Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/export.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched/mm.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 36#include <linux/irqdomain.h>
 37#include <linux/of.h>
 38#include <linux/of_irq.h>
 39
 40#include <linux/atomic.h>
 41#include <asm/cpu.h>
 42#include <asm/processor.h>
 43#include <asm/idle.h>
 44#include <asm/r4k-timer.h>
 45#include <asm/mips-cps.h>
 46#include <asm/mmu_context.h>
 47#include <asm/time.h>
 48#include <asm/setup.h>
 49#include <asm/maar.h>
 50
 51int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
 
 
 
 
 
 
 52EXPORT_SYMBOL(__cpu_number_map);
 53
 54int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 55EXPORT_SYMBOL(__cpu_logical_map);
 56
 57/* Number of TCs (or siblings in Intel speak) per CPU core */
 58int smp_num_siblings = 1;
 59EXPORT_SYMBOL(smp_num_siblings);
 60
 61/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 62cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 63EXPORT_SYMBOL(cpu_sibling_map);
 64
 65/* representing the core map of multi-core chips of each logical CPU */
 66cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 67EXPORT_SYMBOL(cpu_core_map);
 68
 69static DECLARE_COMPLETION(cpu_starting);
 70static DECLARE_COMPLETION(cpu_running);
 71
 72/*
 73 * A logcal cpu mask containing only one VPE per core to
 74 * reduce the number of IPIs on large MT systems.
 75 */
 76cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 77EXPORT_SYMBOL(cpu_foreign_map);
 78
 79/* representing cpus for which sibling maps can be computed */
 80static cpumask_t cpu_sibling_setup_map;
 81
 82/* representing cpus for which core maps can be computed */
 83static cpumask_t cpu_core_setup_map;
 84
 85cpumask_t cpu_coherent_mask;
 86
 87#ifdef CONFIG_GENERIC_IRQ_IPI
 88static struct irq_desc *call_desc;
 89static struct irq_desc *sched_desc;
 90#endif
 91
 92static inline void set_cpu_sibling_map(int cpu)
 93{
 94	int i;
 95
 96	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 97
 98	if (smp_num_siblings > 1) {
 99		for_each_cpu(i, &cpu_sibling_setup_map) {
100			if (cpus_are_siblings(cpu, i)) {
101				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103			}
104		}
105	} else
106		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107}
108
109static inline void set_cpu_core_map(int cpu)
110{
111	int i;
112
113	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115	for_each_cpu(i, &cpu_core_setup_map) {
116		if (cpu_data[cpu].package == cpu_data[i].package) {
117			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119		}
120	}
121}
122
123/*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127void calculate_cpu_foreign_map(void)
128{
129	int i, k, core_present;
130	cpumask_t temp_foreign_map;
131
132	/* Re-calculate the mask */
133	cpumask_clear(&temp_foreign_map);
134	for_each_online_cpu(i) {
135		core_present = 0;
136		for_each_cpu(k, &temp_foreign_map)
137			if (cpus_are_siblings(i, k))
138				core_present = 1;
139		if (!core_present)
140			cpumask_set_cpu(i, &temp_foreign_map);
141	}
142
143	for_each_online_cpu(i)
144		cpumask_andnot(&cpu_foreign_map[i],
145			       &temp_foreign_map, &cpu_sibling_map[i]);
146}
147
148const struct plat_smp_ops *mp_ops;
149EXPORT_SYMBOL(mp_ops);
150
151void register_smp_ops(const struct plat_smp_ops *ops)
152{
153	if (mp_ops)
154		printk(KERN_WARNING "Overriding previously set SMP ops\n");
155
156	mp_ops = ops;
157}
158
159#ifdef CONFIG_GENERIC_IRQ_IPI
160void mips_smp_send_ipi_single(int cpu, unsigned int action)
161{
162	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
163}
164
165void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
166{
167	unsigned long flags;
168	unsigned int core;
169	int cpu;
170
171	local_irq_save(flags);
172
173	switch (action) {
174	case SMP_CALL_FUNCTION:
175		__ipi_send_mask(call_desc, mask);
176		break;
177
178	case SMP_RESCHEDULE_YOURSELF:
179		__ipi_send_mask(sched_desc, mask);
180		break;
181
182	default:
183		BUG();
184	}
185
186	if (mips_cpc_present()) {
187		for_each_cpu(cpu, mask) {
188			if (cpus_are_siblings(cpu, smp_processor_id()))
189				continue;
190
191			core = cpu_core(&cpu_data[cpu]);
192
193			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
194				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
195				mips_cpc_lock_other(core);
196				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197				mips_cpc_unlock_other();
198				mips_cm_unlock_other();
199			}
200		}
201	}
202
203	local_irq_restore(flags);
204}
205
206
207static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
208{
209	scheduler_ipi();
210
211	return IRQ_HANDLED;
212}
213
214static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
215{
216	generic_smp_call_function_interrupt();
217
218	return IRQ_HANDLED;
219}
220
221static struct irqaction irq_resched = {
222	.handler	= ipi_resched_interrupt,
223	.flags		= IRQF_PERCPU,
224	.name		= "IPI resched"
225};
226
227static struct irqaction irq_call = {
228	.handler	= ipi_call_interrupt,
229	.flags		= IRQF_PERCPU,
230	.name		= "IPI call"
231};
232
233static void smp_ipi_init_one(unsigned int virq,
234				    struct irqaction *action)
235{
236	int ret;
237
238	irq_set_handler(virq, handle_percpu_irq);
239	ret = setup_irq(virq, action);
240	BUG_ON(ret);
241}
242
243static unsigned int call_virq, sched_virq;
244
245int mips_smp_ipi_allocate(const struct cpumask *mask)
246{
247	int virq;
248	struct irq_domain *ipidomain;
249	struct device_node *node;
250
251	node = of_irq_find_parent(of_root);
252	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
253
254	/*
255	 * Some platforms have half DT setup. So if we found irq node but
256	 * didn't find an ipidomain, try to search for one that is not in the
257	 * DT.
258	 */
259	if (node && !ipidomain)
260		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
261
262	/*
263	 * There are systems which use IPI IRQ domains, but only have one
264	 * registered when some runtime condition is met. For example a Malta
265	 * kernel may include support for GIC & CPU interrupt controller IPI
266	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
267	 * neither will be supported or registered.
268	 *
269	 * We only have a problem if we're actually using multiple CPUs so fail
270	 * loudly if that is the case. Otherwise simply return, skipping IPI
271	 * setup, if we're running with only a single CPU.
272	 */
273	if (!ipidomain) {
274		BUG_ON(num_present_cpus() > 1);
275		return 0;
276	}
277
278	virq = irq_reserve_ipi(ipidomain, mask);
279	BUG_ON(!virq);
280	if (!call_virq)
281		call_virq = virq;
282
283	virq = irq_reserve_ipi(ipidomain, mask);
284	BUG_ON(!virq);
285	if (!sched_virq)
286		sched_virq = virq;
287
288	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
289		int cpu;
290
291		for_each_cpu(cpu, mask) {
292			smp_ipi_init_one(call_virq + cpu, &irq_call);
293			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
294		}
295	} else {
296		smp_ipi_init_one(call_virq, &irq_call);
297		smp_ipi_init_one(sched_virq, &irq_resched);
298	}
299
300	return 0;
301}
302
303int mips_smp_ipi_free(const struct cpumask *mask)
304{
305	struct irq_domain *ipidomain;
306	struct device_node *node;
307
308	node = of_irq_find_parent(of_root);
309	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
310
311	/*
312	 * Some platforms have half DT setup. So if we found irq node but
313	 * didn't find an ipidomain, try to search for one that is not in the
314	 * DT.
315	 */
316	if (node && !ipidomain)
317		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
318
319	BUG_ON(!ipidomain);
320
321	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
322		int cpu;
323
324		for_each_cpu(cpu, mask) {
325			remove_irq(call_virq + cpu, &irq_call);
326			remove_irq(sched_virq + cpu, &irq_resched);
327		}
328	}
329	irq_destroy_ipi(call_virq, mask);
330	irq_destroy_ipi(sched_virq, mask);
331	return 0;
332}
333
334
335static int __init mips_smp_ipi_init(void)
336{
337	if (num_possible_cpus() == 1)
338		return 0;
339
340	mips_smp_ipi_allocate(cpu_possible_mask);
341
342	call_desc = irq_to_desc(call_virq);
343	sched_desc = irq_to_desc(sched_virq);
344
345	return 0;
346}
347early_initcall(mips_smp_ipi_init);
348#endif
349
350/*
351 * First C code run on the secondary CPUs after being started up by
352 * the master.
353 */
354asmlinkage void start_secondary(void)
355{
356	unsigned int cpu;
357
 
 
 
 
358	cpu_probe();
359	per_cpu_trap_init(false);
 
360	mips_clockevent_init();
361	mp_ops->init_secondary();
362	cpu_report();
363	maar_init();
364
365	/*
366	 * XXX parity protection should be folded in here when it's converted
367	 * to an option instead of something based on .cputype
368	 */
369
370	calibrate_delay();
371	preempt_disable();
372	cpu = smp_processor_id();
373	cpu_data[cpu].udelay_val = loops_per_jiffy;
374
375	cpumask_set_cpu(cpu, &cpu_coherent_mask);
376	notify_cpu_starting(cpu);
377
378	/* Notify boot CPU that we're starting & ready to sync counters */
379	complete(&cpu_starting);
380
381	synchronise_count_slave(cpu);
382
383	/* The CPU is running and counters synchronised, now mark it online */
384	set_cpu_online(cpu, true);
385
386	set_cpu_sibling_map(cpu);
387	set_cpu_core_map(cpu);
388
389	calculate_cpu_foreign_map();
390
391	/*
392	 * Notify boot CPU that we're up & online and it can safely return
393	 * from __cpu_up
394	 */
395	complete(&cpu_running);
396
397	/*
398	 * irq will be enabled in ->smp_finish(), enabling it too early
399	 * is dangerous.
400	 */
401	WARN_ON_ONCE(!irqs_disabled());
402	mp_ops->smp_finish();
403
404	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 
 
 
 
 
 
 
 
405}
406
407static void stop_this_cpu(void *dummy)
408{
409	/*
410	 * Remove this CPU:
411	 */
412
413	set_cpu_online(smp_processor_id(), false);
414	calculate_cpu_foreign_map();
415	local_irq_disable();
416	while (1);
417}
418
419void smp_send_stop(void)
420{
421	smp_call_function(stop_this_cpu, NULL, 0);
422}
423
424void __init smp_cpus_done(unsigned int max_cpus)
425{
 
 
426}
427
428/* called from main before smp_init() */
429void __init smp_prepare_cpus(unsigned int max_cpus)
430{
431	init_new_context(current, &init_mm);
432	current_thread_info()->cpu = 0;
433	mp_ops->prepare_cpus(max_cpus);
434	set_cpu_sibling_map(0);
435	set_cpu_core_map(0);
436	calculate_cpu_foreign_map();
437#ifndef CONFIG_HOTPLUG_CPU
438	init_cpu_present(cpu_possible_mask);
439#endif
440	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
441}
442
443/* preload SMP state for boot cpu */
444void smp_prepare_boot_cpu(void)
445{
446	set_cpu_possible(0, true);
447	set_cpu_online(0, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448}
449
450int __cpu_up(unsigned int cpu, struct task_struct *tidle)
451{
452	int err;
453
454	err = mp_ops->boot_secondary(cpu, tidle);
455	if (err)
456		return err;
457
458	/* Wait for CPU to start and be ready to sync counters */
459	if (!wait_for_completion_timeout(&cpu_starting,
460					 msecs_to_jiffies(1000))) {
461		pr_crit("CPU%u: failed to start\n", cpu);
462		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463	}
464
465	synchronise_count_master(cpu);
 
 
 
 
 
 
 
 
466
467	/* Wait for CPU to finish startup & mark itself online before return */
468	wait_for_completion(&cpu_running);
469	return 0;
470}
471
472/* Not really SMP stuff ... */
473int setup_profiling_timer(unsigned int multiplier)
474{
475	return 0;
476}
477
478static void flush_tlb_all_ipi(void *info)
479{
480	local_flush_tlb_all();
481}
482
483void flush_tlb_all(void)
484{
485	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
486}
487
488static void flush_tlb_mm_ipi(void *mm)
489{
490	local_flush_tlb_mm((struct mm_struct *)mm);
491}
492
493/*
494 * Special Variant of smp_call_function for use by TLB functions:
495 *
496 *  o No return value
497 *  o collapses to normal function call on UP kernels
498 *  o collapses to normal function call on systems with a single shared
499 *    primary cache.
 
500 */
501static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
502{
 
503	smp_call_function(func, info, 1);
 
504}
505
506static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
507{
508	preempt_disable();
509
510	smp_on_other_tlbs(func, info);
511	func(info);
512
513	preempt_enable();
514}
515
516/*
517 * The following tlb flush calls are invoked when old translations are
518 * being torn down, or pte attributes are changing. For single threaded
519 * address spaces, a new context is obtained on the current cpu, and tlb
520 * context on other cpus are invalidated to force a new context allocation
521 * at switch_mm time, should the mm ever be used on other cpus. For
522 * multithreaded address spaces, intercpu interrupts have to be sent.
523 * Another case where intercpu interrupts are required is when the target
524 * mm might be active on another cpu (eg debuggers doing the flushes on
525 * behalf of debugees, kswapd stealing pages from another process etc).
526 * Kanoj 07/00.
527 */
528
529void flush_tlb_mm(struct mm_struct *mm)
530{
531	preempt_disable();
532
533	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
534		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
535	} else {
 
536		unsigned int cpu;
537
538		for_each_online_cpu(cpu) {
539			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 
540				cpu_context(cpu, mm) = 0;
541		}
542	}
543	local_flush_tlb_mm(mm);
544
545	preempt_enable();
546}
547
548struct flush_tlb_data {
549	struct vm_area_struct *vma;
550	unsigned long addr1;
551	unsigned long addr2;
552};
553
554static void flush_tlb_range_ipi(void *info)
555{
556	struct flush_tlb_data *fd = info;
557
558	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
559}
560
561void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
562{
563	struct mm_struct *mm = vma->vm_mm;
564
565	preempt_disable();
566	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
567		struct flush_tlb_data fd = {
568			.vma = vma,
569			.addr1 = start,
570			.addr2 = end,
571		};
572
573		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
574	} else {
 
575		unsigned int cpu;
576		int exec = vma->vm_flags & VM_EXEC;
577
578		for_each_online_cpu(cpu) {
579			/*
580			 * flush_cache_range() will only fully flush icache if
581			 * the VMA is executable, otherwise we must invalidate
582			 * ASID without it appearing to has_valid_asid() as if
583			 * mm has been completely unused by that CPU.
584			 */
585			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
586				cpu_context(cpu, mm) = !exec;
587		}
588	}
589	local_flush_tlb_range(vma, start, end);
590	preempt_enable();
591}
592
593static void flush_tlb_kernel_range_ipi(void *info)
594{
595	struct flush_tlb_data *fd = info;
596
597	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
598}
599
600void flush_tlb_kernel_range(unsigned long start, unsigned long end)
601{
602	struct flush_tlb_data fd = {
603		.addr1 = start,
604		.addr2 = end,
605	};
606
607	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
608}
609
610static void flush_tlb_page_ipi(void *info)
611{
612	struct flush_tlb_data *fd = info;
613
614	local_flush_tlb_page(fd->vma, fd->addr1);
615}
616
617void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
618{
619	preempt_disable();
620	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
621		struct flush_tlb_data fd = {
622			.vma = vma,
623			.addr1 = page,
624		};
625
626		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
627	} else {
 
628		unsigned int cpu;
629
630		for_each_online_cpu(cpu) {
631			/*
632			 * flush_cache_page() only does partial flushes, so
633			 * invalidate ASID without it appearing to
634			 * has_valid_asid() as if mm has been completely unused
635			 * by that CPU.
636			 */
637			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
638				cpu_context(cpu, vma->vm_mm) = 1;
639		}
640	}
641	local_flush_tlb_page(vma, page);
642	preempt_enable();
643}
644
645static void flush_tlb_one_ipi(void *info)
646{
647	unsigned long vaddr = (unsigned long) info;
648
649	local_flush_tlb_one(vaddr);
650}
651
652void flush_tlb_one(unsigned long vaddr)
653{
654	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
655}
656
657EXPORT_SYMBOL(flush_tlb_page);
658EXPORT_SYMBOL(flush_tlb_one);
659
660#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
661
662static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
663static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
664
665void tick_broadcast(const struct cpumask *mask)
666{
667	atomic_t *count;
668	call_single_data_t *csd;
669	int cpu;
670
671	for_each_cpu(cpu, mask) {
672		count = &per_cpu(tick_broadcast_count, cpu);
673		csd = &per_cpu(tick_broadcast_csd, cpu);
674
675		if (atomic_inc_return(count) == 1)
676			smp_call_function_single_async(cpu, csd);
677	}
678}
679
680static void tick_broadcast_callee(void *info)
681{
682	int cpu = smp_processor_id();
683	tick_receive_broadcast();
684	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
685}
686
687static int __init tick_broadcast_init(void)
688{
689	call_single_data_t *csd;
690	int cpu;
691
692	for (cpu = 0; cpu < NR_CPUS; cpu++) {
693		csd = &per_cpu(tick_broadcast_csd, cpu);
694		csd->func = tick_broadcast_callee;
695	}
696
697	return 0;
698}
699early_initcall(tick_broadcast_init);
700
701#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
v3.1
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 
 
 
 36
 37#include <linux/atomic.h>
 38#include <asm/cpu.h>
 39#include <asm/processor.h>
 
 40#include <asm/r4k-timer.h>
 41#include <asm/system.h>
 42#include <asm/mmu_context.h>
 43#include <asm/time.h>
 
 
 44
 45#ifdef CONFIG_MIPS_MT_SMTC
 46#include <asm/mipsmtregs.h>
 47#endif /* CONFIG_MIPS_MT_SMTC */
 48
 49volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
 50
 51int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 52EXPORT_SYMBOL(__cpu_number_map);
 53
 54int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 55EXPORT_SYMBOL(__cpu_logical_map);
 56
 57/* Number of TCs (or siblings in Intel speak) per CPU core */
 58int smp_num_siblings = 1;
 59EXPORT_SYMBOL(smp_num_siblings);
 60
 61/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 62cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 63EXPORT_SYMBOL(cpu_sibling_map);
 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65/* representing cpus for which sibling maps can be computed */
 66static cpumask_t cpu_sibling_setup_map;
 67
 
 
 
 
 
 
 
 
 
 
 68static inline void set_cpu_sibling_map(int cpu)
 69{
 70	int i;
 71
 72	cpu_set(cpu, cpu_sibling_setup_map);
 73
 74	if (smp_num_siblings > 1) {
 75		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 76			if (cpu_data[cpu].core == cpu_data[i].core) {
 77				cpu_set(i, cpu_sibling_map[cpu]);
 78				cpu_set(cpu, cpu_sibling_map[i]);
 79			}
 80		}
 81	} else
 82		cpu_set(cpu, cpu_sibling_map[cpu]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85struct plat_smp_ops *mp_ops;
 
 86
 87__cpuinit void register_smp_ops(struct plat_smp_ops *ops)
 88{
 89	if (mp_ops)
 90		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 91
 92	mp_ops = ops;
 93}
 94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95/*
 96 * First C code run on the secondary CPUs after being started up by
 97 * the master.
 98 */
 99asmlinkage __cpuinit void start_secondary(void)
100{
101	unsigned int cpu;
102
103#ifdef CONFIG_MIPS_MT_SMTC
104	/* Only do cpu_probe for first TC of CPU */
105	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
106#endif /* CONFIG_MIPS_MT_SMTC */
107	cpu_probe();
108	cpu_report();
109	per_cpu_trap_init();
110	mips_clockevent_init();
111	mp_ops->init_secondary();
 
 
112
113	/*
114	 * XXX parity protection should be folded in here when it's converted
115	 * to an option instead of something based on .cputype
116	 */
117
118	calibrate_delay();
119	preempt_disable();
120	cpu = smp_processor_id();
121	cpu_data[cpu].udelay_val = loops_per_jiffy;
122
 
123	notify_cpu_starting(cpu);
124
125	mp_ops->smp_finish();
 
 
 
 
 
 
 
126	set_cpu_sibling_map(cpu);
 
127
128	cpu_set(cpu, cpu_callin_map);
129
130	synchronise_count_slave();
 
 
 
 
131
132	cpu_idle();
133}
 
 
 
 
134
135/*
136 * Call into both interrupt handlers, as we share the IPI for them
137 */
138void __irq_entry smp_call_function_interrupt(void)
139{
140	irq_enter();
141	generic_smp_call_function_single_interrupt();
142	generic_smp_call_function_interrupt();
143	irq_exit();
144}
145
146static void stop_this_cpu(void *dummy)
147{
148	/*
149	 * Remove this CPU:
150	 */
151	cpu_clear(smp_processor_id(), cpu_online_map);
152	for (;;) {
153		if (cpu_wait)
154			(*cpu_wait)();		/* Wait if available. */
155	}
156}
157
158void smp_send_stop(void)
159{
160	smp_call_function(stop_this_cpu, NULL, 0);
161}
162
163void __init smp_cpus_done(unsigned int max_cpus)
164{
165	mp_ops->cpus_done();
166	synchronise_count_master();
167}
168
169/* called from main before smp_init() */
170void __init smp_prepare_cpus(unsigned int max_cpus)
171{
172	init_new_context(current, &init_mm);
173	current_thread_info()->cpu = 0;
174	mp_ops->prepare_cpus(max_cpus);
175	set_cpu_sibling_map(0);
 
 
176#ifndef CONFIG_HOTPLUG_CPU
177	init_cpu_present(&cpu_possible_map);
178#endif
 
179}
180
181/* preload SMP state for boot cpu */
182void __devinit smp_prepare_boot_cpu(void)
183{
184	set_cpu_possible(0, true);
185	set_cpu_online(0, true);
186	cpu_set(0, cpu_callin_map);
187}
188
189/*
190 * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
191 * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
192 * physical, not logical.
193 */
194static struct task_struct *cpu_idle_thread[NR_CPUS];
195
196struct create_idle {
197	struct work_struct work;
198	struct task_struct *idle;
199	struct completion done;
200	int cpu;
201};
202
203static void __cpuinit do_fork_idle(struct work_struct *work)
204{
205	struct create_idle *c_idle =
206		container_of(work, struct create_idle, work);
207
208	c_idle->idle = fork_idle(c_idle->cpu);
209	complete(&c_idle->done);
210}
211
212int __cpuinit __cpu_up(unsigned int cpu)
213{
214	struct task_struct *idle;
215
216	/*
217	 * Processor goes to start_secondary(), sets online flag
218	 * The following code is purely to make sure
219	 * Linux can schedule processes on this slave.
220	 */
221	if (!cpu_idle_thread[cpu]) {
222		/*
223		 * Schedule work item to avoid forking user task
224		 * Ported from arch/x86/kernel/smpboot.c
225		 */
226		struct create_idle c_idle = {
227			.cpu    = cpu,
228			.done   = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
229		};
230
231		INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
232		schedule_work(&c_idle.work);
233		wait_for_completion(&c_idle.done);
234		idle = cpu_idle_thread[cpu] = c_idle.idle;
235
236		if (IS_ERR(idle))
237			panic(KERN_ERR "Fork failed for CPU %d", cpu);
238	} else {
239		idle = cpu_idle_thread[cpu];
240		init_idle(idle, cpu);
241	}
242
243	mp_ops->boot_secondary(cpu, idle);
244
245	/*
246	 * Trust is futile.  We should really have timeouts ...
247	 */
248	while (!cpu_isset(cpu, cpu_callin_map))
249		udelay(100);
250
251	cpu_set(cpu, cpu_online_map);
252
 
 
253	return 0;
254}
255
256/* Not really SMP stuff ... */
257int setup_profiling_timer(unsigned int multiplier)
258{
259	return 0;
260}
261
262static void flush_tlb_all_ipi(void *info)
263{
264	local_flush_tlb_all();
265}
266
267void flush_tlb_all(void)
268{
269	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
270}
271
272static void flush_tlb_mm_ipi(void *mm)
273{
274	local_flush_tlb_mm((struct mm_struct *)mm);
275}
276
277/*
278 * Special Variant of smp_call_function for use by TLB functions:
279 *
280 *  o No return value
281 *  o collapses to normal function call on UP kernels
282 *  o collapses to normal function call on systems with a single shared
283 *    primary cache.
284 *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
285 */
286static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
287{
288#ifndef CONFIG_MIPS_MT_SMTC
289	smp_call_function(func, info, 1);
290#endif
291}
292
293static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
294{
295	preempt_disable();
296
297	smp_on_other_tlbs(func, info);
298	func(info);
299
300	preempt_enable();
301}
302
303/*
304 * The following tlb flush calls are invoked when old translations are
305 * being torn down, or pte attributes are changing. For single threaded
306 * address spaces, a new context is obtained on the current cpu, and tlb
307 * context on other cpus are invalidated to force a new context allocation
308 * at switch_mm time, should the mm ever be used on other cpus. For
309 * multithreaded address spaces, intercpu interrupts have to be sent.
310 * Another case where intercpu interrupts are required is when the target
311 * mm might be active on another cpu (eg debuggers doing the flushes on
312 * behalf of debugees, kswapd stealing pages from another process etc).
313 * Kanoj 07/00.
314 */
315
316void flush_tlb_mm(struct mm_struct *mm)
317{
318	preempt_disable();
319
320	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
321		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
322	} else {
323		cpumask_t mask = cpu_online_map;
324		unsigned int cpu;
325
326		cpu_clear(smp_processor_id(), mask);
327		for_each_cpu_mask(cpu, mask)
328			if (cpu_context(cpu, mm))
329				cpu_context(cpu, mm) = 0;
 
330	}
331	local_flush_tlb_mm(mm);
332
333	preempt_enable();
334}
335
336struct flush_tlb_data {
337	struct vm_area_struct *vma;
338	unsigned long addr1;
339	unsigned long addr2;
340};
341
342static void flush_tlb_range_ipi(void *info)
343{
344	struct flush_tlb_data *fd = info;
345
346	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
347}
348
349void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
350{
351	struct mm_struct *mm = vma->vm_mm;
352
353	preempt_disable();
354	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
355		struct flush_tlb_data fd = {
356			.vma = vma,
357			.addr1 = start,
358			.addr2 = end,
359		};
360
361		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
362	} else {
363		cpumask_t mask = cpu_online_map;
364		unsigned int cpu;
 
365
366		cpu_clear(smp_processor_id(), mask);
367		for_each_cpu_mask(cpu, mask)
368			if (cpu_context(cpu, mm))
369				cpu_context(cpu, mm) = 0;
 
 
 
 
 
 
370	}
371	local_flush_tlb_range(vma, start, end);
372	preempt_enable();
373}
374
375static void flush_tlb_kernel_range_ipi(void *info)
376{
377	struct flush_tlb_data *fd = info;
378
379	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
380}
381
382void flush_tlb_kernel_range(unsigned long start, unsigned long end)
383{
384	struct flush_tlb_data fd = {
385		.addr1 = start,
386		.addr2 = end,
387	};
388
389	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
390}
391
392static void flush_tlb_page_ipi(void *info)
393{
394	struct flush_tlb_data *fd = info;
395
396	local_flush_tlb_page(fd->vma, fd->addr1);
397}
398
399void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
400{
401	preempt_disable();
402	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
403		struct flush_tlb_data fd = {
404			.vma = vma,
405			.addr1 = page,
406		};
407
408		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
409	} else {
410		cpumask_t mask = cpu_online_map;
411		unsigned int cpu;
412
413		cpu_clear(smp_processor_id(), mask);
414		for_each_cpu_mask(cpu, mask)
415			if (cpu_context(cpu, vma->vm_mm))
416				cpu_context(cpu, vma->vm_mm) = 0;
 
 
 
 
 
 
417	}
418	local_flush_tlb_page(vma, page);
419	preempt_enable();
420}
421
422static void flush_tlb_one_ipi(void *info)
423{
424	unsigned long vaddr = (unsigned long) info;
425
426	local_flush_tlb_one(vaddr);
427}
428
429void flush_tlb_one(unsigned long vaddr)
430{
431	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
432}
433
434EXPORT_SYMBOL(flush_tlb_page);
435EXPORT_SYMBOL(flush_tlb_one);