Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
  27#include <asm/segment.h>
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/pgalloc.h>
  31#include <linux/uaccess.h>
 
  32#include <asm/unistd.h>
  33#include <asm/switch_to.h>
  34#include <asm/runtime_instr.h>
  35#include <asm/facility.h>
  36
  37#include "entry.h"
  38
  39#ifdef CONFIG_COMPAT
  40#include "compat_ptrace.h"
  41#endif
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/syscalls.h>
  45
  46void update_cr_regs(struct task_struct *task)
 
 
 
 
 
 
 
  47{
 
 
 
 
 
  48	struct pt_regs *regs = task_pt_regs(task);
  49	struct thread_struct *thread = &task->thread;
  50	struct per_regs old, new;
  51	union ctlreg0 cr0_old, cr0_new;
  52	union ctlreg2 cr2_old, cr2_new;
  53	int cr0_changed, cr2_changed;
  54
  55	__ctl_store(cr0_old.val, 0, 0);
  56	__ctl_store(cr2_old.val, 2, 2);
  57	cr0_new = cr0_old;
  58	cr2_new = cr2_old;
  59	/* Take care of the enable/disable of transactional execution. */
  60	if (MACHINE_HAS_TE) {
  61		/* Set or clear transaction execution TXC bit 8. */
  62		cr0_new.tcx = 1;
  63		if (task->thread.per_flags & PER_FLAG_NO_TE)
  64			cr0_new.tcx = 0;
  65		/* Set or clear transaction execution TDC bits 62 and 63. */
  66		cr2_new.tdc = 0;
  67		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  68			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  69				cr2_new.tdc = 1;
  70			else
  71				cr2_new.tdc = 2;
  72		}
  73	}
  74	/* Take care of enable/disable of guarded storage. */
  75	if (MACHINE_HAS_GS) {
  76		cr2_new.gse = 0;
  77		if (task->thread.gs_cb)
  78			cr2_new.gse = 1;
  79	}
  80	/* Load control register 0/2 iff changed */
  81	cr0_changed = cr0_new.val != cr0_old.val;
  82	cr2_changed = cr2_new.val != cr2_old.val;
  83	if (cr0_changed)
  84		__ctl_load(cr0_new.val, 0, 0);
  85	if (cr2_changed)
  86		__ctl_load(cr2_new.val, 2, 2);
  87	/* Copy user specified PER registers */
  88	new.control = thread->per_user.control;
  89	new.start = thread->per_user.start;
  90	new.end = thread->per_user.end;
  91
  92	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  93	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  94	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  95		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  96			new.control |= PER_EVENT_BRANCH;
  97		else
  98			new.control |= PER_EVENT_IFETCH;
  99		new.control |= PER_CONTROL_SUSPENSION;
 100		new.control |= PER_EVENT_TRANSACTION_END;
 101		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 102			new.control |= PER_EVENT_IFETCH;
 103		new.start = 0;
 104		new.end = -1UL;
 105	}
 106
 107	/* Take care of the PER enablement bit in the PSW. */
 108	if (!(new.control & PER_EVENT_MASK)) {
 109		regs->psw.mask &= ~PSW_MASK_PER;
 110		return;
 111	}
 112	regs->psw.mask |= PSW_MASK_PER;
 113	__ctl_store(old, 9, 11);
 114	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 115		__ctl_load(new, 9, 11);
 116}
 117
 118void user_enable_single_step(struct task_struct *task)
 119{
 120	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 121	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 
 
 122}
 123
 124void user_disable_single_step(struct task_struct *task)
 125{
 126	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 127	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 128}
 129
 130void user_enable_block_step(struct task_struct *task)
 131{
 132	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 133	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 134}
 135
 136/*
 137 * Called by kernel/ptrace.c when detaching..
 138 *
 139 * Clear all debugging related fields.
 140 */
 141void ptrace_disable(struct task_struct *task)
 142{
 143	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 144	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 145	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 146	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 147	task->thread.per_flags = 0;
 148}
 149
 150#define __ADDR_MASK 7
 
 
 
 
 151
 152static inline unsigned long __peek_user_per(struct task_struct *child,
 153					    addr_t addr)
 154{
 155	struct per_struct_kernel *dummy = NULL;
 156
 157	if (addr == (addr_t) &dummy->cr9)
 158		/* Control bits of the active per set. */
 159		return test_thread_flag(TIF_SINGLE_STEP) ?
 160			PER_EVENT_IFETCH : child->thread.per_user.control;
 161	else if (addr == (addr_t) &dummy->cr10)
 162		/* Start address of the active per set. */
 163		return test_thread_flag(TIF_SINGLE_STEP) ?
 164			0 : child->thread.per_user.start;
 165	else if (addr == (addr_t) &dummy->cr11)
 166		/* End address of the active per set. */
 167		return test_thread_flag(TIF_SINGLE_STEP) ?
 168			-1UL : child->thread.per_user.end;
 169	else if (addr == (addr_t) &dummy->bits)
 170		/* Single-step bit. */
 171		return test_thread_flag(TIF_SINGLE_STEP) ?
 172			(1UL << (BITS_PER_LONG - 1)) : 0;
 173	else if (addr == (addr_t) &dummy->starting_addr)
 174		/* Start address of the user specified per set. */
 175		return child->thread.per_user.start;
 176	else if (addr == (addr_t) &dummy->ending_addr)
 177		/* End address of the user specified per set. */
 178		return child->thread.per_user.end;
 179	else if (addr == (addr_t) &dummy->perc_atmid)
 180		/* PER code, ATMID and AI of the last PER trap */
 181		return (unsigned long)
 182			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 183	else if (addr == (addr_t) &dummy->address)
 184		/* Address of the last PER trap */
 185		return child->thread.per_event.address;
 186	else if (addr == (addr_t) &dummy->access_id)
 187		/* Access id of the last PER trap */
 188		return (unsigned long)
 189			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 190	return 0;
 191}
 192
 193/*
 194 * Read the word at offset addr from the user area of a process. The
 195 * trouble here is that the information is littered over different
 196 * locations. The process registers are found on the kernel stack,
 197 * the floating point stuff and the trace settings are stored in
 198 * the task structure. In addition the different structures in
 199 * struct user contain pad bytes that should be read as zeroes.
 200 * Lovely...
 201 */
 202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 203{
 204	struct user *dummy = NULL;
 205	addr_t offset, tmp;
 206
 207	if (addr < (addr_t) &dummy->regs.acrs) {
 208		/*
 209		 * psw and gprs are stored on the stack
 210		 */
 211		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 212		if (addr == (addr_t) &dummy->regs.psw.mask) {
 213			/* Return a clean psw mask. */
 214			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 215			tmp |= PSW_USER_BITS;
 216		}
 217
 218	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 219		/*
 220		 * access registers are stored in the thread structure
 221		 */
 222		offset = addr - (addr_t) &dummy->regs.acrs;
 
 223		/*
 224		 * Very special case: old & broken 64 bit gdb reading
 225		 * from acrs[15]. Result is a 64 bit value. Read the
 226		 * 32 bit acrs[15] value and shift it by 32. Sick...
 227		 */
 228		if (addr == (addr_t) &dummy->regs.acrs[15])
 229			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 230		else
 231			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 
 232
 233	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 234		/*
 235		 * orig_gpr2 is stored on the kernel stack
 236		 */
 237		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 238
 239	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 240		/*
 241		 * prevent reads of padding hole between
 242		 * orig_gpr2 and fp_regs on s390.
 243		 */
 244		tmp = 0;
 245
 246	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 247		/*
 248		 * floating point control reg. is in the thread structure
 249		 */
 250		tmp = child->thread.fpu.fpc;
 251		tmp <<= BITS_PER_LONG - 32;
 252
 253	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 254		/*
 255		 * floating point regs. are either in child->thread.fpu
 256		 * or the child->thread.fpu.vxrs array
 257		 */
 258		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 259		if (MACHINE_HAS_VX)
 260			tmp = *(addr_t *)
 261			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 262		else
 263			tmp = *(addr_t *)
 264			       ((addr_t) child->thread.fpu.fprs + offset);
 265
 266	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 267		/*
 268		 * Handle access to the per_info structure.
 269		 */
 270		addr -= (addr_t) &dummy->regs.per_info;
 271		tmp = __peek_user_per(child, addr);
 272
 273	} else
 274		tmp = 0;
 275
 276	return tmp;
 277}
 278
 279static int
 280peek_user(struct task_struct *child, addr_t addr, addr_t data)
 281{
 282	addr_t tmp, mask;
 283
 284	/*
 285	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 286	 * an alignment of 4. Programmers from hell...
 287	 */
 288	mask = __ADDR_MASK;
 
 289	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 290	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 291		mask = 3;
 
 292	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 293		return -EIO;
 294
 295	tmp = __peek_user(child, addr);
 296	return put_user(tmp, (addr_t __user *) data);
 297}
 298
 299static inline void __poke_user_per(struct task_struct *child,
 300				   addr_t addr, addr_t data)
 301{
 302	struct per_struct_kernel *dummy = NULL;
 303
 304	/*
 305	 * There are only three fields in the per_info struct that the
 306	 * debugger user can write to.
 307	 * 1) cr9: the debugger wants to set a new PER event mask
 308	 * 2) starting_addr: the debugger wants to set a new starting
 309	 *    address to use with the PER event mask.
 310	 * 3) ending_addr: the debugger wants to set a new ending
 311	 *    address to use with the PER event mask.
 312	 * The user specified PER event mask and the start and end
 313	 * addresses are used only if single stepping is not in effect.
 314	 * Writes to any other field in per_info are ignored.
 315	 */
 316	if (addr == (addr_t) &dummy->cr9)
 317		/* PER event mask of the user specified per set. */
 318		child->thread.per_user.control =
 319			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 320	else if (addr == (addr_t) &dummy->starting_addr)
 321		/* Starting address of the user specified per set. */
 322		child->thread.per_user.start = data;
 323	else if (addr == (addr_t) &dummy->ending_addr)
 324		/* Ending address of the user specified per set. */
 325		child->thread.per_user.end = data;
 326}
 327
 328/*
 329 * Write a word to the user area of a process at location addr. This
 330 * operation does have an additional problem compared to peek_user.
 331 * Stores to the program status word and on the floating point
 332 * control register needs to get checked for validity.
 333 */
 334static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 335{
 336	struct user *dummy = NULL;
 337	addr_t offset;
 338
 339	if (addr < (addr_t) &dummy->regs.acrs) {
 340		/*
 341		 * psw and gprs are stored on the stack
 342		 */
 343		if (addr == (addr_t) &dummy->regs.psw.mask) {
 344			unsigned long mask = PSW_MASK_USER;
 345
 346			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 347			if ((data ^ PSW_USER_BITS) & ~mask)
 348				/* Invalid psw mask. */
 349				return -EINVAL;
 350			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 351				/* Invalid address-space-control bits */
 352				return -EINVAL;
 353			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 354				/* Invalid addressing mode bits */
 355				return -EINVAL;
 356		}
 357		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 358
 359	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 360		/*
 361		 * access registers are stored in the thread structure
 362		 */
 363		offset = addr - (addr_t) &dummy->regs.acrs;
 
 364		/*
 365		 * Very special case: old & broken 64 bit gdb writing
 366		 * to acrs[15] with a 64 bit value. Ignore the lower
 367		 * half of the value and write the upper 32 bit to
 368		 * acrs[15]. Sick...
 369		 */
 370		if (addr == (addr_t) &dummy->regs.acrs[15])
 371			child->thread.acrs[15] = (unsigned int) (data >> 32);
 372		else
 373			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 
 374
 375	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 376		/*
 377		 * orig_gpr2 is stored on the kernel stack
 378		 */
 379		task_pt_regs(child)->orig_gpr2 = data;
 380
 381	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 382		/*
 383		 * prevent writes of padding hole between
 384		 * orig_gpr2 and fp_regs on s390.
 385		 */
 386		return 0;
 387
 388	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 389		/*
 390		 * floating point control reg. is in the thread structure
 391		 */
 392		if ((unsigned int) data != 0 ||
 393		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 394			return -EINVAL;
 395		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 396
 397	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 398		/*
 399		 * floating point regs. are either in child->thread.fpu
 400		 * or the child->thread.fpu.vxrs array
 401		 */
 402		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 403		if (MACHINE_HAS_VX)
 404			*(addr_t *)((addr_t)
 405				child->thread.fpu.vxrs + 2*offset) = data;
 406		else
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.fprs + offset) = data;
 409
 410	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 411		/*
 412		 * Handle access to the per_info structure.
 413		 */
 414		addr -= (addr_t) &dummy->regs.per_info;
 415		__poke_user_per(child, addr, data);
 416
 417	}
 418
 419	return 0;
 420}
 421
 422static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 423{
 424	addr_t mask;
 425
 426	/*
 427	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 428	 * an alignment of 4. Programmers from hell indeed...
 429	 */
 430	mask = __ADDR_MASK;
 
 431	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 432	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 433		mask = 3;
 
 434	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 435		return -EIO;
 436
 437	return __poke_user(child, addr, data);
 438}
 439
 440long arch_ptrace(struct task_struct *child, long request,
 441		 unsigned long addr, unsigned long data)
 442{
 443	ptrace_area parea; 
 444	int copied, ret;
 445
 446	switch (request) {
 447	case PTRACE_PEEKUSR:
 448		/* read the word at location addr in the USER area. */
 449		return peek_user(child, addr, data);
 450
 451	case PTRACE_POKEUSR:
 452		/* write the word at location addr in the USER area */
 453		return poke_user(child, addr, data);
 454
 455	case PTRACE_PEEKUSR_AREA:
 456	case PTRACE_POKEUSR_AREA:
 457		if (copy_from_user(&parea, (void __force __user *) addr,
 458							sizeof(parea)))
 459			return -EFAULT;
 460		addr = parea.kernel_addr;
 461		data = parea.process_addr;
 462		copied = 0;
 463		while (copied < parea.len) {
 464			if (request == PTRACE_PEEKUSR_AREA)
 465				ret = peek_user(child, addr, data);
 466			else {
 467				addr_t utmp;
 468				if (get_user(utmp,
 469					     (addr_t __force __user *) data))
 470					return -EFAULT;
 471				ret = poke_user(child, addr, utmp);
 472			}
 473			if (ret)
 474				return ret;
 475			addr += sizeof(unsigned long);
 476			data += sizeof(unsigned long);
 477			copied += sizeof(unsigned long);
 478		}
 479		return 0;
 480	case PTRACE_GET_LAST_BREAK:
 481		put_user(child->thread.last_break,
 482			 (unsigned long __user *) data);
 483		return 0;
 484	case PTRACE_ENABLE_TE:
 485		if (!MACHINE_HAS_TE)
 486			return -EIO;
 487		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 488		return 0;
 489	case PTRACE_DISABLE_TE:
 490		if (!MACHINE_HAS_TE)
 491			return -EIO;
 492		child->thread.per_flags |= PER_FLAG_NO_TE;
 493		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 494		return 0;
 495	case PTRACE_TE_ABORT_RAND:
 496		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 497			return -EIO;
 498		switch (data) {
 499		case 0UL:
 500			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 501			break;
 502		case 1UL:
 503			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 504			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 505			break;
 506		case 2UL:
 507			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 508			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 509			break;
 510		default:
 511			return -EINVAL;
 512		}
 513		return 0;
 514	default:
 
 
 515		return ptrace_request(child, request, addr, data);
 516	}
 517}
 518
 519#ifdef CONFIG_COMPAT
 520/*
 521 * Now the fun part starts... a 31 bit program running in the
 522 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 523 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 524 * to handle, the difference to the 64 bit versions of the requests
 525 * is that the access is done in multiples of 4 byte instead of
 526 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 527 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 528 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 529 * is a 31 bit program too, the content of struct user can be
 530 * emulated. A 31 bit program peeking into the struct user of
 531 * a 64 bit program is a no-no.
 532 */
 533
 534/*
 535 * Same as peek_user_per but for a 31 bit program.
 536 */
 537static inline __u32 __peek_user_per_compat(struct task_struct *child,
 538					   addr_t addr)
 539{
 540	struct compat_per_struct_kernel *dummy32 = NULL;
 541
 542	if (addr == (addr_t) &dummy32->cr9)
 543		/* Control bits of the active per set. */
 544		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 545			PER_EVENT_IFETCH : child->thread.per_user.control;
 546	else if (addr == (addr_t) &dummy32->cr10)
 547		/* Start address of the active per set. */
 548		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 549			0 : child->thread.per_user.start;
 550	else if (addr == (addr_t) &dummy32->cr11)
 551		/* End address of the active per set. */
 552		return test_thread_flag(TIF_SINGLE_STEP) ?
 553			PSW32_ADDR_INSN : child->thread.per_user.end;
 554	else if (addr == (addr_t) &dummy32->bits)
 555		/* Single-step bit. */
 556		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 557			0x80000000 : 0;
 558	else if (addr == (addr_t) &dummy32->starting_addr)
 559		/* Start address of the user specified per set. */
 560		return (__u32) child->thread.per_user.start;
 561	else if (addr == (addr_t) &dummy32->ending_addr)
 562		/* End address of the user specified per set. */
 563		return (__u32) child->thread.per_user.end;
 564	else if (addr == (addr_t) &dummy32->perc_atmid)
 565		/* PER code, ATMID and AI of the last PER trap */
 566		return (__u32) child->thread.per_event.cause << 16;
 567	else if (addr == (addr_t) &dummy32->address)
 568		/* Address of the last PER trap */
 569		return (__u32) child->thread.per_event.address;
 570	else if (addr == (addr_t) &dummy32->access_id)
 571		/* Access id of the last PER trap */
 572		return (__u32) child->thread.per_event.paid << 24;
 573	return 0;
 574}
 575
 576/*
 577 * Same as peek_user but for a 31 bit program.
 578 */
 579static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 580{
 581	struct compat_user *dummy32 = NULL;
 582	addr_t offset;
 583	__u32 tmp;
 584
 585	if (addr < (addr_t) &dummy32->regs.acrs) {
 586		struct pt_regs *regs = task_pt_regs(child);
 587		/*
 588		 * psw and gprs are stored on the stack
 589		 */
 590		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 591			/* Fake a 31 bit psw mask. */
 592			tmp = (__u32)(regs->psw.mask >> 32);
 593			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 594			tmp |= PSW32_USER_BITS;
 595		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 596			/* Fake a 31 bit psw address. */
 597			tmp = (__u32) regs->psw.addr |
 598				(__u32)(regs->psw.mask & PSW_MASK_BA);
 599		} else {
 600			/* gpr 0-15 */
 601			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 
 602		}
 603	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 604		/*
 605		 * access registers are stored in the thread structure
 606		 */
 607		offset = addr - (addr_t) &dummy32->regs.acrs;
 608		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 609
 610	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 611		/*
 612		 * orig_gpr2 is stored on the kernel stack
 613		 */
 614		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 615
 616	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 617		/*
 618		 * prevent reads of padding hole between
 619		 * orig_gpr2 and fp_regs on s390.
 620		 */
 621		tmp = 0;
 622
 623	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 624		/*
 625		 * floating point control reg. is in the thread structure
 626		 */
 627		tmp = child->thread.fpu.fpc;
 628
 629	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 630		/*
 631		 * floating point regs. are either in child->thread.fpu
 632		 * or the child->thread.fpu.vxrs array
 633		 */
 634		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 635		if (MACHINE_HAS_VX)
 636			tmp = *(__u32 *)
 637			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 638		else
 639			tmp = *(__u32 *)
 640			       ((addr_t) child->thread.fpu.fprs + offset);
 641
 642	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 643		/*
 644		 * Handle access to the per_info structure.
 645		 */
 646		addr -= (addr_t) &dummy32->regs.per_info;
 647		tmp = __peek_user_per_compat(child, addr);
 648
 649	} else
 650		tmp = 0;
 651
 652	return tmp;
 653}
 654
 655static int peek_user_compat(struct task_struct *child,
 656			    addr_t addr, addr_t data)
 657{
 658	__u32 tmp;
 659
 660	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 661		return -EIO;
 662
 663	tmp = __peek_user_compat(child, addr);
 664	return put_user(tmp, (__u32 __user *) data);
 665}
 666
 667/*
 668 * Same as poke_user_per but for a 31 bit program.
 669 */
 670static inline void __poke_user_per_compat(struct task_struct *child,
 671					  addr_t addr, __u32 data)
 672{
 673	struct compat_per_struct_kernel *dummy32 = NULL;
 674
 675	if (addr == (addr_t) &dummy32->cr9)
 676		/* PER event mask of the user specified per set. */
 677		child->thread.per_user.control =
 678			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 679	else if (addr == (addr_t) &dummy32->starting_addr)
 680		/* Starting address of the user specified per set. */
 681		child->thread.per_user.start = data;
 682	else if (addr == (addr_t) &dummy32->ending_addr)
 683		/* Ending address of the user specified per set. */
 684		child->thread.per_user.end = data;
 685}
 686
 687/*
 688 * Same as poke_user but for a 31 bit program.
 689 */
 690static int __poke_user_compat(struct task_struct *child,
 691			      addr_t addr, addr_t data)
 692{
 693	struct compat_user *dummy32 = NULL;
 694	__u32 tmp = (__u32) data;
 695	addr_t offset;
 696
 697	if (addr < (addr_t) &dummy32->regs.acrs) {
 698		struct pt_regs *regs = task_pt_regs(child);
 699		/*
 700		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 701		 */
 702		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 703			__u32 mask = PSW32_MASK_USER;
 704
 705			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 706			/* Build a 64 bit psw mask from 31 bit mask. */
 707			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 708				/* Invalid psw mask. */
 709				return -EINVAL;
 710			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 711				/* Invalid address-space-control bits */
 712				return -EINVAL;
 713			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 714				(regs->psw.mask & PSW_MASK_BA) |
 715				(__u64)(tmp & mask) << 32;
 716		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 717			/* Build a 64 bit psw address from 31 bit address. */
 718			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 719			/* Transfer 31 bit amode bit to psw mask. */
 720			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 721				(__u64)(tmp & PSW32_ADDR_AMODE);
 722		} else {
 723			/* gpr 0-15 */
 724			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 
 725		}
 726	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 727		/*
 728		 * access registers are stored in the thread structure
 729		 */
 730		offset = addr - (addr_t) &dummy32->regs.acrs;
 731		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 732
 733	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 734		/*
 735		 * orig_gpr2 is stored on the kernel stack
 736		 */
 737		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 738
 739	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 740		/*
 741		 * prevent writess of padding hole between
 742		 * orig_gpr2 and fp_regs on s390.
 743		 */
 744		return 0;
 745
 746	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 747		/*
 748		 * floating point control reg. is in the thread structure
 749		 */
 750		if (test_fp_ctl(tmp))
 751			return -EINVAL;
 752		child->thread.fpu.fpc = data;
 753
 754	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 755		/*
 756		 * floating point regs. are either in child->thread.fpu
 757		 * or the child->thread.fpu.vxrs array
 758		 */
 759		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 760		if (MACHINE_HAS_VX)
 761			*(__u32 *)((addr_t)
 762				child->thread.fpu.vxrs + 2*offset) = tmp;
 763		else
 764			*(__u32 *)((addr_t)
 765				child->thread.fpu.fprs + offset) = tmp;
 766
 767	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 768		/*
 769		 * Handle access to the per_info structure.
 770		 */
 771		addr -= (addr_t) &dummy32->regs.per_info;
 772		__poke_user_per_compat(child, addr, data);
 773	}
 774
 775	return 0;
 776}
 777
 778static int poke_user_compat(struct task_struct *child,
 779			    addr_t addr, addr_t data)
 780{
 781	if (!is_compat_task() || (addr & 3) ||
 782	    addr > sizeof(struct compat_user) - 3)
 783		return -EIO;
 784
 785	return __poke_user_compat(child, addr, data);
 786}
 787
 788long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 789			compat_ulong_t caddr, compat_ulong_t cdata)
 790{
 791	unsigned long addr = caddr;
 792	unsigned long data = cdata;
 793	compat_ptrace_area parea;
 794	int copied, ret;
 795
 796	switch (request) {
 797	case PTRACE_PEEKUSR:
 798		/* read the word at location addr in the USER area. */
 799		return peek_user_compat(child, addr, data);
 800
 801	case PTRACE_POKEUSR:
 802		/* write the word at location addr in the USER area */
 803		return poke_user_compat(child, addr, data);
 804
 805	case PTRACE_PEEKUSR_AREA:
 806	case PTRACE_POKEUSR_AREA:
 807		if (copy_from_user(&parea, (void __force __user *) addr,
 808							sizeof(parea)))
 809			return -EFAULT;
 810		addr = parea.kernel_addr;
 811		data = parea.process_addr;
 812		copied = 0;
 813		while (copied < parea.len) {
 814			if (request == PTRACE_PEEKUSR_AREA)
 815				ret = peek_user_compat(child, addr, data);
 816			else {
 817				__u32 utmp;
 818				if (get_user(utmp,
 819					     (__u32 __force __user *) data))
 820					return -EFAULT;
 821				ret = poke_user_compat(child, addr, utmp);
 822			}
 823			if (ret)
 824				return ret;
 825			addr += sizeof(unsigned int);
 826			data += sizeof(unsigned int);
 827			copied += sizeof(unsigned int);
 828		}
 829		return 0;
 830	case PTRACE_GET_LAST_BREAK:
 831		put_user(child->thread.last_break,
 832			 (unsigned int __user *) data);
 833		return 0;
 834	}
 835	return compat_ptrace_request(child, request, addr, data);
 836}
 837#endif
 838
 839asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 840{
 841	unsigned long mask = -1UL;
 
 
 
 842
 843	/*
 844	 * The sysc_tracesys code in entry.S stored the system
 845	 * call number to gprs[2].
 846	 */
 847	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 848	    (tracehook_report_syscall_entry(regs) ||
 849	     regs->gprs[2] >= NR_syscalls)) {
 850		/*
 851		 * Tracing decided this syscall should not happen or the
 852		 * debugger stored an invalid system call number. Skip
 853		 * the system call and the system call restart handling.
 854		 */
 855		clear_pt_regs_flag(regs, PIF_SYSCALL);
 856		return -1;
 857	}
 858
 859	/* Do the secure computing check after ptrace. */
 860	if (secure_computing(NULL)) {
 861		/* seccomp failures shouldn't expose any additional code. */
 862		return -1;
 863	}
 864
 865	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 866		trace_sys_enter(regs, regs->gprs[2]);
 867
 868	if (is_compat_task())
 869		mask = 0xffffffff;
 870
 871	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
 872			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 873			    regs->gprs[5] &mask);
 874
 875	return regs->gprs[2];
 876}
 877
 878asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 879{
 880	audit_syscall_exit(regs);
 
 
 881
 882	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 883		trace_sys_exit(regs, regs->gprs[2]);
 884
 885	if (test_thread_flag(TIF_SYSCALL_TRACE))
 886		tracehook_report_syscall_exit(regs, 0);
 887}
 888
 889/*
 890 * user_regset definitions.
 891 */
 892
 893static int s390_regs_get(struct task_struct *target,
 894			 const struct user_regset *regset,
 895			 unsigned int pos, unsigned int count,
 896			 void *kbuf, void __user *ubuf)
 897{
 898	if (target == current)
 899		save_access_regs(target->thread.acrs);
 900
 901	if (kbuf) {
 902		unsigned long *k = kbuf;
 903		while (count > 0) {
 904			*k++ = __peek_user(target, pos);
 905			count -= sizeof(*k);
 906			pos += sizeof(*k);
 907		}
 908	} else {
 909		unsigned long __user *u = ubuf;
 910		while (count > 0) {
 911			if (__put_user(__peek_user(target, pos), u++))
 912				return -EFAULT;
 913			count -= sizeof(*u);
 914			pos += sizeof(*u);
 915		}
 916	}
 917	return 0;
 918}
 919
 920static int s390_regs_set(struct task_struct *target,
 921			 const struct user_regset *regset,
 922			 unsigned int pos, unsigned int count,
 923			 const void *kbuf, const void __user *ubuf)
 924{
 925	int rc = 0;
 926
 927	if (target == current)
 928		save_access_regs(target->thread.acrs);
 929
 930	if (kbuf) {
 931		const unsigned long *k = kbuf;
 932		while (count > 0 && !rc) {
 933			rc = __poke_user(target, pos, *k++);
 934			count -= sizeof(*k);
 935			pos += sizeof(*k);
 936		}
 937	} else {
 938		const unsigned long  __user *u = ubuf;
 939		while (count > 0 && !rc) {
 940			unsigned long word;
 941			rc = __get_user(word, u++);
 942			if (rc)
 943				break;
 944			rc = __poke_user(target, pos, word);
 945			count -= sizeof(*u);
 946			pos += sizeof(*u);
 947		}
 948	}
 949
 950	if (rc == 0 && target == current)
 951		restore_access_regs(target->thread.acrs);
 952
 953	return rc;
 954}
 955
 956static int s390_fpregs_get(struct task_struct *target,
 957			   const struct user_regset *regset, unsigned int pos,
 958			   unsigned int count, void *kbuf, void __user *ubuf)
 959{
 960	_s390_fp_regs fp_regs;
 961
 962	if (target == current)
 963		save_fpu_regs();
 964
 965	fp_regs.fpc = target->thread.fpu.fpc;
 966	fpregs_store(&fp_regs, &target->thread.fpu);
 967
 968	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 969				   &fp_regs, 0, -1);
 970}
 971
 972static int s390_fpregs_set(struct task_struct *target,
 973			   const struct user_regset *regset, unsigned int pos,
 974			   unsigned int count, const void *kbuf,
 975			   const void __user *ubuf)
 976{
 977	int rc = 0;
 978	freg_t fprs[__NUM_FPRS];
 979
 980	if (target == current)
 981		save_fpu_regs();
 982
 983	if (MACHINE_HAS_VX)
 984		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 985	else
 986		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 987
 988	/* If setting FPC, must validate it first. */
 989	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 990		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 991		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 992					0, offsetof(s390_fp_regs, fprs));
 993		if (rc)
 994			return rc;
 995		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 996			return -EINVAL;
 997		target->thread.fpu.fpc = ufpc[0];
 998	}
 999
1000	if (rc == 0 && count > 0)
1001		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1002					fprs, offsetof(s390_fp_regs, fprs), -1);
1003	if (rc)
1004		return rc;
1005
1006	if (MACHINE_HAS_VX)
1007		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1008	else
1009		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1010
1011	return rc;
1012}
1013
 
 
1014static int s390_last_break_get(struct task_struct *target,
1015			       const struct user_regset *regset,
1016			       unsigned int pos, unsigned int count,
1017			       void *kbuf, void __user *ubuf)
1018{
1019	if (count > 0) {
1020		if (kbuf) {
1021			unsigned long *k = kbuf;
1022			*k = target->thread.last_break;
1023		} else {
1024			unsigned long  __user *u = ubuf;
1025			if (__put_user(target->thread.last_break, u))
1026				return -EFAULT;
1027		}
1028	}
1029	return 0;
1030}
1031
1032static int s390_last_break_set(struct task_struct *target,
1033			       const struct user_regset *regset,
1034			       unsigned int pos, unsigned int count,
1035			       const void *kbuf, const void __user *ubuf)
1036{
1037	return 0;
1038}
1039
1040static int s390_tdb_get(struct task_struct *target,
1041			const struct user_regset *regset,
1042			unsigned int pos, unsigned int count,
1043			void *kbuf, void __user *ubuf)
1044{
1045	struct pt_regs *regs = task_pt_regs(target);
1046	unsigned char *data;
1047
1048	if (!(regs->int_code & 0x200))
1049		return -ENODATA;
1050	data = target->thread.trap_tdb;
1051	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1052}
1053
1054static int s390_tdb_set(struct task_struct *target,
1055			const struct user_regset *regset,
1056			unsigned int pos, unsigned int count,
1057			const void *kbuf, const void __user *ubuf)
1058{
1059	return 0;
1060}
1061
1062static int s390_vxrs_low_get(struct task_struct *target,
1063			     const struct user_regset *regset,
1064			     unsigned int pos, unsigned int count,
1065			     void *kbuf, void __user *ubuf)
1066{
1067	__u64 vxrs[__NUM_VXRS_LOW];
1068	int i;
1069
1070	if (!MACHINE_HAS_VX)
1071		return -ENODEV;
1072	if (target == current)
1073		save_fpu_regs();
1074	for (i = 0; i < __NUM_VXRS_LOW; i++)
1075		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1076	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1077}
1078
1079static int s390_vxrs_low_set(struct task_struct *target,
1080			     const struct user_regset *regset,
1081			     unsigned int pos, unsigned int count,
1082			     const void *kbuf, const void __user *ubuf)
1083{
1084	__u64 vxrs[__NUM_VXRS_LOW];
1085	int i, rc;
1086
1087	if (!MACHINE_HAS_VX)
1088		return -ENODEV;
1089	if (target == current)
1090		save_fpu_regs();
1091
1092	for (i = 0; i < __NUM_VXRS_LOW; i++)
1093		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1094
1095	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1096	if (rc == 0)
1097		for (i = 0; i < __NUM_VXRS_LOW; i++)
1098			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1099
1100	return rc;
1101}
1102
1103static int s390_vxrs_high_get(struct task_struct *target,
1104			      const struct user_regset *regset,
1105			      unsigned int pos, unsigned int count,
1106			      void *kbuf, void __user *ubuf)
1107{
1108	__vector128 vxrs[__NUM_VXRS_HIGH];
1109
1110	if (!MACHINE_HAS_VX)
1111		return -ENODEV;
1112	if (target == current)
1113		save_fpu_regs();
1114	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1115
1116	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1117}
1118
1119static int s390_vxrs_high_set(struct task_struct *target,
1120			      const struct user_regset *regset,
1121			      unsigned int pos, unsigned int count,
1122			      const void *kbuf, const void __user *ubuf)
1123{
1124	int rc;
1125
1126	if (!MACHINE_HAS_VX)
1127		return -ENODEV;
1128	if (target == current)
1129		save_fpu_regs();
1130
1131	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1132				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1133	return rc;
1134}
1135
1136static int s390_system_call_get(struct task_struct *target,
1137				const struct user_regset *regset,
1138				unsigned int pos, unsigned int count,
1139				void *kbuf, void __user *ubuf)
1140{
1141	unsigned int *data = &target->thread.system_call;
1142	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1143				   data, 0, sizeof(unsigned int));
1144}
1145
1146static int s390_system_call_set(struct task_struct *target,
1147				const struct user_regset *regset,
1148				unsigned int pos, unsigned int count,
1149				const void *kbuf, const void __user *ubuf)
1150{
1151	unsigned int *data = &target->thread.system_call;
1152	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1153				  data, 0, sizeof(unsigned int));
1154}
1155
1156static int s390_gs_cb_get(struct task_struct *target,
1157			  const struct user_regset *regset,
1158			  unsigned int pos, unsigned int count,
1159			  void *kbuf, void __user *ubuf)
1160{
1161	struct gs_cb *data = target->thread.gs_cb;
1162
1163	if (!MACHINE_HAS_GS)
1164		return -ENODEV;
1165	if (!data)
1166		return -ENODATA;
1167	if (target == current)
1168		save_gs_cb(data);
1169	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1170				   data, 0, sizeof(struct gs_cb));
1171}
1172
1173static int s390_gs_cb_set(struct task_struct *target,
1174			  const struct user_regset *regset,
1175			  unsigned int pos, unsigned int count,
1176			  const void *kbuf, const void __user *ubuf)
1177{
1178	struct gs_cb gs_cb = { }, *data = NULL;
1179	int rc;
1180
1181	if (!MACHINE_HAS_GS)
1182		return -ENODEV;
1183	if (!target->thread.gs_cb) {
1184		data = kzalloc(sizeof(*data), GFP_KERNEL);
1185		if (!data)
1186			return -ENOMEM;
1187	}
1188	if (!target->thread.gs_cb)
1189		gs_cb.gsd = 25;
1190	else if (target == current)
1191		save_gs_cb(&gs_cb);
1192	else
1193		gs_cb = *target->thread.gs_cb;
1194	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1195				&gs_cb, 0, sizeof(gs_cb));
1196	if (rc) {
1197		kfree(data);
1198		return -EFAULT;
1199	}
1200	preempt_disable();
1201	if (!target->thread.gs_cb)
1202		target->thread.gs_cb = data;
1203	*target->thread.gs_cb = gs_cb;
1204	if (target == current) {
1205		__ctl_set_bit(2, 4);
1206		restore_gs_cb(target->thread.gs_cb);
1207	}
1208	preempt_enable();
1209	return rc;
1210}
1211
1212static int s390_gs_bc_get(struct task_struct *target,
1213			  const struct user_regset *regset,
1214			  unsigned int pos, unsigned int count,
1215			  void *kbuf, void __user *ubuf)
1216{
1217	struct gs_cb *data = target->thread.gs_bc_cb;
1218
1219	if (!MACHINE_HAS_GS)
1220		return -ENODEV;
1221	if (!data)
1222		return -ENODATA;
1223	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1224				   data, 0, sizeof(struct gs_cb));
1225}
1226
1227static int s390_gs_bc_set(struct task_struct *target,
1228			  const struct user_regset *regset,
1229			  unsigned int pos, unsigned int count,
1230			  const void *kbuf, const void __user *ubuf)
1231{
1232	struct gs_cb *data = target->thread.gs_bc_cb;
1233
1234	if (!MACHINE_HAS_GS)
1235		return -ENODEV;
1236	if (!data) {
1237		data = kzalloc(sizeof(*data), GFP_KERNEL);
1238		if (!data)
1239			return -ENOMEM;
1240		target->thread.gs_bc_cb = data;
1241	}
1242	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1243				  data, 0, sizeof(struct gs_cb));
1244}
1245
1246static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1247{
1248	return (cb->rca & 0x1f) == 0 &&
1249		(cb->roa & 0xfff) == 0 &&
1250		(cb->rla & 0xfff) == 0xfff &&
1251		cb->s == 1 &&
1252		cb->k == 1 &&
1253		cb->h == 0 &&
1254		cb->reserved1 == 0 &&
1255		cb->ps == 1 &&
1256		cb->qs == 0 &&
1257		cb->pc == 1 &&
1258		cb->qc == 0 &&
1259		cb->reserved2 == 0 &&
1260		cb->key == PAGE_DEFAULT_KEY &&
1261		cb->reserved3 == 0 &&
1262		cb->reserved4 == 0 &&
1263		cb->reserved5 == 0 &&
1264		cb->reserved6 == 0 &&
1265		cb->reserved7 == 0 &&
1266		cb->reserved8 == 0 &&
1267		cb->rla >= cb->roa &&
1268		cb->rca >= cb->roa &&
1269		cb->rca <= cb->rla+1 &&
1270		cb->m < 3;
1271}
1272
1273static int s390_runtime_instr_get(struct task_struct *target,
1274				const struct user_regset *regset,
1275				unsigned int pos, unsigned int count,
1276				void *kbuf, void __user *ubuf)
1277{
1278	struct runtime_instr_cb *data = target->thread.ri_cb;
1279
1280	if (!test_facility(64))
1281		return -ENODEV;
1282	if (!data)
1283		return -ENODATA;
1284
1285	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1286				   data, 0, sizeof(struct runtime_instr_cb));
1287}
1288
1289static int s390_runtime_instr_set(struct task_struct *target,
1290				  const struct user_regset *regset,
1291				  unsigned int pos, unsigned int count,
1292				  const void *kbuf, const void __user *ubuf)
1293{
1294	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1295	int rc;
1296
1297	if (!test_facility(64))
1298		return -ENODEV;
1299
1300	if (!target->thread.ri_cb) {
1301		data = kzalloc(sizeof(*data), GFP_KERNEL);
1302		if (!data)
1303			return -ENOMEM;
1304	}
1305
1306	if (target->thread.ri_cb) {
1307		if (target == current)
1308			store_runtime_instr_cb(&ri_cb);
1309		else
1310			ri_cb = *target->thread.ri_cb;
1311	}
1312
1313	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1314				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1315	if (rc) {
1316		kfree(data);
1317		return -EFAULT;
1318	}
1319
1320	if (!is_ri_cb_valid(&ri_cb)) {
1321		kfree(data);
1322		return -EINVAL;
1323	}
1324
1325	preempt_disable();
1326	if (!target->thread.ri_cb)
1327		target->thread.ri_cb = data;
1328	*target->thread.ri_cb = ri_cb;
1329	if (target == current)
1330		load_runtime_instr_cb(target->thread.ri_cb);
1331	preempt_enable();
1332
1333	return 0;
1334}
1335
1336static const struct user_regset s390_regsets[] = {
1337	{
1338		.core_note_type = NT_PRSTATUS,
1339		.n = sizeof(s390_regs) / sizeof(long),
1340		.size = sizeof(long),
1341		.align = sizeof(long),
1342		.get = s390_regs_get,
1343		.set = s390_regs_set,
1344	},
1345	{
1346		.core_note_type = NT_PRFPREG,
1347		.n = sizeof(s390_fp_regs) / sizeof(long),
1348		.size = sizeof(long),
1349		.align = sizeof(long),
1350		.get = s390_fpregs_get,
1351		.set = s390_fpregs_set,
1352	},
1353	{
1354		.core_note_type = NT_S390_SYSTEM_CALL,
1355		.n = 1,
1356		.size = sizeof(unsigned int),
1357		.align = sizeof(unsigned int),
1358		.get = s390_system_call_get,
1359		.set = s390_system_call_set,
1360	},
1361	{
1362		.core_note_type = NT_S390_LAST_BREAK,
1363		.n = 1,
1364		.size = sizeof(long),
1365		.align = sizeof(long),
1366		.get = s390_last_break_get,
1367		.set = s390_last_break_set,
1368	},
1369	{
1370		.core_note_type = NT_S390_TDB,
1371		.n = 1,
1372		.size = 256,
1373		.align = 1,
1374		.get = s390_tdb_get,
1375		.set = s390_tdb_set,
1376	},
1377	{
1378		.core_note_type = NT_S390_VXRS_LOW,
1379		.n = __NUM_VXRS_LOW,
1380		.size = sizeof(__u64),
1381		.align = sizeof(__u64),
1382		.get = s390_vxrs_low_get,
1383		.set = s390_vxrs_low_set,
1384	},
1385	{
1386		.core_note_type = NT_S390_VXRS_HIGH,
1387		.n = __NUM_VXRS_HIGH,
1388		.size = sizeof(__vector128),
1389		.align = sizeof(__vector128),
1390		.get = s390_vxrs_high_get,
1391		.set = s390_vxrs_high_set,
1392	},
1393	{
1394		.core_note_type = NT_S390_GS_CB,
1395		.n = sizeof(struct gs_cb) / sizeof(__u64),
1396		.size = sizeof(__u64),
1397		.align = sizeof(__u64),
1398		.get = s390_gs_cb_get,
1399		.set = s390_gs_cb_set,
1400	},
1401	{
1402		.core_note_type = NT_S390_GS_BC,
1403		.n = sizeof(struct gs_cb) / sizeof(__u64),
1404		.size = sizeof(__u64),
1405		.align = sizeof(__u64),
1406		.get = s390_gs_bc_get,
1407		.set = s390_gs_bc_set,
1408	},
1409	{
1410		.core_note_type = NT_S390_RI_CB,
1411		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1412		.size = sizeof(__u64),
1413		.align = sizeof(__u64),
1414		.get = s390_runtime_instr_get,
1415		.set = s390_runtime_instr_set,
1416	},
 
1417};
1418
1419static const struct user_regset_view user_s390_view = {
1420	.name = UTS_MACHINE,
1421	.e_machine = EM_S390,
1422	.regsets = s390_regsets,
1423	.n = ARRAY_SIZE(s390_regsets)
1424};
1425
1426#ifdef CONFIG_COMPAT
1427static int s390_compat_regs_get(struct task_struct *target,
1428				const struct user_regset *regset,
1429				unsigned int pos, unsigned int count,
1430				void *kbuf, void __user *ubuf)
1431{
1432	if (target == current)
1433		save_access_regs(target->thread.acrs);
1434
1435	if (kbuf) {
1436		compat_ulong_t *k = kbuf;
1437		while (count > 0) {
1438			*k++ = __peek_user_compat(target, pos);
1439			count -= sizeof(*k);
1440			pos += sizeof(*k);
1441		}
1442	} else {
1443		compat_ulong_t __user *u = ubuf;
1444		while (count > 0) {
1445			if (__put_user(__peek_user_compat(target, pos), u++))
1446				return -EFAULT;
1447			count -= sizeof(*u);
1448			pos += sizeof(*u);
1449		}
1450	}
1451	return 0;
1452}
1453
1454static int s390_compat_regs_set(struct task_struct *target,
1455				const struct user_regset *regset,
1456				unsigned int pos, unsigned int count,
1457				const void *kbuf, const void __user *ubuf)
1458{
1459	int rc = 0;
1460
1461	if (target == current)
1462		save_access_regs(target->thread.acrs);
1463
1464	if (kbuf) {
1465		const compat_ulong_t *k = kbuf;
1466		while (count > 0 && !rc) {
1467			rc = __poke_user_compat(target, pos, *k++);
1468			count -= sizeof(*k);
1469			pos += sizeof(*k);
1470		}
1471	} else {
1472		const compat_ulong_t  __user *u = ubuf;
1473		while (count > 0 && !rc) {
1474			compat_ulong_t word;
1475			rc = __get_user(word, u++);
1476			if (rc)
1477				break;
1478			rc = __poke_user_compat(target, pos, word);
1479			count -= sizeof(*u);
1480			pos += sizeof(*u);
1481		}
1482	}
1483
1484	if (rc == 0 && target == current)
1485		restore_access_regs(target->thread.acrs);
1486
1487	return rc;
1488}
1489
1490static int s390_compat_regs_high_get(struct task_struct *target,
1491				     const struct user_regset *regset,
1492				     unsigned int pos, unsigned int count,
1493				     void *kbuf, void __user *ubuf)
1494{
1495	compat_ulong_t *gprs_high;
1496
1497	gprs_high = (compat_ulong_t *)
1498		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1499	if (kbuf) {
1500		compat_ulong_t *k = kbuf;
1501		while (count > 0) {
1502			*k++ = *gprs_high;
1503			gprs_high += 2;
1504			count -= sizeof(*k);
1505		}
1506	} else {
1507		compat_ulong_t __user *u = ubuf;
1508		while (count > 0) {
1509			if (__put_user(*gprs_high, u++))
1510				return -EFAULT;
1511			gprs_high += 2;
1512			count -= sizeof(*u);
1513		}
1514	}
1515	return 0;
1516}
1517
1518static int s390_compat_regs_high_set(struct task_struct *target,
1519				     const struct user_regset *regset,
1520				     unsigned int pos, unsigned int count,
1521				     const void *kbuf, const void __user *ubuf)
1522{
1523	compat_ulong_t *gprs_high;
1524	int rc = 0;
1525
1526	gprs_high = (compat_ulong_t *)
1527		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1528	if (kbuf) {
1529		const compat_ulong_t *k = kbuf;
1530		while (count > 0) {
1531			*gprs_high = *k++;
1532			*gprs_high += 2;
1533			count -= sizeof(*k);
1534		}
1535	} else {
1536		const compat_ulong_t  __user *u = ubuf;
1537		while (count > 0 && !rc) {
1538			unsigned long word;
1539			rc = __get_user(word, u++);
1540			if (rc)
1541				break;
1542			*gprs_high = word;
1543			*gprs_high += 2;
1544			count -= sizeof(*u);
1545		}
1546	}
1547
1548	return rc;
1549}
1550
1551static int s390_compat_last_break_get(struct task_struct *target,
1552				      const struct user_regset *regset,
1553				      unsigned int pos, unsigned int count,
1554				      void *kbuf, void __user *ubuf)
1555{
1556	compat_ulong_t last_break;
1557
1558	if (count > 0) {
1559		last_break = target->thread.last_break;
1560		if (kbuf) {
1561			unsigned long *k = kbuf;
1562			*k = last_break;
1563		} else {
1564			unsigned long  __user *u = ubuf;
1565			if (__put_user(last_break, u))
1566				return -EFAULT;
1567		}
1568	}
1569	return 0;
1570}
1571
1572static int s390_compat_last_break_set(struct task_struct *target,
1573				      const struct user_regset *regset,
1574				      unsigned int pos, unsigned int count,
1575				      const void *kbuf, const void __user *ubuf)
1576{
1577	return 0;
1578}
1579
1580static const struct user_regset s390_compat_regsets[] = {
1581	{
1582		.core_note_type = NT_PRSTATUS,
1583		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1584		.size = sizeof(compat_long_t),
1585		.align = sizeof(compat_long_t),
1586		.get = s390_compat_regs_get,
1587		.set = s390_compat_regs_set,
1588	},
1589	{
1590		.core_note_type = NT_PRFPREG,
1591		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1592		.size = sizeof(compat_long_t),
1593		.align = sizeof(compat_long_t),
1594		.get = s390_fpregs_get,
1595		.set = s390_fpregs_set,
1596	},
1597	{
1598		.core_note_type = NT_S390_SYSTEM_CALL,
1599		.n = 1,
1600		.size = sizeof(compat_uint_t),
1601		.align = sizeof(compat_uint_t),
1602		.get = s390_system_call_get,
1603		.set = s390_system_call_set,
1604	},
1605	{
1606		.core_note_type = NT_S390_LAST_BREAK,
1607		.n = 1,
1608		.size = sizeof(long),
1609		.align = sizeof(long),
1610		.get = s390_compat_last_break_get,
1611		.set = s390_compat_last_break_set,
1612	},
1613	{
1614		.core_note_type = NT_S390_TDB,
1615		.n = 1,
1616		.size = 256,
1617		.align = 1,
1618		.get = s390_tdb_get,
1619		.set = s390_tdb_set,
1620	},
1621	{
1622		.core_note_type = NT_S390_VXRS_LOW,
1623		.n = __NUM_VXRS_LOW,
1624		.size = sizeof(__u64),
1625		.align = sizeof(__u64),
1626		.get = s390_vxrs_low_get,
1627		.set = s390_vxrs_low_set,
1628	},
1629	{
1630		.core_note_type = NT_S390_VXRS_HIGH,
1631		.n = __NUM_VXRS_HIGH,
1632		.size = sizeof(__vector128),
1633		.align = sizeof(__vector128),
1634		.get = s390_vxrs_high_get,
1635		.set = s390_vxrs_high_set,
1636	},
1637	{
1638		.core_note_type = NT_S390_HIGH_GPRS,
1639		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1640		.size = sizeof(compat_long_t),
1641		.align = sizeof(compat_long_t),
1642		.get = s390_compat_regs_high_get,
1643		.set = s390_compat_regs_high_set,
1644	},
1645	{
1646		.core_note_type = NT_S390_GS_CB,
1647		.n = sizeof(struct gs_cb) / sizeof(__u64),
1648		.size = sizeof(__u64),
1649		.align = sizeof(__u64),
1650		.get = s390_gs_cb_get,
1651		.set = s390_gs_cb_set,
1652	},
1653	{
1654		.core_note_type = NT_S390_GS_BC,
1655		.n = sizeof(struct gs_cb) / sizeof(__u64),
1656		.size = sizeof(__u64),
1657		.align = sizeof(__u64),
1658		.get = s390_gs_bc_get,
1659		.set = s390_gs_bc_set,
1660	},
1661	{
1662		.core_note_type = NT_S390_RI_CB,
1663		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1664		.size = sizeof(__u64),
1665		.align = sizeof(__u64),
1666		.get = s390_runtime_instr_get,
1667		.set = s390_runtime_instr_set,
1668	},
1669};
1670
1671static const struct user_regset_view user_s390_compat_view = {
1672	.name = "s390",
1673	.e_machine = EM_S390,
1674	.regsets = s390_compat_regsets,
1675	.n = ARRAY_SIZE(s390_compat_regsets)
1676};
1677#endif
1678
1679const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1680{
1681#ifdef CONFIG_COMPAT
1682	if (test_tsk_thread_flag(task, TIF_31BIT))
1683		return &user_s390_compat_view;
1684#endif
1685	return &user_s390_view;
1686}
1687
1688static const char *gpr_names[NUM_GPRS] = {
1689	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1690	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1691};
1692
1693unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1694{
1695	if (offset >= NUM_GPRS)
1696		return 0;
1697	return regs->gprs[offset];
1698}
1699
1700int regs_query_register_offset(const char *name)
1701{
1702	unsigned long offset;
1703
1704	if (!name || *name != 'r')
1705		return -EINVAL;
1706	if (kstrtoul(name + 1, 10, &offset))
1707		return -EINVAL;
1708	if (offset >= NUM_GPRS)
1709		return -EINVAL;
1710	return offset;
1711}
1712
1713const char *regs_query_register_name(unsigned int offset)
1714{
1715	if (offset >= NUM_GPRS)
1716		return NULL;
1717	return gpr_names[offset];
1718}
1719
1720static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1721{
1722	unsigned long ksp = kernel_stack_pointer(regs);
1723
1724	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1725}
1726
1727/**
1728 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1729 * @regs:pt_regs which contains kernel stack pointer.
1730 * @n:stack entry number.
1731 *
1732 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1733 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1734 * this returns 0.
1735 */
1736unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1737{
1738	unsigned long addr;
1739
1740	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1741	if (!regs_within_kernel_stack(regs, addr))
1742		return 0;
1743	return *(unsigned long *)addr;
1744}
v3.1
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999,2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
 
  23#include <trace/syscall.h>
  24#include <asm/compat.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <asm/unistd.h>
 
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_GENERAL_EXTENDED,
  46};
  47
  48void update_per_regs(struct task_struct *task)
  49{
  50	static const struct per_regs per_single_step = {
  51		.control = PER_EVENT_IFETCH,
  52		.start = 0,
  53		.end = PSW_ADDR_INSN,
  54	};
  55	struct pt_regs *regs = task_pt_regs(task);
  56	struct thread_struct *thread = &task->thread;
  57	const struct per_regs *new;
  58	struct per_regs old;
  59
  60	/* TIF_SINGLE_STEP overrides the user specified PER registers. */
  61	new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
  62		&per_single_step : &thread->per_user;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64	/* Take care of the PER enablement bit in the PSW. */
  65	if (!(new->control & PER_EVENT_MASK)) {
  66		regs->psw.mask &= ~PSW_MASK_PER;
  67		return;
  68	}
  69	regs->psw.mask |= PSW_MASK_PER;
  70	__ctl_store(old, 9, 11);
  71	if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
  72		__ctl_load(*new, 9, 11);
  73}
  74
  75void user_enable_single_step(struct task_struct *task)
  76{
 
  77	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
  78	if (task == current)
  79		update_per_regs(task);
  80}
  81
  82void user_disable_single_step(struct task_struct *task)
  83{
 
  84	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  85	if (task == current)
  86		update_per_regs(task);
 
 
 
 
  87}
  88
  89/*
  90 * Called by kernel/ptrace.c when detaching..
  91 *
  92 * Clear all debugging related fields.
  93 */
  94void ptrace_disable(struct task_struct *task)
  95{
  96	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
  97	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
  98	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  99	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 
 100}
 101
 102#ifndef CONFIG_64BIT
 103# define __ADDR_MASK 3
 104#else
 105# define __ADDR_MASK 7
 106#endif
 107
 108static inline unsigned long __peek_user_per(struct task_struct *child,
 109					    addr_t addr)
 110{
 111	struct per_struct_kernel *dummy = NULL;
 112
 113	if (addr == (addr_t) &dummy->cr9)
 114		/* Control bits of the active per set. */
 115		return test_thread_flag(TIF_SINGLE_STEP) ?
 116			PER_EVENT_IFETCH : child->thread.per_user.control;
 117	else if (addr == (addr_t) &dummy->cr10)
 118		/* Start address of the active per set. */
 119		return test_thread_flag(TIF_SINGLE_STEP) ?
 120			0 : child->thread.per_user.start;
 121	else if (addr == (addr_t) &dummy->cr11)
 122		/* End address of the active per set. */
 123		return test_thread_flag(TIF_SINGLE_STEP) ?
 124			PSW_ADDR_INSN : child->thread.per_user.end;
 125	else if (addr == (addr_t) &dummy->bits)
 126		/* Single-step bit. */
 127		return test_thread_flag(TIF_SINGLE_STEP) ?
 128			(1UL << (BITS_PER_LONG - 1)) : 0;
 129	else if (addr == (addr_t) &dummy->starting_addr)
 130		/* Start address of the user specified per set. */
 131		return child->thread.per_user.start;
 132	else if (addr == (addr_t) &dummy->ending_addr)
 133		/* End address of the user specified per set. */
 134		return child->thread.per_user.end;
 135	else if (addr == (addr_t) &dummy->perc_atmid)
 136		/* PER code, ATMID and AI of the last PER trap */
 137		return (unsigned long)
 138			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 139	else if (addr == (addr_t) &dummy->address)
 140		/* Address of the last PER trap */
 141		return child->thread.per_event.address;
 142	else if (addr == (addr_t) &dummy->access_id)
 143		/* Access id of the last PER trap */
 144		return (unsigned long)
 145			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 146	return 0;
 147}
 148
 149/*
 150 * Read the word at offset addr from the user area of a process. The
 151 * trouble here is that the information is littered over different
 152 * locations. The process registers are found on the kernel stack,
 153 * the floating point stuff and the trace settings are stored in
 154 * the task structure. In addition the different structures in
 155 * struct user contain pad bytes that should be read as zeroes.
 156 * Lovely...
 157 */
 158static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 159{
 160	struct user *dummy = NULL;
 161	addr_t offset, tmp;
 162
 163	if (addr < (addr_t) &dummy->regs.acrs) {
 164		/*
 165		 * psw and gprs are stored on the stack
 166		 */
 167		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 168		if (addr == (addr_t) &dummy->regs.psw.mask)
 169			/* Remove per bit from user psw. */
 170			tmp &= ~PSW_MASK_PER;
 
 
 171
 172	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 173		/*
 174		 * access registers are stored in the thread structure
 175		 */
 176		offset = addr - (addr_t) &dummy->regs.acrs;
 177#ifdef CONFIG_64BIT
 178		/*
 179		 * Very special case: old & broken 64 bit gdb reading
 180		 * from acrs[15]. Result is a 64 bit value. Read the
 181		 * 32 bit acrs[15] value and shift it by 32. Sick...
 182		 */
 183		if (addr == (addr_t) &dummy->regs.acrs[15])
 184			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 185		else
 186#endif
 187		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 188
 189	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 190		/*
 191		 * orig_gpr2 is stored on the kernel stack
 192		 */
 193		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 194
 195	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 196		/*
 197		 * prevent reads of padding hole between
 198		 * orig_gpr2 and fp_regs on s390.
 199		 */
 200		tmp = 0;
 201
 
 
 
 
 
 
 
 202	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 203		/* 
 204		 * floating point regs. are stored in the thread structure
 
 205		 */
 206		offset = addr - (addr_t) &dummy->regs.fp_regs;
 207		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 208		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 209			tmp &= (unsigned long) FPC_VALID_MASK
 210				<< (BITS_PER_LONG - 32);
 
 
 211
 212	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 213		/*
 214		 * Handle access to the per_info structure.
 215		 */
 216		addr -= (addr_t) &dummy->regs.per_info;
 217		tmp = __peek_user_per(child, addr);
 218
 219	} else
 220		tmp = 0;
 221
 222	return tmp;
 223}
 224
 225static int
 226peek_user(struct task_struct *child, addr_t addr, addr_t data)
 227{
 228	addr_t tmp, mask;
 229
 230	/*
 231	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 232	 * an alignment of 4. Programmers from hell...
 233	 */
 234	mask = __ADDR_MASK;
 235#ifdef CONFIG_64BIT
 236	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 237	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 238		mask = 3;
 239#endif
 240	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 241		return -EIO;
 242
 243	tmp = __peek_user(child, addr);
 244	return put_user(tmp, (addr_t __user *) data);
 245}
 246
 247static inline void __poke_user_per(struct task_struct *child,
 248				   addr_t addr, addr_t data)
 249{
 250	struct per_struct_kernel *dummy = NULL;
 251
 252	/*
 253	 * There are only three fields in the per_info struct that the
 254	 * debugger user can write to.
 255	 * 1) cr9: the debugger wants to set a new PER event mask
 256	 * 2) starting_addr: the debugger wants to set a new starting
 257	 *    address to use with the PER event mask.
 258	 * 3) ending_addr: the debugger wants to set a new ending
 259	 *    address to use with the PER event mask.
 260	 * The user specified PER event mask and the start and end
 261	 * addresses are used only if single stepping is not in effect.
 262	 * Writes to any other field in per_info are ignored.
 263	 */
 264	if (addr == (addr_t) &dummy->cr9)
 265		/* PER event mask of the user specified per set. */
 266		child->thread.per_user.control =
 267			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 268	else if (addr == (addr_t) &dummy->starting_addr)
 269		/* Starting address of the user specified per set. */
 270		child->thread.per_user.start = data;
 271	else if (addr == (addr_t) &dummy->ending_addr)
 272		/* Ending address of the user specified per set. */
 273		child->thread.per_user.end = data;
 274}
 275
 276/*
 277 * Write a word to the user area of a process at location addr. This
 278 * operation does have an additional problem compared to peek_user.
 279 * Stores to the program status word and on the floating point
 280 * control register needs to get checked for validity.
 281 */
 282static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 283{
 284	struct user *dummy = NULL;
 285	addr_t offset;
 286
 287	if (addr < (addr_t) &dummy->regs.acrs) {
 288		/*
 289		 * psw and gprs are stored on the stack
 290		 */
 291		if (addr == (addr_t) &dummy->regs.psw.mask &&
 292#ifdef CONFIG_COMPAT
 293		    data != PSW_MASK_MERGE(psw_user32_bits, data) &&
 294#endif
 295		    data != PSW_MASK_MERGE(psw_user_bits, data))
 296			/* Invalid psw mask. */
 297			return -EINVAL;
 298#ifndef CONFIG_64BIT
 299		if (addr == (addr_t) &dummy->regs.psw.addr)
 300			/* I'd like to reject addresses without the
 301			   high order bit but older gdb's rely on it */
 302			data |= PSW_ADDR_AMODE;
 303#endif
 
 304		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 305
 306	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 307		/*
 308		 * access registers are stored in the thread structure
 309		 */
 310		offset = addr - (addr_t) &dummy->regs.acrs;
 311#ifdef CONFIG_64BIT
 312		/*
 313		 * Very special case: old & broken 64 bit gdb writing
 314		 * to acrs[15] with a 64 bit value. Ignore the lower
 315		 * half of the value and write the upper 32 bit to
 316		 * acrs[15]. Sick...
 317		 */
 318		if (addr == (addr_t) &dummy->regs.acrs[15])
 319			child->thread.acrs[15] = (unsigned int) (data >> 32);
 320		else
 321#endif
 322		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 323
 324	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 325		/*
 326		 * orig_gpr2 is stored on the kernel stack
 327		 */
 328		task_pt_regs(child)->orig_gpr2 = data;
 329
 330	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 331		/*
 332		 * prevent writes of padding hole between
 333		 * orig_gpr2 and fp_regs on s390.
 334		 */
 335		return 0;
 336
 
 
 
 
 
 
 
 
 
 337	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 338		/*
 339		 * floating point regs. are stored in the thread structure
 
 340		 */
 341		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
 342		    (data & ~((unsigned long) FPC_VALID_MASK
 343			      << (BITS_PER_LONG - 32))) != 0)
 344			return -EINVAL;
 345		offset = addr - (addr_t) &dummy->regs.fp_regs;
 346		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 
 347
 348	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 349		/*
 350		 * Handle access to the per_info structure.
 351		 */
 352		addr -= (addr_t) &dummy->regs.per_info;
 353		__poke_user_per(child, addr, data);
 354
 355	}
 356
 357	return 0;
 358}
 359
 360static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 361{
 362	addr_t mask;
 363
 364	/*
 365	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 366	 * an alignment of 4. Programmers from hell indeed...
 367	 */
 368	mask = __ADDR_MASK;
 369#ifdef CONFIG_64BIT
 370	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 371	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 372		mask = 3;
 373#endif
 374	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 375		return -EIO;
 376
 377	return __poke_user(child, addr, data);
 378}
 379
 380long arch_ptrace(struct task_struct *child, long request,
 381		 unsigned long addr, unsigned long data)
 382{
 383	ptrace_area parea; 
 384	int copied, ret;
 385
 386	switch (request) {
 387	case PTRACE_PEEKUSR:
 388		/* read the word at location addr in the USER area. */
 389		return peek_user(child, addr, data);
 390
 391	case PTRACE_POKEUSR:
 392		/* write the word at location addr in the USER area */
 393		return poke_user(child, addr, data);
 394
 395	case PTRACE_PEEKUSR_AREA:
 396	case PTRACE_POKEUSR_AREA:
 397		if (copy_from_user(&parea, (void __force __user *) addr,
 398							sizeof(parea)))
 399			return -EFAULT;
 400		addr = parea.kernel_addr;
 401		data = parea.process_addr;
 402		copied = 0;
 403		while (copied < parea.len) {
 404			if (request == PTRACE_PEEKUSR_AREA)
 405				ret = peek_user(child, addr, data);
 406			else {
 407				addr_t utmp;
 408				if (get_user(utmp,
 409					     (addr_t __force __user *) data))
 410					return -EFAULT;
 411				ret = poke_user(child, addr, utmp);
 412			}
 413			if (ret)
 414				return ret;
 415			addr += sizeof(unsigned long);
 416			data += sizeof(unsigned long);
 417			copied += sizeof(unsigned long);
 418		}
 419		return 0;
 420	case PTRACE_GET_LAST_BREAK:
 421		put_user(task_thread_info(child)->last_break,
 422			 (unsigned long __user *) data);
 423		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	default:
 425		/* Removing high order bit from addr (only for 31 bit). */
 426		addr &= PSW_ADDR_INSN;
 427		return ptrace_request(child, request, addr, data);
 428	}
 429}
 430
 431#ifdef CONFIG_COMPAT
 432/*
 433 * Now the fun part starts... a 31 bit program running in the
 434 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 435 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 436 * to handle, the difference to the 64 bit versions of the requests
 437 * is that the access is done in multiples of 4 byte instead of
 438 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 439 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 440 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 441 * is a 31 bit program too, the content of struct user can be
 442 * emulated. A 31 bit program peeking into the struct user of
 443 * a 64 bit program is a no-no.
 444 */
 445
 446/*
 447 * Same as peek_user_per but for a 31 bit program.
 448 */
 449static inline __u32 __peek_user_per_compat(struct task_struct *child,
 450					   addr_t addr)
 451{
 452	struct compat_per_struct_kernel *dummy32 = NULL;
 453
 454	if (addr == (addr_t) &dummy32->cr9)
 455		/* Control bits of the active per set. */
 456		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 457			PER_EVENT_IFETCH : child->thread.per_user.control;
 458	else if (addr == (addr_t) &dummy32->cr10)
 459		/* Start address of the active per set. */
 460		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 461			0 : child->thread.per_user.start;
 462	else if (addr == (addr_t) &dummy32->cr11)
 463		/* End address of the active per set. */
 464		return test_thread_flag(TIF_SINGLE_STEP) ?
 465			PSW32_ADDR_INSN : child->thread.per_user.end;
 466	else if (addr == (addr_t) &dummy32->bits)
 467		/* Single-step bit. */
 468		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 469			0x80000000 : 0;
 470	else if (addr == (addr_t) &dummy32->starting_addr)
 471		/* Start address of the user specified per set. */
 472		return (__u32) child->thread.per_user.start;
 473	else if (addr == (addr_t) &dummy32->ending_addr)
 474		/* End address of the user specified per set. */
 475		return (__u32) child->thread.per_user.end;
 476	else if (addr == (addr_t) &dummy32->perc_atmid)
 477		/* PER code, ATMID and AI of the last PER trap */
 478		return (__u32) child->thread.per_event.cause << 16;
 479	else if (addr == (addr_t) &dummy32->address)
 480		/* Address of the last PER trap */
 481		return (__u32) child->thread.per_event.address;
 482	else if (addr == (addr_t) &dummy32->access_id)
 483		/* Access id of the last PER trap */
 484		return (__u32) child->thread.per_event.paid << 24;
 485	return 0;
 486}
 487
 488/*
 489 * Same as peek_user but for a 31 bit program.
 490 */
 491static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 492{
 493	struct compat_user *dummy32 = NULL;
 494	addr_t offset;
 495	__u32 tmp;
 496
 497	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 498		/*
 499		 * psw and gprs are stored on the stack
 500		 */
 501		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 502			/* Fake a 31 bit psw mask. */
 503			tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
 504			tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
 
 505		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 506			/* Fake a 31 bit psw address. */
 507			tmp = (__u32) task_pt_regs(child)->psw.addr |
 508				PSW32_ADDR_AMODE31;
 509		} else {
 510			/* gpr 0-15 */
 511			tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
 512					 addr*2 + 4);
 513		}
 514	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 515		/*
 516		 * access registers are stored in the thread structure
 517		 */
 518		offset = addr - (addr_t) &dummy32->regs.acrs;
 519		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 520
 521	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 522		/*
 523		 * orig_gpr2 is stored on the kernel stack
 524		 */
 525		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 526
 527	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 528		/*
 529		 * prevent reads of padding hole between
 530		 * orig_gpr2 and fp_regs on s390.
 531		 */
 532		tmp = 0;
 533
 
 
 
 
 
 
 534	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 535		/*
 536		 * floating point regs. are stored in the thread structure 
 
 537		 */
 538	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 539		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 
 
 
 
 
 540
 541	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 542		/*
 543		 * Handle access to the per_info structure.
 544		 */
 545		addr -= (addr_t) &dummy32->regs.per_info;
 546		tmp = __peek_user_per_compat(child, addr);
 547
 548	} else
 549		tmp = 0;
 550
 551	return tmp;
 552}
 553
 554static int peek_user_compat(struct task_struct *child,
 555			    addr_t addr, addr_t data)
 556{
 557	__u32 tmp;
 558
 559	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 560		return -EIO;
 561
 562	tmp = __peek_user_compat(child, addr);
 563	return put_user(tmp, (__u32 __user *) data);
 564}
 565
 566/*
 567 * Same as poke_user_per but for a 31 bit program.
 568 */
 569static inline void __poke_user_per_compat(struct task_struct *child,
 570					  addr_t addr, __u32 data)
 571{
 572	struct compat_per_struct_kernel *dummy32 = NULL;
 573
 574	if (addr == (addr_t) &dummy32->cr9)
 575		/* PER event mask of the user specified per set. */
 576		child->thread.per_user.control =
 577			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 578	else if (addr == (addr_t) &dummy32->starting_addr)
 579		/* Starting address of the user specified per set. */
 580		child->thread.per_user.start = data;
 581	else if (addr == (addr_t) &dummy32->ending_addr)
 582		/* Ending address of the user specified per set. */
 583		child->thread.per_user.end = data;
 584}
 585
 586/*
 587 * Same as poke_user but for a 31 bit program.
 588 */
 589static int __poke_user_compat(struct task_struct *child,
 590			      addr_t addr, addr_t data)
 591{
 592	struct compat_user *dummy32 = NULL;
 593	__u32 tmp = (__u32) data;
 594	addr_t offset;
 595
 596	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 597		/*
 598		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 599		 */
 600		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 
 
 
 601			/* Build a 64 bit psw mask from 31 bit mask. */
 602			if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
 603				/* Invalid psw mask. */
 604				return -EINVAL;
 605			task_pt_regs(child)->psw.mask =
 606				PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
 
 
 
 
 607		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 608			/* Build a 64 bit psw address from 31 bit address. */
 609			task_pt_regs(child)->psw.addr =
 610				(__u64) tmp & PSW32_ADDR_INSN;
 
 
 611		} else {
 612			/* gpr 0-15 */
 613			*(__u32*)((addr_t) &task_pt_regs(child)->psw
 614				  + addr*2 + 4) = tmp;
 615		}
 616	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 617		/*
 618		 * access registers are stored in the thread structure
 619		 */
 620		offset = addr - (addr_t) &dummy32->regs.acrs;
 621		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 622
 623	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 624		/*
 625		 * orig_gpr2 is stored on the kernel stack
 626		 */
 627		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 628
 629	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 630		/*
 631		 * prevent writess of padding hole between
 632		 * orig_gpr2 and fp_regs on s390.
 633		 */
 634		return 0;
 635
 
 
 
 
 
 
 
 
 636	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 637		/*
 638		 * floating point regs. are stored in the thread structure 
 
 639		 */
 640		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 641		    (tmp & ~FPC_VALID_MASK) != 0)
 642			/* Invalid floating point control. */
 643			return -EINVAL;
 644	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 645		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 
 646
 647	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 648		/*
 649		 * Handle access to the per_info structure.
 650		 */
 651		addr -= (addr_t) &dummy32->regs.per_info;
 652		__poke_user_per_compat(child, addr, data);
 653	}
 654
 655	return 0;
 656}
 657
 658static int poke_user_compat(struct task_struct *child,
 659			    addr_t addr, addr_t data)
 660{
 661	if (!is_compat_task() || (addr & 3) ||
 662	    addr > sizeof(struct compat_user) - 3)
 663		return -EIO;
 664
 665	return __poke_user_compat(child, addr, data);
 666}
 667
 668long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 669			compat_ulong_t caddr, compat_ulong_t cdata)
 670{
 671	unsigned long addr = caddr;
 672	unsigned long data = cdata;
 673	compat_ptrace_area parea;
 674	int copied, ret;
 675
 676	switch (request) {
 677	case PTRACE_PEEKUSR:
 678		/* read the word at location addr in the USER area. */
 679		return peek_user_compat(child, addr, data);
 680
 681	case PTRACE_POKEUSR:
 682		/* write the word at location addr in the USER area */
 683		return poke_user_compat(child, addr, data);
 684
 685	case PTRACE_PEEKUSR_AREA:
 686	case PTRACE_POKEUSR_AREA:
 687		if (copy_from_user(&parea, (void __force __user *) addr,
 688							sizeof(parea)))
 689			return -EFAULT;
 690		addr = parea.kernel_addr;
 691		data = parea.process_addr;
 692		copied = 0;
 693		while (copied < parea.len) {
 694			if (request == PTRACE_PEEKUSR_AREA)
 695				ret = peek_user_compat(child, addr, data);
 696			else {
 697				__u32 utmp;
 698				if (get_user(utmp,
 699					     (__u32 __force __user *) data))
 700					return -EFAULT;
 701				ret = poke_user_compat(child, addr, utmp);
 702			}
 703			if (ret)
 704				return ret;
 705			addr += sizeof(unsigned int);
 706			data += sizeof(unsigned int);
 707			copied += sizeof(unsigned int);
 708		}
 709		return 0;
 710	case PTRACE_GET_LAST_BREAK:
 711		put_user(task_thread_info(child)->last_break,
 712			 (unsigned int __user *) data);
 713		return 0;
 714	}
 715	return compat_ptrace_request(child, request, addr, data);
 716}
 717#endif
 718
 719asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 720{
 721	long ret = 0;
 722
 723	/* Do the secure computing check first. */
 724	secure_computing(regs->gprs[2]);
 725
 726	/*
 727	 * The sysc_tracesys code in entry.S stored the system
 728	 * call number to gprs[2].
 729	 */
 730	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 731	    (tracehook_report_syscall_entry(regs) ||
 732	     regs->gprs[2] >= NR_syscalls)) {
 733		/*
 734		 * Tracing decided this syscall should not happen or the
 735		 * debugger stored an invalid system call number. Skip
 736		 * the system call and the system call restart handling.
 737		 */
 738		regs->svcnr = 0;
 739		ret = -1;
 
 
 
 
 
 
 740	}
 741
 742	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 743		trace_sys_enter(regs, regs->gprs[2]);
 744
 745	if (unlikely(current->audit_context))
 746		audit_syscall_entry(is_compat_task() ?
 747					AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 748				    regs->gprs[2], regs->orig_gpr2,
 749				    regs->gprs[3], regs->gprs[4],
 750				    regs->gprs[5]);
 751	return ret ?: regs->gprs[2];
 
 752}
 753
 754asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 755{
 756	if (unlikely(current->audit_context))
 757		audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
 758				   regs->gprs[2]);
 759
 760	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 761		trace_sys_exit(regs, regs->gprs[2]);
 762
 763	if (test_thread_flag(TIF_SYSCALL_TRACE))
 764		tracehook_report_syscall_exit(regs, 0);
 765}
 766
 767/*
 768 * user_regset definitions.
 769 */
 770
 771static int s390_regs_get(struct task_struct *target,
 772			 const struct user_regset *regset,
 773			 unsigned int pos, unsigned int count,
 774			 void *kbuf, void __user *ubuf)
 775{
 776	if (target == current)
 777		save_access_regs(target->thread.acrs);
 778
 779	if (kbuf) {
 780		unsigned long *k = kbuf;
 781		while (count > 0) {
 782			*k++ = __peek_user(target, pos);
 783			count -= sizeof(*k);
 784			pos += sizeof(*k);
 785		}
 786	} else {
 787		unsigned long __user *u = ubuf;
 788		while (count > 0) {
 789			if (__put_user(__peek_user(target, pos), u++))
 790				return -EFAULT;
 791			count -= sizeof(*u);
 792			pos += sizeof(*u);
 793		}
 794	}
 795	return 0;
 796}
 797
 798static int s390_regs_set(struct task_struct *target,
 799			 const struct user_regset *regset,
 800			 unsigned int pos, unsigned int count,
 801			 const void *kbuf, const void __user *ubuf)
 802{
 803	int rc = 0;
 804
 805	if (target == current)
 806		save_access_regs(target->thread.acrs);
 807
 808	if (kbuf) {
 809		const unsigned long *k = kbuf;
 810		while (count > 0 && !rc) {
 811			rc = __poke_user(target, pos, *k++);
 812			count -= sizeof(*k);
 813			pos += sizeof(*k);
 814		}
 815	} else {
 816		const unsigned long  __user *u = ubuf;
 817		while (count > 0 && !rc) {
 818			unsigned long word;
 819			rc = __get_user(word, u++);
 820			if (rc)
 821				break;
 822			rc = __poke_user(target, pos, word);
 823			count -= sizeof(*u);
 824			pos += sizeof(*u);
 825		}
 826	}
 827
 828	if (rc == 0 && target == current)
 829		restore_access_regs(target->thread.acrs);
 830
 831	return rc;
 832}
 833
 834static int s390_fpregs_get(struct task_struct *target,
 835			   const struct user_regset *regset, unsigned int pos,
 836			   unsigned int count, void *kbuf, void __user *ubuf)
 837{
 
 
 838	if (target == current)
 839		save_fp_regs(&target->thread.fp_regs);
 
 
 
 840
 841	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 842				   &target->thread.fp_regs, 0, -1);
 843}
 844
 845static int s390_fpregs_set(struct task_struct *target,
 846			   const struct user_regset *regset, unsigned int pos,
 847			   unsigned int count, const void *kbuf,
 848			   const void __user *ubuf)
 849{
 850	int rc = 0;
 
 851
 852	if (target == current)
 853		save_fp_regs(&target->thread.fp_regs);
 
 
 
 
 
 854
 855	/* If setting FPC, must validate it first. */
 856	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 857		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
 858		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
 859					0, offsetof(s390_fp_regs, fprs));
 860		if (rc)
 861			return rc;
 862		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
 863			return -EINVAL;
 864		target->thread.fp_regs.fpc = fpc[0];
 865	}
 866
 867	if (rc == 0 && count > 0)
 868		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 869					target->thread.fp_regs.fprs,
 870					offsetof(s390_fp_regs, fprs), -1);
 871
 872	if (rc == 0 && target == current)
 873		restore_fp_regs(&target->thread.fp_regs);
 
 
 
 874
 875	return rc;
 876}
 877
 878#ifdef CONFIG_64BIT
 879
 880static int s390_last_break_get(struct task_struct *target,
 881			       const struct user_regset *regset,
 882			       unsigned int pos, unsigned int count,
 883			       void *kbuf, void __user *ubuf)
 884{
 885	if (count > 0) {
 886		if (kbuf) {
 887			unsigned long *k = kbuf;
 888			*k = task_thread_info(target)->last_break;
 889		} else {
 890			unsigned long  __user *u = ubuf;
 891			if (__put_user(task_thread_info(target)->last_break, u))
 892				return -EFAULT;
 893		}
 894	}
 895	return 0;
 896}
 897
 898#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900static const struct user_regset s390_regsets[] = {
 901	[REGSET_GENERAL] = {
 902		.core_note_type = NT_PRSTATUS,
 903		.n = sizeof(s390_regs) / sizeof(long),
 904		.size = sizeof(long),
 905		.align = sizeof(long),
 906		.get = s390_regs_get,
 907		.set = s390_regs_set,
 908	},
 909	[REGSET_FP] = {
 910		.core_note_type = NT_PRFPREG,
 911		.n = sizeof(s390_fp_regs) / sizeof(long),
 912		.size = sizeof(long),
 913		.align = sizeof(long),
 914		.get = s390_fpregs_get,
 915		.set = s390_fpregs_set,
 916	},
 917#ifdef CONFIG_64BIT
 918	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 919		.core_note_type = NT_S390_LAST_BREAK,
 920		.n = 1,
 921		.size = sizeof(long),
 922		.align = sizeof(long),
 923		.get = s390_last_break_get,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924	},
 925#endif
 926};
 927
 928static const struct user_regset_view user_s390_view = {
 929	.name = UTS_MACHINE,
 930	.e_machine = EM_S390,
 931	.regsets = s390_regsets,
 932	.n = ARRAY_SIZE(s390_regsets)
 933};
 934
 935#ifdef CONFIG_COMPAT
 936static int s390_compat_regs_get(struct task_struct *target,
 937				const struct user_regset *regset,
 938				unsigned int pos, unsigned int count,
 939				void *kbuf, void __user *ubuf)
 940{
 941	if (target == current)
 942		save_access_regs(target->thread.acrs);
 943
 944	if (kbuf) {
 945		compat_ulong_t *k = kbuf;
 946		while (count > 0) {
 947			*k++ = __peek_user_compat(target, pos);
 948			count -= sizeof(*k);
 949			pos += sizeof(*k);
 950		}
 951	} else {
 952		compat_ulong_t __user *u = ubuf;
 953		while (count > 0) {
 954			if (__put_user(__peek_user_compat(target, pos), u++))
 955				return -EFAULT;
 956			count -= sizeof(*u);
 957			pos += sizeof(*u);
 958		}
 959	}
 960	return 0;
 961}
 962
 963static int s390_compat_regs_set(struct task_struct *target,
 964				const struct user_regset *regset,
 965				unsigned int pos, unsigned int count,
 966				const void *kbuf, const void __user *ubuf)
 967{
 968	int rc = 0;
 969
 970	if (target == current)
 971		save_access_regs(target->thread.acrs);
 972
 973	if (kbuf) {
 974		const compat_ulong_t *k = kbuf;
 975		while (count > 0 && !rc) {
 976			rc = __poke_user_compat(target, pos, *k++);
 977			count -= sizeof(*k);
 978			pos += sizeof(*k);
 979		}
 980	} else {
 981		const compat_ulong_t  __user *u = ubuf;
 982		while (count > 0 && !rc) {
 983			compat_ulong_t word;
 984			rc = __get_user(word, u++);
 985			if (rc)
 986				break;
 987			rc = __poke_user_compat(target, pos, word);
 988			count -= sizeof(*u);
 989			pos += sizeof(*u);
 990		}
 991	}
 992
 993	if (rc == 0 && target == current)
 994		restore_access_regs(target->thread.acrs);
 995
 996	return rc;
 997}
 998
 999static int s390_compat_regs_high_get(struct task_struct *target,
1000				     const struct user_regset *regset,
1001				     unsigned int pos, unsigned int count,
1002				     void *kbuf, void __user *ubuf)
1003{
1004	compat_ulong_t *gprs_high;
1005
1006	gprs_high = (compat_ulong_t *)
1007		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008	if (kbuf) {
1009		compat_ulong_t *k = kbuf;
1010		while (count > 0) {
1011			*k++ = *gprs_high;
1012			gprs_high += 2;
1013			count -= sizeof(*k);
1014		}
1015	} else {
1016		compat_ulong_t __user *u = ubuf;
1017		while (count > 0) {
1018			if (__put_user(*gprs_high, u++))
1019				return -EFAULT;
1020			gprs_high += 2;
1021			count -= sizeof(*u);
1022		}
1023	}
1024	return 0;
1025}
1026
1027static int s390_compat_regs_high_set(struct task_struct *target,
1028				     const struct user_regset *regset,
1029				     unsigned int pos, unsigned int count,
1030				     const void *kbuf, const void __user *ubuf)
1031{
1032	compat_ulong_t *gprs_high;
1033	int rc = 0;
1034
1035	gprs_high = (compat_ulong_t *)
1036		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037	if (kbuf) {
1038		const compat_ulong_t *k = kbuf;
1039		while (count > 0) {
1040			*gprs_high = *k++;
1041			*gprs_high += 2;
1042			count -= sizeof(*k);
1043		}
1044	} else {
1045		const compat_ulong_t  __user *u = ubuf;
1046		while (count > 0 && !rc) {
1047			unsigned long word;
1048			rc = __get_user(word, u++);
1049			if (rc)
1050				break;
1051			*gprs_high = word;
1052			*gprs_high += 2;
1053			count -= sizeof(*u);
1054		}
1055	}
1056
1057	return rc;
1058}
1059
1060static int s390_compat_last_break_get(struct task_struct *target,
1061				      const struct user_regset *regset,
1062				      unsigned int pos, unsigned int count,
1063				      void *kbuf, void __user *ubuf)
1064{
1065	compat_ulong_t last_break;
1066
1067	if (count > 0) {
1068		last_break = task_thread_info(target)->last_break;
1069		if (kbuf) {
1070			unsigned long *k = kbuf;
1071			*k = last_break;
1072		} else {
1073			unsigned long  __user *u = ubuf;
1074			if (__put_user(last_break, u))
1075				return -EFAULT;
1076		}
1077	}
1078	return 0;
1079}
1080
 
 
 
 
 
 
 
 
1081static const struct user_regset s390_compat_regsets[] = {
1082	[REGSET_GENERAL] = {
1083		.core_note_type = NT_PRSTATUS,
1084		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085		.size = sizeof(compat_long_t),
1086		.align = sizeof(compat_long_t),
1087		.get = s390_compat_regs_get,
1088		.set = s390_compat_regs_set,
1089	},
1090	[REGSET_FP] = {
1091		.core_note_type = NT_PRFPREG,
1092		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093		.size = sizeof(compat_long_t),
1094		.align = sizeof(compat_long_t),
1095		.get = s390_fpregs_get,
1096		.set = s390_fpregs_set,
1097	},
1098	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 
1099		.core_note_type = NT_S390_LAST_BREAK,
1100		.n = 1,
1101		.size = sizeof(long),
1102		.align = sizeof(long),
1103		.get = s390_compat_last_break_get,
 
 
 
 
 
 
 
 
 
1104	},
1105	[REGSET_GENERAL_EXTENDED] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106		.core_note_type = NT_S390_HIGH_GPRS,
1107		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108		.size = sizeof(compat_long_t),
1109		.align = sizeof(compat_long_t),
1110		.get = s390_compat_regs_high_get,
1111		.set = s390_compat_regs_high_set,
1112	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113};
1114
1115static const struct user_regset_view user_s390_compat_view = {
1116	.name = "s390",
1117	.e_machine = EM_S390,
1118	.regsets = s390_compat_regsets,
1119	.n = ARRAY_SIZE(s390_compat_regsets)
1120};
1121#endif
1122
1123const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124{
1125#ifdef CONFIG_COMPAT
1126	if (test_tsk_thread_flag(task, TIF_31BIT))
1127		return &user_s390_compat_view;
1128#endif
1129	return &user_s390_view;
1130}
1131
1132static const char *gpr_names[NUM_GPRS] = {
1133	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1134	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135};
1136
1137unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138{
1139	if (offset >= NUM_GPRS)
1140		return 0;
1141	return regs->gprs[offset];
1142}
1143
1144int regs_query_register_offset(const char *name)
1145{
1146	unsigned long offset;
1147
1148	if (!name || *name != 'r')
1149		return -EINVAL;
1150	if (strict_strtoul(name + 1, 10, &offset))
1151		return -EINVAL;
1152	if (offset >= NUM_GPRS)
1153		return -EINVAL;
1154	return offset;
1155}
1156
1157const char *regs_query_register_name(unsigned int offset)
1158{
1159	if (offset >= NUM_GPRS)
1160		return NULL;
1161	return gpr_names[offset];
1162}
1163
1164static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165{
1166	unsigned long ksp = kernel_stack_pointer(regs);
1167
1168	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169}
1170
1171/**
1172 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1173 * @regs:pt_regs which contains kernel stack pointer.
1174 * @n:stack entry number.
1175 *
1176 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178 * this returns 0.
1179 */
1180unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181{
1182	unsigned long addr;
1183
1184	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185	if (!regs_within_kernel_stack(regs, addr))
1186		return 0;
1187	return *(unsigned long *)addr;
1188}