Loading...
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20#define pr_fmt(fmt) "IPv6: " fmt
21
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31
32#include <net/ipv6.h>
33#include <net/ndisc.h>
34#include <net/addrconf.h>
35#include <net/lwtunnel.h>
36#include <net/fib_notifier.h>
37
38#include <net/ip6_fib.h>
39#include <net/ip6_route.h>
40
41static struct kmem_cache *fib6_node_kmem __read_mostly;
42
43struct fib6_cleaner {
44 struct fib6_walker w;
45 struct net *net;
46 int (*func)(struct rt6_info *, void *arg);
47 int sernum;
48 void *arg;
49};
50
51#ifdef CONFIG_IPV6_SUBTREES
52#define FWS_INIT FWS_S
53#else
54#define FWS_INIT FWS_L
55#endif
56
57static struct rt6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63static int fib6_walk(struct net *net, struct fib6_walker *w);
64static int fib6_walk_continue(struct fib6_walker *w);
65
66/*
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
71 */
72
73static void fib6_gc_timer_cb(struct timer_list *t);
74
75#define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
78static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79{
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
83}
84
85static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86{
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
90}
91
92static int fib6_new_sernum(struct net *net)
93{
94 int new, old;
95
96 do {
97 old = atomic_read(&net->ipv6.fib6_sernum);
98 new = old < INT_MAX ? old + 1 : 1;
99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 old, new) != old);
101 return new;
102}
103
104enum {
105 FIB6_NO_SERNUM_CHANGE = 0,
106};
107
108void fib6_update_sernum(struct rt6_info *rt)
109{
110 struct net *net = dev_net(rt->dst.dev);
111 struct fib6_node *fn;
112
113 fn = rcu_dereference_protected(rt->rt6i_node,
114 lockdep_is_held(&rt->rt6i_table->tb6_lock));
115 if (fn)
116 fn->fn_sernum = fib6_new_sernum(net);
117}
118
119/*
120 * Auxiliary address test functions for the radix tree.
121 *
122 * These assume a 32bit processor (although it will work on
123 * 64bit processors)
124 */
125
126/*
127 * test bit
128 */
129#if defined(__LITTLE_ENDIAN)
130# define BITOP_BE32_SWIZZLE (0x1F & ~7)
131#else
132# define BITOP_BE32_SWIZZLE 0
133#endif
134
135static __be32 addr_bit_set(const void *token, int fn_bit)
136{
137 const __be32 *addr = token;
138 /*
139 * Here,
140 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
141 * is optimized version of
142 * htonl(1 << ((~fn_bit)&0x1F))
143 * See include/asm-generic/bitops/le.h.
144 */
145 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
146 addr[fn_bit >> 5];
147}
148
149static struct fib6_node *node_alloc(struct net *net)
150{
151 struct fib6_node *fn;
152
153 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
154 if (fn)
155 net->ipv6.rt6_stats->fib_nodes++;
156
157 return fn;
158}
159
160static void node_free_immediate(struct net *net, struct fib6_node *fn)
161{
162 kmem_cache_free(fib6_node_kmem, fn);
163 net->ipv6.rt6_stats->fib_nodes--;
164}
165
166static void node_free_rcu(struct rcu_head *head)
167{
168 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
169
170 kmem_cache_free(fib6_node_kmem, fn);
171}
172
173static void node_free(struct net *net, struct fib6_node *fn)
174{
175 call_rcu(&fn->rcu, node_free_rcu);
176 net->ipv6.rt6_stats->fib_nodes--;
177}
178
179void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
180{
181 int cpu;
182
183 if (!non_pcpu_rt->rt6i_pcpu)
184 return;
185
186 for_each_possible_cpu(cpu) {
187 struct rt6_info **ppcpu_rt;
188 struct rt6_info *pcpu_rt;
189
190 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
191 pcpu_rt = *ppcpu_rt;
192 if (pcpu_rt) {
193 dst_dev_put(&pcpu_rt->dst);
194 dst_release(&pcpu_rt->dst);
195 *ppcpu_rt = NULL;
196 }
197 }
198}
199EXPORT_SYMBOL_GPL(rt6_free_pcpu);
200
201static void fib6_free_table(struct fib6_table *table)
202{
203 inetpeer_invalidate_tree(&table->tb6_peers);
204 kfree(table);
205}
206
207static void fib6_link_table(struct net *net, struct fib6_table *tb)
208{
209 unsigned int h;
210
211 /*
212 * Initialize table lock at a single place to give lockdep a key,
213 * tables aren't visible prior to being linked to the list.
214 */
215 spin_lock_init(&tb->tb6_lock);
216 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
217
218 /*
219 * No protection necessary, this is the only list mutatation
220 * operation, tables never disappear once they exist.
221 */
222 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
223}
224
225#ifdef CONFIG_IPV6_MULTIPLE_TABLES
226
227static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
228{
229 struct fib6_table *table;
230
231 table = kzalloc(sizeof(*table), GFP_ATOMIC);
232 if (table) {
233 table->tb6_id = id;
234 rcu_assign_pointer(table->tb6_root.leaf,
235 net->ipv6.ip6_null_entry);
236 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
237 inet_peer_base_init(&table->tb6_peers);
238 }
239
240 return table;
241}
242
243struct fib6_table *fib6_new_table(struct net *net, u32 id)
244{
245 struct fib6_table *tb;
246
247 if (id == 0)
248 id = RT6_TABLE_MAIN;
249 tb = fib6_get_table(net, id);
250 if (tb)
251 return tb;
252
253 tb = fib6_alloc_table(net, id);
254 if (tb)
255 fib6_link_table(net, tb);
256
257 return tb;
258}
259EXPORT_SYMBOL_GPL(fib6_new_table);
260
261struct fib6_table *fib6_get_table(struct net *net, u32 id)
262{
263 struct fib6_table *tb;
264 struct hlist_head *head;
265 unsigned int h;
266
267 if (id == 0)
268 id = RT6_TABLE_MAIN;
269 h = id & (FIB6_TABLE_HASHSZ - 1);
270 rcu_read_lock();
271 head = &net->ipv6.fib_table_hash[h];
272 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
273 if (tb->tb6_id == id) {
274 rcu_read_unlock();
275 return tb;
276 }
277 }
278 rcu_read_unlock();
279
280 return NULL;
281}
282EXPORT_SYMBOL_GPL(fib6_get_table);
283
284static void __net_init fib6_tables_init(struct net *net)
285{
286 fib6_link_table(net, net->ipv6.fib6_main_tbl);
287 fib6_link_table(net, net->ipv6.fib6_local_tbl);
288}
289#else
290
291struct fib6_table *fib6_new_table(struct net *net, u32 id)
292{
293 return fib6_get_table(net, id);
294}
295
296struct fib6_table *fib6_get_table(struct net *net, u32 id)
297{
298 return net->ipv6.fib6_main_tbl;
299}
300
301struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
302 const struct sk_buff *skb,
303 int flags, pol_lookup_t lookup)
304{
305 struct rt6_info *rt;
306
307 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
308 if (rt->dst.error == -EAGAIN) {
309 ip6_rt_put(rt);
310 rt = net->ipv6.ip6_null_entry;
311 dst_hold(&rt->dst);
312 }
313
314 return &rt->dst;
315}
316
317static void __net_init fib6_tables_init(struct net *net)
318{
319 fib6_link_table(net, net->ipv6.fib6_main_tbl);
320}
321
322#endif
323
324unsigned int fib6_tables_seq_read(struct net *net)
325{
326 unsigned int h, fib_seq = 0;
327
328 rcu_read_lock();
329 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
330 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
331 struct fib6_table *tb;
332
333 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
334 fib_seq += tb->fib_seq;
335 }
336 rcu_read_unlock();
337
338 return fib_seq;
339}
340
341static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
342 enum fib_event_type event_type,
343 struct rt6_info *rt)
344{
345 struct fib6_entry_notifier_info info = {
346 .rt = rt,
347 };
348
349 return call_fib6_notifier(nb, net, event_type, &info.info);
350}
351
352static int call_fib6_entry_notifiers(struct net *net,
353 enum fib_event_type event_type,
354 struct rt6_info *rt,
355 struct netlink_ext_ack *extack)
356{
357 struct fib6_entry_notifier_info info = {
358 .info.extack = extack,
359 .rt = rt,
360 };
361
362 rt->rt6i_table->fib_seq++;
363 return call_fib6_notifiers(net, event_type, &info.info);
364}
365
366struct fib6_dump_arg {
367 struct net *net;
368 struct notifier_block *nb;
369};
370
371static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
372{
373 if (rt == arg->net->ipv6.ip6_null_entry)
374 return;
375 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
376}
377
378static int fib6_node_dump(struct fib6_walker *w)
379{
380 struct rt6_info *rt;
381
382 for_each_fib6_walker_rt(w)
383 fib6_rt_dump(rt, w->args);
384 w->leaf = NULL;
385 return 0;
386}
387
388static void fib6_table_dump(struct net *net, struct fib6_table *tb,
389 struct fib6_walker *w)
390{
391 w->root = &tb->tb6_root;
392 spin_lock_bh(&tb->tb6_lock);
393 fib6_walk(net, w);
394 spin_unlock_bh(&tb->tb6_lock);
395}
396
397/* Called with rcu_read_lock() */
398int fib6_tables_dump(struct net *net, struct notifier_block *nb)
399{
400 struct fib6_dump_arg arg;
401 struct fib6_walker *w;
402 unsigned int h;
403
404 w = kzalloc(sizeof(*w), GFP_ATOMIC);
405 if (!w)
406 return -ENOMEM;
407
408 w->func = fib6_node_dump;
409 arg.net = net;
410 arg.nb = nb;
411 w->args = &arg;
412
413 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
414 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
415 struct fib6_table *tb;
416
417 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
418 fib6_table_dump(net, tb, w);
419 }
420
421 kfree(w);
422
423 return 0;
424}
425
426static int fib6_dump_node(struct fib6_walker *w)
427{
428 int res;
429 struct rt6_info *rt;
430
431 for_each_fib6_walker_rt(w) {
432 res = rt6_dump_route(rt, w->args);
433 if (res < 0) {
434 /* Frame is full, suspend walking */
435 w->leaf = rt;
436 return 1;
437 }
438
439 /* Multipath routes are dumped in one route with the
440 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
441 * last sibling of this route (no need to dump the
442 * sibling routes again)
443 */
444 if (rt->rt6i_nsiblings)
445 rt = list_last_entry(&rt->rt6i_siblings,
446 struct rt6_info,
447 rt6i_siblings);
448 }
449 w->leaf = NULL;
450 return 0;
451}
452
453static void fib6_dump_end(struct netlink_callback *cb)
454{
455 struct net *net = sock_net(cb->skb->sk);
456 struct fib6_walker *w = (void *)cb->args[2];
457
458 if (w) {
459 if (cb->args[4]) {
460 cb->args[4] = 0;
461 fib6_walker_unlink(net, w);
462 }
463 cb->args[2] = 0;
464 kfree(w);
465 }
466 cb->done = (void *)cb->args[3];
467 cb->args[1] = 3;
468}
469
470static int fib6_dump_done(struct netlink_callback *cb)
471{
472 fib6_dump_end(cb);
473 return cb->done ? cb->done(cb) : 0;
474}
475
476static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
477 struct netlink_callback *cb)
478{
479 struct net *net = sock_net(skb->sk);
480 struct fib6_walker *w;
481 int res;
482
483 w = (void *)cb->args[2];
484 w->root = &table->tb6_root;
485
486 if (cb->args[4] == 0) {
487 w->count = 0;
488 w->skip = 0;
489
490 spin_lock_bh(&table->tb6_lock);
491 res = fib6_walk(net, w);
492 spin_unlock_bh(&table->tb6_lock);
493 if (res > 0) {
494 cb->args[4] = 1;
495 cb->args[5] = w->root->fn_sernum;
496 }
497 } else {
498 if (cb->args[5] != w->root->fn_sernum) {
499 /* Begin at the root if the tree changed */
500 cb->args[5] = w->root->fn_sernum;
501 w->state = FWS_INIT;
502 w->node = w->root;
503 w->skip = w->count;
504 } else
505 w->skip = 0;
506
507 spin_lock_bh(&table->tb6_lock);
508 res = fib6_walk_continue(w);
509 spin_unlock_bh(&table->tb6_lock);
510 if (res <= 0) {
511 fib6_walker_unlink(net, w);
512 cb->args[4] = 0;
513 }
514 }
515
516 return res;
517}
518
519static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
520{
521 struct net *net = sock_net(skb->sk);
522 unsigned int h, s_h;
523 unsigned int e = 0, s_e;
524 struct rt6_rtnl_dump_arg arg;
525 struct fib6_walker *w;
526 struct fib6_table *tb;
527 struct hlist_head *head;
528 int res = 0;
529
530 s_h = cb->args[0];
531 s_e = cb->args[1];
532
533 w = (void *)cb->args[2];
534 if (!w) {
535 /* New dump:
536 *
537 * 1. hook callback destructor.
538 */
539 cb->args[3] = (long)cb->done;
540 cb->done = fib6_dump_done;
541
542 /*
543 * 2. allocate and initialize walker.
544 */
545 w = kzalloc(sizeof(*w), GFP_ATOMIC);
546 if (!w)
547 return -ENOMEM;
548 w->func = fib6_dump_node;
549 cb->args[2] = (long)w;
550 }
551
552 arg.skb = skb;
553 arg.cb = cb;
554 arg.net = net;
555 w->args = &arg;
556
557 rcu_read_lock();
558 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
559 e = 0;
560 head = &net->ipv6.fib_table_hash[h];
561 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
562 if (e < s_e)
563 goto next;
564 res = fib6_dump_table(tb, skb, cb);
565 if (res != 0)
566 goto out;
567next:
568 e++;
569 }
570 }
571out:
572 rcu_read_unlock();
573 cb->args[1] = e;
574 cb->args[0] = h;
575
576 res = res < 0 ? res : skb->len;
577 if (res <= 0)
578 fib6_dump_end(cb);
579 return res;
580}
581
582/*
583 * Routing Table
584 *
585 * return the appropriate node for a routing tree "add" operation
586 * by either creating and inserting or by returning an existing
587 * node.
588 */
589
590static struct fib6_node *fib6_add_1(struct net *net,
591 struct fib6_table *table,
592 struct fib6_node *root,
593 struct in6_addr *addr, int plen,
594 int offset, int allow_create,
595 int replace_required,
596 struct netlink_ext_ack *extack)
597{
598 struct fib6_node *fn, *in, *ln;
599 struct fib6_node *pn = NULL;
600 struct rt6key *key;
601 int bit;
602 __be32 dir = 0;
603
604 RT6_TRACE("fib6_add_1\n");
605
606 /* insert node in tree */
607
608 fn = root;
609
610 do {
611 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
612 lockdep_is_held(&table->tb6_lock));
613 key = (struct rt6key *)((u8 *)leaf + offset);
614
615 /*
616 * Prefix match
617 */
618 if (plen < fn->fn_bit ||
619 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
620 if (!allow_create) {
621 if (replace_required) {
622 NL_SET_ERR_MSG(extack,
623 "Can not replace route - no match found");
624 pr_warn("Can't replace route, no match found\n");
625 return ERR_PTR(-ENOENT);
626 }
627 pr_warn("NLM_F_CREATE should be set when creating new route\n");
628 }
629 goto insert_above;
630 }
631
632 /*
633 * Exact match ?
634 */
635
636 if (plen == fn->fn_bit) {
637 /* clean up an intermediate node */
638 if (!(fn->fn_flags & RTN_RTINFO)) {
639 RCU_INIT_POINTER(fn->leaf, NULL);
640 rt6_release(leaf);
641 /* remove null_entry in the root node */
642 } else if (fn->fn_flags & RTN_TL_ROOT &&
643 rcu_access_pointer(fn->leaf) ==
644 net->ipv6.ip6_null_entry) {
645 RCU_INIT_POINTER(fn->leaf, NULL);
646 }
647
648 return fn;
649 }
650
651 /*
652 * We have more bits to go
653 */
654
655 /* Try to walk down on tree. */
656 dir = addr_bit_set(addr, fn->fn_bit);
657 pn = fn;
658 fn = dir ?
659 rcu_dereference_protected(fn->right,
660 lockdep_is_held(&table->tb6_lock)) :
661 rcu_dereference_protected(fn->left,
662 lockdep_is_held(&table->tb6_lock));
663 } while (fn);
664
665 if (!allow_create) {
666 /* We should not create new node because
667 * NLM_F_REPLACE was specified without NLM_F_CREATE
668 * I assume it is safe to require NLM_F_CREATE when
669 * REPLACE flag is used! Later we may want to remove the
670 * check for replace_required, because according
671 * to netlink specification, NLM_F_CREATE
672 * MUST be specified if new route is created.
673 * That would keep IPv6 consistent with IPv4
674 */
675 if (replace_required) {
676 NL_SET_ERR_MSG(extack,
677 "Can not replace route - no match found");
678 pr_warn("Can't replace route, no match found\n");
679 return ERR_PTR(-ENOENT);
680 }
681 pr_warn("NLM_F_CREATE should be set when creating new route\n");
682 }
683 /*
684 * We walked to the bottom of tree.
685 * Create new leaf node without children.
686 */
687
688 ln = node_alloc(net);
689
690 if (!ln)
691 return ERR_PTR(-ENOMEM);
692 ln->fn_bit = plen;
693 RCU_INIT_POINTER(ln->parent, pn);
694
695 if (dir)
696 rcu_assign_pointer(pn->right, ln);
697 else
698 rcu_assign_pointer(pn->left, ln);
699
700 return ln;
701
702
703insert_above:
704 /*
705 * split since we don't have a common prefix anymore or
706 * we have a less significant route.
707 * we've to insert an intermediate node on the list
708 * this new node will point to the one we need to create
709 * and the current
710 */
711
712 pn = rcu_dereference_protected(fn->parent,
713 lockdep_is_held(&table->tb6_lock));
714
715 /* find 1st bit in difference between the 2 addrs.
716
717 See comment in __ipv6_addr_diff: bit may be an invalid value,
718 but if it is >= plen, the value is ignored in any case.
719 */
720
721 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
722
723 /*
724 * (intermediate)[in]
725 * / \
726 * (new leaf node)[ln] (old node)[fn]
727 */
728 if (plen > bit) {
729 in = node_alloc(net);
730 ln = node_alloc(net);
731
732 if (!in || !ln) {
733 if (in)
734 node_free_immediate(net, in);
735 if (ln)
736 node_free_immediate(net, ln);
737 return ERR_PTR(-ENOMEM);
738 }
739
740 /*
741 * new intermediate node.
742 * RTN_RTINFO will
743 * be off since that an address that chooses one of
744 * the branches would not match less specific routes
745 * in the other branch
746 */
747
748 in->fn_bit = bit;
749
750 RCU_INIT_POINTER(in->parent, pn);
751 in->leaf = fn->leaf;
752 atomic_inc(&rcu_dereference_protected(in->leaf,
753 lockdep_is_held(&table->tb6_lock))->rt6i_ref);
754
755 /* update parent pointer */
756 if (dir)
757 rcu_assign_pointer(pn->right, in);
758 else
759 rcu_assign_pointer(pn->left, in);
760
761 ln->fn_bit = plen;
762
763 RCU_INIT_POINTER(ln->parent, in);
764 rcu_assign_pointer(fn->parent, in);
765
766 if (addr_bit_set(addr, bit)) {
767 rcu_assign_pointer(in->right, ln);
768 rcu_assign_pointer(in->left, fn);
769 } else {
770 rcu_assign_pointer(in->left, ln);
771 rcu_assign_pointer(in->right, fn);
772 }
773 } else { /* plen <= bit */
774
775 /*
776 * (new leaf node)[ln]
777 * / \
778 * (old node)[fn] NULL
779 */
780
781 ln = node_alloc(net);
782
783 if (!ln)
784 return ERR_PTR(-ENOMEM);
785
786 ln->fn_bit = plen;
787
788 RCU_INIT_POINTER(ln->parent, pn);
789
790 if (addr_bit_set(&key->addr, plen))
791 RCU_INIT_POINTER(ln->right, fn);
792 else
793 RCU_INIT_POINTER(ln->left, fn);
794
795 rcu_assign_pointer(fn->parent, ln);
796
797 if (dir)
798 rcu_assign_pointer(pn->right, ln);
799 else
800 rcu_assign_pointer(pn->left, ln);
801 }
802 return ln;
803}
804
805static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
806{
807 int i;
808
809 for (i = 0; i < RTAX_MAX; i++) {
810 if (test_bit(i, mxc->mx_valid))
811 mp[i] = mxc->mx[i];
812 }
813}
814
815static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
816{
817 if (!mxc->mx)
818 return 0;
819
820 if (dst->flags & DST_HOST) {
821 u32 *mp = dst_metrics_write_ptr(dst);
822
823 if (unlikely(!mp))
824 return -ENOMEM;
825
826 fib6_copy_metrics(mp, mxc);
827 } else {
828 dst_init_metrics(dst, mxc->mx, false);
829
830 /* We've stolen mx now. */
831 mxc->mx = NULL;
832 }
833
834 return 0;
835}
836
837static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
838 struct net *net)
839{
840 struct fib6_table *table = rt->rt6i_table;
841
842 if (atomic_read(&rt->rt6i_ref) != 1) {
843 /* This route is used as dummy address holder in some split
844 * nodes. It is not leaked, but it still holds other resources,
845 * which must be released in time. So, scan ascendant nodes
846 * and replace dummy references to this route with references
847 * to still alive ones.
848 */
849 while (fn) {
850 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
851 lockdep_is_held(&table->tb6_lock));
852 struct rt6_info *new_leaf;
853 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
854 new_leaf = fib6_find_prefix(net, table, fn);
855 atomic_inc(&new_leaf->rt6i_ref);
856 rcu_assign_pointer(fn->leaf, new_leaf);
857 rt6_release(rt);
858 }
859 fn = rcu_dereference_protected(fn->parent,
860 lockdep_is_held(&table->tb6_lock));
861 }
862 }
863}
864
865/*
866 * Insert routing information in a node.
867 */
868
869static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
870 struct nl_info *info, struct mx6_config *mxc,
871 struct netlink_ext_ack *extack)
872{
873 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
874 lockdep_is_held(&rt->rt6i_table->tb6_lock));
875 struct rt6_info *iter = NULL;
876 struct rt6_info __rcu **ins;
877 struct rt6_info __rcu **fallback_ins = NULL;
878 int replace = (info->nlh &&
879 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
880 int add = (!info->nlh ||
881 (info->nlh->nlmsg_flags & NLM_F_CREATE));
882 int found = 0;
883 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
884 u16 nlflags = NLM_F_EXCL;
885 int err;
886
887 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
888 nlflags |= NLM_F_APPEND;
889
890 ins = &fn->leaf;
891
892 for (iter = leaf; iter;
893 iter = rcu_dereference_protected(iter->rt6_next,
894 lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
895 /*
896 * Search for duplicates
897 */
898
899 if (iter->rt6i_metric == rt->rt6i_metric) {
900 /*
901 * Same priority level
902 */
903 if (info->nlh &&
904 (info->nlh->nlmsg_flags & NLM_F_EXCL))
905 return -EEXIST;
906
907 nlflags &= ~NLM_F_EXCL;
908 if (replace) {
909 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
910 found++;
911 break;
912 }
913 if (rt_can_ecmp)
914 fallback_ins = fallback_ins ?: ins;
915 goto next_iter;
916 }
917
918 if (rt6_duplicate_nexthop(iter, rt)) {
919 if (rt->rt6i_nsiblings)
920 rt->rt6i_nsiblings = 0;
921 if (!(iter->rt6i_flags & RTF_EXPIRES))
922 return -EEXIST;
923 if (!(rt->rt6i_flags & RTF_EXPIRES))
924 rt6_clean_expires(iter);
925 else
926 rt6_set_expires(iter, rt->dst.expires);
927 iter->rt6i_pmtu = rt->rt6i_pmtu;
928 return -EEXIST;
929 }
930 /* If we have the same destination and the same metric,
931 * but not the same gateway, then the route we try to
932 * add is sibling to this route, increment our counter
933 * of siblings, and later we will add our route to the
934 * list.
935 * Only static routes (which don't have flag
936 * RTF_EXPIRES) are used for ECMPv6.
937 *
938 * To avoid long list, we only had siblings if the
939 * route have a gateway.
940 */
941 if (rt_can_ecmp &&
942 rt6_qualify_for_ecmp(iter))
943 rt->rt6i_nsiblings++;
944 }
945
946 if (iter->rt6i_metric > rt->rt6i_metric)
947 break;
948
949next_iter:
950 ins = &iter->rt6_next;
951 }
952
953 if (fallback_ins && !found) {
954 /* No ECMP-able route found, replace first non-ECMP one */
955 ins = fallback_ins;
956 iter = rcu_dereference_protected(*ins,
957 lockdep_is_held(&rt->rt6i_table->tb6_lock));
958 found++;
959 }
960
961 /* Reset round-robin state, if necessary */
962 if (ins == &fn->leaf)
963 fn->rr_ptr = NULL;
964
965 /* Link this route to others same route. */
966 if (rt->rt6i_nsiblings) {
967 unsigned int rt6i_nsiblings;
968 struct rt6_info *sibling, *temp_sibling;
969
970 /* Find the first route that have the same metric */
971 sibling = leaf;
972 while (sibling) {
973 if (sibling->rt6i_metric == rt->rt6i_metric &&
974 rt6_qualify_for_ecmp(sibling)) {
975 list_add_tail(&rt->rt6i_siblings,
976 &sibling->rt6i_siblings);
977 break;
978 }
979 sibling = rcu_dereference_protected(sibling->rt6_next,
980 lockdep_is_held(&rt->rt6i_table->tb6_lock));
981 }
982 /* For each sibling in the list, increment the counter of
983 * siblings. BUG() if counters does not match, list of siblings
984 * is broken!
985 */
986 rt6i_nsiblings = 0;
987 list_for_each_entry_safe(sibling, temp_sibling,
988 &rt->rt6i_siblings, rt6i_siblings) {
989 sibling->rt6i_nsiblings++;
990 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
991 rt6i_nsiblings++;
992 }
993 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
994 rt6_multipath_rebalance(temp_sibling);
995 }
996
997 /*
998 * insert node
999 */
1000 if (!replace) {
1001 if (!add)
1002 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1003
1004add:
1005 nlflags |= NLM_F_CREATE;
1006 err = fib6_commit_metrics(&rt->dst, mxc);
1007 if (err)
1008 return err;
1009
1010 err = call_fib6_entry_notifiers(info->nl_net,
1011 FIB_EVENT_ENTRY_ADD,
1012 rt, extack);
1013 if (err)
1014 return err;
1015
1016 rcu_assign_pointer(rt->rt6_next, iter);
1017 atomic_inc(&rt->rt6i_ref);
1018 rcu_assign_pointer(rt->rt6i_node, fn);
1019 rcu_assign_pointer(*ins, rt);
1020 if (!info->skip_notify)
1021 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1022 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1023
1024 if (!(fn->fn_flags & RTN_RTINFO)) {
1025 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1026 fn->fn_flags |= RTN_RTINFO;
1027 }
1028
1029 } else {
1030 int nsiblings;
1031
1032 if (!found) {
1033 if (add)
1034 goto add;
1035 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1036 return -ENOENT;
1037 }
1038
1039 err = fib6_commit_metrics(&rt->dst, mxc);
1040 if (err)
1041 return err;
1042
1043 err = call_fib6_entry_notifiers(info->nl_net,
1044 FIB_EVENT_ENTRY_REPLACE,
1045 rt, extack);
1046 if (err)
1047 return err;
1048
1049 atomic_inc(&rt->rt6i_ref);
1050 rcu_assign_pointer(rt->rt6i_node, fn);
1051 rt->rt6_next = iter->rt6_next;
1052 rcu_assign_pointer(*ins, rt);
1053 if (!info->skip_notify)
1054 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1055 if (!(fn->fn_flags & RTN_RTINFO)) {
1056 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1057 fn->fn_flags |= RTN_RTINFO;
1058 }
1059 nsiblings = iter->rt6i_nsiblings;
1060 iter->rt6i_node = NULL;
1061 fib6_purge_rt(iter, fn, info->nl_net);
1062 if (rcu_access_pointer(fn->rr_ptr) == iter)
1063 fn->rr_ptr = NULL;
1064 rt6_release(iter);
1065
1066 if (nsiblings) {
1067 /* Replacing an ECMP route, remove all siblings */
1068 ins = &rt->rt6_next;
1069 iter = rcu_dereference_protected(*ins,
1070 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1071 while (iter) {
1072 if (iter->rt6i_metric > rt->rt6i_metric)
1073 break;
1074 if (rt6_qualify_for_ecmp(iter)) {
1075 *ins = iter->rt6_next;
1076 iter->rt6i_node = NULL;
1077 fib6_purge_rt(iter, fn, info->nl_net);
1078 if (rcu_access_pointer(fn->rr_ptr) == iter)
1079 fn->rr_ptr = NULL;
1080 rt6_release(iter);
1081 nsiblings--;
1082 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1083 } else {
1084 ins = &iter->rt6_next;
1085 }
1086 iter = rcu_dereference_protected(*ins,
1087 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1088 }
1089 WARN_ON(nsiblings != 0);
1090 }
1091 }
1092
1093 return 0;
1094}
1095
1096static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1097{
1098 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1099 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1100 mod_timer(&net->ipv6.ip6_fib_timer,
1101 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1102}
1103
1104void fib6_force_start_gc(struct net *net)
1105{
1106 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1107 mod_timer(&net->ipv6.ip6_fib_timer,
1108 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1109}
1110
1111static void __fib6_update_sernum_upto_root(struct rt6_info *rt,
1112 int sernum)
1113{
1114 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1115 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1116
1117 /* paired with smp_rmb() in rt6_get_cookie_safe() */
1118 smp_wmb();
1119 while (fn) {
1120 fn->fn_sernum = sernum;
1121 fn = rcu_dereference_protected(fn->parent,
1122 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1123 }
1124}
1125
1126void fib6_update_sernum_upto_root(struct net *net, struct rt6_info *rt)
1127{
1128 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1129}
1130
1131/*
1132 * Add routing information to the routing tree.
1133 * <destination addr>/<source addr>
1134 * with source addr info in sub-trees
1135 * Need to own table->tb6_lock
1136 */
1137
1138int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1139 struct nl_info *info, struct mx6_config *mxc,
1140 struct netlink_ext_ack *extack)
1141{
1142 struct fib6_table *table = rt->rt6i_table;
1143 struct fib6_node *fn, *pn = NULL;
1144 int err = -ENOMEM;
1145 int allow_create = 1;
1146 int replace_required = 0;
1147 int sernum = fib6_new_sernum(info->nl_net);
1148
1149 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1150 return -EINVAL;
1151 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1152 return -EINVAL;
1153
1154 if (info->nlh) {
1155 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1156 allow_create = 0;
1157 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1158 replace_required = 1;
1159 }
1160 if (!allow_create && !replace_required)
1161 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1162
1163 fn = fib6_add_1(info->nl_net, table, root,
1164 &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1165 offsetof(struct rt6_info, rt6i_dst), allow_create,
1166 replace_required, extack);
1167 if (IS_ERR(fn)) {
1168 err = PTR_ERR(fn);
1169 fn = NULL;
1170 goto out;
1171 }
1172
1173 pn = fn;
1174
1175#ifdef CONFIG_IPV6_SUBTREES
1176 if (rt->rt6i_src.plen) {
1177 struct fib6_node *sn;
1178
1179 if (!rcu_access_pointer(fn->subtree)) {
1180 struct fib6_node *sfn;
1181
1182 /*
1183 * Create subtree.
1184 *
1185 * fn[main tree]
1186 * |
1187 * sfn[subtree root]
1188 * \
1189 * sn[new leaf node]
1190 */
1191
1192 /* Create subtree root node */
1193 sfn = node_alloc(info->nl_net);
1194 if (!sfn)
1195 goto failure;
1196
1197 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1198 rcu_assign_pointer(sfn->leaf,
1199 info->nl_net->ipv6.ip6_null_entry);
1200 sfn->fn_flags = RTN_ROOT;
1201
1202 /* Now add the first leaf node to new subtree */
1203
1204 sn = fib6_add_1(info->nl_net, table, sfn,
1205 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1206 offsetof(struct rt6_info, rt6i_src),
1207 allow_create, replace_required, extack);
1208
1209 if (IS_ERR(sn)) {
1210 /* If it is failed, discard just allocated
1211 root, and then (in failure) stale node
1212 in main tree.
1213 */
1214 node_free_immediate(info->nl_net, sfn);
1215 err = PTR_ERR(sn);
1216 goto failure;
1217 }
1218
1219 /* Now link new subtree to main tree */
1220 rcu_assign_pointer(sfn->parent, fn);
1221 rcu_assign_pointer(fn->subtree, sfn);
1222 } else {
1223 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1224 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1225 offsetof(struct rt6_info, rt6i_src),
1226 allow_create, replace_required, extack);
1227
1228 if (IS_ERR(sn)) {
1229 err = PTR_ERR(sn);
1230 goto failure;
1231 }
1232 }
1233
1234 if (!rcu_access_pointer(fn->leaf)) {
1235 if (fn->fn_flags & RTN_TL_ROOT) {
1236 /* put back null_entry for root node */
1237 rcu_assign_pointer(fn->leaf,
1238 info->nl_net->ipv6.ip6_null_entry);
1239 } else {
1240 atomic_inc(&rt->rt6i_ref);
1241 rcu_assign_pointer(fn->leaf, rt);
1242 }
1243 }
1244 fn = sn;
1245 }
1246#endif
1247
1248 err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1249 if (!err) {
1250 __fib6_update_sernum_upto_root(rt, sernum);
1251 fib6_start_gc(info->nl_net, rt);
1252 }
1253
1254out:
1255 if (err) {
1256#ifdef CONFIG_IPV6_SUBTREES
1257 /*
1258 * If fib6_add_1 has cleared the old leaf pointer in the
1259 * super-tree leaf node we have to find a new one for it.
1260 */
1261 if (pn != fn) {
1262 struct rt6_info *pn_leaf =
1263 rcu_dereference_protected(pn->leaf,
1264 lockdep_is_held(&table->tb6_lock));
1265 if (pn_leaf == rt) {
1266 pn_leaf = NULL;
1267 RCU_INIT_POINTER(pn->leaf, NULL);
1268 atomic_dec(&rt->rt6i_ref);
1269 }
1270 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1271 pn_leaf = fib6_find_prefix(info->nl_net, table,
1272 pn);
1273#if RT6_DEBUG >= 2
1274 if (!pn_leaf) {
1275 WARN_ON(!pn_leaf);
1276 pn_leaf =
1277 info->nl_net->ipv6.ip6_null_entry;
1278 }
1279#endif
1280 atomic_inc(&pn_leaf->rt6i_ref);
1281 rcu_assign_pointer(pn->leaf, pn_leaf);
1282 }
1283 }
1284#endif
1285 goto failure;
1286 }
1287 return err;
1288
1289failure:
1290 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1291 * 1. fn is an intermediate node and we failed to add the new
1292 * route to it in both subtree creation failure and fib6_add_rt2node()
1293 * failure case.
1294 * 2. fn is the root node in the table and we fail to add the first
1295 * default route to it.
1296 */
1297 if (fn &&
1298 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1299 (fn->fn_flags & RTN_TL_ROOT &&
1300 !rcu_access_pointer(fn->leaf))))
1301 fib6_repair_tree(info->nl_net, table, fn);
1302 /* Always release dst as dst->__refcnt is guaranteed
1303 * to be taken before entering this function
1304 */
1305 dst_release_immediate(&rt->dst);
1306 return err;
1307}
1308
1309/*
1310 * Routing tree lookup
1311 *
1312 */
1313
1314struct lookup_args {
1315 int offset; /* key offset on rt6_info */
1316 const struct in6_addr *addr; /* search key */
1317};
1318
1319static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1320 struct lookup_args *args)
1321{
1322 struct fib6_node *fn;
1323 __be32 dir;
1324
1325 if (unlikely(args->offset == 0))
1326 return NULL;
1327
1328 /*
1329 * Descend on a tree
1330 */
1331
1332 fn = root;
1333
1334 for (;;) {
1335 struct fib6_node *next;
1336
1337 dir = addr_bit_set(args->addr, fn->fn_bit);
1338
1339 next = dir ? rcu_dereference(fn->right) :
1340 rcu_dereference(fn->left);
1341
1342 if (next) {
1343 fn = next;
1344 continue;
1345 }
1346 break;
1347 }
1348
1349 while (fn) {
1350 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1351
1352 if (subtree || fn->fn_flags & RTN_RTINFO) {
1353 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1354 struct rt6key *key;
1355
1356 if (!leaf)
1357 goto backtrack;
1358
1359 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1360
1361 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1362#ifdef CONFIG_IPV6_SUBTREES
1363 if (subtree) {
1364 struct fib6_node *sfn;
1365 sfn = fib6_lookup_1(subtree, args + 1);
1366 if (!sfn)
1367 goto backtrack;
1368 fn = sfn;
1369 }
1370#endif
1371 if (fn->fn_flags & RTN_RTINFO)
1372 return fn;
1373 }
1374 }
1375backtrack:
1376 if (fn->fn_flags & RTN_ROOT)
1377 break;
1378
1379 fn = rcu_dereference(fn->parent);
1380 }
1381
1382 return NULL;
1383}
1384
1385/* called with rcu_read_lock() held
1386 */
1387struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1388 const struct in6_addr *saddr)
1389{
1390 struct fib6_node *fn;
1391 struct lookup_args args[] = {
1392 {
1393 .offset = offsetof(struct rt6_info, rt6i_dst),
1394 .addr = daddr,
1395 },
1396#ifdef CONFIG_IPV6_SUBTREES
1397 {
1398 .offset = offsetof(struct rt6_info, rt6i_src),
1399 .addr = saddr,
1400 },
1401#endif
1402 {
1403 .offset = 0, /* sentinel */
1404 }
1405 };
1406
1407 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1408 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1409 fn = root;
1410
1411 return fn;
1412}
1413
1414/*
1415 * Get node with specified destination prefix (and source prefix,
1416 * if subtrees are used)
1417 * exact_match == true means we try to find fn with exact match of
1418 * the passed in prefix addr
1419 * exact_match == false means we try to find fn with longest prefix
1420 * match of the passed in prefix addr. This is useful for finding fn
1421 * for cached route as it will be stored in the exception table under
1422 * the node with longest prefix length.
1423 */
1424
1425
1426static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1427 const struct in6_addr *addr,
1428 int plen, int offset,
1429 bool exact_match)
1430{
1431 struct fib6_node *fn, *prev = NULL;
1432
1433 for (fn = root; fn ; ) {
1434 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1435 struct rt6key *key;
1436
1437 /* This node is being deleted */
1438 if (!leaf) {
1439 if (plen <= fn->fn_bit)
1440 goto out;
1441 else
1442 goto next;
1443 }
1444
1445 key = (struct rt6key *)((u8 *)leaf + offset);
1446
1447 /*
1448 * Prefix match
1449 */
1450 if (plen < fn->fn_bit ||
1451 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1452 goto out;
1453
1454 if (plen == fn->fn_bit)
1455 return fn;
1456
1457 prev = fn;
1458
1459next:
1460 /*
1461 * We have more bits to go
1462 */
1463 if (addr_bit_set(addr, fn->fn_bit))
1464 fn = rcu_dereference(fn->right);
1465 else
1466 fn = rcu_dereference(fn->left);
1467 }
1468out:
1469 if (exact_match)
1470 return NULL;
1471 else
1472 return prev;
1473}
1474
1475struct fib6_node *fib6_locate(struct fib6_node *root,
1476 const struct in6_addr *daddr, int dst_len,
1477 const struct in6_addr *saddr, int src_len,
1478 bool exact_match)
1479{
1480 struct fib6_node *fn;
1481
1482 fn = fib6_locate_1(root, daddr, dst_len,
1483 offsetof(struct rt6_info, rt6i_dst),
1484 exact_match);
1485
1486#ifdef CONFIG_IPV6_SUBTREES
1487 if (src_len) {
1488 WARN_ON(saddr == NULL);
1489 if (fn) {
1490 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1491
1492 if (subtree) {
1493 fn = fib6_locate_1(subtree, saddr, src_len,
1494 offsetof(struct rt6_info, rt6i_src),
1495 exact_match);
1496 }
1497 }
1498 }
1499#endif
1500
1501 if (fn && fn->fn_flags & RTN_RTINFO)
1502 return fn;
1503
1504 return NULL;
1505}
1506
1507
1508/*
1509 * Deletion
1510 *
1511 */
1512
1513static struct rt6_info *fib6_find_prefix(struct net *net,
1514 struct fib6_table *table,
1515 struct fib6_node *fn)
1516{
1517 struct fib6_node *child_left, *child_right;
1518
1519 if (fn->fn_flags & RTN_ROOT)
1520 return net->ipv6.ip6_null_entry;
1521
1522 while (fn) {
1523 child_left = rcu_dereference_protected(fn->left,
1524 lockdep_is_held(&table->tb6_lock));
1525 child_right = rcu_dereference_protected(fn->right,
1526 lockdep_is_held(&table->tb6_lock));
1527 if (child_left)
1528 return rcu_dereference_protected(child_left->leaf,
1529 lockdep_is_held(&table->tb6_lock));
1530 if (child_right)
1531 return rcu_dereference_protected(child_right->leaf,
1532 lockdep_is_held(&table->tb6_lock));
1533
1534 fn = FIB6_SUBTREE(fn);
1535 }
1536 return NULL;
1537}
1538
1539/*
1540 * Called to trim the tree of intermediate nodes when possible. "fn"
1541 * is the node we want to try and remove.
1542 * Need to own table->tb6_lock
1543 */
1544
1545static struct fib6_node *fib6_repair_tree(struct net *net,
1546 struct fib6_table *table,
1547 struct fib6_node *fn)
1548{
1549 int children;
1550 int nstate;
1551 struct fib6_node *child;
1552 struct fib6_walker *w;
1553 int iter = 0;
1554
1555 /* Set fn->leaf to null_entry for root node. */
1556 if (fn->fn_flags & RTN_TL_ROOT) {
1557 rcu_assign_pointer(fn->leaf, net->ipv6.ip6_null_entry);
1558 return fn;
1559 }
1560
1561 for (;;) {
1562 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1563 lockdep_is_held(&table->tb6_lock));
1564 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1565 lockdep_is_held(&table->tb6_lock));
1566 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1567 lockdep_is_held(&table->tb6_lock));
1568 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1569 lockdep_is_held(&table->tb6_lock));
1570 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1571 lockdep_is_held(&table->tb6_lock));
1572 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1573 lockdep_is_held(&table->tb6_lock));
1574 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1575 lockdep_is_held(&table->tb6_lock));
1576 struct rt6_info *new_fn_leaf;
1577
1578 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1579 iter++;
1580
1581 WARN_ON(fn->fn_flags & RTN_RTINFO);
1582 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1583 WARN_ON(fn_leaf);
1584
1585 children = 0;
1586 child = NULL;
1587 if (fn_r)
1588 child = fn_r, children |= 1;
1589 if (fn_l)
1590 child = fn_l, children |= 2;
1591
1592 if (children == 3 || FIB6_SUBTREE(fn)
1593#ifdef CONFIG_IPV6_SUBTREES
1594 /* Subtree root (i.e. fn) may have one child */
1595 || (children && fn->fn_flags & RTN_ROOT)
1596#endif
1597 ) {
1598 new_fn_leaf = fib6_find_prefix(net, table, fn);
1599#if RT6_DEBUG >= 2
1600 if (!new_fn_leaf) {
1601 WARN_ON(!new_fn_leaf);
1602 new_fn_leaf = net->ipv6.ip6_null_entry;
1603 }
1604#endif
1605 atomic_inc(&new_fn_leaf->rt6i_ref);
1606 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1607 return pn;
1608 }
1609
1610#ifdef CONFIG_IPV6_SUBTREES
1611 if (FIB6_SUBTREE(pn) == fn) {
1612 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1613 RCU_INIT_POINTER(pn->subtree, NULL);
1614 nstate = FWS_L;
1615 } else {
1616 WARN_ON(fn->fn_flags & RTN_ROOT);
1617#endif
1618 if (pn_r == fn)
1619 rcu_assign_pointer(pn->right, child);
1620 else if (pn_l == fn)
1621 rcu_assign_pointer(pn->left, child);
1622#if RT6_DEBUG >= 2
1623 else
1624 WARN_ON(1);
1625#endif
1626 if (child)
1627 rcu_assign_pointer(child->parent, pn);
1628 nstate = FWS_R;
1629#ifdef CONFIG_IPV6_SUBTREES
1630 }
1631#endif
1632
1633 read_lock(&net->ipv6.fib6_walker_lock);
1634 FOR_WALKERS(net, w) {
1635 if (!child) {
1636 if (w->node == fn) {
1637 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1638 w->node = pn;
1639 w->state = nstate;
1640 }
1641 } else {
1642 if (w->node == fn) {
1643 w->node = child;
1644 if (children&2) {
1645 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1646 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1647 } else {
1648 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1649 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1650 }
1651 }
1652 }
1653 }
1654 read_unlock(&net->ipv6.fib6_walker_lock);
1655
1656 node_free(net, fn);
1657 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1658 return pn;
1659
1660 RCU_INIT_POINTER(pn->leaf, NULL);
1661 rt6_release(pn_leaf);
1662 fn = pn;
1663 }
1664}
1665
1666static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1667 struct rt6_info __rcu **rtp, struct nl_info *info)
1668{
1669 struct fib6_walker *w;
1670 struct rt6_info *rt = rcu_dereference_protected(*rtp,
1671 lockdep_is_held(&table->tb6_lock));
1672 struct net *net = info->nl_net;
1673
1674 RT6_TRACE("fib6_del_route\n");
1675
1676 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1677
1678 /* Unlink it */
1679 *rtp = rt->rt6_next;
1680 rt->rt6i_node = NULL;
1681 net->ipv6.rt6_stats->fib_rt_entries--;
1682 net->ipv6.rt6_stats->fib_discarded_routes++;
1683
1684 /* Flush all cached dst in exception table */
1685 rt6_flush_exceptions(rt);
1686
1687 /* Reset round-robin state, if necessary */
1688 if (rcu_access_pointer(fn->rr_ptr) == rt)
1689 fn->rr_ptr = NULL;
1690
1691 /* Remove this entry from other siblings */
1692 if (rt->rt6i_nsiblings) {
1693 struct rt6_info *sibling, *next_sibling;
1694
1695 list_for_each_entry_safe(sibling, next_sibling,
1696 &rt->rt6i_siblings, rt6i_siblings)
1697 sibling->rt6i_nsiblings--;
1698 rt->rt6i_nsiblings = 0;
1699 list_del_init(&rt->rt6i_siblings);
1700 rt6_multipath_rebalance(next_sibling);
1701 }
1702
1703 /* Adjust walkers */
1704 read_lock(&net->ipv6.fib6_walker_lock);
1705 FOR_WALKERS(net, w) {
1706 if (w->state == FWS_C && w->leaf == rt) {
1707 RT6_TRACE("walker %p adjusted by delroute\n", w);
1708 w->leaf = rcu_dereference_protected(rt->rt6_next,
1709 lockdep_is_held(&table->tb6_lock));
1710 if (!w->leaf)
1711 w->state = FWS_U;
1712 }
1713 }
1714 read_unlock(&net->ipv6.fib6_walker_lock);
1715
1716 /* If it was last route, call fib6_repair_tree() to:
1717 * 1. For root node, put back null_entry as how the table was created.
1718 * 2. For other nodes, expunge its radix tree node.
1719 */
1720 if (!rcu_access_pointer(fn->leaf)) {
1721 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1722 fn->fn_flags &= ~RTN_RTINFO;
1723 net->ipv6.rt6_stats->fib_route_nodes--;
1724 }
1725 fn = fib6_repair_tree(net, table, fn);
1726 }
1727
1728 fib6_purge_rt(rt, fn, net);
1729
1730 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1731 if (!info->skip_notify)
1732 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1733 rt6_release(rt);
1734}
1735
1736/* Need to own table->tb6_lock */
1737int fib6_del(struct rt6_info *rt, struct nl_info *info)
1738{
1739 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1740 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1741 struct fib6_table *table = rt->rt6i_table;
1742 struct net *net = info->nl_net;
1743 struct rt6_info __rcu **rtp;
1744 struct rt6_info __rcu **rtp_next;
1745
1746#if RT6_DEBUG >= 2
1747 if (rt->dst.obsolete > 0) {
1748 WARN_ON(fn);
1749 return -ENOENT;
1750 }
1751#endif
1752 if (!fn || rt == net->ipv6.ip6_null_entry)
1753 return -ENOENT;
1754
1755 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1756
1757 /* remove cached dst from exception table */
1758 if (rt->rt6i_flags & RTF_CACHE)
1759 return rt6_remove_exception_rt(rt);
1760
1761 /*
1762 * Walk the leaf entries looking for ourself
1763 */
1764
1765 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1766 struct rt6_info *cur = rcu_dereference_protected(*rtp,
1767 lockdep_is_held(&table->tb6_lock));
1768 if (rt == cur) {
1769 fib6_del_route(table, fn, rtp, info);
1770 return 0;
1771 }
1772 rtp_next = &cur->rt6_next;
1773 }
1774 return -ENOENT;
1775}
1776
1777/*
1778 * Tree traversal function.
1779 *
1780 * Certainly, it is not interrupt safe.
1781 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1782 * It means, that we can modify tree during walking
1783 * and use this function for garbage collection, clone pruning,
1784 * cleaning tree when a device goes down etc. etc.
1785 *
1786 * It guarantees that every node will be traversed,
1787 * and that it will be traversed only once.
1788 *
1789 * Callback function w->func may return:
1790 * 0 -> continue walking.
1791 * positive value -> walking is suspended (used by tree dumps,
1792 * and probably by gc, if it will be split to several slices)
1793 * negative value -> terminate walking.
1794 *
1795 * The function itself returns:
1796 * 0 -> walk is complete.
1797 * >0 -> walk is incomplete (i.e. suspended)
1798 * <0 -> walk is terminated by an error.
1799 *
1800 * This function is called with tb6_lock held.
1801 */
1802
1803static int fib6_walk_continue(struct fib6_walker *w)
1804{
1805 struct fib6_node *fn, *pn, *left, *right;
1806
1807 /* w->root should always be table->tb6_root */
1808 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1809
1810 for (;;) {
1811 fn = w->node;
1812 if (!fn)
1813 return 0;
1814
1815 switch (w->state) {
1816#ifdef CONFIG_IPV6_SUBTREES
1817 case FWS_S:
1818 if (FIB6_SUBTREE(fn)) {
1819 w->node = FIB6_SUBTREE(fn);
1820 continue;
1821 }
1822 w->state = FWS_L;
1823#endif
1824 /* fall through */
1825 case FWS_L:
1826 left = rcu_dereference_protected(fn->left, 1);
1827 if (left) {
1828 w->node = left;
1829 w->state = FWS_INIT;
1830 continue;
1831 }
1832 w->state = FWS_R;
1833 /* fall through */
1834 case FWS_R:
1835 right = rcu_dereference_protected(fn->right, 1);
1836 if (right) {
1837 w->node = right;
1838 w->state = FWS_INIT;
1839 continue;
1840 }
1841 w->state = FWS_C;
1842 w->leaf = rcu_dereference_protected(fn->leaf, 1);
1843 /* fall through */
1844 case FWS_C:
1845 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1846 int err;
1847
1848 if (w->skip) {
1849 w->skip--;
1850 goto skip;
1851 }
1852
1853 err = w->func(w);
1854 if (err)
1855 return err;
1856
1857 w->count++;
1858 continue;
1859 }
1860skip:
1861 w->state = FWS_U;
1862 /* fall through */
1863 case FWS_U:
1864 if (fn == w->root)
1865 return 0;
1866 pn = rcu_dereference_protected(fn->parent, 1);
1867 left = rcu_dereference_protected(pn->left, 1);
1868 right = rcu_dereference_protected(pn->right, 1);
1869 w->node = pn;
1870#ifdef CONFIG_IPV6_SUBTREES
1871 if (FIB6_SUBTREE(pn) == fn) {
1872 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1873 w->state = FWS_L;
1874 continue;
1875 }
1876#endif
1877 if (left == fn) {
1878 w->state = FWS_R;
1879 continue;
1880 }
1881 if (right == fn) {
1882 w->state = FWS_C;
1883 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1884 continue;
1885 }
1886#if RT6_DEBUG >= 2
1887 WARN_ON(1);
1888#endif
1889 }
1890 }
1891}
1892
1893static int fib6_walk(struct net *net, struct fib6_walker *w)
1894{
1895 int res;
1896
1897 w->state = FWS_INIT;
1898 w->node = w->root;
1899
1900 fib6_walker_link(net, w);
1901 res = fib6_walk_continue(w);
1902 if (res <= 0)
1903 fib6_walker_unlink(net, w);
1904 return res;
1905}
1906
1907static int fib6_clean_node(struct fib6_walker *w)
1908{
1909 int res;
1910 struct rt6_info *rt;
1911 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1912 struct nl_info info = {
1913 .nl_net = c->net,
1914 };
1915
1916 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1917 w->node->fn_sernum != c->sernum)
1918 w->node->fn_sernum = c->sernum;
1919
1920 if (!c->func) {
1921 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1922 w->leaf = NULL;
1923 return 0;
1924 }
1925
1926 for_each_fib6_walker_rt(w) {
1927 res = c->func(rt, c->arg);
1928 if (res == -1) {
1929 w->leaf = rt;
1930 res = fib6_del(rt, &info);
1931 if (res) {
1932#if RT6_DEBUG >= 2
1933 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1934 __func__, rt,
1935 rcu_access_pointer(rt->rt6i_node),
1936 res);
1937#endif
1938 continue;
1939 }
1940 return 0;
1941 } else if (res == -2) {
1942 if (WARN_ON(!rt->rt6i_nsiblings))
1943 continue;
1944 rt = list_last_entry(&rt->rt6i_siblings,
1945 struct rt6_info, rt6i_siblings);
1946 continue;
1947 }
1948 WARN_ON(res != 0);
1949 }
1950 w->leaf = rt;
1951 return 0;
1952}
1953
1954/*
1955 * Convenient frontend to tree walker.
1956 *
1957 * func is called on each route.
1958 * It may return -2 -> skip multipath route.
1959 * -1 -> delete this route.
1960 * 0 -> continue walking
1961 */
1962
1963static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1964 int (*func)(struct rt6_info *, void *arg),
1965 int sernum, void *arg)
1966{
1967 struct fib6_cleaner c;
1968
1969 c.w.root = root;
1970 c.w.func = fib6_clean_node;
1971 c.w.count = 0;
1972 c.w.skip = 0;
1973 c.func = func;
1974 c.sernum = sernum;
1975 c.arg = arg;
1976 c.net = net;
1977
1978 fib6_walk(net, &c.w);
1979}
1980
1981static void __fib6_clean_all(struct net *net,
1982 int (*func)(struct rt6_info *, void *),
1983 int sernum, void *arg)
1984{
1985 struct fib6_table *table;
1986 struct hlist_head *head;
1987 unsigned int h;
1988
1989 rcu_read_lock();
1990 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1991 head = &net->ipv6.fib_table_hash[h];
1992 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1993 spin_lock_bh(&table->tb6_lock);
1994 fib6_clean_tree(net, &table->tb6_root,
1995 func, sernum, arg);
1996 spin_unlock_bh(&table->tb6_lock);
1997 }
1998 }
1999 rcu_read_unlock();
2000}
2001
2002void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
2003 void *arg)
2004{
2005 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
2006}
2007
2008static void fib6_flush_trees(struct net *net)
2009{
2010 int new_sernum = fib6_new_sernum(net);
2011
2012 __fib6_clean_all(net, NULL, new_sernum, NULL);
2013}
2014
2015/*
2016 * Garbage collection
2017 */
2018
2019static int fib6_age(struct rt6_info *rt, void *arg)
2020{
2021 struct fib6_gc_args *gc_args = arg;
2022 unsigned long now = jiffies;
2023
2024 /*
2025 * check addrconf expiration here.
2026 * Routes are expired even if they are in use.
2027 */
2028
2029 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
2030 if (time_after(now, rt->dst.expires)) {
2031 RT6_TRACE("expiring %p\n", rt);
2032 return -1;
2033 }
2034 gc_args->more++;
2035 }
2036
2037 /* Also age clones in the exception table.
2038 * Note, that clones are aged out
2039 * only if they are not in use now.
2040 */
2041 rt6_age_exceptions(rt, gc_args, now);
2042
2043 return 0;
2044}
2045
2046void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2047{
2048 struct fib6_gc_args gc_args;
2049 unsigned long now;
2050
2051 if (force) {
2052 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2053 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2054 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2055 return;
2056 }
2057 gc_args.timeout = expires ? (int)expires :
2058 net->ipv6.sysctl.ip6_rt_gc_interval;
2059 gc_args.more = 0;
2060
2061 fib6_clean_all(net, fib6_age, &gc_args);
2062 now = jiffies;
2063 net->ipv6.ip6_rt_last_gc = now;
2064
2065 if (gc_args.more)
2066 mod_timer(&net->ipv6.ip6_fib_timer,
2067 round_jiffies(now
2068 + net->ipv6.sysctl.ip6_rt_gc_interval));
2069 else
2070 del_timer(&net->ipv6.ip6_fib_timer);
2071 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2072}
2073
2074static void fib6_gc_timer_cb(struct timer_list *t)
2075{
2076 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2077
2078 fib6_run_gc(0, arg, true);
2079}
2080
2081static int __net_init fib6_net_init(struct net *net)
2082{
2083 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2084 int err;
2085
2086 err = fib6_notifier_init(net);
2087 if (err)
2088 return err;
2089
2090 spin_lock_init(&net->ipv6.fib6_gc_lock);
2091 rwlock_init(&net->ipv6.fib6_walker_lock);
2092 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2093 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2094
2095 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2096 if (!net->ipv6.rt6_stats)
2097 goto out_timer;
2098
2099 /* Avoid false sharing : Use at least a full cache line */
2100 size = max_t(size_t, size, L1_CACHE_BYTES);
2101
2102 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2103 if (!net->ipv6.fib_table_hash)
2104 goto out_rt6_stats;
2105
2106 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2107 GFP_KERNEL);
2108 if (!net->ipv6.fib6_main_tbl)
2109 goto out_fib_table_hash;
2110
2111 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2112 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2113 net->ipv6.ip6_null_entry);
2114 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2115 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2116 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2117
2118#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2119 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2120 GFP_KERNEL);
2121 if (!net->ipv6.fib6_local_tbl)
2122 goto out_fib6_main_tbl;
2123 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2124 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2125 net->ipv6.ip6_null_entry);
2126 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2127 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2128 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2129#endif
2130 fib6_tables_init(net);
2131
2132 return 0;
2133
2134#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2135out_fib6_main_tbl:
2136 kfree(net->ipv6.fib6_main_tbl);
2137#endif
2138out_fib_table_hash:
2139 kfree(net->ipv6.fib_table_hash);
2140out_rt6_stats:
2141 kfree(net->ipv6.rt6_stats);
2142out_timer:
2143 fib6_notifier_exit(net);
2144 return -ENOMEM;
2145}
2146
2147static void fib6_net_exit(struct net *net)
2148{
2149 unsigned int i;
2150
2151 del_timer_sync(&net->ipv6.ip6_fib_timer);
2152
2153 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2154 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2155 struct hlist_node *tmp;
2156 struct fib6_table *tb;
2157
2158 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2159 hlist_del(&tb->tb6_hlist);
2160 fib6_free_table(tb);
2161 }
2162 }
2163
2164 kfree(net->ipv6.fib_table_hash);
2165 kfree(net->ipv6.rt6_stats);
2166 fib6_notifier_exit(net);
2167}
2168
2169static struct pernet_operations fib6_net_ops = {
2170 .init = fib6_net_init,
2171 .exit = fib6_net_exit,
2172};
2173
2174int __init fib6_init(void)
2175{
2176 int ret = -ENOMEM;
2177
2178 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2179 sizeof(struct fib6_node),
2180 0, SLAB_HWCACHE_ALIGN,
2181 NULL);
2182 if (!fib6_node_kmem)
2183 goto out;
2184
2185 ret = register_pernet_subsys(&fib6_net_ops);
2186 if (ret)
2187 goto out_kmem_cache_create;
2188
2189 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2190 inet6_dump_fib, 0);
2191 if (ret)
2192 goto out_unregister_subsys;
2193
2194 __fib6_flush_trees = fib6_flush_trees;
2195out:
2196 return ret;
2197
2198out_unregister_subsys:
2199 unregister_pernet_subsys(&fib6_net_ops);
2200out_kmem_cache_create:
2201 kmem_cache_destroy(fib6_node_kmem);
2202 goto out;
2203}
2204
2205void fib6_gc_cleanup(void)
2206{
2207 unregister_pernet_subsys(&fib6_net_ops);
2208 kmem_cache_destroy(fib6_node_kmem);
2209}
2210
2211#ifdef CONFIG_PROC_FS
2212
2213struct ipv6_route_iter {
2214 struct seq_net_private p;
2215 struct fib6_walker w;
2216 loff_t skip;
2217 struct fib6_table *tbl;
2218 int sernum;
2219};
2220
2221static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2222{
2223 struct rt6_info *rt = v;
2224 struct ipv6_route_iter *iter = seq->private;
2225
2226 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2227
2228#ifdef CONFIG_IPV6_SUBTREES
2229 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2230#else
2231 seq_puts(seq, "00000000000000000000000000000000 00 ");
2232#endif
2233 if (rt->rt6i_flags & RTF_GATEWAY)
2234 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2235 else
2236 seq_puts(seq, "00000000000000000000000000000000");
2237
2238 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2239 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2240 rt->dst.__use, rt->rt6i_flags,
2241 rt->dst.dev ? rt->dst.dev->name : "");
2242 iter->w.leaf = NULL;
2243 return 0;
2244}
2245
2246static int ipv6_route_yield(struct fib6_walker *w)
2247{
2248 struct ipv6_route_iter *iter = w->args;
2249
2250 if (!iter->skip)
2251 return 1;
2252
2253 do {
2254 iter->w.leaf = rcu_dereference_protected(
2255 iter->w.leaf->rt6_next,
2256 lockdep_is_held(&iter->tbl->tb6_lock));
2257 iter->skip--;
2258 if (!iter->skip && iter->w.leaf)
2259 return 1;
2260 } while (iter->w.leaf);
2261
2262 return 0;
2263}
2264
2265static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2266 struct net *net)
2267{
2268 memset(&iter->w, 0, sizeof(iter->w));
2269 iter->w.func = ipv6_route_yield;
2270 iter->w.root = &iter->tbl->tb6_root;
2271 iter->w.state = FWS_INIT;
2272 iter->w.node = iter->w.root;
2273 iter->w.args = iter;
2274 iter->sernum = iter->w.root->fn_sernum;
2275 INIT_LIST_HEAD(&iter->w.lh);
2276 fib6_walker_link(net, &iter->w);
2277}
2278
2279static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2280 struct net *net)
2281{
2282 unsigned int h;
2283 struct hlist_node *node;
2284
2285 if (tbl) {
2286 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2287 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2288 } else {
2289 h = 0;
2290 node = NULL;
2291 }
2292
2293 while (!node && h < FIB6_TABLE_HASHSZ) {
2294 node = rcu_dereference_bh(
2295 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2296 }
2297 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2298}
2299
2300static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2301{
2302 if (iter->sernum != iter->w.root->fn_sernum) {
2303 iter->sernum = iter->w.root->fn_sernum;
2304 iter->w.state = FWS_INIT;
2305 iter->w.node = iter->w.root;
2306 WARN_ON(iter->w.skip);
2307 iter->w.skip = iter->w.count;
2308 }
2309}
2310
2311static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2312{
2313 int r;
2314 struct rt6_info *n;
2315 struct net *net = seq_file_net(seq);
2316 struct ipv6_route_iter *iter = seq->private;
2317
2318 if (!v)
2319 goto iter_table;
2320
2321 n = rcu_dereference_bh(((struct rt6_info *)v)->rt6_next);
2322 if (n) {
2323 ++*pos;
2324 return n;
2325 }
2326
2327iter_table:
2328 ipv6_route_check_sernum(iter);
2329 spin_lock_bh(&iter->tbl->tb6_lock);
2330 r = fib6_walk_continue(&iter->w);
2331 spin_unlock_bh(&iter->tbl->tb6_lock);
2332 if (r > 0) {
2333 if (v)
2334 ++*pos;
2335 return iter->w.leaf;
2336 } else if (r < 0) {
2337 fib6_walker_unlink(net, &iter->w);
2338 return NULL;
2339 }
2340 fib6_walker_unlink(net, &iter->w);
2341
2342 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2343 if (!iter->tbl)
2344 return NULL;
2345
2346 ipv6_route_seq_setup_walk(iter, net);
2347 goto iter_table;
2348}
2349
2350static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2351 __acquires(RCU_BH)
2352{
2353 struct net *net = seq_file_net(seq);
2354 struct ipv6_route_iter *iter = seq->private;
2355
2356 rcu_read_lock_bh();
2357 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2358 iter->skip = *pos;
2359
2360 if (iter->tbl) {
2361 ipv6_route_seq_setup_walk(iter, net);
2362 return ipv6_route_seq_next(seq, NULL, pos);
2363 } else {
2364 return NULL;
2365 }
2366}
2367
2368static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2369{
2370 struct fib6_walker *w = &iter->w;
2371 return w->node && !(w->state == FWS_U && w->node == w->root);
2372}
2373
2374static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2375 __releases(RCU_BH)
2376{
2377 struct net *net = seq_file_net(seq);
2378 struct ipv6_route_iter *iter = seq->private;
2379
2380 if (ipv6_route_iter_active(iter))
2381 fib6_walker_unlink(net, &iter->w);
2382
2383 rcu_read_unlock_bh();
2384}
2385
2386static const struct seq_operations ipv6_route_seq_ops = {
2387 .start = ipv6_route_seq_start,
2388 .next = ipv6_route_seq_next,
2389 .stop = ipv6_route_seq_stop,
2390 .show = ipv6_route_seq_show
2391};
2392
2393int ipv6_route_open(struct inode *inode, struct file *file)
2394{
2395 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2396 sizeof(struct ipv6_route_iter));
2397}
2398
2399#endif /* CONFIG_PROC_FS */
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21#include <linux/errno.h>
22#include <linux/types.h>
23#include <linux/net.h>
24#include <linux/route.h>
25#include <linux/netdevice.h>
26#include <linux/in6.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30
31#ifdef CONFIG_PROC_FS
32#include <linux/proc_fs.h>
33#endif
34
35#include <net/ipv6.h>
36#include <net/ndisc.h>
37#include <net/addrconf.h>
38
39#include <net/ip6_fib.h>
40#include <net/ip6_route.h>
41
42#define RT6_DEBUG 2
43
44#if RT6_DEBUG >= 3
45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
46#else
47#define RT6_TRACE(x...) do { ; } while (0)
48#endif
49
50static struct kmem_cache * fib6_node_kmem __read_mostly;
51
52enum fib_walk_state_t
53{
54#ifdef CONFIG_IPV6_SUBTREES
55 FWS_S,
56#endif
57 FWS_L,
58 FWS_R,
59 FWS_C,
60 FWS_U
61};
62
63struct fib6_cleaner_t
64{
65 struct fib6_walker_t w;
66 struct net *net;
67 int (*func)(struct rt6_info *, void *arg);
68 void *arg;
69};
70
71static DEFINE_RWLOCK(fib6_walker_lock);
72
73#ifdef CONFIG_IPV6_SUBTREES
74#define FWS_INIT FWS_S
75#else
76#define FWS_INIT FWS_L
77#endif
78
79static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80 struct rt6_info *rt);
81static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83static int fib6_walk(struct fib6_walker_t *w);
84static int fib6_walk_continue(struct fib6_walker_t *w);
85
86/*
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
91 */
92
93static __u32 rt_sernum;
94
95static void fib6_gc_timer_cb(unsigned long arg);
96
97static LIST_HEAD(fib6_walkers);
98#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99
100static inline void fib6_walker_link(struct fib6_walker_t *w)
101{
102 write_lock_bh(&fib6_walker_lock);
103 list_add(&w->lh, &fib6_walkers);
104 write_unlock_bh(&fib6_walker_lock);
105}
106
107static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108{
109 write_lock_bh(&fib6_walker_lock);
110 list_del(&w->lh);
111 write_unlock_bh(&fib6_walker_lock);
112}
113static __inline__ u32 fib6_new_sernum(void)
114{
115 u32 n = ++rt_sernum;
116 if ((__s32)n <= 0)
117 rt_sernum = n = 1;
118 return n;
119}
120
121/*
122 * Auxiliary address test functions for the radix tree.
123 *
124 * These assume a 32bit processor (although it will work on
125 * 64bit processors)
126 */
127
128/*
129 * test bit
130 */
131#if defined(__LITTLE_ENDIAN)
132# define BITOP_BE32_SWIZZLE (0x1F & ~7)
133#else
134# define BITOP_BE32_SWIZZLE 0
135#endif
136
137static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
138{
139 const __be32 *addr = token;
140 /*
141 * Here,
142 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143 * is optimized version of
144 * htonl(1 << ((~fn_bit)&0x1F))
145 * See include/asm-generic/bitops/le.h.
146 */
147 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
148 addr[fn_bit >> 5];
149}
150
151static __inline__ struct fib6_node * node_alloc(void)
152{
153 struct fib6_node *fn;
154
155 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156
157 return fn;
158}
159
160static __inline__ void node_free(struct fib6_node * fn)
161{
162 kmem_cache_free(fib6_node_kmem, fn);
163}
164
165static __inline__ void rt6_release(struct rt6_info *rt)
166{
167 if (atomic_dec_and_test(&rt->rt6i_ref))
168 dst_free(&rt->dst);
169}
170
171static void fib6_link_table(struct net *net, struct fib6_table *tb)
172{
173 unsigned int h;
174
175 /*
176 * Initialize table lock at a single place to give lockdep a key,
177 * tables aren't visible prior to being linked to the list.
178 */
179 rwlock_init(&tb->tb6_lock);
180
181 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
182
183 /*
184 * No protection necessary, this is the only list mutatation
185 * operation, tables never disappear once they exist.
186 */
187 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
188}
189
190#ifdef CONFIG_IPV6_MULTIPLE_TABLES
191
192static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193{
194 struct fib6_table *table;
195
196 table = kzalloc(sizeof(*table), GFP_ATOMIC);
197 if (table != NULL) {
198 table->tb6_id = id;
199 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
200 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
201 }
202
203 return table;
204}
205
206struct fib6_table *fib6_new_table(struct net *net, u32 id)
207{
208 struct fib6_table *tb;
209
210 if (id == 0)
211 id = RT6_TABLE_MAIN;
212 tb = fib6_get_table(net, id);
213 if (tb)
214 return tb;
215
216 tb = fib6_alloc_table(net, id);
217 if (tb != NULL)
218 fib6_link_table(net, tb);
219
220 return tb;
221}
222
223struct fib6_table *fib6_get_table(struct net *net, u32 id)
224{
225 struct fib6_table *tb;
226 struct hlist_head *head;
227 struct hlist_node *node;
228 unsigned int h;
229
230 if (id == 0)
231 id = RT6_TABLE_MAIN;
232 h = id & (FIB6_TABLE_HASHSZ - 1);
233 rcu_read_lock();
234 head = &net->ipv6.fib_table_hash[h];
235 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 if (tb->tb6_id == id) {
237 rcu_read_unlock();
238 return tb;
239 }
240 }
241 rcu_read_unlock();
242
243 return NULL;
244}
245
246static void __net_init fib6_tables_init(struct net *net)
247{
248 fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 fib6_link_table(net, net->ipv6.fib6_local_tbl);
250}
251#else
252
253struct fib6_table *fib6_new_table(struct net *net, u32 id)
254{
255 return fib6_get_table(net, id);
256}
257
258struct fib6_table *fib6_get_table(struct net *net, u32 id)
259{
260 return net->ipv6.fib6_main_tbl;
261}
262
263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 int flags, pol_lookup_t lookup)
265{
266 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267}
268
269static void __net_init fib6_tables_init(struct net *net)
270{
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
272}
273
274#endif
275
276static int fib6_dump_node(struct fib6_walker_t *w)
277{
278 int res;
279 struct rt6_info *rt;
280
281 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 res = rt6_dump_route(rt, w->args);
283 if (res < 0) {
284 /* Frame is full, suspend walking */
285 w->leaf = rt;
286 return 1;
287 }
288 WARN_ON(res == 0);
289 }
290 w->leaf = NULL;
291 return 0;
292}
293
294static void fib6_dump_end(struct netlink_callback *cb)
295{
296 struct fib6_walker_t *w = (void*)cb->args[2];
297
298 if (w) {
299 if (cb->args[4]) {
300 cb->args[4] = 0;
301 fib6_walker_unlink(w);
302 }
303 cb->args[2] = 0;
304 kfree(w);
305 }
306 cb->done = (void*)cb->args[3];
307 cb->args[1] = 3;
308}
309
310static int fib6_dump_done(struct netlink_callback *cb)
311{
312 fib6_dump_end(cb);
313 return cb->done ? cb->done(cb) : 0;
314}
315
316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 struct netlink_callback *cb)
318{
319 struct fib6_walker_t *w;
320 int res;
321
322 w = (void *)cb->args[2];
323 w->root = &table->tb6_root;
324
325 if (cb->args[4] == 0) {
326 w->count = 0;
327 w->skip = 0;
328
329 read_lock_bh(&table->tb6_lock);
330 res = fib6_walk(w);
331 read_unlock_bh(&table->tb6_lock);
332 if (res > 0) {
333 cb->args[4] = 1;
334 cb->args[5] = w->root->fn_sernum;
335 }
336 } else {
337 if (cb->args[5] != w->root->fn_sernum) {
338 /* Begin at the root if the tree changed */
339 cb->args[5] = w->root->fn_sernum;
340 w->state = FWS_INIT;
341 w->node = w->root;
342 w->skip = w->count;
343 } else
344 w->skip = 0;
345
346 read_lock_bh(&table->tb6_lock);
347 res = fib6_walk_continue(w);
348 read_unlock_bh(&table->tb6_lock);
349 if (res <= 0) {
350 fib6_walker_unlink(w);
351 cb->args[4] = 0;
352 }
353 }
354
355 return res;
356}
357
358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359{
360 struct net *net = sock_net(skb->sk);
361 unsigned int h, s_h;
362 unsigned int e = 0, s_e;
363 struct rt6_rtnl_dump_arg arg;
364 struct fib6_walker_t *w;
365 struct fib6_table *tb;
366 struct hlist_node *node;
367 struct hlist_head *head;
368 int res = 0;
369
370 s_h = cb->args[0];
371 s_e = cb->args[1];
372
373 w = (void *)cb->args[2];
374 if (w == NULL) {
375 /* New dump:
376 *
377 * 1. hook callback destructor.
378 */
379 cb->args[3] = (long)cb->done;
380 cb->done = fib6_dump_done;
381
382 /*
383 * 2. allocate and initialize walker.
384 */
385 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 if (w == NULL)
387 return -ENOMEM;
388 w->func = fib6_dump_node;
389 cb->args[2] = (long)w;
390 }
391
392 arg.skb = skb;
393 arg.cb = cb;
394 arg.net = net;
395 w->args = &arg;
396
397 rcu_read_lock();
398 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399 e = 0;
400 head = &net->ipv6.fib_table_hash[h];
401 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402 if (e < s_e)
403 goto next;
404 res = fib6_dump_table(tb, skb, cb);
405 if (res != 0)
406 goto out;
407next:
408 e++;
409 }
410 }
411out:
412 rcu_read_unlock();
413 cb->args[1] = e;
414 cb->args[0] = h;
415
416 res = res < 0 ? res : skb->len;
417 if (res <= 0)
418 fib6_dump_end(cb);
419 return res;
420}
421
422/*
423 * Routing Table
424 *
425 * return the appropriate node for a routing tree "add" operation
426 * by either creating and inserting or by returning an existing
427 * node.
428 */
429
430static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431 int addrlen, int plen,
432 int offset)
433{
434 struct fib6_node *fn, *in, *ln;
435 struct fib6_node *pn = NULL;
436 struct rt6key *key;
437 int bit;
438 __be32 dir = 0;
439 __u32 sernum = fib6_new_sernum();
440
441 RT6_TRACE("fib6_add_1\n");
442
443 /* insert node in tree */
444
445 fn = root;
446
447 do {
448 key = (struct rt6key *)((u8 *)fn->leaf + offset);
449
450 /*
451 * Prefix match
452 */
453 if (plen < fn->fn_bit ||
454 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
455 goto insert_above;
456
457 /*
458 * Exact match ?
459 */
460
461 if (plen == fn->fn_bit) {
462 /* clean up an intermediate node */
463 if ((fn->fn_flags & RTN_RTINFO) == 0) {
464 rt6_release(fn->leaf);
465 fn->leaf = NULL;
466 }
467
468 fn->fn_sernum = sernum;
469
470 return fn;
471 }
472
473 /*
474 * We have more bits to go
475 */
476
477 /* Try to walk down on tree. */
478 fn->fn_sernum = sernum;
479 dir = addr_bit_set(addr, fn->fn_bit);
480 pn = fn;
481 fn = dir ? fn->right: fn->left;
482 } while (fn);
483
484 /*
485 * We walked to the bottom of tree.
486 * Create new leaf node without children.
487 */
488
489 ln = node_alloc();
490
491 if (ln == NULL)
492 return NULL;
493 ln->fn_bit = plen;
494
495 ln->parent = pn;
496 ln->fn_sernum = sernum;
497
498 if (dir)
499 pn->right = ln;
500 else
501 pn->left = ln;
502
503 return ln;
504
505
506insert_above:
507 /*
508 * split since we don't have a common prefix anymore or
509 * we have a less significant route.
510 * we've to insert an intermediate node on the list
511 * this new node will point to the one we need to create
512 * and the current
513 */
514
515 pn = fn->parent;
516
517 /* find 1st bit in difference between the 2 addrs.
518
519 See comment in __ipv6_addr_diff: bit may be an invalid value,
520 but if it is >= plen, the value is ignored in any case.
521 */
522
523 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
524
525 /*
526 * (intermediate)[in]
527 * / \
528 * (new leaf node)[ln] (old node)[fn]
529 */
530 if (plen > bit) {
531 in = node_alloc();
532 ln = node_alloc();
533
534 if (in == NULL || ln == NULL) {
535 if (in)
536 node_free(in);
537 if (ln)
538 node_free(ln);
539 return NULL;
540 }
541
542 /*
543 * new intermediate node.
544 * RTN_RTINFO will
545 * be off since that an address that chooses one of
546 * the branches would not match less specific routes
547 * in the other branch
548 */
549
550 in->fn_bit = bit;
551
552 in->parent = pn;
553 in->leaf = fn->leaf;
554 atomic_inc(&in->leaf->rt6i_ref);
555
556 in->fn_sernum = sernum;
557
558 /* update parent pointer */
559 if (dir)
560 pn->right = in;
561 else
562 pn->left = in;
563
564 ln->fn_bit = plen;
565
566 ln->parent = in;
567 fn->parent = in;
568
569 ln->fn_sernum = sernum;
570
571 if (addr_bit_set(addr, bit)) {
572 in->right = ln;
573 in->left = fn;
574 } else {
575 in->left = ln;
576 in->right = fn;
577 }
578 } else { /* plen <= bit */
579
580 /*
581 * (new leaf node)[ln]
582 * / \
583 * (old node)[fn] NULL
584 */
585
586 ln = node_alloc();
587
588 if (ln == NULL)
589 return NULL;
590
591 ln->fn_bit = plen;
592
593 ln->parent = pn;
594
595 ln->fn_sernum = sernum;
596
597 if (dir)
598 pn->right = ln;
599 else
600 pn->left = ln;
601
602 if (addr_bit_set(&key->addr, plen))
603 ln->right = fn;
604 else
605 ln->left = fn;
606
607 fn->parent = ln;
608 }
609 return ln;
610}
611
612/*
613 * Insert routing information in a node.
614 */
615
616static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
617 struct nl_info *info)
618{
619 struct rt6_info *iter = NULL;
620 struct rt6_info **ins;
621
622 ins = &fn->leaf;
623
624 for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
625 /*
626 * Search for duplicates
627 */
628
629 if (iter->rt6i_metric == rt->rt6i_metric) {
630 /*
631 * Same priority level
632 */
633
634 if (iter->rt6i_dev == rt->rt6i_dev &&
635 iter->rt6i_idev == rt->rt6i_idev &&
636 ipv6_addr_equal(&iter->rt6i_gateway,
637 &rt->rt6i_gateway)) {
638 if (!(iter->rt6i_flags&RTF_EXPIRES))
639 return -EEXIST;
640 iter->rt6i_expires = rt->rt6i_expires;
641 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
642 iter->rt6i_flags &= ~RTF_EXPIRES;
643 iter->rt6i_expires = 0;
644 }
645 return -EEXIST;
646 }
647 }
648
649 if (iter->rt6i_metric > rt->rt6i_metric)
650 break;
651
652 ins = &iter->dst.rt6_next;
653 }
654
655 /* Reset round-robin state, if necessary */
656 if (ins == &fn->leaf)
657 fn->rr_ptr = NULL;
658
659 /*
660 * insert node
661 */
662
663 rt->dst.rt6_next = iter;
664 *ins = rt;
665 rt->rt6i_node = fn;
666 atomic_inc(&rt->rt6i_ref);
667 inet6_rt_notify(RTM_NEWROUTE, rt, info);
668 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
669
670 if ((fn->fn_flags & RTN_RTINFO) == 0) {
671 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
672 fn->fn_flags |= RTN_RTINFO;
673 }
674
675 return 0;
676}
677
678static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
679{
680 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
681 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
682 mod_timer(&net->ipv6.ip6_fib_timer,
683 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
684}
685
686void fib6_force_start_gc(struct net *net)
687{
688 if (!timer_pending(&net->ipv6.ip6_fib_timer))
689 mod_timer(&net->ipv6.ip6_fib_timer,
690 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
691}
692
693/*
694 * Add routing information to the routing tree.
695 * <destination addr>/<source addr>
696 * with source addr info in sub-trees
697 */
698
699int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
700{
701 struct fib6_node *fn, *pn = NULL;
702 int err = -ENOMEM;
703
704 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
705 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
706
707 if (fn == NULL)
708 goto out;
709
710 pn = fn;
711
712#ifdef CONFIG_IPV6_SUBTREES
713 if (rt->rt6i_src.plen) {
714 struct fib6_node *sn;
715
716 if (fn->subtree == NULL) {
717 struct fib6_node *sfn;
718
719 /*
720 * Create subtree.
721 *
722 * fn[main tree]
723 * |
724 * sfn[subtree root]
725 * \
726 * sn[new leaf node]
727 */
728
729 /* Create subtree root node */
730 sfn = node_alloc();
731 if (sfn == NULL)
732 goto st_failure;
733
734 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
735 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
736 sfn->fn_flags = RTN_ROOT;
737 sfn->fn_sernum = fib6_new_sernum();
738
739 /* Now add the first leaf node to new subtree */
740
741 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
742 sizeof(struct in6_addr), rt->rt6i_src.plen,
743 offsetof(struct rt6_info, rt6i_src));
744
745 if (sn == NULL) {
746 /* If it is failed, discard just allocated
747 root, and then (in st_failure) stale node
748 in main tree.
749 */
750 node_free(sfn);
751 goto st_failure;
752 }
753
754 /* Now link new subtree to main tree */
755 sfn->parent = fn;
756 fn->subtree = sfn;
757 } else {
758 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
759 sizeof(struct in6_addr), rt->rt6i_src.plen,
760 offsetof(struct rt6_info, rt6i_src));
761
762 if (sn == NULL)
763 goto st_failure;
764 }
765
766 if (fn->leaf == NULL) {
767 fn->leaf = rt;
768 atomic_inc(&rt->rt6i_ref);
769 }
770 fn = sn;
771 }
772#endif
773
774 err = fib6_add_rt2node(fn, rt, info);
775
776 if (err == 0) {
777 fib6_start_gc(info->nl_net, rt);
778 if (!(rt->rt6i_flags&RTF_CACHE))
779 fib6_prune_clones(info->nl_net, pn, rt);
780 }
781
782out:
783 if (err) {
784#ifdef CONFIG_IPV6_SUBTREES
785 /*
786 * If fib6_add_1 has cleared the old leaf pointer in the
787 * super-tree leaf node we have to find a new one for it.
788 */
789 if (pn != fn && pn->leaf == rt) {
790 pn->leaf = NULL;
791 atomic_dec(&rt->rt6i_ref);
792 }
793 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
794 pn->leaf = fib6_find_prefix(info->nl_net, pn);
795#if RT6_DEBUG >= 2
796 if (!pn->leaf) {
797 WARN_ON(pn->leaf == NULL);
798 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
799 }
800#endif
801 atomic_inc(&pn->leaf->rt6i_ref);
802 }
803#endif
804 dst_free(&rt->dst);
805 }
806 return err;
807
808#ifdef CONFIG_IPV6_SUBTREES
809 /* Subtree creation failed, probably main tree node
810 is orphan. If it is, shoot it.
811 */
812st_failure:
813 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
814 fib6_repair_tree(info->nl_net, fn);
815 dst_free(&rt->dst);
816 return err;
817#endif
818}
819
820/*
821 * Routing tree lookup
822 *
823 */
824
825struct lookup_args {
826 int offset; /* key offset on rt6_info */
827 const struct in6_addr *addr; /* search key */
828};
829
830static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
831 struct lookup_args *args)
832{
833 struct fib6_node *fn;
834 __be32 dir;
835
836 if (unlikely(args->offset == 0))
837 return NULL;
838
839 /*
840 * Descend on a tree
841 */
842
843 fn = root;
844
845 for (;;) {
846 struct fib6_node *next;
847
848 dir = addr_bit_set(args->addr, fn->fn_bit);
849
850 next = dir ? fn->right : fn->left;
851
852 if (next) {
853 fn = next;
854 continue;
855 }
856
857 break;
858 }
859
860 while(fn) {
861 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
862 struct rt6key *key;
863
864 key = (struct rt6key *) ((u8 *) fn->leaf +
865 args->offset);
866
867 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
868#ifdef CONFIG_IPV6_SUBTREES
869 if (fn->subtree)
870 fn = fib6_lookup_1(fn->subtree, args + 1);
871#endif
872 if (!fn || fn->fn_flags & RTN_RTINFO)
873 return fn;
874 }
875 }
876
877 if (fn->fn_flags & RTN_ROOT)
878 break;
879
880 fn = fn->parent;
881 }
882
883 return NULL;
884}
885
886struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
887 const struct in6_addr *saddr)
888{
889 struct fib6_node *fn;
890 struct lookup_args args[] = {
891 {
892 .offset = offsetof(struct rt6_info, rt6i_dst),
893 .addr = daddr,
894 },
895#ifdef CONFIG_IPV6_SUBTREES
896 {
897 .offset = offsetof(struct rt6_info, rt6i_src),
898 .addr = saddr,
899 },
900#endif
901 {
902 .offset = 0, /* sentinel */
903 }
904 };
905
906 fn = fib6_lookup_1(root, daddr ? args : args + 1);
907
908 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
909 fn = root;
910
911 return fn;
912}
913
914/*
915 * Get node with specified destination prefix (and source prefix,
916 * if subtrees are used)
917 */
918
919
920static struct fib6_node * fib6_locate_1(struct fib6_node *root,
921 const struct in6_addr *addr,
922 int plen, int offset)
923{
924 struct fib6_node *fn;
925
926 for (fn = root; fn ; ) {
927 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
928
929 /*
930 * Prefix match
931 */
932 if (plen < fn->fn_bit ||
933 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
934 return NULL;
935
936 if (plen == fn->fn_bit)
937 return fn;
938
939 /*
940 * We have more bits to go
941 */
942 if (addr_bit_set(addr, fn->fn_bit))
943 fn = fn->right;
944 else
945 fn = fn->left;
946 }
947 return NULL;
948}
949
950struct fib6_node * fib6_locate(struct fib6_node *root,
951 const struct in6_addr *daddr, int dst_len,
952 const struct in6_addr *saddr, int src_len)
953{
954 struct fib6_node *fn;
955
956 fn = fib6_locate_1(root, daddr, dst_len,
957 offsetof(struct rt6_info, rt6i_dst));
958
959#ifdef CONFIG_IPV6_SUBTREES
960 if (src_len) {
961 WARN_ON(saddr == NULL);
962 if (fn && fn->subtree)
963 fn = fib6_locate_1(fn->subtree, saddr, src_len,
964 offsetof(struct rt6_info, rt6i_src));
965 }
966#endif
967
968 if (fn && fn->fn_flags&RTN_RTINFO)
969 return fn;
970
971 return NULL;
972}
973
974
975/*
976 * Deletion
977 *
978 */
979
980static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
981{
982 if (fn->fn_flags&RTN_ROOT)
983 return net->ipv6.ip6_null_entry;
984
985 while(fn) {
986 if(fn->left)
987 return fn->left->leaf;
988
989 if(fn->right)
990 return fn->right->leaf;
991
992 fn = FIB6_SUBTREE(fn);
993 }
994 return NULL;
995}
996
997/*
998 * Called to trim the tree of intermediate nodes when possible. "fn"
999 * is the node we want to try and remove.
1000 */
1001
1002static struct fib6_node *fib6_repair_tree(struct net *net,
1003 struct fib6_node *fn)
1004{
1005 int children;
1006 int nstate;
1007 struct fib6_node *child, *pn;
1008 struct fib6_walker_t *w;
1009 int iter = 0;
1010
1011 for (;;) {
1012 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013 iter++;
1014
1015 WARN_ON(fn->fn_flags & RTN_RTINFO);
1016 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017 WARN_ON(fn->leaf != NULL);
1018
1019 children = 0;
1020 child = NULL;
1021 if (fn->right) child = fn->right, children |= 1;
1022 if (fn->left) child = fn->left, children |= 2;
1023
1024 if (children == 3 || FIB6_SUBTREE(fn)
1025#ifdef CONFIG_IPV6_SUBTREES
1026 /* Subtree root (i.e. fn) may have one child */
1027 || (children && fn->fn_flags&RTN_ROOT)
1028#endif
1029 ) {
1030 fn->leaf = fib6_find_prefix(net, fn);
1031#if RT6_DEBUG >= 2
1032 if (fn->leaf==NULL) {
1033 WARN_ON(!fn->leaf);
1034 fn->leaf = net->ipv6.ip6_null_entry;
1035 }
1036#endif
1037 atomic_inc(&fn->leaf->rt6i_ref);
1038 return fn->parent;
1039 }
1040
1041 pn = fn->parent;
1042#ifdef CONFIG_IPV6_SUBTREES
1043 if (FIB6_SUBTREE(pn) == fn) {
1044 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045 FIB6_SUBTREE(pn) = NULL;
1046 nstate = FWS_L;
1047 } else {
1048 WARN_ON(fn->fn_flags & RTN_ROOT);
1049#endif
1050 if (pn->right == fn) pn->right = child;
1051 else if (pn->left == fn) pn->left = child;
1052#if RT6_DEBUG >= 2
1053 else
1054 WARN_ON(1);
1055#endif
1056 if (child)
1057 child->parent = pn;
1058 nstate = FWS_R;
1059#ifdef CONFIG_IPV6_SUBTREES
1060 }
1061#endif
1062
1063 read_lock(&fib6_walker_lock);
1064 FOR_WALKERS(w) {
1065 if (child == NULL) {
1066 if (w->root == fn) {
1067 w->root = w->node = NULL;
1068 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069 } else if (w->node == fn) {
1070 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071 w->node = pn;
1072 w->state = nstate;
1073 }
1074 } else {
1075 if (w->root == fn) {
1076 w->root = child;
1077 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078 }
1079 if (w->node == fn) {
1080 w->node = child;
1081 if (children&2) {
1082 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084 } else {
1085 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087 }
1088 }
1089 }
1090 }
1091 read_unlock(&fib6_walker_lock);
1092
1093 node_free(fn);
1094 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095 return pn;
1096
1097 rt6_release(pn->leaf);
1098 pn->leaf = NULL;
1099 fn = pn;
1100 }
1101}
1102
1103static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104 struct nl_info *info)
1105{
1106 struct fib6_walker_t *w;
1107 struct rt6_info *rt = *rtp;
1108 struct net *net = info->nl_net;
1109
1110 RT6_TRACE("fib6_del_route\n");
1111
1112 /* Unlink it */
1113 *rtp = rt->dst.rt6_next;
1114 rt->rt6i_node = NULL;
1115 net->ipv6.rt6_stats->fib_rt_entries--;
1116 net->ipv6.rt6_stats->fib_discarded_routes++;
1117
1118 /* Reset round-robin state, if necessary */
1119 if (fn->rr_ptr == rt)
1120 fn->rr_ptr = NULL;
1121
1122 /* Adjust walkers */
1123 read_lock(&fib6_walker_lock);
1124 FOR_WALKERS(w) {
1125 if (w->state == FWS_C && w->leaf == rt) {
1126 RT6_TRACE("walker %p adjusted by delroute\n", w);
1127 w->leaf = rt->dst.rt6_next;
1128 if (w->leaf == NULL)
1129 w->state = FWS_U;
1130 }
1131 }
1132 read_unlock(&fib6_walker_lock);
1133
1134 rt->dst.rt6_next = NULL;
1135
1136 /* If it was last route, expunge its radix tree node */
1137 if (fn->leaf == NULL) {
1138 fn->fn_flags &= ~RTN_RTINFO;
1139 net->ipv6.rt6_stats->fib_route_nodes--;
1140 fn = fib6_repair_tree(net, fn);
1141 }
1142
1143 if (atomic_read(&rt->rt6i_ref) != 1) {
1144 /* This route is used as dummy address holder in some split
1145 * nodes. It is not leaked, but it still holds other resources,
1146 * which must be released in time. So, scan ascendant nodes
1147 * and replace dummy references to this route with references
1148 * to still alive ones.
1149 */
1150 while (fn) {
1151 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152 fn->leaf = fib6_find_prefix(net, fn);
1153 atomic_inc(&fn->leaf->rt6i_ref);
1154 rt6_release(rt);
1155 }
1156 fn = fn->parent;
1157 }
1158 /* No more references are possible at this point. */
1159 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160 }
1161
1162 inet6_rt_notify(RTM_DELROUTE, rt, info);
1163 rt6_release(rt);
1164}
1165
1166int fib6_del(struct rt6_info *rt, struct nl_info *info)
1167{
1168 struct net *net = info->nl_net;
1169 struct fib6_node *fn = rt->rt6i_node;
1170 struct rt6_info **rtp;
1171
1172#if RT6_DEBUG >= 2
1173 if (rt->dst.obsolete>0) {
1174 WARN_ON(fn != NULL);
1175 return -ENOENT;
1176 }
1177#endif
1178 if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1179 return -ENOENT;
1180
1181 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182
1183 if (!(rt->rt6i_flags&RTF_CACHE)) {
1184 struct fib6_node *pn = fn;
1185#ifdef CONFIG_IPV6_SUBTREES
1186 /* clones of this route might be in another subtree */
1187 if (rt->rt6i_src.plen) {
1188 while (!(pn->fn_flags&RTN_ROOT))
1189 pn = pn->parent;
1190 pn = pn->parent;
1191 }
1192#endif
1193 fib6_prune_clones(info->nl_net, pn, rt);
1194 }
1195
1196 /*
1197 * Walk the leaf entries looking for ourself
1198 */
1199
1200 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201 if (*rtp == rt) {
1202 fib6_del_route(fn, rtp, info);
1203 return 0;
1204 }
1205 }
1206 return -ENOENT;
1207}
1208
1209/*
1210 * Tree traversal function.
1211 *
1212 * Certainly, it is not interrupt safe.
1213 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214 * It means, that we can modify tree during walking
1215 * and use this function for garbage collection, clone pruning,
1216 * cleaning tree when a device goes down etc. etc.
1217 *
1218 * It guarantees that every node will be traversed,
1219 * and that it will be traversed only once.
1220 *
1221 * Callback function w->func may return:
1222 * 0 -> continue walking.
1223 * positive value -> walking is suspended (used by tree dumps,
1224 * and probably by gc, if it will be split to several slices)
1225 * negative value -> terminate walking.
1226 *
1227 * The function itself returns:
1228 * 0 -> walk is complete.
1229 * >0 -> walk is incomplete (i.e. suspended)
1230 * <0 -> walk is terminated by an error.
1231 */
1232
1233static int fib6_walk_continue(struct fib6_walker_t *w)
1234{
1235 struct fib6_node *fn, *pn;
1236
1237 for (;;) {
1238 fn = w->node;
1239 if (fn == NULL)
1240 return 0;
1241
1242 if (w->prune && fn != w->root &&
1243 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244 w->state = FWS_C;
1245 w->leaf = fn->leaf;
1246 }
1247 switch (w->state) {
1248#ifdef CONFIG_IPV6_SUBTREES
1249 case FWS_S:
1250 if (FIB6_SUBTREE(fn)) {
1251 w->node = FIB6_SUBTREE(fn);
1252 continue;
1253 }
1254 w->state = FWS_L;
1255#endif
1256 case FWS_L:
1257 if (fn->left) {
1258 w->node = fn->left;
1259 w->state = FWS_INIT;
1260 continue;
1261 }
1262 w->state = FWS_R;
1263 case FWS_R:
1264 if (fn->right) {
1265 w->node = fn->right;
1266 w->state = FWS_INIT;
1267 continue;
1268 }
1269 w->state = FWS_C;
1270 w->leaf = fn->leaf;
1271 case FWS_C:
1272 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273 int err;
1274
1275 if (w->count < w->skip) {
1276 w->count++;
1277 continue;
1278 }
1279
1280 err = w->func(w);
1281 if (err)
1282 return err;
1283
1284 w->count++;
1285 continue;
1286 }
1287 w->state = FWS_U;
1288 case FWS_U:
1289 if (fn == w->root)
1290 return 0;
1291 pn = fn->parent;
1292 w->node = pn;
1293#ifdef CONFIG_IPV6_SUBTREES
1294 if (FIB6_SUBTREE(pn) == fn) {
1295 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296 w->state = FWS_L;
1297 continue;
1298 }
1299#endif
1300 if (pn->left == fn) {
1301 w->state = FWS_R;
1302 continue;
1303 }
1304 if (pn->right == fn) {
1305 w->state = FWS_C;
1306 w->leaf = w->node->leaf;
1307 continue;
1308 }
1309#if RT6_DEBUG >= 2
1310 WARN_ON(1);
1311#endif
1312 }
1313 }
1314}
1315
1316static int fib6_walk(struct fib6_walker_t *w)
1317{
1318 int res;
1319
1320 w->state = FWS_INIT;
1321 w->node = w->root;
1322
1323 fib6_walker_link(w);
1324 res = fib6_walk_continue(w);
1325 if (res <= 0)
1326 fib6_walker_unlink(w);
1327 return res;
1328}
1329
1330static int fib6_clean_node(struct fib6_walker_t *w)
1331{
1332 int res;
1333 struct rt6_info *rt;
1334 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335 struct nl_info info = {
1336 .nl_net = c->net,
1337 };
1338
1339 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1340 res = c->func(rt, c->arg);
1341 if (res < 0) {
1342 w->leaf = rt;
1343 res = fib6_del(rt, &info);
1344 if (res) {
1345#if RT6_DEBUG >= 2
1346 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1347#endif
1348 continue;
1349 }
1350 return 0;
1351 }
1352 WARN_ON(res != 0);
1353 }
1354 w->leaf = rt;
1355 return 0;
1356}
1357
1358/*
1359 * Convenient frontend to tree walker.
1360 *
1361 * func is called on each route.
1362 * It may return -1 -> delete this route.
1363 * 0 -> continue walking
1364 *
1365 * prune==1 -> only immediate children of node (certainly,
1366 * ignoring pure split nodes) will be scanned.
1367 */
1368
1369static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370 int (*func)(struct rt6_info *, void *arg),
1371 int prune, void *arg)
1372{
1373 struct fib6_cleaner_t c;
1374
1375 c.w.root = root;
1376 c.w.func = fib6_clean_node;
1377 c.w.prune = prune;
1378 c.w.count = 0;
1379 c.w.skip = 0;
1380 c.func = func;
1381 c.arg = arg;
1382 c.net = net;
1383
1384 fib6_walk(&c.w);
1385}
1386
1387void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388 int prune, void *arg)
1389{
1390 struct fib6_table *table;
1391 struct hlist_node *node;
1392 struct hlist_head *head;
1393 unsigned int h;
1394
1395 rcu_read_lock();
1396 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397 head = &net->ipv6.fib_table_hash[h];
1398 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399 write_lock_bh(&table->tb6_lock);
1400 fib6_clean_tree(net, &table->tb6_root,
1401 func, prune, arg);
1402 write_unlock_bh(&table->tb6_lock);
1403 }
1404 }
1405 rcu_read_unlock();
1406}
1407
1408static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1409{
1410 if (rt->rt6i_flags & RTF_CACHE) {
1411 RT6_TRACE("pruning clone %p\n", rt);
1412 return -1;
1413 }
1414
1415 return 0;
1416}
1417
1418static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419 struct rt6_info *rt)
1420{
1421 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1422}
1423
1424/*
1425 * Garbage collection
1426 */
1427
1428static struct fib6_gc_args
1429{
1430 int timeout;
1431 int more;
1432} gc_args;
1433
1434static int fib6_age(struct rt6_info *rt, void *arg)
1435{
1436 unsigned long now = jiffies;
1437
1438 /*
1439 * check addrconf expiration here.
1440 * Routes are expired even if they are in use.
1441 *
1442 * Also age clones. Note, that clones are aged out
1443 * only if they are not in use now.
1444 */
1445
1446 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447 if (time_after(now, rt->rt6i_expires)) {
1448 RT6_TRACE("expiring %p\n", rt);
1449 return -1;
1450 }
1451 gc_args.more++;
1452 } else if (rt->rt6i_flags & RTF_CACHE) {
1453 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455 RT6_TRACE("aging clone %p\n", rt);
1456 return -1;
1457 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458 (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1459 RT6_TRACE("purging route %p via non-router but gateway\n",
1460 rt);
1461 return -1;
1462 }
1463 gc_args.more++;
1464 }
1465
1466 return 0;
1467}
1468
1469static DEFINE_SPINLOCK(fib6_gc_lock);
1470
1471void fib6_run_gc(unsigned long expires, struct net *net)
1472{
1473 if (expires != ~0UL) {
1474 spin_lock_bh(&fib6_gc_lock);
1475 gc_args.timeout = expires ? (int)expires :
1476 net->ipv6.sysctl.ip6_rt_gc_interval;
1477 } else {
1478 if (!spin_trylock_bh(&fib6_gc_lock)) {
1479 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480 return;
1481 }
1482 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483 }
1484
1485 gc_args.more = icmp6_dst_gc();
1486
1487 fib6_clean_all(net, fib6_age, 0, NULL);
1488
1489 if (gc_args.more)
1490 mod_timer(&net->ipv6.ip6_fib_timer,
1491 round_jiffies(jiffies
1492 + net->ipv6.sysctl.ip6_rt_gc_interval));
1493 else
1494 del_timer(&net->ipv6.ip6_fib_timer);
1495 spin_unlock_bh(&fib6_gc_lock);
1496}
1497
1498static void fib6_gc_timer_cb(unsigned long arg)
1499{
1500 fib6_run_gc(0, (struct net *)arg);
1501}
1502
1503static int __net_init fib6_net_init(struct net *net)
1504{
1505 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1506
1507 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1508
1509 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510 if (!net->ipv6.rt6_stats)
1511 goto out_timer;
1512
1513 /* Avoid false sharing : Use at least a full cache line */
1514 size = max_t(size_t, size, L1_CACHE_BYTES);
1515
1516 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517 if (!net->ipv6.fib_table_hash)
1518 goto out_rt6_stats;
1519
1520 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521 GFP_KERNEL);
1522 if (!net->ipv6.fib6_main_tbl)
1523 goto out_fib_table_hash;
1524
1525 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1527 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1529
1530#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532 GFP_KERNEL);
1533 if (!net->ipv6.fib6_local_tbl)
1534 goto out_fib6_main_tbl;
1535 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1537 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1539#endif
1540 fib6_tables_init(net);
1541
1542 return 0;
1543
1544#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545out_fib6_main_tbl:
1546 kfree(net->ipv6.fib6_main_tbl);
1547#endif
1548out_fib_table_hash:
1549 kfree(net->ipv6.fib_table_hash);
1550out_rt6_stats:
1551 kfree(net->ipv6.rt6_stats);
1552out_timer:
1553 return -ENOMEM;
1554 }
1555
1556static void fib6_net_exit(struct net *net)
1557{
1558 rt6_ifdown(net, NULL);
1559 del_timer_sync(&net->ipv6.ip6_fib_timer);
1560
1561#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562 kfree(net->ipv6.fib6_local_tbl);
1563#endif
1564 kfree(net->ipv6.fib6_main_tbl);
1565 kfree(net->ipv6.fib_table_hash);
1566 kfree(net->ipv6.rt6_stats);
1567}
1568
1569static struct pernet_operations fib6_net_ops = {
1570 .init = fib6_net_init,
1571 .exit = fib6_net_exit,
1572};
1573
1574int __init fib6_init(void)
1575{
1576 int ret = -ENOMEM;
1577
1578 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579 sizeof(struct fib6_node),
1580 0, SLAB_HWCACHE_ALIGN,
1581 NULL);
1582 if (!fib6_node_kmem)
1583 goto out;
1584
1585 ret = register_pernet_subsys(&fib6_net_ops);
1586 if (ret)
1587 goto out_kmem_cache_create;
1588
1589 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1590 NULL);
1591 if (ret)
1592 goto out_unregister_subsys;
1593out:
1594 return ret;
1595
1596out_unregister_subsys:
1597 unregister_pernet_subsys(&fib6_net_ops);
1598out_kmem_cache_create:
1599 kmem_cache_destroy(fib6_node_kmem);
1600 goto out;
1601}
1602
1603void fib6_gc_cleanup(void)
1604{
1605 unregister_pernet_subsys(&fib6_net_ops);
1606 kmem_cache_destroy(fib6_node_kmem);
1607}