Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/moduleloader.h>
   3#include <linux/workqueue.h>
   4#include <linux/netdevice.h>
   5#include <linux/filter.h>
   6#include <linux/bpf.h>
   7#include <linux/cache.h>
   8#include <linux/if_vlan.h>
   9
  10#include <asm/cacheflush.h>
  11#include <asm/ptrace.h>
  12
  13#include "bpf_jit_64.h"
  14
  15static inline bool is_simm13(unsigned int value)
  16{
  17	return value + 0x1000 < 0x2000;
  18}
  19
  20static inline bool is_simm10(unsigned int value)
  21{
  22	return value + 0x200 < 0x400;
  23}
  24
  25static inline bool is_simm5(unsigned int value)
  26{
  27	return value + 0x10 < 0x20;
  28}
  29
  30static inline bool is_sethi(unsigned int value)
  31{
  32	return (value & ~0x3fffff) == 0;
  33}
  34
  35static void bpf_flush_icache(void *start_, void *end_)
  36{
  37	/* Cheetah's I-cache is fully coherent.  */
  38	if (tlb_type == spitfire) {
  39		unsigned long start = (unsigned long) start_;
  40		unsigned long end = (unsigned long) end_;
  41
  42		start &= ~7UL;
  43		end = (end + 7UL) & ~7UL;
  44		while (start < end) {
  45			flushi(start);
  46			start += 32;
  47		}
  48	}
  49}
  50
  51#define SEEN_DATAREF 1 /* might call external helpers */
  52#define SEEN_XREG    2 /* ebx is used */
  53#define SEEN_MEM     4 /* use mem[] for temporary storage */
  54
  55#define S13(X)		((X) & 0x1fff)
  56#define S5(X)		((X) & 0x1f)
  57#define IMMED		0x00002000
  58#define RD(X)		((X) << 25)
  59#define RS1(X)		((X) << 14)
  60#define RS2(X)		((X))
  61#define OP(X)		((X) << 30)
  62#define OP2(X)		((X) << 22)
  63#define OP3(X)		((X) << 19)
  64#define COND(X)		(((X) & 0xf) << 25)
  65#define CBCOND(X)	(((X) & 0x1f) << 25)
  66#define F1(X)		OP(X)
  67#define F2(X, Y)	(OP(X) | OP2(Y))
  68#define F3(X, Y)	(OP(X) | OP3(Y))
  69#define ASI(X)		(((X) & 0xff) << 5)
  70
  71#define CONDN		COND(0x0)
  72#define CONDE		COND(0x1)
  73#define CONDLE		COND(0x2)
  74#define CONDL		COND(0x3)
  75#define CONDLEU		COND(0x4)
  76#define CONDCS		COND(0x5)
  77#define CONDNEG		COND(0x6)
  78#define CONDVC		COND(0x7)
  79#define CONDA		COND(0x8)
  80#define CONDNE		COND(0x9)
  81#define CONDG		COND(0xa)
  82#define CONDGE		COND(0xb)
  83#define CONDGU		COND(0xc)
  84#define CONDCC		COND(0xd)
  85#define CONDPOS		COND(0xe)
  86#define CONDVS		COND(0xf)
  87
  88#define CONDGEU		CONDCC
  89#define CONDLU		CONDCS
  90
  91#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
  92#define WDISP19(X)	(((X) >> 2) & 0x7ffff)
  93
  94/* The 10-bit branch displacement for CBCOND is split into two fields */
  95static u32 WDISP10(u32 off)
  96{
  97	u32 ret = ((off >> 2) & 0xff) << 5;
  98
  99	ret |= ((off >> (2 + 8)) & 0x03) << 19;
 100
 101	return ret;
 102}
 103
 104#define CBCONDE		CBCOND(0x09)
 105#define CBCONDLE	CBCOND(0x0a)
 106#define CBCONDL		CBCOND(0x0b)
 107#define CBCONDLEU	CBCOND(0x0c)
 108#define CBCONDCS	CBCOND(0x0d)
 109#define CBCONDN		CBCOND(0x0e)
 110#define CBCONDVS	CBCOND(0x0f)
 111#define CBCONDNE	CBCOND(0x19)
 112#define CBCONDG		CBCOND(0x1a)
 113#define CBCONDGE	CBCOND(0x1b)
 114#define CBCONDGU	CBCOND(0x1c)
 115#define CBCONDCC	CBCOND(0x1d)
 116#define CBCONDPOS	CBCOND(0x1e)
 117#define CBCONDVC	CBCOND(0x1f)
 118
 119#define CBCONDGEU	CBCONDCC
 120#define CBCONDLU	CBCONDCS
 121
 122#define ANNUL		(1 << 29)
 123#define XCC		(1 << 21)
 124
 125#define BRANCH		(F2(0, 1) | XCC)
 126#define CBCOND_OP	(F2(0, 3) | XCC)
 127
 128#define BA		(BRANCH | CONDA)
 129#define BG		(BRANCH | CONDG)
 130#define BL		(BRANCH | CONDL)
 131#define BLE		(BRANCH | CONDLE)
 132#define BGU		(BRANCH | CONDGU)
 133#define BLEU		(BRANCH | CONDLEU)
 134#define BGE		(BRANCH | CONDGE)
 135#define BGEU		(BRANCH | CONDGEU)
 136#define BLU		(BRANCH | CONDLU)
 137#define BE		(BRANCH | CONDE)
 138#define BNE		(BRANCH | CONDNE)
 139
 140#define SETHI(K, REG)	\
 141	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
 142#define OR_LO(K, REG)	\
 143	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
 144
 145#define ADD		F3(2, 0x00)
 146#define AND		F3(2, 0x01)
 147#define ANDCC		F3(2, 0x11)
 148#define OR		F3(2, 0x02)
 149#define XOR		F3(2, 0x03)
 150#define SUB		F3(2, 0x04)
 151#define SUBCC		F3(2, 0x14)
 152#define MUL		F3(2, 0x0a)
 153#define MULX		F3(2, 0x09)
 154#define UDIVX		F3(2, 0x0d)
 155#define DIV		F3(2, 0x0e)
 156#define SLL		F3(2, 0x25)
 157#define SLLX		(F3(2, 0x25)|(1<<12))
 158#define SRA		F3(2, 0x27)
 159#define SRAX		(F3(2, 0x27)|(1<<12))
 160#define SRL		F3(2, 0x26)
 161#define SRLX		(F3(2, 0x26)|(1<<12))
 162#define JMPL		F3(2, 0x38)
 163#define SAVE		F3(2, 0x3c)
 164#define RESTORE		F3(2, 0x3d)
 165#define CALL		F1(1)
 166#define BR		F2(0, 0x01)
 167#define RD_Y		F3(2, 0x28)
 168#define WR_Y		F3(2, 0x30)
 169
 170#define LD32		F3(3, 0x00)
 171#define LD8		F3(3, 0x01)
 172#define LD16		F3(3, 0x02)
 173#define LD64		F3(3, 0x0b)
 174#define LD64A		F3(3, 0x1b)
 175#define ST8		F3(3, 0x05)
 176#define ST16		F3(3, 0x06)
 177#define ST32		F3(3, 0x04)
 178#define ST64		F3(3, 0x0e)
 179
 180#define CAS		F3(3, 0x3c)
 181#define CASX		F3(3, 0x3e)
 182
 183#define LDPTR		LD64
 184#define BASE_STACKFRAME	176
 185
 186#define LD32I		(LD32 | IMMED)
 187#define LD8I		(LD8 | IMMED)
 188#define LD16I		(LD16 | IMMED)
 189#define LD64I		(LD64 | IMMED)
 190#define LDPTRI		(LDPTR | IMMED)
 191#define ST32I		(ST32 | IMMED)
 192
 193struct jit_ctx {
 194	struct bpf_prog		*prog;
 195	unsigned int		*offset;
 196	int			idx;
 197	int			epilogue_offset;
 198	bool 			tmp_1_used;
 199	bool 			tmp_2_used;
 200	bool 			tmp_3_used;
 201	bool			saw_ld_abs_ind;
 202	bool			saw_frame_pointer;
 203	bool			saw_call;
 204	bool			saw_tail_call;
 205	u32			*image;
 206};
 207
 208#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
 209#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
 210#define SKB_HLEN_REG	(MAX_BPF_JIT_REG + 2)
 211#define SKB_DATA_REG	(MAX_BPF_JIT_REG + 3)
 212#define TMP_REG_3	(MAX_BPF_JIT_REG + 4)
 213
 214/* Map BPF registers to SPARC registers */
 215static const int bpf2sparc[] = {
 216	/* return value from in-kernel function, and exit value from eBPF */
 217	[BPF_REG_0] = O5,
 218
 219	/* arguments from eBPF program to in-kernel function */
 220	[BPF_REG_1] = O0,
 221	[BPF_REG_2] = O1,
 222	[BPF_REG_3] = O2,
 223	[BPF_REG_4] = O3,
 224	[BPF_REG_5] = O4,
 225
 226	/* callee saved registers that in-kernel function will preserve */
 227	[BPF_REG_6] = L0,
 228	[BPF_REG_7] = L1,
 229	[BPF_REG_8] = L2,
 230	[BPF_REG_9] = L3,
 231
 232	/* read-only frame pointer to access stack */
 233	[BPF_REG_FP] = L6,
 234
 235	[BPF_REG_AX] = G7,
 236
 237	/* temporary register for internal BPF JIT */
 238	[TMP_REG_1] = G1,
 239	[TMP_REG_2] = G2,
 240	[TMP_REG_3] = G3,
 241
 242	[SKB_HLEN_REG] = L4,
 243	[SKB_DATA_REG] = L5,
 244};
 245
 246static void emit(const u32 insn, struct jit_ctx *ctx)
 247{
 248	if (ctx->image != NULL)
 249		ctx->image[ctx->idx] = insn;
 250
 251	ctx->idx++;
 252}
 253
 254static void emit_call(u32 *func, struct jit_ctx *ctx)
 255{
 256	if (ctx->image != NULL) {
 257		void *here = &ctx->image[ctx->idx];
 258		unsigned int off;
 259
 260		off = (void *)func - here;
 261		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
 262	}
 263	ctx->idx++;
 264}
 265
 266static void emit_nop(struct jit_ctx *ctx)
 267{
 268	emit(SETHI(0, G0), ctx);
 269}
 270
 271static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
 272{
 273	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
 274}
 275
 276/* Emit 32-bit constant, zero extended. */
 277static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
 278{
 279	emit(SETHI(K, reg), ctx);
 280	emit(OR_LO(K, reg), ctx);
 281}
 282
 283/* Emit 32-bit constant, sign extended. */
 284static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
 285{
 286	if (K >= 0) {
 287		emit(SETHI(K, reg), ctx);
 288		emit(OR_LO(K, reg), ctx);
 289	} else {
 290		u32 hbits = ~(u32) K;
 291		u32 lbits = -0x400 | (u32) K;
 292
 293		emit(SETHI(hbits, reg), ctx);
 294		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
 295	}
 296}
 297
 298static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
 299{
 300	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
 301}
 302
 303static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
 304{
 305	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
 306}
 307
 308static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
 309		       struct jit_ctx *ctx)
 310{
 311	bool small_immed = is_simm13(imm);
 312	unsigned int insn = opcode;
 313
 314	insn |= RS1(dst) | RD(dst);
 315	if (small_immed) {
 316		emit(insn | IMMED | S13(imm), ctx);
 317	} else {
 318		unsigned int tmp = bpf2sparc[TMP_REG_1];
 319
 320		ctx->tmp_1_used = true;
 321
 322		emit_set_const_sext(imm, tmp, ctx);
 323		emit(insn | RS2(tmp), ctx);
 324	}
 325}
 326
 327static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
 328			unsigned int dst, struct jit_ctx *ctx)
 329{
 330	bool small_immed = is_simm13(imm);
 331	unsigned int insn = opcode;
 332
 333	insn |= RS1(src) | RD(dst);
 334	if (small_immed) {
 335		emit(insn | IMMED | S13(imm), ctx);
 336	} else {
 337		unsigned int tmp = bpf2sparc[TMP_REG_1];
 338
 339		ctx->tmp_1_used = true;
 340
 341		emit_set_const_sext(imm, tmp, ctx);
 342		emit(insn | RS2(tmp), ctx);
 343	}
 344}
 345
 346static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
 347{
 348	if (K >= 0 && is_simm13(K)) {
 349		/* or %g0, K, DEST */
 350		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
 351	} else {
 352		emit_set_const(K, dest, ctx);
 353	}
 354}
 355
 356static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
 357{
 358	if (is_simm13(K)) {
 359		/* or %g0, K, DEST */
 360		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
 361	} else {
 362		emit_set_const(K, dest, ctx);
 363	}
 364}
 365
 366static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
 367{
 368	if (is_simm13(K)) {
 369		/* or %g0, K, DEST */
 370		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
 371	} else {
 372		emit_set_const_sext(K, dest, ctx);
 373	}
 374}
 375
 376static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
 377				   int *hbsp, int *lbsp, int *abbasp)
 378{
 379	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
 380	int i;
 381
 382	lowest_bit_set = highest_bit_set = -1;
 383	i = 0;
 384	do {
 385		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
 386			lowest_bit_set = i;
 387		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
 388			highest_bit_set = (64 - i - 1);
 389	}  while (++i < 32 && (highest_bit_set == -1 ||
 390			       lowest_bit_set == -1));
 391	if (i == 32) {
 392		i = 0;
 393		do {
 394			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
 395				lowest_bit_set = i + 32;
 396			if (highest_bit_set == -1 &&
 397			    ((low_bits >> (32 - i - 1)) & 1))
 398				highest_bit_set = 32 - i - 1;
 399		} while (++i < 32 && (highest_bit_set == -1 ||
 400				      lowest_bit_set == -1));
 401	}
 402
 403	all_bits_between_are_set = 1;
 404	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
 405		if (i < 32) {
 406			if ((low_bits & (1 << i)) != 0)
 407				continue;
 408		} else {
 409			if ((high_bits & (1 << (i - 32))) != 0)
 410				continue;
 411		}
 412		all_bits_between_are_set = 0;
 413		break;
 414	}
 415	*hbsp = highest_bit_set;
 416	*lbsp = lowest_bit_set;
 417	*abbasp = all_bits_between_are_set;
 418}
 419
 420static unsigned long create_simple_focus_bits(unsigned long high_bits,
 421					      unsigned long low_bits,
 422					      int lowest_bit_set, int shift)
 423{
 424	long hi, lo;
 425
 426	if (lowest_bit_set < 32) {
 427		lo = (low_bits >> lowest_bit_set) << shift;
 428		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
 429	} else {
 430		lo = 0;
 431		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
 432	}
 433	return hi | lo;
 434}
 435
 436static bool const64_is_2insns(unsigned long high_bits,
 437			      unsigned long low_bits)
 438{
 439	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
 440
 441	if (high_bits == 0 || high_bits == 0xffffffff)
 442		return true;
 443
 444	analyze_64bit_constant(high_bits, low_bits,
 445			       &highest_bit_set, &lowest_bit_set,
 446			       &all_bits_between_are_set);
 447
 448	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
 449	    all_bits_between_are_set != 0)
 450		return true;
 451
 452	if (highest_bit_set - lowest_bit_set < 21)
 453		return true;
 454
 455	return false;
 456}
 457
 458static void sparc_emit_set_const64_quick2(unsigned long high_bits,
 459					  unsigned long low_imm,
 460					  unsigned int dest,
 461					  int shift_count, struct jit_ctx *ctx)
 462{
 463	emit_loadimm32(high_bits, dest, ctx);
 464
 465	/* Now shift it up into place.  */
 466	emit_alu_K(SLLX, dest, shift_count, ctx);
 467
 468	/* If there is a low immediate part piece, finish up by
 469	 * putting that in as well.
 470	 */
 471	if (low_imm != 0)
 472		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
 473}
 474
 475static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
 476{
 477	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
 478	unsigned int tmp = bpf2sparc[TMP_REG_1];
 479	u32 low_bits = (K & 0xffffffff);
 480	u32 high_bits = (K >> 32);
 481
 482	/* These two tests also take care of all of the one
 483	 * instruction cases.
 484	 */
 485	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
 486		return emit_loadimm_sext(K, dest, ctx);
 487	if (high_bits == 0x00000000)
 488		return emit_loadimm32(K, dest, ctx);
 489
 490	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
 491			       &lowest_bit_set, &all_bits_between_are_set);
 492
 493	/* 1) mov	-1, %reg
 494	 *    sllx	%reg, shift, %reg
 495	 * 2) mov	-1, %reg
 496	 *    srlx	%reg, shift, %reg
 497	 * 3) mov	some_small_const, %reg
 498	 *    sllx	%reg, shift, %reg
 499	 */
 500	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
 501	     all_bits_between_are_set != 0) ||
 502	    ((highest_bit_set - lowest_bit_set) < 12)) {
 503		int shift = lowest_bit_set;
 504		long the_const = -1;
 505
 506		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
 507		    all_bits_between_are_set == 0) {
 508			the_const =
 509				create_simple_focus_bits(high_bits, low_bits,
 510							 lowest_bit_set, 0);
 511		} else if (lowest_bit_set == 0)
 512			shift = -(63 - highest_bit_set);
 513
 514		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
 515		if (shift > 0)
 516			emit_alu_K(SLLX, dest, shift, ctx);
 517		else if (shift < 0)
 518			emit_alu_K(SRLX, dest, -shift, ctx);
 519
 520		return;
 521	}
 522
 523	/* Now a range of 22 or less bits set somewhere.
 524	 * 1) sethi	%hi(focus_bits), %reg
 525	 *    sllx	%reg, shift, %reg
 526	 * 2) sethi	%hi(focus_bits), %reg
 527	 *    srlx	%reg, shift, %reg
 528	 */
 529	if ((highest_bit_set - lowest_bit_set) < 21) {
 530		unsigned long focus_bits =
 531			create_simple_focus_bits(high_bits, low_bits,
 532						 lowest_bit_set, 10);
 533
 534		emit(SETHI(focus_bits, dest), ctx);
 535
 536		/* If lowest_bit_set == 10 then a sethi alone could
 537		 * have done it.
 538		 */
 539		if (lowest_bit_set < 10)
 540			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
 541		else if (lowest_bit_set > 10)
 542			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
 543		return;
 544	}
 545
 546	/* Ok, now 3 instruction sequences.  */
 547	if (low_bits == 0) {
 548		emit_loadimm32(high_bits, dest, ctx);
 549		emit_alu_K(SLLX, dest, 32, ctx);
 550		return;
 551	}
 552
 553	/* We may be able to do something quick
 554	 * when the constant is negated, so try that.
 555	 */
 556	if (const64_is_2insns((~high_bits) & 0xffffffff,
 557			      (~low_bits) & 0xfffffc00)) {
 558		/* NOTE: The trailing bits get XOR'd so we need the
 559		 * non-negated bits, not the negated ones.
 560		 */
 561		unsigned long trailing_bits = low_bits & 0x3ff;
 562
 563		if ((((~high_bits) & 0xffffffff) == 0 &&
 564		     ((~low_bits) & 0x80000000) == 0) ||
 565		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
 566		     ((~low_bits) & 0x80000000) != 0)) {
 567			unsigned long fast_int = (~low_bits & 0xffffffff);
 568
 569			if ((is_sethi(fast_int) &&
 570			     (~high_bits & 0xffffffff) == 0)) {
 571				emit(SETHI(fast_int, dest), ctx);
 572			} else if (is_simm13(fast_int)) {
 573				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
 574			} else {
 575				emit_loadimm64(fast_int, dest, ctx);
 576			}
 577		} else {
 578			u64 n = ((~low_bits) & 0xfffffc00) |
 579				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
 580			emit_loadimm64(n, dest, ctx);
 581		}
 582
 583		low_bits = -0x400 | trailing_bits;
 584
 585		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
 586		return;
 587	}
 588
 589	/* 1) sethi	%hi(xxx), %reg
 590	 *    or	%reg, %lo(xxx), %reg
 591	 *    sllx	%reg, yyy, %reg
 592	 */
 593	if ((highest_bit_set - lowest_bit_set) < 32) {
 594		unsigned long focus_bits =
 595			create_simple_focus_bits(high_bits, low_bits,
 596						 lowest_bit_set, 0);
 597
 598		/* So what we know is that the set bits straddle the
 599		 * middle of the 64-bit word.
 600		 */
 601		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
 602					      lowest_bit_set, ctx);
 603		return;
 604	}
 605
 606	/* 1) sethi	%hi(high_bits), %reg
 607	 *    or	%reg, %lo(high_bits), %reg
 608	 *    sllx	%reg, 32, %reg
 609	 *    or	%reg, low_bits, %reg
 610	 */
 611	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
 612		sparc_emit_set_const64_quick2(high_bits, low_bits,
 613					      dest, 32, ctx);
 614		return;
 615	}
 616
 617	/* Oh well, we tried... Do a full 64-bit decomposition.  */
 618	ctx->tmp_1_used = true;
 619
 620	emit_loadimm32(high_bits, tmp, ctx);
 621	emit_loadimm32(low_bits, dest, ctx);
 622	emit_alu_K(SLLX, tmp, 32, ctx);
 623	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
 624}
 625
 626static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
 627			struct jit_ctx *ctx)
 628{
 629	unsigned int off = to_idx - from_idx;
 630
 631	if (br_opc & XCC)
 632		emit(br_opc | WDISP19(off << 2), ctx);
 633	else
 634		emit(br_opc | WDISP22(off << 2), ctx);
 635}
 636
 637static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
 638			const u8 dst, const u8 src, struct jit_ctx *ctx)
 639{
 640	unsigned int off = to_idx - from_idx;
 641
 642	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
 643}
 644
 645static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
 646			 const u8 dst, s32 imm, struct jit_ctx *ctx)
 647{
 648	unsigned int off = to_idx - from_idx;
 649
 650	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
 651}
 652
 653#define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
 654#define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
 655
 656#define emit_cmp(R1, R2, CTX)				\
 657	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
 658
 659#define emit_cmpi(R1, IMM, CTX)				\
 660	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
 661
 662#define emit_btst(R1, R2, CTX)				\
 663	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
 664
 665#define emit_btsti(R1, IMM, CTX)			\
 666	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
 667
 668static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
 669				   const s32 imm, bool is_imm, int branch_dst,
 670				   struct jit_ctx *ctx)
 671{
 672	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
 673	const u8 tmp = bpf2sparc[TMP_REG_1];
 674
 675	branch_dst = ctx->offset[branch_dst];
 676
 677	if (!is_simm10(branch_dst - ctx->idx) ||
 678	    BPF_OP(code) == BPF_JSET)
 679		use_cbcond = false;
 680
 681	if (is_imm) {
 682		bool fits = true;
 683
 684		if (use_cbcond) {
 685			if (!is_simm5(imm))
 686				fits = false;
 687		} else if (!is_simm13(imm)) {
 688			fits = false;
 689		}
 690		if (!fits) {
 691			ctx->tmp_1_used = true;
 692			emit_loadimm_sext(imm, tmp, ctx);
 693			src = tmp;
 694			is_imm = false;
 695		}
 696	}
 697
 698	if (!use_cbcond) {
 699		u32 br_opcode;
 700
 701		if (BPF_OP(code) == BPF_JSET) {
 702			if (is_imm)
 703				emit_btsti(dst, imm, ctx);
 704			else
 705				emit_btst(dst, src, ctx);
 706		} else {
 707			if (is_imm)
 708				emit_cmpi(dst, imm, ctx);
 709			else
 710				emit_cmp(dst, src, ctx);
 711		}
 712		switch (BPF_OP(code)) {
 713		case BPF_JEQ:
 714			br_opcode = BE;
 715			break;
 716		case BPF_JGT:
 717			br_opcode = BGU;
 718			break;
 719		case BPF_JLT:
 720			br_opcode = BLU;
 721			break;
 722		case BPF_JGE:
 723			br_opcode = BGEU;
 724			break;
 725		case BPF_JLE:
 726			br_opcode = BLEU;
 727			break;
 728		case BPF_JSET:
 729		case BPF_JNE:
 730			br_opcode = BNE;
 731			break;
 732		case BPF_JSGT:
 733			br_opcode = BG;
 734			break;
 735		case BPF_JSLT:
 736			br_opcode = BL;
 737			break;
 738		case BPF_JSGE:
 739			br_opcode = BGE;
 740			break;
 741		case BPF_JSLE:
 742			br_opcode = BLE;
 743			break;
 744		default:
 745			/* Make sure we dont leak kernel information to the
 746			 * user.
 747			 */
 748			return -EFAULT;
 749		}
 750		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
 751		emit_nop(ctx);
 752	} else {
 753		u32 cbcond_opcode;
 754
 755		switch (BPF_OP(code)) {
 756		case BPF_JEQ:
 757			cbcond_opcode = CBCONDE;
 758			break;
 759		case BPF_JGT:
 760			cbcond_opcode = CBCONDGU;
 761			break;
 762		case BPF_JLT:
 763			cbcond_opcode = CBCONDLU;
 764			break;
 765		case BPF_JGE:
 766			cbcond_opcode = CBCONDGEU;
 767			break;
 768		case BPF_JLE:
 769			cbcond_opcode = CBCONDLEU;
 770			break;
 771		case BPF_JNE:
 772			cbcond_opcode = CBCONDNE;
 773			break;
 774		case BPF_JSGT:
 775			cbcond_opcode = CBCONDG;
 776			break;
 777		case BPF_JSLT:
 778			cbcond_opcode = CBCONDL;
 779			break;
 780		case BPF_JSGE:
 781			cbcond_opcode = CBCONDGE;
 782			break;
 783		case BPF_JSLE:
 784			cbcond_opcode = CBCONDLE;
 785			break;
 786		default:
 787			/* Make sure we dont leak kernel information to the
 788			 * user.
 789			 */
 790			return -EFAULT;
 791		}
 792		cbcond_opcode |= CBCOND_OP;
 793		if (is_imm)
 794			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
 795				     dst, imm, ctx);
 796		else
 797			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
 798				    dst, src, ctx);
 799	}
 800	return 0;
 801}
 802
 803static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
 804{
 805	const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
 806	const u8 r_data = bpf2sparc[SKB_DATA_REG];
 807	const u8 r_tmp = bpf2sparc[TMP_REG_1];
 808	unsigned int off;
 809
 810	off = offsetof(struct sk_buff, len);
 811	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
 812
 813	off = offsetof(struct sk_buff, data_len);
 814	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
 815
 816	emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
 817
 818	off = offsetof(struct sk_buff, data);
 819	emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
 820}
 821
 822/* Just skip the save instruction and the ctx register move.  */
 823#define BPF_TAILCALL_PROLOGUE_SKIP	16
 824#define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
 825
 826static void build_prologue(struct jit_ctx *ctx)
 827{
 828	s32 stack_needed = BASE_STACKFRAME;
 829
 830	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
 831		struct bpf_prog *prog = ctx->prog;
 832		u32 stack_depth;
 833
 834		stack_depth = prog->aux->stack_depth;
 835		stack_needed += round_up(stack_depth, 16);
 836	}
 837
 838	if (ctx->saw_tail_call)
 839		stack_needed += 8;
 840
 841	/* save %sp, -176, %sp */
 842	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
 843
 844	/* tail_call_cnt = 0 */
 845	if (ctx->saw_tail_call) {
 846		u32 off = BPF_TAILCALL_CNT_SP_OFF;
 847
 848		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
 849	} else {
 850		emit_nop(ctx);
 851	}
 852	if (ctx->saw_frame_pointer) {
 853		const u8 vfp = bpf2sparc[BPF_REG_FP];
 854
 855		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
 856	}
 857
 858	emit_reg_move(I0, O0, ctx);
 859	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
 860
 861	if (ctx->saw_ld_abs_ind)
 862		load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
 863}
 864
 865static void build_epilogue(struct jit_ctx *ctx)
 866{
 867	ctx->epilogue_offset = ctx->idx;
 868
 869	/* ret (jmpl %i7 + 8, %g0) */
 870	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
 871
 872	/* restore %i5, %g0, %o0 */
 873	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
 874}
 875
 876static void emit_tail_call(struct jit_ctx *ctx)
 877{
 878	const u8 bpf_array = bpf2sparc[BPF_REG_2];
 879	const u8 bpf_index = bpf2sparc[BPF_REG_3];
 880	const u8 tmp = bpf2sparc[TMP_REG_1];
 881	u32 off;
 882
 883	ctx->saw_tail_call = true;
 884
 885	off = offsetof(struct bpf_array, map.max_entries);
 886	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
 887	emit_cmp(bpf_index, tmp, ctx);
 888#define OFFSET1 17
 889	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
 890	emit_nop(ctx);
 891
 892	off = BPF_TAILCALL_CNT_SP_OFF;
 893	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
 894	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
 895#define OFFSET2 13
 896	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
 897	emit_nop(ctx);
 898
 899	emit_alu_K(ADD, tmp, 1, ctx);
 900	off = BPF_TAILCALL_CNT_SP_OFF;
 901	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
 902
 903	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
 904	emit_alu(ADD, bpf_array, tmp, ctx);
 905	off = offsetof(struct bpf_array, ptrs);
 906	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
 907
 908	emit_cmpi(tmp, 0, ctx);
 909#define OFFSET3 5
 910	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
 911	emit_nop(ctx);
 912
 913	off = offsetof(struct bpf_prog, bpf_func);
 914	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
 915
 916	off = BPF_TAILCALL_PROLOGUE_SKIP;
 917	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
 918	emit_nop(ctx);
 919}
 920
 921static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
 922{
 923	const u8 code = insn->code;
 924	const u8 dst = bpf2sparc[insn->dst_reg];
 925	const u8 src = bpf2sparc[insn->src_reg];
 926	const int i = insn - ctx->prog->insnsi;
 927	const s16 off = insn->off;
 928	const s32 imm = insn->imm;
 929	u32 *func;
 930
 931	if (insn->src_reg == BPF_REG_FP)
 932		ctx->saw_frame_pointer = true;
 933
 934	switch (code) {
 935	/* dst = src */
 936	case BPF_ALU | BPF_MOV | BPF_X:
 937		emit_alu3_K(SRL, src, 0, dst, ctx);
 938		break;
 939	case BPF_ALU64 | BPF_MOV | BPF_X:
 940		emit_reg_move(src, dst, ctx);
 941		break;
 942	/* dst = dst OP src */
 943	case BPF_ALU | BPF_ADD | BPF_X:
 944	case BPF_ALU64 | BPF_ADD | BPF_X:
 945		emit_alu(ADD, src, dst, ctx);
 946		goto do_alu32_trunc;
 947	case BPF_ALU | BPF_SUB | BPF_X:
 948	case BPF_ALU64 | BPF_SUB | BPF_X:
 949		emit_alu(SUB, src, dst, ctx);
 950		goto do_alu32_trunc;
 951	case BPF_ALU | BPF_AND | BPF_X:
 952	case BPF_ALU64 | BPF_AND | BPF_X:
 953		emit_alu(AND, src, dst, ctx);
 954		goto do_alu32_trunc;
 955	case BPF_ALU | BPF_OR | BPF_X:
 956	case BPF_ALU64 | BPF_OR | BPF_X:
 957		emit_alu(OR, src, dst, ctx);
 958		goto do_alu32_trunc;
 959	case BPF_ALU | BPF_XOR | BPF_X:
 960	case BPF_ALU64 | BPF_XOR | BPF_X:
 961		emit_alu(XOR, src, dst, ctx);
 962		goto do_alu32_trunc;
 963	case BPF_ALU | BPF_MUL | BPF_X:
 964		emit_alu(MUL, src, dst, ctx);
 965		goto do_alu32_trunc;
 966	case BPF_ALU64 | BPF_MUL | BPF_X:
 967		emit_alu(MULX, src, dst, ctx);
 968		break;
 969	case BPF_ALU | BPF_DIV | BPF_X:
 970		emit_write_y(G0, ctx);
 971		emit_alu(DIV, src, dst, ctx);
 972		break;
 973	case BPF_ALU64 | BPF_DIV | BPF_X:
 974		emit_alu(UDIVX, src, dst, ctx);
 975		break;
 976	case BPF_ALU | BPF_MOD | BPF_X: {
 977		const u8 tmp = bpf2sparc[TMP_REG_1];
 978
 979		ctx->tmp_1_used = true;
 980
 981		emit_write_y(G0, ctx);
 982		emit_alu3(DIV, dst, src, tmp, ctx);
 983		emit_alu3(MULX, tmp, src, tmp, ctx);
 984		emit_alu3(SUB, dst, tmp, dst, ctx);
 985		goto do_alu32_trunc;
 986	}
 987	case BPF_ALU64 | BPF_MOD | BPF_X: {
 988		const u8 tmp = bpf2sparc[TMP_REG_1];
 989
 990		ctx->tmp_1_used = true;
 991
 992		emit_alu3(UDIVX, dst, src, tmp, ctx);
 993		emit_alu3(MULX, tmp, src, tmp, ctx);
 994		emit_alu3(SUB, dst, tmp, dst, ctx);
 995		break;
 996	}
 997	case BPF_ALU | BPF_LSH | BPF_X:
 998		emit_alu(SLL, src, dst, ctx);
 999		goto do_alu32_trunc;
1000	case BPF_ALU64 | BPF_LSH | BPF_X:
1001		emit_alu(SLLX, src, dst, ctx);
1002		break;
1003	case BPF_ALU | BPF_RSH | BPF_X:
1004		emit_alu(SRL, src, dst, ctx);
1005		break;
1006	case BPF_ALU64 | BPF_RSH | BPF_X:
1007		emit_alu(SRLX, src, dst, ctx);
1008		break;
1009	case BPF_ALU | BPF_ARSH | BPF_X:
1010		emit_alu(SRA, src, dst, ctx);
1011		goto do_alu32_trunc;
1012	case BPF_ALU64 | BPF_ARSH | BPF_X:
1013		emit_alu(SRAX, src, dst, ctx);
1014		break;
1015
1016	/* dst = -dst */
1017	case BPF_ALU | BPF_NEG:
1018	case BPF_ALU64 | BPF_NEG:
1019		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
1020		goto do_alu32_trunc;
1021
1022	case BPF_ALU | BPF_END | BPF_FROM_BE:
1023		switch (imm) {
1024		case 16:
1025			emit_alu_K(SLL, dst, 16, ctx);
1026			emit_alu_K(SRL, dst, 16, ctx);
1027			break;
1028		case 32:
1029			emit_alu_K(SRL, dst, 0, ctx);
1030			break;
1031		case 64:
1032			/* nop */
1033			break;
1034
1035		}
1036		break;
1037
1038	/* dst = BSWAP##imm(dst) */
1039	case BPF_ALU | BPF_END | BPF_FROM_LE: {
1040		const u8 tmp = bpf2sparc[TMP_REG_1];
1041		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1042
1043		ctx->tmp_1_used = true;
1044		switch (imm) {
1045		case 16:
1046			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1047			emit_alu3_K(SRL, dst, 8, dst, ctx);
1048			emit_alu3_K(AND, dst, 0xff, dst, ctx);
1049			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1050			emit_alu(OR, tmp, dst, ctx);
1051			break;
1052
1053		case 32:
1054			ctx->tmp_2_used = true;
1055			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
1056			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
1057			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1058			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
1059			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1060			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
1061			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1062			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
1063			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1064			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
1065			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
1066			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
1067			break;
1068
1069		case 64:
1070			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1071			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1072			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1073			break;
1074		}
1075		break;
1076	}
1077	/* dst = imm */
1078	case BPF_ALU | BPF_MOV | BPF_K:
1079		emit_loadimm32(imm, dst, ctx);
1080		break;
1081	case BPF_ALU64 | BPF_MOV | BPF_K:
1082		emit_loadimm_sext(imm, dst, ctx);
1083		break;
1084	/* dst = dst OP imm */
1085	case BPF_ALU | BPF_ADD | BPF_K:
1086	case BPF_ALU64 | BPF_ADD | BPF_K:
1087		emit_alu_K(ADD, dst, imm, ctx);
1088		goto do_alu32_trunc;
1089	case BPF_ALU | BPF_SUB | BPF_K:
1090	case BPF_ALU64 | BPF_SUB | BPF_K:
1091		emit_alu_K(SUB, dst, imm, ctx);
1092		goto do_alu32_trunc;
1093	case BPF_ALU | BPF_AND | BPF_K:
1094	case BPF_ALU64 | BPF_AND | BPF_K:
1095		emit_alu_K(AND, dst, imm, ctx);
1096		goto do_alu32_trunc;
1097	case BPF_ALU | BPF_OR | BPF_K:
1098	case BPF_ALU64 | BPF_OR | BPF_K:
1099		emit_alu_K(OR, dst, imm, ctx);
1100		goto do_alu32_trunc;
1101	case BPF_ALU | BPF_XOR | BPF_K:
1102	case BPF_ALU64 | BPF_XOR | BPF_K:
1103		emit_alu_K(XOR, dst, imm, ctx);
1104		goto do_alu32_trunc;
1105	case BPF_ALU | BPF_MUL | BPF_K:
1106		emit_alu_K(MUL, dst, imm, ctx);
1107		goto do_alu32_trunc;
1108	case BPF_ALU64 | BPF_MUL | BPF_K:
1109		emit_alu_K(MULX, dst, imm, ctx);
1110		break;
1111	case BPF_ALU | BPF_DIV | BPF_K:
1112		if (imm == 0)
1113			return -EINVAL;
1114
1115		emit_write_y(G0, ctx);
1116		emit_alu_K(DIV, dst, imm, ctx);
1117		goto do_alu32_trunc;
1118	case BPF_ALU64 | BPF_DIV | BPF_K:
1119		if (imm == 0)
1120			return -EINVAL;
1121
1122		emit_alu_K(UDIVX, dst, imm, ctx);
1123		break;
1124	case BPF_ALU64 | BPF_MOD | BPF_K:
1125	case BPF_ALU | BPF_MOD | BPF_K: {
1126		const u8 tmp = bpf2sparc[TMP_REG_2];
1127		unsigned int div;
1128
1129		if (imm == 0)
1130			return -EINVAL;
1131
1132		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1133
1134		ctx->tmp_2_used = true;
1135
1136		if (BPF_CLASS(code) != BPF_ALU64)
1137			emit_write_y(G0, ctx);
1138		if (is_simm13(imm)) {
1139			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1140			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1141			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1142		} else {
1143			const u8 tmp1 = bpf2sparc[TMP_REG_1];
1144
1145			ctx->tmp_1_used = true;
1146
1147			emit_set_const_sext(imm, tmp1, ctx);
1148			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1149			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1150			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1151		}
1152		goto do_alu32_trunc;
1153	}
1154	case BPF_ALU | BPF_LSH | BPF_K:
1155		emit_alu_K(SLL, dst, imm, ctx);
1156		goto do_alu32_trunc;
1157	case BPF_ALU64 | BPF_LSH | BPF_K:
1158		emit_alu_K(SLLX, dst, imm, ctx);
1159		break;
1160	case BPF_ALU | BPF_RSH | BPF_K:
1161		emit_alu_K(SRL, dst, imm, ctx);
1162		break;
1163	case BPF_ALU64 | BPF_RSH | BPF_K:
1164		emit_alu_K(SRLX, dst, imm, ctx);
1165		break;
1166	case BPF_ALU | BPF_ARSH | BPF_K:
1167		emit_alu_K(SRA, dst, imm, ctx);
1168		goto do_alu32_trunc;
1169	case BPF_ALU64 | BPF_ARSH | BPF_K:
1170		emit_alu_K(SRAX, dst, imm, ctx);
1171		break;
1172
1173	do_alu32_trunc:
1174		if (BPF_CLASS(code) == BPF_ALU)
1175			emit_alu_K(SRL, dst, 0, ctx);
1176		break;
1177
1178	/* JUMP off */
1179	case BPF_JMP | BPF_JA:
1180		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1181		emit_nop(ctx);
1182		break;
1183	/* IF (dst COND src) JUMP off */
1184	case BPF_JMP | BPF_JEQ | BPF_X:
1185	case BPF_JMP | BPF_JGT | BPF_X:
1186	case BPF_JMP | BPF_JLT | BPF_X:
1187	case BPF_JMP | BPF_JGE | BPF_X:
1188	case BPF_JMP | BPF_JLE | BPF_X:
1189	case BPF_JMP | BPF_JNE | BPF_X:
1190	case BPF_JMP | BPF_JSGT | BPF_X:
1191	case BPF_JMP | BPF_JSLT | BPF_X:
1192	case BPF_JMP | BPF_JSGE | BPF_X:
1193	case BPF_JMP | BPF_JSLE | BPF_X:
1194	case BPF_JMP | BPF_JSET | BPF_X: {
1195		int err;
1196
1197		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1198		if (err)
1199			return err;
1200		break;
1201	}
1202	/* IF (dst COND imm) JUMP off */
1203	case BPF_JMP | BPF_JEQ | BPF_K:
1204	case BPF_JMP | BPF_JGT | BPF_K:
1205	case BPF_JMP | BPF_JLT | BPF_K:
1206	case BPF_JMP | BPF_JGE | BPF_K:
1207	case BPF_JMP | BPF_JLE | BPF_K:
1208	case BPF_JMP | BPF_JNE | BPF_K:
1209	case BPF_JMP | BPF_JSGT | BPF_K:
1210	case BPF_JMP | BPF_JSLT | BPF_K:
1211	case BPF_JMP | BPF_JSGE | BPF_K:
1212	case BPF_JMP | BPF_JSLE | BPF_K:
1213	case BPF_JMP | BPF_JSET | BPF_K: {
1214		int err;
1215
1216		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1217		if (err)
1218			return err;
1219		break;
1220	}
1221
1222	/* function call */
1223	case BPF_JMP | BPF_CALL:
1224	{
1225		u8 *func = ((u8 *)__bpf_call_base) + imm;
1226
1227		ctx->saw_call = true;
1228		if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
1229			emit_reg_move(bpf2sparc[BPF_REG_1], L7, ctx);
1230
1231		emit_call((u32 *)func, ctx);
1232		emit_nop(ctx);
1233
1234		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1235
1236		if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
1237			load_skb_regs(ctx, L7);
1238		break;
1239	}
1240
1241	/* tail call */
1242	case BPF_JMP | BPF_TAIL_CALL:
1243		emit_tail_call(ctx);
1244		break;
1245
1246	/* function return */
1247	case BPF_JMP | BPF_EXIT:
1248		/* Optimization: when last instruction is EXIT,
1249		   simply fallthrough to epilogue. */
1250		if (i == ctx->prog->len - 1)
1251			break;
1252		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1253		emit_nop(ctx);
1254		break;
1255
1256	/* dst = imm64 */
1257	case BPF_LD | BPF_IMM | BPF_DW:
1258	{
1259		const struct bpf_insn insn1 = insn[1];
1260		u64 imm64;
1261
1262		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1263		emit_loadimm64(imm64, dst, ctx);
1264
1265		return 1;
1266	}
1267
1268	/* LDX: dst = *(size *)(src + off) */
1269	case BPF_LDX | BPF_MEM | BPF_W:
1270	case BPF_LDX | BPF_MEM | BPF_H:
1271	case BPF_LDX | BPF_MEM | BPF_B:
1272	case BPF_LDX | BPF_MEM | BPF_DW: {
1273		const u8 tmp = bpf2sparc[TMP_REG_1];
1274		u32 opcode = 0, rs2;
1275
1276		ctx->tmp_1_used = true;
1277		switch (BPF_SIZE(code)) {
1278		case BPF_W:
1279			opcode = LD32;
1280			break;
1281		case BPF_H:
1282			opcode = LD16;
1283			break;
1284		case BPF_B:
1285			opcode = LD8;
1286			break;
1287		case BPF_DW:
1288			opcode = LD64;
1289			break;
1290		}
1291
1292		if (is_simm13(off)) {
1293			opcode |= IMMED;
1294			rs2 = S13(off);
1295		} else {
1296			emit_loadimm(off, tmp, ctx);
1297			rs2 = RS2(tmp);
1298		}
1299		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1300		break;
1301	}
1302	/* ST: *(size *)(dst + off) = imm */
1303	case BPF_ST | BPF_MEM | BPF_W:
1304	case BPF_ST | BPF_MEM | BPF_H:
1305	case BPF_ST | BPF_MEM | BPF_B:
1306	case BPF_ST | BPF_MEM | BPF_DW: {
1307		const u8 tmp = bpf2sparc[TMP_REG_1];
1308		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1309		u32 opcode = 0, rs2;
1310
1311		ctx->tmp_2_used = true;
1312		emit_loadimm(imm, tmp2, ctx);
1313
1314		switch (BPF_SIZE(code)) {
1315		case BPF_W:
1316			opcode = ST32;
1317			break;
1318		case BPF_H:
1319			opcode = ST16;
1320			break;
1321		case BPF_B:
1322			opcode = ST8;
1323			break;
1324		case BPF_DW:
1325			opcode = ST64;
1326			break;
1327		}
1328
1329		if (is_simm13(off)) {
1330			opcode |= IMMED;
1331			rs2 = S13(off);
1332		} else {
1333			ctx->tmp_1_used = true;
1334			emit_loadimm(off, tmp, ctx);
1335			rs2 = RS2(tmp);
1336		}
1337		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1338		break;
1339	}
1340
1341	/* STX: *(size *)(dst + off) = src */
1342	case BPF_STX | BPF_MEM | BPF_W:
1343	case BPF_STX | BPF_MEM | BPF_H:
1344	case BPF_STX | BPF_MEM | BPF_B:
1345	case BPF_STX | BPF_MEM | BPF_DW: {
1346		const u8 tmp = bpf2sparc[TMP_REG_1];
1347		u32 opcode = 0, rs2;
1348
1349		switch (BPF_SIZE(code)) {
1350		case BPF_W:
1351			opcode = ST32;
1352			break;
1353		case BPF_H:
1354			opcode = ST16;
1355			break;
1356		case BPF_B:
1357			opcode = ST8;
1358			break;
1359		case BPF_DW:
1360			opcode = ST64;
1361			break;
1362		}
1363		if (is_simm13(off)) {
1364			opcode |= IMMED;
1365			rs2 = S13(off);
1366		} else {
1367			ctx->tmp_1_used = true;
1368			emit_loadimm(off, tmp, ctx);
1369			rs2 = RS2(tmp);
1370		}
1371		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1372		break;
1373	}
1374
1375	/* STX XADD: lock *(u32 *)(dst + off) += src */
1376	case BPF_STX | BPF_XADD | BPF_W: {
1377		const u8 tmp = bpf2sparc[TMP_REG_1];
1378		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1379		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1380
1381		ctx->tmp_1_used = true;
1382		ctx->tmp_2_used = true;
1383		ctx->tmp_3_used = true;
1384		emit_loadimm(off, tmp, ctx);
1385		emit_alu3(ADD, dst, tmp, tmp, ctx);
1386
1387		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1388		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1389		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1390		emit_cmp(tmp2, tmp3, ctx);
1391		emit_branch(BNE, 4, 0, ctx);
1392		emit_nop(ctx);
1393		break;
1394	}
1395	/* STX XADD: lock *(u64 *)(dst + off) += src */
1396	case BPF_STX | BPF_XADD | BPF_DW: {
1397		const u8 tmp = bpf2sparc[TMP_REG_1];
1398		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1399		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1400
1401		ctx->tmp_1_used = true;
1402		ctx->tmp_2_used = true;
1403		ctx->tmp_3_used = true;
1404		emit_loadimm(off, tmp, ctx);
1405		emit_alu3(ADD, dst, tmp, tmp, ctx);
1406
1407		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1408		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1409		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1410		emit_cmp(tmp2, tmp3, ctx);
1411		emit_branch(BNE, 4, 0, ctx);
1412		emit_nop(ctx);
1413		break;
1414	}
1415#define CHOOSE_LOAD_FUNC(K, func) \
1416		((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
1417
1418	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1419	case BPF_LD | BPF_ABS | BPF_W:
1420		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
1421		goto common_load;
1422	case BPF_LD | BPF_ABS | BPF_H:
1423		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
1424		goto common_load;
1425	case BPF_LD | BPF_ABS | BPF_B:
1426		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
1427		goto common_load;
1428	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1429	case BPF_LD | BPF_IND | BPF_W:
1430		func = bpf_jit_load_word;
1431		goto common_load;
1432	case BPF_LD | BPF_IND | BPF_H:
1433		func = bpf_jit_load_half;
1434		goto common_load;
1435
1436	case BPF_LD | BPF_IND | BPF_B:
1437		func = bpf_jit_load_byte;
1438	common_load:
1439		ctx->saw_ld_abs_ind = true;
1440
1441		emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
1442		emit_loadimm(imm, O1, ctx);
1443
1444		if (BPF_MODE(code) == BPF_IND)
1445			emit_alu(ADD, src, O1, ctx);
1446
1447		emit_call(func, ctx);
1448		emit_alu_K(SRA, O1, 0, ctx);
1449
1450		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1451		break;
1452
1453	default:
1454		pr_err_once("unknown opcode %02x\n", code);
1455		return -EINVAL;
1456	}
1457
1458	return 0;
1459}
1460
1461static int build_body(struct jit_ctx *ctx)
1462{
1463	const struct bpf_prog *prog = ctx->prog;
1464	int i;
1465
1466	for (i = 0; i < prog->len; i++) {
1467		const struct bpf_insn *insn = &prog->insnsi[i];
1468		int ret;
1469
1470		ret = build_insn(insn, ctx);
1471
1472		if (ret > 0) {
1473			i++;
1474			ctx->offset[i] = ctx->idx;
1475			continue;
1476		}
1477		ctx->offset[i] = ctx->idx;
1478		if (ret)
1479			return ret;
1480	}
1481	return 0;
1482}
1483
1484static void jit_fill_hole(void *area, unsigned int size)
1485{
1486	u32 *ptr;
1487	/* We are guaranteed to have aligned memory. */
1488	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1489		*ptr++ = 0x91d02005; /* ta 5 */
1490}
1491
1492struct sparc64_jit_data {
1493	struct bpf_binary_header *header;
1494	u8 *image;
1495	struct jit_ctx ctx;
1496};
1497
1498struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1499{
1500	struct bpf_prog *tmp, *orig_prog = prog;
1501	struct sparc64_jit_data *jit_data;
1502	struct bpf_binary_header *header;
1503	bool tmp_blinded = false;
1504	bool extra_pass = false;
1505	struct jit_ctx ctx;
1506	u32 image_size;
1507	u8 *image_ptr;
1508	int pass;
1509
1510	if (!prog->jit_requested)
1511		return orig_prog;
1512
1513	tmp = bpf_jit_blind_constants(prog);
1514	/* If blinding was requested and we failed during blinding,
1515	 * we must fall back to the interpreter.
1516	 */
1517	if (IS_ERR(tmp))
1518		return orig_prog;
1519	if (tmp != prog) {
1520		tmp_blinded = true;
1521		prog = tmp;
1522	}
1523
1524	jit_data = prog->aux->jit_data;
1525	if (!jit_data) {
1526		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1527		if (!jit_data) {
1528			prog = orig_prog;
1529			goto out;
1530		}
1531		prog->aux->jit_data = jit_data;
1532	}
1533	if (jit_data->ctx.offset) {
1534		ctx = jit_data->ctx;
1535		image_ptr = jit_data->image;
1536		header = jit_data->header;
1537		extra_pass = true;
1538		image_size = sizeof(u32) * ctx.idx;
1539		goto skip_init_ctx;
1540	}
1541
1542	memset(&ctx, 0, sizeof(ctx));
1543	ctx.prog = prog;
1544
1545	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
1546	if (ctx.offset == NULL) {
1547		prog = orig_prog;
1548		goto out_off;
1549	}
1550
1551	/* Fake pass to detect features used, and get an accurate assessment
1552	 * of what the final image size will be.
1553	 */
1554	if (build_body(&ctx)) {
1555		prog = orig_prog;
1556		goto out_off;
1557	}
1558	build_prologue(&ctx);
1559	build_epilogue(&ctx);
1560
1561	/* Now we know the actual image size. */
1562	image_size = sizeof(u32) * ctx.idx;
1563	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1564				      sizeof(u32), jit_fill_hole);
1565	if (header == NULL) {
1566		prog = orig_prog;
1567		goto out_off;
1568	}
1569
1570	ctx.image = (u32 *)image_ptr;
1571skip_init_ctx:
1572	for (pass = 1; pass < 3; pass++) {
1573		ctx.idx = 0;
1574
1575		build_prologue(&ctx);
1576
1577		if (build_body(&ctx)) {
1578			bpf_jit_binary_free(header);
1579			prog = orig_prog;
1580			goto out_off;
1581		}
1582
1583		build_epilogue(&ctx);
1584
1585		if (bpf_jit_enable > 1)
1586			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
1587				image_size - (ctx.idx * 4),
1588				ctx.tmp_1_used ? '1' : ' ',
1589				ctx.tmp_2_used ? '2' : ' ',
1590				ctx.tmp_3_used ? '3' : ' ',
1591				ctx.saw_ld_abs_ind ? 'L' : ' ',
1592				ctx.saw_frame_pointer ? 'F' : ' ',
1593				ctx.saw_call ? 'C' : ' ',
1594				ctx.saw_tail_call ? 'T' : ' ');
1595	}
1596
1597	if (bpf_jit_enable > 1)
1598		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1599
1600	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
1601
1602	if (!prog->is_func || extra_pass) {
1603		bpf_jit_binary_lock_ro(header);
1604	} else {
1605		jit_data->ctx = ctx;
1606		jit_data->image = image_ptr;
1607		jit_data->header = header;
1608	}
1609
1610	prog->bpf_func = (void *)ctx.image;
1611	prog->jited = 1;
1612	prog->jited_len = image_size;
1613
1614	if (!prog->is_func || extra_pass) {
1615out_off:
1616		kfree(ctx.offset);
1617		kfree(jit_data);
1618		prog->aux->jit_data = NULL;
1619	}
1620out:
1621	if (tmp_blinded)
1622		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1623					   tmp : orig_prog);
1624	return prog;
1625}