Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* arch/sparc64/kernel/process.c
3 *
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9/*
10 * This file handles the architecture-dependent parts of process handling..
11 */
12
13#include <stdarg.h>
14
15#include <linux/errno.h>
16#include <linux/export.h>
17#include <linux/sched.h>
18#include <linux/sched/debug.h>
19#include <linux/sched/task.h>
20#include <linux/sched/task_stack.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/fs.h>
24#include <linux/smp.h>
25#include <linux/stddef.h>
26#include <linux/ptrace.h>
27#include <linux/slab.h>
28#include <linux/user.h>
29#include <linux/delay.h>
30#include <linux/compat.h>
31#include <linux/tick.h>
32#include <linux/init.h>
33#include <linux/cpu.h>
34#include <linux/perf_event.h>
35#include <linux/elfcore.h>
36#include <linux/sysrq.h>
37#include <linux/nmi.h>
38#include <linux/context_tracking.h>
39
40#include <linux/uaccess.h>
41#include <asm/page.h>
42#include <asm/pgalloc.h>
43#include <asm/pgtable.h>
44#include <asm/processor.h>
45#include <asm/pstate.h>
46#include <asm/elf.h>
47#include <asm/fpumacro.h>
48#include <asm/head.h>
49#include <asm/cpudata.h>
50#include <asm/mmu_context.h>
51#include <asm/unistd.h>
52#include <asm/hypervisor.h>
53#include <asm/syscalls.h>
54#include <asm/irq_regs.h>
55#include <asm/smp.h>
56#include <asm/pcr.h>
57
58#include "kstack.h"
59
60/* Idle loop support on sparc64. */
61void arch_cpu_idle(void)
62{
63 if (tlb_type != hypervisor) {
64 touch_nmi_watchdog();
65 local_irq_enable();
66 } else {
67 unsigned long pstate;
68
69 local_irq_enable();
70
71 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
72 * the cpu sleep hypervisor call.
73 */
74 __asm__ __volatile__(
75 "rdpr %%pstate, %0\n\t"
76 "andn %0, %1, %0\n\t"
77 "wrpr %0, %%g0, %%pstate"
78 : "=&r" (pstate)
79 : "i" (PSTATE_IE));
80
81 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
82 sun4v_cpu_yield();
83 /* If resumed by cpu_poke then we need to explicitly
84 * call scheduler_ipi().
85 */
86 scheduler_poke();
87 }
88
89 /* Re-enable interrupts. */
90 __asm__ __volatile__(
91 "rdpr %%pstate, %0\n\t"
92 "or %0, %1, %0\n\t"
93 "wrpr %0, %%g0, %%pstate"
94 : "=&r" (pstate)
95 : "i" (PSTATE_IE));
96 }
97}
98
99#ifdef CONFIG_HOTPLUG_CPU
100void arch_cpu_idle_dead(void)
101{
102 sched_preempt_enable_no_resched();
103 cpu_play_dead();
104}
105#endif
106
107#ifdef CONFIG_COMPAT
108static void show_regwindow32(struct pt_regs *regs)
109{
110 struct reg_window32 __user *rw;
111 struct reg_window32 r_w;
112 mm_segment_t old_fs;
113
114 __asm__ __volatile__ ("flushw");
115 rw = compat_ptr((unsigned int)regs->u_regs[14]);
116 old_fs = get_fs();
117 set_fs (USER_DS);
118 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
119 set_fs (old_fs);
120 return;
121 }
122
123 set_fs (old_fs);
124 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
125 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
126 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
127 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
128 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
129 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
130 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
131 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
132}
133#else
134#define show_regwindow32(regs) do { } while (0)
135#endif
136
137static void show_regwindow(struct pt_regs *regs)
138{
139 struct reg_window __user *rw;
140 struct reg_window *rwk;
141 struct reg_window r_w;
142 mm_segment_t old_fs;
143
144 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
145 __asm__ __volatile__ ("flushw");
146 rw = (struct reg_window __user *)
147 (regs->u_regs[14] + STACK_BIAS);
148 rwk = (struct reg_window *)
149 (regs->u_regs[14] + STACK_BIAS);
150 if (!(regs->tstate & TSTATE_PRIV)) {
151 old_fs = get_fs();
152 set_fs (USER_DS);
153 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
154 set_fs (old_fs);
155 return;
156 }
157 rwk = &r_w;
158 set_fs (old_fs);
159 }
160 } else {
161 show_regwindow32(regs);
162 return;
163 }
164 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
165 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
166 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
167 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
168 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
169 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
170 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
171 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
172 if (regs->tstate & TSTATE_PRIV)
173 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
174}
175
176void show_regs(struct pt_regs *regs)
177{
178 show_regs_print_info(KERN_DEFAULT);
179
180 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
181 regs->tpc, regs->tnpc, regs->y, print_tainted());
182 printk("TPC: <%pS>\n", (void *) regs->tpc);
183 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
184 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
185 regs->u_regs[3]);
186 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
187 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
188 regs->u_regs[7]);
189 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
190 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
191 regs->u_regs[11]);
192 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
193 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
194 regs->u_regs[15]);
195 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
196 show_regwindow(regs);
197 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
198}
199
200union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
201static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
202
203static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
204 int this_cpu)
205{
206 struct global_reg_snapshot *rp;
207
208 flushw_all();
209
210 rp = &global_cpu_snapshot[this_cpu].reg;
211
212 rp->tstate = regs->tstate;
213 rp->tpc = regs->tpc;
214 rp->tnpc = regs->tnpc;
215 rp->o7 = regs->u_regs[UREG_I7];
216
217 if (regs->tstate & TSTATE_PRIV) {
218 struct reg_window *rw;
219
220 rw = (struct reg_window *)
221 (regs->u_regs[UREG_FP] + STACK_BIAS);
222 if (kstack_valid(tp, (unsigned long) rw)) {
223 rp->i7 = rw->ins[7];
224 rw = (struct reg_window *)
225 (rw->ins[6] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw))
227 rp->rpc = rw->ins[7];
228 }
229 } else {
230 rp->i7 = 0;
231 rp->rpc = 0;
232 }
233 rp->thread = tp;
234}
235
236/* In order to avoid hangs we do not try to synchronize with the
237 * global register dump client cpus. The last store they make is to
238 * the thread pointer, so do a short poll waiting for that to become
239 * non-NULL.
240 */
241static void __global_reg_poll(struct global_reg_snapshot *gp)
242{
243 int limit = 0;
244
245 while (!gp->thread && ++limit < 100) {
246 barrier();
247 udelay(1);
248 }
249}
250
251void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
252{
253 struct thread_info *tp = current_thread_info();
254 struct pt_regs *regs = get_irq_regs();
255 unsigned long flags;
256 int this_cpu, cpu;
257
258 if (!regs)
259 regs = tp->kregs;
260
261 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
262
263 this_cpu = raw_smp_processor_id();
264
265 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
266
267 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
268 __global_reg_self(tp, regs, this_cpu);
269
270 smp_fetch_global_regs();
271
272 for_each_cpu(cpu, mask) {
273 struct global_reg_snapshot *gp;
274
275 if (exclude_self && cpu == this_cpu)
276 continue;
277
278 gp = &global_cpu_snapshot[cpu].reg;
279
280 __global_reg_poll(gp);
281
282 tp = gp->thread;
283 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
284 (cpu == this_cpu ? '*' : ' '), cpu,
285 gp->tstate, gp->tpc, gp->tnpc,
286 ((tp && tp->task) ? tp->task->comm : "NULL"),
287 ((tp && tp->task) ? tp->task->pid : -1));
288
289 if (gp->tstate & TSTATE_PRIV) {
290 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
291 (void *) gp->tpc,
292 (void *) gp->o7,
293 (void *) gp->i7,
294 (void *) gp->rpc);
295 } else {
296 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
297 gp->tpc, gp->o7, gp->i7, gp->rpc);
298 }
299
300 touch_nmi_watchdog();
301 }
302
303 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
304
305 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
306}
307
308#ifdef CONFIG_MAGIC_SYSRQ
309
310static void sysrq_handle_globreg(int key)
311{
312 trigger_all_cpu_backtrace();
313}
314
315static struct sysrq_key_op sparc_globalreg_op = {
316 .handler = sysrq_handle_globreg,
317 .help_msg = "global-regs(y)",
318 .action_msg = "Show Global CPU Regs",
319};
320
321static void __global_pmu_self(int this_cpu)
322{
323 struct global_pmu_snapshot *pp;
324 int i, num;
325
326 if (!pcr_ops)
327 return;
328
329 pp = &global_cpu_snapshot[this_cpu].pmu;
330
331 num = 1;
332 if (tlb_type == hypervisor &&
333 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
334 num = 4;
335
336 for (i = 0; i < num; i++) {
337 pp->pcr[i] = pcr_ops->read_pcr(i);
338 pp->pic[i] = pcr_ops->read_pic(i);
339 }
340}
341
342static void __global_pmu_poll(struct global_pmu_snapshot *pp)
343{
344 int limit = 0;
345
346 while (!pp->pcr[0] && ++limit < 100) {
347 barrier();
348 udelay(1);
349 }
350}
351
352static void pmu_snapshot_all_cpus(void)
353{
354 unsigned long flags;
355 int this_cpu, cpu;
356
357 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
358
359 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
360
361 this_cpu = raw_smp_processor_id();
362
363 __global_pmu_self(this_cpu);
364
365 smp_fetch_global_pmu();
366
367 for_each_online_cpu(cpu) {
368 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
369
370 __global_pmu_poll(pp);
371
372 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
373 (cpu == this_cpu ? '*' : ' '), cpu,
374 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
375 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
376
377 touch_nmi_watchdog();
378 }
379
380 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
381
382 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
383}
384
385static void sysrq_handle_globpmu(int key)
386{
387 pmu_snapshot_all_cpus();
388}
389
390static struct sysrq_key_op sparc_globalpmu_op = {
391 .handler = sysrq_handle_globpmu,
392 .help_msg = "global-pmu(x)",
393 .action_msg = "Show Global PMU Regs",
394};
395
396static int __init sparc_sysrq_init(void)
397{
398 int ret = register_sysrq_key('y', &sparc_globalreg_op);
399
400 if (!ret)
401 ret = register_sysrq_key('x', &sparc_globalpmu_op);
402 return ret;
403}
404
405core_initcall(sparc_sysrq_init);
406
407#endif
408
409/* Free current thread data structures etc.. */
410void exit_thread(struct task_struct *tsk)
411{
412 struct thread_info *t = task_thread_info(tsk);
413
414 if (t->utraps) {
415 if (t->utraps[0] < 2)
416 kfree (t->utraps);
417 else
418 t->utraps[0]--;
419 }
420}
421
422void flush_thread(void)
423{
424 struct thread_info *t = current_thread_info();
425 struct mm_struct *mm;
426
427 mm = t->task->mm;
428 if (mm)
429 tsb_context_switch(mm);
430
431 set_thread_wsaved(0);
432
433 /* Clear FPU register state. */
434 t->fpsaved[0] = 0;
435}
436
437/* It's a bit more tricky when 64-bit tasks are involved... */
438static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
439{
440 bool stack_64bit = test_thread_64bit_stack(psp);
441 unsigned long fp, distance, rval;
442
443 if (stack_64bit) {
444 csp += STACK_BIAS;
445 psp += STACK_BIAS;
446 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
447 fp += STACK_BIAS;
448 if (test_thread_flag(TIF_32BIT))
449 fp &= 0xffffffff;
450 } else
451 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
452
453 /* Now align the stack as this is mandatory in the Sparc ABI
454 * due to how register windows work. This hides the
455 * restriction from thread libraries etc.
456 */
457 csp &= ~15UL;
458
459 distance = fp - psp;
460 rval = (csp - distance);
461 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
462 rval = 0;
463 else if (!stack_64bit) {
464 if (put_user(((u32)csp),
465 &(((struct reg_window32 __user *)rval)->ins[6])))
466 rval = 0;
467 } else {
468 if (put_user(((u64)csp - STACK_BIAS),
469 &(((struct reg_window __user *)rval)->ins[6])))
470 rval = 0;
471 else
472 rval = rval - STACK_BIAS;
473 }
474
475 return rval;
476}
477
478/* Standard stuff. */
479static inline void shift_window_buffer(int first_win, int last_win,
480 struct thread_info *t)
481{
482 int i;
483
484 for (i = first_win; i < last_win; i++) {
485 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
486 memcpy(&t->reg_window[i], &t->reg_window[i+1],
487 sizeof(struct reg_window));
488 }
489}
490
491void synchronize_user_stack(void)
492{
493 struct thread_info *t = current_thread_info();
494 unsigned long window;
495
496 flush_user_windows();
497 if ((window = get_thread_wsaved()) != 0) {
498 window -= 1;
499 do {
500 struct reg_window *rwin = &t->reg_window[window];
501 int winsize = sizeof(struct reg_window);
502 unsigned long sp;
503
504 sp = t->rwbuf_stkptrs[window];
505
506 if (test_thread_64bit_stack(sp))
507 sp += STACK_BIAS;
508 else
509 winsize = sizeof(struct reg_window32);
510
511 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
512 shift_window_buffer(window, get_thread_wsaved() - 1, t);
513 set_thread_wsaved(get_thread_wsaved() - 1);
514 }
515 } while (window--);
516 }
517}
518
519static void stack_unaligned(unsigned long sp)
520{
521 siginfo_t info;
522
523 info.si_signo = SIGBUS;
524 info.si_errno = 0;
525 info.si_code = BUS_ADRALN;
526 info.si_addr = (void __user *) sp;
527 info.si_trapno = 0;
528 force_sig_info(SIGBUS, &info, current);
529}
530
531void fault_in_user_windows(void)
532{
533 struct thread_info *t = current_thread_info();
534 unsigned long window;
535
536 flush_user_windows();
537 window = get_thread_wsaved();
538
539 if (likely(window != 0)) {
540 window -= 1;
541 do {
542 struct reg_window *rwin = &t->reg_window[window];
543 int winsize = sizeof(struct reg_window);
544 unsigned long sp;
545
546 sp = t->rwbuf_stkptrs[window];
547
548 if (test_thread_64bit_stack(sp))
549 sp += STACK_BIAS;
550 else
551 winsize = sizeof(struct reg_window32);
552
553 if (unlikely(sp & 0x7UL))
554 stack_unaligned(sp);
555
556 if (unlikely(copy_to_user((char __user *)sp,
557 rwin, winsize)))
558 goto barf;
559 } while (window--);
560 }
561 set_thread_wsaved(0);
562 return;
563
564barf:
565 set_thread_wsaved(window + 1);
566 user_exit();
567 do_exit(SIGILL);
568}
569
570asmlinkage long sparc_do_fork(unsigned long clone_flags,
571 unsigned long stack_start,
572 struct pt_regs *regs,
573 unsigned long stack_size)
574{
575 int __user *parent_tid_ptr, *child_tid_ptr;
576 unsigned long orig_i1 = regs->u_regs[UREG_I1];
577 long ret;
578
579#ifdef CONFIG_COMPAT
580 if (test_thread_flag(TIF_32BIT)) {
581 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
582 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
583 } else
584#endif
585 {
586 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
587 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
588 }
589
590 ret = do_fork(clone_flags, stack_start, stack_size,
591 parent_tid_ptr, child_tid_ptr);
592
593 /* If we get an error and potentially restart the system
594 * call, we're screwed because copy_thread() clobbered
595 * the parent's %o1. So detect that case and restore it
596 * here.
597 */
598 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
599 regs->u_regs[UREG_I1] = orig_i1;
600
601 return ret;
602}
603
604/* Copy a Sparc thread. The fork() return value conventions
605 * under SunOS are nothing short of bletcherous:
606 * Parent --> %o0 == childs pid, %o1 == 0
607 * Child --> %o0 == parents pid, %o1 == 1
608 */
609int copy_thread(unsigned long clone_flags, unsigned long sp,
610 unsigned long arg, struct task_struct *p)
611{
612 struct thread_info *t = task_thread_info(p);
613 struct pt_regs *regs = current_pt_regs();
614 struct sparc_stackf *parent_sf;
615 unsigned long child_stack_sz;
616 char *child_trap_frame;
617
618 /* Calculate offset to stack_frame & pt_regs */
619 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
620 child_trap_frame = (task_stack_page(p) +
621 (THREAD_SIZE - child_stack_sz));
622
623 t->new_child = 1;
624 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
625 t->kregs = (struct pt_regs *) (child_trap_frame +
626 sizeof(struct sparc_stackf));
627 t->fpsaved[0] = 0;
628
629 if (unlikely(p->flags & PF_KTHREAD)) {
630 memset(child_trap_frame, 0, child_stack_sz);
631 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
632 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
633 t->current_ds = ASI_P;
634 t->kregs->u_regs[UREG_G1] = sp; /* function */
635 t->kregs->u_regs[UREG_G2] = arg;
636 return 0;
637 }
638
639 parent_sf = ((struct sparc_stackf *) regs) - 1;
640 memcpy(child_trap_frame, parent_sf, child_stack_sz);
641 if (t->flags & _TIF_32BIT) {
642 sp &= 0x00000000ffffffffUL;
643 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
644 }
645 t->kregs->u_regs[UREG_FP] = sp;
646 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
647 (regs->tstate + 1) & TSTATE_CWP;
648 t->current_ds = ASI_AIUS;
649 if (sp != regs->u_regs[UREG_FP]) {
650 unsigned long csp;
651
652 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
653 if (!csp)
654 return -EFAULT;
655 t->kregs->u_regs[UREG_FP] = csp;
656 }
657 if (t->utraps)
658 t->utraps[0]++;
659
660 /* Set the return value for the child. */
661 t->kregs->u_regs[UREG_I0] = current->pid;
662 t->kregs->u_regs[UREG_I1] = 1;
663
664 /* Set the second return value for the parent. */
665 regs->u_regs[UREG_I1] = 0;
666
667 if (clone_flags & CLONE_SETTLS)
668 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
669
670 return 0;
671}
672
673/* TIF_MCDPER in thread info flags for current task is updated lazily upon
674 * a context switch. Update this flag in current task's thread flags
675 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
676 */
677int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
678{
679 if (adi_capable()) {
680 register unsigned long tmp_mcdper;
681
682 __asm__ __volatile__(
683 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */
684 "mov %%g1, %0\n\t"
685 : "=r" (tmp_mcdper)
686 :
687 : "g1");
688 if (tmp_mcdper)
689 set_thread_flag(TIF_MCDPER);
690 else
691 clear_thread_flag(TIF_MCDPER);
692 }
693
694 *dst = *src;
695 return 0;
696}
697
698typedef struct {
699 union {
700 unsigned int pr_regs[32];
701 unsigned long pr_dregs[16];
702 } pr_fr;
703 unsigned int __unused;
704 unsigned int pr_fsr;
705 unsigned char pr_qcnt;
706 unsigned char pr_q_entrysize;
707 unsigned char pr_en;
708 unsigned int pr_q[64];
709} elf_fpregset_t32;
710
711/*
712 * fill in the fpu structure for a core dump.
713 */
714int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
715{
716 unsigned long *kfpregs = current_thread_info()->fpregs;
717 unsigned long fprs = current_thread_info()->fpsaved[0];
718
719 if (test_thread_flag(TIF_32BIT)) {
720 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
721
722 if (fprs & FPRS_DL)
723 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
724 sizeof(unsigned int) * 32);
725 else
726 memset(&fpregs32->pr_fr.pr_regs[0], 0,
727 sizeof(unsigned int) * 32);
728 fpregs32->pr_qcnt = 0;
729 fpregs32->pr_q_entrysize = 8;
730 memset(&fpregs32->pr_q[0], 0,
731 (sizeof(unsigned int) * 64));
732 if (fprs & FPRS_FEF) {
733 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
734 fpregs32->pr_en = 1;
735 } else {
736 fpregs32->pr_fsr = 0;
737 fpregs32->pr_en = 0;
738 }
739 } else {
740 if(fprs & FPRS_DL)
741 memcpy(&fpregs->pr_regs[0], kfpregs,
742 sizeof(unsigned int) * 32);
743 else
744 memset(&fpregs->pr_regs[0], 0,
745 sizeof(unsigned int) * 32);
746 if(fprs & FPRS_DU)
747 memcpy(&fpregs->pr_regs[16], kfpregs+16,
748 sizeof(unsigned int) * 32);
749 else
750 memset(&fpregs->pr_regs[16], 0,
751 sizeof(unsigned int) * 32);
752 if(fprs & FPRS_FEF) {
753 fpregs->pr_fsr = current_thread_info()->xfsr[0];
754 fpregs->pr_gsr = current_thread_info()->gsr[0];
755 } else {
756 fpregs->pr_fsr = fpregs->pr_gsr = 0;
757 }
758 fpregs->pr_fprs = fprs;
759 }
760 return 1;
761}
762EXPORT_SYMBOL(dump_fpu);
763
764unsigned long get_wchan(struct task_struct *task)
765{
766 unsigned long pc, fp, bias = 0;
767 struct thread_info *tp;
768 struct reg_window *rw;
769 unsigned long ret = 0;
770 int count = 0;
771
772 if (!task || task == current ||
773 task->state == TASK_RUNNING)
774 goto out;
775
776 tp = task_thread_info(task);
777 bias = STACK_BIAS;
778 fp = task_thread_info(task)->ksp + bias;
779
780 do {
781 if (!kstack_valid(tp, fp))
782 break;
783 rw = (struct reg_window *) fp;
784 pc = rw->ins[7];
785 if (!in_sched_functions(pc)) {
786 ret = pc;
787 goto out;
788 }
789 fp = rw->ins[6] + bias;
790 } while (++count < 16);
791
792out:
793 return ret;
794}
1/* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/ptrace.h>
23#include <linux/slab.h>
24#include <linux/user.h>
25#include <linux/delay.h>
26#include <linux/compat.h>
27#include <linux/tick.h>
28#include <linux/init.h>
29#include <linux/cpu.h>
30#include <linux/elfcore.h>
31#include <linux/sysrq.h>
32#include <linux/nmi.h>
33
34#include <asm/uaccess.h>
35#include <asm/system.h>
36#include <asm/page.h>
37#include <asm/pgalloc.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
40#include <asm/pstate.h>
41#include <asm/elf.h>
42#include <asm/fpumacro.h>
43#include <asm/head.h>
44#include <asm/cpudata.h>
45#include <asm/mmu_context.h>
46#include <asm/unistd.h>
47#include <asm/hypervisor.h>
48#include <asm/syscalls.h>
49#include <asm/irq_regs.h>
50#include <asm/smp.h>
51
52#include "kstack.h"
53
54static void sparc64_yield(int cpu)
55{
56 if (tlb_type != hypervisor) {
57 touch_nmi_watchdog();
58 return;
59 }
60
61 clear_thread_flag(TIF_POLLING_NRFLAG);
62 smp_mb__after_clear_bit();
63
64 while (!need_resched() && !cpu_is_offline(cpu)) {
65 unsigned long pstate;
66
67 /* Disable interrupts. */
68 __asm__ __volatile__(
69 "rdpr %%pstate, %0\n\t"
70 "andn %0, %1, %0\n\t"
71 "wrpr %0, %%g0, %%pstate"
72 : "=&r" (pstate)
73 : "i" (PSTATE_IE));
74
75 if (!need_resched() && !cpu_is_offline(cpu))
76 sun4v_cpu_yield();
77
78 /* Re-enable interrupts. */
79 __asm__ __volatile__(
80 "rdpr %%pstate, %0\n\t"
81 "or %0, %1, %0\n\t"
82 "wrpr %0, %%g0, %%pstate"
83 : "=&r" (pstate)
84 : "i" (PSTATE_IE));
85 }
86
87 set_thread_flag(TIF_POLLING_NRFLAG);
88}
89
90/* The idle loop on sparc64. */
91void cpu_idle(void)
92{
93 int cpu = smp_processor_id();
94
95 set_thread_flag(TIF_POLLING_NRFLAG);
96
97 while(1) {
98 tick_nohz_stop_sched_tick(1);
99
100 while (!need_resched() && !cpu_is_offline(cpu))
101 sparc64_yield(cpu);
102
103 tick_nohz_restart_sched_tick();
104
105 preempt_enable_no_resched();
106
107#ifdef CONFIG_HOTPLUG_CPU
108 if (cpu_is_offline(cpu))
109 cpu_play_dead();
110#endif
111
112 schedule();
113 preempt_disable();
114 }
115}
116
117#ifdef CONFIG_COMPAT
118static void show_regwindow32(struct pt_regs *regs)
119{
120 struct reg_window32 __user *rw;
121 struct reg_window32 r_w;
122 mm_segment_t old_fs;
123
124 __asm__ __volatile__ ("flushw");
125 rw = compat_ptr((unsigned)regs->u_regs[14]);
126 old_fs = get_fs();
127 set_fs (USER_DS);
128 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129 set_fs (old_fs);
130 return;
131 }
132
133 set_fs (old_fs);
134 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142}
143#else
144#define show_regwindow32(regs) do { } while (0)
145#endif
146
147static void show_regwindow(struct pt_regs *regs)
148{
149 struct reg_window __user *rw;
150 struct reg_window *rwk;
151 struct reg_window r_w;
152 mm_segment_t old_fs;
153
154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155 __asm__ __volatile__ ("flushw");
156 rw = (struct reg_window __user *)
157 (regs->u_regs[14] + STACK_BIAS);
158 rwk = (struct reg_window *)
159 (regs->u_regs[14] + STACK_BIAS);
160 if (!(regs->tstate & TSTATE_PRIV)) {
161 old_fs = get_fs();
162 set_fs (USER_DS);
163 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164 set_fs (old_fs);
165 return;
166 }
167 rwk = &r_w;
168 set_fs (old_fs);
169 }
170 } else {
171 show_regwindow32(regs);
172 return;
173 }
174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182 if (regs->tstate & TSTATE_PRIV)
183 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184}
185
186void show_regs(struct pt_regs *regs)
187{
188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
189 regs->tpc, regs->tnpc, regs->y, print_tainted());
190 printk("TPC: <%pS>\n", (void *) regs->tpc);
191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193 regs->u_regs[3]);
194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196 regs->u_regs[7]);
197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199 regs->u_regs[11]);
200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202 regs->u_regs[15]);
203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204 show_regwindow(regs);
205 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
206}
207
208struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
209static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210
211static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
212 int this_cpu)
213{
214 flushw_all();
215
216 global_reg_snapshot[this_cpu].tstate = regs->tstate;
217 global_reg_snapshot[this_cpu].tpc = regs->tpc;
218 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
219 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
220
221 if (regs->tstate & TSTATE_PRIV) {
222 struct reg_window *rw;
223
224 rw = (struct reg_window *)
225 (regs->u_regs[UREG_FP] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw)) {
227 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
228 rw = (struct reg_window *)
229 (rw->ins[6] + STACK_BIAS);
230 if (kstack_valid(tp, (unsigned long) rw))
231 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232 }
233 } else {
234 global_reg_snapshot[this_cpu].i7 = 0;
235 global_reg_snapshot[this_cpu].rpc = 0;
236 }
237 global_reg_snapshot[this_cpu].thread = tp;
238}
239
240/* In order to avoid hangs we do not try to synchronize with the
241 * global register dump client cpus. The last store they make is to
242 * the thread pointer, so do a short poll waiting for that to become
243 * non-NULL.
244 */
245static void __global_reg_poll(struct global_reg_snapshot *gp)
246{
247 int limit = 0;
248
249 while (!gp->thread && ++limit < 100) {
250 barrier();
251 udelay(1);
252 }
253}
254
255void arch_trigger_all_cpu_backtrace(void)
256{
257 struct thread_info *tp = current_thread_info();
258 struct pt_regs *regs = get_irq_regs();
259 unsigned long flags;
260 int this_cpu, cpu;
261
262 if (!regs)
263 regs = tp->kregs;
264
265 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266
267 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268
269 this_cpu = raw_smp_processor_id();
270
271 __global_reg_self(tp, regs, this_cpu);
272
273 smp_fetch_global_regs();
274
275 for_each_online_cpu(cpu) {
276 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
277
278 __global_reg_poll(gp);
279
280 tp = gp->thread;
281 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
282 (cpu == this_cpu ? '*' : ' '), cpu,
283 gp->tstate, gp->tpc, gp->tnpc,
284 ((tp && tp->task) ? tp->task->comm : "NULL"),
285 ((tp && tp->task) ? tp->task->pid : -1));
286
287 if (gp->tstate & TSTATE_PRIV) {
288 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
289 (void *) gp->tpc,
290 (void *) gp->o7,
291 (void *) gp->i7,
292 (void *) gp->rpc);
293 } else {
294 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
295 gp->tpc, gp->o7, gp->i7, gp->rpc);
296 }
297 }
298
299 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300
301 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
302}
303
304#ifdef CONFIG_MAGIC_SYSRQ
305
306static void sysrq_handle_globreg(int key)
307{
308 arch_trigger_all_cpu_backtrace();
309}
310
311static struct sysrq_key_op sparc_globalreg_op = {
312 .handler = sysrq_handle_globreg,
313 .help_msg = "Globalregs",
314 .action_msg = "Show Global CPU Regs",
315};
316
317static int __init sparc_globreg_init(void)
318{
319 return register_sysrq_key('y', &sparc_globalreg_op);
320}
321
322core_initcall(sparc_globreg_init);
323
324#endif
325
326unsigned long thread_saved_pc(struct task_struct *tsk)
327{
328 struct thread_info *ti = task_thread_info(tsk);
329 unsigned long ret = 0xdeadbeefUL;
330
331 if (ti && ti->ksp) {
332 unsigned long *sp;
333 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
334 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
335 sp[14]) {
336 unsigned long *fp;
337 fp = (unsigned long *)(sp[14] + STACK_BIAS);
338 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
339 ret = fp[15];
340 }
341 }
342 return ret;
343}
344
345/* Free current thread data structures etc.. */
346void exit_thread(void)
347{
348 struct thread_info *t = current_thread_info();
349
350 if (t->utraps) {
351 if (t->utraps[0] < 2)
352 kfree (t->utraps);
353 else
354 t->utraps[0]--;
355 }
356}
357
358void flush_thread(void)
359{
360 struct thread_info *t = current_thread_info();
361 struct mm_struct *mm;
362
363 mm = t->task->mm;
364 if (mm)
365 tsb_context_switch(mm);
366
367 set_thread_wsaved(0);
368
369 /* Clear FPU register state. */
370 t->fpsaved[0] = 0;
371}
372
373/* It's a bit more tricky when 64-bit tasks are involved... */
374static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
375{
376 unsigned long fp, distance, rval;
377
378 if (!(test_thread_flag(TIF_32BIT))) {
379 csp += STACK_BIAS;
380 psp += STACK_BIAS;
381 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
382 fp += STACK_BIAS;
383 } else
384 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
385
386 /* Now align the stack as this is mandatory in the Sparc ABI
387 * due to how register windows work. This hides the
388 * restriction from thread libraries etc.
389 */
390 csp &= ~15UL;
391
392 distance = fp - psp;
393 rval = (csp - distance);
394 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
395 rval = 0;
396 else if (test_thread_flag(TIF_32BIT)) {
397 if (put_user(((u32)csp),
398 &(((struct reg_window32 __user *)rval)->ins[6])))
399 rval = 0;
400 } else {
401 if (put_user(((u64)csp - STACK_BIAS),
402 &(((struct reg_window __user *)rval)->ins[6])))
403 rval = 0;
404 else
405 rval = rval - STACK_BIAS;
406 }
407
408 return rval;
409}
410
411/* Standard stuff. */
412static inline void shift_window_buffer(int first_win, int last_win,
413 struct thread_info *t)
414{
415 int i;
416
417 for (i = first_win; i < last_win; i++) {
418 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
419 memcpy(&t->reg_window[i], &t->reg_window[i+1],
420 sizeof(struct reg_window));
421 }
422}
423
424void synchronize_user_stack(void)
425{
426 struct thread_info *t = current_thread_info();
427 unsigned long window;
428
429 flush_user_windows();
430 if ((window = get_thread_wsaved()) != 0) {
431 int winsize = sizeof(struct reg_window);
432 int bias = 0;
433
434 if (test_thread_flag(TIF_32BIT))
435 winsize = sizeof(struct reg_window32);
436 else
437 bias = STACK_BIAS;
438
439 window -= 1;
440 do {
441 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
442 struct reg_window *rwin = &t->reg_window[window];
443
444 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
445 shift_window_buffer(window, get_thread_wsaved() - 1, t);
446 set_thread_wsaved(get_thread_wsaved() - 1);
447 }
448 } while (window--);
449 }
450}
451
452static void stack_unaligned(unsigned long sp)
453{
454 siginfo_t info;
455
456 info.si_signo = SIGBUS;
457 info.si_errno = 0;
458 info.si_code = BUS_ADRALN;
459 info.si_addr = (void __user *) sp;
460 info.si_trapno = 0;
461 force_sig_info(SIGBUS, &info, current);
462}
463
464void fault_in_user_windows(void)
465{
466 struct thread_info *t = current_thread_info();
467 unsigned long window;
468 int winsize = sizeof(struct reg_window);
469 int bias = 0;
470
471 if (test_thread_flag(TIF_32BIT))
472 winsize = sizeof(struct reg_window32);
473 else
474 bias = STACK_BIAS;
475
476 flush_user_windows();
477 window = get_thread_wsaved();
478
479 if (likely(window != 0)) {
480 window -= 1;
481 do {
482 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
483 struct reg_window *rwin = &t->reg_window[window];
484
485 if (unlikely(sp & 0x7UL))
486 stack_unaligned(sp);
487
488 if (unlikely(copy_to_user((char __user *)sp,
489 rwin, winsize)))
490 goto barf;
491 } while (window--);
492 }
493 set_thread_wsaved(0);
494 return;
495
496barf:
497 set_thread_wsaved(window + 1);
498 do_exit(SIGILL);
499}
500
501asmlinkage long sparc_do_fork(unsigned long clone_flags,
502 unsigned long stack_start,
503 struct pt_regs *regs,
504 unsigned long stack_size)
505{
506 int __user *parent_tid_ptr, *child_tid_ptr;
507 unsigned long orig_i1 = regs->u_regs[UREG_I1];
508 long ret;
509
510#ifdef CONFIG_COMPAT
511 if (test_thread_flag(TIF_32BIT)) {
512 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
513 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
514 } else
515#endif
516 {
517 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
518 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
519 }
520
521 ret = do_fork(clone_flags, stack_start,
522 regs, stack_size,
523 parent_tid_ptr, child_tid_ptr);
524
525 /* If we get an error and potentially restart the system
526 * call, we're screwed because copy_thread() clobbered
527 * the parent's %o1. So detect that case and restore it
528 * here.
529 */
530 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
531 regs->u_regs[UREG_I1] = orig_i1;
532
533 return ret;
534}
535
536/* Copy a Sparc thread. The fork() return value conventions
537 * under SunOS are nothing short of bletcherous:
538 * Parent --> %o0 == childs pid, %o1 == 0
539 * Child --> %o0 == parents pid, %o1 == 1
540 */
541int copy_thread(unsigned long clone_flags, unsigned long sp,
542 unsigned long unused,
543 struct task_struct *p, struct pt_regs *regs)
544{
545 struct thread_info *t = task_thread_info(p);
546 struct sparc_stackf *parent_sf;
547 unsigned long child_stack_sz;
548 char *child_trap_frame;
549 int kernel_thread;
550
551 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
552 parent_sf = ((struct sparc_stackf *) regs) - 1;
553
554 /* Calculate offset to stack_frame & pt_regs */
555 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
556 (kernel_thread ? STACKFRAME_SZ : 0));
557 child_trap_frame = (task_stack_page(p) +
558 (THREAD_SIZE - child_stack_sz));
559 memcpy(child_trap_frame, parent_sf, child_stack_sz);
560
561 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
562 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
563 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
564 t->new_child = 1;
565 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
566 t->kregs = (struct pt_regs *) (child_trap_frame +
567 sizeof(struct sparc_stackf));
568 t->fpsaved[0] = 0;
569
570 if (kernel_thread) {
571 struct sparc_stackf *child_sf = (struct sparc_stackf *)
572 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
573
574 /* Zero terminate the stack backtrace. */
575 child_sf->fp = NULL;
576 t->kregs->u_regs[UREG_FP] =
577 ((unsigned long) child_sf) - STACK_BIAS;
578
579 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
580 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
581 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
582 } else {
583 if (t->flags & _TIF_32BIT) {
584 sp &= 0x00000000ffffffffUL;
585 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
586 }
587 t->kregs->u_regs[UREG_FP] = sp;
588 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
589 if (sp != regs->u_regs[UREG_FP]) {
590 unsigned long csp;
591
592 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
593 if (!csp)
594 return -EFAULT;
595 t->kregs->u_regs[UREG_FP] = csp;
596 }
597 if (t->utraps)
598 t->utraps[0]++;
599 }
600
601 /* Set the return value for the child. */
602 t->kregs->u_regs[UREG_I0] = current->pid;
603 t->kregs->u_regs[UREG_I1] = 1;
604
605 /* Set the second return value for the parent. */
606 regs->u_regs[UREG_I1] = 0;
607
608 if (clone_flags & CLONE_SETTLS)
609 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
610
611 return 0;
612}
613
614/*
615 * This is the mechanism for creating a new kernel thread.
616 *
617 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
618 * who haven't done an "execve()") should use this: it will work within
619 * a system call from a "real" process, but the process memory space will
620 * not be freed until both the parent and the child have exited.
621 */
622pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
623{
624 long retval;
625
626 /* If the parent runs before fn(arg) is called by the child,
627 * the input registers of this function can be clobbered.
628 * So we stash 'fn' and 'arg' into global registers which
629 * will not be modified by the parent.
630 */
631 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
632 "mov %5, %%g3\n\t" /* Save ARG into global */
633 "mov %1, %%g1\n\t" /* Clone syscall nr. */
634 "mov %2, %%o0\n\t" /* Clone flags. */
635 "mov 0, %%o1\n\t" /* usp arg == 0 */
636 "t 0x6d\n\t" /* Linux/Sparc clone(). */
637 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
638 " mov %%o0, %0\n\t"
639 "jmpl %%g2, %%o7\n\t" /* Call the function. */
640 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
641 "mov %3, %%g1\n\t"
642 "t 0x6d\n\t" /* Linux/Sparc exit(). */
643 /* Notreached by child. */
644 "1:" :
645 "=r" (retval) :
646 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
647 "i" (__NR_exit), "r" (fn), "r" (arg) :
648 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
649 return retval;
650}
651EXPORT_SYMBOL(kernel_thread);
652
653typedef struct {
654 union {
655 unsigned int pr_regs[32];
656 unsigned long pr_dregs[16];
657 } pr_fr;
658 unsigned int __unused;
659 unsigned int pr_fsr;
660 unsigned char pr_qcnt;
661 unsigned char pr_q_entrysize;
662 unsigned char pr_en;
663 unsigned int pr_q[64];
664} elf_fpregset_t32;
665
666/*
667 * fill in the fpu structure for a core dump.
668 */
669int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
670{
671 unsigned long *kfpregs = current_thread_info()->fpregs;
672 unsigned long fprs = current_thread_info()->fpsaved[0];
673
674 if (test_thread_flag(TIF_32BIT)) {
675 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
676
677 if (fprs & FPRS_DL)
678 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
679 sizeof(unsigned int) * 32);
680 else
681 memset(&fpregs32->pr_fr.pr_regs[0], 0,
682 sizeof(unsigned int) * 32);
683 fpregs32->pr_qcnt = 0;
684 fpregs32->pr_q_entrysize = 8;
685 memset(&fpregs32->pr_q[0], 0,
686 (sizeof(unsigned int) * 64));
687 if (fprs & FPRS_FEF) {
688 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
689 fpregs32->pr_en = 1;
690 } else {
691 fpregs32->pr_fsr = 0;
692 fpregs32->pr_en = 0;
693 }
694 } else {
695 if(fprs & FPRS_DL)
696 memcpy(&fpregs->pr_regs[0], kfpregs,
697 sizeof(unsigned int) * 32);
698 else
699 memset(&fpregs->pr_regs[0], 0,
700 sizeof(unsigned int) * 32);
701 if(fprs & FPRS_DU)
702 memcpy(&fpregs->pr_regs[16], kfpregs+16,
703 sizeof(unsigned int) * 32);
704 else
705 memset(&fpregs->pr_regs[16], 0,
706 sizeof(unsigned int) * 32);
707 if(fprs & FPRS_FEF) {
708 fpregs->pr_fsr = current_thread_info()->xfsr[0];
709 fpregs->pr_gsr = current_thread_info()->gsr[0];
710 } else {
711 fpregs->pr_fsr = fpregs->pr_gsr = 0;
712 }
713 fpregs->pr_fprs = fprs;
714 }
715 return 1;
716}
717EXPORT_SYMBOL(dump_fpu);
718
719/*
720 * sparc_execve() executes a new program after the asm stub has set
721 * things up for us. This should basically do what I want it to.
722 */
723asmlinkage int sparc_execve(struct pt_regs *regs)
724{
725 int error, base = 0;
726 char *filename;
727
728 /* User register window flush is done by entry.S */
729
730 /* Check for indirect call. */
731 if (regs->u_regs[UREG_G1] == 0)
732 base = 1;
733
734 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
735 error = PTR_ERR(filename);
736 if (IS_ERR(filename))
737 goto out;
738 error = do_execve(filename,
739 (const char __user *const __user *)
740 regs->u_regs[base + UREG_I1],
741 (const char __user *const __user *)
742 regs->u_regs[base + UREG_I2], regs);
743 putname(filename);
744 if (!error) {
745 fprs_write(0);
746 current_thread_info()->xfsr[0] = 0;
747 current_thread_info()->fpsaved[0] = 0;
748 regs->tstate &= ~TSTATE_PEF;
749 }
750out:
751 return error;
752}
753
754unsigned long get_wchan(struct task_struct *task)
755{
756 unsigned long pc, fp, bias = 0;
757 struct thread_info *tp;
758 struct reg_window *rw;
759 unsigned long ret = 0;
760 int count = 0;
761
762 if (!task || task == current ||
763 task->state == TASK_RUNNING)
764 goto out;
765
766 tp = task_thread_info(task);
767 bias = STACK_BIAS;
768 fp = task_thread_info(task)->ksp + bias;
769
770 do {
771 if (!kstack_valid(tp, fp))
772 break;
773 rw = (struct reg_window *) fp;
774 pc = rw->ins[7];
775 if (!in_sched_functions(pc)) {
776 ret = pc;
777 goto out;
778 }
779 fp = rw->ins[6] + bias;
780 } while (++count < 16);
781
782out:
783 return ret;
784}