Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/types.h>
  3#include <linux/i8253.h>
  4#include <linux/interrupt.h>
  5#include <linux/irq.h>
  6#include <linux/smp.h>
  7#include <linux/time.h>
  8#include <linux/clockchips.h>
  9
 10#include <asm/sni.h>
 11#include <asm/time.h>
 
 12
 13#define SNI_CLOCK_TICK_RATE	3686400
 14#define SNI_COUNTER2_DIV	64
 15#define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
 16
 17static int a20r_set_periodic(struct clock_event_device *evt)
 
 18{
 19	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
 20	wmb();
 21	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
 22	wmb();
 23	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
 24	wmb();
 25
 26	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
 27	wmb();
 28	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
 29	wmb();
 30	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
 31	wmb();
 32	return 0;
 
 
 
 
 
 
 
 
 
 
 33}
 34
 35static struct clock_event_device a20r_clockevent_device = {
 36	.name			= "a20r-timer",
 37	.features		= CLOCK_EVT_FEAT_PERIODIC,
 38
 39	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
 40
 41	.rating			= 300,
 42	.irq			= SNI_A20R_IRQ_TIMER,
 43	.set_state_periodic	= a20r_set_periodic,
 44};
 45
 46static irqreturn_t a20r_interrupt(int irq, void *dev_id)
 47{
 48	struct clock_event_device *cd = dev_id;
 49
 50	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
 51	wmb();
 52
 53	cd->event_handler(cd);
 54
 55	return IRQ_HANDLED;
 56}
 57
 58static struct irqaction a20r_irqaction = {
 59	.handler	= a20r_interrupt,
 60	.flags		= IRQF_PERCPU | IRQF_TIMER,
 61	.name		= "a20r-timer",
 62};
 63
 64/*
 65 * a20r platform uses 2 counters to divide the input frequency.
 66 * Counter 2 output is connected to Counter 0 & 1 input.
 67 */
 68static void __init sni_a20r_timer_setup(void)
 69{
 70	struct clock_event_device *cd = &a20r_clockevent_device;
 71	struct irqaction *action = &a20r_irqaction;
 72	unsigned int cpu = smp_processor_id();
 73
 74	cd->cpumask		= cpumask_of(cpu);
 75	clockevents_register_device(cd);
 76	action->dev_id = cd;
 77	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
 78}
 79
 80#define SNI_8254_TICK_RATE	  1193182UL
 81
 82#define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
 83
 84static __init unsigned long dosample(void)
 85{
 86	u32 ct0, ct1;
 87	volatile u8 msb;
 88
 89	/* Start the counter. */
 90	outb_p(0x34, 0x43);
 91	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
 92	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
 93
 94	/* Get initial counter invariant */
 95	ct0 = read_c0_count();
 96
 97	/* Latch and spin until top byte of counter0 is zero */
 98	do {
 99		outb(0x00, 0x43);
100		(void) inb(0x40);
101		msb = inb(0x40);
102		ct1 = read_c0_count();
103	} while (msb);
104
105	/* Stop the counter. */
106	outb(0x38, 0x43);
107	/*
108	 * Return the difference, this is how far the r4k counter increments
109	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
110	 * clock (= 1000000 / HZ / 2).
111	 */
112	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
113	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
114}
115
116/*
117 * Here we need to calibrate the cycle counter to at least be close.
118 */
119void __init plat_time_init(void)
120{
121	unsigned long r4k_ticks[3];
122	unsigned long r4k_tick;
123
124	/*
125	 * Figure out the r4k offset, the algorithm is very simple and works in
126	 * _all_ cases as long as the 8254 counter register itself works ok (as
127	 * an interrupt driving timer it does not because of bug, this is why
128	 * we are using the onchip r4k counter/compare register to serve this
129	 * purpose, but for r4k_offset calculation it will work ok for us).
130	 * There are other very complicated ways of performing this calculation
131	 * but this one works just fine so I am not going to futz around. ;-)
132	 */
133	printk(KERN_INFO "Calibrating system timer... ");
134	dosample();	/* Prime cache. */
135	dosample();	/* Prime cache. */
136	/* Zero is NOT an option. */
137	do {
138		r4k_ticks[0] = dosample();
139	} while (!r4k_ticks[0]);
140	do {
141		r4k_ticks[1] = dosample();
142	} while (!r4k_ticks[1]);
143
144	if (r4k_ticks[0] != r4k_ticks[1]) {
145		printk("warning: timer counts differ, retrying... ");
146		r4k_ticks[2] = dosample();
147		if (r4k_ticks[2] == r4k_ticks[0]
148		    || r4k_ticks[2] == r4k_ticks[1])
149			r4k_tick = r4k_ticks[2];
150		else {
151			printk("disagreement, using average... ");
152			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
153				   + r4k_ticks[2]) / 3;
154		}
155	} else
156		r4k_tick = r4k_ticks[0];
157
158	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
159		(int) (r4k_tick / (500000 / HZ)),
160		(int) (r4k_tick % (500000 / HZ)));
161
162	mips_hpt_frequency = r4k_tick * HZ;
163
164	switch (sni_brd_type) {
165	case SNI_BRD_10:
166	case SNI_BRD_10NEW:
167	case SNI_BRD_TOWER_OASIC:
168	case SNI_BRD_MINITOWER:
169		sni_a20r_timer_setup();
170		break;
171	}
172	setup_pit_timer();
173}
174
175void read_persistent_clock(struct timespec *ts)
176{
177	ts->tv_sec = -1;
178	ts->tv_nsec = 0;
179}
v3.1
 
  1#include <linux/types.h>
  2#include <linux/i8253.h>
  3#include <linux/interrupt.h>
  4#include <linux/irq.h>
  5#include <linux/smp.h>
  6#include <linux/time.h>
  7#include <linux/clockchips.h>
  8
  9#include <asm/sni.h>
 10#include <asm/time.h>
 11#include <asm-generic/rtc.h>
 12
 13#define SNI_CLOCK_TICK_RATE     3686400
 14#define SNI_COUNTER2_DIV        64
 15#define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
 16
 17static void a20r_set_mode(enum clock_event_mode mode,
 18                          struct clock_event_device *evt)
 19{
 20	switch (mode) {
 21	case CLOCK_EVT_MODE_PERIODIC:
 22		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
 23		wmb();
 24		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
 25		wmb();
 26		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
 27		wmb();
 28
 29		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
 30		wmb();
 31		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
 32		wmb();
 33		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
 34		wmb();
 35
 36                break;
 37        case CLOCK_EVT_MODE_ONESHOT:
 38        case CLOCK_EVT_MODE_UNUSED:
 39        case CLOCK_EVT_MODE_SHUTDOWN:
 40                break;
 41        case CLOCK_EVT_MODE_RESUME:
 42                break;
 43        }
 44}
 45
 46static struct clock_event_device a20r_clockevent_device = {
 47	.name		= "a20r-timer",
 48	.features	= CLOCK_EVT_FEAT_PERIODIC,
 49
 50	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
 51
 52	.rating		= 300,
 53	.irq		= SNI_A20R_IRQ_TIMER,
 54	.set_mode	= a20r_set_mode,
 55};
 56
 57static irqreturn_t a20r_interrupt(int irq, void *dev_id)
 58{
 59	struct clock_event_device *cd = dev_id;
 60
 61	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
 62	wmb();
 63
 64	cd->event_handler(cd);
 65
 66	return IRQ_HANDLED;
 67}
 68
 69static struct irqaction a20r_irqaction = {
 70	.handler	= a20r_interrupt,
 71	.flags		= IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
 72	.name		= "a20r-timer",
 73};
 74
 75/*
 76 * a20r platform uses 2 counters to divide the input frequency.
 77 * Counter 2 output is connected to Counter 0 & 1 input.
 78 */
 79static void __init sni_a20r_timer_setup(void)
 80{
 81	struct clock_event_device *cd = &a20r_clockevent_device;
 82	struct irqaction *action = &a20r_irqaction;
 83	unsigned int cpu = smp_processor_id();
 84
 85	cd->cpumask             = cpumask_of(cpu);
 86	clockevents_register_device(cd);
 87	action->dev_id = cd;
 88	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
 89}
 90
 91#define SNI_8254_TICK_RATE        1193182UL
 92
 93#define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
 94
 95static __init unsigned long dosample(void)
 96{
 97	u32 ct0, ct1;
 98	volatile u8 msb;
 99
100	/* Start the counter. */
101	outb_p(0x34, 0x43);
102	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
103	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
104
105	/* Get initial counter invariant */
106	ct0 = read_c0_count();
107
108	/* Latch and spin until top byte of counter0 is zero */
109	do {
110		outb(0x00, 0x43);
111		(void) inb(0x40);
112		msb = inb(0x40);
113		ct1 = read_c0_count();
114	} while (msb);
115
116	/* Stop the counter. */
117	outb(0x38, 0x43);
118	/*
119	 * Return the difference, this is how far the r4k counter increments
120	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
121	 * clock (= 1000000 / HZ / 2).
122	 */
123	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
124	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
125}
126
127/*
128 * Here we need to calibrate the cycle counter to at least be close.
129 */
130void __init plat_time_init(void)
131{
132	unsigned long r4k_ticks[3];
133	unsigned long r4k_tick;
134
135	/*
136	 * Figure out the r4k offset, the algorithm is very simple and works in
137	 * _all_ cases as long as the 8254 counter register itself works ok (as
138	 * an interrupt driving timer it does not because of bug, this is why
139	 * we are using the onchip r4k counter/compare register to serve this
140	 * purpose, but for r4k_offset calculation it will work ok for us).
141	 * There are other very complicated ways of performing this calculation
142	 * but this one works just fine so I am not going to futz around. ;-)
143	 */
144	printk(KERN_INFO "Calibrating system timer... ");
145	dosample();	/* Prime cache. */
146	dosample();	/* Prime cache. */
147	/* Zero is NOT an option. */
148	do {
149		r4k_ticks[0] = dosample();
150	} while (!r4k_ticks[0]);
151	do {
152		r4k_ticks[1] = dosample();
153	} while (!r4k_ticks[1]);
154
155	if (r4k_ticks[0] != r4k_ticks[1]) {
156		printk("warning: timer counts differ, retrying... ");
157		r4k_ticks[2] = dosample();
158		if (r4k_ticks[2] == r4k_ticks[0]
159		    || r4k_ticks[2] == r4k_ticks[1])
160			r4k_tick = r4k_ticks[2];
161		else {
162			printk("disagreement, using average... ");
163			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
164				   + r4k_ticks[2]) / 3;
165		}
166	} else
167		r4k_tick = r4k_ticks[0];
168
169	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
170		(int) (r4k_tick / (500000 / HZ)),
171		(int) (r4k_tick % (500000 / HZ)));
172
173	mips_hpt_frequency = r4k_tick * HZ;
174
175	switch (sni_brd_type) {
176	case SNI_BRD_10:
177	case SNI_BRD_10NEW:
178	case SNI_BRD_TOWER_OASIC:
179	case SNI_BRD_MINITOWER:
180		sni_a20r_timer_setup();
181		break;
182	}
183	setup_pit_timer();
184}
185
186void read_persistent_clock(struct timespec *ts)
187{
188	ts->tv_sec = -1;
189	ts->tv_nsec = 0;
190}