Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
 
 
 
 
 
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/bootmem.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
 
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
  33#include <linux/cpu.h>
 
 
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/memblock.h>
  39#include <linux/kprobes.h>
  40#include <asm/asm-offsets.h>
  41#include <asm/diag.h>
  42#include <asm/switch_to.h>
  43#include <asm/facility.h>
  44#include <asm/ipl.h>
  45#include <asm/setup.h>
 
 
  46#include <asm/irq.h>
 
  47#include <asm/tlbflush.h>
  48#include <asm/vtimer.h>
  49#include <asm/lowcore.h>
  50#include <asm/sclp.h>
 
  51#include <asm/vdso.h>
  52#include <asm/debug.h>
  53#include <asm/os_info.h>
  54#include <asm/sigp.h>
  55#include <asm/idle.h>
  56#include <asm/nmi.h>
  57#include <asm/topology.h>
  58#include "entry.h"
  59
  60enum {
  61	ec_schedule = 0,
  62	ec_call_function_single,
  63	ec_stop_cpu,
  64};
  65
  66enum {
  67	CPU_STATE_STANDBY,
  68	CPU_STATE_CONFIGURED,
  69};
  70
  71static DEFINE_PER_CPU(struct cpu *, cpu_device);
 
  72
  73struct pcpu {
  74	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
  75	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  76	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  77	signed char state;		/* physical cpu state */
  78	signed char polarization;	/* physical polarization */
  79	u16 address;			/* physical cpu address */
  80};
  81
  82static u8 boot_core_type;
  83static struct pcpu pcpu_devices[NR_CPUS];
  84
  85unsigned int smp_cpu_mt_shift;
  86EXPORT_SYMBOL(smp_cpu_mt_shift);
  87
  88unsigned int smp_cpu_mtid;
  89EXPORT_SYMBOL(smp_cpu_mtid);
  90
  91#ifdef CONFIG_CRASH_DUMP
  92__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  93#endif
  94
  95static unsigned int smp_max_threads __initdata = -1U;
  96
  97static int __init early_nosmt(char *s)
  98{
  99	smp_max_threads = 1;
 100	return 0;
 101}
 102early_param("nosmt", early_nosmt);
 103
 104static int __init early_smt(char *s)
 105{
 106	get_option(&s, &smp_max_threads);
 107	return 0;
 108}
 109early_param("smt", early_smt);
 110
 111/*
 112 * The smp_cpu_state_mutex must be held when changing the state or polarization
 113 * member of a pcpu data structure within the pcpu_devices arreay.
 114 */
 115DEFINE_MUTEX(smp_cpu_state_mutex);
 
 
 
 116
 117/*
 118 * Signal processor helper functions.
 119 */
 120static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 121{
 122	int cc;
 123
 124	while (1) {
 125		cc = __pcpu_sigp(addr, order, parm, NULL);
 126		if (cc != SIGP_CC_BUSY)
 127			return cc;
 128		cpu_relax();
 129	}
 130}
 131
 132static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 133{
 134	int cc, retry;
 135
 136	for (retry = 0; ; retry++) {
 137		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 138		if (cc != SIGP_CC_BUSY)
 139			break;
 140		if (retry >= 3)
 141			udelay(10);
 142	}
 143	return cc;
 144}
 145
 146static inline int pcpu_stopped(struct pcpu *pcpu)
 147{
 148	u32 uninitialized_var(status);
 149
 150	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 151			0, &status) != SIGP_CC_STATUS_STORED)
 152		return 0;
 153	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 154}
 155
 156static inline int pcpu_running(struct pcpu *pcpu)
 157{
 158	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 159			0, NULL) != SIGP_CC_STATUS_STORED)
 160		return 1;
 161	/* Status stored condition code is equivalent to cpu not running. */
 162	return 0;
 163}
 164
 165/*
 166 * Find struct pcpu by cpu address.
 167 */
 168static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 169{
 170	int cpu;
 171
 172	for_each_cpu(cpu, mask)
 173		if (pcpu_devices[cpu].address == address)
 174			return pcpu_devices + cpu;
 175	return NULL;
 176}
 177
 178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 179{
 180	int order;
 181
 182	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 183		return;
 184	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 185	pcpu->ec_clk = get_tod_clock_fast();
 186	pcpu_sigp_retry(pcpu, order, 0);
 187}
 188
 189#define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 190#define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, panic_stack;
 195	struct lowcore *lc;
 196
 197	if (pcpu != &pcpu_devices[0]) {
 198		pcpu->lowcore =	(struct lowcore *)
 199			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 200		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 201		panic_stack = __get_free_page(GFP_KERNEL);
 202		if (!pcpu->lowcore || !panic_stack || !async_stack)
 203			goto out;
 204	} else {
 205		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
 206		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
 207	}
 208	lc = pcpu->lowcore;
 209	memcpy(lc, &S390_lowcore, 512);
 210	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 211	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
 212	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
 213	lc->cpu_nr = cpu;
 214	lc->spinlock_lockval = arch_spin_lockval(cpu);
 215	lc->spinlock_index = 0;
 216	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
 217	if (nmi_alloc_per_cpu(lc))
 218		goto out;
 219	if (vdso_alloc_per_cpu(lc))
 220		goto out_mcesa;
 221	lowcore_ptr[cpu] = lc;
 222	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 223	return 0;
 224
 225out_mcesa:
 226	nmi_free_per_cpu(lc);
 227out:
 228	if (pcpu != &pcpu_devices[0]) {
 229		free_page(panic_stack);
 230		free_pages(async_stack, ASYNC_ORDER);
 231		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 232	}
 233	return -ENOMEM;
 234}
 235
 236#ifdef CONFIG_HOTPLUG_CPU
 237
 238static void pcpu_free_lowcore(struct pcpu *pcpu)
 239{
 240	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 241	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 242	vdso_free_per_cpu(pcpu->lowcore);
 243	nmi_free_per_cpu(pcpu->lowcore);
 244	if (pcpu == &pcpu_devices[0])
 245		return;
 246	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
 247	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
 248	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 249}
 250
 251#endif /* CONFIG_HOTPLUG_CPU */
 252
 253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 254{
 255	struct lowcore *lc = pcpu->lowcore;
 256
 257	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 258	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 259	lc->cpu_nr = cpu;
 260	lc->spinlock_lockval = arch_spin_lockval(cpu);
 261	lc->spinlock_index = 0;
 262	lc->percpu_offset = __per_cpu_offset[cpu];
 263	lc->kernel_asce = S390_lowcore.kernel_asce;
 264	lc->machine_flags = S390_lowcore.machine_flags;
 265	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 266	__ctl_store(lc->cregs_save_area, 0, 15);
 267	save_access_regs((unsigned int *) lc->access_regs_save_area);
 268	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 269	       sizeof(lc->stfle_fac_list));
 270	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
 271	       sizeof(lc->alt_stfle_fac_list));
 272	arch_spin_lock_setup(cpu);
 273}
 274
 275static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 276{
 277	struct lowcore *lc = pcpu->lowcore;
 278
 279	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 280		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 281	lc->current_task = (unsigned long) tsk;
 282	lc->lpp = LPP_MAGIC;
 283	lc->current_pid = tsk->pid;
 284	lc->user_timer = tsk->thread.user_timer;
 285	lc->guest_timer = tsk->thread.guest_timer;
 286	lc->system_timer = tsk->thread.system_timer;
 287	lc->hardirq_timer = tsk->thread.hardirq_timer;
 288	lc->softirq_timer = tsk->thread.softirq_timer;
 289	lc->steal_timer = 0;
 290}
 291
 292static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 293{
 294	struct lowcore *lc = pcpu->lowcore;
 295
 296	lc->restart_stack = lc->kernel_stack;
 297	lc->restart_fn = (unsigned long) func;
 298	lc->restart_data = (unsigned long) data;
 299	lc->restart_source = -1UL;
 300	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 301}
 302
 303/*
 304 * Call function via PSW restart on pcpu and stop the current cpu.
 305 */
 306static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 307			  void *data, unsigned long stack)
 308{
 309	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 310	unsigned long source_cpu = stap();
 311
 312	__load_psw_mask(PSW_KERNEL_BITS);
 313	if (pcpu->address == source_cpu)
 314		func(data);	/* should not return */
 315	/* Stop target cpu (if func returns this stops the current cpu). */
 316	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 317	/* Restart func on the target cpu and stop the current cpu. */
 318	mem_assign_absolute(lc->restart_stack, stack);
 319	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 320	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 321	mem_assign_absolute(lc->restart_source, source_cpu);
 322	__bpon();
 323	asm volatile(
 324		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 325		"	brc	2,0b	# busy, try again\n"
 326		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 327		"	brc	2,1b	# busy, try again\n"
 328		: : "d" (pcpu->address), "d" (source_cpu),
 329		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 330		: "0", "1", "cc");
 331	for (;;) ;
 332}
 333
 334/*
 335 * Enable additional logical cpus for multi-threading.
 336 */
 337static int pcpu_set_smt(unsigned int mtid)
 338{
 339	int cc;
 340
 341	if (smp_cpu_mtid == mtid)
 342		return 0;
 343	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 344	if (cc == 0) {
 345		smp_cpu_mtid = mtid;
 346		smp_cpu_mt_shift = 0;
 347		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 348			smp_cpu_mt_shift++;
 349		pcpu_devices[0].address = stap();
 350	}
 351	return cc;
 352}
 353
 354/*
 355 * Call function on an online CPU.
 356 */
 357void smp_call_online_cpu(void (*func)(void *), void *data)
 358{
 359	struct pcpu *pcpu;
 360
 361	/* Use the current cpu if it is online. */
 362	pcpu = pcpu_find_address(cpu_online_mask, stap());
 363	if (!pcpu)
 364		/* Use the first online cpu. */
 365		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 366	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 367}
 368
 369/*
 370 * Call function on the ipl CPU.
 371 */
 372void smp_call_ipl_cpu(void (*func)(void *), void *data)
 373{
 374	pcpu_delegate(&pcpu_devices[0], func, data,
 375		      pcpu_devices->lowcore->panic_stack -
 376		      PANIC_FRAME_OFFSET + PAGE_SIZE);
 377}
 378
 379int smp_find_processor_id(u16 address)
 380{
 381	int cpu;
 382
 383	for_each_present_cpu(cpu)
 384		if (pcpu_devices[cpu].address == address)
 385			return cpu;
 386	return -1;
 387}
 388
 389bool arch_vcpu_is_preempted(int cpu)
 390{
 391	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 392		return false;
 393	if (pcpu_running(pcpu_devices + cpu))
 394		return false;
 395	return true;
 396}
 397EXPORT_SYMBOL(arch_vcpu_is_preempted);
 398
 399void smp_yield_cpu(int cpu)
 400{
 401	if (MACHINE_HAS_DIAG9C) {
 402		diag_stat_inc_norecursion(DIAG_STAT_X09C);
 403		asm volatile("diag %0,0,0x9c"
 404			     : : "d" (pcpu_devices[cpu].address));
 405	} else if (MACHINE_HAS_DIAG44) {
 406		diag_stat_inc_norecursion(DIAG_STAT_X044);
 407		asm volatile("diag 0,0,0x44");
 408	}
 409}
 410
 411/*
 412 * Send cpus emergency shutdown signal. This gives the cpus the
 413 * opportunity to complete outstanding interrupts.
 414 */
 415void notrace smp_emergency_stop(void)
 416{
 417	cpumask_t cpumask;
 418	u64 end;
 419	int cpu;
 420
 421	cpumask_copy(&cpumask, cpu_online_mask);
 422	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 423
 424	end = get_tod_clock() + (1000000UL << 12);
 425	for_each_cpu(cpu, &cpumask) {
 426		struct pcpu *pcpu = pcpu_devices + cpu;
 427		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 428		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 429				   0, NULL) == SIGP_CC_BUSY &&
 430		       get_tod_clock() < end)
 431			cpu_relax();
 432	}
 433	while (get_tod_clock() < end) {
 434		for_each_cpu(cpu, &cpumask)
 435			if (pcpu_stopped(pcpu_devices + cpu))
 436				cpumask_clear_cpu(cpu, &cpumask);
 437		if (cpumask_empty(&cpumask))
 438			break;
 439		cpu_relax();
 440	}
 
 
 
 
 
 
 
 
 441}
 442NOKPROBE_SYMBOL(smp_emergency_stop);
 443
 444/*
 445 * Stop all cpus but the current one.
 446 */
 447void smp_send_stop(void)
 448{
 449	int cpu;
 450
 451	/* Disable all interrupts/machine checks */
 452	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 453	trace_hardirqs_off();
 454
 455	debug_set_critical();
 456
 457	if (oops_in_progress)
 458		smp_emergency_stop();
 459
 460	/* stop all processors */
 461	for_each_online_cpu(cpu) {
 462		if (cpu == smp_processor_id())
 463			continue;
 464		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 465		while (!pcpu_stopped(pcpu_devices + cpu))
 
 
 
 466			cpu_relax();
 467	}
 468}
 469
 470/*
 471 * This is the main routine where commands issued by other
 472 * cpus are handled.
 473 */
 474static void smp_handle_ext_call(void)
 
 
 475{
 476	unsigned long bits;
 477
 478	/* handle bit signal external calls */
 479	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 480	if (test_bit(ec_stop_cpu, &bits))
 481		smp_stop_cpu();
 
 
 482	if (test_bit(ec_schedule, &bits))
 483		scheduler_ipi();
 
 
 
 
 484	if (test_bit(ec_call_function_single, &bits))
 485		generic_smp_call_function_single_interrupt();
 486}
 487
 488static void do_ext_call_interrupt(struct ext_code ext_code,
 489				  unsigned int param32, unsigned long param64)
 
 
 
 490{
 491	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 492	smp_handle_ext_call();
 
 
 
 
 493}
 494
 495void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 496{
 497	int cpu;
 498
 499	for_each_cpu(cpu, mask)
 500		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 501}
 502
 503void arch_send_call_function_single_ipi(int cpu)
 504{
 505	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508/*
 509 * this function sends a 'reschedule' IPI to another CPU.
 510 * it goes straight through and wastes no time serializing
 511 * anything. Worst case is that we lose a reschedule ...
 512 */
 513void smp_send_reschedule(int cpu)
 514{
 515	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 516}
 517
 518/*
 519 * parameter area for the set/clear control bit callbacks
 520 */
 521struct ec_creg_mask_parms {
 522	unsigned long orval;
 523	unsigned long andval;
 524	int cr;
 525};
 526
 527/*
 528 * callback for setting/clearing control bits
 529 */
 530static void smp_ctl_bit_callback(void *info)
 531{
 532	struct ec_creg_mask_parms *pp = info;
 533	unsigned long cregs[16];
 
 534
 535	__ctl_store(cregs, 0, 15);
 536	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 
 537	__ctl_load(cregs, 0, 15);
 538}
 539
 540/*
 541 * Set a bit in a control register of all cpus
 542 */
 543void smp_ctl_set_bit(int cr, int bit)
 544{
 545	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 546
 
 
 
 547	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 548}
 549EXPORT_SYMBOL(smp_ctl_set_bit);
 550
 551/*
 552 * Clear a bit in a control register of all cpus
 553 */
 554void smp_ctl_clear_bit(int cr, int bit)
 555{
 556	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 557
 
 
 
 558	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 559}
 560EXPORT_SYMBOL(smp_ctl_clear_bit);
 561
 562#ifdef CONFIG_CRASH_DUMP
 563
 564int smp_store_status(int cpu)
 565{
 566	struct pcpu *pcpu = pcpu_devices + cpu;
 567	unsigned long pa;
 568
 569	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 570	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 571			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 572		return -EIO;
 573	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 574		return 0;
 575	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
 576	if (MACHINE_HAS_GS)
 577		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
 578	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 579			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 580		return -EIO;
 581	return 0;
 582}
 583
 584/*
 585 * Collect CPU state of the previous, crashed system.
 586 * There are four cases:
 587 * 1) standard zfcp dump
 588 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 589 *    The state for all CPUs except the boot CPU needs to be collected
 590 *    with sigp stop-and-store-status. The boot CPU state is located in
 591 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 592 *    will copy the boot CPU state from the HSA.
 593 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 594 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 595 *    The state for all CPUs except the boot CPU needs to be collected
 596 *    with sigp stop-and-store-status. The firmware or the boot-loader
 597 *    stored the registers of the boot CPU in the absolute lowcore in the
 598 *    memory of the old system.
 599 * 3) kdump and the old kernel did not store the CPU state,
 600 *    or stand-alone kdump for DASD
 601 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 602 *    The state for all CPUs except the boot CPU needs to be collected
 603 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 604 *    stored the registers of the boot CPU in the memory of the old system.
 605 * 4) kdump and the old kernel stored the CPU state
 606 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 607 *    This case does not exist for s390 anymore, setup_arch explicitly
 608 *    deactivates the elfcorehdr= kernel parameter
 609 */
 610static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 611				     bool is_boot_cpu, unsigned long page)
 612{
 613	__vector128 *vxrs = (__vector128 *) page;
 614
 615	if (is_boot_cpu)
 616		vxrs = boot_cpu_vector_save_area;
 617	else
 618		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 619	save_area_add_vxrs(sa, vxrs);
 620}
 621
 622static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 623				     bool is_boot_cpu, unsigned long page)
 624{
 625	void *regs = (void *) page;
 626
 627	if (is_boot_cpu)
 628		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 629	else
 630		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 631	save_area_add_regs(sa, regs);
 632}
 633
 634void __init smp_save_dump_cpus(void)
 635{
 636	int addr, boot_cpu_addr, max_cpu_addr;
 637	struct save_area *sa;
 638	unsigned long page;
 639	bool is_boot_cpu;
 640
 641	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 642		/* No previous system present, normal boot. */
 643		return;
 644	/* Allocate a page as dumping area for the store status sigps */
 645	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
 646	/* Set multi-threading state to the previous system. */
 647	pcpu_set_smt(sclp.mtid_prev);
 648	boot_cpu_addr = stap();
 649	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 650	for (addr = 0; addr <= max_cpu_addr; addr++) {
 651		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 652		    SIGP_CC_NOT_OPERATIONAL)
 653			continue;
 654		is_boot_cpu = (addr == boot_cpu_addr);
 655		/* Allocate save area */
 656		sa = save_area_alloc(is_boot_cpu);
 657		if (!sa)
 658			panic("could not allocate memory for save area\n");
 659		if (MACHINE_HAS_VX)
 660			/* Get the vector registers */
 661			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 662		/*
 663		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 664		 * of the boot CPU are stored in the HSA. To retrieve
 665		 * these registers an SCLP request is required which is
 666		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 667		 */
 668		if (!is_boot_cpu || OLDMEM_BASE)
 669			/* Get the CPU registers */
 670			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 671	}
 672	memblock_free(page, PAGE_SIZE);
 673	diag308_reset();
 674	pcpu_set_smt(0);
 675}
 676#endif /* CONFIG_CRASH_DUMP */
 677
 678void smp_cpu_set_polarization(int cpu, int val)
 679{
 680	pcpu_devices[cpu].polarization = val;
 681}
 682
 683int smp_cpu_get_polarization(int cpu)
 684{
 685	return pcpu_devices[cpu].polarization;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686}
 687
 688static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 689{
 690	static int use_sigp_detection;
 691	int address;
 
 692
 693	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 694		use_sigp_detection = 1;
 695		for (address = 0;
 696		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 697		     address += (1U << smp_cpu_mt_shift)) {
 698			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 699			    SIGP_CC_NOT_OPERATIONAL)
 700				continue;
 701			info->core[info->configured].core_id =
 702				address >> smp_cpu_mt_shift;
 703			info->configured++;
 704		}
 705		info->combined = info->configured;
 
 
 
 
 
 
 
 
 
 
 
 
 706	}
 
 
 
 707}
 708
 709static int smp_add_present_cpu(int cpu);
 710
 711static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 712{
 713	struct pcpu *pcpu;
 714	cpumask_t avail;
 715	int cpu, nr, i, j;
 716	u16 address;
 717
 718	nr = 0;
 719	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 720	cpu = cpumask_first(&avail);
 721	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 722		if (sclp.has_core_type && info->core[i].type != boot_core_type)
 723			continue;
 724		address = info->core[i].core_id << smp_cpu_mt_shift;
 725		for (j = 0; j <= smp_cpu_mtid; j++) {
 726			if (pcpu_find_address(cpu_present_mask, address + j))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727				continue;
 728			pcpu = pcpu_devices + cpu;
 729			pcpu->address = address + j;
 730			pcpu->state =
 731				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 732				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 733			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 734			set_cpu_present(cpu, true);
 735			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 736				set_cpu_present(cpu, false);
 737			else
 738				nr++;
 739			cpu = cpumask_next(cpu, &avail);
 740			if (cpu >= nr_cpu_ids)
 741				break;
 742		}
 
 743	}
 744	return nr;
 745}
 746
 747void __init smp_detect_cpus(void)
 748{
 749	unsigned int cpu, mtid, c_cpus, s_cpus;
 750	struct sclp_core_info *info;
 751	u16 address;
 752
 753	/* Get CPU information */
 754	info = memblock_virt_alloc(sizeof(*info), 8);
 755	smp_get_core_info(info, 1);
 756	/* Find boot CPU type */
 757	if (sclp.has_core_type) {
 758		address = stap();
 759		for (cpu = 0; cpu < info->combined; cpu++)
 760			if (info->core[cpu].core_id == address) {
 761				/* The boot cpu dictates the cpu type. */
 762				boot_core_type = info->core[cpu].type;
 763				break;
 764			}
 765		if (cpu >= info->combined)
 766			panic("Could not find boot CPU type");
 767	}
 768
 769	/* Set multi-threading state for the current system */
 770	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 771	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 772	pcpu_set_smt(mtid);
 773
 774	/* Print number of CPUs */
 775	c_cpus = s_cpus = 0;
 776	for (cpu = 0; cpu < info->combined; cpu++) {
 777		if (sclp.has_core_type &&
 778		    info->core[cpu].type != boot_core_type)
 779			continue;
 780		if (cpu < info->configured)
 781			c_cpus += smp_cpu_mtid + 1;
 782		else
 783			s_cpus += smp_cpu_mtid + 1;
 
 
 
 
 
 784	}
 
 
 785	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 786
 787	/* Add CPUs present at boot */
 788	get_online_cpus();
 789	__smp_rescan_cpus(info, 0);
 790	put_online_cpus();
 791	memblock_free_early((unsigned long)info, sizeof(*info));
 792}
 793
 794/*
 795 *	Activate a secondary processor.
 796 */
 797static void smp_start_secondary(void *cpuvoid)
 798{
 799	int cpu = smp_processor_id();
 800
 801	S390_lowcore.last_update_clock = get_tod_clock();
 802	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 803	S390_lowcore.restart_fn = (unsigned long) do_restart;
 804	S390_lowcore.restart_data = 0;
 805	S390_lowcore.restart_source = -1UL;
 806	restore_access_regs(S390_lowcore.access_regs_save_area);
 807	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 808	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 809	cpu_init();
 810	preempt_disable();
 811	init_cpu_timer();
 812	vtime_init();
 813	pfault_init();
 814	notify_cpu_starting(cpu);
 815	if (topology_cpu_dedicated(cpu))
 816		set_cpu_flag(CIF_DEDICATED_CPU);
 817	else
 818		clear_cpu_flag(CIF_DEDICATED_CPU);
 819	set_cpu_online(cpu, true);
 820	inc_irq_stat(CPU_RST);
 
 
 
 
 
 
 
 
 
 821	local_irq_enable();
 822	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823}
 824
 825/* Upping and downing of CPUs */
 826int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 827{
 828	struct pcpu *pcpu;
 829	int base, i, rc;
 
 
 
 
 830
 831	pcpu = pcpu_devices + cpu;
 832	if (pcpu->state != CPU_STATE_CONFIGURED)
 833		return -EIO;
 834	base = smp_get_base_cpu(cpu);
 835	for (i = 0; i <= smp_cpu_mtid; i++) {
 836		if (base + i < nr_cpu_ids)
 837			if (cpu_online(base + i))
 838				break;
 
 
 
 
 
 
 839	}
 840	/*
 841	 * If this is the first CPU of the core to get online
 842	 * do an initial CPU reset.
 843	 */
 844	if (i > smp_cpu_mtid &&
 845	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 846	    SIGP_CC_ORDER_CODE_ACCEPTED)
 847		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848
 849	rc = pcpu_alloc_lowcore(pcpu, cpu);
 850	if (rc)
 851		return rc;
 852	pcpu_prepare_secondary(pcpu, cpu);
 853	pcpu_attach_task(pcpu, tidle);
 854	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 855	/* Wait until cpu puts itself in the online & active maps */
 856	while (!cpu_online(cpu))
 857		cpu_relax();
 858	return 0;
 859}
 860
 861static unsigned int setup_possible_cpus __initdata;
 
 
 
 862
 863static int __init _setup_possible_cpus(char *s)
 864{
 865	get_option(&s, &setup_possible_cpus);
 
 
 
 
 
 866	return 0;
 867}
 868early_param("possible_cpus", _setup_possible_cpus);
 869
 870#ifdef CONFIG_HOTPLUG_CPU
 871
 872int __cpu_disable(void)
 873{
 874	unsigned long cregs[16];
 
 
 
 875
 876	/* Handle possible pending IPIs */
 877	smp_handle_ext_call();
 878	set_cpu_online(smp_processor_id(), false);
 879	/* Disable pseudo page faults on this cpu. */
 880	pfault_fini();
 881	/* Disable interrupt sources via control register. */
 882	__ctl_store(cregs, 0, 15);
 883	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 884	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 885	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 886	__ctl_load(cregs, 0, 15);
 887	clear_cpu_flag(CIF_NOHZ_DELAY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 888	return 0;
 889}
 890
 891void __cpu_die(unsigned int cpu)
 892{
 893	struct pcpu *pcpu;
 894
 895	/* Wait until target cpu is down */
 896	pcpu = pcpu_devices + cpu;
 897	while (!pcpu_stopped(pcpu))
 898		cpu_relax();
 899	pcpu_free_lowcore(pcpu);
 900	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 901	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 902}
 903
 904void __noreturn cpu_die(void)
 905{
 906	idle_task_exit();
 907	__bpon();
 908	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 909	for (;;) ;
 910}
 911
 912#endif /* CONFIG_HOTPLUG_CPU */
 913
 914void __init smp_fill_possible_mask(void)
 915{
 916	unsigned int possible, sclp_max, cpu;
 
 
 
 
 917
 918	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 919	sclp_max = min(smp_max_threads, sclp_max);
 920	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 921	possible = setup_possible_cpus ?: nr_cpu_ids;
 922	possible = min(possible, sclp_max);
 923	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 924		set_cpu_possible(cpu, true);
 925}
 926
 927void __init smp_prepare_cpus(unsigned int max_cpus)
 928{
 929	/* request the 0x1201 emergency signal external interrupt */
 930	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 931		panic("Couldn't request external interrupt 0x1201");
 932	/* request the 0x1202 external call external interrupt */
 933	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 934		panic("Couldn't request external interrupt 0x1202");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935}
 936
 937void __init smp_prepare_boot_cpu(void)
 938{
 939	struct pcpu *pcpu = pcpu_devices;
 940
 941	WARN_ON(!cpu_present(0) || !cpu_online(0));
 942	pcpu->state = CPU_STATE_CONFIGURED;
 943	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 944	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 945	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
 
 946}
 947
 948void __init smp_cpus_done(unsigned int max_cpus)
 949{
 950}
 951
 952void __init smp_setup_processor_id(void)
 953{
 954	pcpu_devices[0].address = stap();
 955	S390_lowcore.cpu_nr = 0;
 956	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 957	S390_lowcore.spinlock_index = 0;
 958}
 959
 960/*
 961 * the frequency of the profiling timer can be changed
 962 * by writing a multiplier value into /proc/profile.
 963 *
 964 * usually you want to run this on all CPUs ;)
 965 */
 966int setup_profiling_timer(unsigned int multiplier)
 967{
 968	return 0;
 969}
 970
 971#ifdef CONFIG_HOTPLUG_CPU
 972static ssize_t cpu_configure_show(struct device *dev,
 973				  struct device_attribute *attr, char *buf)
 974{
 975	ssize_t count;
 976
 977	mutex_lock(&smp_cpu_state_mutex);
 978	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 979	mutex_unlock(&smp_cpu_state_mutex);
 980	return count;
 981}
 982
 983static ssize_t cpu_configure_store(struct device *dev,
 984				   struct device_attribute *attr,
 985				   const char *buf, size_t count)
 986{
 987	struct pcpu *pcpu;
 988	int cpu, val, rc, i;
 989	char delim;
 990
 991	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 992		return -EINVAL;
 993	if (val != 0 && val != 1)
 994		return -EINVAL;
 
 995	get_online_cpus();
 996	mutex_lock(&smp_cpu_state_mutex);
 997	rc = -EBUSY;
 998	/* disallow configuration changes of online cpus and cpu 0 */
 999	cpu = dev->id;
1000	cpu = smp_get_base_cpu(cpu);
1001	if (cpu == 0)
1002		goto out;
1003	for (i = 0; i <= smp_cpu_mtid; i++)
1004		if (cpu_online(cpu + i))
1005			goto out;
1006	pcpu = pcpu_devices + cpu;
1007	rc = 0;
1008	switch (val) {
1009	case 0:
1010		if (pcpu->state != CPU_STATE_CONFIGURED)
1011			break;
1012		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1013		if (rc)
1014			break;
1015		for (i = 0; i <= smp_cpu_mtid; i++) {
1016			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1017				continue;
1018			pcpu[i].state = CPU_STATE_STANDBY;
1019			smp_cpu_set_polarization(cpu + i,
1020						 POLARIZATION_UNKNOWN);
1021		}
1022		topology_expect_change();
1023		break;
1024	case 1:
1025		if (pcpu->state != CPU_STATE_STANDBY)
1026			break;
1027		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1028		if (rc)
1029			break;
1030		for (i = 0; i <= smp_cpu_mtid; i++) {
1031			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1032				continue;
1033			pcpu[i].state = CPU_STATE_CONFIGURED;
1034			smp_cpu_set_polarization(cpu + i,
1035						 POLARIZATION_UNKNOWN);
1036		}
1037		topology_expect_change();
1038		break;
1039	default:
1040		break;
1041	}
1042out:
1043	mutex_unlock(&smp_cpu_state_mutex);
1044	put_online_cpus();
1045	return rc ? rc : count;
1046}
1047static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1048#endif /* CONFIG_HOTPLUG_CPU */
1049
1050static ssize_t show_cpu_address(struct device *dev,
1051				struct device_attribute *attr, char *buf)
1052{
1053	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054}
1055static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
 
1056
1057static struct attribute *cpu_common_attrs[] = {
1058#ifdef CONFIG_HOTPLUG_CPU
1059	&dev_attr_configure.attr,
1060#endif
1061	&dev_attr_address.attr,
 
1062	NULL,
1063};
1064
1065static struct attribute_group cpu_common_attr_group = {
1066	.attrs = cpu_common_attrs,
1067};
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069static struct attribute *cpu_online_attrs[] = {
1070	&dev_attr_idle_count.attr,
1071	&dev_attr_idle_time_us.attr,
 
1072	NULL,
1073};
1074
1075static struct attribute_group cpu_online_attr_group = {
1076	.attrs = cpu_online_attrs,
1077};
1078
1079static int smp_cpu_online(unsigned int cpu)
 
1080{
1081	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1082
1083	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084}
1085static int smp_cpu_pre_down(unsigned int cpu)
1086{
1087	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1088
1089	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1090	return 0;
1091}
1092
1093static int smp_add_present_cpu(int cpu)
1094{
1095	struct device *s;
1096	struct cpu *c;
1097	int rc;
1098
1099	c = kzalloc(sizeof(*c), GFP_KERNEL);
1100	if (!c)
1101		return -ENOMEM;
1102	per_cpu(cpu_device, cpu) = c;
1103	s = &c->dev;
1104	c->hotpluggable = 1;
1105	rc = register_cpu(c, cpu);
1106	if (rc)
1107		goto out;
1108	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1109	if (rc)
1110		goto out_cpu;
1111	rc = topology_cpu_init(c);
1112	if (rc)
1113		goto out_topology;
1114	return 0;
1115
1116out_topology:
1117	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1118out_cpu:
1119#ifdef CONFIG_HOTPLUG_CPU
1120	unregister_cpu(c);
1121#endif
1122out:
1123	return rc;
1124}
1125
1126#ifdef CONFIG_HOTPLUG_CPU
1127
1128int __ref smp_rescan_cpus(void)
1129{
1130	struct sclp_core_info *info;
1131	int nr;
 
1132
1133	info = kzalloc(sizeof(*info), GFP_KERNEL);
1134	if (!info)
1135		return -ENOMEM;
1136	smp_get_core_info(info, 0);
1137	get_online_cpus();
1138	mutex_lock(&smp_cpu_state_mutex);
1139	nr = __smp_rescan_cpus(info, 1);
 
 
 
 
 
 
 
 
 
 
 
1140	mutex_unlock(&smp_cpu_state_mutex);
1141	put_online_cpus();
1142	kfree(info);
1143	if (nr)
1144		topology_schedule_update();
1145	return 0;
1146}
1147
1148static ssize_t __ref rescan_store(struct device *dev,
1149				  struct device_attribute *attr,
1150				  const char *buf,
1151				  size_t count)
1152{
1153	int rc;
1154
1155	rc = smp_rescan_cpus();
1156	return rc ? rc : count;
1157}
1158static DEVICE_ATTR_WO(rescan);
1159#endif /* CONFIG_HOTPLUG_CPU */
1160
1161static int __init s390_smp_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162{
1163	int cpu, rc = 0;
 
 
 
1164
1165#ifdef CONFIG_HOTPLUG_CPU
1166	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1167	if (rc)
1168		return rc;
1169#endif
 
 
 
1170	for_each_present_cpu(cpu) {
1171		rc = smp_add_present_cpu(cpu);
1172		if (rc)
1173			goto out;
1174	}
1175
1176	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1177			       smp_cpu_online, smp_cpu_pre_down);
1178	rc = rc <= 0 ? rc : 0;
1179out:
1180	return rc;
1181}
1182subsys_initcall(s390_smp_init);
v3.1
 
   1/*
   2 *  arch/s390/kernel/smp.c
   3 *
   4 *    Copyright IBM Corp. 1999, 2009
   5 *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
   6 *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *		 Heiko Carstens (heiko.carstens@de.ibm.com)
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * We work with logical cpu numbering everywhere we can. The only
  14 * functions using the real cpu address (got from STAP) are the sigp
  15 * functions. For all other functions we use the identity mapping.
  16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
  17 * used e.g. to find the idle task belonging to a logical cpu. Every array
  18 * in the kernel is sorted by the logical cpu number and not by the physical
  19 * one which is causing all the confusion with __cpu_logical_map and
  20 * cpu_number_map in other architectures.
  21 */
  22
  23#define KMSG_COMPONENT "cpu"
  24#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  25
  26#include <linux/workqueue.h>
  27#include <linux/module.h>
 
  28#include <linux/init.h>
  29#include <linux/mm.h>
  30#include <linux/err.h>
  31#include <linux/spinlock.h>
  32#include <linux/kernel_stat.h>
  33#include <linux/delay.h>
  34#include <linux/cache.h>
  35#include <linux/interrupt.h>
  36#include <linux/irqflags.h>
  37#include <linux/cpu.h>
  38#include <linux/timex.h>
  39#include <linux/bootmem.h>
  40#include <linux/slab.h>
 
 
 
 
 
  41#include <asm/asm-offsets.h>
 
 
 
  42#include <asm/ipl.h>
  43#include <asm/setup.h>
  44#include <asm/sigp.h>
  45#include <asm/pgalloc.h>
  46#include <asm/irq.h>
  47#include <asm/cpcmd.h>
  48#include <asm/tlbflush.h>
  49#include <asm/timer.h>
  50#include <asm/lowcore.h>
  51#include <asm/sclp.h>
  52#include <asm/cputime.h>
  53#include <asm/vdso.h>
  54#include <asm/cpu.h>
 
 
 
 
 
  55#include "entry.h"
  56
  57/* logical cpu to cpu address */
  58unsigned short __cpu_logical_map[NR_CPUS];
 
 
 
  59
  60static struct task_struct *current_set[NR_CPUS];
 
 
 
  61
  62static u8 smp_cpu_type;
  63static int smp_use_sigp_detection;
  64
  65enum s390_cpu_state {
  66	CPU_STATE_STANDBY,
  67	CPU_STATE_CONFIGURED,
 
 
 
 
  68};
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70DEFINE_MUTEX(smp_cpu_state_mutex);
  71int smp_cpu_polarization[NR_CPUS];
  72static int smp_cpu_state[NR_CPUS];
  73static int cpu_management;
  74
  75static DEFINE_PER_CPU(struct cpu, cpu_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76
  77static void smp_ext_bitcall(int, int);
 
 
 
 
  78
  79static int raw_cpu_stopped(int cpu)
  80{
  81	u32 status;
  82
  83	switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
  84	case sigp_status_stored:
  85		/* Check for stopped and check stop state */
  86		if (status & 0x50)
  87			return 1;
  88		break;
  89	default:
  90		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92	return 0;
 
 
 
 
 
 
 
 
 
 
  93}
  94
  95static inline int cpu_stopped(int cpu)
 
 
  96{
  97	return raw_cpu_stopped(cpu_logical_map(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98}
  99
 100void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
 
 
 
 101{
 102	struct _lowcore *lc, *current_lc;
 103	struct stack_frame *sf;
 104	struct pt_regs *regs;
 105	unsigned long sp;
 106
 107	if (smp_processor_id() == 0)
 108		func(data);
 109	__load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
 110	/* Disable lowcore protection */
 111	__ctl_clear_bit(0, 28);
 112	current_lc = lowcore_ptr[smp_processor_id()];
 113	lc = lowcore_ptr[0];
 114	if (!lc)
 115		lc = current_lc;
 116	lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
 117	lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
 118	if (!cpu_online(0))
 119		smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
 120	while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121		cpu_relax();
 122	sp = lc->panic_stack;
 123	sp -= sizeof(struct pt_regs);
 124	regs = (struct pt_regs *) sp;
 125	memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
 126	regs->psw = lc->psw_save_area;
 127	sp -= STACK_FRAME_OVERHEAD;
 128	sf = (struct stack_frame *) sp;
 129	sf->back_chain = regs->gprs[15];
 130	smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
 131}
 
 132
 
 
 
 133void smp_send_stop(void)
 134{
 135	int cpu, rc;
 136
 137	/* Disable all interrupts/machine checks */
 138	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
 139	trace_hardirqs_off();
 140
 
 
 
 
 
 141	/* stop all processors */
 142	for_each_online_cpu(cpu) {
 143		if (cpu == smp_processor_id())
 144			continue;
 145		do {
 146			rc = sigp(cpu, sigp_stop);
 147		} while (rc == sigp_busy);
 148
 149		while (!cpu_stopped(cpu))
 150			cpu_relax();
 151	}
 152}
 153
 154/*
 155 * This is the main routine where commands issued by other
 156 * cpus are handled.
 157 */
 158
 159static void do_ext_call_interrupt(unsigned int ext_int_code,
 160				  unsigned int param32, unsigned long param64)
 161{
 162	unsigned long bits;
 163
 164	kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
 165	/*
 166	 * handle bit signal external calls
 167	 */
 168	bits = xchg(&S390_lowcore.ext_call_fast, 0);
 169
 170	if (test_bit(ec_schedule, &bits))
 171		scheduler_ipi();
 172
 173	if (test_bit(ec_call_function, &bits))
 174		generic_smp_call_function_interrupt();
 175
 176	if (test_bit(ec_call_function_single, &bits))
 177		generic_smp_call_function_single_interrupt();
 178}
 179
 180/*
 181 * Send an external call sigp to another cpu and return without waiting
 182 * for its completion.
 183 */
 184static void smp_ext_bitcall(int cpu, int sig)
 185{
 186	/*
 187	 * Set signaling bit in lowcore of target cpu and kick it
 188	 */
 189	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
 190	while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
 191		udelay(10);
 192}
 193
 194void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 195{
 196	int cpu;
 197
 198	for_each_cpu(cpu, mask)
 199		smp_ext_bitcall(cpu, ec_call_function);
 200}
 201
 202void arch_send_call_function_single_ipi(int cpu)
 203{
 204	smp_ext_bitcall(cpu, ec_call_function_single);
 205}
 206
 207#ifndef CONFIG_64BIT
 208/*
 209 * this function sends a 'purge tlb' signal to another CPU.
 210 */
 211static void smp_ptlb_callback(void *info)
 212{
 213	__tlb_flush_local();
 214}
 215
 216void smp_ptlb_all(void)
 217{
 218	on_each_cpu(smp_ptlb_callback, NULL, 1);
 219}
 220EXPORT_SYMBOL(smp_ptlb_all);
 221#endif /* ! CONFIG_64BIT */
 222
 223/*
 224 * this function sends a 'reschedule' IPI to another CPU.
 225 * it goes straight through and wastes no time serializing
 226 * anything. Worst case is that we lose a reschedule ...
 227 */
 228void smp_send_reschedule(int cpu)
 229{
 230	smp_ext_bitcall(cpu, ec_schedule);
 231}
 232
 233/*
 234 * parameter area for the set/clear control bit callbacks
 235 */
 236struct ec_creg_mask_parms {
 237	unsigned long orvals[16];
 238	unsigned long andvals[16];
 
 239};
 240
 241/*
 242 * callback for setting/clearing control bits
 243 */
 244static void smp_ctl_bit_callback(void *info)
 245{
 246	struct ec_creg_mask_parms *pp = info;
 247	unsigned long cregs[16];
 248	int i;
 249
 250	__ctl_store(cregs, 0, 15);
 251	for (i = 0; i <= 15; i++)
 252		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
 253	__ctl_load(cregs, 0, 15);
 254}
 255
 256/*
 257 * Set a bit in a control register of all cpus
 258 */
 259void smp_ctl_set_bit(int cr, int bit)
 260{
 261	struct ec_creg_mask_parms parms;
 262
 263	memset(&parms.orvals, 0, sizeof(parms.orvals));
 264	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
 265	parms.orvals[cr] = 1UL << bit;
 266	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 267}
 268EXPORT_SYMBOL(smp_ctl_set_bit);
 269
 270/*
 271 * Clear a bit in a control register of all cpus
 272 */
 273void smp_ctl_clear_bit(int cr, int bit)
 274{
 275	struct ec_creg_mask_parms parms;
 276
 277	memset(&parms.orvals, 0, sizeof(parms.orvals));
 278	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
 279	parms.andvals[cr] = ~(1UL << bit);
 280	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 281}
 282EXPORT_SYMBOL(smp_ctl_clear_bit);
 283
 284#ifdef CONFIG_ZFCPDUMP
 285
 286static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
 287{
 288	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
 289		return;
 290	if (cpu >= NR_CPUS) {
 291		pr_warning("CPU %i exceeds the maximum %i and is excluded from "
 292			   "the dump\n", cpu, NR_CPUS - 1);
 293		return;
 294	}
 295	zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
 296	while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
 297		cpu_relax();
 298	memcpy_real(zfcpdump_save_areas[cpu],
 299		    (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
 300		    sizeof(struct save_area));
 
 
 
 301}
 302
 303struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
 304EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305
 306#else
 
 
 
 
 
 307
 308static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
 
 
 
 309
 310#endif /* CONFIG_ZFCPDUMP */
 
 
 
 
 
 311
 312static int cpu_known(int cpu_id)
 313{
 314	int cpu;
 
 
 
 315
 316	for_each_present_cpu(cpu) {
 317		if (__cpu_logical_map[cpu] == cpu_id)
 318			return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319	}
 320	return 0;
 
 
 321}
 
 322
 323static int smp_rescan_cpus_sigp(cpumask_t avail)
 324{
 325	int cpu_id, logical_cpu;
 
 326
 327	logical_cpu = cpumask_first(&avail);
 328	if (logical_cpu >= nr_cpu_ids)
 329		return 0;
 330	for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
 331		if (cpu_known(cpu_id))
 332			continue;
 333		__cpu_logical_map[logical_cpu] = cpu_id;
 334		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
 335		if (!cpu_stopped(logical_cpu))
 336			continue;
 337		set_cpu_present(logical_cpu, true);
 338		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
 339		logical_cpu = cpumask_next(logical_cpu, &avail);
 340		if (logical_cpu >= nr_cpu_ids)
 341			break;
 342	}
 343	return 0;
 344}
 345
 346static int smp_rescan_cpus_sclp(cpumask_t avail)
 347{
 348	struct sclp_cpu_info *info;
 349	int cpu_id, logical_cpu, cpu;
 350	int rc;
 351
 352	logical_cpu = cpumask_first(&avail);
 353	if (logical_cpu >= nr_cpu_ids)
 354		return 0;
 355	info = kmalloc(sizeof(*info), GFP_KERNEL);
 356	if (!info)
 357		return -ENOMEM;
 358	rc = sclp_get_cpu_info(info);
 359	if (rc)
 360		goto out;
 361	for (cpu = 0; cpu < info->combined; cpu++) {
 362		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
 363			continue;
 364		cpu_id = info->cpu[cpu].address;
 365		if (cpu_known(cpu_id))
 366			continue;
 367		__cpu_logical_map[logical_cpu] = cpu_id;
 368		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
 369		set_cpu_present(logical_cpu, true);
 370		if (cpu >= info->configured)
 371			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
 372		else
 373			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
 374		logical_cpu = cpumask_next(logical_cpu, &avail);
 375		if (logical_cpu >= nr_cpu_ids)
 376			break;
 377	}
 378out:
 379	kfree(info);
 380	return rc;
 381}
 382
 383static int __smp_rescan_cpus(void)
 
 
 384{
 
 385	cpumask_t avail;
 
 
 386
 
 387	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 388	if (smp_use_sigp_detection)
 389		return smp_rescan_cpus_sigp(avail);
 390	else
 391		return smp_rescan_cpus_sclp(avail);
 392}
 393
 394static void __init smp_detect_cpus(void)
 395{
 396	unsigned int cpu, c_cpus, s_cpus;
 397	struct sclp_cpu_info *info;
 398	u16 boot_cpu_addr, cpu_addr;
 399
 400	c_cpus = 1;
 401	s_cpus = 0;
 402	boot_cpu_addr = __cpu_logical_map[0];
 403	info = kmalloc(sizeof(*info), GFP_KERNEL);
 404	if (!info)
 405		panic("smp_detect_cpus failed to allocate memory\n");
 406	/* Use sigp detection algorithm if sclp doesn't work. */
 407	if (sclp_get_cpu_info(info)) {
 408		smp_use_sigp_detection = 1;
 409		for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
 410			if (cpu == boot_cpu_addr)
 411				continue;
 412			if (!raw_cpu_stopped(cpu))
 413				continue;
 414			smp_get_save_area(c_cpus, cpu);
 415			c_cpus++;
 
 
 
 
 
 
 
 
 
 
 416		}
 417		goto out;
 418	}
 
 
 419
 420	if (info->has_cpu_type) {
 421		for (cpu = 0; cpu < info->combined; cpu++) {
 422			if (info->cpu[cpu].address == boot_cpu_addr) {
 423				smp_cpu_type = info->cpu[cpu].type;
 
 
 
 
 
 
 
 
 
 
 
 
 424				break;
 425			}
 426		}
 
 427	}
 428
 
 
 
 
 
 
 
 429	for (cpu = 0; cpu < info->combined; cpu++) {
 430		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
 
 431			continue;
 432		cpu_addr = info->cpu[cpu].address;
 433		if (cpu_addr == boot_cpu_addr)
 434			continue;
 435		if (!raw_cpu_stopped(cpu_addr)) {
 436			s_cpus++;
 437			continue;
 438		}
 439		smp_get_save_area(c_cpus, cpu_addr);
 440		c_cpus++;
 441	}
 442out:
 443	kfree(info);
 444	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 
 
 445	get_online_cpus();
 446	__smp_rescan_cpus();
 447	put_online_cpus();
 
 448}
 449
 450/*
 451 *	Activate a secondary processor.
 452 */
 453int __cpuinit start_secondary(void *cpuvoid)
 454{
 
 
 
 
 
 
 
 
 
 
 455	cpu_init();
 456	preempt_disable();
 457	init_cpu_timer();
 458	init_cpu_vtimer();
 459	pfault_init();
 460
 461	notify_cpu_starting(smp_processor_id());
 462	ipi_call_lock();
 463	set_cpu_online(smp_processor_id(), true);
 464	ipi_call_unlock();
 465	__ctl_clear_bit(0, 28); /* Disable lowcore protection */
 466	S390_lowcore.restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
 467	S390_lowcore.restart_psw.addr =
 468		PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
 469	__ctl_set_bit(0, 28); /* Enable lowcore protection */
 470	/*
 471	 * Wait until the cpu which brought this one up marked it
 472	 * active before enabling interrupts.
 473	 */
 474	while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
 475		cpu_relax();
 476	local_irq_enable();
 477	/* cpu_idle will call schedule for us */
 478	cpu_idle();
 479	return 0;
 480}
 481
 482struct create_idle {
 483	struct work_struct work;
 484	struct task_struct *idle;
 485	struct completion done;
 486	int cpu;
 487};
 488
 489static void __cpuinit smp_fork_idle(struct work_struct *work)
 490{
 491	struct create_idle *c_idle;
 492
 493	c_idle = container_of(work, struct create_idle, work);
 494	c_idle->idle = fork_idle(c_idle->cpu);
 495	complete(&c_idle->done);
 496}
 497
 498static int __cpuinit smp_alloc_lowcore(int cpu)
 499{
 500	unsigned long async_stack, panic_stack;
 501	struct _lowcore *lowcore;
 502
 503	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 504	if (!lowcore)
 505		return -ENOMEM;
 506	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 507	panic_stack = __get_free_page(GFP_KERNEL);
 508	if (!panic_stack || !async_stack)
 509		goto out;
 510	memcpy(lowcore, &S390_lowcore, 512);
 511	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
 512	lowcore->async_stack = async_stack + ASYNC_SIZE;
 513	lowcore->panic_stack = panic_stack + PAGE_SIZE;
 514	lowcore->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
 515	lowcore->restart_psw.addr =
 516		PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
 517	if (user_mode != HOME_SPACE_MODE)
 518		lowcore->restart_psw.mask |= PSW_ASC_HOME;
 519#ifndef CONFIG_64BIT
 520	if (MACHINE_HAS_IEEE) {
 521		unsigned long save_area;
 522
 523		save_area = get_zeroed_page(GFP_KERNEL);
 524		if (!save_area)
 525			goto out;
 526		lowcore->extended_save_area_addr = (u32) save_area;
 527	}
 528#else
 529	if (vdso_alloc_per_cpu(cpu, lowcore))
 530		goto out;
 531#endif
 532	lowcore_ptr[cpu] = lowcore;
 533	return 0;
 534
 535out:
 536	free_page(panic_stack);
 537	free_pages(async_stack, ASYNC_ORDER);
 538	free_pages((unsigned long) lowcore, LC_ORDER);
 539	return -ENOMEM;
 540}
 541
 542static void smp_free_lowcore(int cpu)
 543{
 544	struct _lowcore *lowcore;
 545
 546	lowcore = lowcore_ptr[cpu];
 547#ifndef CONFIG_64BIT
 548	if (MACHINE_HAS_IEEE)
 549		free_page((unsigned long) lowcore->extended_save_area_addr);
 550#else
 551	vdso_free_per_cpu(cpu, lowcore);
 552#endif
 553	free_page(lowcore->panic_stack - PAGE_SIZE);
 554	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
 555	free_pages((unsigned long) lowcore, LC_ORDER);
 556	lowcore_ptr[cpu] = NULL;
 557}
 558
 559/* Upping and downing of CPUs */
 560int __cpuinit __cpu_up(unsigned int cpu)
 561{
 562	struct _lowcore *cpu_lowcore;
 563	struct create_idle c_idle;
 564	struct task_struct *idle;
 565	struct stack_frame *sf;
 566	u32 lowcore;
 567	int ccode;
 568
 569	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
 
 570		return -EIO;
 571	idle = current_set[cpu];
 572	if (!idle) {
 573		c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
 574		INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
 575		c_idle.cpu = cpu;
 576		schedule_work(&c_idle.work);
 577		wait_for_completion(&c_idle.done);
 578		if (IS_ERR(c_idle.idle))
 579			return PTR_ERR(c_idle.idle);
 580		idle = c_idle.idle;
 581		current_set[cpu] = c_idle.idle;
 582	}
 583	init_idle(idle, cpu);
 584	if (smp_alloc_lowcore(cpu))
 585		return -ENOMEM;
 586	do {
 587		ccode = sigp(cpu, sigp_initial_cpu_reset);
 588		if (ccode == sigp_busy)
 589			udelay(10);
 590		if (ccode == sigp_not_operational)
 591			goto err_out;
 592	} while (ccode == sigp_busy);
 593
 594	lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
 595	while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
 596		udelay(10);
 597
 598	cpu_lowcore = lowcore_ptr[cpu];
 599	cpu_lowcore->kernel_stack = (unsigned long)
 600		task_stack_page(idle) + THREAD_SIZE;
 601	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
 602	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
 603				     - sizeof(struct pt_regs)
 604				     - sizeof(struct stack_frame));
 605	memset(sf, 0, sizeof(struct stack_frame));
 606	sf->gprs[9] = (unsigned long) sf;
 607	cpu_lowcore->save_area[15] = (unsigned long) sf;
 608	__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
 609	atomic_inc(&init_mm.context.attach_count);
 610	asm volatile(
 611		"	stam	0,15,0(%0)"
 612		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
 613	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
 614	cpu_lowcore->current_task = (unsigned long) idle;
 615	cpu_lowcore->cpu_nr = cpu;
 616	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
 617	cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
 618	cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
 619	memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
 620	       MAX_FACILITY_BIT/8);
 621	eieio();
 622
 623	while (sigp(cpu, sigp_restart) == sigp_busy)
 624		udelay(10);
 625
 
 
 
 
 
 
 
 626	while (!cpu_online(cpu))
 627		cpu_relax();
 628	return 0;
 
 629
 630err_out:
 631	smp_free_lowcore(cpu);
 632	return -EIO;
 633}
 634
 635static int __init setup_possible_cpus(char *s)
 636{
 637	int pcpus, cpu;
 638
 639	pcpus = simple_strtoul(s, NULL, 0);
 640	init_cpu_possible(cpumask_of(0));
 641	for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
 642		set_cpu_possible(cpu, true);
 643	return 0;
 644}
 645early_param("possible_cpus", setup_possible_cpus);
 646
 647#ifdef CONFIG_HOTPLUG_CPU
 648
 649int __cpu_disable(void)
 650{
 651	struct ec_creg_mask_parms cr_parms;
 652	int cpu = smp_processor_id();
 653
 654	set_cpu_online(cpu, false);
 655
 656	/* Disable pfault pseudo page faults on this cpu. */
 
 
 
 657	pfault_fini();
 658
 659	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
 660	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
 661
 662	/* disable all external interrupts */
 663	cr_parms.orvals[0] = 0;
 664	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 11 |
 665				1 << 10 | 1 <<	9 | 1 <<  6 | 1 <<  5 |
 666				1 <<  4);
 667	/* disable all I/O interrupts */
 668	cr_parms.orvals[6] = 0;
 669	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
 670				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
 671	/* disable most machine checks */
 672	cr_parms.orvals[14] = 0;
 673	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
 674				 1 << 25 | 1 << 24);
 675
 676	smp_ctl_bit_callback(&cr_parms);
 677
 678	return 0;
 679}
 680
 681void __cpu_die(unsigned int cpu)
 682{
 
 
 683	/* Wait until target cpu is down */
 684	while (!cpu_stopped(cpu))
 
 685		cpu_relax();
 686	while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
 687		udelay(10);
 688	smp_free_lowcore(cpu);
 689	atomic_dec(&init_mm.context.attach_count);
 690}
 691
 692void __noreturn cpu_die(void)
 693{
 694	idle_task_exit();
 695	while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
 696		cpu_relax();
 697	for (;;);
 698}
 699
 700#endif /* CONFIG_HOTPLUG_CPU */
 701
 702void __init smp_prepare_cpus(unsigned int max_cpus)
 703{
 704#ifndef CONFIG_64BIT
 705	unsigned long save_area = 0;
 706#endif
 707	unsigned long async_stack, panic_stack;
 708	struct _lowcore *lowcore;
 709
 710	smp_detect_cpus();
 
 
 
 
 
 
 
 711
 
 
 712	/* request the 0x1201 emergency signal external interrupt */
 713	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
 714		panic("Couldn't request external interrupt 0x1201");
 715
 716	/* Reallocate current lowcore, but keep its contents. */
 717	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 718	panic_stack = __get_free_page(GFP_KERNEL);
 719	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 720	BUG_ON(!lowcore || !panic_stack || !async_stack);
 721#ifndef CONFIG_64BIT
 722	if (MACHINE_HAS_IEEE)
 723		save_area = get_zeroed_page(GFP_KERNEL);
 724#endif
 725	local_irq_disable();
 726	local_mcck_disable();
 727	lowcore_ptr[smp_processor_id()] = lowcore;
 728	*lowcore = S390_lowcore;
 729	lowcore->panic_stack = panic_stack + PAGE_SIZE;
 730	lowcore->async_stack = async_stack + ASYNC_SIZE;
 731#ifndef CONFIG_64BIT
 732	if (MACHINE_HAS_IEEE)
 733		lowcore->extended_save_area_addr = (u32) save_area;
 734#endif
 735	set_prefix((u32)(unsigned long) lowcore);
 736	local_mcck_enable();
 737	local_irq_enable();
 738#ifdef CONFIG_64BIT
 739	if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
 740		BUG();
 741#endif
 742}
 743
 744void __init smp_prepare_boot_cpu(void)
 745{
 746	BUG_ON(smp_processor_id() != 0);
 747
 748	current_thread_info()->cpu = 0;
 749	set_cpu_present(0, true);
 750	set_cpu_online(0, true);
 751	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 752	current_set[0] = current;
 753	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
 754	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
 755}
 756
 757void __init smp_cpus_done(unsigned int max_cpus)
 758{
 759}
 760
 761void __init smp_setup_processor_id(void)
 762{
 
 763	S390_lowcore.cpu_nr = 0;
 764	__cpu_logical_map[0] = stap();
 
 765}
 766
 767/*
 768 * the frequency of the profiling timer can be changed
 769 * by writing a multiplier value into /proc/profile.
 770 *
 771 * usually you want to run this on all CPUs ;)
 772 */
 773int setup_profiling_timer(unsigned int multiplier)
 774{
 775	return 0;
 776}
 777
 778#ifdef CONFIG_HOTPLUG_CPU
 779static ssize_t cpu_configure_show(struct sys_device *dev,
 780				struct sysdev_attribute *attr, char *buf)
 781{
 782	ssize_t count;
 783
 784	mutex_lock(&smp_cpu_state_mutex);
 785	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
 786	mutex_unlock(&smp_cpu_state_mutex);
 787	return count;
 788}
 789
 790static ssize_t cpu_configure_store(struct sys_device *dev,
 791				  struct sysdev_attribute *attr,
 792				  const char *buf, size_t count)
 793{
 794	int cpu = dev->id;
 795	int val, rc;
 796	char delim;
 797
 798	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 799		return -EINVAL;
 800	if (val != 0 && val != 1)
 801		return -EINVAL;
 802
 803	get_online_cpus();
 804	mutex_lock(&smp_cpu_state_mutex);
 805	rc = -EBUSY;
 806	/* disallow configuration changes of online cpus and cpu 0 */
 807	if (cpu_online(cpu) || cpu == 0)
 
 
 808		goto out;
 
 
 
 
 809	rc = 0;
 810	switch (val) {
 811	case 0:
 812		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
 813			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
 814			if (!rc) {
 815				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
 816				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
 817			}
 
 
 
 
 
 818		}
 
 819		break;
 820	case 1:
 821		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
 822			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
 823			if (!rc) {
 824				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
 825				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
 826			}
 
 
 
 
 
 827		}
 
 828		break;
 829	default:
 830		break;
 831	}
 832out:
 833	mutex_unlock(&smp_cpu_state_mutex);
 834	put_online_cpus();
 835	return rc ? rc : count;
 836}
 837static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 838#endif /* CONFIG_HOTPLUG_CPU */
 839
 840static ssize_t cpu_polarization_show(struct sys_device *dev,
 841				     struct sysdev_attribute *attr, char *buf)
 842{
 843	int cpu = dev->id;
 844	ssize_t count;
 845
 846	mutex_lock(&smp_cpu_state_mutex);
 847	switch (smp_cpu_polarization[cpu]) {
 848	case POLARIZATION_HRZ:
 849		count = sprintf(buf, "horizontal\n");
 850		break;
 851	case POLARIZATION_VL:
 852		count = sprintf(buf, "vertical:low\n");
 853		break;
 854	case POLARIZATION_VM:
 855		count = sprintf(buf, "vertical:medium\n");
 856		break;
 857	case POLARIZATION_VH:
 858		count = sprintf(buf, "vertical:high\n");
 859		break;
 860	default:
 861		count = sprintf(buf, "unknown\n");
 862		break;
 863	}
 864	mutex_unlock(&smp_cpu_state_mutex);
 865	return count;
 866}
 867static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
 868
 869static ssize_t show_cpu_address(struct sys_device *dev,
 870				struct sysdev_attribute *attr, char *buf)
 871{
 872	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
 873}
 874static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
 875
 876
 877static struct attribute *cpu_common_attrs[] = {
 878#ifdef CONFIG_HOTPLUG_CPU
 879	&attr_configure.attr,
 880#endif
 881	&attr_address.attr,
 882	&attr_polarization.attr,
 883	NULL,
 884};
 885
 886static struct attribute_group cpu_common_attr_group = {
 887	.attrs = cpu_common_attrs,
 888};
 889
 890static ssize_t show_capability(struct sys_device *dev,
 891				struct sysdev_attribute *attr, char *buf)
 892{
 893	unsigned int capability;
 894	int rc;
 895
 896	rc = get_cpu_capability(&capability);
 897	if (rc)
 898		return rc;
 899	return sprintf(buf, "%u\n", capability);
 900}
 901static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
 902
 903static ssize_t show_idle_count(struct sys_device *dev,
 904				struct sysdev_attribute *attr, char *buf)
 905{
 906	struct s390_idle_data *idle;
 907	unsigned long long idle_count;
 908	unsigned int sequence;
 909
 910	idle = &per_cpu(s390_idle, dev->id);
 911repeat:
 912	sequence = idle->sequence;
 913	smp_rmb();
 914	if (sequence & 1)
 915		goto repeat;
 916	idle_count = idle->idle_count;
 917	if (idle->idle_enter)
 918		idle_count++;
 919	smp_rmb();
 920	if (idle->sequence != sequence)
 921		goto repeat;
 922	return sprintf(buf, "%llu\n", idle_count);
 923}
 924static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
 925
 926static ssize_t show_idle_time(struct sys_device *dev,
 927				struct sysdev_attribute *attr, char *buf)
 928{
 929	struct s390_idle_data *idle;
 930	unsigned long long now, idle_time, idle_enter;
 931	unsigned int sequence;
 932
 933	idle = &per_cpu(s390_idle, dev->id);
 934	now = get_clock();
 935repeat:
 936	sequence = idle->sequence;
 937	smp_rmb();
 938	if (sequence & 1)
 939		goto repeat;
 940	idle_time = idle->idle_time;
 941	idle_enter = idle->idle_enter;
 942	if (idle_enter != 0ULL && idle_enter < now)
 943		idle_time += now - idle_enter;
 944	smp_rmb();
 945	if (idle->sequence != sequence)
 946		goto repeat;
 947	return sprintf(buf, "%llu\n", idle_time >> 12);
 948}
 949static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
 950
 951static struct attribute *cpu_online_attrs[] = {
 952	&attr_capability.attr,
 953	&attr_idle_count.attr,
 954	&attr_idle_time_us.attr,
 955	NULL,
 956};
 957
 958static struct attribute_group cpu_online_attr_group = {
 959	.attrs = cpu_online_attrs,
 960};
 961
 962static int __cpuinit smp_cpu_notify(struct notifier_block *self,
 963				    unsigned long action, void *hcpu)
 964{
 965	unsigned int cpu = (unsigned int)(long)hcpu;
 966	struct cpu *c = &per_cpu(cpu_devices, cpu);
 967	struct sys_device *s = &c->sysdev;
 968	struct s390_idle_data *idle;
 969	int err = 0;
 970
 971	switch (action) {
 972	case CPU_ONLINE:
 973	case CPU_ONLINE_FROZEN:
 974		idle = &per_cpu(s390_idle, cpu);
 975		memset(idle, 0, sizeof(struct s390_idle_data));
 976		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 977		break;
 978	case CPU_DEAD:
 979	case CPU_DEAD_FROZEN:
 980		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
 981		break;
 982	}
 983	return notifier_from_errno(err);
 984}
 
 
 
 985
 986static struct notifier_block __cpuinitdata smp_cpu_nb = {
 987	.notifier_call = smp_cpu_notify,
 988};
 989
 990static int __devinit smp_add_present_cpu(int cpu)
 991{
 992	struct cpu *c = &per_cpu(cpu_devices, cpu);
 993	struct sys_device *s = &c->sysdev;
 994	int rc;
 995
 
 
 
 
 
 996	c->hotpluggable = 1;
 997	rc = register_cpu(c, cpu);
 998	if (rc)
 999		goto out;
1000	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1001	if (rc)
1002		goto out_cpu;
1003	if (!cpu_online(cpu))
1004		goto out;
1005	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1006	if (!rc)
1007		return 0;
 
1008	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1009out_cpu:
1010#ifdef CONFIG_HOTPLUG_CPU
1011	unregister_cpu(c);
1012#endif
1013out:
1014	return rc;
1015}
1016
1017#ifdef CONFIG_HOTPLUG_CPU
1018
1019int __ref smp_rescan_cpus(void)
1020{
1021	cpumask_t newcpus;
1022	int cpu;
1023	int rc;
1024
 
 
 
 
1025	get_online_cpus();
1026	mutex_lock(&smp_cpu_state_mutex);
1027	cpumask_copy(&newcpus, cpu_present_mask);
1028	rc = __smp_rescan_cpus();
1029	if (rc)
1030		goto out;
1031	cpumask_andnot(&newcpus, cpu_present_mask, &newcpus);
1032	for_each_cpu(cpu, &newcpus) {
1033		rc = smp_add_present_cpu(cpu);
1034		if (rc)
1035			set_cpu_present(cpu, false);
1036	}
1037	rc = 0;
1038out:
1039	mutex_unlock(&smp_cpu_state_mutex);
1040	put_online_cpus();
1041	if (!cpumask_empty(&newcpus))
 
1042		topology_schedule_update();
1043	return rc;
1044}
1045
1046static ssize_t __ref rescan_store(struct sysdev_class *class,
1047				  struct sysdev_class_attribute *attr,
1048				  const char *buf,
1049				  size_t count)
1050{
1051	int rc;
1052
1053	rc = smp_rescan_cpus();
1054	return rc ? rc : count;
1055}
1056static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1057#endif /* CONFIG_HOTPLUG_CPU */
1058
1059static ssize_t dispatching_show(struct sysdev_class *class,
1060				struct sysdev_class_attribute *attr,
1061				char *buf)
1062{
1063	ssize_t count;
1064
1065	mutex_lock(&smp_cpu_state_mutex);
1066	count = sprintf(buf, "%d\n", cpu_management);
1067	mutex_unlock(&smp_cpu_state_mutex);
1068	return count;
1069}
1070
1071static ssize_t dispatching_store(struct sysdev_class *dev,
1072				 struct sysdev_class_attribute *attr,
1073				 const char *buf,
1074				 size_t count)
1075{
1076	int val, rc;
1077	char delim;
1078
1079	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1080		return -EINVAL;
1081	if (val != 0 && val != 1)
1082		return -EINVAL;
1083	rc = 0;
1084	get_online_cpus();
1085	mutex_lock(&smp_cpu_state_mutex);
1086	if (cpu_management == val)
1087		goto out;
1088	rc = topology_set_cpu_management(val);
1089	if (!rc)
1090		cpu_management = val;
1091out:
1092	mutex_unlock(&smp_cpu_state_mutex);
1093	put_online_cpus();
1094	return rc ? rc : count;
1095}
1096static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1097			 dispatching_store);
1098
1099static int __init topology_init(void)
1100{
1101	int cpu;
1102	int rc;
1103
1104	register_cpu_notifier(&smp_cpu_nb);
1105
1106#ifdef CONFIG_HOTPLUG_CPU
1107	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1108	if (rc)
1109		return rc;
1110#endif
1111	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1112	if (rc)
1113		return rc;
1114	for_each_present_cpu(cpu) {
1115		rc = smp_add_present_cpu(cpu);
1116		if (rc)
1117			return rc;
1118	}
1119	return 0;
 
 
 
 
 
1120}
1121subsys_initcall(topology_init);