Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* smp.c: Sparc SMP support.
3 *
4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
7 */
8
9#include <asm/head.h>
10
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/threads.h>
14#include <linux/smp.h>
15#include <linux/interrupt.h>
16#include <linux/kernel_stat.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/cache.h>
23#include <linux/delay.h>
24#include <linux/profile.h>
25#include <linux/cpu.h>
26
27#include <asm/ptrace.h>
28#include <linux/atomic.h>
29
30#include <asm/irq.h>
31#include <asm/page.h>
32#include <asm/pgalloc.h>
33#include <asm/pgtable.h>
34#include <asm/oplib.h>
35#include <asm/cacheflush.h>
36#include <asm/tlbflush.h>
37#include <asm/cpudata.h>
38#include <asm/timer.h>
39#include <asm/leon.h>
40
41#include "kernel.h"
42#include "irq.h"
43
44volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};
45
46cpumask_t smp_commenced_mask = CPU_MASK_NONE;
47
48const struct sparc32_ipi_ops *sparc32_ipi_ops;
49
50/* The only guaranteed locking primitive available on all Sparc
51 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
52 * places the current byte at the effective address into dest_reg and
53 * places 0xff there afterwards. Pretty lame locking primitive
54 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
55 * instruction which is much better...
56 */
57
58void smp_store_cpu_info(int id)
59{
60 int cpu_node;
61 int mid;
62
63 cpu_data(id).udelay_val = loops_per_jiffy;
64
65 cpu_find_by_mid(id, &cpu_node);
66 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
67 "clock-frequency", 0);
68 cpu_data(id).prom_node = cpu_node;
69 mid = cpu_get_hwmid(cpu_node);
70
71 if (mid < 0) {
72 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08x", id, cpu_node);
73 mid = 0;
74 }
75 cpu_data(id).mid = mid;
76}
77
78void __init smp_cpus_done(unsigned int max_cpus)
79{
80 unsigned long bogosum = 0;
81 int cpu, num = 0;
82
83 for_each_online_cpu(cpu) {
84 num++;
85 bogosum += cpu_data(cpu).udelay_val;
86 }
87
88 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
89 num, bogosum/(500000/HZ),
90 (bogosum/(5000/HZ))%100);
91
92 switch(sparc_cpu_model) {
93 case sun4m:
94 smp4m_smp_done();
95 break;
96 case sun4d:
97 smp4d_smp_done();
98 break;
99 case sparc_leon:
100 leon_smp_done();
101 break;
102 case sun4e:
103 printk("SUN4E\n");
104 BUG();
105 break;
106 case sun4u:
107 printk("SUN4U\n");
108 BUG();
109 break;
110 default:
111 printk("UNKNOWN!\n");
112 BUG();
113 break;
114 }
115}
116
117void cpu_panic(void)
118{
119 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
120 panic("SMP bolixed\n");
121}
122
123struct linux_prom_registers smp_penguin_ctable = { 0 };
124
125void smp_send_reschedule(int cpu)
126{
127 /*
128 * CPU model dependent way of implementing IPI generation targeting
129 * a single CPU. The trap handler needs only to do trap entry/return
130 * to call schedule.
131 */
132 sparc32_ipi_ops->resched(cpu);
133}
134
135void smp_send_stop(void)
136{
137}
138
139void arch_send_call_function_single_ipi(int cpu)
140{
141 /* trigger one IPI single call on one CPU */
142 sparc32_ipi_ops->single(cpu);
143}
144
145void arch_send_call_function_ipi_mask(const struct cpumask *mask)
146{
147 int cpu;
148
149 /* trigger IPI mask call on each CPU */
150 for_each_cpu(cpu, mask)
151 sparc32_ipi_ops->mask_one(cpu);
152}
153
154void smp_resched_interrupt(void)
155{
156 irq_enter();
157 scheduler_ipi();
158 local_cpu_data().irq_resched_count++;
159 irq_exit();
160 /* re-schedule routine called by interrupt return code. */
161}
162
163void smp_call_function_single_interrupt(void)
164{
165 irq_enter();
166 generic_smp_call_function_single_interrupt();
167 local_cpu_data().irq_call_count++;
168 irq_exit();
169}
170
171void smp_call_function_interrupt(void)
172{
173 irq_enter();
174 generic_smp_call_function_interrupt();
175 local_cpu_data().irq_call_count++;
176 irq_exit();
177}
178
179int setup_profiling_timer(unsigned int multiplier)
180{
181 return -EINVAL;
182}
183
184void __init smp_prepare_cpus(unsigned int max_cpus)
185{
186 int i, cpuid, extra;
187
188 printk("Entering SMP Mode...\n");
189
190 extra = 0;
191 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
192 if (cpuid >= NR_CPUS)
193 extra++;
194 }
195 /* i = number of cpus */
196 if (extra && max_cpus > i - extra)
197 printk("Warning: NR_CPUS is too low to start all cpus\n");
198
199 smp_store_cpu_info(boot_cpu_id);
200
201 switch(sparc_cpu_model) {
202 case sun4m:
203 smp4m_boot_cpus();
204 break;
205 case sun4d:
206 smp4d_boot_cpus();
207 break;
208 case sparc_leon:
209 leon_boot_cpus();
210 break;
211 case sun4e:
212 printk("SUN4E\n");
213 BUG();
214 break;
215 case sun4u:
216 printk("SUN4U\n");
217 BUG();
218 break;
219 default:
220 printk("UNKNOWN!\n");
221 BUG();
222 break;
223 }
224}
225
226/* Set this up early so that things like the scheduler can init
227 * properly. We use the same cpu mask for both the present and
228 * possible cpu map.
229 */
230void __init smp_setup_cpu_possible_map(void)
231{
232 int instance, mid;
233
234 instance = 0;
235 while (!cpu_find_by_instance(instance, NULL, &mid)) {
236 if (mid < NR_CPUS) {
237 set_cpu_possible(mid, true);
238 set_cpu_present(mid, true);
239 }
240 instance++;
241 }
242}
243
244void __init smp_prepare_boot_cpu(void)
245{
246 int cpuid = hard_smp_processor_id();
247
248 if (cpuid >= NR_CPUS) {
249 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
250 prom_halt();
251 }
252 if (cpuid != 0)
253 printk("boot cpu id != 0, this could work but is untested\n");
254
255 current_thread_info()->cpu = cpuid;
256 set_cpu_online(cpuid, true);
257 set_cpu_possible(cpuid, true);
258}
259
260int __cpu_up(unsigned int cpu, struct task_struct *tidle)
261{
262 int ret=0;
263
264 switch(sparc_cpu_model) {
265 case sun4m:
266 ret = smp4m_boot_one_cpu(cpu, tidle);
267 break;
268 case sun4d:
269 ret = smp4d_boot_one_cpu(cpu, tidle);
270 break;
271 case sparc_leon:
272 ret = leon_boot_one_cpu(cpu, tidle);
273 break;
274 case sun4e:
275 printk("SUN4E\n");
276 BUG();
277 break;
278 case sun4u:
279 printk("SUN4U\n");
280 BUG();
281 break;
282 default:
283 printk("UNKNOWN!\n");
284 BUG();
285 break;
286 }
287
288 if (!ret) {
289 cpumask_set_cpu(cpu, &smp_commenced_mask);
290 while (!cpu_online(cpu))
291 mb();
292 }
293 return ret;
294}
295
296static void arch_cpu_pre_starting(void *arg)
297{
298 local_ops->cache_all();
299 local_ops->tlb_all();
300
301 switch(sparc_cpu_model) {
302 case sun4m:
303 sun4m_cpu_pre_starting(arg);
304 break;
305 case sun4d:
306 sun4d_cpu_pre_starting(arg);
307 break;
308 case sparc_leon:
309 leon_cpu_pre_starting(arg);
310 break;
311 default:
312 BUG();
313 }
314}
315
316static void arch_cpu_pre_online(void *arg)
317{
318 unsigned int cpuid = hard_smp_processor_id();
319
320 register_percpu_ce(cpuid);
321
322 calibrate_delay();
323 smp_store_cpu_info(cpuid);
324
325 local_ops->cache_all();
326 local_ops->tlb_all();
327
328 switch(sparc_cpu_model) {
329 case sun4m:
330 sun4m_cpu_pre_online(arg);
331 break;
332 case sun4d:
333 sun4d_cpu_pre_online(arg);
334 break;
335 case sparc_leon:
336 leon_cpu_pre_online(arg);
337 break;
338 default:
339 BUG();
340 }
341}
342
343static void sparc_start_secondary(void *arg)
344{
345 unsigned int cpu;
346
347 /*
348 * SMP booting is extremely fragile in some architectures. So run
349 * the cpu initialization code first before anything else.
350 */
351 arch_cpu_pre_starting(arg);
352
353 preempt_disable();
354 cpu = smp_processor_id();
355
356 notify_cpu_starting(cpu);
357 arch_cpu_pre_online(arg);
358
359 /* Set the CPU in the cpu_online_mask */
360 set_cpu_online(cpu, true);
361
362 /* Enable local interrupts now */
363 local_irq_enable();
364
365 wmb();
366 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
367
368 /* We should never reach here! */
369 BUG();
370}
371
372void smp_callin(void)
373{
374 sparc_start_secondary(NULL);
375}
376
377void smp_bogo(struct seq_file *m)
378{
379 int i;
380
381 for_each_online_cpu(i) {
382 seq_printf(m,
383 "Cpu%dBogo\t: %lu.%02lu\n",
384 i,
385 cpu_data(i).udelay_val/(500000/HZ),
386 (cpu_data(i).udelay_val/(5000/HZ))%100);
387 }
388}
389
390void smp_info(struct seq_file *m)
391{
392 int i;
393
394 seq_printf(m, "State:\n");
395 for_each_online_cpu(i)
396 seq_printf(m, "CPU%d\t\t: online\n", i);
397}
1/* smp.c: Sparc SMP support.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
7
8#include <asm/head.h>
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/threads.h>
13#include <linux/smp.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/delay.h>
23
24#include <asm/ptrace.h>
25#include <linux/atomic.h>
26
27#include <asm/irq.h>
28#include <asm/page.h>
29#include <asm/pgalloc.h>
30#include <asm/pgtable.h>
31#include <asm/oplib.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/cpudata.h>
35#include <asm/leon.h>
36
37#include "irq.h"
38
39volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40
41cpumask_t smp_commenced_mask = CPU_MASK_NONE;
42
43/* The only guaranteed locking primitive available on all Sparc
44 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
45 * places the current byte at the effective address into dest_reg and
46 * places 0xff there afterwards. Pretty lame locking primitive
47 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
48 * instruction which is much better...
49 */
50
51void __cpuinit smp_store_cpu_info(int id)
52{
53 int cpu_node;
54 int mid;
55
56 cpu_data(id).udelay_val = loops_per_jiffy;
57
58 cpu_find_by_mid(id, &cpu_node);
59 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
60 "clock-frequency", 0);
61 cpu_data(id).prom_node = cpu_node;
62 mid = cpu_get_hwmid(cpu_node);
63
64 if (mid < 0) {
65 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
66 mid = 0;
67 }
68 cpu_data(id).mid = mid;
69}
70
71void __init smp_cpus_done(unsigned int max_cpus)
72{
73 extern void smp4m_smp_done(void);
74 extern void smp4d_smp_done(void);
75 unsigned long bogosum = 0;
76 int cpu, num = 0;
77
78 for_each_online_cpu(cpu) {
79 num++;
80 bogosum += cpu_data(cpu).udelay_val;
81 }
82
83 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
84 num, bogosum/(500000/HZ),
85 (bogosum/(5000/HZ))%100);
86
87 switch(sparc_cpu_model) {
88 case sun4:
89 printk("SUN4\n");
90 BUG();
91 break;
92 case sun4c:
93 printk("SUN4C\n");
94 BUG();
95 break;
96 case sun4m:
97 smp4m_smp_done();
98 break;
99 case sun4d:
100 smp4d_smp_done();
101 break;
102 case sparc_leon:
103 leon_smp_done();
104 break;
105 case sun4e:
106 printk("SUN4E\n");
107 BUG();
108 break;
109 case sun4u:
110 printk("SUN4U\n");
111 BUG();
112 break;
113 default:
114 printk("UNKNOWN!\n");
115 BUG();
116 break;
117 }
118}
119
120void cpu_panic(void)
121{
122 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
123 panic("SMP bolixed\n");
124}
125
126struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
127
128void smp_send_reschedule(int cpu)
129{
130 /*
131 * CPU model dependent way of implementing IPI generation targeting
132 * a single CPU. The trap handler needs only to do trap entry/return
133 * to call schedule.
134 */
135 BTFIXUP_CALL(smp_ipi_resched)(cpu);
136}
137
138void smp_send_stop(void)
139{
140}
141
142void arch_send_call_function_single_ipi(int cpu)
143{
144 /* trigger one IPI single call on one CPU */
145 BTFIXUP_CALL(smp_ipi_single)(cpu);
146}
147
148void arch_send_call_function_ipi_mask(const struct cpumask *mask)
149{
150 int cpu;
151
152 /* trigger IPI mask call on each CPU */
153 for_each_cpu(cpu, mask)
154 BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
155}
156
157void smp_resched_interrupt(void)
158{
159 irq_enter();
160 scheduler_ipi();
161 local_cpu_data().irq_resched_count++;
162 irq_exit();
163 /* re-schedule routine called by interrupt return code. */
164}
165
166void smp_call_function_single_interrupt(void)
167{
168 irq_enter();
169 generic_smp_call_function_single_interrupt();
170 local_cpu_data().irq_call_count++;
171 irq_exit();
172}
173
174void smp_call_function_interrupt(void)
175{
176 irq_enter();
177 generic_smp_call_function_interrupt();
178 local_cpu_data().irq_call_count++;
179 irq_exit();
180}
181
182void smp_flush_cache_all(void)
183{
184 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
185 local_flush_cache_all();
186}
187
188void smp_flush_tlb_all(void)
189{
190 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
191 local_flush_tlb_all();
192}
193
194void smp_flush_cache_mm(struct mm_struct *mm)
195{
196 if(mm->context != NO_CONTEXT) {
197 cpumask_t cpu_mask;
198 cpumask_copy(&cpu_mask, mm_cpumask(mm));
199 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
200 if (!cpumask_empty(&cpu_mask))
201 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
202 local_flush_cache_mm(mm);
203 }
204}
205
206void smp_flush_tlb_mm(struct mm_struct *mm)
207{
208 if(mm->context != NO_CONTEXT) {
209 cpumask_t cpu_mask;
210 cpumask_copy(&cpu_mask, mm_cpumask(mm));
211 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
212 if (!cpumask_empty(&cpu_mask)) {
213 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
214 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
215 cpumask_copy(mm_cpumask(mm),
216 cpumask_of(smp_processor_id()));
217 }
218 local_flush_tlb_mm(mm);
219 }
220}
221
222void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
223 unsigned long end)
224{
225 struct mm_struct *mm = vma->vm_mm;
226
227 if (mm->context != NO_CONTEXT) {
228 cpumask_t cpu_mask;
229 cpumask_copy(&cpu_mask, mm_cpumask(mm));
230 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
231 if (!cpumask_empty(&cpu_mask))
232 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
233 local_flush_cache_range(vma, start, end);
234 }
235}
236
237void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
238 unsigned long end)
239{
240 struct mm_struct *mm = vma->vm_mm;
241
242 if (mm->context != NO_CONTEXT) {
243 cpumask_t cpu_mask;
244 cpumask_copy(&cpu_mask, mm_cpumask(mm));
245 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
246 if (!cpumask_empty(&cpu_mask))
247 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
248 local_flush_tlb_range(vma, start, end);
249 }
250}
251
252void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
253{
254 struct mm_struct *mm = vma->vm_mm;
255
256 if(mm->context != NO_CONTEXT) {
257 cpumask_t cpu_mask;
258 cpumask_copy(&cpu_mask, mm_cpumask(mm));
259 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
260 if (!cpumask_empty(&cpu_mask))
261 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
262 local_flush_cache_page(vma, page);
263 }
264}
265
266void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
267{
268 struct mm_struct *mm = vma->vm_mm;
269
270 if(mm->context != NO_CONTEXT) {
271 cpumask_t cpu_mask;
272 cpumask_copy(&cpu_mask, mm_cpumask(mm));
273 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
274 if (!cpumask_empty(&cpu_mask))
275 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
276 local_flush_tlb_page(vma, page);
277 }
278}
279
280void smp_flush_page_to_ram(unsigned long page)
281{
282 /* Current theory is that those who call this are the one's
283 * who have just dirtied their cache with the pages contents
284 * in kernel space, therefore we only run this on local cpu.
285 *
286 * XXX This experiment failed, research further... -DaveM
287 */
288#if 1
289 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
290#endif
291 local_flush_page_to_ram(page);
292}
293
294void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
295{
296 cpumask_t cpu_mask;
297 cpumask_copy(&cpu_mask, mm_cpumask(mm));
298 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
299 if (!cpumask_empty(&cpu_mask))
300 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
301 local_flush_sig_insns(mm, insn_addr);
302}
303
304extern unsigned int lvl14_resolution;
305
306/* /proc/profile writes can call this, don't __init it please. */
307static DEFINE_SPINLOCK(prof_setup_lock);
308
309int setup_profiling_timer(unsigned int multiplier)
310{
311 int i;
312 unsigned long flags;
313
314 /* Prevent level14 ticker IRQ flooding. */
315 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
316 return -EINVAL;
317
318 spin_lock_irqsave(&prof_setup_lock, flags);
319 for_each_possible_cpu(i) {
320 load_profile_irq(i, lvl14_resolution / multiplier);
321 prof_multiplier(i) = multiplier;
322 }
323 spin_unlock_irqrestore(&prof_setup_lock, flags);
324
325 return 0;
326}
327
328void __init smp_prepare_cpus(unsigned int max_cpus)
329{
330 extern void __init smp4m_boot_cpus(void);
331 extern void __init smp4d_boot_cpus(void);
332 int i, cpuid, extra;
333
334 printk("Entering SMP Mode...\n");
335
336 extra = 0;
337 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
338 if (cpuid >= NR_CPUS)
339 extra++;
340 }
341 /* i = number of cpus */
342 if (extra && max_cpus > i - extra)
343 printk("Warning: NR_CPUS is too low to start all cpus\n");
344
345 smp_store_cpu_info(boot_cpu_id);
346
347 switch(sparc_cpu_model) {
348 case sun4:
349 printk("SUN4\n");
350 BUG();
351 break;
352 case sun4c:
353 printk("SUN4C\n");
354 BUG();
355 break;
356 case sun4m:
357 smp4m_boot_cpus();
358 break;
359 case sun4d:
360 smp4d_boot_cpus();
361 break;
362 case sparc_leon:
363 leon_boot_cpus();
364 break;
365 case sun4e:
366 printk("SUN4E\n");
367 BUG();
368 break;
369 case sun4u:
370 printk("SUN4U\n");
371 BUG();
372 break;
373 default:
374 printk("UNKNOWN!\n");
375 BUG();
376 break;
377 }
378}
379
380/* Set this up early so that things like the scheduler can init
381 * properly. We use the same cpu mask for both the present and
382 * possible cpu map.
383 */
384void __init smp_setup_cpu_possible_map(void)
385{
386 int instance, mid;
387
388 instance = 0;
389 while (!cpu_find_by_instance(instance, NULL, &mid)) {
390 if (mid < NR_CPUS) {
391 set_cpu_possible(mid, true);
392 set_cpu_present(mid, true);
393 }
394 instance++;
395 }
396}
397
398void __init smp_prepare_boot_cpu(void)
399{
400 int cpuid = hard_smp_processor_id();
401
402 if (cpuid >= NR_CPUS) {
403 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
404 prom_halt();
405 }
406 if (cpuid != 0)
407 printk("boot cpu id != 0, this could work but is untested\n");
408
409 current_thread_info()->cpu = cpuid;
410 set_cpu_online(cpuid, true);
411 set_cpu_possible(cpuid, true);
412}
413
414int __cpuinit __cpu_up(unsigned int cpu)
415{
416 extern int __cpuinit smp4m_boot_one_cpu(int);
417 extern int __cpuinit smp4d_boot_one_cpu(int);
418 int ret=0;
419
420 switch(sparc_cpu_model) {
421 case sun4:
422 printk("SUN4\n");
423 BUG();
424 break;
425 case sun4c:
426 printk("SUN4C\n");
427 BUG();
428 break;
429 case sun4m:
430 ret = smp4m_boot_one_cpu(cpu);
431 break;
432 case sun4d:
433 ret = smp4d_boot_one_cpu(cpu);
434 break;
435 case sparc_leon:
436 ret = leon_boot_one_cpu(cpu);
437 break;
438 case sun4e:
439 printk("SUN4E\n");
440 BUG();
441 break;
442 case sun4u:
443 printk("SUN4U\n");
444 BUG();
445 break;
446 default:
447 printk("UNKNOWN!\n");
448 BUG();
449 break;
450 }
451
452 if (!ret) {
453 cpumask_set_cpu(cpu, &smp_commenced_mask);
454 while (!cpu_online(cpu))
455 mb();
456 }
457 return ret;
458}
459
460void smp_bogo(struct seq_file *m)
461{
462 int i;
463
464 for_each_online_cpu(i) {
465 seq_printf(m,
466 "Cpu%dBogo\t: %lu.%02lu\n",
467 i,
468 cpu_data(i).udelay_val/(500000/HZ),
469 (cpu_data(i).udelay_val/(5000/HZ))%100);
470 }
471}
472
473void smp_info(struct seq_file *m)
474{
475 int i;
476
477 seq_printf(m, "State:\n");
478 for_each_online_cpu(i)
479 seq_printf(m, "CPU%d\t\t: online\n", i);
480}