Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1995 Linus Torvalds
   7 * Copyright (C) 1995 Waldorf Electronics
   8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
   9 * Copyright (C) 1996 Stoned Elipot
  10 * Copyright (C) 1999 Silicon Graphics, Inc.
  11 * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
  12 */
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/export.h>
  16#include <linux/screen_info.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/initrd.h>
  20#include <linux/root_dev.h>
  21#include <linux/highmem.h>
  22#include <linux/console.h>
  23#include <linux/pfn.h>
  24#include <linux/debugfs.h>
  25#include <linux/kexec.h>
  26#include <linux/sizes.h>
  27#include <linux/device.h>
  28#include <linux/dma-contiguous.h>
  29#include <linux/decompress/generic.h>
  30#include <linux/of_fdt.h>
  31
  32#include <asm/addrspace.h>
  33#include <asm/bootinfo.h>
  34#include <asm/bugs.h>
  35#include <asm/cache.h>
  36#include <asm/cdmm.h>
  37#include <asm/cpu.h>
  38#include <asm/debug.h>
  39#include <asm/sections.h>
  40#include <asm/setup.h>
  41#include <asm/smp-ops.h>
 
  42#include <asm/prom.h>
  43
  44#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
  45const char __section(.appended_dtb) __appended_dtb[0x100000];
  46#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
  47
  48struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  49
  50EXPORT_SYMBOL(cpu_data);
  51
  52#ifdef CONFIG_VT
  53struct screen_info screen_info;
  54#endif
  55
  56/*
 
 
 
 
 
 
 
  57 * Setup information
  58 *
  59 * These are initialized so they are in the .data section
  60 */
  61unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  62
  63EXPORT_SYMBOL(mips_machtype);
  64
  65struct boot_mem_map boot_mem_map;
  66
  67static char __initdata command_line[COMMAND_LINE_SIZE];
  68char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  69
  70#ifdef CONFIG_CMDLINE_BOOL
  71static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  72#endif
  73
  74/*
  75 * mips_io_port_base is the begin of the address space to which x86 style
  76 * I/O ports are mapped.
  77 */
  78const unsigned long mips_io_port_base = -1;
  79EXPORT_SYMBOL(mips_io_port_base);
  80
  81static struct resource code_resource = { .name = "Kernel code", };
  82static struct resource data_resource = { .name = "Kernel data", };
  83static struct resource bss_resource = { .name = "Kernel bss", };
  84
  85static void *detect_magic __initdata = detect_memory_region;
  86
  87void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
  88{
  89	int x = boot_mem_map.nr_map;
  90	int i;
  91
  92	/*
  93	 * If the region reaches the top of the physical address space, adjust
  94	 * the size slightly so that (start + size) doesn't overflow
  95	 */
  96	if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
  97		--size;
  98
  99	/* Sanity check */
 100	if (start + size < start) {
 101		pr_warn("Trying to add an invalid memory region, skipped\n");
 102		return;
 103	}
 104
 105	/*
 106	 * Try to merge with existing entry, if any.
 
 107	 */
 108	for (i = 0; i < boot_mem_map.nr_map; i++) {
 109		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
 110		unsigned long top;
 111
 112		if (entry->type != type)
 113			continue;
 114
 115		if (start + size < entry->addr)
 116			continue;			/* no overlap */
 117
 118		if (entry->addr + entry->size < start)
 119			continue;			/* no overlap */
 120
 121		top = max(entry->addr + entry->size, start + size);
 122		entry->addr = min(entry->addr, start);
 123		entry->size = top - entry->addr;
 124
 125		return;
 126	}
 127
 128	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
 129		pr_err("Ooops! Too many entries in the memory map!\n");
 130		return;
 131	}
 132
 133	boot_mem_map.map[x].addr = start;
 134	boot_mem_map.map[x].size = size;
 135	boot_mem_map.map[x].type = type;
 136	boot_mem_map.nr_map++;
 137}
 138
 139void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
 140{
 141	void *dm = &detect_magic;
 142	phys_addr_t size;
 143
 144	for (size = sz_min; size < sz_max; size <<= 1) {
 145		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
 146			break;
 147	}
 148
 149	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
 150		((unsigned long long) size) / SZ_1M,
 151		(unsigned long long) start,
 152		((unsigned long long) sz_min) / SZ_1M,
 153		((unsigned long long) sz_max) / SZ_1M);
 154
 155	add_memory_region(start, size, BOOT_MEM_RAM);
 156}
 157
 158static bool __init __maybe_unused memory_region_available(phys_addr_t start,
 159							  phys_addr_t size)
 160{
 161	int i;
 162	bool in_ram = false, free = true;
 163
 164	for (i = 0; i < boot_mem_map.nr_map; i++) {
 165		phys_addr_t start_, end_;
 166
 167		start_ = boot_mem_map.map[i].addr;
 168		end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
 169
 170		switch (boot_mem_map.map[i].type) {
 171		case BOOT_MEM_RAM:
 172			if (start >= start_ && start + size <= end_)
 173				in_ram = true;
 174			break;
 175		case BOOT_MEM_RESERVED:
 176			if ((start >= start_ && start < end_) ||
 177			    (start < start_ && start + size >= start_))
 178				free = false;
 179			break;
 180		default:
 181			continue;
 182		}
 183	}
 184
 185	return in_ram && free;
 186}
 187
 188static void __init print_memory_map(void)
 189{
 190	int i;
 191	const int field = 2 * sizeof(unsigned long);
 192
 193	for (i = 0; i < boot_mem_map.nr_map; i++) {
 194		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
 195		       field, (unsigned long long) boot_mem_map.map[i].size,
 196		       field, (unsigned long long) boot_mem_map.map[i].addr);
 197
 198		switch (boot_mem_map.map[i].type) {
 199		case BOOT_MEM_RAM:
 200			printk(KERN_CONT "(usable)\n");
 201			break;
 202		case BOOT_MEM_INIT_RAM:
 203			printk(KERN_CONT "(usable after init)\n");
 204			break;
 205		case BOOT_MEM_ROM_DATA:
 206			printk(KERN_CONT "(ROM data)\n");
 207			break;
 208		case BOOT_MEM_RESERVED:
 209			printk(KERN_CONT "(reserved)\n");
 210			break;
 211		default:
 212			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
 213			break;
 214		}
 215	}
 216}
 217
 218/*
 219 * Manage initrd
 220 */
 221#ifdef CONFIG_BLK_DEV_INITRD
 222
 223static int __init rd_start_early(char *p)
 224{
 225	unsigned long start = memparse(p, &p);
 226
 227#ifdef CONFIG_64BIT
 228	/* Guess if the sign extension was forgotten by bootloader */
 229	if (start < XKPHYS)
 230		start = (int)start;
 231#endif
 232	initrd_start = start;
 233	initrd_end += start;
 234	return 0;
 235}
 236early_param("rd_start", rd_start_early);
 237
 238static int __init rd_size_early(char *p)
 239{
 240	initrd_end += memparse(p, &p);
 241	return 0;
 242}
 243early_param("rd_size", rd_size_early);
 244
 245/* it returns the next free pfn after initrd */
 246static unsigned long __init init_initrd(void)
 247{
 248	unsigned long end;
 249
 250	/*
 251	 * Board specific code or command line parser should have
 252	 * already set up initrd_start and initrd_end. In these cases
 253	 * perfom sanity checks and use them if all looks good.
 254	 */
 255	if (!initrd_start || initrd_end <= initrd_start)
 256		goto disable;
 257
 258	if (initrd_start & ~PAGE_MASK) {
 259		pr_err("initrd start must be page aligned\n");
 260		goto disable;
 261	}
 262	if (initrd_start < PAGE_OFFSET) {
 263		pr_err("initrd start < PAGE_OFFSET\n");
 264		goto disable;
 265	}
 266
 267	/*
 268	 * Sanitize initrd addresses. For example firmware
 269	 * can't guess if they need to pass them through
 270	 * 64-bits values if the kernel has been built in pure
 271	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
 272	 * addresses now, so the code can now safely use __pa().
 273	 */
 274	end = __pa(initrd_end);
 275	initrd_end = (unsigned long)__va(end);
 276	initrd_start = (unsigned long)__va(__pa(initrd_start));
 277
 278	ROOT_DEV = Root_RAM0;
 279	return PFN_UP(end);
 280disable:
 281	initrd_start = 0;
 282	initrd_end = 0;
 283	return 0;
 284}
 285
 286/* In some conditions (e.g. big endian bootloader with a little endian
 287   kernel), the initrd might appear byte swapped.  Try to detect this and
 288   byte swap it if needed.  */
 289static void __init maybe_bswap_initrd(void)
 290{
 291#if defined(CONFIG_CPU_CAVIUM_OCTEON)
 292	u64 buf;
 293
 294	/* Check for CPIO signature */
 295	if (!memcmp((void *)initrd_start, "070701", 6))
 296		return;
 297
 298	/* Check for compressed initrd */
 299	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
 300		return;
 301
 302	/* Try again with a byte swapped header */
 303	buf = swab64p((u64 *)initrd_start);
 304	if (!memcmp(&buf, "070701", 6) ||
 305	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
 306		unsigned long i;
 307
 308		pr_info("Byteswapped initrd detected\n");
 309		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
 310			swab64s((u64 *)i);
 311	}
 312#endif
 313}
 314
 315static void __init finalize_initrd(void)
 316{
 317	unsigned long size = initrd_end - initrd_start;
 318
 319	if (size == 0) {
 320		printk(KERN_INFO "Initrd not found or empty");
 321		goto disable;
 322	}
 323	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
 324		printk(KERN_ERR "Initrd extends beyond end of memory");
 325		goto disable;
 326	}
 327
 328	maybe_bswap_initrd();
 329
 330	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
 331	initrd_below_start_ok = 1;
 332
 333	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
 334		initrd_start, size);
 335	return;
 336disable:
 337	printk(KERN_CONT " - disabling initrd\n");
 338	initrd_start = 0;
 339	initrd_end = 0;
 340}
 341
 342#else  /* !CONFIG_BLK_DEV_INITRD */
 343
 344static unsigned long __init init_initrd(void)
 345{
 346	return 0;
 347}
 348
 349#define finalize_initrd()	do {} while (0)
 350
 351#endif
 352
 353/*
 354 * Initialize the bootmem allocator. It also setup initrd related data
 355 * if needed.
 356 */
 357#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
 358
 359static void __init bootmem_init(void)
 360{
 361	init_initrd();
 362	finalize_initrd();
 363}
 364
 365#else  /* !CONFIG_SGI_IP27 */
 366
 367static unsigned long __init bootmap_bytes(unsigned long pages)
 368{
 369	unsigned long bytes = DIV_ROUND_UP(pages, 8);
 370
 371	return ALIGN(bytes, sizeof(long));
 372}
 373
 374static void __init bootmem_init(void)
 375{
 376	unsigned long reserved_end;
 377	unsigned long mapstart = ~0UL;
 378	unsigned long bootmap_size;
 379	phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX;
 380	bool bootmap_valid = false;
 381	int i;
 382
 383	/*
 384	 * Sanity check any INITRD first. We don't take it into account
 385	 * for bootmem setup initially, rely on the end-of-kernel-code
 386	 * as our memory range starting point. Once bootmem is inited we
 387	 * will reserve the area used for the initrd.
 388	 */
 389	init_initrd();
 390	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
 391
 392	/*
 393	 * max_low_pfn is not a number of pages. The number of pages
 394	 * of the system is given by 'max_low_pfn - min_low_pfn'.
 395	 */
 396	min_low_pfn = ~0UL;
 397	max_low_pfn = 0;
 398
 399	/*
 400	 * Find the highest page frame number we have available
 401	 * and the lowest used RAM address
 402	 */
 403	for (i = 0; i < boot_mem_map.nr_map; i++) {
 404		unsigned long start, end;
 405
 406		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 407			continue;
 408
 409		start = PFN_UP(boot_mem_map.map[i].addr);
 410		end = PFN_DOWN(boot_mem_map.map[i].addr
 411				+ boot_mem_map.map[i].size);
 412
 413		ramstart = min(ramstart, boot_mem_map.map[i].addr);
 414
 415#ifndef CONFIG_HIGHMEM
 416		/*
 417		 * Skip highmem here so we get an accurate max_low_pfn if low
 418		 * memory stops short of high memory.
 419		 * If the region overlaps HIGHMEM_START, end is clipped so
 420		 * max_pfn excludes the highmem portion.
 421		 */
 422		if (start >= PFN_DOWN(HIGHMEM_START))
 423			continue;
 424		if (end > PFN_DOWN(HIGHMEM_START))
 425			end = PFN_DOWN(HIGHMEM_START);
 426#endif
 427
 428		if (end > max_low_pfn)
 429			max_low_pfn = end;
 430		if (start < min_low_pfn)
 431			min_low_pfn = start;
 432		if (end <= reserved_end)
 433			continue;
 434#ifdef CONFIG_BLK_DEV_INITRD
 435		/* Skip zones before initrd and initrd itself */
 436		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
 437			continue;
 438#endif
 439		if (start >= mapstart)
 440			continue;
 441		mapstart = max(reserved_end, start);
 442	}
 443
 444	/*
 445	 * Reserve any memory between the start of RAM and PHYS_OFFSET
 446	 */
 447	if (ramstart > PHYS_OFFSET)
 448		add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
 449				  BOOT_MEM_RESERVED);
 450
 451	if (min_low_pfn >= max_low_pfn)
 452		panic("Incorrect memory mapping !!!");
 453	if (min_low_pfn > ARCH_PFN_OFFSET) {
 454		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
 455			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
 456			min_low_pfn - ARCH_PFN_OFFSET);
 457	} else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
 458		pr_info("%lu free pages won't be used\n",
 459			ARCH_PFN_OFFSET - min_low_pfn);
 460	}
 461	min_low_pfn = ARCH_PFN_OFFSET;
 462
 463	/*
 464	 * Determine low and high memory ranges
 465	 */
 466	max_pfn = max_low_pfn;
 467	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
 468#ifdef CONFIG_HIGHMEM
 469		highstart_pfn = PFN_DOWN(HIGHMEM_START);
 470		highend_pfn = max_low_pfn;
 471#endif
 472		max_low_pfn = PFN_DOWN(HIGHMEM_START);
 473	}
 474
 475#ifdef CONFIG_BLK_DEV_INITRD
 476	/*
 477	 * mapstart should be after initrd_end
 478	 */
 479	if (initrd_end)
 480		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
 481#endif
 482
 483	/*
 484	 * check that mapstart doesn't overlap with any of
 485	 * memory regions that have been reserved through eg. DTB
 486	 */
 487	bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
 488
 489	bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
 490						bootmap_size);
 491	for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
 492		unsigned long mapstart_addr;
 493
 494		switch (boot_mem_map.map[i].type) {
 495		case BOOT_MEM_RESERVED:
 496			mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
 497						boot_mem_map.map[i].size);
 498			if (PHYS_PFN(mapstart_addr) < mapstart)
 499				break;
 500
 501			bootmap_valid = memory_region_available(mapstart_addr,
 502								bootmap_size);
 503			if (bootmap_valid)
 504				mapstart = PHYS_PFN(mapstart_addr);
 505			break;
 506		default:
 507			break;
 508		}
 509	}
 510
 511	if (!bootmap_valid)
 512		panic("No memory area to place a bootmap bitmap");
 513
 514	/*
 515	 * Initialize the boot-time allocator with low memory only.
 516	 */
 517	if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
 518					 min_low_pfn, max_low_pfn))
 519		panic("Unexpected memory size required for bootmap");
 520
 521	for (i = 0; i < boot_mem_map.nr_map; i++) {
 522		unsigned long start, end;
 523
 524		start = PFN_UP(boot_mem_map.map[i].addr);
 525		end = PFN_DOWN(boot_mem_map.map[i].addr
 526				+ boot_mem_map.map[i].size);
 527
 528		if (start <= min_low_pfn)
 529			start = min_low_pfn;
 530		if (start >= end)
 531			continue;
 532
 533#ifndef CONFIG_HIGHMEM
 534		if (end > max_low_pfn)
 535			end = max_low_pfn;
 536
 537		/*
 538		 * ... finally, is the area going away?
 539		 */
 540		if (end <= start)
 541			continue;
 542#endif
 543
 544		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
 545	}
 546
 547	/*
 548	 * Register fully available low RAM pages with the bootmem allocator.
 549	 */
 550	for (i = 0; i < boot_mem_map.nr_map; i++) {
 551		unsigned long start, end, size;
 552
 553		start = PFN_UP(boot_mem_map.map[i].addr);
 554		end   = PFN_DOWN(boot_mem_map.map[i].addr
 555				    + boot_mem_map.map[i].size);
 556
 557		/*
 558		 * Reserve usable memory.
 559		 */
 560		switch (boot_mem_map.map[i].type) {
 561		case BOOT_MEM_RAM:
 562			break;
 563		case BOOT_MEM_INIT_RAM:
 564			memory_present(0, start, end);
 565			continue;
 566		default:
 567			/* Not usable memory */
 568			if (start > min_low_pfn && end < max_low_pfn)
 569				reserve_bootmem(boot_mem_map.map[i].addr,
 570						boot_mem_map.map[i].size,
 571						BOOTMEM_DEFAULT);
 572			continue;
 573		}
 574
 
 
 
 575		/*
 576		 * We are rounding up the start address of usable memory
 577		 * and at the end of the usable range downwards.
 578		 */
 579		if (start >= max_low_pfn)
 580			continue;
 581		if (start < reserved_end)
 582			start = reserved_end;
 583		if (end > max_low_pfn)
 584			end = max_low_pfn;
 585
 586		/*
 587		 * ... finally, is the area going away?
 588		 */
 589		if (end <= start)
 590			continue;
 591		size = end - start;
 592
 593		/* Register lowmem ranges */
 594		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
 595		memory_present(0, start, end);
 596	}
 597
 598	/*
 599	 * Reserve the bootmap memory.
 600	 */
 601	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
 602
 603#ifdef CONFIG_RELOCATABLE
 604	/*
 605	 * The kernel reserves all memory below its _end symbol as bootmem,
 606	 * but the kernel may now be at a much higher address. The memory
 607	 * between the original and new locations may be returned to the system.
 608	 */
 609	if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
 610		unsigned long offset;
 611		extern void show_kernel_relocation(const char *level);
 612
 613		offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
 614		free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
 615
 616#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
 617		/*
 618		 * This information is necessary when debugging the kernel
 619		 * But is a security vulnerability otherwise!
 620		 */
 621		show_kernel_relocation(KERN_INFO);
 622#endif
 623	}
 624#endif
 625
 626	/*
 627	 * Reserve initrd memory if needed.
 628	 */
 629	finalize_initrd();
 630}
 631
 632#endif	/* CONFIG_SGI_IP27 */
 633
 634/*
 635 * arch_mem_init - initialize memory management subsystem
 636 *
 637 *  o plat_mem_setup() detects the memory configuration and will record detected
 638 *    memory areas using add_memory_region.
 639 *
 640 * At this stage the memory configuration of the system is known to the
 641 * kernel but generic memory management system is still entirely uninitialized.
 642 *
 643 *  o bootmem_init()
 644 *  o sparse_init()
 645 *  o paging_init()
 646 *  o dma_contiguous_reserve()
 647 *
 648 * At this stage the bootmem allocator is ready to use.
 649 *
 650 * NOTE: historically plat_mem_setup did the entire platform initialization.
 651 *	 This was rather impractical because it meant plat_mem_setup had to
 652 * get away without any kind of memory allocator.  To keep old code from
 653 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
 654 * initialization hook for anything else was introduced.
 655 */
 656
 657static int usermem __initdata;
 658
 659static int __init early_parse_mem(char *p)
 660{
 661	phys_addr_t start, size;
 662
 663	/*
 664	 * If a user specifies memory size, we
 665	 * blow away any automatically generated
 666	 * size.
 667	 */
 668	if (usermem == 0) {
 669		boot_mem_map.nr_map = 0;
 670		usermem = 1;
 671	}
 672	start = 0;
 673	size = memparse(p, &p);
 674	if (*p == '@')
 675		start = memparse(p + 1, &p);
 676
 677	add_memory_region(start, size, BOOT_MEM_RAM);
 678
 679	return 0;
 680}
 681early_param("mem", early_parse_mem);
 682
 683static int __init early_parse_memmap(char *p)
 684{
 685	char *oldp;
 686	u64 start_at, mem_size;
 687
 688	if (!p)
 689		return -EINVAL;
 690
 691	if (!strncmp(p, "exactmap", 8)) {
 692		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
 693		return 0;
 694	}
 695
 696	oldp = p;
 697	mem_size = memparse(p, &p);
 698	if (p == oldp)
 699		return -EINVAL;
 700
 701	if (*p == '@') {
 702		start_at = memparse(p+1, &p);
 703		add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
 704	} else if (*p == '#') {
 705		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
 706		return -EINVAL;
 707	} else if (*p == '$') {
 708		start_at = memparse(p+1, &p);
 709		add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
 710	} else {
 711		pr_err("\"memmap\" invalid format!\n");
 712		return -EINVAL;
 713	}
 714
 715	if (*p == '\0') {
 716		usermem = 1;
 717		return 0;
 718	} else
 719		return -EINVAL;
 720}
 721early_param("memmap", early_parse_memmap);
 722
 723#ifdef CONFIG_PROC_VMCORE
 724unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
 725static int __init early_parse_elfcorehdr(char *p)
 726{
 727	int i;
 728
 729	setup_elfcorehdr = memparse(p, &p);
 730
 731	for (i = 0; i < boot_mem_map.nr_map; i++) {
 732		unsigned long start = boot_mem_map.map[i].addr;
 733		unsigned long end = (boot_mem_map.map[i].addr +
 734				     boot_mem_map.map[i].size);
 735		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
 736			/*
 737			 * Reserve from the elf core header to the end of
 738			 * the memory segment, that should all be kdump
 739			 * reserved memory.
 740			 */
 741			setup_elfcorehdr_size = end - setup_elfcorehdr;
 742			break;
 743		}
 744	}
 745	/*
 746	 * If we don't find it in the memory map, then we shouldn't
 747	 * have to worry about it, as the new kernel won't use it.
 748	 */
 749	return 0;
 750}
 751early_param("elfcorehdr", early_parse_elfcorehdr);
 752#endif
 753
 754static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
 755{
 756	phys_addr_t size;
 757	int i;
 758
 759	size = end - mem;
 760	if (!size)
 761		return;
 762
 763	/* Make sure it is in the boot_mem_map */
 764	for (i = 0; i < boot_mem_map.nr_map; i++) {
 765		if (mem >= boot_mem_map.map[i].addr &&
 766		    mem < (boot_mem_map.map[i].addr +
 767			   boot_mem_map.map[i].size))
 768			return;
 769	}
 770	add_memory_region(mem, size, type);
 771}
 772
 773#ifdef CONFIG_KEXEC
 774static inline unsigned long long get_total_mem(void)
 775{
 776	unsigned long long total;
 777
 778	total = max_pfn - min_low_pfn;
 779	return total << PAGE_SHIFT;
 780}
 781
 782static void __init mips_parse_crashkernel(void)
 783{
 784	unsigned long long total_mem;
 785	unsigned long long crash_size, crash_base;
 786	int ret;
 787
 788	total_mem = get_total_mem();
 789	ret = parse_crashkernel(boot_command_line, total_mem,
 790				&crash_size, &crash_base);
 791	if (ret != 0 || crash_size <= 0)
 792		return;
 793
 794	if (!memory_region_available(crash_base, crash_size)) {
 795		pr_warn("Invalid memory region reserved for crash kernel\n");
 796		return;
 797	}
 798
 799	crashk_res.start = crash_base;
 800	crashk_res.end	 = crash_base + crash_size - 1;
 801}
 802
 803static void __init request_crashkernel(struct resource *res)
 804{
 805	int ret;
 806
 807	if (crashk_res.start == crashk_res.end)
 808		return;
 809
 810	ret = request_resource(res, &crashk_res);
 811	if (!ret)
 812		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
 813			(unsigned long)((crashk_res.end -
 814					 crashk_res.start + 1) >> 20),
 815			(unsigned long)(crashk_res.start  >> 20));
 816}
 817#else /* !defined(CONFIG_KEXEC)		*/
 818static void __init mips_parse_crashkernel(void)
 819{
 820}
 821
 822static void __init request_crashkernel(struct resource *res)
 823{
 824}
 825#endif /* !defined(CONFIG_KEXEC)  */
 826
 827#define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
 828#define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
 829#define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
 830#define BUILTIN_EXTEND_WITH_PROM	\
 831	IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
 832
 833static void __init arch_mem_init(char **cmdline_p)
 834{
 835	struct memblock_region *reg;
 836	extern void plat_mem_setup(void);
 837
 838#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
 839	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 840#else
 841	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
 842	    (USE_DTB_CMDLINE && !boot_command_line[0]))
 843		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 844
 845	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
 846		if (boot_command_line[0])
 847			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 848		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 849	}
 850
 851#if defined(CONFIG_CMDLINE_BOOL)
 852	if (builtin_cmdline[0]) {
 853		if (boot_command_line[0])
 854			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 855		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 856	}
 857
 858	if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
 859		if (boot_command_line[0])
 860			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 861		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 862	}
 863#endif
 864#endif
 865
 866	/* call board setup routine */
 867	plat_mem_setup();
 868
 869	/*
 870	 * Make sure all kernel memory is in the maps.  The "UP" and
 871	 * "DOWN" are opposite for initdata since if it crosses over
 872	 * into another memory section you don't want that to be
 873	 * freed when the initdata is freed.
 874	 */
 875	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
 876			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
 877			 BOOT_MEM_RAM);
 878	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
 879			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
 880			 BOOT_MEM_INIT_RAM);
 881
 882	pr_info("Determined physical RAM map:\n");
 883	print_memory_map();
 884
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 886
 887	*cmdline_p = command_line;
 888
 889	parse_early_param();
 890
 891	if (usermem) {
 892		pr_info("User-defined physical RAM map:\n");
 893		print_memory_map();
 894	}
 895
 896	early_init_fdt_reserve_self();
 897	early_init_fdt_scan_reserved_mem();
 898
 899	bootmem_init();
 900#ifdef CONFIG_PROC_VMCORE
 901	if (setup_elfcorehdr && setup_elfcorehdr_size) {
 902		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
 903		       setup_elfcorehdr, setup_elfcorehdr_size);
 904		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
 905				BOOTMEM_DEFAULT);
 906	}
 907#endif
 908
 909	mips_parse_crashkernel();
 910#ifdef CONFIG_KEXEC
 911	if (crashk_res.start != crashk_res.end)
 912		reserve_bootmem(crashk_res.start,
 913				crashk_res.end - crashk_res.start + 1,
 914				BOOTMEM_DEFAULT);
 915#endif
 916	device_tree_init();
 917	sparse_init();
 918	plat_swiotlb_setup();
 919
 920	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
 921	/* Tell bootmem about cma reserved memblock section */
 922	for_each_memblock(reserved, reg)
 923		if (reg->size != 0)
 924			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
 925
 926	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
 927			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
 928}
 929
 930static void __init resource_init(void)
 931{
 932	int i;
 933
 934	if (UNCAC_BASE != IO_BASE)
 935		return;
 936
 937	code_resource.start = __pa_symbol(&_text);
 938	code_resource.end = __pa_symbol(&_etext) - 1;
 939	data_resource.start = __pa_symbol(&_etext);
 940	data_resource.end = __pa_symbol(&_edata) - 1;
 941	bss_resource.start = __pa_symbol(&__bss_start);
 942	bss_resource.end = __pa_symbol(&__bss_stop) - 1;
 943
 
 
 
 944	for (i = 0; i < boot_mem_map.nr_map; i++) {
 945		struct resource *res;
 946		unsigned long start, end;
 947
 948		start = boot_mem_map.map[i].addr;
 949		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
 950		if (start >= HIGHMEM_START)
 951			continue;
 952		if (end >= HIGHMEM_START)
 953			end = HIGHMEM_START - 1;
 954
 955		res = alloc_bootmem(sizeof(struct resource));
 956
 957		res->start = start;
 958		res->end = end;
 959		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 960
 961		switch (boot_mem_map.map[i].type) {
 962		case BOOT_MEM_RAM:
 963		case BOOT_MEM_INIT_RAM:
 964		case BOOT_MEM_ROM_DATA:
 965			res->name = "System RAM";
 966			res->flags |= IORESOURCE_SYSRAM;
 967			break;
 968		case BOOT_MEM_RESERVED:
 969		default:
 970			res->name = "reserved";
 971		}
 972
 
 
 
 
 973		request_resource(&iomem_resource, res);
 974
 975		/*
 976		 *  We don't know which RAM region contains kernel data,
 977		 *  so we try it repeatedly and let the resource manager
 978		 *  test it.
 979		 */
 980		request_resource(res, &code_resource);
 981		request_resource(res, &data_resource);
 982		request_resource(res, &bss_resource);
 983		request_crashkernel(res);
 984	}
 985}
 986
 987#ifdef CONFIG_SMP
 988static void __init prefill_possible_map(void)
 989{
 990	int i, possible = num_possible_cpus();
 991
 992	if (possible > nr_cpu_ids)
 993		possible = nr_cpu_ids;
 994
 995	for (i = 0; i < possible; i++)
 996		set_cpu_possible(i, true);
 997	for (; i < NR_CPUS; i++)
 998		set_cpu_possible(i, false);
 999
1000	nr_cpu_ids = possible;
1001}
1002#else
1003static inline void prefill_possible_map(void) {}
1004#endif
1005
1006void __init setup_arch(char **cmdline_p)
1007{
1008	cpu_probe();
1009	mips_cm_probe();
1010	prom_init();
1011
1012	setup_early_fdc_console();
1013#ifdef CONFIG_EARLY_PRINTK
1014	setup_early_printk();
1015#endif
1016	cpu_report();
1017	check_bugs_early();
1018
1019#if defined(CONFIG_VT)
1020#if defined(CONFIG_VGA_CONSOLE)
1021	conswitchp = &vga_con;
1022#elif defined(CONFIG_DUMMY_CONSOLE)
1023	conswitchp = &dummy_con;
1024#endif
1025#endif
1026
1027	arch_mem_init(cmdline_p);
1028
1029	resource_init();
1030	plat_smp_setup();
1031	prefill_possible_map();
1032
1033	cpu_cache_init();
1034	paging_init();
1035}
1036
1037unsigned long kernelsp[NR_CPUS];
1038unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1039
1040#ifdef CONFIG_USE_OF
1041unsigned long fw_passed_dtb;
1042#endif
1043
1044#ifdef CONFIG_DEBUG_FS
1045struct dentry *mips_debugfs_dir;
1046static int __init debugfs_mips(void)
1047{
1048	struct dentry *d;
1049
1050	d = debugfs_create_dir("mips", NULL);
1051	if (!d)
1052		return -ENOMEM;
1053	mips_debugfs_dir = d;
1054	return 0;
1055}
1056arch_initcall(debugfs_mips);
1057#endif
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1995 Linus Torvalds
  7 * Copyright (C) 1995 Waldorf Electronics
  8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
  9 * Copyright (C) 1996 Stoned Elipot
 10 * Copyright (C) 1999 Silicon Graphics, Inc.
 11 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
 12 */
 13#include <linux/init.h>
 14#include <linux/ioport.h>
 15#include <linux/module.h>
 16#include <linux/screen_info.h>
 
 17#include <linux/bootmem.h>
 18#include <linux/initrd.h>
 19#include <linux/root_dev.h>
 20#include <linux/highmem.h>
 21#include <linux/console.h>
 22#include <linux/pfn.h>
 23#include <linux/debugfs.h>
 
 
 
 
 
 
 24
 25#include <asm/addrspace.h>
 26#include <asm/bootinfo.h>
 27#include <asm/bugs.h>
 28#include <asm/cache.h>
 
 29#include <asm/cpu.h>
 
 30#include <asm/sections.h>
 31#include <asm/setup.h>
 32#include <asm/smp-ops.h>
 33#include <asm/system.h>
 34#include <asm/prom.h>
 35
 
 
 
 
 36struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
 37
 38EXPORT_SYMBOL(cpu_data);
 39
 40#ifdef CONFIG_VT
 41struct screen_info screen_info;
 42#endif
 43
 44/*
 45 * Despite it's name this variable is even if we don't have PCI
 46 */
 47unsigned int PCI_DMA_BUS_IS_PHYS;
 48
 49EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
 50
 51/*
 52 * Setup information
 53 *
 54 * These are initialized so they are in the .data section
 55 */
 56unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
 57
 58EXPORT_SYMBOL(mips_machtype);
 59
 60struct boot_mem_map boot_mem_map;
 61
 62static char __initdata command_line[COMMAND_LINE_SIZE];
 63char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
 64
 65#ifdef CONFIG_CMDLINE_BOOL
 66static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 67#endif
 68
 69/*
 70 * mips_io_port_base is the begin of the address space to which x86 style
 71 * I/O ports are mapped.
 72 */
 73const unsigned long mips_io_port_base = -1;
 74EXPORT_SYMBOL(mips_io_port_base);
 75
 76static struct resource code_resource = { .name = "Kernel code", };
 77static struct resource data_resource = { .name = "Kernel data", };
 
 
 
 78
 79void __init add_memory_region(phys_t start, phys_t size, long type)
 80{
 81	int x = boot_mem_map.nr_map;
 82	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
 
 
 
 
 
 
 
 83
 84	/* Sanity check */
 85	if (start + size < start) {
 86		pr_warning("Trying to add an invalid memory region, skipped\n");
 87		return;
 88	}
 89
 90	/*
 91	 * Try to merge with previous entry if any.  This is far less than
 92	 * perfect but is sufficient for most real world cases.
 93	 */
 94	if (x && prev->addr + prev->size == start && prev->type == type) {
 95		prev->size += size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96		return;
 97	}
 98
 99	if (x == BOOT_MEM_MAP_MAX) {
100		pr_err("Ooops! Too many entries in the memory map!\n");
101		return;
102	}
103
104	boot_mem_map.map[x].addr = start;
105	boot_mem_map.map[x].size = size;
106	boot_mem_map.map[x].type = type;
107	boot_mem_map.nr_map++;
108}
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110static void __init print_memory_map(void)
111{
112	int i;
113	const int field = 2 * sizeof(unsigned long);
114
115	for (i = 0; i < boot_mem_map.nr_map; i++) {
116		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
117		       field, (unsigned long long) boot_mem_map.map[i].size,
118		       field, (unsigned long long) boot_mem_map.map[i].addr);
119
120		switch (boot_mem_map.map[i].type) {
121		case BOOT_MEM_RAM:
122			printk(KERN_CONT "(usable)\n");
123			break;
 
 
 
124		case BOOT_MEM_ROM_DATA:
125			printk(KERN_CONT "(ROM data)\n");
126			break;
127		case BOOT_MEM_RESERVED:
128			printk(KERN_CONT "(reserved)\n");
129			break;
130		default:
131			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
132			break;
133		}
134	}
135}
136
137/*
138 * Manage initrd
139 */
140#ifdef CONFIG_BLK_DEV_INITRD
141
142static int __init rd_start_early(char *p)
143{
144	unsigned long start = memparse(p, &p);
145
146#ifdef CONFIG_64BIT
147	/* Guess if the sign extension was forgotten by bootloader */
148	if (start < XKPHYS)
149		start = (int)start;
150#endif
151	initrd_start = start;
152	initrd_end += start;
153	return 0;
154}
155early_param("rd_start", rd_start_early);
156
157static int __init rd_size_early(char *p)
158{
159	initrd_end += memparse(p, &p);
160	return 0;
161}
162early_param("rd_size", rd_size_early);
163
164/* it returns the next free pfn after initrd */
165static unsigned long __init init_initrd(void)
166{
167	unsigned long end;
168
169	/*
170	 * Board specific code or command line parser should have
171	 * already set up initrd_start and initrd_end. In these cases
172	 * perfom sanity checks and use them if all looks good.
173	 */
174	if (!initrd_start || initrd_end <= initrd_start)
175		goto disable;
176
177	if (initrd_start & ~PAGE_MASK) {
178		pr_err("initrd start must be page aligned\n");
179		goto disable;
180	}
181	if (initrd_start < PAGE_OFFSET) {
182		pr_err("initrd start < PAGE_OFFSET\n");
183		goto disable;
184	}
185
186	/*
187	 * Sanitize initrd addresses. For example firmware
188	 * can't guess if they need to pass them through
189	 * 64-bits values if the kernel has been built in pure
190	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
191	 * addresses now, so the code can now safely use __pa().
192	 */
193	end = __pa(initrd_end);
194	initrd_end = (unsigned long)__va(end);
195	initrd_start = (unsigned long)__va(__pa(initrd_start));
196
197	ROOT_DEV = Root_RAM0;
198	return PFN_UP(end);
199disable:
200	initrd_start = 0;
201	initrd_end = 0;
202	return 0;
203}
204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205static void __init finalize_initrd(void)
206{
207	unsigned long size = initrd_end - initrd_start;
208
209	if (size == 0) {
210		printk(KERN_INFO "Initrd not found or empty");
211		goto disable;
212	}
213	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
214		printk(KERN_ERR "Initrd extends beyond end of memory");
215		goto disable;
216	}
217
 
 
218	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
219	initrd_below_start_ok = 1;
220
221	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
222		initrd_start, size);
223	return;
224disable:
225	printk(KERN_CONT " - disabling initrd\n");
226	initrd_start = 0;
227	initrd_end = 0;
228}
229
230#else  /* !CONFIG_BLK_DEV_INITRD */
231
232static unsigned long __init init_initrd(void)
233{
234	return 0;
235}
236
237#define finalize_initrd()	do {} while (0)
238
239#endif
240
241/*
242 * Initialize the bootmem allocator. It also setup initrd related data
243 * if needed.
244 */
245#ifdef CONFIG_SGI_IP27
246
247static void __init bootmem_init(void)
248{
249	init_initrd();
250	finalize_initrd();
251}
252
253#else  /* !CONFIG_SGI_IP27 */
254
 
 
 
 
 
 
 
255static void __init bootmem_init(void)
256{
257	unsigned long reserved_end;
258	unsigned long mapstart = ~0UL;
259	unsigned long bootmap_size;
 
 
260	int i;
261
262	/*
263	 * Init any data related to initrd. It's a nop if INITRD is
264	 * not selected. Once that done we can determine the low bound
265	 * of usable memory.
 
266	 */
267	reserved_end = max(init_initrd(),
268			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
269
270	/*
271	 * max_low_pfn is not a number of pages. The number of pages
272	 * of the system is given by 'max_low_pfn - min_low_pfn'.
273	 */
274	min_low_pfn = ~0UL;
275	max_low_pfn = 0;
276
277	/*
278	 * Find the highest page frame number we have available.
 
279	 */
280	for (i = 0; i < boot_mem_map.nr_map; i++) {
281		unsigned long start, end;
282
283		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
284			continue;
285
286		start = PFN_UP(boot_mem_map.map[i].addr);
287		end = PFN_DOWN(boot_mem_map.map[i].addr
288				+ boot_mem_map.map[i].size);
289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290		if (end > max_low_pfn)
291			max_low_pfn = end;
292		if (start < min_low_pfn)
293			min_low_pfn = start;
294		if (end <= reserved_end)
295			continue;
 
 
 
 
 
296		if (start >= mapstart)
297			continue;
298		mapstart = max(reserved_end, start);
299	}
300
 
 
 
 
 
 
 
301	if (min_low_pfn >= max_low_pfn)
302		panic("Incorrect memory mapping !!!");
303	if (min_low_pfn > ARCH_PFN_OFFSET) {
304		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
305			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
306			min_low_pfn - ARCH_PFN_OFFSET);
307	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
308		pr_info("%lu free pages won't be used\n",
309			ARCH_PFN_OFFSET - min_low_pfn);
310	}
311	min_low_pfn = ARCH_PFN_OFFSET;
312
313	/*
314	 * Determine low and high memory ranges
315	 */
316	max_pfn = max_low_pfn;
317	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
318#ifdef CONFIG_HIGHMEM
319		highstart_pfn = PFN_DOWN(HIGHMEM_START);
320		highend_pfn = max_low_pfn;
321#endif
322		max_low_pfn = PFN_DOWN(HIGHMEM_START);
323	}
324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325	/*
326	 * Initialize the boot-time allocator with low memory only.
327	 */
328	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
329					 min_low_pfn, max_low_pfn);
330
331
332	for (i = 0; i < boot_mem_map.nr_map; i++) {
333		unsigned long start, end;
334
335		start = PFN_UP(boot_mem_map.map[i].addr);
336		end = PFN_DOWN(boot_mem_map.map[i].addr
337				+ boot_mem_map.map[i].size);
338
339		if (start <= min_low_pfn)
340			start = min_low_pfn;
341		if (start >= end)
342			continue;
343
344#ifndef CONFIG_HIGHMEM
345		if (end > max_low_pfn)
346			end = max_low_pfn;
347
348		/*
349		 * ... finally, is the area going away?
350		 */
351		if (end <= start)
352			continue;
353#endif
354
355		add_active_range(0, start, end);
356	}
357
358	/*
359	 * Register fully available low RAM pages with the bootmem allocator.
360	 */
361	for (i = 0; i < boot_mem_map.nr_map; i++) {
362		unsigned long start, end, size;
363
 
 
 
 
364		/*
365		 * Reserve usable memory.
366		 */
367		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 
 
 
 
 
 
 
 
 
 
 
368			continue;
 
369
370		start = PFN_UP(boot_mem_map.map[i].addr);
371		end   = PFN_DOWN(boot_mem_map.map[i].addr
372				    + boot_mem_map.map[i].size);
373		/*
374		 * We are rounding up the start address of usable memory
375		 * and at the end of the usable range downwards.
376		 */
377		if (start >= max_low_pfn)
378			continue;
379		if (start < reserved_end)
380			start = reserved_end;
381		if (end > max_low_pfn)
382			end = max_low_pfn;
383
384		/*
385		 * ... finally, is the area going away?
386		 */
387		if (end <= start)
388			continue;
389		size = end - start;
390
391		/* Register lowmem ranges */
392		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
393		memory_present(0, start, end);
394	}
395
396	/*
397	 * Reserve the bootmap memory.
398	 */
399	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401	/*
402	 * Reserve initrd memory if needed.
403	 */
404	finalize_initrd();
405}
406
407#endif	/* CONFIG_SGI_IP27 */
408
409/*
410 * arch_mem_init - initialize memory management subsystem
411 *
412 *  o plat_mem_setup() detects the memory configuration and will record detected
413 *    memory areas using add_memory_region.
414 *
415 * At this stage the memory configuration of the system is known to the
416 * kernel but generic memory management system is still entirely uninitialized.
417 *
418 *  o bootmem_init()
419 *  o sparse_init()
420 *  o paging_init()
 
421 *
422 * At this stage the bootmem allocator is ready to use.
423 *
424 * NOTE: historically plat_mem_setup did the entire platform initialization.
425 *       This was rather impractical because it meant plat_mem_setup had to
426 * get away without any kind of memory allocator.  To keep old code from
427 * breaking plat_setup was just renamed to plat_setup and a second platform
428 * initialization hook for anything else was introduced.
429 */
430
431static int usermem __initdata;
432
433static int __init early_parse_mem(char *p)
434{
435	unsigned long start, size;
436
437	/*
438	 * If a user specifies memory size, we
439	 * blow away any automatically generated
440	 * size.
441	 */
442	if (usermem == 0) {
443		boot_mem_map.nr_map = 0;
444		usermem = 1;
445 	}
446	start = 0;
447	size = memparse(p, &p);
448	if (*p == '@')
449		start = memparse(p + 1, &p);
450
451	add_memory_region(start, size, BOOT_MEM_RAM);
 
452	return 0;
453}
454early_param("mem", early_parse_mem);
455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456static void __init arch_mem_init(char **cmdline_p)
457{
 
458	extern void plat_mem_setup(void);
459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460	/* call board setup routine */
461	plat_mem_setup();
462
 
 
 
 
 
 
 
 
 
 
 
 
 
463	pr_info("Determined physical RAM map:\n");
464	print_memory_map();
465
466#ifdef CONFIG_CMDLINE_BOOL
467#ifdef CONFIG_CMDLINE_OVERRIDE
468	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
469#else
470	if (builtin_cmdline[0]) {
471		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
472		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
473	}
474	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
475#endif
476#else
477	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
478#endif
479	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
480
481	*cmdline_p = command_line;
482
483	parse_early_param();
484
485	if (usermem) {
486		pr_info("User-defined physical RAM map:\n");
487		print_memory_map();
488	}
489
 
 
 
490	bootmem_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
491	device_tree_init();
492	sparse_init();
493	plat_swiotlb_setup();
494	paging_init();
 
 
 
 
 
 
 
 
495}
496
497static void __init resource_init(void)
498{
499	int i;
500
501	if (UNCAC_BASE != IO_BASE)
502		return;
503
504	code_resource.start = __pa_symbol(&_text);
505	code_resource.end = __pa_symbol(&_etext) - 1;
506	data_resource.start = __pa_symbol(&_etext);
507	data_resource.end = __pa_symbol(&_edata) - 1;
 
 
508
509	/*
510	 * Request address space for all standard RAM.
511	 */
512	for (i = 0; i < boot_mem_map.nr_map; i++) {
513		struct resource *res;
514		unsigned long start, end;
515
516		start = boot_mem_map.map[i].addr;
517		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
518		if (start >= HIGHMEM_START)
519			continue;
520		if (end >= HIGHMEM_START)
521			end = HIGHMEM_START - 1;
522
523		res = alloc_bootmem(sizeof(struct resource));
 
 
 
 
 
524		switch (boot_mem_map.map[i].type) {
525		case BOOT_MEM_RAM:
 
526		case BOOT_MEM_ROM_DATA:
527			res->name = "System RAM";
 
528			break;
529		case BOOT_MEM_RESERVED:
530		default:
531			res->name = "reserved";
532		}
533
534		res->start = start;
535		res->end = end;
536
537		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
538		request_resource(&iomem_resource, res);
539
540		/*
541		 *  We don't know which RAM region contains kernel data,
542		 *  so we try it repeatedly and let the resource manager
543		 *  test it.
544		 */
545		request_resource(res, &code_resource);
546		request_resource(res, &data_resource);
 
 
547	}
548}
549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550void __init setup_arch(char **cmdline_p)
551{
552	cpu_probe();
 
553	prom_init();
554
 
555#ifdef CONFIG_EARLY_PRINTK
556	setup_early_printk();
557#endif
558	cpu_report();
559	check_bugs_early();
560
561#if defined(CONFIG_VT)
562#if defined(CONFIG_VGA_CONSOLE)
563	conswitchp = &vga_con;
564#elif defined(CONFIG_DUMMY_CONSOLE)
565	conswitchp = &dummy_con;
566#endif
567#endif
568
569	arch_mem_init(cmdline_p);
570
571	resource_init();
572	plat_smp_setup();
 
 
 
 
573}
574
575unsigned long kernelsp[NR_CPUS];
576unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
 
 
 
 
577
578#ifdef CONFIG_DEBUG_FS
579struct dentry *mips_debugfs_dir;
580static int __init debugfs_mips(void)
581{
582	struct dentry *d;
583
584	d = debugfs_create_dir("mips", NULL);
585	if (!d)
586		return -ENOMEM;
587	mips_debugfs_dir = d;
588	return 0;
589}
590arch_initcall(debugfs_mips);
591#endif