Loading...
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/mman.h>
15#include <linux/nodemask.h>
16#include <linux/memblock.h>
17#include <linux/fs.h>
18#include <linux/vmalloc.h>
19#include <linux/sizes.h>
20
21#include <asm/cp15.h>
22#include <asm/cputype.h>
23#include <asm/sections.h>
24#include <asm/cachetype.h>
25#include <asm/fixmap.h>
26#include <asm/sections.h>
27#include <asm/setup.h>
28#include <asm/smp_plat.h>
29#include <asm/tlb.h>
30#include <asm/highmem.h>
31#include <asm/system_info.h>
32#include <asm/traps.h>
33#include <asm/procinfo.h>
34#include <asm/memory.h>
35
36#include <asm/mach/arch.h>
37#include <asm/mach/map.h>
38#include <asm/mach/pci.h>
39#include <asm/fixmap.h>
40
41#include "fault.h"
42#include "mm.h"
43#include "tcm.h"
44
45/*
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
48 */
49struct page *empty_zero_page;
50EXPORT_SYMBOL(empty_zero_page);
51
52/*
53 * The pmd table for the upper-most set of pages.
54 */
55pmd_t *top_pmd;
56
57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
59#define CPOLICY_UNCACHED 0
60#define CPOLICY_BUFFERED 1
61#define CPOLICY_WRITETHROUGH 2
62#define CPOLICY_WRITEBACK 3
63#define CPOLICY_WRITEALLOC 4
64
65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66static unsigned int ecc_mask __initdata = 0;
67pgprot_t pgprot_user;
68pgprot_t pgprot_kernel;
69pgprot_t pgprot_hyp_device;
70pgprot_t pgprot_s2;
71pgprot_t pgprot_s2_device;
72
73EXPORT_SYMBOL(pgprot_user);
74EXPORT_SYMBOL(pgprot_kernel);
75
76struct cachepolicy {
77 const char policy[16];
78 unsigned int cr_mask;
79 pmdval_t pmd;
80 pteval_t pte;
81 pteval_t pte_s2;
82};
83
84#ifdef CONFIG_ARM_LPAE
85#define s2_policy(policy) policy
86#else
87#define s2_policy(policy) 0
88#endif
89
90unsigned long kimage_voffset __ro_after_init;
91
92static struct cachepolicy cache_policies[] __initdata = {
93 {
94 .policy = "uncached",
95 .cr_mask = CR_W|CR_C,
96 .pmd = PMD_SECT_UNCACHED,
97 .pte = L_PTE_MT_UNCACHED,
98 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
99 }, {
100 .policy = "buffered",
101 .cr_mask = CR_C,
102 .pmd = PMD_SECT_BUFFERED,
103 .pte = L_PTE_MT_BUFFERABLE,
104 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
105 }, {
106 .policy = "writethrough",
107 .cr_mask = 0,
108 .pmd = PMD_SECT_WT,
109 .pte = L_PTE_MT_WRITETHROUGH,
110 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
111 }, {
112 .policy = "writeback",
113 .cr_mask = 0,
114 .pmd = PMD_SECT_WB,
115 .pte = L_PTE_MT_WRITEBACK,
116 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
117 }, {
118 .policy = "writealloc",
119 .cr_mask = 0,
120 .pmd = PMD_SECT_WBWA,
121 .pte = L_PTE_MT_WRITEALLOC,
122 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
123 }
124};
125
126#ifdef CONFIG_CPU_CP15
127static unsigned long initial_pmd_value __initdata = 0;
128
129/*
130 * Initialise the cache_policy variable with the initial state specified
131 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
132 * the C code sets the page tables up with the same policy as the head
133 * assembly code, which avoids an illegal state where the TLBs can get
134 * confused. See comments in early_cachepolicy() for more information.
135 */
136void __init init_default_cache_policy(unsigned long pmd)
137{
138 int i;
139
140 initial_pmd_value = pmd;
141
142 pmd &= PMD_SECT_CACHE_MASK;
143
144 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
145 if (cache_policies[i].pmd == pmd) {
146 cachepolicy = i;
147 break;
148 }
149
150 if (i == ARRAY_SIZE(cache_policies))
151 pr_err("ERROR: could not find cache policy\n");
152}
153
154/*
155 * These are useful for identifying cache coherency problems by allowing
156 * the cache or the cache and writebuffer to be turned off. (Note: the
157 * write buffer should not be on and the cache off).
158 */
159static int __init early_cachepolicy(char *p)
160{
161 int i, selected = -1;
162
163 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
164 int len = strlen(cache_policies[i].policy);
165
166 if (memcmp(p, cache_policies[i].policy, len) == 0) {
167 selected = i;
168 break;
169 }
170 }
171
172 if (selected == -1)
173 pr_err("ERROR: unknown or unsupported cache policy\n");
174
175 /*
176 * This restriction is partly to do with the way we boot; it is
177 * unpredictable to have memory mapped using two different sets of
178 * memory attributes (shared, type, and cache attribs). We can not
179 * change these attributes once the initial assembly has setup the
180 * page tables.
181 */
182 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
183 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
184 cache_policies[cachepolicy].policy);
185 return 0;
186 }
187
188 if (selected != cachepolicy) {
189 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
190 cachepolicy = selected;
191 flush_cache_all();
192 set_cr(cr);
193 }
194 return 0;
195}
196early_param("cachepolicy", early_cachepolicy);
197
198static int __init early_nocache(char *__unused)
199{
200 char *p = "buffered";
201 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
202 early_cachepolicy(p);
203 return 0;
204}
205early_param("nocache", early_nocache);
206
207static int __init early_nowrite(char *__unused)
208{
209 char *p = "uncached";
210 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
211 early_cachepolicy(p);
212 return 0;
213}
214early_param("nowb", early_nowrite);
215
216#ifndef CONFIG_ARM_LPAE
217static int __init early_ecc(char *p)
218{
219 if (memcmp(p, "on", 2) == 0)
220 ecc_mask = PMD_PROTECTION;
221 else if (memcmp(p, "off", 3) == 0)
222 ecc_mask = 0;
223 return 0;
224}
225early_param("ecc", early_ecc);
226#endif
227
228#else /* ifdef CONFIG_CPU_CP15 */
229
230static int __init early_cachepolicy(char *p)
231{
232 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
233}
234early_param("cachepolicy", early_cachepolicy);
235
236static int __init noalign_setup(char *__unused)
237{
238 pr_warn("noalign kernel parameter not supported without cp15\n");
239}
240__setup("noalign", noalign_setup);
241
242#endif /* ifdef CONFIG_CPU_CP15 / else */
243
244#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
245#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
246#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
247
248static struct mem_type mem_types[] __ro_after_init = {
249 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
250 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
251 L_PTE_SHARED,
252 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
253 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
254 L_PTE_SHARED,
255 .prot_l1 = PMD_TYPE_TABLE,
256 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
257 .domain = DOMAIN_IO,
258 },
259 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
260 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
261 .prot_l1 = PMD_TYPE_TABLE,
262 .prot_sect = PROT_SECT_DEVICE,
263 .domain = DOMAIN_IO,
264 },
265 [MT_DEVICE_CACHED] = { /* ioremap_cached */
266 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
269 .domain = DOMAIN_IO,
270 },
271 [MT_DEVICE_WC] = { /* ioremap_wc */
272 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
273 .prot_l1 = PMD_TYPE_TABLE,
274 .prot_sect = PROT_SECT_DEVICE,
275 .domain = DOMAIN_IO,
276 },
277 [MT_UNCACHED] = {
278 .prot_pte = PROT_PTE_DEVICE,
279 .prot_l1 = PMD_TYPE_TABLE,
280 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
281 .domain = DOMAIN_IO,
282 },
283 [MT_CACHECLEAN] = {
284 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
285 .domain = DOMAIN_KERNEL,
286 },
287#ifndef CONFIG_ARM_LPAE
288 [MT_MINICLEAN] = {
289 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
290 .domain = DOMAIN_KERNEL,
291 },
292#endif
293 [MT_LOW_VECTORS] = {
294 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
295 L_PTE_RDONLY,
296 .prot_l1 = PMD_TYPE_TABLE,
297 .domain = DOMAIN_VECTORS,
298 },
299 [MT_HIGH_VECTORS] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 L_PTE_USER | L_PTE_RDONLY,
302 .prot_l1 = PMD_TYPE_TABLE,
303 .domain = DOMAIN_VECTORS,
304 },
305 [MT_MEMORY_RWX] = {
306 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
307 .prot_l1 = PMD_TYPE_TABLE,
308 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
309 .domain = DOMAIN_KERNEL,
310 },
311 [MT_MEMORY_RW] = {
312 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
313 L_PTE_XN,
314 .prot_l1 = PMD_TYPE_TABLE,
315 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
316 .domain = DOMAIN_KERNEL,
317 },
318 [MT_ROM] = {
319 .prot_sect = PMD_TYPE_SECT,
320 .domain = DOMAIN_KERNEL,
321 },
322 [MT_MEMORY_RWX_NONCACHED] = {
323 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
324 L_PTE_MT_BUFFERABLE,
325 .prot_l1 = PMD_TYPE_TABLE,
326 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
327 .domain = DOMAIN_KERNEL,
328 },
329 [MT_MEMORY_RW_DTCM] = {
330 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331 L_PTE_XN,
332 .prot_l1 = PMD_TYPE_TABLE,
333 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
334 .domain = DOMAIN_KERNEL,
335 },
336 [MT_MEMORY_RWX_ITCM] = {
337 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
338 .prot_l1 = PMD_TYPE_TABLE,
339 .domain = DOMAIN_KERNEL,
340 },
341 [MT_MEMORY_RW_SO] = {
342 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343 L_PTE_MT_UNCACHED | L_PTE_XN,
344 .prot_l1 = PMD_TYPE_TABLE,
345 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
346 PMD_SECT_UNCACHED | PMD_SECT_XN,
347 .domain = DOMAIN_KERNEL,
348 },
349 [MT_MEMORY_DMA_READY] = {
350 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
351 L_PTE_XN,
352 .prot_l1 = PMD_TYPE_TABLE,
353 .domain = DOMAIN_KERNEL,
354 },
355};
356
357const struct mem_type *get_mem_type(unsigned int type)
358{
359 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
360}
361EXPORT_SYMBOL(get_mem_type);
362
363static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
364
365static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
366 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
367
368static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
369{
370 return &bm_pte[pte_index(addr)];
371}
372
373static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
374{
375 return pte_offset_kernel(dir, addr);
376}
377
378static inline pmd_t * __init fixmap_pmd(unsigned long addr)
379{
380 pgd_t *pgd = pgd_offset_k(addr);
381 pud_t *pud = pud_offset(pgd, addr);
382 pmd_t *pmd = pmd_offset(pud, addr);
383
384 return pmd;
385}
386
387void __init early_fixmap_init(void)
388{
389 pmd_t *pmd;
390
391 /*
392 * The early fixmap range spans multiple pmds, for which
393 * we are not prepared:
394 */
395 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
396 != FIXADDR_TOP >> PMD_SHIFT);
397
398 pmd = fixmap_pmd(FIXADDR_TOP);
399 pmd_populate_kernel(&init_mm, pmd, bm_pte);
400
401 pte_offset_fixmap = pte_offset_early_fixmap;
402}
403
404/*
405 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
406 * As a result, this can only be called with preemption disabled, as under
407 * stop_machine().
408 */
409void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
410{
411 unsigned long vaddr = __fix_to_virt(idx);
412 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
413
414 /* Make sure fixmap region does not exceed available allocation. */
415 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
416 FIXADDR_END);
417 BUG_ON(idx >= __end_of_fixed_addresses);
418
419 /* we only support device mappings until pgprot_kernel has been set */
420 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
421 pgprot_val(pgprot_kernel) == 0))
422 return;
423
424 if (pgprot_val(prot))
425 set_pte_at(NULL, vaddr, pte,
426 pfn_pte(phys >> PAGE_SHIFT, prot));
427 else
428 pte_clear(NULL, vaddr, pte);
429 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
430}
431
432/*
433 * Adjust the PMD section entries according to the CPU in use.
434 */
435static void __init build_mem_type_table(void)
436{
437 struct cachepolicy *cp;
438 unsigned int cr = get_cr();
439 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
440 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
441 int cpu_arch = cpu_architecture();
442 int i;
443
444 if (cpu_arch < CPU_ARCH_ARMv6) {
445#if defined(CONFIG_CPU_DCACHE_DISABLE)
446 if (cachepolicy > CPOLICY_BUFFERED)
447 cachepolicy = CPOLICY_BUFFERED;
448#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
449 if (cachepolicy > CPOLICY_WRITETHROUGH)
450 cachepolicy = CPOLICY_WRITETHROUGH;
451#endif
452 }
453 if (cpu_arch < CPU_ARCH_ARMv5) {
454 if (cachepolicy >= CPOLICY_WRITEALLOC)
455 cachepolicy = CPOLICY_WRITEBACK;
456 ecc_mask = 0;
457 }
458
459 if (is_smp()) {
460 if (cachepolicy != CPOLICY_WRITEALLOC) {
461 pr_warn("Forcing write-allocate cache policy for SMP\n");
462 cachepolicy = CPOLICY_WRITEALLOC;
463 }
464 if (!(initial_pmd_value & PMD_SECT_S)) {
465 pr_warn("Forcing shared mappings for SMP\n");
466 initial_pmd_value |= PMD_SECT_S;
467 }
468 }
469
470 /*
471 * Strip out features not present on earlier architectures.
472 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
473 * without extended page tables don't have the 'Shared' bit.
474 */
475 if (cpu_arch < CPU_ARCH_ARMv5)
476 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
477 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
478 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
480 mem_types[i].prot_sect &= ~PMD_SECT_S;
481
482 /*
483 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
484 * "update-able on write" bit on ARM610). However, Xscale and
485 * Xscale3 require this bit to be cleared.
486 */
487 if (cpu_is_xscale_family()) {
488 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
489 mem_types[i].prot_sect &= ~PMD_BIT4;
490 mem_types[i].prot_l1 &= ~PMD_BIT4;
491 }
492 } else if (cpu_arch < CPU_ARCH_ARMv6) {
493 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
494 if (mem_types[i].prot_l1)
495 mem_types[i].prot_l1 |= PMD_BIT4;
496 if (mem_types[i].prot_sect)
497 mem_types[i].prot_sect |= PMD_BIT4;
498 }
499 }
500
501 /*
502 * Mark the device areas according to the CPU/architecture.
503 */
504 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
505 if (!cpu_is_xsc3()) {
506 /*
507 * Mark device regions on ARMv6+ as execute-never
508 * to prevent speculative instruction fetches.
509 */
510 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
511 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
512 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
513 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
514
515 /* Also setup NX memory mapping */
516 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
517 }
518 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
519 /*
520 * For ARMv7 with TEX remapping,
521 * - shared device is SXCB=1100
522 * - nonshared device is SXCB=0100
523 * - write combine device mem is SXCB=0001
524 * (Uncached Normal memory)
525 */
526 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
527 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
528 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
529 } else if (cpu_is_xsc3()) {
530 /*
531 * For Xscale3,
532 * - shared device is TEXCB=00101
533 * - nonshared device is TEXCB=01000
534 * - write combine device mem is TEXCB=00100
535 * (Inner/Outer Uncacheable in xsc3 parlance)
536 */
537 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
538 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
539 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
540 } else {
541 /*
542 * For ARMv6 and ARMv7 without TEX remapping,
543 * - shared device is TEXCB=00001
544 * - nonshared device is TEXCB=01000
545 * - write combine device mem is TEXCB=00100
546 * (Uncached Normal in ARMv6 parlance).
547 */
548 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
549 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
550 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
551 }
552 } else {
553 /*
554 * On others, write combining is "Uncached/Buffered"
555 */
556 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
557 }
558
559 /*
560 * Now deal with the memory-type mappings
561 */
562 cp = &cache_policies[cachepolicy];
563 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
564 s2_pgprot = cp->pte_s2;
565 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
566 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
567
568#ifndef CONFIG_ARM_LPAE
569 /*
570 * We don't use domains on ARMv6 (since this causes problems with
571 * v6/v7 kernels), so we must use a separate memory type for user
572 * r/o, kernel r/w to map the vectors page.
573 */
574 if (cpu_arch == CPU_ARCH_ARMv6)
575 vecs_pgprot |= L_PTE_MT_VECTORS;
576
577 /*
578 * Check is it with support for the PXN bit
579 * in the Short-descriptor translation table format descriptors.
580 */
581 if (cpu_arch == CPU_ARCH_ARMv7 &&
582 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
583 user_pmd_table |= PMD_PXNTABLE;
584 }
585#endif
586
587 /*
588 * ARMv6 and above have extended page tables.
589 */
590 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
591#ifndef CONFIG_ARM_LPAE
592 /*
593 * Mark cache clean areas and XIP ROM read only
594 * from SVC mode and no access from userspace.
595 */
596 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
597 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
598 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
599#endif
600
601 /*
602 * If the initial page tables were created with the S bit
603 * set, then we need to do the same here for the same
604 * reasons given in early_cachepolicy().
605 */
606 if (initial_pmd_value & PMD_SECT_S) {
607 user_pgprot |= L_PTE_SHARED;
608 kern_pgprot |= L_PTE_SHARED;
609 vecs_pgprot |= L_PTE_SHARED;
610 s2_pgprot |= L_PTE_SHARED;
611 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
612 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
613 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
614 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
615 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
616 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
617 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
618 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
619 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
620 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
621 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
622 }
623 }
624
625 /*
626 * Non-cacheable Normal - intended for memory areas that must
627 * not cause dirty cache line writebacks when used
628 */
629 if (cpu_arch >= CPU_ARCH_ARMv6) {
630 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
631 /* Non-cacheable Normal is XCB = 001 */
632 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
633 PMD_SECT_BUFFERED;
634 } else {
635 /* For both ARMv6 and non-TEX-remapping ARMv7 */
636 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
637 PMD_SECT_TEX(1);
638 }
639 } else {
640 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
641 }
642
643#ifdef CONFIG_ARM_LPAE
644 /*
645 * Do not generate access flag faults for the kernel mappings.
646 */
647 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
648 mem_types[i].prot_pte |= PTE_EXT_AF;
649 if (mem_types[i].prot_sect)
650 mem_types[i].prot_sect |= PMD_SECT_AF;
651 }
652 kern_pgprot |= PTE_EXT_AF;
653 vecs_pgprot |= PTE_EXT_AF;
654
655 /*
656 * Set PXN for user mappings
657 */
658 user_pgprot |= PTE_EXT_PXN;
659#endif
660
661 for (i = 0; i < 16; i++) {
662 pteval_t v = pgprot_val(protection_map[i]);
663 protection_map[i] = __pgprot(v | user_pgprot);
664 }
665
666 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
667 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
668
669 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
670 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
671 L_PTE_DIRTY | kern_pgprot);
672 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
673 pgprot_s2_device = __pgprot(s2_device_pgprot);
674 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
675
676 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
677 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
678 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
679 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
680 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
681 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
682 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
683 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
684 mem_types[MT_ROM].prot_sect |= cp->pmd;
685
686 switch (cp->pmd) {
687 case PMD_SECT_WT:
688 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
689 break;
690 case PMD_SECT_WB:
691 case PMD_SECT_WBWA:
692 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
693 break;
694 }
695 pr_info("Memory policy: %sData cache %s\n",
696 ecc_mask ? "ECC enabled, " : "", cp->policy);
697
698 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
699 struct mem_type *t = &mem_types[i];
700 if (t->prot_l1)
701 t->prot_l1 |= PMD_DOMAIN(t->domain);
702 if (t->prot_sect)
703 t->prot_sect |= PMD_DOMAIN(t->domain);
704 }
705}
706
707#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
708pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
709 unsigned long size, pgprot_t vma_prot)
710{
711 if (!pfn_valid(pfn))
712 return pgprot_noncached(vma_prot);
713 else if (file->f_flags & O_SYNC)
714 return pgprot_writecombine(vma_prot);
715 return vma_prot;
716}
717EXPORT_SYMBOL(phys_mem_access_prot);
718#endif
719
720#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
721
722static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
723{
724 void *ptr = __va(memblock_alloc(sz, align));
725 memset(ptr, 0, sz);
726 return ptr;
727}
728
729static void __init *early_alloc(unsigned long sz)
730{
731 return early_alloc_aligned(sz, sz);
732}
733
734static void *__init late_alloc(unsigned long sz)
735{
736 void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
737
738 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
739 BUG();
740 return ptr;
741}
742
743static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
744 unsigned long prot,
745 void *(*alloc)(unsigned long sz))
746{
747 if (pmd_none(*pmd)) {
748 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
749 __pmd_populate(pmd, __pa(pte), prot);
750 }
751 BUG_ON(pmd_bad(*pmd));
752 return pte_offset_kernel(pmd, addr);
753}
754
755static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
756 unsigned long prot)
757{
758 return arm_pte_alloc(pmd, addr, prot, early_alloc);
759}
760
761static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
762 unsigned long end, unsigned long pfn,
763 const struct mem_type *type,
764 void *(*alloc)(unsigned long sz),
765 bool ng)
766{
767 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
768 do {
769 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
770 ng ? PTE_EXT_NG : 0);
771 pfn++;
772 } while (pte++, addr += PAGE_SIZE, addr != end);
773}
774
775static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
776 unsigned long end, phys_addr_t phys,
777 const struct mem_type *type, bool ng)
778{
779 pmd_t *p = pmd;
780
781#ifndef CONFIG_ARM_LPAE
782 /*
783 * In classic MMU format, puds and pmds are folded in to
784 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
785 * group of L1 entries making up one logical pointer to
786 * an L2 table (2MB), where as PMDs refer to the individual
787 * L1 entries (1MB). Hence increment to get the correct
788 * offset for odd 1MB sections.
789 * (See arch/arm/include/asm/pgtable-2level.h)
790 */
791 if (addr & SECTION_SIZE)
792 pmd++;
793#endif
794 do {
795 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
796 phys += SECTION_SIZE;
797 } while (pmd++, addr += SECTION_SIZE, addr != end);
798
799 flush_pmd_entry(p);
800}
801
802static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
803 unsigned long end, phys_addr_t phys,
804 const struct mem_type *type,
805 void *(*alloc)(unsigned long sz), bool ng)
806{
807 pmd_t *pmd = pmd_offset(pud, addr);
808 unsigned long next;
809
810 do {
811 /*
812 * With LPAE, we must loop over to map
813 * all the pmds for the given range.
814 */
815 next = pmd_addr_end(addr, end);
816
817 /*
818 * Try a section mapping - addr, next and phys must all be
819 * aligned to a section boundary.
820 */
821 if (type->prot_sect &&
822 ((addr | next | phys) & ~SECTION_MASK) == 0) {
823 __map_init_section(pmd, addr, next, phys, type, ng);
824 } else {
825 alloc_init_pte(pmd, addr, next,
826 __phys_to_pfn(phys), type, alloc, ng);
827 }
828
829 phys += next - addr;
830
831 } while (pmd++, addr = next, addr != end);
832}
833
834static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
835 unsigned long end, phys_addr_t phys,
836 const struct mem_type *type,
837 void *(*alloc)(unsigned long sz), bool ng)
838{
839 pud_t *pud = pud_offset(pgd, addr);
840 unsigned long next;
841
842 do {
843 next = pud_addr_end(addr, end);
844 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
845 phys += next - addr;
846 } while (pud++, addr = next, addr != end);
847}
848
849#ifndef CONFIG_ARM_LPAE
850static void __init create_36bit_mapping(struct mm_struct *mm,
851 struct map_desc *md,
852 const struct mem_type *type,
853 bool ng)
854{
855 unsigned long addr, length, end;
856 phys_addr_t phys;
857 pgd_t *pgd;
858
859 addr = md->virtual;
860 phys = __pfn_to_phys(md->pfn);
861 length = PAGE_ALIGN(md->length);
862
863 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
864 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
865 (long long)__pfn_to_phys((u64)md->pfn), addr);
866 return;
867 }
868
869 /* N.B. ARMv6 supersections are only defined to work with domain 0.
870 * Since domain assignments can in fact be arbitrary, the
871 * 'domain == 0' check below is required to insure that ARMv6
872 * supersections are only allocated for domain 0 regardless
873 * of the actual domain assignments in use.
874 */
875 if (type->domain) {
876 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
877 (long long)__pfn_to_phys((u64)md->pfn), addr);
878 return;
879 }
880
881 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
882 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
883 (long long)__pfn_to_phys((u64)md->pfn), addr);
884 return;
885 }
886
887 /*
888 * Shift bits [35:32] of address into bits [23:20] of PMD
889 * (See ARMv6 spec).
890 */
891 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
892
893 pgd = pgd_offset(mm, addr);
894 end = addr + length;
895 do {
896 pud_t *pud = pud_offset(pgd, addr);
897 pmd_t *pmd = pmd_offset(pud, addr);
898 int i;
899
900 for (i = 0; i < 16; i++)
901 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
902 (ng ? PMD_SECT_nG : 0));
903
904 addr += SUPERSECTION_SIZE;
905 phys += SUPERSECTION_SIZE;
906 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
907 } while (addr != end);
908}
909#endif /* !CONFIG_ARM_LPAE */
910
911static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
912 void *(*alloc)(unsigned long sz),
913 bool ng)
914{
915 unsigned long addr, length, end;
916 phys_addr_t phys;
917 const struct mem_type *type;
918 pgd_t *pgd;
919
920 type = &mem_types[md->type];
921
922#ifndef CONFIG_ARM_LPAE
923 /*
924 * Catch 36-bit addresses
925 */
926 if (md->pfn >= 0x100000) {
927 create_36bit_mapping(mm, md, type, ng);
928 return;
929 }
930#endif
931
932 addr = md->virtual & PAGE_MASK;
933 phys = __pfn_to_phys(md->pfn);
934 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
935
936 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
937 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
938 (long long)__pfn_to_phys(md->pfn), addr);
939 return;
940 }
941
942 pgd = pgd_offset(mm, addr);
943 end = addr + length;
944 do {
945 unsigned long next = pgd_addr_end(addr, end);
946
947 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
948
949 phys += next - addr;
950 addr = next;
951 } while (pgd++, addr != end);
952}
953
954/*
955 * Create the page directory entries and any necessary
956 * page tables for the mapping specified by `md'. We
957 * are able to cope here with varying sizes and address
958 * offsets, and we take full advantage of sections and
959 * supersections.
960 */
961static void __init create_mapping(struct map_desc *md)
962{
963 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
964 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
965 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
966 return;
967 }
968
969 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
970 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
971 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
972 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
973 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
974 }
975
976 __create_mapping(&init_mm, md, early_alloc, false);
977}
978
979void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
980 bool ng)
981{
982#ifdef CONFIG_ARM_LPAE
983 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
984 if (WARN_ON(!pud))
985 return;
986 pmd_alloc(mm, pud, 0);
987#endif
988 __create_mapping(mm, md, late_alloc, ng);
989}
990
991/*
992 * Create the architecture specific mappings
993 */
994void __init iotable_init(struct map_desc *io_desc, int nr)
995{
996 struct map_desc *md;
997 struct vm_struct *vm;
998 struct static_vm *svm;
999
1000 if (!nr)
1001 return;
1002
1003 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
1004
1005 for (md = io_desc; nr; md++, nr--) {
1006 create_mapping(md);
1007
1008 vm = &svm->vm;
1009 vm->addr = (void *)(md->virtual & PAGE_MASK);
1010 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1011 vm->phys_addr = __pfn_to_phys(md->pfn);
1012 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1013 vm->flags |= VM_ARM_MTYPE(md->type);
1014 vm->caller = iotable_init;
1015 add_static_vm_early(svm++);
1016 }
1017}
1018
1019void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1020 void *caller)
1021{
1022 struct vm_struct *vm;
1023 struct static_vm *svm;
1024
1025 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1026
1027 vm = &svm->vm;
1028 vm->addr = (void *)addr;
1029 vm->size = size;
1030 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1031 vm->caller = caller;
1032 add_static_vm_early(svm);
1033}
1034
1035#ifndef CONFIG_ARM_LPAE
1036
1037/*
1038 * The Linux PMD is made of two consecutive section entries covering 2MB
1039 * (see definition in include/asm/pgtable-2level.h). However a call to
1040 * create_mapping() may optimize static mappings by using individual
1041 * 1MB section mappings. This leaves the actual PMD potentially half
1042 * initialized if the top or bottom section entry isn't used, leaving it
1043 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1044 * the virtual space left free by that unused section entry.
1045 *
1046 * Let's avoid the issue by inserting dummy vm entries covering the unused
1047 * PMD halves once the static mappings are in place.
1048 */
1049
1050static void __init pmd_empty_section_gap(unsigned long addr)
1051{
1052 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1053}
1054
1055static void __init fill_pmd_gaps(void)
1056{
1057 struct static_vm *svm;
1058 struct vm_struct *vm;
1059 unsigned long addr, next = 0;
1060 pmd_t *pmd;
1061
1062 list_for_each_entry(svm, &static_vmlist, list) {
1063 vm = &svm->vm;
1064 addr = (unsigned long)vm->addr;
1065 if (addr < next)
1066 continue;
1067
1068 /*
1069 * Check if this vm starts on an odd section boundary.
1070 * If so and the first section entry for this PMD is free
1071 * then we block the corresponding virtual address.
1072 */
1073 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1074 pmd = pmd_off_k(addr);
1075 if (pmd_none(*pmd))
1076 pmd_empty_section_gap(addr & PMD_MASK);
1077 }
1078
1079 /*
1080 * Then check if this vm ends on an odd section boundary.
1081 * If so and the second section entry for this PMD is empty
1082 * then we block the corresponding virtual address.
1083 */
1084 addr += vm->size;
1085 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1086 pmd = pmd_off_k(addr) + 1;
1087 if (pmd_none(*pmd))
1088 pmd_empty_section_gap(addr);
1089 }
1090
1091 /* no need to look at any vm entry until we hit the next PMD */
1092 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1093 }
1094}
1095
1096#else
1097#define fill_pmd_gaps() do { } while (0)
1098#endif
1099
1100#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1101static void __init pci_reserve_io(void)
1102{
1103 struct static_vm *svm;
1104
1105 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1106 if (svm)
1107 return;
1108
1109 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1110}
1111#else
1112#define pci_reserve_io() do { } while (0)
1113#endif
1114
1115#ifdef CONFIG_DEBUG_LL
1116void __init debug_ll_io_init(void)
1117{
1118 struct map_desc map;
1119
1120 debug_ll_addr(&map.pfn, &map.virtual);
1121 if (!map.pfn || !map.virtual)
1122 return;
1123 map.pfn = __phys_to_pfn(map.pfn);
1124 map.virtual &= PAGE_MASK;
1125 map.length = PAGE_SIZE;
1126 map.type = MT_DEVICE;
1127 iotable_init(&map, 1);
1128}
1129#endif
1130
1131static void * __initdata vmalloc_min =
1132 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1133
1134/*
1135 * vmalloc=size forces the vmalloc area to be exactly 'size'
1136 * bytes. This can be used to increase (or decrease) the vmalloc
1137 * area - the default is 240m.
1138 */
1139static int __init early_vmalloc(char *arg)
1140{
1141 unsigned long vmalloc_reserve = memparse(arg, NULL);
1142
1143 if (vmalloc_reserve < SZ_16M) {
1144 vmalloc_reserve = SZ_16M;
1145 pr_warn("vmalloc area too small, limiting to %luMB\n",
1146 vmalloc_reserve >> 20);
1147 }
1148
1149 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1150 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1151 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1152 vmalloc_reserve >> 20);
1153 }
1154
1155 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1156 return 0;
1157}
1158early_param("vmalloc", early_vmalloc);
1159
1160phys_addr_t arm_lowmem_limit __initdata = 0;
1161
1162void __init adjust_lowmem_bounds(void)
1163{
1164 phys_addr_t memblock_limit = 0;
1165 u64 vmalloc_limit;
1166 struct memblock_region *reg;
1167 phys_addr_t lowmem_limit = 0;
1168
1169 /*
1170 * Let's use our own (unoptimized) equivalent of __pa() that is
1171 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1172 * The result is used as the upper bound on physical memory address
1173 * and may itself be outside the valid range for which phys_addr_t
1174 * and therefore __pa() is defined.
1175 */
1176 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1177
1178 for_each_memblock(memory, reg) {
1179 phys_addr_t block_start = reg->base;
1180 phys_addr_t block_end = reg->base + reg->size;
1181
1182 if (reg->base < vmalloc_limit) {
1183 if (block_end > lowmem_limit)
1184 /*
1185 * Compare as u64 to ensure vmalloc_limit does
1186 * not get truncated. block_end should always
1187 * fit in phys_addr_t so there should be no
1188 * issue with assignment.
1189 */
1190 lowmem_limit = min_t(u64,
1191 vmalloc_limit,
1192 block_end);
1193
1194 /*
1195 * Find the first non-pmd-aligned page, and point
1196 * memblock_limit at it. This relies on rounding the
1197 * limit down to be pmd-aligned, which happens at the
1198 * end of this function.
1199 *
1200 * With this algorithm, the start or end of almost any
1201 * bank can be non-pmd-aligned. The only exception is
1202 * that the start of the bank 0 must be section-
1203 * aligned, since otherwise memory would need to be
1204 * allocated when mapping the start of bank 0, which
1205 * occurs before any free memory is mapped.
1206 */
1207 if (!memblock_limit) {
1208 if (!IS_ALIGNED(block_start, PMD_SIZE))
1209 memblock_limit = block_start;
1210 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1211 memblock_limit = lowmem_limit;
1212 }
1213
1214 }
1215 }
1216
1217 arm_lowmem_limit = lowmem_limit;
1218
1219 high_memory = __va(arm_lowmem_limit - 1) + 1;
1220
1221 if (!memblock_limit)
1222 memblock_limit = arm_lowmem_limit;
1223
1224 /*
1225 * Round the memblock limit down to a pmd size. This
1226 * helps to ensure that we will allocate memory from the
1227 * last full pmd, which should be mapped.
1228 */
1229 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1230
1231 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1232 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1233 phys_addr_t end = memblock_end_of_DRAM();
1234
1235 pr_notice("Ignoring RAM at %pa-%pa\n",
1236 &memblock_limit, &end);
1237 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1238
1239 memblock_remove(memblock_limit, end - memblock_limit);
1240 }
1241 }
1242
1243 memblock_set_current_limit(memblock_limit);
1244}
1245
1246static inline void prepare_page_table(void)
1247{
1248 unsigned long addr;
1249 phys_addr_t end;
1250
1251 /*
1252 * Clear out all the mappings below the kernel image.
1253 */
1254 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1255 pmd_clear(pmd_off_k(addr));
1256
1257#ifdef CONFIG_XIP_KERNEL
1258 /* The XIP kernel is mapped in the module area -- skip over it */
1259 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1260#endif
1261 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1262 pmd_clear(pmd_off_k(addr));
1263
1264 /*
1265 * Find the end of the first block of lowmem.
1266 */
1267 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1268 if (end >= arm_lowmem_limit)
1269 end = arm_lowmem_limit;
1270
1271 /*
1272 * Clear out all the kernel space mappings, except for the first
1273 * memory bank, up to the vmalloc region.
1274 */
1275 for (addr = __phys_to_virt(end);
1276 addr < VMALLOC_START; addr += PMD_SIZE)
1277 pmd_clear(pmd_off_k(addr));
1278}
1279
1280#ifdef CONFIG_ARM_LPAE
1281/* the first page is reserved for pgd */
1282#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1283 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1284#else
1285#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1286#endif
1287
1288/*
1289 * Reserve the special regions of memory
1290 */
1291void __init arm_mm_memblock_reserve(void)
1292{
1293 /*
1294 * Reserve the page tables. These are already in use,
1295 * and can only be in node 0.
1296 */
1297 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1298
1299#ifdef CONFIG_SA1111
1300 /*
1301 * Because of the SA1111 DMA bug, we want to preserve our
1302 * precious DMA-able memory...
1303 */
1304 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1305#endif
1306}
1307
1308/*
1309 * Set up the device mappings. Since we clear out the page tables for all
1310 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1311 * device mappings. This means earlycon can be used to debug this function
1312 * Any other function or debugging method which may touch any device _will_
1313 * crash the kernel.
1314 */
1315static void __init devicemaps_init(const struct machine_desc *mdesc)
1316{
1317 struct map_desc map;
1318 unsigned long addr;
1319 void *vectors;
1320
1321 /*
1322 * Allocate the vector page early.
1323 */
1324 vectors = early_alloc(PAGE_SIZE * 2);
1325
1326 early_trap_init(vectors);
1327
1328 /*
1329 * Clear page table except top pmd used by early fixmaps
1330 */
1331 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1332 pmd_clear(pmd_off_k(addr));
1333
1334 /*
1335 * Map the kernel if it is XIP.
1336 * It is always first in the modulearea.
1337 */
1338#ifdef CONFIG_XIP_KERNEL
1339 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1340 map.virtual = MODULES_VADDR;
1341 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1342 map.type = MT_ROM;
1343 create_mapping(&map);
1344#endif
1345
1346 /*
1347 * Map the cache flushing regions.
1348 */
1349#ifdef FLUSH_BASE
1350 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1351 map.virtual = FLUSH_BASE;
1352 map.length = SZ_1M;
1353 map.type = MT_CACHECLEAN;
1354 create_mapping(&map);
1355#endif
1356#ifdef FLUSH_BASE_MINICACHE
1357 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1358 map.virtual = FLUSH_BASE_MINICACHE;
1359 map.length = SZ_1M;
1360 map.type = MT_MINICLEAN;
1361 create_mapping(&map);
1362#endif
1363
1364 /*
1365 * Create a mapping for the machine vectors at the high-vectors
1366 * location (0xffff0000). If we aren't using high-vectors, also
1367 * create a mapping at the low-vectors virtual address.
1368 */
1369 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1370 map.virtual = 0xffff0000;
1371 map.length = PAGE_SIZE;
1372#ifdef CONFIG_KUSER_HELPERS
1373 map.type = MT_HIGH_VECTORS;
1374#else
1375 map.type = MT_LOW_VECTORS;
1376#endif
1377 create_mapping(&map);
1378
1379 if (!vectors_high()) {
1380 map.virtual = 0;
1381 map.length = PAGE_SIZE * 2;
1382 map.type = MT_LOW_VECTORS;
1383 create_mapping(&map);
1384 }
1385
1386 /* Now create a kernel read-only mapping */
1387 map.pfn += 1;
1388 map.virtual = 0xffff0000 + PAGE_SIZE;
1389 map.length = PAGE_SIZE;
1390 map.type = MT_LOW_VECTORS;
1391 create_mapping(&map);
1392
1393 /*
1394 * Ask the machine support to map in the statically mapped devices.
1395 */
1396 if (mdesc->map_io)
1397 mdesc->map_io();
1398 else
1399 debug_ll_io_init();
1400 fill_pmd_gaps();
1401
1402 /* Reserve fixed i/o space in VMALLOC region */
1403 pci_reserve_io();
1404
1405 /*
1406 * Finally flush the caches and tlb to ensure that we're in a
1407 * consistent state wrt the writebuffer. This also ensures that
1408 * any write-allocated cache lines in the vector page are written
1409 * back. After this point, we can start to touch devices again.
1410 */
1411 local_flush_tlb_all();
1412 flush_cache_all();
1413
1414 /* Enable asynchronous aborts */
1415 early_abt_enable();
1416}
1417
1418static void __init kmap_init(void)
1419{
1420#ifdef CONFIG_HIGHMEM
1421 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1422 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1423#endif
1424
1425 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1426 _PAGE_KERNEL_TABLE);
1427}
1428
1429static void __init map_lowmem(void)
1430{
1431 struct memblock_region *reg;
1432 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1433 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1434
1435 /* Map all the lowmem memory banks. */
1436 for_each_memblock(memory, reg) {
1437 phys_addr_t start = reg->base;
1438 phys_addr_t end = start + reg->size;
1439 struct map_desc map;
1440
1441 if (memblock_is_nomap(reg))
1442 continue;
1443
1444 if (end > arm_lowmem_limit)
1445 end = arm_lowmem_limit;
1446 if (start >= end)
1447 break;
1448
1449 if (end < kernel_x_start) {
1450 map.pfn = __phys_to_pfn(start);
1451 map.virtual = __phys_to_virt(start);
1452 map.length = end - start;
1453 map.type = MT_MEMORY_RWX;
1454
1455 create_mapping(&map);
1456 } else if (start >= kernel_x_end) {
1457 map.pfn = __phys_to_pfn(start);
1458 map.virtual = __phys_to_virt(start);
1459 map.length = end - start;
1460 map.type = MT_MEMORY_RW;
1461
1462 create_mapping(&map);
1463 } else {
1464 /* This better cover the entire kernel */
1465 if (start < kernel_x_start) {
1466 map.pfn = __phys_to_pfn(start);
1467 map.virtual = __phys_to_virt(start);
1468 map.length = kernel_x_start - start;
1469 map.type = MT_MEMORY_RW;
1470
1471 create_mapping(&map);
1472 }
1473
1474 map.pfn = __phys_to_pfn(kernel_x_start);
1475 map.virtual = __phys_to_virt(kernel_x_start);
1476 map.length = kernel_x_end - kernel_x_start;
1477 map.type = MT_MEMORY_RWX;
1478
1479 create_mapping(&map);
1480
1481 if (kernel_x_end < end) {
1482 map.pfn = __phys_to_pfn(kernel_x_end);
1483 map.virtual = __phys_to_virt(kernel_x_end);
1484 map.length = end - kernel_x_end;
1485 map.type = MT_MEMORY_RW;
1486
1487 create_mapping(&map);
1488 }
1489 }
1490 }
1491}
1492
1493#ifdef CONFIG_ARM_PV_FIXUP
1494extern unsigned long __atags_pointer;
1495typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1496pgtables_remap lpae_pgtables_remap_asm;
1497
1498/*
1499 * early_paging_init() recreates boot time page table setup, allowing machines
1500 * to switch over to a high (>4G) address space on LPAE systems
1501 */
1502static void __init early_paging_init(const struct machine_desc *mdesc)
1503{
1504 pgtables_remap *lpae_pgtables_remap;
1505 unsigned long pa_pgd;
1506 unsigned int cr, ttbcr;
1507 long long offset;
1508 void *boot_data;
1509
1510 if (!mdesc->pv_fixup)
1511 return;
1512
1513 offset = mdesc->pv_fixup();
1514 if (offset == 0)
1515 return;
1516
1517 /*
1518 * Get the address of the remap function in the 1:1 identity
1519 * mapping setup by the early page table assembly code. We
1520 * must get this prior to the pv update. The following barrier
1521 * ensures that this is complete before we fixup any P:V offsets.
1522 */
1523 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1524 pa_pgd = __pa(swapper_pg_dir);
1525 boot_data = __va(__atags_pointer);
1526 barrier();
1527
1528 pr_info("Switching physical address space to 0x%08llx\n",
1529 (u64)PHYS_OFFSET + offset);
1530
1531 /* Re-set the phys pfn offset, and the pv offset */
1532 __pv_offset += offset;
1533 __pv_phys_pfn_offset += PFN_DOWN(offset);
1534
1535 /* Run the patch stub to update the constants */
1536 fixup_pv_table(&__pv_table_begin,
1537 (&__pv_table_end - &__pv_table_begin) << 2);
1538
1539 /*
1540 * We changing not only the virtual to physical mapping, but also
1541 * the physical addresses used to access memory. We need to flush
1542 * all levels of cache in the system with caching disabled to
1543 * ensure that all data is written back, and nothing is prefetched
1544 * into the caches. We also need to prevent the TLB walkers
1545 * allocating into the caches too. Note that this is ARMv7 LPAE
1546 * specific.
1547 */
1548 cr = get_cr();
1549 set_cr(cr & ~(CR_I | CR_C));
1550 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1551 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1552 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1553 flush_cache_all();
1554
1555 /*
1556 * Fixup the page tables - this must be in the idmap region as
1557 * we need to disable the MMU to do this safely, and hence it
1558 * needs to be assembly. It's fairly simple, as we're using the
1559 * temporary tables setup by the initial assembly code.
1560 */
1561 lpae_pgtables_remap(offset, pa_pgd, boot_data);
1562
1563 /* Re-enable the caches and cacheable TLB walks */
1564 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1565 set_cr(cr);
1566}
1567
1568#else
1569
1570static void __init early_paging_init(const struct machine_desc *mdesc)
1571{
1572 long long offset;
1573
1574 if (!mdesc->pv_fixup)
1575 return;
1576
1577 offset = mdesc->pv_fixup();
1578 if (offset == 0)
1579 return;
1580
1581 pr_crit("Physical address space modification is only to support Keystone2.\n");
1582 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1583 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1584 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1585}
1586
1587#endif
1588
1589static void __init early_fixmap_shutdown(void)
1590{
1591 int i;
1592 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1593
1594 pte_offset_fixmap = pte_offset_late_fixmap;
1595 pmd_clear(fixmap_pmd(va));
1596 local_flush_tlb_kernel_page(va);
1597
1598 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1599 pte_t *pte;
1600 struct map_desc map;
1601
1602 map.virtual = fix_to_virt(i);
1603 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1604
1605 /* Only i/o device mappings are supported ATM */
1606 if (pte_none(*pte) ||
1607 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1608 continue;
1609
1610 map.pfn = pte_pfn(*pte);
1611 map.type = MT_DEVICE;
1612 map.length = PAGE_SIZE;
1613
1614 create_mapping(&map);
1615 }
1616}
1617
1618/*
1619 * paging_init() sets up the page tables, initialises the zone memory
1620 * maps, and sets up the zero page, bad page and bad page tables.
1621 */
1622void __init paging_init(const struct machine_desc *mdesc)
1623{
1624 void *zero_page;
1625
1626 prepare_page_table();
1627 map_lowmem();
1628 memblock_set_current_limit(arm_lowmem_limit);
1629 dma_contiguous_remap();
1630 early_fixmap_shutdown();
1631 devicemaps_init(mdesc);
1632 kmap_init();
1633 tcm_init();
1634
1635 top_pmd = pmd_off_k(0xffff0000);
1636
1637 /* allocate the zero page. */
1638 zero_page = early_alloc(PAGE_SIZE);
1639
1640 bootmem_init();
1641
1642 empty_zero_page = virt_to_page(zero_page);
1643 __flush_dcache_page(NULL, empty_zero_page);
1644
1645 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1646 kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1647}
1648
1649void __init early_mm_init(const struct machine_desc *mdesc)
1650{
1651 build_mem_type_table();
1652 early_paging_init(mdesc);
1653}
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/mman.h>
15#include <linux/nodemask.h>
16#include <linux/memblock.h>
17#include <linux/fs.h>
18
19#include <asm/cputype.h>
20#include <asm/sections.h>
21#include <asm/cachetype.h>
22#include <asm/setup.h>
23#include <asm/sizes.h>
24#include <asm/smp_plat.h>
25#include <asm/tlb.h>
26#include <asm/highmem.h>
27#include <asm/traps.h>
28
29#include <asm/mach/arch.h>
30#include <asm/mach/map.h>
31
32#include "mm.h"
33
34/*
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
37 */
38struct page *empty_zero_page;
39EXPORT_SYMBOL(empty_zero_page);
40
41/*
42 * The pmd table for the upper-most set of pages.
43 */
44pmd_t *top_pmd;
45
46#define CPOLICY_UNCACHED 0
47#define CPOLICY_BUFFERED 1
48#define CPOLICY_WRITETHROUGH 2
49#define CPOLICY_WRITEBACK 3
50#define CPOLICY_WRITEALLOC 4
51
52static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53static unsigned int ecc_mask __initdata = 0;
54pgprot_t pgprot_user;
55pgprot_t pgprot_kernel;
56
57EXPORT_SYMBOL(pgprot_user);
58EXPORT_SYMBOL(pgprot_kernel);
59
60struct cachepolicy {
61 const char policy[16];
62 unsigned int cr_mask;
63 unsigned int pmd;
64 pteval_t pte;
65};
66
67static struct cachepolicy cache_policies[] __initdata = {
68 {
69 .policy = "uncached",
70 .cr_mask = CR_W|CR_C,
71 .pmd = PMD_SECT_UNCACHED,
72 .pte = L_PTE_MT_UNCACHED,
73 }, {
74 .policy = "buffered",
75 .cr_mask = CR_C,
76 .pmd = PMD_SECT_BUFFERED,
77 .pte = L_PTE_MT_BUFFERABLE,
78 }, {
79 .policy = "writethrough",
80 .cr_mask = 0,
81 .pmd = PMD_SECT_WT,
82 .pte = L_PTE_MT_WRITETHROUGH,
83 }, {
84 .policy = "writeback",
85 .cr_mask = 0,
86 .pmd = PMD_SECT_WB,
87 .pte = L_PTE_MT_WRITEBACK,
88 }, {
89 .policy = "writealloc",
90 .cr_mask = 0,
91 .pmd = PMD_SECT_WBWA,
92 .pte = L_PTE_MT_WRITEALLOC,
93 }
94};
95
96/*
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
101 */
102static int __init early_cachepolicy(char *p)
103{
104 int i;
105
106 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107 int len = strlen(cache_policies[i].policy);
108
109 if (memcmp(p, cache_policies[i].policy, len) == 0) {
110 cachepolicy = i;
111 cr_alignment &= ~cache_policies[i].cr_mask;
112 cr_no_alignment &= ~cache_policies[i].cr_mask;
113 break;
114 }
115 }
116 if (i == ARRAY_SIZE(cache_policies))
117 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 /*
119 * This restriction is partly to do with the way we boot; it is
120 * unpredictable to have memory mapped using two different sets of
121 * memory attributes (shared, type, and cache attribs). We can not
122 * change these attributes once the initial assembly has setup the
123 * page tables.
124 */
125 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
126 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
127 cachepolicy = CPOLICY_WRITEBACK;
128 }
129 flush_cache_all();
130 set_cr(cr_alignment);
131 return 0;
132}
133early_param("cachepolicy", early_cachepolicy);
134
135static int __init early_nocache(char *__unused)
136{
137 char *p = "buffered";
138 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
139 early_cachepolicy(p);
140 return 0;
141}
142early_param("nocache", early_nocache);
143
144static int __init early_nowrite(char *__unused)
145{
146 char *p = "uncached";
147 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 early_cachepolicy(p);
149 return 0;
150}
151early_param("nowb", early_nowrite);
152
153static int __init early_ecc(char *p)
154{
155 if (memcmp(p, "on", 2) == 0)
156 ecc_mask = PMD_PROTECTION;
157 else if (memcmp(p, "off", 3) == 0)
158 ecc_mask = 0;
159 return 0;
160}
161early_param("ecc", early_ecc);
162
163static int __init noalign_setup(char *__unused)
164{
165 cr_alignment &= ~CR_A;
166 cr_no_alignment &= ~CR_A;
167 set_cr(cr_alignment);
168 return 1;
169}
170__setup("noalign", noalign_setup);
171
172#ifndef CONFIG_SMP
173void adjust_cr(unsigned long mask, unsigned long set)
174{
175 unsigned long flags;
176
177 mask &= ~CR_A;
178
179 set &= mask;
180
181 local_irq_save(flags);
182
183 cr_no_alignment = (cr_no_alignment & ~mask) | set;
184 cr_alignment = (cr_alignment & ~mask) | set;
185
186 set_cr((get_cr() & ~mask) | set);
187
188 local_irq_restore(flags);
189}
190#endif
191
192#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
193#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
194
195static struct mem_type mem_types[] = {
196 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
197 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
198 L_PTE_SHARED,
199 .prot_l1 = PMD_TYPE_TABLE,
200 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
201 .domain = DOMAIN_IO,
202 },
203 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
204 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
205 .prot_l1 = PMD_TYPE_TABLE,
206 .prot_sect = PROT_SECT_DEVICE,
207 .domain = DOMAIN_IO,
208 },
209 [MT_DEVICE_CACHED] = { /* ioremap_cached */
210 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
211 .prot_l1 = PMD_TYPE_TABLE,
212 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
213 .domain = DOMAIN_IO,
214 },
215 [MT_DEVICE_WC] = { /* ioremap_wc */
216 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
217 .prot_l1 = PMD_TYPE_TABLE,
218 .prot_sect = PROT_SECT_DEVICE,
219 .domain = DOMAIN_IO,
220 },
221 [MT_UNCACHED] = {
222 .prot_pte = PROT_PTE_DEVICE,
223 .prot_l1 = PMD_TYPE_TABLE,
224 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
225 .domain = DOMAIN_IO,
226 },
227 [MT_CACHECLEAN] = {
228 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
229 .domain = DOMAIN_KERNEL,
230 },
231 [MT_MINICLEAN] = {
232 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
233 .domain = DOMAIN_KERNEL,
234 },
235 [MT_LOW_VECTORS] = {
236 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
237 L_PTE_RDONLY,
238 .prot_l1 = PMD_TYPE_TABLE,
239 .domain = DOMAIN_USER,
240 },
241 [MT_HIGH_VECTORS] = {
242 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
243 L_PTE_USER | L_PTE_RDONLY,
244 .prot_l1 = PMD_TYPE_TABLE,
245 .domain = DOMAIN_USER,
246 },
247 [MT_MEMORY] = {
248 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
249 .prot_l1 = PMD_TYPE_TABLE,
250 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251 .domain = DOMAIN_KERNEL,
252 },
253 [MT_ROM] = {
254 .prot_sect = PMD_TYPE_SECT,
255 .domain = DOMAIN_KERNEL,
256 },
257 [MT_MEMORY_NONCACHED] = {
258 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
259 L_PTE_MT_BUFFERABLE,
260 .prot_l1 = PMD_TYPE_TABLE,
261 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
262 .domain = DOMAIN_KERNEL,
263 },
264 [MT_MEMORY_DTCM] = {
265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 L_PTE_XN,
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
269 .domain = DOMAIN_KERNEL,
270 },
271 [MT_MEMORY_ITCM] = {
272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
273 .prot_l1 = PMD_TYPE_TABLE,
274 .domain = DOMAIN_KERNEL,
275 },
276};
277
278const struct mem_type *get_mem_type(unsigned int type)
279{
280 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
281}
282EXPORT_SYMBOL(get_mem_type);
283
284/*
285 * Adjust the PMD section entries according to the CPU in use.
286 */
287static void __init build_mem_type_table(void)
288{
289 struct cachepolicy *cp;
290 unsigned int cr = get_cr();
291 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
292 int cpu_arch = cpu_architecture();
293 int i;
294
295 if (cpu_arch < CPU_ARCH_ARMv6) {
296#if defined(CONFIG_CPU_DCACHE_DISABLE)
297 if (cachepolicy > CPOLICY_BUFFERED)
298 cachepolicy = CPOLICY_BUFFERED;
299#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
300 if (cachepolicy > CPOLICY_WRITETHROUGH)
301 cachepolicy = CPOLICY_WRITETHROUGH;
302#endif
303 }
304 if (cpu_arch < CPU_ARCH_ARMv5) {
305 if (cachepolicy >= CPOLICY_WRITEALLOC)
306 cachepolicy = CPOLICY_WRITEBACK;
307 ecc_mask = 0;
308 }
309 if (is_smp())
310 cachepolicy = CPOLICY_WRITEALLOC;
311
312 /*
313 * Strip out features not present on earlier architectures.
314 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
315 * without extended page tables don't have the 'Shared' bit.
316 */
317 if (cpu_arch < CPU_ARCH_ARMv5)
318 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
319 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
320 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
321 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
322 mem_types[i].prot_sect &= ~PMD_SECT_S;
323
324 /*
325 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
326 * "update-able on write" bit on ARM610). However, Xscale and
327 * Xscale3 require this bit to be cleared.
328 */
329 if (cpu_is_xscale() || cpu_is_xsc3()) {
330 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
331 mem_types[i].prot_sect &= ~PMD_BIT4;
332 mem_types[i].prot_l1 &= ~PMD_BIT4;
333 }
334 } else if (cpu_arch < CPU_ARCH_ARMv6) {
335 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
336 if (mem_types[i].prot_l1)
337 mem_types[i].prot_l1 |= PMD_BIT4;
338 if (mem_types[i].prot_sect)
339 mem_types[i].prot_sect |= PMD_BIT4;
340 }
341 }
342
343 /*
344 * Mark the device areas according to the CPU/architecture.
345 */
346 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
347 if (!cpu_is_xsc3()) {
348 /*
349 * Mark device regions on ARMv6+ as execute-never
350 * to prevent speculative instruction fetches.
351 */
352 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
353 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
354 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
355 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
356 }
357 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
358 /*
359 * For ARMv7 with TEX remapping,
360 * - shared device is SXCB=1100
361 * - nonshared device is SXCB=0100
362 * - write combine device mem is SXCB=0001
363 * (Uncached Normal memory)
364 */
365 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
366 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
367 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
368 } else if (cpu_is_xsc3()) {
369 /*
370 * For Xscale3,
371 * - shared device is TEXCB=00101
372 * - nonshared device is TEXCB=01000
373 * - write combine device mem is TEXCB=00100
374 * (Inner/Outer Uncacheable in xsc3 parlance)
375 */
376 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
377 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
378 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
379 } else {
380 /*
381 * For ARMv6 and ARMv7 without TEX remapping,
382 * - shared device is TEXCB=00001
383 * - nonshared device is TEXCB=01000
384 * - write combine device mem is TEXCB=00100
385 * (Uncached Normal in ARMv6 parlance).
386 */
387 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
388 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
389 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
390 }
391 } else {
392 /*
393 * On others, write combining is "Uncached/Buffered"
394 */
395 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
396 }
397
398 /*
399 * Now deal with the memory-type mappings
400 */
401 cp = &cache_policies[cachepolicy];
402 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
403
404 /*
405 * Only use write-through for non-SMP systems
406 */
407 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
408 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
409
410 /*
411 * Enable CPU-specific coherency if supported.
412 * (Only available on XSC3 at the moment.)
413 */
414 if (arch_is_coherent() && cpu_is_xsc3()) {
415 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
417 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
418 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
419 }
420 /*
421 * ARMv6 and above have extended page tables.
422 */
423 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
424 /*
425 * Mark cache clean areas and XIP ROM read only
426 * from SVC mode and no access from userspace.
427 */
428 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
429 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
430 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
431
432 if (is_smp()) {
433 /*
434 * Mark memory with the "shared" attribute
435 * for SMP systems
436 */
437 user_pgprot |= L_PTE_SHARED;
438 kern_pgprot |= L_PTE_SHARED;
439 vecs_pgprot |= L_PTE_SHARED;
440 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
441 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
442 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
443 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
444 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
445 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
446 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
447 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
448 }
449 }
450
451 /*
452 * Non-cacheable Normal - intended for memory areas that must
453 * not cause dirty cache line writebacks when used
454 */
455 if (cpu_arch >= CPU_ARCH_ARMv6) {
456 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
457 /* Non-cacheable Normal is XCB = 001 */
458 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
459 PMD_SECT_BUFFERED;
460 } else {
461 /* For both ARMv6 and non-TEX-remapping ARMv7 */
462 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
463 PMD_SECT_TEX(1);
464 }
465 } else {
466 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
467 }
468
469 for (i = 0; i < 16; i++) {
470 unsigned long v = pgprot_val(protection_map[i]);
471 protection_map[i] = __pgprot(v | user_pgprot);
472 }
473
474 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
475 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
476
477 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
478 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
479 L_PTE_DIRTY | kern_pgprot);
480
481 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
482 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
483 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
484 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
485 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
486 mem_types[MT_ROM].prot_sect |= cp->pmd;
487
488 switch (cp->pmd) {
489 case PMD_SECT_WT:
490 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
491 break;
492 case PMD_SECT_WB:
493 case PMD_SECT_WBWA:
494 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
495 break;
496 }
497 printk("Memory policy: ECC %sabled, Data cache %s\n",
498 ecc_mask ? "en" : "dis", cp->policy);
499
500 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
501 struct mem_type *t = &mem_types[i];
502 if (t->prot_l1)
503 t->prot_l1 |= PMD_DOMAIN(t->domain);
504 if (t->prot_sect)
505 t->prot_sect |= PMD_DOMAIN(t->domain);
506 }
507}
508
509#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
510pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
511 unsigned long size, pgprot_t vma_prot)
512{
513 if (!pfn_valid(pfn))
514 return pgprot_noncached(vma_prot);
515 else if (file->f_flags & O_SYNC)
516 return pgprot_writecombine(vma_prot);
517 return vma_prot;
518}
519EXPORT_SYMBOL(phys_mem_access_prot);
520#endif
521
522#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
523
524static void __init *early_alloc(unsigned long sz)
525{
526 void *ptr = __va(memblock_alloc(sz, sz));
527 memset(ptr, 0, sz);
528 return ptr;
529}
530
531static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
532{
533 if (pmd_none(*pmd)) {
534 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
535 __pmd_populate(pmd, __pa(pte), prot);
536 }
537 BUG_ON(pmd_bad(*pmd));
538 return pte_offset_kernel(pmd, addr);
539}
540
541static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
542 unsigned long end, unsigned long pfn,
543 const struct mem_type *type)
544{
545 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
546 do {
547 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
548 pfn++;
549 } while (pte++, addr += PAGE_SIZE, addr != end);
550}
551
552static void __init alloc_init_section(pud_t *pud, unsigned long addr,
553 unsigned long end, phys_addr_t phys,
554 const struct mem_type *type)
555{
556 pmd_t *pmd = pmd_offset(pud, addr);
557
558 /*
559 * Try a section mapping - end, addr and phys must all be aligned
560 * to a section boundary. Note that PMDs refer to the individual
561 * L1 entries, whereas PGDs refer to a group of L1 entries making
562 * up one logical pointer to an L2 table.
563 */
564 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
565 pmd_t *p = pmd;
566
567 if (addr & SECTION_SIZE)
568 pmd++;
569
570 do {
571 *pmd = __pmd(phys | type->prot_sect);
572 phys += SECTION_SIZE;
573 } while (pmd++, addr += SECTION_SIZE, addr != end);
574
575 flush_pmd_entry(p);
576 } else {
577 /*
578 * No need to loop; pte's aren't interested in the
579 * individual L1 entries.
580 */
581 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
582 }
583}
584
585static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
586 unsigned long phys, const struct mem_type *type)
587{
588 pud_t *pud = pud_offset(pgd, addr);
589 unsigned long next;
590
591 do {
592 next = pud_addr_end(addr, end);
593 alloc_init_section(pud, addr, next, phys, type);
594 phys += next - addr;
595 } while (pud++, addr = next, addr != end);
596}
597
598static void __init create_36bit_mapping(struct map_desc *md,
599 const struct mem_type *type)
600{
601 unsigned long addr, length, end;
602 phys_addr_t phys;
603 pgd_t *pgd;
604
605 addr = md->virtual;
606 phys = __pfn_to_phys(md->pfn);
607 length = PAGE_ALIGN(md->length);
608
609 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
610 printk(KERN_ERR "MM: CPU does not support supersection "
611 "mapping for 0x%08llx at 0x%08lx\n",
612 (long long)__pfn_to_phys((u64)md->pfn), addr);
613 return;
614 }
615
616 /* N.B. ARMv6 supersections are only defined to work with domain 0.
617 * Since domain assignments can in fact be arbitrary, the
618 * 'domain == 0' check below is required to insure that ARMv6
619 * supersections are only allocated for domain 0 regardless
620 * of the actual domain assignments in use.
621 */
622 if (type->domain) {
623 printk(KERN_ERR "MM: invalid domain in supersection "
624 "mapping for 0x%08llx at 0x%08lx\n",
625 (long long)__pfn_to_phys((u64)md->pfn), addr);
626 return;
627 }
628
629 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
630 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
631 " at 0x%08lx invalid alignment\n",
632 (long long)__pfn_to_phys((u64)md->pfn), addr);
633 return;
634 }
635
636 /*
637 * Shift bits [35:32] of address into bits [23:20] of PMD
638 * (See ARMv6 spec).
639 */
640 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
641
642 pgd = pgd_offset_k(addr);
643 end = addr + length;
644 do {
645 pud_t *pud = pud_offset(pgd, addr);
646 pmd_t *pmd = pmd_offset(pud, addr);
647 int i;
648
649 for (i = 0; i < 16; i++)
650 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
651
652 addr += SUPERSECTION_SIZE;
653 phys += SUPERSECTION_SIZE;
654 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
655 } while (addr != end);
656}
657
658/*
659 * Create the page directory entries and any necessary
660 * page tables for the mapping specified by `md'. We
661 * are able to cope here with varying sizes and address
662 * offsets, and we take full advantage of sections and
663 * supersections.
664 */
665static void __init create_mapping(struct map_desc *md)
666{
667 unsigned long addr, length, end;
668 phys_addr_t phys;
669 const struct mem_type *type;
670 pgd_t *pgd;
671
672 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
673 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
674 " at 0x%08lx in user region\n",
675 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
676 return;
677 }
678
679 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
680 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
681 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
682 " at 0x%08lx overlaps vmalloc space\n",
683 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
684 }
685
686 type = &mem_types[md->type];
687
688 /*
689 * Catch 36-bit addresses
690 */
691 if (md->pfn >= 0x100000) {
692 create_36bit_mapping(md, type);
693 return;
694 }
695
696 addr = md->virtual & PAGE_MASK;
697 phys = __pfn_to_phys(md->pfn);
698 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
699
700 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
701 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
702 "be mapped using pages, ignoring.\n",
703 (long long)__pfn_to_phys(md->pfn), addr);
704 return;
705 }
706
707 pgd = pgd_offset_k(addr);
708 end = addr + length;
709 do {
710 unsigned long next = pgd_addr_end(addr, end);
711
712 alloc_init_pud(pgd, addr, next, phys, type);
713
714 phys += next - addr;
715 addr = next;
716 } while (pgd++, addr != end);
717}
718
719/*
720 * Create the architecture specific mappings
721 */
722void __init iotable_init(struct map_desc *io_desc, int nr)
723{
724 int i;
725
726 for (i = 0; i < nr; i++)
727 create_mapping(io_desc + i);
728}
729
730static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
731
732/*
733 * vmalloc=size forces the vmalloc area to be exactly 'size'
734 * bytes. This can be used to increase (or decrease) the vmalloc
735 * area - the default is 128m.
736 */
737static int __init early_vmalloc(char *arg)
738{
739 unsigned long vmalloc_reserve = memparse(arg, NULL);
740
741 if (vmalloc_reserve < SZ_16M) {
742 vmalloc_reserve = SZ_16M;
743 printk(KERN_WARNING
744 "vmalloc area too small, limiting to %luMB\n",
745 vmalloc_reserve >> 20);
746 }
747
748 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
749 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
750 printk(KERN_WARNING
751 "vmalloc area is too big, limiting to %luMB\n",
752 vmalloc_reserve >> 20);
753 }
754
755 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
756 return 0;
757}
758early_param("vmalloc", early_vmalloc);
759
760static phys_addr_t lowmem_limit __initdata = 0;
761
762void __init sanity_check_meminfo(void)
763{
764 int i, j, highmem = 0;
765
766 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
767 struct membank *bank = &meminfo.bank[j];
768 *bank = meminfo.bank[i];
769
770#ifdef CONFIG_HIGHMEM
771 if (__va(bank->start) >= vmalloc_min ||
772 __va(bank->start) < (void *)PAGE_OFFSET)
773 highmem = 1;
774
775 bank->highmem = highmem;
776
777 /*
778 * Split those memory banks which are partially overlapping
779 * the vmalloc area greatly simplifying things later.
780 */
781 if (__va(bank->start) < vmalloc_min &&
782 bank->size > vmalloc_min - __va(bank->start)) {
783 if (meminfo.nr_banks >= NR_BANKS) {
784 printk(KERN_CRIT "NR_BANKS too low, "
785 "ignoring high memory\n");
786 } else {
787 memmove(bank + 1, bank,
788 (meminfo.nr_banks - i) * sizeof(*bank));
789 meminfo.nr_banks++;
790 i++;
791 bank[1].size -= vmalloc_min - __va(bank->start);
792 bank[1].start = __pa(vmalloc_min - 1) + 1;
793 bank[1].highmem = highmem = 1;
794 j++;
795 }
796 bank->size = vmalloc_min - __va(bank->start);
797 }
798#else
799 bank->highmem = highmem;
800
801 /*
802 * Check whether this memory bank would entirely overlap
803 * the vmalloc area.
804 */
805 if (__va(bank->start) >= vmalloc_min ||
806 __va(bank->start) < (void *)PAGE_OFFSET) {
807 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
808 "(vmalloc region overlap).\n",
809 (unsigned long long)bank->start,
810 (unsigned long long)bank->start + bank->size - 1);
811 continue;
812 }
813
814 /*
815 * Check whether this memory bank would partially overlap
816 * the vmalloc area.
817 */
818 if (__va(bank->start + bank->size) > vmalloc_min ||
819 __va(bank->start + bank->size) < __va(bank->start)) {
820 unsigned long newsize = vmalloc_min - __va(bank->start);
821 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
822 "to -%.8llx (vmalloc region overlap).\n",
823 (unsigned long long)bank->start,
824 (unsigned long long)bank->start + bank->size - 1,
825 (unsigned long long)bank->start + newsize - 1);
826 bank->size = newsize;
827 }
828#endif
829 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
830 lowmem_limit = bank->start + bank->size;
831
832 j++;
833 }
834#ifdef CONFIG_HIGHMEM
835 if (highmem) {
836 const char *reason = NULL;
837
838 if (cache_is_vipt_aliasing()) {
839 /*
840 * Interactions between kmap and other mappings
841 * make highmem support with aliasing VIPT caches
842 * rather difficult.
843 */
844 reason = "with VIPT aliasing cache";
845 }
846 if (reason) {
847 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
848 reason);
849 while (j > 0 && meminfo.bank[j - 1].highmem)
850 j--;
851 }
852 }
853#endif
854 meminfo.nr_banks = j;
855 memblock_set_current_limit(lowmem_limit);
856}
857
858static inline void prepare_page_table(void)
859{
860 unsigned long addr;
861 phys_addr_t end;
862
863 /*
864 * Clear out all the mappings below the kernel image.
865 */
866 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
867 pmd_clear(pmd_off_k(addr));
868
869#ifdef CONFIG_XIP_KERNEL
870 /* The XIP kernel is mapped in the module area -- skip over it */
871 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
872#endif
873 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
874 pmd_clear(pmd_off_k(addr));
875
876 /*
877 * Find the end of the first block of lowmem.
878 */
879 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
880 if (end >= lowmem_limit)
881 end = lowmem_limit;
882
883 /*
884 * Clear out all the kernel space mappings, except for the first
885 * memory bank, up to the end of the vmalloc region.
886 */
887 for (addr = __phys_to_virt(end);
888 addr < VMALLOC_END; addr += PGDIR_SIZE)
889 pmd_clear(pmd_off_k(addr));
890}
891
892/*
893 * Reserve the special regions of memory
894 */
895void __init arm_mm_memblock_reserve(void)
896{
897 /*
898 * Reserve the page tables. These are already in use,
899 * and can only be in node 0.
900 */
901 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
902
903#ifdef CONFIG_SA1111
904 /*
905 * Because of the SA1111 DMA bug, we want to preserve our
906 * precious DMA-able memory...
907 */
908 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
909#endif
910}
911
912/*
913 * Set up device the mappings. Since we clear out the page tables for all
914 * mappings above VMALLOC_END, we will remove any debug device mappings.
915 * This means you have to be careful how you debug this function, or any
916 * called function. This means you can't use any function or debugging
917 * method which may touch any device, otherwise the kernel _will_ crash.
918 */
919static void __init devicemaps_init(struct machine_desc *mdesc)
920{
921 struct map_desc map;
922 unsigned long addr;
923
924 /*
925 * Allocate the vector page early.
926 */
927 vectors_page = early_alloc(PAGE_SIZE);
928
929 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
930 pmd_clear(pmd_off_k(addr));
931
932 /*
933 * Map the kernel if it is XIP.
934 * It is always first in the modulearea.
935 */
936#ifdef CONFIG_XIP_KERNEL
937 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
938 map.virtual = MODULES_VADDR;
939 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
940 map.type = MT_ROM;
941 create_mapping(&map);
942#endif
943
944 /*
945 * Map the cache flushing regions.
946 */
947#ifdef FLUSH_BASE
948 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
949 map.virtual = FLUSH_BASE;
950 map.length = SZ_1M;
951 map.type = MT_CACHECLEAN;
952 create_mapping(&map);
953#endif
954#ifdef FLUSH_BASE_MINICACHE
955 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
956 map.virtual = FLUSH_BASE_MINICACHE;
957 map.length = SZ_1M;
958 map.type = MT_MINICLEAN;
959 create_mapping(&map);
960#endif
961
962 /*
963 * Create a mapping for the machine vectors at the high-vectors
964 * location (0xffff0000). If we aren't using high-vectors, also
965 * create a mapping at the low-vectors virtual address.
966 */
967 map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
968 map.virtual = 0xffff0000;
969 map.length = PAGE_SIZE;
970 map.type = MT_HIGH_VECTORS;
971 create_mapping(&map);
972
973 if (!vectors_high()) {
974 map.virtual = 0;
975 map.type = MT_LOW_VECTORS;
976 create_mapping(&map);
977 }
978
979 /*
980 * Ask the machine support to map in the statically mapped devices.
981 */
982 if (mdesc->map_io)
983 mdesc->map_io();
984
985 /*
986 * Finally flush the caches and tlb to ensure that we're in a
987 * consistent state wrt the writebuffer. This also ensures that
988 * any write-allocated cache lines in the vector page are written
989 * back. After this point, we can start to touch devices again.
990 */
991 local_flush_tlb_all();
992 flush_cache_all();
993}
994
995static void __init kmap_init(void)
996{
997#ifdef CONFIG_HIGHMEM
998 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
999 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1000#endif
1001}
1002
1003static void __init map_lowmem(void)
1004{
1005 struct memblock_region *reg;
1006
1007 /* Map all the lowmem memory banks. */
1008 for_each_memblock(memory, reg) {
1009 phys_addr_t start = reg->base;
1010 phys_addr_t end = start + reg->size;
1011 struct map_desc map;
1012
1013 if (end > lowmem_limit)
1014 end = lowmem_limit;
1015 if (start >= end)
1016 break;
1017
1018 map.pfn = __phys_to_pfn(start);
1019 map.virtual = __phys_to_virt(start);
1020 map.length = end - start;
1021 map.type = MT_MEMORY;
1022
1023 create_mapping(&map);
1024 }
1025}
1026
1027/*
1028 * paging_init() sets up the page tables, initialises the zone memory
1029 * maps, and sets up the zero page, bad page and bad page tables.
1030 */
1031void __init paging_init(struct machine_desc *mdesc)
1032{
1033 void *zero_page;
1034
1035 memblock_set_current_limit(lowmem_limit);
1036
1037 build_mem_type_table();
1038 prepare_page_table();
1039 map_lowmem();
1040 devicemaps_init(mdesc);
1041 kmap_init();
1042
1043 top_pmd = pmd_off_k(0xffff0000);
1044
1045 /* allocate the zero page. */
1046 zero_page = early_alloc(PAGE_SIZE);
1047
1048 bootmem_init();
1049
1050 empty_zero_page = virt_to_page(zero_page);
1051 __flush_dcache_page(NULL, empty_zero_page);
1052}