#ifdef CONFIG_KEXEC_CORE
232static void kvm_crash_shutdown(struct pt_regs *regs)
233{
234	native_write_msr(msr_kvm_system_time, 0, 0);
235	kvm_disable_steal_time();
236	native_machine_crash_shutdown(regs);
237}
238#endif
239
240static void kvm_shutdown(void)
241{
242	native_write_msr(msr_kvm_system_time, 0, 0);
243	kvm_disable_steal_time();
244	native_machine_shutdown();
245}
246
247static phys_addr_t __init kvm_memblock_alloc(phys_addr_t size,
248					     phys_addr_t align)
249{
250	phys_addr_t mem;
251
252	mem = memblock_alloc(size, align);
253	if (!mem)
254		return 0;
255
256	if (sev_active()) {
257		if (early_set_memory_decrypted((unsigned long)__va(mem), size))
258			goto e_free;
259	}
260
261	return mem;
262e_free:
263	memblock_free(mem, size);
264	return 0;
265}
266
267static void __init kvm_memblock_free(phys_addr_t addr, phys_addr_t size)
268{
269	if (sev_active())
270		early_set_memory_encrypted((unsigned long)__va(addr), size);
271
272	memblock_free(addr, size);
273}
274
275void __init kvmclock_init(void)
276{
277	struct pvclock_vcpu_time_info *vcpu_time;
278	unsigned long mem, mem_wall_clock;
279	int size, cpu, wall_clock_size;
280	u8 flags;
281
282	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
283
284	if (!kvm_para_available())
285		return;
286
287	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
288		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
289		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
290	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
291		return;
292
293	wall_clock_size = PAGE_ALIGN(sizeof(struct pvclock_wall_clock));
294	mem_wall_clock = kvm_memblock_alloc(wall_clock_size, PAGE_SIZE);
295	if (!mem_wall_clock)
296		return;
297
298	wall_clock = __va(mem_wall_clock);
299	memset(wall_clock, 0, wall_clock_size);
300
301	mem = kvm_memblock_alloc(size, PAGE_SIZE);
302	if (!mem) {
303		kvm_memblock_free(mem_wall_clock, wall_clock_size);
304		wall_clock = NULL;
305		return;
306	}
307
308	hv_clock = __va(mem);
309	memset(hv_clock, 0, size);
310
311	if (kvm_register_clock("primary cpu clock")) {
312		hv_clock = NULL;
313		kvm_memblock_free(mem, size);
314		kvm_memblock_free(mem_wall_clock, wall_clock_size);
315		wall_clock = NULL;
316		return;
317	}
318
319	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
320		msr_kvm_system_time, msr_kvm_wall_clock);
321
322	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
323		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
324
325	cpu = get_cpu();
326	vcpu_time = &hv_clock[cpu].pvti;
327	flags = pvclock_read_flags(vcpu_time);
328
329	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
330	put_cpu();
331
332	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
333	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
334	x86_platform.get_wallclock = kvm_get_wallclock;
335	x86_platform.set_wallclock = kvm_set_wallclock;
336#ifdef CONFIG_X86_LOCAL_APIC
337	x86_cpuinit.early_percpu_clock_init =
338		kvm_setup_secondary_clock;
339#endif
340	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
341	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
342	machine_ops.shutdown  = kvm_shutdown;
343#ifdef CONFIG_KEXEC_CORE
344	machine_ops.crash_shutdown  = kvm_crash_shutdown;
345#endif
346	kvm_get_preset_lpj();
347	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 
348	pv_info.name = "KVM";
349}
350
351int __init kvm_setup_vsyscall_timeinfo(void)
352{
353#ifdef CONFIG_X86_64
354	int cpu;
355	u8 flags;
356	struct pvclock_vcpu_time_info *vcpu_time;
357	unsigned int size;
358
359	if (!hv_clock)
360		return 0;
361
362	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
363
364	cpu = get_cpu();
365
366	vcpu_time = &hv_clock[cpu].pvti;
367	flags = pvclock_read_flags(vcpu_time);
368
369	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
370		put_cpu();
371		return 1;
372	}
373
374	pvclock_set_pvti_cpu0_va(hv_clock);
375	put_cpu();
376
377	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
378#endif
379	return 0;
380}
v3.1
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 
 
 
 
 25
 
 26#include <asm/x86_init.h>
 27#include <asm/reboot.h>
 
 28
 29static int kvmclock = 1;
 30static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 31static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 
 32
 33static int parse_no_kvmclock(char *arg)
 34{
 35	kvmclock = 0;
 36	return 0;
 37}
 38early_param("no-kvmclock", parse_no_kvmclock);
 39
 40/* The hypervisor will put information about time periodically here */
 41static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
 42static struct pvclock_wall_clock wall_clock;
 43
 44/*
 45 * The wallclock is the time of day when we booted. Since then, some time may
 46 * have elapsed since the hypervisor wrote the data. So we try to account for
 47 * that with system time
 48 */
 49static unsigned long kvm_get_wallclock(void)
 50{
 51	struct pvclock_vcpu_time_info *vcpu_time;
 52	struct timespec ts;
 53	int low, high;
 
 54
 55	low = (int)__pa_symbol(&wall_clock);
 56	high = ((u64)__pa_symbol(&wall_clock) >> 32);
 57
 58	native_write_msr(msr_kvm_wall_clock, low, high);
 59
 60	vcpu_time = &get_cpu_var(hv_clock);
 61	pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
 62	put_cpu_var(hv_clock);
 63
 64	return ts.tv_sec;
 
 
 
 65}
 66
 67static int kvm_set_wallclock(unsigned long now)
 68{
 69	return -1;
 70}
 71
 72static cycle_t kvm_clock_read(void)
 73{
 74	struct pvclock_vcpu_time_info *src;
 75	cycle_t ret;
 
 76
 77	src = &get_cpu_var(hv_clock);
 
 
 78	ret = pvclock_clocksource_read(src);
 79	put_cpu_var(hv_clock);
 80	return ret;
 81}
 82
 83static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
 84{
 85	return kvm_clock_read();
 86}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88/*
 89 * If we don't do that, there is the possibility that the guest
 90 * will calibrate under heavy load - thus, getting a lower lpj -
 91 * and execute the delays themselves without load. This is wrong,
 92 * because no delay loop can finish beforehand.
 93 * Any heuristics is subject to fail, because ultimately, a large
 94 * poll of guests can be running and trouble each other. So we preset
 95 * lpj here
 96 */
 97static unsigned long kvm_get_tsc_khz(void)
 98{
 99	struct pvclock_vcpu_time_info *src;
100	src = &per_cpu(hv_clock, 0);
101	return pvclock_tsc_khz(src);
 
 
 
 
 
 
102}
103
104static void kvm_get_preset_lpj(void)
105{
106	unsigned long khz;
107	u64 lpj;
108
109	khz = kvm_get_tsc_khz();
110
111	lpj = ((u64)khz * 1000);
112	do_div(lpj, HZ);
113	preset_lpj = lpj;
114}
115
116static struct clocksource kvm_clock = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	.name = "kvm-clock",
118	.read = kvm_clock_get_cycles,
119	.rating = 400,
120	.mask = CLOCKSOURCE_MASK(64),
121	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
122};
 
123
124int kvm_register_clock(char *txt)
125{
126	int cpu = smp_processor_id();
127	int low, high, ret;
 
 
 
 
128
129	low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
130	high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
 
131	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
132	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
133	       cpu, high, low, txt);
134
135	return ret;
136}
137
 
 
 
 
 
 
 
 
 
138#ifdef CONFIG_X86_LOCAL_APIC
139static void __cpuinit kvm_setup_secondary_clock(void)
140{
141	/*
142	 * Now that the first cpu already had this clocksource initialized,
143	 * we shouldn't fail.
144	 */
145	WARN_ON(kvm_register_clock("secondary cpu clock"));
146	/* ok, done with our trickery, call native */
147	setup_secondary_APIC_clock();
148}
149#endif
150
151/*
152 * After the clock is registered, the host will keep writing to the
153 * registered memory location. If the guest happens to shutdown, this memory
154 * won't be valid. In cases like kexec, in which you install a new kernel, this
155 * means a random memory location will be kept being written. So before any
156 * kind of shutdown from our side, we unregister the clock by writting anything
157 * that does not have the 'enable' bit set in the msr
158 */
159#ifdef CONFIG_KEXEC
160static void kvm_crash_shutdown(struct pt_regs *regs)
161{
162	native_write_msr(msr_kvm_system_time, 0, 0);
163	kvm_disable_steal_time();
164	native_machine_crash_shutdown(regs);
165}
166#endif
167
168static void kvm_shutdown(void)
169{
170	native_write_msr(msr_kvm_system_time, 0, 0);
171	kvm_disable_steal_time();
172	native_machine_shutdown();
173}
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175void __init kvmclock_init(void)
176{
 
 
 
 
 
 
 
177	if (!kvm_para_available())
178		return;
179
180	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
181		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
182		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
183	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
184		return;
185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
187		msr_kvm_system_time, msr_kvm_wall_clock);
188
189	if (kvm_register_clock("boot clock"))
190		return;
191	pv_time_ops.sched_clock = kvm_clock_read;
 
 
 
 
 
 
 
192	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 
193	x86_platform.get_wallclock = kvm_get_wallclock;
194	x86_platform.set_wallclock = kvm_set_wallclock;
195#ifdef CONFIG_X86_LOCAL_APIC
196	x86_cpuinit.setup_percpu_clockev =
197		kvm_setup_secondary_clock;
198#endif
 
 
199	machine_ops.shutdown  = kvm_shutdown;
200#ifdef CONFIG_KEXEC
201	machine_ops.crash_shutdown  = kvm_crash_shutdown;
202#endif
203	kvm_get_preset_lpj();
204	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
205	pv_info.paravirt_enabled = 1;
206	pv_info.name = "KVM";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
208	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
209		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210}