Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#include <linux/cgroup.h>
  30#include <linux/cred.h>
  31#include <linux/ctype.h>
  32#include <linux/errno.h>
  33#include <linux/fs.h>
  34#include <linux/init_task.h>
  35#include <linux/kernel.h>
  36#include <linux/list.h>
  37#include <linux/mm.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/backing-dev.h>
  45#include <linux/seq_file.h>
  46#include <linux/slab.h>
  47#include <linux/magic.h>
  48#include <linux/spinlock.h>
  49#include <linux/string.h>
  50#include <linux/sort.h>
  51#include <linux/kmod.h>
  52#include <linux/module.h>
  53#include <linux/delayacct.h>
  54#include <linux/cgroupstats.h>
  55#include <linux/hash.h>
  56#include <linux/namei.h>
  57#include <linux/pid_namespace.h>
  58#include <linux/idr.h>
  59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  60#include <linux/eventfd.h>
  61#include <linux/poll.h>
  62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
  63
  64#include <linux/atomic.h>
  65
  66static DEFINE_MUTEX(cgroup_mutex);
  67
  68/*
  69 * Generate an array of cgroup subsystem pointers. At boot time, this is
  70 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  71 * registered after that. The mutable section of this array is protected by
  72 * cgroup_mutex.
  73 */
  74#define SUBSYS(_x) &_x ## _subsys,
  75static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  76#include <linux/cgroup_subsys.h>
  77};
  78
  79#define MAX_CGROUP_ROOT_NAMELEN 64
  80
  81/*
  82 * A cgroupfs_root represents the root of a cgroup hierarchy,
  83 * and may be associated with a superblock to form an active
  84 * hierarchy
  85 */
  86struct cgroupfs_root {
  87	struct super_block *sb;
  88
  89	/*
  90	 * The bitmask of subsystems intended to be attached to this
  91	 * hierarchy
  92	 */
  93	unsigned long subsys_bits;
  94
  95	/* Unique id for this hierarchy. */
  96	int hierarchy_id;
  97
  98	/* The bitmask of subsystems currently attached to this hierarchy */
  99	unsigned long actual_subsys_bits;
 100
 101	/* A list running through the attached subsystems */
 102	struct list_head subsys_list;
 103
 104	/* The root cgroup for this hierarchy */
 105	struct cgroup top_cgroup;
 106
 107	/* Tracks how many cgroups are currently defined in hierarchy.*/
 108	int number_of_cgroups;
 109
 110	/* A list running through the active hierarchies */
 111	struct list_head root_list;
 112
 113	/* Hierarchy-specific flags */
 114	unsigned long flags;
 115
 116	/* The path to use for release notifications. */
 117	char release_agent_path[PATH_MAX];
 118
 119	/* The name for this hierarchy - may be empty */
 120	char name[MAX_CGROUP_ROOT_NAMELEN];
 121};
 122
 123/*
 124 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 125 * subsystems that are otherwise unattached - it never has more than a
 126 * single cgroup, and all tasks are part of that cgroup.
 127 */
 128static struct cgroupfs_root rootnode;
 129
 130/*
 131 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 132 * cgroup_subsys->use_id != 0.
 133 */
 134#define CSS_ID_MAX	(65535)
 135struct css_id {
 136	/*
 137	 * The css to which this ID points. This pointer is set to valid value
 138	 * after cgroup is populated. If cgroup is removed, this will be NULL.
 139	 * This pointer is expected to be RCU-safe because destroy()
 140	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
 141	 * css_tryget() should be used for avoiding race.
 142	 */
 143	struct cgroup_subsys_state __rcu *css;
 144	/*
 145	 * ID of this css.
 146	 */
 147	unsigned short id;
 148	/*
 149	 * Depth in hierarchy which this ID belongs to.
 150	 */
 151	unsigned short depth;
 152	/*
 153	 * ID is freed by RCU. (and lookup routine is RCU safe.)
 154	 */
 155	struct rcu_head rcu_head;
 156	/*
 157	 * Hierarchy of CSS ID belongs to.
 158	 */
 159	unsigned short stack[0]; /* Array of Length (depth+1) */
 160};
 161
 162/*
 163 * cgroup_event represents events which userspace want to receive.
 164 */
 165struct cgroup_event {
 166	/*
 167	 * Cgroup which the event belongs to.
 168	 */
 169	struct cgroup *cgrp;
 170	/*
 171	 * Control file which the event associated.
 172	 */
 173	struct cftype *cft;
 174	/*
 175	 * eventfd to signal userspace about the event.
 176	 */
 177	struct eventfd_ctx *eventfd;
 178	/*
 179	 * Each of these stored in a list by the cgroup.
 180	 */
 181	struct list_head list;
 182	/*
 183	 * All fields below needed to unregister event when
 184	 * userspace closes eventfd.
 185	 */
 186	poll_table pt;
 187	wait_queue_head_t *wqh;
 188	wait_queue_t wait;
 189	struct work_struct remove;
 190};
 191
 192/* The list of hierarchy roots */
 193
 194static LIST_HEAD(roots);
 195static int root_count;
 196
 197static DEFINE_IDA(hierarchy_ida);
 198static int next_hierarchy_id;
 199static DEFINE_SPINLOCK(hierarchy_id_lock);
 200
 201/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 202#define dummytop (&rootnode.top_cgroup)
 203
 204/* This flag indicates whether tasks in the fork and exit paths should
 205 * check for fork/exit handlers to call. This avoids us having to do
 206 * extra work in the fork/exit path if none of the subsystems need to
 207 * be called.
 208 */
 209static int need_forkexit_callback __read_mostly;
 210
 211#ifdef CONFIG_PROVE_LOCKING
 212int cgroup_lock_is_held(void)
 213{
 214	return lockdep_is_held(&cgroup_mutex);
 215}
 216#else /* #ifdef CONFIG_PROVE_LOCKING */
 217int cgroup_lock_is_held(void)
 218{
 219	return mutex_is_locked(&cgroup_mutex);
 220}
 221#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
 222
 223EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
 224
 225/* convenient tests for these bits */
 226inline int cgroup_is_removed(const struct cgroup *cgrp)
 227{
 228	return test_bit(CGRP_REMOVED, &cgrp->flags);
 229}
 230
 231/* bits in struct cgroupfs_root flags field */
 232enum {
 233	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 234};
 235
 236static int cgroup_is_releasable(const struct cgroup *cgrp)
 237{
 238	const int bits =
 239		(1 << CGRP_RELEASABLE) |
 240		(1 << CGRP_NOTIFY_ON_RELEASE);
 241	return (cgrp->flags & bits) == bits;
 242}
 243
 244static int notify_on_release(const struct cgroup *cgrp)
 245{
 246	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 247}
 248
 249static int clone_children(const struct cgroup *cgrp)
 250{
 251	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 252}
 253
 254/*
 255 * for_each_subsys() allows you to iterate on each subsystem attached to
 256 * an active hierarchy
 257 */
 258#define for_each_subsys(_root, _ss) \
 259list_for_each_entry(_ss, &_root->subsys_list, sibling)
 260
 261/* for_each_active_root() allows you to iterate across the active hierarchies */
 262#define for_each_active_root(_root) \
 263list_for_each_entry(_root, &roots, root_list)
 264
 265/* the list of cgroups eligible for automatic release. Protected by
 266 * release_list_lock */
 267static LIST_HEAD(release_list);
 268static DEFINE_SPINLOCK(release_list_lock);
 269static void cgroup_release_agent(struct work_struct *work);
 270static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 271static void check_for_release(struct cgroup *cgrp);
 272
 273/* Link structure for associating css_set objects with cgroups */
 274struct cg_cgroup_link {
 275	/*
 276	 * List running through cg_cgroup_links associated with a
 277	 * cgroup, anchored on cgroup->css_sets
 278	 */
 279	struct list_head cgrp_link_list;
 280	struct cgroup *cgrp;
 281	/*
 282	 * List running through cg_cgroup_links pointing at a
 283	 * single css_set object, anchored on css_set->cg_links
 284	 */
 285	struct list_head cg_link_list;
 286	struct css_set *cg;
 287};
 288
 289/* The default css_set - used by init and its children prior to any
 290 * hierarchies being mounted. It contains a pointer to the root state
 291 * for each subsystem. Also used to anchor the list of css_sets. Not
 292 * reference-counted, to improve performance when child cgroups
 293 * haven't been created.
 294 */
 295
 296static struct css_set init_css_set;
 297static struct cg_cgroup_link init_css_set_link;
 298
 299static int cgroup_init_idr(struct cgroup_subsys *ss,
 300			   struct cgroup_subsys_state *css);
 301
 302/* css_set_lock protects the list of css_set objects, and the
 303 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 304 * due to cgroup_iter_start() */
 305static DEFINE_RWLOCK(css_set_lock);
 306static int css_set_count;
 307
 308/*
 309 * hash table for cgroup groups. This improves the performance to find
 310 * an existing css_set. This hash doesn't (currently) take into
 311 * account cgroups in empty hierarchies.
 312 */
 313#define CSS_SET_HASH_BITS	7
 314#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
 315static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
 316
 317static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
 318{
 319	int i;
 320	int index;
 321	unsigned long tmp = 0UL;
 322
 323	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
 324		tmp += (unsigned long)css[i];
 325	tmp = (tmp >> 16) ^ tmp;
 326
 327	index = hash_long(tmp, CSS_SET_HASH_BITS);
 328
 329	return &css_set_table[index];
 330}
 331
 332/* We don't maintain the lists running through each css_set to its
 333 * task until after the first call to cgroup_iter_start(). This
 334 * reduces the fork()/exit() overhead for people who have cgroups
 335 * compiled into their kernel but not actually in use */
 336static int use_task_css_set_links __read_mostly;
 337
 338static void __put_css_set(struct css_set *cg, int taskexit)
 339{
 340	struct cg_cgroup_link *link;
 341	struct cg_cgroup_link *saved_link;
 342	/*
 343	 * Ensure that the refcount doesn't hit zero while any readers
 344	 * can see it. Similar to atomic_dec_and_lock(), but for an
 345	 * rwlock
 346	 */
 347	if (atomic_add_unless(&cg->refcount, -1, 1))
 348		return;
 349	write_lock(&css_set_lock);
 350	if (!atomic_dec_and_test(&cg->refcount)) {
 351		write_unlock(&css_set_lock);
 352		return;
 353	}
 354
 355	/* This css_set is dead. unlink it and release cgroup refcounts */
 356	hlist_del(&cg->hlist);
 357	css_set_count--;
 358
 359	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
 360				 cg_link_list) {
 361		struct cgroup *cgrp = link->cgrp;
 362		list_del(&link->cg_link_list);
 363		list_del(&link->cgrp_link_list);
 364		if (atomic_dec_and_test(&cgrp->count) &&
 365		    notify_on_release(cgrp)) {
 366			if (taskexit)
 367				set_bit(CGRP_RELEASABLE, &cgrp->flags);
 368			check_for_release(cgrp);
 369		}
 370
 371		kfree(link);
 372	}
 373
 374	write_unlock(&css_set_lock);
 375	kfree_rcu(cg, rcu_head);
 376}
 377
 378/*
 379 * refcounted get/put for css_set objects
 380 */
 381static inline void get_css_set(struct css_set *cg)
 382{
 383	atomic_inc(&cg->refcount);
 384}
 385
 386static inline void put_css_set(struct css_set *cg)
 387{
 388	__put_css_set(cg, 0);
 389}
 390
 391static inline void put_css_set_taskexit(struct css_set *cg)
 392{
 393	__put_css_set(cg, 1);
 394}
 395
 396/*
 397 * compare_css_sets - helper function for find_existing_css_set().
 398 * @cg: candidate css_set being tested
 399 * @old_cg: existing css_set for a task
 400 * @new_cgrp: cgroup that's being entered by the task
 401 * @template: desired set of css pointers in css_set (pre-calculated)
 402 *
 403 * Returns true if "cg" matches "old_cg" except for the hierarchy
 404 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 405 */
 406static bool compare_css_sets(struct css_set *cg,
 407			     struct css_set *old_cg,
 408			     struct cgroup *new_cgrp,
 409			     struct cgroup_subsys_state *template[])
 410{
 411	struct list_head *l1, *l2;
 412
 413	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
 414		/* Not all subsystems matched */
 415		return false;
 416	}
 417
 418	/*
 419	 * Compare cgroup pointers in order to distinguish between
 420	 * different cgroups in heirarchies with no subsystems. We
 421	 * could get by with just this check alone (and skip the
 422	 * memcmp above) but on most setups the memcmp check will
 423	 * avoid the need for this more expensive check on almost all
 424	 * candidates.
 425	 */
 426
 427	l1 = &cg->cg_links;
 428	l2 = &old_cg->cg_links;
 429	while (1) {
 430		struct cg_cgroup_link *cgl1, *cgl2;
 431		struct cgroup *cg1, *cg2;
 432
 433		l1 = l1->next;
 434		l2 = l2->next;
 435		/* See if we reached the end - both lists are equal length. */
 436		if (l1 == &cg->cg_links) {
 437			BUG_ON(l2 != &old_cg->cg_links);
 438			break;
 439		} else {
 440			BUG_ON(l2 == &old_cg->cg_links);
 441		}
 442		/* Locate the cgroups associated with these links. */
 443		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
 444		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
 445		cg1 = cgl1->cgrp;
 446		cg2 = cgl2->cgrp;
 447		/* Hierarchies should be linked in the same order. */
 448		BUG_ON(cg1->root != cg2->root);
 449
 450		/*
 451		 * If this hierarchy is the hierarchy of the cgroup
 452		 * that's changing, then we need to check that this
 453		 * css_set points to the new cgroup; if it's any other
 454		 * hierarchy, then this css_set should point to the
 455		 * same cgroup as the old css_set.
 456		 */
 457		if (cg1->root == new_cgrp->root) {
 458			if (cg1 != new_cgrp)
 459				return false;
 460		} else {
 461			if (cg1 != cg2)
 462				return false;
 463		}
 464	}
 465	return true;
 466}
 467
 468/*
 469 * find_existing_css_set() is a helper for
 470 * find_css_set(), and checks to see whether an existing
 471 * css_set is suitable.
 472 *
 473 * oldcg: the cgroup group that we're using before the cgroup
 474 * transition
 475 *
 476 * cgrp: the cgroup that we're moving into
 477 *
 478 * template: location in which to build the desired set of subsystem
 479 * state objects for the new cgroup group
 480 */
 481static struct css_set *find_existing_css_set(
 482	struct css_set *oldcg,
 483	struct cgroup *cgrp,
 484	struct cgroup_subsys_state *template[])
 485{
 486	int i;
 487	struct cgroupfs_root *root = cgrp->root;
 488	struct hlist_head *hhead;
 489	struct hlist_node *node;
 490	struct css_set *cg;
 491
 492	/*
 493	 * Build the set of subsystem state objects that we want to see in the
 494	 * new css_set. while subsystems can change globally, the entries here
 495	 * won't change, so no need for locking.
 496	 */
 497	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 498		if (root->subsys_bits & (1UL << i)) {
 499			/* Subsystem is in this hierarchy. So we want
 500			 * the subsystem state from the new
 501			 * cgroup */
 502			template[i] = cgrp->subsys[i];
 503		} else {
 504			/* Subsystem is not in this hierarchy, so we
 505			 * don't want to change the subsystem state */
 506			template[i] = oldcg->subsys[i];
 507		}
 508	}
 509
 510	hhead = css_set_hash(template);
 511	hlist_for_each_entry(cg, node, hhead, hlist) {
 512		if (!compare_css_sets(cg, oldcg, cgrp, template))
 513			continue;
 514
 515		/* This css_set matches what we need */
 516		return cg;
 517	}
 518
 519	/* No existing cgroup group matched */
 520	return NULL;
 521}
 522
 523static void free_cg_links(struct list_head *tmp)
 524{
 525	struct cg_cgroup_link *link;
 526	struct cg_cgroup_link *saved_link;
 527
 528	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
 529		list_del(&link->cgrp_link_list);
 530		kfree(link);
 531	}
 532}
 533
 534/*
 535 * allocate_cg_links() allocates "count" cg_cgroup_link structures
 536 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
 537 * success or a negative error
 538 */
 539static int allocate_cg_links(int count, struct list_head *tmp)
 540{
 541	struct cg_cgroup_link *link;
 542	int i;
 543	INIT_LIST_HEAD(tmp);
 544	for (i = 0; i < count; i++) {
 545		link = kmalloc(sizeof(*link), GFP_KERNEL);
 546		if (!link) {
 547			free_cg_links(tmp);
 548			return -ENOMEM;
 549		}
 550		list_add(&link->cgrp_link_list, tmp);
 551	}
 552	return 0;
 553}
 554
 555/**
 556 * link_css_set - a helper function to link a css_set to a cgroup
 557 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 558 * @cg: the css_set to be linked
 559 * @cgrp: the destination cgroup
 560 */
 561static void link_css_set(struct list_head *tmp_cg_links,
 562			 struct css_set *cg, struct cgroup *cgrp)
 563{
 564	struct cg_cgroup_link *link;
 565
 566	BUG_ON(list_empty(tmp_cg_links));
 567	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
 568				cgrp_link_list);
 569	link->cg = cg;
 570	link->cgrp = cgrp;
 571	atomic_inc(&cgrp->count);
 572	list_move(&link->cgrp_link_list, &cgrp->css_sets);
 573	/*
 574	 * Always add links to the tail of the list so that the list
 575	 * is sorted by order of hierarchy creation
 576	 */
 577	list_add_tail(&link->cg_link_list, &cg->cg_links);
 578}
 579
 580/*
 581 * find_css_set() takes an existing cgroup group and a
 582 * cgroup object, and returns a css_set object that's
 583 * equivalent to the old group, but with the given cgroup
 584 * substituted into the appropriate hierarchy. Must be called with
 585 * cgroup_mutex held
 586 */
 587static struct css_set *find_css_set(
 588	struct css_set *oldcg, struct cgroup *cgrp)
 589{
 590	struct css_set *res;
 591	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 592
 593	struct list_head tmp_cg_links;
 594
 595	struct hlist_head *hhead;
 596	struct cg_cgroup_link *link;
 597
 598	/* First see if we already have a cgroup group that matches
 599	 * the desired set */
 600	read_lock(&css_set_lock);
 601	res = find_existing_css_set(oldcg, cgrp, template);
 602	if (res)
 603		get_css_set(res);
 604	read_unlock(&css_set_lock);
 605
 606	if (res)
 607		return res;
 608
 609	res = kmalloc(sizeof(*res), GFP_KERNEL);
 610	if (!res)
 611		return NULL;
 612
 613	/* Allocate all the cg_cgroup_link objects that we'll need */
 614	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
 615		kfree(res);
 616		return NULL;
 617	}
 618
 619	atomic_set(&res->refcount, 1);
 620	INIT_LIST_HEAD(&res->cg_links);
 621	INIT_LIST_HEAD(&res->tasks);
 622	INIT_HLIST_NODE(&res->hlist);
 623
 624	/* Copy the set of subsystem state objects generated in
 625	 * find_existing_css_set() */
 626	memcpy(res->subsys, template, sizeof(res->subsys));
 627
 628	write_lock(&css_set_lock);
 629	/* Add reference counts and links from the new css_set. */
 630	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
 631		struct cgroup *c = link->cgrp;
 632		if (c->root == cgrp->root)
 633			c = cgrp;
 634		link_css_set(&tmp_cg_links, res, c);
 635	}
 636
 637	BUG_ON(!list_empty(&tmp_cg_links));
 638
 639	css_set_count++;
 640
 641	/* Add this cgroup group to the hash table */
 642	hhead = css_set_hash(res->subsys);
 643	hlist_add_head(&res->hlist, hhead);
 644
 645	write_unlock(&css_set_lock);
 646
 647	return res;
 648}
 649
 650/*
 651 * Return the cgroup for "task" from the given hierarchy. Must be
 652 * called with cgroup_mutex held.
 653 */
 654static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 655					    struct cgroupfs_root *root)
 656{
 657	struct css_set *css;
 658	struct cgroup *res = NULL;
 659
 660	BUG_ON(!mutex_is_locked(&cgroup_mutex));
 661	read_lock(&css_set_lock);
 662	/*
 663	 * No need to lock the task - since we hold cgroup_mutex the
 664	 * task can't change groups, so the only thing that can happen
 665	 * is that it exits and its css is set back to init_css_set.
 666	 */
 667	css = task->cgroups;
 668	if (css == &init_css_set) {
 669		res = &root->top_cgroup;
 670	} else {
 671		struct cg_cgroup_link *link;
 672		list_for_each_entry(link, &css->cg_links, cg_link_list) {
 673			struct cgroup *c = link->cgrp;
 674			if (c->root == root) {
 675				res = c;
 676				break;
 677			}
 678		}
 679	}
 680	read_unlock(&css_set_lock);
 681	BUG_ON(!res);
 682	return res;
 683}
 684
 685/*
 686 * There is one global cgroup mutex. We also require taking
 687 * task_lock() when dereferencing a task's cgroup subsys pointers.
 688 * See "The task_lock() exception", at the end of this comment.
 689 *
 690 * A task must hold cgroup_mutex to modify cgroups.
 691 *
 692 * Any task can increment and decrement the count field without lock.
 693 * So in general, code holding cgroup_mutex can't rely on the count
 694 * field not changing.  However, if the count goes to zero, then only
 695 * cgroup_attach_task() can increment it again.  Because a count of zero
 696 * means that no tasks are currently attached, therefore there is no
 697 * way a task attached to that cgroup can fork (the other way to
 698 * increment the count).  So code holding cgroup_mutex can safely
 699 * assume that if the count is zero, it will stay zero. Similarly, if
 700 * a task holds cgroup_mutex on a cgroup with zero count, it
 701 * knows that the cgroup won't be removed, as cgroup_rmdir()
 702 * needs that mutex.
 703 *
 704 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 705 * (usually) take cgroup_mutex.  These are the two most performance
 706 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 707 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 708 * is taken, and if the cgroup count is zero, a usermode call made
 709 * to the release agent with the name of the cgroup (path relative to
 710 * the root of cgroup file system) as the argument.
 711 *
 712 * A cgroup can only be deleted if both its 'count' of using tasks
 713 * is zero, and its list of 'children' cgroups is empty.  Since all
 714 * tasks in the system use _some_ cgroup, and since there is always at
 715 * least one task in the system (init, pid == 1), therefore, top_cgroup
 716 * always has either children cgroups and/or using tasks.  So we don't
 717 * need a special hack to ensure that top_cgroup cannot be deleted.
 718 *
 719 *	The task_lock() exception
 720 *
 721 * The need for this exception arises from the action of
 722 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 723 * another.  It does so using cgroup_mutex, however there are
 724 * several performance critical places that need to reference
 725 * task->cgroup without the expense of grabbing a system global
 726 * mutex.  Therefore except as noted below, when dereferencing or, as
 727 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
 728 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 729 * the task_struct routinely used for such matters.
 730 *
 731 * P.S.  One more locking exception.  RCU is used to guard the
 732 * update of a tasks cgroup pointer by cgroup_attach_task()
 733 */
 734
 735/**
 736 * cgroup_lock - lock out any changes to cgroup structures
 737 *
 738 */
 739void cgroup_lock(void)
 740{
 741	mutex_lock(&cgroup_mutex);
 742}
 743EXPORT_SYMBOL_GPL(cgroup_lock);
 744
 745/**
 746 * cgroup_unlock - release lock on cgroup changes
 747 *
 748 * Undo the lock taken in a previous cgroup_lock() call.
 749 */
 750void cgroup_unlock(void)
 751{
 752	mutex_unlock(&cgroup_mutex);
 753}
 754EXPORT_SYMBOL_GPL(cgroup_unlock);
 755
 756/*
 757 * A couple of forward declarations required, due to cyclic reference loop:
 758 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 759 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 760 * -> cgroup_mkdir.
 761 */
 762
 763static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
 764static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
 765static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 766static int cgroup_populate_dir(struct cgroup *cgrp);
 767static const struct inode_operations cgroup_dir_inode_operations;
 768static const struct file_operations proc_cgroupstats_operations;
 769
 770static struct backing_dev_info cgroup_backing_dev_info = {
 771	.name		= "cgroup",
 772	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
 773};
 774
 775static int alloc_css_id(struct cgroup_subsys *ss,
 776			struct cgroup *parent, struct cgroup *child);
 777
 778static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
 779{
 780	struct inode *inode = new_inode(sb);
 781
 782	if (inode) {
 783		inode->i_ino = get_next_ino();
 784		inode->i_mode = mode;
 785		inode->i_uid = current_fsuid();
 786		inode->i_gid = current_fsgid();
 787		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 788		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
 789	}
 790	return inode;
 791}
 792
 793/*
 794 * Call subsys's pre_destroy handler.
 795 * This is called before css refcnt check.
 796 */
 797static int cgroup_call_pre_destroy(struct cgroup *cgrp)
 798{
 799	struct cgroup_subsys *ss;
 800	int ret = 0;
 801
 802	for_each_subsys(cgrp->root, ss)
 803		if (ss->pre_destroy) {
 804			ret = ss->pre_destroy(ss, cgrp);
 805			if (ret)
 806				break;
 807		}
 808
 809	return ret;
 810}
 811
 812static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 813{
 814	/* is dentry a directory ? if so, kfree() associated cgroup */
 815	if (S_ISDIR(inode->i_mode)) {
 816		struct cgroup *cgrp = dentry->d_fsdata;
 817		struct cgroup_subsys *ss;
 818		BUG_ON(!(cgroup_is_removed(cgrp)));
 819		/* It's possible for external users to be holding css
 820		 * reference counts on a cgroup; css_put() needs to
 821		 * be able to access the cgroup after decrementing
 822		 * the reference count in order to know if it needs to
 823		 * queue the cgroup to be handled by the release
 824		 * agent */
 825		synchronize_rcu();
 826
 827		mutex_lock(&cgroup_mutex);
 828		/*
 829		 * Release the subsystem state objects.
 830		 */
 831		for_each_subsys(cgrp->root, ss)
 832			ss->destroy(ss, cgrp);
 833
 834		cgrp->root->number_of_cgroups--;
 835		mutex_unlock(&cgroup_mutex);
 836
 837		/*
 838		 * Drop the active superblock reference that we took when we
 839		 * created the cgroup
 840		 */
 841		deactivate_super(cgrp->root->sb);
 842
 843		/*
 844		 * if we're getting rid of the cgroup, refcount should ensure
 845		 * that there are no pidlists left.
 846		 */
 847		BUG_ON(!list_empty(&cgrp->pidlists));
 848
 849		kfree_rcu(cgrp, rcu_head);
 850	}
 851	iput(inode);
 852}
 853
 854static int cgroup_delete(const struct dentry *d)
 855{
 856	return 1;
 857}
 858
 859static void remove_dir(struct dentry *d)
 860{
 861	struct dentry *parent = dget(d->d_parent);
 862
 863	d_delete(d);
 864	simple_rmdir(parent->d_inode, d);
 865	dput(parent);
 866}
 867
 868static void cgroup_clear_directory(struct dentry *dentry)
 869{
 870	struct list_head *node;
 871
 872	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
 873	spin_lock(&dentry->d_lock);
 874	node = dentry->d_subdirs.next;
 875	while (node != &dentry->d_subdirs) {
 876		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
 877
 878		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 879		list_del_init(node);
 880		if (d->d_inode) {
 881			/* This should never be called on a cgroup
 882			 * directory with child cgroups */
 883			BUG_ON(d->d_inode->i_mode & S_IFDIR);
 884			dget_dlock(d);
 885			spin_unlock(&d->d_lock);
 886			spin_unlock(&dentry->d_lock);
 887			d_delete(d);
 888			simple_unlink(dentry->d_inode, d);
 889			dput(d);
 890			spin_lock(&dentry->d_lock);
 891		} else
 892			spin_unlock(&d->d_lock);
 893		node = dentry->d_subdirs.next;
 894	}
 895	spin_unlock(&dentry->d_lock);
 896}
 897
 898/*
 899 * NOTE : the dentry must have been dget()'ed
 900 */
 901static void cgroup_d_remove_dir(struct dentry *dentry)
 902{
 903	struct dentry *parent;
 904
 905	cgroup_clear_directory(dentry);
 906
 907	parent = dentry->d_parent;
 908	spin_lock(&parent->d_lock);
 909	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 910	list_del_init(&dentry->d_u.d_child);
 911	spin_unlock(&dentry->d_lock);
 912	spin_unlock(&parent->d_lock);
 913	remove_dir(dentry);
 914}
 915
 916/*
 917 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 918 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 919 * reference to css->refcnt. In general, this refcnt is expected to goes down
 920 * to zero, soon.
 921 *
 922 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
 923 */
 924DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
 925
 926static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
 927{
 928	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
 929		wake_up_all(&cgroup_rmdir_waitq);
 930}
 931
 932void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
 933{
 934	css_get(css);
 935}
 936
 937void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
 938{
 939	cgroup_wakeup_rmdir_waiter(css->cgroup);
 940	css_put(css);
 941}
 942
 943/*
 944 * Call with cgroup_mutex held. Drops reference counts on modules, including
 945 * any duplicate ones that parse_cgroupfs_options took. If this function
 946 * returns an error, no reference counts are touched.
 947 */
 948static int rebind_subsystems(struct cgroupfs_root *root,
 949			      unsigned long final_bits)
 950{
 951	unsigned long added_bits, removed_bits;
 952	struct cgroup *cgrp = &root->top_cgroup;
 953	int i;
 954
 955	BUG_ON(!mutex_is_locked(&cgroup_mutex));
 956
 957	removed_bits = root->actual_subsys_bits & ~final_bits;
 958	added_bits = final_bits & ~root->actual_subsys_bits;
 959	/* Check that any added subsystems are currently free */
 960	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 961		unsigned long bit = 1UL << i;
 962		struct cgroup_subsys *ss = subsys[i];
 963		if (!(bit & added_bits))
 964			continue;
 965		/*
 966		 * Nobody should tell us to do a subsys that doesn't exist:
 967		 * parse_cgroupfs_options should catch that case and refcounts
 968		 * ensure that subsystems won't disappear once selected.
 969		 */
 970		BUG_ON(ss == NULL);
 971		if (ss->root != &rootnode) {
 972			/* Subsystem isn't free */
 973			return -EBUSY;
 974		}
 975	}
 976
 977	/* Currently we don't handle adding/removing subsystems when
 978	 * any child cgroups exist. This is theoretically supportable
 979	 * but involves complex error handling, so it's being left until
 980	 * later */
 981	if (root->number_of_cgroups > 1)
 982		return -EBUSY;
 983
 984	/* Process each subsystem */
 985	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 986		struct cgroup_subsys *ss = subsys[i];
 987		unsigned long bit = 1UL << i;
 988		if (bit & added_bits) {
 989			/* We're binding this subsystem to this hierarchy */
 990			BUG_ON(ss == NULL);
 991			BUG_ON(cgrp->subsys[i]);
 992			BUG_ON(!dummytop->subsys[i]);
 993			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
 994			mutex_lock(&ss->hierarchy_mutex);
 995			cgrp->subsys[i] = dummytop->subsys[i];
 996			cgrp->subsys[i]->cgroup = cgrp;
 997			list_move(&ss->sibling, &root->subsys_list);
 998			ss->root = root;
 999			if (ss->bind)
1000				ss->bind(ss, cgrp);
1001			mutex_unlock(&ss->hierarchy_mutex);
1002			/* refcount was already taken, and we're keeping it */
1003		} else if (bit & removed_bits) {
1004			/* We're removing this subsystem */
1005			BUG_ON(ss == NULL);
1006			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1007			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1008			mutex_lock(&ss->hierarchy_mutex);
1009			if (ss->bind)
1010				ss->bind(ss, dummytop);
1011			dummytop->subsys[i]->cgroup = dummytop;
1012			cgrp->subsys[i] = NULL;
1013			subsys[i]->root = &rootnode;
1014			list_move(&ss->sibling, &rootnode.subsys_list);
1015			mutex_unlock(&ss->hierarchy_mutex);
1016			/* subsystem is now free - drop reference on module */
1017			module_put(ss->module);
1018		} else if (bit & final_bits) {
1019			/* Subsystem state should already exist */
1020			BUG_ON(ss == NULL);
1021			BUG_ON(!cgrp->subsys[i]);
1022			/*
1023			 * a refcount was taken, but we already had one, so
1024			 * drop the extra reference.
1025			 */
1026			module_put(ss->module);
1027#ifdef CONFIG_MODULE_UNLOAD
1028			BUG_ON(ss->module && !module_refcount(ss->module));
1029#endif
1030		} else {
1031			/* Subsystem state shouldn't exist */
1032			BUG_ON(cgrp->subsys[i]);
1033		}
1034	}
1035	root->subsys_bits = root->actual_subsys_bits = final_bits;
1036	synchronize_rcu();
1037
1038	return 0;
1039}
1040
1041static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1042{
1043	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1044	struct cgroup_subsys *ss;
1045
1046	mutex_lock(&cgroup_mutex);
1047	for_each_subsys(root, ss)
1048		seq_printf(seq, ",%s", ss->name);
1049	if (test_bit(ROOT_NOPREFIX, &root->flags))
1050		seq_puts(seq, ",noprefix");
1051	if (strlen(root->release_agent_path))
1052		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1053	if (clone_children(&root->top_cgroup))
1054		seq_puts(seq, ",clone_children");
1055	if (strlen(root->name))
1056		seq_printf(seq, ",name=%s", root->name);
1057	mutex_unlock(&cgroup_mutex);
1058	return 0;
1059}
1060
1061struct cgroup_sb_opts {
1062	unsigned long subsys_bits;
1063	unsigned long flags;
1064	char *release_agent;
1065	bool clone_children;
1066	char *name;
1067	/* User explicitly requested empty subsystem */
1068	bool none;
1069
1070	struct cgroupfs_root *new_root;
1071
1072};
1073
1074/*
1075 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1076 * with cgroup_mutex held to protect the subsys[] array. This function takes
1077 * refcounts on subsystems to be used, unless it returns error, in which case
1078 * no refcounts are taken.
1079 */
1080static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1081{
1082	char *token, *o = data;
1083	bool all_ss = false, one_ss = false;
1084	unsigned long mask = (unsigned long)-1;
1085	int i;
1086	bool module_pin_failed = false;
1087
1088	BUG_ON(!mutex_is_locked(&cgroup_mutex));
1089
1090#ifdef CONFIG_CPUSETS
1091	mask = ~(1UL << cpuset_subsys_id);
1092#endif
1093
1094	memset(opts, 0, sizeof(*opts));
1095
1096	while ((token = strsep(&o, ",")) != NULL) {
1097		if (!*token)
1098			return -EINVAL;
1099		if (!strcmp(token, "none")) {
1100			/* Explicitly have no subsystems */
1101			opts->none = true;
1102			continue;
1103		}
1104		if (!strcmp(token, "all")) {
1105			/* Mutually exclusive option 'all' + subsystem name */
1106			if (one_ss)
1107				return -EINVAL;
1108			all_ss = true;
1109			continue;
1110		}
1111		if (!strcmp(token, "noprefix")) {
1112			set_bit(ROOT_NOPREFIX, &opts->flags);
1113			continue;
1114		}
1115		if (!strcmp(token, "clone_children")) {
1116			opts->clone_children = true;
1117			continue;
1118		}
1119		if (!strncmp(token, "release_agent=", 14)) {
1120			/* Specifying two release agents is forbidden */
1121			if (opts->release_agent)
1122				return -EINVAL;
1123			opts->release_agent =
1124				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1125			if (!opts->release_agent)
1126				return -ENOMEM;
1127			continue;
1128		}
1129		if (!strncmp(token, "name=", 5)) {
1130			const char *name = token + 5;
1131			/* Can't specify an empty name */
1132			if (!strlen(name))
1133				return -EINVAL;
1134			/* Must match [\w.-]+ */
1135			for (i = 0; i < strlen(name); i++) {
1136				char c = name[i];
1137				if (isalnum(c))
1138					continue;
1139				if ((c == '.') || (c == '-') || (c == '_'))
1140					continue;
1141				return -EINVAL;
1142			}
1143			/* Specifying two names is forbidden */
1144			if (opts->name)
1145				return -EINVAL;
1146			opts->name = kstrndup(name,
1147					      MAX_CGROUP_ROOT_NAMELEN - 1,
1148					      GFP_KERNEL);
1149			if (!opts->name)
1150				return -ENOMEM;
1151
1152			continue;
1153		}
1154
1155		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1156			struct cgroup_subsys *ss = subsys[i];
1157			if (ss == NULL)
1158				continue;
1159			if (strcmp(token, ss->name))
1160				continue;
1161			if (ss->disabled)
1162				continue;
1163
1164			/* Mutually exclusive option 'all' + subsystem name */
1165			if (all_ss)
1166				return -EINVAL;
1167			set_bit(i, &opts->subsys_bits);
1168			one_ss = true;
1169
1170			break;
1171		}
1172		if (i == CGROUP_SUBSYS_COUNT)
1173			return -ENOENT;
1174	}
1175
1176	/*
1177	 * If the 'all' option was specified select all the subsystems,
1178	 * otherwise 'all, 'none' and a subsystem name options were not
1179	 * specified, let's default to 'all'
1180	 */
1181	if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1182		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1183			struct cgroup_subsys *ss = subsys[i];
1184			if (ss == NULL)
1185				continue;
1186			if (ss->disabled)
1187				continue;
1188			set_bit(i, &opts->subsys_bits);
1189		}
1190	}
1191
1192	/* Consistency checks */
1193
1194	/*
1195	 * Option noprefix was introduced just for backward compatibility
1196	 * with the old cpuset, so we allow noprefix only if mounting just
1197	 * the cpuset subsystem.
1198	 */
1199	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1200	    (opts->subsys_bits & mask))
1201		return -EINVAL;
1202
1203
1204	/* Can't specify "none" and some subsystems */
1205	if (opts->subsys_bits && opts->none)
1206		return -EINVAL;
1207
1208	/*
1209	 * We either have to specify by name or by subsystems. (So all
1210	 * empty hierarchies must have a name).
1211	 */
1212	if (!opts->subsys_bits && !opts->name)
1213		return -EINVAL;
1214
1215	/*
1216	 * Grab references on all the modules we'll need, so the subsystems
1217	 * don't dance around before rebind_subsystems attaches them. This may
1218	 * take duplicate reference counts on a subsystem that's already used,
1219	 * but rebind_subsystems handles this case.
1220	 */
1221	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1222		unsigned long bit = 1UL << i;
1223
1224		if (!(bit & opts->subsys_bits))
1225			continue;
1226		if (!try_module_get(subsys[i]->module)) {
1227			module_pin_failed = true;
1228			break;
1229		}
1230	}
1231	if (module_pin_failed) {
1232		/*
1233		 * oops, one of the modules was going away. this means that we
1234		 * raced with a module_delete call, and to the user this is
1235		 * essentially a "subsystem doesn't exist" case.
1236		 */
1237		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1238			/* drop refcounts only on the ones we took */
1239			unsigned long bit = 1UL << i;
1240
1241			if (!(bit & opts->subsys_bits))
1242				continue;
1243			module_put(subsys[i]->module);
1244		}
1245		return -ENOENT;
1246	}
1247
1248	return 0;
1249}
1250
1251static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1252{
1253	int i;
1254	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1255		unsigned long bit = 1UL << i;
1256
1257		if (!(bit & subsys_bits))
1258			continue;
1259		module_put(subsys[i]->module);
1260	}
1261}
1262
1263static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1264{
1265	int ret = 0;
1266	struct cgroupfs_root *root = sb->s_fs_info;
1267	struct cgroup *cgrp = &root->top_cgroup;
1268	struct cgroup_sb_opts opts;
1269
1270	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1271	mutex_lock(&cgroup_mutex);
1272
1273	/* See what subsystems are wanted */
1274	ret = parse_cgroupfs_options(data, &opts);
1275	if (ret)
1276		goto out_unlock;
1277
1278	/* Don't allow flags or name to change at remount */
1279	if (opts.flags != root->flags ||
1280	    (opts.name && strcmp(opts.name, root->name))) {
1281		ret = -EINVAL;
1282		drop_parsed_module_refcounts(opts.subsys_bits);
1283		goto out_unlock;
1284	}
1285
1286	ret = rebind_subsystems(root, opts.subsys_bits);
1287	if (ret) {
1288		drop_parsed_module_refcounts(opts.subsys_bits);
1289		goto out_unlock;
1290	}
1291
1292	/* (re)populate subsystem files */
1293	cgroup_populate_dir(cgrp);
1294
1295	if (opts.release_agent)
1296		strcpy(root->release_agent_path, opts.release_agent);
1297 out_unlock:
1298	kfree(opts.release_agent);
1299	kfree(opts.name);
1300	mutex_unlock(&cgroup_mutex);
1301	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1302	return ret;
1303}
1304
1305static const struct super_operations cgroup_ops = {
1306	.statfs = simple_statfs,
1307	.drop_inode = generic_delete_inode,
1308	.show_options = cgroup_show_options,
1309	.remount_fs = cgroup_remount,
1310};
1311
1312static void init_cgroup_housekeeping(struct cgroup *cgrp)
1313{
1314	INIT_LIST_HEAD(&cgrp->sibling);
1315	INIT_LIST_HEAD(&cgrp->children);
1316	INIT_LIST_HEAD(&cgrp->css_sets);
1317	INIT_LIST_HEAD(&cgrp->release_list);
1318	INIT_LIST_HEAD(&cgrp->pidlists);
1319	mutex_init(&cgrp->pidlist_mutex);
1320	INIT_LIST_HEAD(&cgrp->event_list);
1321	spin_lock_init(&cgrp->event_list_lock);
1322}
1323
1324static void init_cgroup_root(struct cgroupfs_root *root)
1325{
1326	struct cgroup *cgrp = &root->top_cgroup;
1327	INIT_LIST_HEAD(&root->subsys_list);
1328	INIT_LIST_HEAD(&root->root_list);
1329	root->number_of_cgroups = 1;
1330	cgrp->root = root;
1331	cgrp->top_cgroup = cgrp;
1332	init_cgroup_housekeeping(cgrp);
1333}
1334
1335static bool init_root_id(struct cgroupfs_root *root)
1336{
1337	int ret = 0;
1338
1339	do {
1340		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1341			return false;
1342		spin_lock(&hierarchy_id_lock);
1343		/* Try to allocate the next unused ID */
1344		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1345					&root->hierarchy_id);
1346		if (ret == -ENOSPC)
1347			/* Try again starting from 0 */
1348			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1349		if (!ret) {
1350			next_hierarchy_id = root->hierarchy_id + 1;
1351		} else if (ret != -EAGAIN) {
1352			/* Can only get here if the 31-bit IDR is full ... */
1353			BUG_ON(ret);
1354		}
1355		spin_unlock(&hierarchy_id_lock);
1356	} while (ret);
1357	return true;
1358}
1359
1360static int cgroup_test_super(struct super_block *sb, void *data)
1361{
1362	struct cgroup_sb_opts *opts = data;
1363	struct cgroupfs_root *root = sb->s_fs_info;
1364
1365	/* If we asked for a name then it must match */
1366	if (opts->name && strcmp(opts->name, root->name))
1367		return 0;
1368
1369	/*
1370	 * If we asked for subsystems (or explicitly for no
1371	 * subsystems) then they must match
1372	 */
1373	if ((opts->subsys_bits || opts->none)
1374	    && (opts->subsys_bits != root->subsys_bits))
1375		return 0;
1376
1377	return 1;
1378}
1379
1380static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1381{
1382	struct cgroupfs_root *root;
1383
1384	if (!opts->subsys_bits && !opts->none)
1385		return NULL;
1386
1387	root = kzalloc(sizeof(*root), GFP_KERNEL);
1388	if (!root)
1389		return ERR_PTR(-ENOMEM);
1390
1391	if (!init_root_id(root)) {
1392		kfree(root);
1393		return ERR_PTR(-ENOMEM);
1394	}
1395	init_cgroup_root(root);
1396
1397	root->subsys_bits = opts->subsys_bits;
1398	root->flags = opts->flags;
1399	if (opts->release_agent)
1400		strcpy(root->release_agent_path, opts->release_agent);
1401	if (opts->name)
1402		strcpy(root->name, opts->name);
1403	if (opts->clone_children)
1404		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1405	return root;
1406}
1407
1408static void cgroup_drop_root(struct cgroupfs_root *root)
1409{
1410	if (!root)
1411		return;
1412
1413	BUG_ON(!root->hierarchy_id);
1414	spin_lock(&hierarchy_id_lock);
1415	ida_remove(&hierarchy_ida, root->hierarchy_id);
1416	spin_unlock(&hierarchy_id_lock);
1417	kfree(root);
1418}
1419
1420static int cgroup_set_super(struct super_block *sb, void *data)
1421{
1422	int ret;
1423	struct cgroup_sb_opts *opts = data;
1424
1425	/* If we don't have a new root, we can't set up a new sb */
1426	if (!opts->new_root)
1427		return -EINVAL;
1428
1429	BUG_ON(!opts->subsys_bits && !opts->none);
1430
1431	ret = set_anon_super(sb, NULL);
1432	if (ret)
1433		return ret;
1434
1435	sb->s_fs_info = opts->new_root;
1436	opts->new_root->sb = sb;
1437
1438	sb->s_blocksize = PAGE_CACHE_SIZE;
1439	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1440	sb->s_magic = CGROUP_SUPER_MAGIC;
1441	sb->s_op = &cgroup_ops;
1442
1443	return 0;
1444}
1445
1446static int cgroup_get_rootdir(struct super_block *sb)
1447{
1448	static const struct dentry_operations cgroup_dops = {
1449		.d_iput = cgroup_diput,
1450		.d_delete = cgroup_delete,
1451	};
1452
1453	struct inode *inode =
1454		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1455	struct dentry *dentry;
1456
1457	if (!inode)
1458		return -ENOMEM;
1459
1460	inode->i_fop = &simple_dir_operations;
1461	inode->i_op = &cgroup_dir_inode_operations;
1462	/* directories start off with i_nlink == 2 (for "." entry) */
1463	inc_nlink(inode);
1464	dentry = d_alloc_root(inode);
1465	if (!dentry) {
1466		iput(inode);
1467		return -ENOMEM;
1468	}
1469	sb->s_root = dentry;
1470	/* for everything else we want ->d_op set */
1471	sb->s_d_op = &cgroup_dops;
1472	return 0;
1473}
1474
1475static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1476			 int flags, const char *unused_dev_name,
1477			 void *data)
1478{
1479	struct cgroup_sb_opts opts;
1480	struct cgroupfs_root *root;
1481	int ret = 0;
1482	struct super_block *sb;
1483	struct cgroupfs_root *new_root;
1484
1485	/* First find the desired set of subsystems */
1486	mutex_lock(&cgroup_mutex);
1487	ret = parse_cgroupfs_options(data, &opts);
1488	mutex_unlock(&cgroup_mutex);
1489	if (ret)
1490		goto out_err;
1491
1492	/*
1493	 * Allocate a new cgroup root. We may not need it if we're
1494	 * reusing an existing hierarchy.
1495	 */
1496	new_root = cgroup_root_from_opts(&opts);
1497	if (IS_ERR(new_root)) {
1498		ret = PTR_ERR(new_root);
1499		goto drop_modules;
1500	}
1501	opts.new_root = new_root;
1502
1503	/* Locate an existing or new sb for this hierarchy */
1504	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1505	if (IS_ERR(sb)) {
1506		ret = PTR_ERR(sb);
1507		cgroup_drop_root(opts.new_root);
1508		goto drop_modules;
1509	}
1510
1511	root = sb->s_fs_info;
1512	BUG_ON(!root);
1513	if (root == opts.new_root) {
1514		/* We used the new root structure, so this is a new hierarchy */
1515		struct list_head tmp_cg_links;
1516		struct cgroup *root_cgrp = &root->top_cgroup;
1517		struct inode *inode;
1518		struct cgroupfs_root *existing_root;
1519		const struct cred *cred;
1520		int i;
1521
1522		BUG_ON(sb->s_root != NULL);
1523
1524		ret = cgroup_get_rootdir(sb);
1525		if (ret)
1526			goto drop_new_super;
1527		inode = sb->s_root->d_inode;
1528
1529		mutex_lock(&inode->i_mutex);
1530		mutex_lock(&cgroup_mutex);
1531
1532		if (strlen(root->name)) {
1533			/* Check for name clashes with existing mounts */
1534			for_each_active_root(existing_root) {
1535				if (!strcmp(existing_root->name, root->name)) {
1536					ret = -EBUSY;
1537					mutex_unlock(&cgroup_mutex);
1538					mutex_unlock(&inode->i_mutex);
1539					goto drop_new_super;
1540				}
1541			}
1542		}
1543
1544		/*
1545		 * We're accessing css_set_count without locking
1546		 * css_set_lock here, but that's OK - it can only be
1547		 * increased by someone holding cgroup_lock, and
1548		 * that's us. The worst that can happen is that we
1549		 * have some link structures left over
1550		 */
1551		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1552		if (ret) {
1553			mutex_unlock(&cgroup_mutex);
1554			mutex_unlock(&inode->i_mutex);
1555			goto drop_new_super;
1556		}
1557
1558		ret = rebind_subsystems(root, root->subsys_bits);
1559		if (ret == -EBUSY) {
1560			mutex_unlock(&cgroup_mutex);
1561			mutex_unlock(&inode->i_mutex);
1562			free_cg_links(&tmp_cg_links);
1563			goto drop_new_super;
1564		}
1565		/*
1566		 * There must be no failure case after here, since rebinding
1567		 * takes care of subsystems' refcounts, which are explicitly
1568		 * dropped in the failure exit path.
1569		 */
1570
1571		/* EBUSY should be the only error here */
1572		BUG_ON(ret);
1573
1574		list_add(&root->root_list, &roots);
1575		root_count++;
1576
1577		sb->s_root->d_fsdata = root_cgrp;
1578		root->top_cgroup.dentry = sb->s_root;
1579
1580		/* Link the top cgroup in this hierarchy into all
1581		 * the css_set objects */
1582		write_lock(&css_set_lock);
1583		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1584			struct hlist_head *hhead = &css_set_table[i];
1585			struct hlist_node *node;
1586			struct css_set *cg;
1587
1588			hlist_for_each_entry(cg, node, hhead, hlist)
1589				link_css_set(&tmp_cg_links, cg, root_cgrp);
1590		}
1591		write_unlock(&css_set_lock);
1592
1593		free_cg_links(&tmp_cg_links);
1594
1595		BUG_ON(!list_empty(&root_cgrp->sibling));
1596		BUG_ON(!list_empty(&root_cgrp->children));
1597		BUG_ON(root->number_of_cgroups != 1);
1598
1599		cred = override_creds(&init_cred);
1600		cgroup_populate_dir(root_cgrp);
1601		revert_creds(cred);
1602		mutex_unlock(&cgroup_mutex);
1603		mutex_unlock(&inode->i_mutex);
1604	} else {
1605		/*
1606		 * We re-used an existing hierarchy - the new root (if
1607		 * any) is not needed
1608		 */
1609		cgroup_drop_root(opts.new_root);
1610		/* no subsys rebinding, so refcounts don't change */
1611		drop_parsed_module_refcounts(opts.subsys_bits);
1612	}
1613
1614	kfree(opts.release_agent);
1615	kfree(opts.name);
1616	return dget(sb->s_root);
1617
1618 drop_new_super:
1619	deactivate_locked_super(sb);
1620 drop_modules:
1621	drop_parsed_module_refcounts(opts.subsys_bits);
1622 out_err:
1623	kfree(opts.release_agent);
1624	kfree(opts.name);
1625	return ERR_PTR(ret);
1626}
1627
1628static void cgroup_kill_sb(struct super_block *sb) {
1629	struct cgroupfs_root *root = sb->s_fs_info;
1630	struct cgroup *cgrp = &root->top_cgroup;
1631	int ret;
1632	struct cg_cgroup_link *link;
1633	struct cg_cgroup_link *saved_link;
1634
1635	BUG_ON(!root);
1636
1637	BUG_ON(root->number_of_cgroups != 1);
1638	BUG_ON(!list_empty(&cgrp->children));
1639	BUG_ON(!list_empty(&cgrp->sibling));
1640
1641	mutex_lock(&cgroup_mutex);
1642
1643	/* Rebind all subsystems back to the default hierarchy */
1644	ret = rebind_subsystems(root, 0);
1645	/* Shouldn't be able to fail ... */
1646	BUG_ON(ret);
1647
1648	/*
1649	 * Release all the links from css_sets to this hierarchy's
1650	 * root cgroup
1651	 */
1652	write_lock(&css_set_lock);
1653
1654	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1655				 cgrp_link_list) {
1656		list_del(&link->cg_link_list);
1657		list_del(&link->cgrp_link_list);
1658		kfree(link);
1659	}
1660	write_unlock(&css_set_lock);
1661
1662	if (!list_empty(&root->root_list)) {
1663		list_del(&root->root_list);
1664		root_count--;
1665	}
1666
1667	mutex_unlock(&cgroup_mutex);
1668
1669	kill_litter_super(sb);
1670	cgroup_drop_root(root);
1671}
1672
1673static struct file_system_type cgroup_fs_type = {
1674	.name = "cgroup",
1675	.mount = cgroup_mount,
1676	.kill_sb = cgroup_kill_sb,
1677};
1678
1679static struct kobject *cgroup_kobj;
1680
1681static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1682{
1683	return dentry->d_fsdata;
1684}
1685
1686static inline struct cftype *__d_cft(struct dentry *dentry)
1687{
1688	return dentry->d_fsdata;
1689}
1690
1691/**
1692 * cgroup_path - generate the path of a cgroup
1693 * @cgrp: the cgroup in question
1694 * @buf: the buffer to write the path into
1695 * @buflen: the length of the buffer
1696 *
1697 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1698 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1699 * -errno on error.
1700 */
1701int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1702{
1703	char *start;
1704	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1705						      cgroup_lock_is_held());
1706
1707	if (!dentry || cgrp == dummytop) {
1708		/*
1709		 * Inactive subsystems have no dentry for their root
1710		 * cgroup
1711		 */
1712		strcpy(buf, "/");
1713		return 0;
1714	}
1715
1716	start = buf + buflen;
1717
1718	*--start = '\0';
1719	for (;;) {
1720		int len = dentry->d_name.len;
1721
1722		if ((start -= len) < buf)
1723			return -ENAMETOOLONG;
1724		memcpy(start, dentry->d_name.name, len);
1725		cgrp = cgrp->parent;
1726		if (!cgrp)
1727			break;
1728
1729		dentry = rcu_dereference_check(cgrp->dentry,
1730					       cgroup_lock_is_held());
1731		if (!cgrp->parent)
1732			continue;
1733		if (--start < buf)
1734			return -ENAMETOOLONG;
1735		*start = '/';
1736	}
1737	memmove(buf, start, buf + buflen - start);
1738	return 0;
1739}
1740EXPORT_SYMBOL_GPL(cgroup_path);
1741
1742/*
1743 * cgroup_task_migrate - move a task from one cgroup to another.
1744 *
1745 * 'guarantee' is set if the caller promises that a new css_set for the task
1746 * will already exist. If not set, this function might sleep, and can fail with
1747 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1748 */
1749static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1750			       struct task_struct *tsk, bool guarantee)
1751{
1752	struct css_set *oldcg;
1753	struct css_set *newcg;
1754
1755	/*
1756	 * get old css_set. we need to take task_lock and refcount it, because
1757	 * an exiting task can change its css_set to init_css_set and drop its
1758	 * old one without taking cgroup_mutex.
1759	 */
1760	task_lock(tsk);
1761	oldcg = tsk->cgroups;
1762	get_css_set(oldcg);
1763	task_unlock(tsk);
1764
1765	/* locate or allocate a new css_set for this task. */
1766	if (guarantee) {
1767		/* we know the css_set we want already exists. */
1768		struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1769		read_lock(&css_set_lock);
1770		newcg = find_existing_css_set(oldcg, cgrp, template);
1771		BUG_ON(!newcg);
1772		get_css_set(newcg);
1773		read_unlock(&css_set_lock);
1774	} else {
1775		might_sleep();
1776		/* find_css_set will give us newcg already referenced. */
1777		newcg = find_css_set(oldcg, cgrp);
1778		if (!newcg) {
1779			put_css_set(oldcg);
1780			return -ENOMEM;
1781		}
1782	}
1783	put_css_set(oldcg);
1784
1785	/* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1786	task_lock(tsk);
1787	if (tsk->flags & PF_EXITING) {
1788		task_unlock(tsk);
1789		put_css_set(newcg);
1790		return -ESRCH;
1791	}
1792	rcu_assign_pointer(tsk->cgroups, newcg);
1793	task_unlock(tsk);
1794
1795	/* Update the css_set linked lists if we're using them */
1796	write_lock(&css_set_lock);
1797	if (!list_empty(&tsk->cg_list))
1798		list_move(&tsk->cg_list, &newcg->tasks);
1799	write_unlock(&css_set_lock);
1800
1801	/*
1802	 * We just gained a reference on oldcg by taking it from the task. As
1803	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1804	 * it here; it will be freed under RCU.
1805	 */
1806	put_css_set(oldcg);
1807
1808	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1809	return 0;
1810}
1811
1812/**
1813 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1814 * @cgrp: the cgroup the task is attaching to
1815 * @tsk: the task to be attached
1816 *
1817 * Call holding cgroup_mutex. May take task_lock of
1818 * the task 'tsk' during call.
1819 */
1820int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1821{
1822	int retval;
1823	struct cgroup_subsys *ss, *failed_ss = NULL;
1824	struct cgroup *oldcgrp;
1825	struct cgroupfs_root *root = cgrp->root;
1826
1827	/* Nothing to do if the task is already in that cgroup */
1828	oldcgrp = task_cgroup_from_root(tsk, root);
1829	if (cgrp == oldcgrp)
1830		return 0;
1831
1832	for_each_subsys(root, ss) {
1833		if (ss->can_attach) {
1834			retval = ss->can_attach(ss, cgrp, tsk);
1835			if (retval) {
1836				/*
1837				 * Remember on which subsystem the can_attach()
1838				 * failed, so that we only call cancel_attach()
1839				 * against the subsystems whose can_attach()
1840				 * succeeded. (See below)
1841				 */
1842				failed_ss = ss;
1843				goto out;
1844			}
1845		}
1846		if (ss->can_attach_task) {
1847			retval = ss->can_attach_task(cgrp, tsk);
1848			if (retval) {
1849				failed_ss = ss;
1850				goto out;
1851			}
1852		}
1853	}
1854
1855	retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1856	if (retval)
1857		goto out;
1858
1859	for_each_subsys(root, ss) {
1860		if (ss->pre_attach)
1861			ss->pre_attach(cgrp);
1862		if (ss->attach_task)
1863			ss->attach_task(cgrp, tsk);
1864		if (ss->attach)
1865			ss->attach(ss, cgrp, oldcgrp, tsk);
1866	}
1867
1868	synchronize_rcu();
1869
1870	/*
1871	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1872	 * is no longer empty.
1873	 */
1874	cgroup_wakeup_rmdir_waiter(cgrp);
1875out:
1876	if (retval) {
1877		for_each_subsys(root, ss) {
1878			if (ss == failed_ss)
1879				/*
1880				 * This subsystem was the one that failed the
1881				 * can_attach() check earlier, so we don't need
1882				 * to call cancel_attach() against it or any
1883				 * remaining subsystems.
1884				 */
1885				break;
1886			if (ss->cancel_attach)
1887				ss->cancel_attach(ss, cgrp, tsk);
1888		}
1889	}
1890	return retval;
1891}
1892
1893/**
1894 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1895 * @from: attach to all cgroups of a given task
1896 * @tsk: the task to be attached
1897 */
1898int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1899{
1900	struct cgroupfs_root *root;
1901	int retval = 0;
1902
1903	cgroup_lock();
1904	for_each_active_root(root) {
1905		struct cgroup *from_cg = task_cgroup_from_root(from, root);
1906
1907		retval = cgroup_attach_task(from_cg, tsk);
1908		if (retval)
1909			break;
1910	}
1911	cgroup_unlock();
1912
1913	return retval;
1914}
1915EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1916
1917/*
1918 * cgroup_attach_proc works in two stages, the first of which prefetches all
1919 * new css_sets needed (to make sure we have enough memory before committing
1920 * to the move) and stores them in a list of entries of the following type.
1921 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1922 */
1923struct cg_list_entry {
1924	struct css_set *cg;
1925	struct list_head links;
1926};
1927
1928static bool css_set_check_fetched(struct cgroup *cgrp,
1929				  struct task_struct *tsk, struct css_set *cg,
1930				  struct list_head *newcg_list)
1931{
1932	struct css_set *newcg;
1933	struct cg_list_entry *cg_entry;
1934	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1935
1936	read_lock(&css_set_lock);
1937	newcg = find_existing_css_set(cg, cgrp, template);
1938	if (newcg)
1939		get_css_set(newcg);
1940	read_unlock(&css_set_lock);
1941
1942	/* doesn't exist at all? */
1943	if (!newcg)
1944		return false;
1945	/* see if it's already in the list */
1946	list_for_each_entry(cg_entry, newcg_list, links) {
1947		if (cg_entry->cg == newcg) {
1948			put_css_set(newcg);
1949			return true;
1950		}
1951	}
1952
1953	/* not found */
1954	put_css_set(newcg);
1955	return false;
1956}
1957
1958/*
1959 * Find the new css_set and store it in the list in preparation for moving the
1960 * given task to the given cgroup. Returns 0 or -ENOMEM.
1961 */
1962static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1963			    struct list_head *newcg_list)
1964{
1965	struct css_set *newcg;
1966	struct cg_list_entry *cg_entry;
1967
1968	/* ensure a new css_set will exist for this thread */
1969	newcg = find_css_set(cg, cgrp);
1970	if (!newcg)
1971		return -ENOMEM;
1972	/* add it to the list */
1973	cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1974	if (!cg_entry) {
1975		put_css_set(newcg);
1976		return -ENOMEM;
1977	}
1978	cg_entry->cg = newcg;
1979	list_add(&cg_entry->links, newcg_list);
1980	return 0;
1981}
1982
1983/**
1984 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1985 * @cgrp: the cgroup to attach to
1986 * @leader: the threadgroup leader task_struct of the group to be attached
1987 *
1988 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1989 * take task_lock of each thread in leader's threadgroup individually in turn.
1990 */
1991int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1992{
1993	int retval, i, group_size;
1994	struct cgroup_subsys *ss, *failed_ss = NULL;
1995	bool cancel_failed_ss = false;
1996	/* guaranteed to be initialized later, but the compiler needs this */
1997	struct cgroup *oldcgrp = NULL;
1998	struct css_set *oldcg;
1999	struct cgroupfs_root *root = cgrp->root;
2000	/* threadgroup list cursor and array */
2001	struct task_struct *tsk;
2002	struct flex_array *group;
2003	/*
2004	 * we need to make sure we have css_sets for all the tasks we're
2005	 * going to move -before- we actually start moving them, so that in
2006	 * case we get an ENOMEM we can bail out before making any changes.
2007	 */
2008	struct list_head newcg_list;
2009	struct cg_list_entry *cg_entry, *temp_nobe;
2010
2011	/*
2012	 * step 0: in order to do expensive, possibly blocking operations for
2013	 * every thread, we cannot iterate the thread group list, since it needs
2014	 * rcu or tasklist locked. instead, build an array of all threads in the
2015	 * group - threadgroup_fork_lock prevents new threads from appearing,
2016	 * and if threads exit, this will just be an over-estimate.
2017	 */
2018	group_size = get_nr_threads(leader);
2019	/* flex_array supports very large thread-groups better than kmalloc. */
2020	group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2021				 GFP_KERNEL);
2022	if (!group)
2023		return -ENOMEM;
2024	/* pre-allocate to guarantee space while iterating in rcu read-side. */
2025	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2026	if (retval)
2027		goto out_free_group_list;
2028
2029	/* prevent changes to the threadgroup list while we take a snapshot. */
2030	rcu_read_lock();
2031	if (!thread_group_leader(leader)) {
2032		/*
2033		 * a race with de_thread from another thread's exec() may strip
2034		 * us of our leadership, making while_each_thread unsafe to use
2035		 * on this task. if this happens, there is no choice but to
2036		 * throw this task away and try again (from cgroup_procs_write);
2037		 * this is "double-double-toil-and-trouble-check locking".
2038		 */
2039		rcu_read_unlock();
2040		retval = -EAGAIN;
2041		goto out_free_group_list;
2042	}
2043	/* take a reference on each task in the group to go in the array. */
2044	tsk = leader;
2045	i = 0;
2046	do {
2047		/* as per above, nr_threads may decrease, but not increase. */
2048		BUG_ON(i >= group_size);
2049		get_task_struct(tsk);
2050		/*
2051		 * saying GFP_ATOMIC has no effect here because we did prealloc
2052		 * earlier, but it's good form to communicate our expectations.
2053		 */
2054		retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2055		BUG_ON(retval != 0);
2056		i++;
2057	} while_each_thread(leader, tsk);
2058	/* remember the number of threads in the array for later. */
2059	group_size = i;
2060	rcu_read_unlock();
2061
2062	/*
2063	 * step 1: check that we can legitimately attach to the cgroup.
2064	 */
2065	for_each_subsys(root, ss) {
2066		if (ss->can_attach) {
2067			retval = ss->can_attach(ss, cgrp, leader);
2068			if (retval) {
2069				failed_ss = ss;
2070				goto out_cancel_attach;
2071			}
2072		}
2073		/* a callback to be run on every thread in the threadgroup. */
2074		if (ss->can_attach_task) {
2075			/* run on each task in the threadgroup. */
2076			for (i = 0; i < group_size; i++) {
2077				tsk = flex_array_get_ptr(group, i);
2078				retval = ss->can_attach_task(cgrp, tsk);
2079				if (retval) {
2080					failed_ss = ss;
2081					cancel_failed_ss = true;
2082					goto out_cancel_attach;
2083				}
2084			}
2085		}
2086	}
2087
2088	/*
2089	 * step 2: make sure css_sets exist for all threads to be migrated.
2090	 * we use find_css_set, which allocates a new one if necessary.
2091	 */
2092	INIT_LIST_HEAD(&newcg_list);
2093	for (i = 0; i < group_size; i++) {
2094		tsk = flex_array_get_ptr(group, i);
2095		/* nothing to do if this task is already in the cgroup */
2096		oldcgrp = task_cgroup_from_root(tsk, root);
2097		if (cgrp == oldcgrp)
2098			continue;
2099		/* get old css_set pointer */
2100		task_lock(tsk);
2101		if (tsk->flags & PF_EXITING) {
2102			/* ignore this task if it's going away */
2103			task_unlock(tsk);
2104			continue;
2105		}
2106		oldcg = tsk->cgroups;
2107		get_css_set(oldcg);
2108		task_unlock(tsk);
2109		/* see if the new one for us is already in the list? */
2110		if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2111			/* was already there, nothing to do. */
2112			put_css_set(oldcg);
2113		} else {
2114			/* we don't already have it. get new one. */
2115			retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2116			put_css_set(oldcg);
2117			if (retval)
2118				goto out_list_teardown;
2119		}
2120	}
2121
2122	/*
2123	 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2124	 * to move all tasks to the new cgroup, calling ss->attach_task for each
2125	 * one along the way. there are no failure cases after here, so this is
2126	 * the commit point.
2127	 */
2128	for_each_subsys(root, ss) {
2129		if (ss->pre_attach)
2130			ss->pre_attach(cgrp);
2131	}
2132	for (i = 0; i < group_size; i++) {
2133		tsk = flex_array_get_ptr(group, i);
2134		/* leave current thread as it is if it's already there */
2135		oldcgrp = task_cgroup_from_root(tsk, root);
2136		if (cgrp == oldcgrp)
2137			continue;
2138		/* attach each task to each subsystem */
2139		for_each_subsys(root, ss) {
2140			if (ss->attach_task)
2141				ss->attach_task(cgrp, tsk);
2142		}
2143		/* if the thread is PF_EXITING, it can just get skipped. */
2144		retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2145		BUG_ON(retval != 0 && retval != -ESRCH);
2146	}
2147	/* nothing is sensitive to fork() after this point. */
2148
2149	/*
2150	 * step 4: do expensive, non-thread-specific subsystem callbacks.
2151	 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2152	 * being moved, this call will need to be reworked to communicate that.
2153	 */
2154	for_each_subsys(root, ss) {
2155		if (ss->attach)
2156			ss->attach(ss, cgrp, oldcgrp, leader);
2157	}
2158
2159	/*
2160	 * step 5: success! and cleanup
2161	 */
2162	synchronize_rcu();
2163	cgroup_wakeup_rmdir_waiter(cgrp);
2164	retval = 0;
2165out_list_teardown:
2166	/* clean up the list of prefetched css_sets. */
2167	list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2168		list_del(&cg_entry->links);
2169		put_css_set(cg_entry->cg);
2170		kfree(cg_entry);
2171	}
2172out_cancel_attach:
2173	/* same deal as in cgroup_attach_task */
2174	if (retval) {
2175		for_each_subsys(root, ss) {
2176			if (ss == failed_ss) {
2177				if (cancel_failed_ss && ss->cancel_attach)
2178					ss->cancel_attach(ss, cgrp, leader);
2179				break;
2180			}
2181			if (ss->cancel_attach)
2182				ss->cancel_attach(ss, cgrp, leader);
2183		}
2184	}
2185	/* clean up the array of referenced threads in the group. */
2186	for (i = 0; i < group_size; i++) {
2187		tsk = flex_array_get_ptr(group, i);
2188		put_task_struct(tsk);
2189	}
2190out_free_group_list:
2191	flex_array_free(group);
2192	return retval;
2193}
2194
2195/*
2196 * Find the task_struct of the task to attach by vpid and pass it along to the
2197 * function to attach either it or all tasks in its threadgroup. Will take
2198 * cgroup_mutex; may take task_lock of task.
2199 */
2200static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2201{
2202	struct task_struct *tsk;
2203	const struct cred *cred = current_cred(), *tcred;
2204	int ret;
2205
2206	if (!cgroup_lock_live_group(cgrp))
2207		return -ENODEV;
2208
2209	if (pid) {
2210		rcu_read_lock();
2211		tsk = find_task_by_vpid(pid);
2212		if (!tsk) {
2213			rcu_read_unlock();
2214			cgroup_unlock();
2215			return -ESRCH;
2216		}
2217		if (threadgroup) {
2218			/*
2219			 * RCU protects this access, since tsk was found in the
2220			 * tid map. a race with de_thread may cause group_leader
2221			 * to stop being the leader, but cgroup_attach_proc will
2222			 * detect it later.
2223			 */
2224			tsk = tsk->group_leader;
2225		} else if (tsk->flags & PF_EXITING) {
2226			/* optimization for the single-task-only case */
2227			rcu_read_unlock();
2228			cgroup_unlock();
2229			return -ESRCH;
2230		}
2231
2232		/*
2233		 * even if we're attaching all tasks in the thread group, we
2234		 * only need to check permissions on one of them.
2235		 */
2236		tcred = __task_cred(tsk);
2237		if (cred->euid &&
2238		    cred->euid != tcred->uid &&
2239		    cred->euid != tcred->suid) {
2240			rcu_read_unlock();
2241			cgroup_unlock();
2242			return -EACCES;
2243		}
2244		get_task_struct(tsk);
2245		rcu_read_unlock();
2246	} else {
2247		if (threadgroup)
2248			tsk = current->group_leader;
2249		else
2250			tsk = current;
2251		get_task_struct(tsk);
2252	}
2253
2254	if (threadgroup) {
2255		threadgroup_fork_write_lock(tsk);
2256		ret = cgroup_attach_proc(cgrp, tsk);
2257		threadgroup_fork_write_unlock(tsk);
2258	} else {
2259		ret = cgroup_attach_task(cgrp, tsk);
2260	}
2261	put_task_struct(tsk);
2262	cgroup_unlock();
2263	return ret;
2264}
2265
2266static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2267{
2268	return attach_task_by_pid(cgrp, pid, false);
2269}
2270
2271static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2272{
2273	int ret;
2274	do {
2275		/*
2276		 * attach_proc fails with -EAGAIN if threadgroup leadership
2277		 * changes in the middle of the operation, in which case we need
2278		 * to find the task_struct for the new leader and start over.
2279		 */
2280		ret = attach_task_by_pid(cgrp, tgid, true);
2281	} while (ret == -EAGAIN);
2282	return ret;
2283}
2284
2285/**
2286 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2287 * @cgrp: the cgroup to be checked for liveness
2288 *
2289 * On success, returns true; the lock should be later released with
2290 * cgroup_unlock(). On failure returns false with no lock held.
2291 */
2292bool cgroup_lock_live_group(struct cgroup *cgrp)
2293{
2294	mutex_lock(&cgroup_mutex);
2295	if (cgroup_is_removed(cgrp)) {
2296		mutex_unlock(&cgroup_mutex);
2297		return false;
2298	}
2299	return true;
2300}
2301EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2302
2303static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2304				      const char *buffer)
2305{
2306	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2307	if (strlen(buffer) >= PATH_MAX)
2308		return -EINVAL;
2309	if (!cgroup_lock_live_group(cgrp))
2310		return -ENODEV;
2311	strcpy(cgrp->root->release_agent_path, buffer);
2312	cgroup_unlock();
2313	return 0;
2314}
2315
2316static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2317				     struct seq_file *seq)
2318{
2319	if (!cgroup_lock_live_group(cgrp))
2320		return -ENODEV;
2321	seq_puts(seq, cgrp->root->release_agent_path);
2322	seq_putc(seq, '\n');
2323	cgroup_unlock();
2324	return 0;
2325}
2326
2327/* A buffer size big enough for numbers or short strings */
2328#define CGROUP_LOCAL_BUFFER_SIZE 64
2329
2330static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2331				struct file *file,
2332				const char __user *userbuf,
2333				size_t nbytes, loff_t *unused_ppos)
2334{
2335	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2336	int retval = 0;
2337	char *end;
2338
2339	if (!nbytes)
2340		return -EINVAL;
2341	if (nbytes >= sizeof(buffer))
2342		return -E2BIG;
2343	if (copy_from_user(buffer, userbuf, nbytes))
2344		return -EFAULT;
2345
2346	buffer[nbytes] = 0;     /* nul-terminate */
2347	if (cft->write_u64) {
2348		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2349		if (*end)
2350			return -EINVAL;
2351		retval = cft->write_u64(cgrp, cft, val);
2352	} else {
2353		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2354		if (*end)
2355			return -EINVAL;
2356		retval = cft->write_s64(cgrp, cft, val);
2357	}
2358	if (!retval)
2359		retval = nbytes;
2360	return retval;
2361}
2362
2363static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2364				   struct file *file,
2365				   const char __user *userbuf,
2366				   size_t nbytes, loff_t *unused_ppos)
2367{
2368	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2369	int retval = 0;
2370	size_t max_bytes = cft->max_write_len;
2371	char *buffer = local_buffer;
2372
2373	if (!max_bytes)
2374		max_bytes = sizeof(local_buffer) - 1;
2375	if (nbytes >= max_bytes)
2376		return -E2BIG;
2377	/* Allocate a dynamic buffer if we need one */
2378	if (nbytes >= sizeof(local_buffer)) {
2379		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2380		if (buffer == NULL)
2381			return -ENOMEM;
2382	}
2383	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2384		retval = -EFAULT;
2385		goto out;
2386	}
2387
2388	buffer[nbytes] = 0;     /* nul-terminate */
2389	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2390	if (!retval)
2391		retval = nbytes;
2392out:
2393	if (buffer != local_buffer)
2394		kfree(buffer);
2395	return retval;
2396}
2397
2398static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2399						size_t nbytes, loff_t *ppos)
2400{
2401	struct cftype *cft = __d_cft(file->f_dentry);
2402	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2403
2404	if (cgroup_is_removed(cgrp))
2405		return -ENODEV;
2406	if (cft->write)
2407		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2408	if (cft->write_u64 || cft->write_s64)
2409		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2410	if (cft->write_string)
2411		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2412	if (cft->trigger) {
2413		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2414		return ret ? ret : nbytes;
2415	}
2416	return -EINVAL;
2417}
2418
2419static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2420			       struct file *file,
2421			       char __user *buf, size_t nbytes,
2422			       loff_t *ppos)
2423{
2424	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2425	u64 val = cft->read_u64(cgrp, cft);
2426	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2427
2428	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2429}
2430
2431static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2432			       struct file *file,
2433			       char __user *buf, size_t nbytes,
2434			       loff_t *ppos)
2435{
2436	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2437	s64 val = cft->read_s64(cgrp, cft);
2438	int len = sprintf(tmp, "%lld\n", (long long) val);
2439
2440	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2441}
2442
2443static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2444				   size_t nbytes, loff_t *ppos)
2445{
2446	struct cftype *cft = __d_cft(file->f_dentry);
2447	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2448
2449	if (cgroup_is_removed(cgrp))
2450		return -ENODEV;
2451
2452	if (cft->read)
2453		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2454	if (cft->read_u64)
2455		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2456	if (cft->read_s64)
2457		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2458	return -EINVAL;
2459}
2460
2461/*
2462 * seqfile ops/methods for returning structured data. Currently just
2463 * supports string->u64 maps, but can be extended in future.
2464 */
2465
2466struct cgroup_seqfile_state {
2467	struct cftype *cft;
2468	struct cgroup *cgroup;
2469};
2470
2471static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2472{
2473	struct seq_file *sf = cb->state;
2474	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2475}
2476
2477static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2478{
2479	struct cgroup_seqfile_state *state = m->private;
2480	struct cftype *cft = state->cft;
2481	if (cft->read_map) {
2482		struct cgroup_map_cb cb = {
2483			.fill = cgroup_map_add,
2484			.state = m,
2485		};
2486		return cft->read_map(state->cgroup, cft, &cb);
2487	}
2488	return cft->read_seq_string(state->cgroup, cft, m);
2489}
2490
2491static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2492{
2493	struct seq_file *seq = file->private_data;
2494	kfree(seq->private);
2495	return single_release(inode, file);
2496}
2497
2498static const struct file_operations cgroup_seqfile_operations = {
2499	.read = seq_read,
2500	.write = cgroup_file_write,
2501	.llseek = seq_lseek,
2502	.release = cgroup_seqfile_release,
2503};
2504
2505static int cgroup_file_open(struct inode *inode, struct file *file)
2506{
2507	int err;
2508	struct cftype *cft;
2509
2510	err = generic_file_open(inode, file);
2511	if (err)
2512		return err;
2513	cft = __d_cft(file->f_dentry);
2514
2515	if (cft->read_map || cft->read_seq_string) {
2516		struct cgroup_seqfile_state *state =
2517			kzalloc(sizeof(*state), GFP_USER);
2518		if (!state)
2519			return -ENOMEM;
2520		state->cft = cft;
2521		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2522		file->f_op = &cgroup_seqfile_operations;
2523		err = single_open(file, cgroup_seqfile_show, state);
2524		if (err < 0)
2525			kfree(state);
2526	} else if (cft->open)
2527		err = cft->open(inode, file);
2528	else
2529		err = 0;
2530
2531	return err;
2532}
2533
2534static int cgroup_file_release(struct inode *inode, struct file *file)
2535{
2536	struct cftype *cft = __d_cft(file->f_dentry);
2537	if (cft->release)
2538		return cft->release(inode, file);
2539	return 0;
2540}
2541
2542/*
2543 * cgroup_rename - Only allow simple rename of directories in place.
2544 */
2545static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2546			    struct inode *new_dir, struct dentry *new_dentry)
2547{
2548	if (!S_ISDIR(old_dentry->d_inode->i_mode))
2549		return -ENOTDIR;
2550	if (new_dentry->d_inode)
2551		return -EEXIST;
2552	if (old_dir != new_dir)
2553		return -EIO;
2554	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2555}
2556
2557static const struct file_operations cgroup_file_operations = {
2558	.read = cgroup_file_read,
2559	.write = cgroup_file_write,
2560	.llseek = generic_file_llseek,
2561	.open = cgroup_file_open,
2562	.release = cgroup_file_release,
2563};
2564
2565static const struct inode_operations cgroup_dir_inode_operations = {
2566	.lookup = cgroup_lookup,
2567	.mkdir = cgroup_mkdir,
2568	.rmdir = cgroup_rmdir,
2569	.rename = cgroup_rename,
2570};
2571
2572static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2573{
2574	if (dentry->d_name.len > NAME_MAX)
2575		return ERR_PTR(-ENAMETOOLONG);
2576	d_add(dentry, NULL);
2577	return NULL;
2578}
2579
2580/*
2581 * Check if a file is a control file
2582 */
2583static inline struct cftype *__file_cft(struct file *file)
2584{
2585	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2586		return ERR_PTR(-EINVAL);
2587	return __d_cft(file->f_dentry);
2588}
2589
2590static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2591				struct super_block *sb)
2592{
2593	struct inode *inode;
2594
2595	if (!dentry)
2596		return -ENOENT;
2597	if (dentry->d_inode)
2598		return -EEXIST;
2599
2600	inode = cgroup_new_inode(mode, sb);
2601	if (!inode)
2602		return -ENOMEM;
2603
2604	if (S_ISDIR(mode)) {
2605		inode->i_op = &cgroup_dir_inode_operations;
2606		inode->i_fop = &simple_dir_operations;
2607
2608		/* start off with i_nlink == 2 (for "." entry) */
2609		inc_nlink(inode);
2610
2611		/* start with the directory inode held, so that we can
2612		 * populate it without racing with another mkdir */
2613		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2614	} else if (S_ISREG(mode)) {
2615		inode->i_size = 0;
2616		inode->i_fop = &cgroup_file_operations;
2617	}
2618	d_instantiate(dentry, inode);
2619	dget(dentry);	/* Extra count - pin the dentry in core */
2620	return 0;
2621}
2622
2623/*
2624 * cgroup_create_dir - create a directory for an object.
2625 * @cgrp: the cgroup we create the directory for. It must have a valid
2626 *        ->parent field. And we are going to fill its ->dentry field.
2627 * @dentry: dentry of the new cgroup
2628 * @mode: mode to set on new directory.
2629 */
2630static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2631				mode_t mode)
2632{
2633	struct dentry *parent;
2634	int error = 0;
2635
2636	parent = cgrp->parent->dentry;
2637	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2638	if (!error) {
2639		dentry->d_fsdata = cgrp;
2640		inc_nlink(parent->d_inode);
2641		rcu_assign_pointer(cgrp->dentry, dentry);
2642		dget(dentry);
2643	}
2644	dput(dentry);
2645
2646	return error;
2647}
2648
2649/**
2650 * cgroup_file_mode - deduce file mode of a control file
2651 * @cft: the control file in question
2652 *
2653 * returns cft->mode if ->mode is not 0
2654 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2655 * returns S_IRUGO if it has only a read handler
2656 * returns S_IWUSR if it has only a write hander
2657 */
2658static mode_t cgroup_file_mode(const struct cftype *cft)
2659{
2660	mode_t mode = 0;
2661
2662	if (cft->mode)
2663		return cft->mode;
2664
2665	if (cft->read || cft->read_u64 || cft->read_s64 ||
2666	    cft->read_map || cft->read_seq_string)
2667		mode |= S_IRUGO;
2668
2669	if (cft->write || cft->write_u64 || cft->write_s64 ||
2670	    cft->write_string || cft->trigger)
2671		mode |= S_IWUSR;
2672
2673	return mode;
2674}
2675
2676int cgroup_add_file(struct cgroup *cgrp,
2677		       struct cgroup_subsys *subsys,
2678		       const struct cftype *cft)
2679{
2680	struct dentry *dir = cgrp->dentry;
2681	struct dentry *dentry;
2682	int error;
2683	mode_t mode;
2684
2685	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2686	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2687		strcpy(name, subsys->name);
2688		strcat(name, ".");
2689	}
2690	strcat(name, cft->name);
2691	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2692	dentry = lookup_one_len(name, dir, strlen(name));
2693	if (!IS_ERR(dentry)) {
2694		mode = cgroup_file_mode(cft);
2695		error = cgroup_create_file(dentry, mode | S_IFREG,
2696						cgrp->root->sb);
2697		if (!error)
2698			dentry->d_fsdata = (void *)cft;
2699		dput(dentry);
2700	} else
2701		error = PTR_ERR(dentry);
2702	return error;
2703}
2704EXPORT_SYMBOL_GPL(cgroup_add_file);
2705
2706int cgroup_add_files(struct cgroup *cgrp,
2707			struct cgroup_subsys *subsys,
2708			const struct cftype cft[],
2709			int count)
2710{
2711	int i, err;
2712	for (i = 0; i < count; i++) {
2713		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2714		if (err)
2715			return err;
2716	}
2717	return 0;
2718}
2719EXPORT_SYMBOL_GPL(cgroup_add_files);
2720
2721/**
2722 * cgroup_task_count - count the number of tasks in a cgroup.
2723 * @cgrp: the cgroup in question
2724 *
2725 * Return the number of tasks in the cgroup.
2726 */
2727int cgroup_task_count(const struct cgroup *cgrp)
2728{
2729	int count = 0;
2730	struct cg_cgroup_link *link;
2731
2732	read_lock(&css_set_lock);
2733	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2734		count += atomic_read(&link->cg->refcount);
2735	}
2736	read_unlock(&css_set_lock);
2737	return count;
2738}
2739
2740/*
2741 * Advance a list_head iterator.  The iterator should be positioned at
2742 * the start of a css_set
2743 */
2744static void cgroup_advance_iter(struct cgroup *cgrp,
2745				struct cgroup_iter *it)
2746{
2747	struct list_head *l = it->cg_link;
2748	struct cg_cgroup_link *link;
2749	struct css_set *cg;
2750
2751	/* Advance to the next non-empty css_set */
2752	do {
2753		l = l->next;
2754		if (l == &cgrp->css_sets) {
2755			it->cg_link = NULL;
2756			return;
2757		}
2758		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2759		cg = link->cg;
2760	} while (list_empty(&cg->tasks));
2761	it->cg_link = l;
2762	it->task = cg->tasks.next;
2763}
2764
2765/*
2766 * To reduce the fork() overhead for systems that are not actually
2767 * using their cgroups capability, we don't maintain the lists running
2768 * through each css_set to its tasks until we see the list actually
2769 * used - in other words after the first call to cgroup_iter_start().
2770 *
2771 * The tasklist_lock is not held here, as do_each_thread() and
2772 * while_each_thread() are protected by RCU.
2773 */
2774static void cgroup_enable_task_cg_lists(void)
2775{
2776	struct task_struct *p, *g;
2777	write_lock(&css_set_lock);
2778	use_task_css_set_links = 1;
2779	do_each_thread(g, p) {
2780		task_lock(p);
2781		/*
2782		 * We should check if the process is exiting, otherwise
2783		 * it will race with cgroup_exit() in that the list
2784		 * entry won't be deleted though the process has exited.
2785		 */
2786		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2787			list_add(&p->cg_list, &p->cgroups->tasks);
2788		task_unlock(p);
2789	} while_each_thread(g, p);
2790	write_unlock(&css_set_lock);
2791}
2792
2793void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2794{
2795	/*
2796	 * The first time anyone tries to iterate across a cgroup,
2797	 * we need to enable the list linking each css_set to its
2798	 * tasks, and fix up all existing tasks.
2799	 */
2800	if (!use_task_css_set_links)
2801		cgroup_enable_task_cg_lists();
2802
2803	read_lock(&css_set_lock);
2804	it->cg_link = &cgrp->css_sets;
2805	cgroup_advance_iter(cgrp, it);
2806}
2807
2808struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2809					struct cgroup_iter *it)
2810{
2811	struct task_struct *res;
2812	struct list_head *l = it->task;
2813	struct cg_cgroup_link *link;
2814
2815	/* If the iterator cg is NULL, we have no tasks */
2816	if (!it->cg_link)
2817		return NULL;
2818	res = list_entry(l, struct task_struct, cg_list);
2819	/* Advance iterator to find next entry */
2820	l = l->next;
2821	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2822	if (l == &link->cg->tasks) {
2823		/* We reached the end of this task list - move on to
2824		 * the next cg_cgroup_link */
2825		cgroup_advance_iter(cgrp, it);
2826	} else {
2827		it->task = l;
2828	}
2829	return res;
2830}
2831
2832void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2833{
2834	read_unlock(&css_set_lock);
2835}
2836
2837static inline int started_after_time(struct task_struct *t1,
2838				     struct timespec *time,
2839				     struct task_struct *t2)
2840{
2841	int start_diff = timespec_compare(&t1->start_time, time);
2842	if (start_diff > 0) {
2843		return 1;
2844	} else if (start_diff < 0) {
2845		return 0;
2846	} else {
2847		/*
2848		 * Arbitrarily, if two processes started at the same
2849		 * time, we'll say that the lower pointer value
2850		 * started first. Note that t2 may have exited by now
2851		 * so this may not be a valid pointer any longer, but
2852		 * that's fine - it still serves to distinguish
2853		 * between two tasks started (effectively) simultaneously.
2854		 */
2855		return t1 > t2;
2856	}
2857}
2858
2859/*
2860 * This function is a callback from heap_insert() and is used to order
2861 * the heap.
2862 * In this case we order the heap in descending task start time.
2863 */
2864static inline int started_after(void *p1, void *p2)
2865{
2866	struct task_struct *t1 = p1;
2867	struct task_struct *t2 = p2;
2868	return started_after_time(t1, &t2->start_time, t2);
2869}
2870
2871/**
2872 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2873 * @scan: struct cgroup_scanner containing arguments for the scan
2874 *
2875 * Arguments include pointers to callback functions test_task() and
2876 * process_task().
2877 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2878 * and if it returns true, call process_task() for it also.
2879 * The test_task pointer may be NULL, meaning always true (select all tasks).
2880 * Effectively duplicates cgroup_iter_{start,next,end}()
2881 * but does not lock css_set_lock for the call to process_task().
2882 * The struct cgroup_scanner may be embedded in any structure of the caller's
2883 * creation.
2884 * It is guaranteed that process_task() will act on every task that
2885 * is a member of the cgroup for the duration of this call. This
2886 * function may or may not call process_task() for tasks that exit
2887 * or move to a different cgroup during the call, or are forked or
2888 * move into the cgroup during the call.
2889 *
2890 * Note that test_task() may be called with locks held, and may in some
2891 * situations be called multiple times for the same task, so it should
2892 * be cheap.
2893 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2894 * pre-allocated and will be used for heap operations (and its "gt" member will
2895 * be overwritten), else a temporary heap will be used (allocation of which
2896 * may cause this function to fail).
2897 */
2898int cgroup_scan_tasks(struct cgroup_scanner *scan)
2899{
2900	int retval, i;
2901	struct cgroup_iter it;
2902	struct task_struct *p, *dropped;
2903	/* Never dereference latest_task, since it's not refcounted */
2904	struct task_struct *latest_task = NULL;
2905	struct ptr_heap tmp_heap;
2906	struct ptr_heap *heap;
2907	struct timespec latest_time = { 0, 0 };
2908
2909	if (scan->heap) {
2910		/* The caller supplied our heap and pre-allocated its memory */
2911		heap = scan->heap;
2912		heap->gt = &started_after;
2913	} else {
2914		/* We need to allocate our own heap memory */
2915		heap = &tmp_heap;
2916		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2917		if (retval)
2918			/* cannot allocate the heap */
2919			return retval;
2920	}
2921
2922 again:
2923	/*
2924	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2925	 * to determine which are of interest, and using the scanner's
2926	 * "process_task" callback to process any of them that need an update.
2927	 * Since we don't want to hold any locks during the task updates,
2928	 * gather tasks to be processed in a heap structure.
2929	 * The heap is sorted by descending task start time.
2930	 * If the statically-sized heap fills up, we overflow tasks that
2931	 * started later, and in future iterations only consider tasks that
2932	 * started after the latest task in the previous pass. This
2933	 * guarantees forward progress and that we don't miss any tasks.
2934	 */
2935	heap->size = 0;
2936	cgroup_iter_start(scan->cg, &it);
2937	while ((p = cgroup_iter_next(scan->cg, &it))) {
2938		/*
2939		 * Only affect tasks that qualify per the caller's callback,
2940		 * if he provided one
2941		 */
2942		if (scan->test_task && !scan->test_task(p, scan))
2943			continue;
2944		/*
2945		 * Only process tasks that started after the last task
2946		 * we processed
2947		 */
2948		if (!started_after_time(p, &latest_time, latest_task))
2949			continue;
2950		dropped = heap_insert(heap, p);
2951		if (dropped == NULL) {
2952			/*
2953			 * The new task was inserted; the heap wasn't
2954			 * previously full
2955			 */
2956			get_task_struct(p);
2957		} else if (dropped != p) {
2958			/*
2959			 * The new task was inserted, and pushed out a
2960			 * different task
2961			 */
2962			get_task_struct(p);
2963			put_task_struct(dropped);
2964		}
2965		/*
2966		 * Else the new task was newer than anything already in
2967		 * the heap and wasn't inserted
2968		 */
2969	}
2970	cgroup_iter_end(scan->cg, &it);
2971
2972	if (heap->size) {
2973		for (i = 0; i < heap->size; i++) {
2974			struct task_struct *q = heap->ptrs[i];
2975			if (i == 0) {
2976				latest_time = q->start_time;
2977				latest_task = q;
2978			}
2979			/* Process the task per the caller's callback */
2980			scan->process_task(q, scan);
2981			put_task_struct(q);
2982		}
2983		/*
2984		 * If we had to process any tasks at all, scan again
2985		 * in case some of them were in the middle of forking
2986		 * children that didn't get processed.
2987		 * Not the most efficient way to do it, but it avoids
2988		 * having to take callback_mutex in the fork path
2989		 */
2990		goto again;
2991	}
2992	if (heap == &tmp_heap)
2993		heap_free(&tmp_heap);
2994	return 0;
2995}
2996
2997/*
2998 * Stuff for reading the 'tasks'/'procs' files.
2999 *
3000 * Reading this file can return large amounts of data if a cgroup has
3001 * *lots* of attached tasks. So it may need several calls to read(),
3002 * but we cannot guarantee that the information we produce is correct
3003 * unless we produce it entirely atomically.
3004 *
3005 */
3006
3007/*
3008 * The following two functions "fix" the issue where there are more pids
3009 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3010 * TODO: replace with a kernel-wide solution to this problem
3011 */
3012#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3013static void *pidlist_allocate(int count)
3014{
3015	if (PIDLIST_TOO_LARGE(count))
3016		return vmalloc(count * sizeof(pid_t));
3017	else
3018		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3019}
3020static void pidlist_free(void *p)
3021{
3022	if (is_vmalloc_addr(p))
3023		vfree(p);
3024	else
3025		kfree(p);
3026}
3027static void *pidlist_resize(void *p, int newcount)
3028{
3029	void *newlist;
3030	/* note: if new alloc fails, old p will still be valid either way */
3031	if (is_vmalloc_addr(p)) {
3032		newlist = vmalloc(newcount * sizeof(pid_t));
3033		if (!newlist)
3034			return NULL;
3035		memcpy(newlist, p, newcount * sizeof(pid_t));
3036		vfree(p);
3037	} else {
3038		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3039	}
3040	return newlist;
3041}
3042
3043/*
3044 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3045 * If the new stripped list is sufficiently smaller and there's enough memory
3046 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3047 * number of unique elements.
3048 */
3049/* is the size difference enough that we should re-allocate the array? */
3050#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3051static int pidlist_uniq(pid_t **p, int length)
3052{
3053	int src, dest = 1;
3054	pid_t *list = *p;
3055	pid_t *newlist;
3056
3057	/*
3058	 * we presume the 0th element is unique, so i starts at 1. trivial
3059	 * edge cases first; no work needs to be done for either
3060	 */
3061	if (length == 0 || length == 1)
3062		return length;
3063	/* src and dest walk down the list; dest counts unique elements */
3064	for (src = 1; src < length; src++) {
3065		/* find next unique element */
3066		while (list[src] == list[src-1]) {
3067			src++;
3068			if (src == length)
3069				goto after;
3070		}
3071		/* dest always points to where the next unique element goes */
3072		list[dest] = list[src];
3073		dest++;
3074	}
3075after:
3076	/*
3077	 * if the length difference is large enough, we want to allocate a
3078	 * smaller buffer to save memory. if this fails due to out of memory,
3079	 * we'll just stay with what we've got.
3080	 */
3081	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3082		newlist = pidlist_resize(list, dest);
3083		if (newlist)
3084			*p = newlist;
3085	}
3086	return dest;
3087}
3088
3089static int cmppid(const void *a, const void *b)
3090{
3091	return *(pid_t *)a - *(pid_t *)b;
3092}
3093
3094/*
3095 * find the appropriate pidlist for our purpose (given procs vs tasks)
3096 * returns with the lock on that pidlist already held, and takes care
3097 * of the use count, or returns NULL with no locks held if we're out of
3098 * memory.
3099 */
3100static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3101						  enum cgroup_filetype type)
3102{
3103	struct cgroup_pidlist *l;
3104	/* don't need task_nsproxy() if we're looking at ourself */
3105	struct pid_namespace *ns = current->nsproxy->pid_ns;
3106
3107	/*
3108	 * We can't drop the pidlist_mutex before taking the l->mutex in case
3109	 * the last ref-holder is trying to remove l from the list at the same
3110	 * time. Holding the pidlist_mutex precludes somebody taking whichever
3111	 * list we find out from under us - compare release_pid_array().
3112	 */
3113	mutex_lock(&cgrp->pidlist_mutex);
3114	list_for_each_entry(l, &cgrp->pidlists, links) {
3115		if (l->key.type == type && l->key.ns == ns) {
3116			/* make sure l doesn't vanish out from under us */
3117			down_write(&l->mutex);
3118			mutex_unlock(&cgrp->pidlist_mutex);
3119			return l;
3120		}
3121	}
3122	/* entry not found; create a new one */
3123	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3124	if (!l) {
3125		mutex_unlock(&cgrp->pidlist_mutex);
3126		return l;
3127	}
3128	init_rwsem(&l->mutex);
3129	down_write(&l->mutex);
3130	l->key.type = type;
3131	l->key.ns = get_pid_ns(ns);
3132	l->use_count = 0; /* don't increment here */
3133	l->list = NULL;
3134	l->owner = cgrp;
3135	list_add(&l->links, &cgrp->pidlists);
3136	mutex_unlock(&cgrp->pidlist_mutex);
3137	return l;
3138}
3139
3140/*
3141 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3142 */
3143static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3144			      struct cgroup_pidlist **lp)
3145{
3146	pid_t *array;
3147	int length;
3148	int pid, n = 0; /* used for populating the array */
3149	struct cgroup_iter it;
3150	struct task_struct *tsk;
3151	struct cgroup_pidlist *l;
3152
3153	/*
3154	 * If cgroup gets more users after we read count, we won't have
3155	 * enough space - tough.  This race is indistinguishable to the
3156	 * caller from the case that the additional cgroup users didn't
3157	 * show up until sometime later on.
3158	 */
3159	length = cgroup_task_count(cgrp);
3160	array = pidlist_allocate(length);
3161	if (!array)
3162		return -ENOMEM;
3163	/* now, populate the array */
3164	cgroup_iter_start(cgrp, &it);
3165	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3166		if (unlikely(n == length))
3167			break;
3168		/* get tgid or pid for procs or tasks file respectively */
3169		if (type == CGROUP_FILE_PROCS)
3170			pid = task_tgid_vnr(tsk);
3171		else
3172			pid = task_pid_vnr(tsk);
3173		if (pid > 0) /* make sure to only use valid results */
3174			array[n++] = pid;
3175	}
3176	cgroup_iter_end(cgrp, &it);
3177	length = n;
3178	/* now sort & (if procs) strip out duplicates */
3179	sort(array, length, sizeof(pid_t), cmppid, NULL);
3180	if (type == CGROUP_FILE_PROCS)
3181		length = pidlist_uniq(&array, length);
3182	l = cgroup_pidlist_find(cgrp, type);
3183	if (!l) {
3184		pidlist_free(array);
3185		return -ENOMEM;
3186	}
3187	/* store array, freeing old if necessary - lock already held */
3188	pidlist_free(l->list);
3189	l->list = array;
3190	l->length = length;
3191	l->use_count++;
3192	up_write(&l->mutex);
3193	*lp = l;
3194	return 0;
3195}
3196
3197/**
3198 * cgroupstats_build - build and fill cgroupstats
3199 * @stats: cgroupstats to fill information into
3200 * @dentry: A dentry entry belonging to the cgroup for which stats have
3201 * been requested.
3202 *
3203 * Build and fill cgroupstats so that taskstats can export it to user
3204 * space.
3205 */
3206int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3207{
3208	int ret = -EINVAL;
3209	struct cgroup *cgrp;
3210	struct cgroup_iter it;
3211	struct task_struct *tsk;
3212
3213	/*
3214	 * Validate dentry by checking the superblock operations,
3215	 * and make sure it's a directory.
3216	 */
3217	if (dentry->d_sb->s_op != &cgroup_ops ||
3218	    !S_ISDIR(dentry->d_inode->i_mode))
3219		 goto err;
3220
3221	ret = 0;
3222	cgrp = dentry->d_fsdata;
3223
3224	cgroup_iter_start(cgrp, &it);
3225	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3226		switch (tsk->state) {
3227		case TASK_RUNNING:
3228			stats->nr_running++;
3229			break;
3230		case TASK_INTERRUPTIBLE:
3231			stats->nr_sleeping++;
3232			break;
3233		case TASK_UNINTERRUPTIBLE:
3234			stats->nr_uninterruptible++;
3235			break;
3236		case TASK_STOPPED:
3237			stats->nr_stopped++;
3238			break;
3239		default:
3240			if (delayacct_is_task_waiting_on_io(tsk))
3241				stats->nr_io_wait++;
3242			break;
3243		}
3244	}
3245	cgroup_iter_end(cgrp, &it);
3246
3247err:
3248	return ret;
3249}
3250
3251
3252/*
3253 * seq_file methods for the tasks/procs files. The seq_file position is the
3254 * next pid to display; the seq_file iterator is a pointer to the pid
3255 * in the cgroup->l->list array.
3256 */
3257
3258static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3259{
3260	/*
3261	 * Initially we receive a position value that corresponds to
3262	 * one more than the last pid shown (or 0 on the first call or
3263	 * after a seek to the start). Use a binary-search to find the
3264	 * next pid to display, if any
3265	 */
3266	struct cgroup_pidlist *l = s->private;
3267	int index = 0, pid = *pos;
3268	int *iter;
3269
3270	down_read(&l->mutex);
3271	if (pid) {
3272		int end = l->length;
3273
3274		while (index < end) {
3275			int mid = (index + end) / 2;
3276			if (l->list[mid] == pid) {
3277				index = mid;
3278				break;
3279			} else if (l->list[mid] <= pid)
3280				index = mid + 1;
3281			else
3282				end = mid;
3283		}
3284	}
3285	/* If we're off the end of the array, we're done */
3286	if (index >= l->length)
3287		return NULL;
3288	/* Update the abstract position to be the actual pid that we found */
3289	iter = l->list + index;
3290	*pos = *iter;
3291	return iter;
3292}
3293
3294static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3295{
3296	struct cgroup_pidlist *l = s->private;
3297	up_read(&l->mutex);
3298}
3299
3300static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3301{
3302	struct cgroup_pidlist *l = s->private;
3303	pid_t *p = v;
3304	pid_t *end = l->list + l->length;
3305	/*
3306	 * Advance to the next pid in the array. If this goes off the
3307	 * end, we're done
3308	 */
3309	p++;
3310	if (p >= end) {
3311		return NULL;
3312	} else {
3313		*pos = *p;
3314		return p;
3315	}
3316}
3317
3318static int cgroup_pidlist_show(struct seq_file *s, void *v)
3319{
3320	return seq_printf(s, "%d\n", *(int *)v);
3321}
3322
3323/*
3324 * seq_operations functions for iterating on pidlists through seq_file -
3325 * independent of whether it's tasks or procs
3326 */
3327static const struct seq_operations cgroup_pidlist_seq_operations = {
3328	.start = cgroup_pidlist_start,
3329	.stop = cgroup_pidlist_stop,
3330	.next = cgroup_pidlist_next,
3331	.show = cgroup_pidlist_show,
3332};
3333
3334static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3335{
3336	/*
3337	 * the case where we're the last user of this particular pidlist will
3338	 * have us remove it from the cgroup's list, which entails taking the
3339	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3340	 * pidlist_mutex, we have to take pidlist_mutex first.
3341	 */
3342	mutex_lock(&l->owner->pidlist_mutex);
3343	down_write(&l->mutex);
3344	BUG_ON(!l->use_count);
3345	if (!--l->use_count) {
3346		/* we're the last user if refcount is 0; remove and free */
3347		list_del(&l->links);
3348		mutex_unlock(&l->owner->pidlist_mutex);
3349		pidlist_free(l->list);
3350		put_pid_ns(l->key.ns);
3351		up_write(&l->mutex);
3352		kfree(l);
3353		return;
3354	}
3355	mutex_unlock(&l->owner->pidlist_mutex);
3356	up_write(&l->mutex);
3357}
3358
3359static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3360{
3361	struct cgroup_pidlist *l;
3362	if (!(file->f_mode & FMODE_READ))
3363		return 0;
3364	/*
3365	 * the seq_file will only be initialized if the file was opened for
3366	 * reading; hence we check if it's not null only in that case.
3367	 */
3368	l = ((struct seq_file *)file->private_data)->private;
3369	cgroup_release_pid_array(l);
3370	return seq_release(inode, file);
3371}
3372
3373static const struct file_operations cgroup_pidlist_operations = {
3374	.read = seq_read,
3375	.llseek = seq_lseek,
3376	.write = cgroup_file_write,
3377	.release = cgroup_pidlist_release,
3378};
3379
3380/*
3381 * The following functions handle opens on a file that displays a pidlist
3382 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3383 * in the cgroup.
3384 */
3385/* helper function for the two below it */
3386static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3387{
3388	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3389	struct cgroup_pidlist *l;
3390	int retval;
3391
3392	/* Nothing to do for write-only files */
3393	if (!(file->f_mode & FMODE_READ))
3394		return 0;
3395
3396	/* have the array populated */
3397	retval = pidlist_array_load(cgrp, type, &l);
3398	if (retval)
3399		return retval;
3400	/* configure file information */
3401	file->f_op = &cgroup_pidlist_operations;
3402
3403	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3404	if (retval) {
3405		cgroup_release_pid_array(l);
3406		return retval;
3407	}
3408	((struct seq_file *)file->private_data)->private = l;
3409	return 0;
3410}
3411static int cgroup_tasks_open(struct inode *unused, struct file *file)
3412{
3413	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3414}
3415static int cgroup_procs_open(struct inode *unused, struct file *file)
3416{
3417	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3418}
3419
3420static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3421					    struct cftype *cft)
3422{
3423	return notify_on_release(cgrp);
3424}
3425
3426static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3427					  struct cftype *cft,
3428					  u64 val)
3429{
3430	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3431	if (val)
3432		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3433	else
3434		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3435	return 0;
3436}
3437
3438/*
3439 * Unregister event and free resources.
3440 *
3441 * Gets called from workqueue.
3442 */
3443static void cgroup_event_remove(struct work_struct *work)
3444{
3445	struct cgroup_event *event = container_of(work, struct cgroup_event,
3446			remove);
3447	struct cgroup *cgrp = event->cgrp;
3448
3449	event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3450
3451	eventfd_ctx_put(event->eventfd);
3452	kfree(event);
3453	dput(cgrp->dentry);
3454}
3455
3456/*
3457 * Gets called on POLLHUP on eventfd when user closes it.
3458 *
3459 * Called with wqh->lock held and interrupts disabled.
3460 */
3461static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3462		int sync, void *key)
3463{
3464	struct cgroup_event *event = container_of(wait,
3465			struct cgroup_event, wait);
3466	struct cgroup *cgrp = event->cgrp;
3467	unsigned long flags = (unsigned long)key;
3468
3469	if (flags & POLLHUP) {
3470		__remove_wait_queue(event->wqh, &event->wait);
3471		spin_lock(&cgrp->event_list_lock);
3472		list_del(&event->list);
3473		spin_unlock(&cgrp->event_list_lock);
3474		/*
3475		 * We are in atomic context, but cgroup_event_remove() may
3476		 * sleep, so we have to call it in workqueue.
3477		 */
3478		schedule_work(&event->remove);
3479	}
3480
3481	return 0;
3482}
3483
3484static void cgroup_event_ptable_queue_proc(struct file *file,
3485		wait_queue_head_t *wqh, poll_table *pt)
3486{
3487	struct cgroup_event *event = container_of(pt,
3488			struct cgroup_event, pt);
3489
3490	event->wqh = wqh;
3491	add_wait_queue(wqh, &event->wait);
3492}
3493
3494/*
3495 * Parse input and register new cgroup event handler.
3496 *
3497 * Input must be in format '<event_fd> <control_fd> <args>'.
3498 * Interpretation of args is defined by control file implementation.
3499 */
3500static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3501				      const char *buffer)
3502{
3503	struct cgroup_event *event = NULL;
3504	unsigned int efd, cfd;
3505	struct file *efile = NULL;
3506	struct file *cfile = NULL;
3507	char *endp;
3508	int ret;
3509
3510	efd = simple_strtoul(buffer, &endp, 10);
3511	if (*endp != ' ')
3512		return -EINVAL;
3513	buffer = endp + 1;
3514
3515	cfd = simple_strtoul(buffer, &endp, 10);
3516	if ((*endp != ' ') && (*endp != '\0'))
3517		return -EINVAL;
3518	buffer = endp + 1;
3519
3520	event = kzalloc(sizeof(*event), GFP_KERNEL);
3521	if (!event)
3522		return -ENOMEM;
3523	event->cgrp = cgrp;
3524	INIT_LIST_HEAD(&event->list);
3525	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3526	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3527	INIT_WORK(&event->remove, cgroup_event_remove);
3528
3529	efile = eventfd_fget(efd);
3530	if (IS_ERR(efile)) {
3531		ret = PTR_ERR(efile);
3532		goto fail;
3533	}
3534
3535	event->eventfd = eventfd_ctx_fileget(efile);
3536	if (IS_ERR(event->eventfd)) {
3537		ret = PTR_ERR(event->eventfd);
3538		goto fail;
3539	}
3540
3541	cfile = fget(cfd);
3542	if (!cfile) {
3543		ret = -EBADF;
3544		goto fail;
3545	}
3546
3547	/* the process need read permission on control file */
3548	/* AV: shouldn't we check that it's been opened for read instead? */
3549	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3550	if (ret < 0)
3551		goto fail;
3552
3553	event->cft = __file_cft(cfile);
3554	if (IS_ERR(event->cft)) {
3555		ret = PTR_ERR(event->cft);
3556		goto fail;
3557	}
3558
3559	if (!event->cft->register_event || !event->cft->unregister_event) {
3560		ret = -EINVAL;
3561		goto fail;
3562	}
3563
3564	ret = event->cft->register_event(cgrp, event->cft,
3565			event->eventfd, buffer);
3566	if (ret)
3567		goto fail;
3568
3569	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3570		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3571		ret = 0;
3572		goto fail;
3573	}
3574
3575	/*
3576	 * Events should be removed after rmdir of cgroup directory, but before
3577	 * destroying subsystem state objects. Let's take reference to cgroup
3578	 * directory dentry to do that.
3579	 */
3580	dget(cgrp->dentry);
3581
3582	spin_lock(&cgrp->event_list_lock);
3583	list_add(&event->list, &cgrp->event_list);
3584	spin_unlock(&cgrp->event_list_lock);
3585
3586	fput(cfile);
3587	fput(efile);
3588
3589	return 0;
3590
3591fail:
3592	if (cfile)
3593		fput(cfile);
3594
3595	if (event && event->eventfd && !IS_ERR(event->eventfd))
3596		eventfd_ctx_put(event->eventfd);
3597
3598	if (!IS_ERR_OR_NULL(efile))
3599		fput(efile);
3600
3601	kfree(event);
3602
3603	return ret;
3604}
3605
3606static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3607				    struct cftype *cft)
3608{
3609	return clone_children(cgrp);
3610}
3611
3612static int cgroup_clone_children_write(struct cgroup *cgrp,
3613				     struct cftype *cft,
3614				     u64 val)
3615{
3616	if (val)
3617		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3618	else
3619		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3620	return 0;
3621}
3622
3623/*
3624 * for the common functions, 'private' gives the type of file
3625 */
3626/* for hysterical raisins, we can't put this on the older files */
3627#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3628static struct cftype files[] = {
3629	{
3630		.name = "tasks",
3631		.open = cgroup_tasks_open,
3632		.write_u64 = cgroup_tasks_write,
3633		.release = cgroup_pidlist_release,
3634		.mode = S_IRUGO | S_IWUSR,
3635	},
3636	{
3637		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
3638		.open = cgroup_procs_open,
3639		.write_u64 = cgroup_procs_write,
3640		.release = cgroup_pidlist_release,
3641		.mode = S_IRUGO | S_IWUSR,
3642	},
3643	{
3644		.name = "notify_on_release",
3645		.read_u64 = cgroup_read_notify_on_release,
3646		.write_u64 = cgroup_write_notify_on_release,
3647	},
3648	{
3649		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3650		.write_string = cgroup_write_event_control,
3651		.mode = S_IWUGO,
3652	},
3653	{
3654		.name = "cgroup.clone_children",
3655		.read_u64 = cgroup_clone_children_read,
3656		.write_u64 = cgroup_clone_children_write,
3657	},
3658};
3659
3660static struct cftype cft_release_agent = {
3661	.name = "release_agent",
3662	.read_seq_string = cgroup_release_agent_show,
3663	.write_string = cgroup_release_agent_write,
3664	.max_write_len = PATH_MAX,
3665};
3666
3667static int cgroup_populate_dir(struct cgroup *cgrp)
3668{
3669	int err;
3670	struct cgroup_subsys *ss;
3671
3672	/* First clear out any existing files */
3673	cgroup_clear_directory(cgrp->dentry);
3674
3675	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3676	if (err < 0)
3677		return err;
3678
3679	if (cgrp == cgrp->top_cgroup) {
3680		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3681			return err;
3682	}
3683
3684	for_each_subsys(cgrp->root, ss) {
3685		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3686			return err;
3687	}
3688	/* This cgroup is ready now */
3689	for_each_subsys(cgrp->root, ss) {
3690		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3691		/*
3692		 * Update id->css pointer and make this css visible from
3693		 * CSS ID functions. This pointer will be dereferened
3694		 * from RCU-read-side without locks.
3695		 */
3696		if (css->id)
3697			rcu_assign_pointer(css->id->css, css);
3698	}
3699
3700	return 0;
3701}
3702
3703static void init_cgroup_css(struct cgroup_subsys_state *css,
3704			       struct cgroup_subsys *ss,
3705			       struct cgroup *cgrp)
3706{
3707	css->cgroup = cgrp;
3708	atomic_set(&css->refcnt, 1);
3709	css->flags = 0;
3710	css->id = NULL;
3711	if (cgrp == dummytop)
3712		set_bit(CSS_ROOT, &css->flags);
3713	BUG_ON(cgrp->subsys[ss->subsys_id]);
3714	cgrp->subsys[ss->subsys_id] = css;
3715}
3716
3717static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3718{
3719	/* We need to take each hierarchy_mutex in a consistent order */
3720	int i;
3721
3722	/*
3723	 * No worry about a race with rebind_subsystems that might mess up the
3724	 * locking order, since both parties are under cgroup_mutex.
3725	 */
3726	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3727		struct cgroup_subsys *ss = subsys[i];
3728		if (ss == NULL)
3729			continue;
3730		if (ss->root == root)
3731			mutex_lock(&ss->hierarchy_mutex);
3732	}
3733}
3734
3735static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3736{
3737	int i;
3738
3739	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3740		struct cgroup_subsys *ss = subsys[i];
3741		if (ss == NULL)
3742			continue;
3743		if (ss->root == root)
3744			mutex_unlock(&ss->hierarchy_mutex);
3745	}
3746}
3747
3748/*
3749 * cgroup_create - create a cgroup
3750 * @parent: cgroup that will be parent of the new cgroup
3751 * @dentry: dentry of the new cgroup
3752 * @mode: mode to set on new inode
3753 *
3754 * Must be called with the mutex on the parent inode held
3755 */
3756static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3757			     mode_t mode)
3758{
3759	struct cgroup *cgrp;
3760	struct cgroupfs_root *root = parent->root;
3761	int err = 0;
3762	struct cgroup_subsys *ss;
3763	struct super_block *sb = root->sb;
3764
3765	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3766	if (!cgrp)
3767		return -ENOMEM;
3768
3769	/* Grab a reference on the superblock so the hierarchy doesn't
3770	 * get deleted on unmount if there are child cgroups.  This
3771	 * can be done outside cgroup_mutex, since the sb can't
3772	 * disappear while someone has an open control file on the
3773	 * fs */
3774	atomic_inc(&sb->s_active);
3775
3776	mutex_lock(&cgroup_mutex);
3777
3778	init_cgroup_housekeeping(cgrp);
3779
3780	cgrp->parent = parent;
3781	cgrp->root = parent->root;
3782	cgrp->top_cgroup = parent->top_cgroup;
3783
3784	if (notify_on_release(parent))
3785		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3786
3787	if (clone_children(parent))
3788		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3789
3790	for_each_subsys(root, ss) {
3791		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3792
3793		if (IS_ERR(css)) {
3794			err = PTR_ERR(css);
3795			goto err_destroy;
3796		}
3797		init_cgroup_css(css, ss, cgrp);
3798		if (ss->use_id) {
3799			err = alloc_css_id(ss, parent, cgrp);
3800			if (err)
3801				goto err_destroy;
3802		}
3803		/* At error, ->destroy() callback has to free assigned ID. */
3804		if (clone_children(parent) && ss->post_clone)
3805			ss->post_clone(ss, cgrp);
3806	}
3807
3808	cgroup_lock_hierarchy(root);
3809	list_add(&cgrp->sibling, &cgrp->parent->children);
3810	cgroup_unlock_hierarchy(root);
3811	root->number_of_cgroups++;
3812
3813	err = cgroup_create_dir(cgrp, dentry, mode);
3814	if (err < 0)
3815		goto err_remove;
3816
3817	/* The cgroup directory was pre-locked for us */
3818	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3819
3820	err = cgroup_populate_dir(cgrp);
3821	/* If err < 0, we have a half-filled directory - oh well ;) */
3822
3823	mutex_unlock(&cgroup_mutex);
3824	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3825
3826	return 0;
3827
3828 err_remove:
3829
3830	cgroup_lock_hierarchy(root);
3831	list_del(&cgrp->sibling);
3832	cgroup_unlock_hierarchy(root);
3833	root->number_of_cgroups--;
3834
3835 err_destroy:
3836
3837	for_each_subsys(root, ss) {
3838		if (cgrp->subsys[ss->subsys_id])
3839			ss->destroy(ss, cgrp);
3840	}
3841
3842	mutex_unlock(&cgroup_mutex);
3843
3844	/* Release the reference count that we took on the superblock */
3845	deactivate_super(sb);
3846
3847	kfree(cgrp);
3848	return err;
3849}
3850
3851static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3852{
3853	struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3854
3855	/* the vfs holds inode->i_mutex already */
3856	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3857}
3858
3859static int cgroup_has_css_refs(struct cgroup *cgrp)
3860{
3861	/* Check the reference count on each subsystem. Since we
3862	 * already established that there are no tasks in the
3863	 * cgroup, if the css refcount is also 1, then there should
3864	 * be no outstanding references, so the subsystem is safe to
3865	 * destroy. We scan across all subsystems rather than using
3866	 * the per-hierarchy linked list of mounted subsystems since
3867	 * we can be called via check_for_release() with no
3868	 * synchronization other than RCU, and the subsystem linked
3869	 * list isn't RCU-safe */
3870	int i;
3871	/*
3872	 * We won't need to lock the subsys array, because the subsystems
3873	 * we're concerned about aren't going anywhere since our cgroup root
3874	 * has a reference on them.
3875	 */
3876	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3877		struct cgroup_subsys *ss = subsys[i];
3878		struct cgroup_subsys_state *css;
3879		/* Skip subsystems not present or not in this hierarchy */
3880		if (ss == NULL || ss->root != cgrp->root)
3881			continue;
3882		css = cgrp->subsys[ss->subsys_id];
3883		/* When called from check_for_release() it's possible
3884		 * that by this point the cgroup has been removed
3885		 * and the css deleted. But a false-positive doesn't
3886		 * matter, since it can only happen if the cgroup
3887		 * has been deleted and hence no longer needs the
3888		 * release agent to be called anyway. */
3889		if (css && (atomic_read(&css->refcnt) > 1))
3890			return 1;
3891	}
3892	return 0;
3893}
3894
3895/*
3896 * Atomically mark all (or else none) of the cgroup's CSS objects as
3897 * CSS_REMOVED. Return true on success, or false if the cgroup has
3898 * busy subsystems. Call with cgroup_mutex held
3899 */
3900
3901static int cgroup_clear_css_refs(struct cgroup *cgrp)
3902{
3903	struct cgroup_subsys *ss;
3904	unsigned long flags;
3905	bool failed = false;
3906	local_irq_save(flags);
3907	for_each_subsys(cgrp->root, ss) {
3908		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3909		int refcnt;
3910		while (1) {
3911			/* We can only remove a CSS with a refcnt==1 */
3912			refcnt = atomic_read(&css->refcnt);
3913			if (refcnt > 1) {
3914				failed = true;
3915				goto done;
3916			}
3917			BUG_ON(!refcnt);
3918			/*
3919			 * Drop the refcnt to 0 while we check other
3920			 * subsystems. This will cause any racing
3921			 * css_tryget() to spin until we set the
3922			 * CSS_REMOVED bits or abort
3923			 */
3924			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3925				break;
3926			cpu_relax();
3927		}
3928	}
3929 done:
3930	for_each_subsys(cgrp->root, ss) {
3931		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3932		if (failed) {
3933			/*
3934			 * Restore old refcnt if we previously managed
3935			 * to clear it from 1 to 0
3936			 */
3937			if (!atomic_read(&css->refcnt))
3938				atomic_set(&css->refcnt, 1);
3939		} else {
3940			/* Commit the fact that the CSS is removed */
3941			set_bit(CSS_REMOVED, &css->flags);
3942		}
3943	}
3944	local_irq_restore(flags);
3945	return !failed;
3946}
3947
3948static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3949{
3950	struct cgroup *cgrp = dentry->d_fsdata;
3951	struct dentry *d;
3952	struct cgroup *parent;
3953	DEFINE_WAIT(wait);
3954	struct cgroup_event *event, *tmp;
3955	int ret;
3956
3957	/* the vfs holds both inode->i_mutex already */
3958again:
3959	mutex_lock(&cgroup_mutex);
3960	if (atomic_read(&cgrp->count) != 0) {
3961		mutex_unlock(&cgroup_mutex);
3962		return -EBUSY;
3963	}
3964	if (!list_empty(&cgrp->children)) {
3965		mutex_unlock(&cgroup_mutex);
3966		return -EBUSY;
3967	}
3968	mutex_unlock(&cgroup_mutex);
3969
3970	/*
3971	 * In general, subsystem has no css->refcnt after pre_destroy(). But
3972	 * in racy cases, subsystem may have to get css->refcnt after
3973	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3974	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3975	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3976	 * and subsystem's reference count handling. Please see css_get/put
3977	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3978	 */
3979	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3980
3981	/*
3982	 * Call pre_destroy handlers of subsys. Notify subsystems
3983	 * that rmdir() request comes.
3984	 */
3985	ret = cgroup_call_pre_destroy(cgrp);
3986	if (ret) {
3987		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3988		return ret;
3989	}
3990
3991	mutex_lock(&cgroup_mutex);
3992	parent = cgrp->parent;
3993	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3994		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3995		mutex_unlock(&cgroup_mutex);
3996		return -EBUSY;
3997	}
3998	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3999	if (!cgroup_clear_css_refs(cgrp)) {
4000		mutex_unlock(&cgroup_mutex);
4001		/*
4002		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4003		 * prepare_to_wait(), we need to check this flag.
4004		 */
4005		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4006			schedule();
4007		finish_wait(&cgroup_rmdir_waitq, &wait);
4008		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4009		if (signal_pending(current))
4010			return -EINTR;
4011		goto again;
4012	}
4013	/* NO css_tryget() can success after here. */
4014	finish_wait(&cgroup_rmdir_waitq, &wait);
4015	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4016
4017	spin_lock(&release_list_lock);
4018	set_bit(CGRP_REMOVED, &cgrp->flags);
4019	if (!list_empty(&cgrp->release_list))
4020		list_del_init(&cgrp->release_list);
4021	spin_unlock(&release_list_lock);
4022
4023	cgroup_lock_hierarchy(cgrp->root);
4024	/* delete this cgroup from parent->children */
4025	list_del_init(&cgrp->sibling);
4026	cgroup_unlock_hierarchy(cgrp->root);
4027
4028	d = dget(cgrp->dentry);
4029
4030	cgroup_d_remove_dir(d);
4031	dput(d);
4032
4033	set_bit(CGRP_RELEASABLE, &parent->flags);
4034	check_for_release(parent);
4035
4036	/*
4037	 * Unregister events and notify userspace.
4038	 * Notify userspace about cgroup removing only after rmdir of cgroup
4039	 * directory to avoid race between userspace and kernelspace
4040	 */
4041	spin_lock(&cgrp->event_list_lock);
4042	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4043		list_del(&event->list);
4044		remove_wait_queue(event->wqh, &event->wait);
4045		eventfd_signal(event->eventfd, 1);
4046		schedule_work(&event->remove);
4047	}
4048	spin_unlock(&cgrp->event_list_lock);
4049
4050	mutex_unlock(&cgroup_mutex);
4051	return 0;
4052}
4053
4054static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4055{
4056	struct cgroup_subsys_state *css;
4057
4058	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4059
4060	/* Create the top cgroup state for this subsystem */
4061	list_add(&ss->sibling, &rootnode.subsys_list);
4062	ss->root = &rootnode;
4063	css = ss->create(ss, dummytop);
4064	/* We don't handle early failures gracefully */
4065	BUG_ON(IS_ERR(css));
4066	init_cgroup_css(css, ss, dummytop);
4067
4068	/* Update the init_css_set to contain a subsys
4069	 * pointer to this state - since the subsystem is
4070	 * newly registered, all tasks and hence the
4071	 * init_css_set is in the subsystem's top cgroup. */
4072	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4073
4074	need_forkexit_callback |= ss->fork || ss->exit;
4075
4076	/* At system boot, before all subsystems have been
4077	 * registered, no tasks have been forked, so we don't
4078	 * need to invoke fork callbacks here. */
4079	BUG_ON(!list_empty(&init_task.tasks));
4080
4081	mutex_init(&ss->hierarchy_mutex);
4082	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4083	ss->active = 1;
4084
4085	/* this function shouldn't be used with modular subsystems, since they
4086	 * need to register a subsys_id, among other things */
4087	BUG_ON(ss->module);
4088}
4089
4090/**
4091 * cgroup_load_subsys: load and register a modular subsystem at runtime
4092 * @ss: the subsystem to load
4093 *
4094 * This function should be called in a modular subsystem's initcall. If the
4095 * subsystem is built as a module, it will be assigned a new subsys_id and set
4096 * up for use. If the subsystem is built-in anyway, work is delegated to the
4097 * simpler cgroup_init_subsys.
4098 */
4099int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4100{
4101	int i;
4102	struct cgroup_subsys_state *css;
4103
4104	/* check name and function validity */
4105	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4106	    ss->create == NULL || ss->destroy == NULL)
4107		return -EINVAL;
4108
4109	/*
4110	 * we don't support callbacks in modular subsystems. this check is
4111	 * before the ss->module check for consistency; a subsystem that could
4112	 * be a module should still have no callbacks even if the user isn't
4113	 * compiling it as one.
4114	 */
4115	if (ss->fork || ss->exit)
4116		return -EINVAL;
4117
4118	/*
4119	 * an optionally modular subsystem is built-in: we want to do nothing,
4120	 * since cgroup_init_subsys will have already taken care of it.
4121	 */
4122	if (ss->module == NULL) {
4123		/* a few sanity checks */
4124		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4125		BUG_ON(subsys[ss->subsys_id] != ss);
4126		return 0;
4127	}
4128
4129	/*
4130	 * need to register a subsys id before anything else - for example,
4131	 * init_cgroup_css needs it.
4132	 */
4133	mutex_lock(&cgroup_mutex);
4134	/* find the first empty slot in the array */
4135	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4136		if (subsys[i] == NULL)
4137			break;
4138	}
4139	if (i == CGROUP_SUBSYS_COUNT) {
4140		/* maximum number of subsystems already registered! */
4141		mutex_unlock(&cgroup_mutex);
4142		return -EBUSY;
4143	}
4144	/* assign ourselves the subsys_id */
4145	ss->subsys_id = i;
4146	subsys[i] = ss;
4147
4148	/*
4149	 * no ss->create seems to need anything important in the ss struct, so
4150	 * this can happen first (i.e. before the rootnode attachment).
4151	 */
4152	css = ss->create(ss, dummytop);
4153	if (IS_ERR(css)) {
4154		/* failure case - need to deassign the subsys[] slot. */
4155		subsys[i] = NULL;
4156		mutex_unlock(&cgroup_mutex);
4157		return PTR_ERR(css);
4158	}
4159
4160	list_add(&ss->sibling, &rootnode.subsys_list);
4161	ss->root = &rootnode;
4162
4163	/* our new subsystem will be attached to the dummy hierarchy. */
4164	init_cgroup_css(css, ss, dummytop);
4165	/* init_idr must be after init_cgroup_css because it sets css->id. */
4166	if (ss->use_id) {
4167		int ret = cgroup_init_idr(ss, css);
4168		if (ret) {
4169			dummytop->subsys[ss->subsys_id] = NULL;
4170			ss->destroy(ss, dummytop);
4171			subsys[i] = NULL;
4172			mutex_unlock(&cgroup_mutex);
4173			return ret;
4174		}
4175	}
4176
4177	/*
4178	 * Now we need to entangle the css into the existing css_sets. unlike
4179	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4180	 * will need a new pointer to it; done by iterating the css_set_table.
4181	 * furthermore, modifying the existing css_sets will corrupt the hash
4182	 * table state, so each changed css_set will need its hash recomputed.
4183	 * this is all done under the css_set_lock.
4184	 */
4185	write_lock(&css_set_lock);
4186	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4187		struct css_set *cg;
4188		struct hlist_node *node, *tmp;
4189		struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4190
4191		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4192			/* skip entries that we already rehashed */
4193			if (cg->subsys[ss->subsys_id])
4194				continue;
4195			/* remove existing entry */
4196			hlist_del(&cg->hlist);
4197			/* set new value */
4198			cg->subsys[ss->subsys_id] = css;
4199			/* recompute hash and restore entry */
4200			new_bucket = css_set_hash(cg->subsys);
4201			hlist_add_head(&cg->hlist, new_bucket);
4202		}
4203	}
4204	write_unlock(&css_set_lock);
4205
4206	mutex_init(&ss->hierarchy_mutex);
4207	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4208	ss->active = 1;
4209
4210	/* success! */
4211	mutex_unlock(&cgroup_mutex);
4212	return 0;
4213}
4214EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4215
4216/**
4217 * cgroup_unload_subsys: unload a modular subsystem
4218 * @ss: the subsystem to unload
4219 *
4220 * This function should be called in a modular subsystem's exitcall. When this
4221 * function is invoked, the refcount on the subsystem's module will be 0, so
4222 * the subsystem will not be attached to any hierarchy.
4223 */
4224void cgroup_unload_subsys(struct cgroup_subsys *ss)
4225{
4226	struct cg_cgroup_link *link;
4227	struct hlist_head *hhead;
4228
4229	BUG_ON(ss->module == NULL);
4230
4231	/*
4232	 * we shouldn't be called if the subsystem is in use, and the use of
4233	 * try_module_get in parse_cgroupfs_options should ensure that it
4234	 * doesn't start being used while we're killing it off.
4235	 */
4236	BUG_ON(ss->root != &rootnode);
4237
4238	mutex_lock(&cgroup_mutex);
4239	/* deassign the subsys_id */
4240	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4241	subsys[ss->subsys_id] = NULL;
4242
4243	/* remove subsystem from rootnode's list of subsystems */
4244	list_del_init(&ss->sibling);
4245
4246	/*
4247	 * disentangle the css from all css_sets attached to the dummytop. as
4248	 * in loading, we need to pay our respects to the hashtable gods.
4249	 */
4250	write_lock(&css_set_lock);
4251	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4252		struct css_set *cg = link->cg;
4253
4254		hlist_del(&cg->hlist);
4255		BUG_ON(!cg->subsys[ss->subsys_id]);
4256		cg->subsys[ss->subsys_id] = NULL;
4257		hhead = css_set_hash(cg->subsys);
4258		hlist_add_head(&cg->hlist, hhead);
4259	}
4260	write_unlock(&css_set_lock);
4261
4262	/*
4263	 * remove subsystem's css from the dummytop and free it - need to free
4264	 * before marking as null because ss->destroy needs the cgrp->subsys
4265	 * pointer to find their state. note that this also takes care of
4266	 * freeing the css_id.
4267	 */
4268	ss->destroy(ss, dummytop);
4269	dummytop->subsys[ss->subsys_id] = NULL;
4270
4271	mutex_unlock(&cgroup_mutex);
4272}
4273EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4274
4275/**
4276 * cgroup_init_early - cgroup initialization at system boot
4277 *
4278 * Initialize cgroups at system boot, and initialize any
4279 * subsystems that request early init.
4280 */
4281int __init cgroup_init_early(void)
4282{
4283	int i;
4284	atomic_set(&init_css_set.refcount, 1);
4285	INIT_LIST_HEAD(&init_css_set.cg_links);
4286	INIT_LIST_HEAD(&init_css_set.tasks);
4287	INIT_HLIST_NODE(&init_css_set.hlist);
4288	css_set_count = 1;
4289	init_cgroup_root(&rootnode);
4290	root_count = 1;
4291	init_task.cgroups = &init_css_set;
4292
4293	init_css_set_link.cg = &init_css_set;
4294	init_css_set_link.cgrp = dummytop;
4295	list_add(&init_css_set_link.cgrp_link_list,
4296		 &rootnode.top_cgroup.css_sets);
4297	list_add(&init_css_set_link.cg_link_list,
4298		 &init_css_set.cg_links);
4299
4300	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4301		INIT_HLIST_HEAD(&css_set_table[i]);
4302
4303	/* at bootup time, we don't worry about modular subsystems */
4304	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4305		struct cgroup_subsys *ss = subsys[i];
4306
4307		BUG_ON(!ss->name);
4308		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4309		BUG_ON(!ss->create);
4310		BUG_ON(!ss->destroy);
4311		if (ss->subsys_id != i) {
4312			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4313			       ss->name, ss->subsys_id);
4314			BUG();
4315		}
4316
4317		if (ss->early_init)
4318			cgroup_init_subsys(ss);
4319	}
4320	return 0;
4321}
4322
4323/**
4324 * cgroup_init - cgroup initialization
4325 *
4326 * Register cgroup filesystem and /proc file, and initialize
4327 * any subsystems that didn't request early init.
4328 */
4329int __init cgroup_init(void)
4330{
4331	int err;
4332	int i;
4333	struct hlist_head *hhead;
4334
4335	err = bdi_init(&cgroup_backing_dev_info);
4336	if (err)
4337		return err;
4338
4339	/* at bootup time, we don't worry about modular subsystems */
4340	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4341		struct cgroup_subsys *ss = subsys[i];
4342		if (!ss->early_init)
4343			cgroup_init_subsys(ss);
4344		if (ss->use_id)
4345			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4346	}
4347
4348	/* Add init_css_set to the hash table */
4349	hhead = css_set_hash(init_css_set.subsys);
4350	hlist_add_head(&init_css_set.hlist, hhead);
4351	BUG_ON(!init_root_id(&rootnode));
4352
4353	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4354	if (!cgroup_kobj) {
4355		err = -ENOMEM;
4356		goto out;
4357	}
4358
4359	err = register_filesystem(&cgroup_fs_type);
4360	if (err < 0) {
4361		kobject_put(cgroup_kobj);
4362		goto out;
4363	}
4364
4365	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4366
4367out:
4368	if (err)
4369		bdi_destroy(&cgroup_backing_dev_info);
4370
4371	return err;
4372}
4373
4374/*
4375 * proc_cgroup_show()
4376 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
4377 *  - Used for /proc/<pid>/cgroup.
4378 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4379 *    doesn't really matter if tsk->cgroup changes after we read it,
4380 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4381 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
4382 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4383 *    cgroup to top_cgroup.
4384 */
4385
4386/* TODO: Use a proper seq_file iterator */
4387static int proc_cgroup_show(struct seq_file *m, void *v)
4388{
4389	struct pid *pid;
4390	struct task_struct *tsk;
4391	char *buf;
4392	int retval;
4393	struct cgroupfs_root *root;
4394
4395	retval = -ENOMEM;
4396	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4397	if (!buf)
4398		goto out;
4399
4400	retval = -ESRCH;
4401	pid = m->private;
4402	tsk = get_pid_task(pid, PIDTYPE_PID);
4403	if (!tsk)
4404		goto out_free;
4405
4406	retval = 0;
4407
4408	mutex_lock(&cgroup_mutex);
4409
4410	for_each_active_root(root) {
4411		struct cgroup_subsys *ss;
4412		struct cgroup *cgrp;
4413		int count = 0;
4414
4415		seq_printf(m, "%d:", root->hierarchy_id);
4416		for_each_subsys(root, ss)
4417			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4418		if (strlen(root->name))
4419			seq_printf(m, "%sname=%s", count ? "," : "",
4420				   root->name);
4421		seq_putc(m, ':');
4422		cgrp = task_cgroup_from_root(tsk, root);
4423		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4424		if (retval < 0)
4425			goto out_unlock;
4426		seq_puts(m, buf);
4427		seq_putc(m, '\n');
4428	}
4429
4430out_unlock:
4431	mutex_unlock(&cgroup_mutex);
4432	put_task_struct(tsk);
4433out_free:
4434	kfree(buf);
4435out:
4436	return retval;
4437}
4438
4439static int cgroup_open(struct inode *inode, struct file *file)
4440{
4441	struct pid *pid = PROC_I(inode)->pid;
4442	return single_open(file, proc_cgroup_show, pid);
4443}
4444
4445const struct file_operations proc_cgroup_operations = {
4446	.open		= cgroup_open,
4447	.read		= seq_read,
4448	.llseek		= seq_lseek,
4449	.release	= single_release,
4450};
4451
4452/* Display information about each subsystem and each hierarchy */
4453static int proc_cgroupstats_show(struct seq_file *m, void *v)
4454{
4455	int i;
4456
4457	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4458	/*
4459	 * ideally we don't want subsystems moving around while we do this.
4460	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4461	 * subsys/hierarchy state.
4462	 */
4463	mutex_lock(&cgroup_mutex);
4464	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4465		struct cgroup_subsys *ss = subsys[i];
4466		if (ss == NULL)
4467			continue;
4468		seq_printf(m, "%s\t%d\t%d\t%d\n",
4469			   ss->name, ss->root->hierarchy_id,
4470			   ss->root->number_of_cgroups, !ss->disabled);
4471	}
4472	mutex_unlock(&cgroup_mutex);
4473	return 0;
4474}
4475
4476static int cgroupstats_open(struct inode *inode, struct file *file)
4477{
4478	return single_open(file, proc_cgroupstats_show, NULL);
4479}
4480
4481static const struct file_operations proc_cgroupstats_operations = {
4482	.open = cgroupstats_open,
4483	.read = seq_read,
4484	.llseek = seq_lseek,
4485	.release = single_release,
4486};
4487
4488/**
4489 * cgroup_fork - attach newly forked task to its parents cgroup.
4490 * @child: pointer to task_struct of forking parent process.
4491 *
4492 * Description: A task inherits its parent's cgroup at fork().
4493 *
4494 * A pointer to the shared css_set was automatically copied in
4495 * fork.c by dup_task_struct().  However, we ignore that copy, since
4496 * it was not made under the protection of RCU or cgroup_mutex, so
4497 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4498 * have already changed current->cgroups, allowing the previously
4499 * referenced cgroup group to be removed and freed.
4500 *
4501 * At the point that cgroup_fork() is called, 'current' is the parent
4502 * task, and the passed argument 'child' points to the child task.
4503 */
4504void cgroup_fork(struct task_struct *child)
4505{
4506	task_lock(current);
4507	child->cgroups = current->cgroups;
4508	get_css_set(child->cgroups);
4509	task_unlock(current);
4510	INIT_LIST_HEAD(&child->cg_list);
4511}
4512
4513/**
4514 * cgroup_fork_callbacks - run fork callbacks
4515 * @child: the new task
4516 *
4517 * Called on a new task very soon before adding it to the
4518 * tasklist. No need to take any locks since no-one can
4519 * be operating on this task.
4520 */
4521void cgroup_fork_callbacks(struct task_struct *child)
4522{
4523	if (need_forkexit_callback) {
4524		int i;
4525		/*
4526		 * forkexit callbacks are only supported for builtin
4527		 * subsystems, and the builtin section of the subsys array is
4528		 * immutable, so we don't need to lock the subsys array here.
4529		 */
4530		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4531			struct cgroup_subsys *ss = subsys[i];
4532			if (ss->fork)
4533				ss->fork(ss, child);
4534		}
4535	}
4536}
4537
4538/**
4539 * cgroup_post_fork - called on a new task after adding it to the task list
4540 * @child: the task in question
4541 *
4542 * Adds the task to the list running through its css_set if necessary.
4543 * Has to be after the task is visible on the task list in case we race
4544 * with the first call to cgroup_iter_start() - to guarantee that the
4545 * new task ends up on its list.
4546 */
4547void cgroup_post_fork(struct task_struct *child)
4548{
4549	if (use_task_css_set_links) {
4550		write_lock(&css_set_lock);
4551		task_lock(child);
4552		if (list_empty(&child->cg_list))
4553			list_add(&child->cg_list, &child->cgroups->tasks);
4554		task_unlock(child);
4555		write_unlock(&css_set_lock);
4556	}
4557}
4558/**
4559 * cgroup_exit - detach cgroup from exiting task
4560 * @tsk: pointer to task_struct of exiting process
4561 * @run_callback: run exit callbacks?
4562 *
4563 * Description: Detach cgroup from @tsk and release it.
4564 *
4565 * Note that cgroups marked notify_on_release force every task in
4566 * them to take the global cgroup_mutex mutex when exiting.
4567 * This could impact scaling on very large systems.  Be reluctant to
4568 * use notify_on_release cgroups where very high task exit scaling
4569 * is required on large systems.
4570 *
4571 * the_top_cgroup_hack:
4572 *
4573 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4574 *
4575 *    We call cgroup_exit() while the task is still competent to
4576 *    handle notify_on_release(), then leave the task attached to the
4577 *    root cgroup in each hierarchy for the remainder of its exit.
4578 *
4579 *    To do this properly, we would increment the reference count on
4580 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4581 *    code we would add a second cgroup function call, to drop that
4582 *    reference.  This would just create an unnecessary hot spot on
4583 *    the top_cgroup reference count, to no avail.
4584 *
4585 *    Normally, holding a reference to a cgroup without bumping its
4586 *    count is unsafe.   The cgroup could go away, or someone could
4587 *    attach us to a different cgroup, decrementing the count on
4588 *    the first cgroup that we never incremented.  But in this case,
4589 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4590 *    which wards off any cgroup_attach_task() attempts, or task is a failed
4591 *    fork, never visible to cgroup_attach_task.
4592 */
4593void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4594{
4595	struct css_set *cg;
4596	int i;
4597
4598	/*
4599	 * Unlink from the css_set task list if necessary.
4600	 * Optimistically check cg_list before taking
4601	 * css_set_lock
4602	 */
4603	if (!list_empty(&tsk->cg_list)) {
4604		write_lock(&css_set_lock);
4605		if (!list_empty(&tsk->cg_list))
4606			list_del_init(&tsk->cg_list);
4607		write_unlock(&css_set_lock);
4608	}
4609
4610	/* Reassign the task to the init_css_set. */
4611	task_lock(tsk);
4612	cg = tsk->cgroups;
4613	tsk->cgroups = &init_css_set;
4614
4615	if (run_callbacks && need_forkexit_callback) {
4616		/*
4617		 * modular subsystems can't use callbacks, so no need to lock
4618		 * the subsys array
4619		 */
4620		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4621			struct cgroup_subsys *ss = subsys[i];
4622			if (ss->exit) {
4623				struct cgroup *old_cgrp =
4624					rcu_dereference_raw(cg->subsys[i])->cgroup;
4625				struct cgroup *cgrp = task_cgroup(tsk, i);
4626				ss->exit(ss, cgrp, old_cgrp, tsk);
4627			}
4628		}
4629	}
4630	task_unlock(tsk);
4631
4632	if (cg)
4633		put_css_set_taskexit(cg);
4634}
4635
4636/**
4637 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4638 * @cgrp: the cgroup in question
4639 * @task: the task in question
4640 *
4641 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4642 * hierarchy.
4643 *
4644 * If we are sending in dummytop, then presumably we are creating
4645 * the top cgroup in the subsystem.
4646 *
4647 * Called only by the ns (nsproxy) cgroup.
4648 */
4649int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4650{
4651	int ret;
4652	struct cgroup *target;
4653
4654	if (cgrp == dummytop)
4655		return 1;
4656
4657	target = task_cgroup_from_root(task, cgrp->root);
4658	while (cgrp != target && cgrp!= cgrp->top_cgroup)
4659		cgrp = cgrp->parent;
4660	ret = (cgrp == target);
4661	return ret;
4662}
4663
4664static void check_for_release(struct cgroup *cgrp)
4665{
4666	/* All of these checks rely on RCU to keep the cgroup
4667	 * structure alive */
4668	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4669	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4670		/* Control Group is currently removeable. If it's not
4671		 * already queued for a userspace notification, queue
4672		 * it now */
4673		int need_schedule_work = 0;
4674		spin_lock(&release_list_lock);
4675		if (!cgroup_is_removed(cgrp) &&
4676		    list_empty(&cgrp->release_list)) {
4677			list_add(&cgrp->release_list, &release_list);
4678			need_schedule_work = 1;
4679		}
4680		spin_unlock(&release_list_lock);
4681		if (need_schedule_work)
4682			schedule_work(&release_agent_work);
4683	}
4684}
4685
4686/* Caller must verify that the css is not for root cgroup */
4687void __css_put(struct cgroup_subsys_state *css, int count)
4688{
4689	struct cgroup *cgrp = css->cgroup;
4690	int val;
4691	rcu_read_lock();
4692	val = atomic_sub_return(count, &css->refcnt);
4693	if (val == 1) {
4694		if (notify_on_release(cgrp)) {
4695			set_bit(CGRP_RELEASABLE, &cgrp->flags);
4696			check_for_release(cgrp);
4697		}
4698		cgroup_wakeup_rmdir_waiter(cgrp);
4699	}
4700	rcu_read_unlock();
4701	WARN_ON_ONCE(val < 1);
4702}
4703EXPORT_SYMBOL_GPL(__css_put);
4704
4705/*
4706 * Notify userspace when a cgroup is released, by running the
4707 * configured release agent with the name of the cgroup (path
4708 * relative to the root of cgroup file system) as the argument.
4709 *
4710 * Most likely, this user command will try to rmdir this cgroup.
4711 *
4712 * This races with the possibility that some other task will be
4713 * attached to this cgroup before it is removed, or that some other
4714 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
4715 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4716 * unused, and this cgroup will be reprieved from its death sentence,
4717 * to continue to serve a useful existence.  Next time it's released,
4718 * we will get notified again, if it still has 'notify_on_release' set.
4719 *
4720 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4721 * means only wait until the task is successfully execve()'d.  The
4722 * separate release agent task is forked by call_usermodehelper(),
4723 * then control in this thread returns here, without waiting for the
4724 * release agent task.  We don't bother to wait because the caller of
4725 * this routine has no use for the exit status of the release agent
4726 * task, so no sense holding our caller up for that.
4727 */
4728static void cgroup_release_agent(struct work_struct *work)
4729{
4730	BUG_ON(work != &release_agent_work);
4731	mutex_lock(&cgroup_mutex);
4732	spin_lock(&release_list_lock);
4733	while (!list_empty(&release_list)) {
4734		char *argv[3], *envp[3];
4735		int i;
4736		char *pathbuf = NULL, *agentbuf = NULL;
4737		struct cgroup *cgrp = list_entry(release_list.next,
4738						    struct cgroup,
4739						    release_list);
4740		list_del_init(&cgrp->release_list);
4741		spin_unlock(&release_list_lock);
4742		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4743		if (!pathbuf)
4744			goto continue_free;
4745		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4746			goto continue_free;
4747		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4748		if (!agentbuf)
4749			goto continue_free;
4750
4751		i = 0;
4752		argv[i++] = agentbuf;
4753		argv[i++] = pathbuf;
4754		argv[i] = NULL;
4755
4756		i = 0;
4757		/* minimal command environment */
4758		envp[i++] = "HOME=/";
4759		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4760		envp[i] = NULL;
4761
4762		/* Drop the lock while we invoke the usermode helper,
4763		 * since the exec could involve hitting disk and hence
4764		 * be a slow process */
4765		mutex_unlock(&cgroup_mutex);
4766		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4767		mutex_lock(&cgroup_mutex);
4768 continue_free:
4769		kfree(pathbuf);
4770		kfree(agentbuf);
4771		spin_lock(&release_list_lock);
4772	}
4773	spin_unlock(&release_list_lock);
4774	mutex_unlock(&cgroup_mutex);
4775}
4776
4777static int __init cgroup_disable(char *str)
4778{
4779	int i;
4780	char *token;
4781
4782	while ((token = strsep(&str, ",")) != NULL) {
4783		if (!*token)
4784			continue;
4785		/*
4786		 * cgroup_disable, being at boot time, can't know about module
4787		 * subsystems, so we don't worry about them.
4788		 */
4789		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4790			struct cgroup_subsys *ss = subsys[i];
4791
4792			if (!strcmp(token, ss->name)) {
4793				ss->disabled = 1;
4794				printk(KERN_INFO "Disabling %s control group"
4795					" subsystem\n", ss->name);
4796				break;
4797			}
4798		}
4799	}
4800	return 1;
4801}
4802__setup("cgroup_disable=", cgroup_disable);
4803
4804/*
4805 * Functons for CSS ID.
4806 */
4807
4808/*
4809 *To get ID other than 0, this should be called when !cgroup_is_removed().
4810 */
4811unsigned short css_id(struct cgroup_subsys_state *css)
4812{
4813	struct css_id *cssid;
4814
4815	/*
4816	 * This css_id() can return correct value when somone has refcnt
4817	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4818	 * it's unchanged until freed.
4819	 */
4820	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4821
4822	if (cssid)
4823		return cssid->id;
4824	return 0;
4825}
4826EXPORT_SYMBOL_GPL(css_id);
4827
4828unsigned short css_depth(struct cgroup_subsys_state *css)
4829{
4830	struct css_id *cssid;
4831
4832	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4833
4834	if (cssid)
4835		return cssid->depth;
4836	return 0;
4837}
4838EXPORT_SYMBOL_GPL(css_depth);
4839
4840/**
4841 *  css_is_ancestor - test "root" css is an ancestor of "child"
4842 * @child: the css to be tested.
4843 * @root: the css supporsed to be an ancestor of the child.
4844 *
4845 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4846 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4847 * But, considering usual usage, the csses should be valid objects after test.
4848 * Assuming that the caller will do some action to the child if this returns
4849 * returns true, the caller must take "child";s reference count.
4850 * If "child" is valid object and this returns true, "root" is valid, too.
4851 */
4852
4853bool css_is_ancestor(struct cgroup_subsys_state *child,
4854		    const struct cgroup_subsys_state *root)
4855{
4856	struct css_id *child_id;
4857	struct css_id *root_id;
4858	bool ret = true;
4859
4860	rcu_read_lock();
4861	child_id  = rcu_dereference(child->id);
4862	root_id = rcu_dereference(root->id);
4863	if (!child_id
4864	    || !root_id
4865	    || (child_id->depth < root_id->depth)
4866	    || (child_id->stack[root_id->depth] != root_id->id))
4867		ret = false;
4868	rcu_read_unlock();
4869	return ret;
4870}
4871
4872void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4873{
4874	struct css_id *id = css->id;
4875	/* When this is called before css_id initialization, id can be NULL */
4876	if (!id)
4877		return;
4878
4879	BUG_ON(!ss->use_id);
4880
4881	rcu_assign_pointer(id->css, NULL);
4882	rcu_assign_pointer(css->id, NULL);
4883	spin_lock(&ss->id_lock);
4884	idr_remove(&ss->idr, id->id);
4885	spin_unlock(&ss->id_lock);
4886	kfree_rcu(id, rcu_head);
4887}
4888EXPORT_SYMBOL_GPL(free_css_id);
4889
4890/*
4891 * This is called by init or create(). Then, calls to this function are
4892 * always serialized (By cgroup_mutex() at create()).
4893 */
4894
4895static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4896{
4897	struct css_id *newid;
4898	int myid, error, size;
4899
4900	BUG_ON(!ss->use_id);
4901
4902	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4903	newid = kzalloc(size, GFP_KERNEL);
4904	if (!newid)
4905		return ERR_PTR(-ENOMEM);
4906	/* get id */
4907	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4908		error = -ENOMEM;
4909		goto err_out;
4910	}
4911	spin_lock(&ss->id_lock);
4912	/* Don't use 0. allocates an ID of 1-65535 */
4913	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4914	spin_unlock(&ss->id_lock);
4915
4916	/* Returns error when there are no free spaces for new ID.*/
4917	if (error) {
4918		error = -ENOSPC;
4919		goto err_out;
4920	}
4921	if (myid > CSS_ID_MAX)
4922		goto remove_idr;
4923
4924	newid->id = myid;
4925	newid->depth = depth;
4926	return newid;
4927remove_idr:
4928	error = -ENOSPC;
4929	spin_lock(&ss->id_lock);
4930	idr_remove(&ss->idr, myid);
4931	spin_unlock(&ss->id_lock);
4932err_out:
4933	kfree(newid);
4934	return ERR_PTR(error);
4935
4936}
4937
4938static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4939					    struct cgroup_subsys_state *rootcss)
4940{
4941	struct css_id *newid;
4942
4943	spin_lock_init(&ss->id_lock);
4944	idr_init(&ss->idr);
4945
4946	newid = get_new_cssid(ss, 0);
4947	if (IS_ERR(newid))
4948		return PTR_ERR(newid);
4949
4950	newid->stack[0] = newid->id;
4951	newid->css = rootcss;
4952	rootcss->id = newid;
4953	return 0;
4954}
4955
4956static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4957			struct cgroup *child)
4958{
4959	int subsys_id, i, depth = 0;
4960	struct cgroup_subsys_state *parent_css, *child_css;
4961	struct css_id *child_id, *parent_id;
4962
4963	subsys_id = ss->subsys_id;
4964	parent_css = parent->subsys[subsys_id];
4965	child_css = child->subsys[subsys_id];
4966	parent_id = parent_css->id;
4967	depth = parent_id->depth + 1;
4968
4969	child_id = get_new_cssid(ss, depth);
4970	if (IS_ERR(child_id))
4971		return PTR_ERR(child_id);
4972
4973	for (i = 0; i < depth; i++)
4974		child_id->stack[i] = parent_id->stack[i];
4975	child_id->stack[depth] = child_id->id;
4976	/*
4977	 * child_id->css pointer will be set after this cgroup is available
4978	 * see cgroup_populate_dir()
4979	 */
4980	rcu_assign_pointer(child_css->id, child_id);
4981
4982	return 0;
4983}
4984
4985/**
4986 * css_lookup - lookup css by id
4987 * @ss: cgroup subsys to be looked into.
4988 * @id: the id
4989 *
4990 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4991 * NULL if not. Should be called under rcu_read_lock()
4992 */
4993struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4994{
4995	struct css_id *cssid = NULL;
4996
4997	BUG_ON(!ss->use_id);
4998	cssid = idr_find(&ss->idr, id);
4999
5000	if (unlikely(!cssid))
5001		return NULL;
5002
5003	return rcu_dereference(cssid->css);
5004}
5005EXPORT_SYMBOL_GPL(css_lookup);
5006
5007/**
5008 * css_get_next - lookup next cgroup under specified hierarchy.
5009 * @ss: pointer to subsystem
5010 * @id: current position of iteration.
5011 * @root: pointer to css. search tree under this.
5012 * @foundid: position of found object.
5013 *
5014 * Search next css under the specified hierarchy of rootid. Calling under
5015 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5016 */
5017struct cgroup_subsys_state *
5018css_get_next(struct cgroup_subsys *ss, int id,
5019	     struct cgroup_subsys_state *root, int *foundid)
5020{
5021	struct cgroup_subsys_state *ret = NULL;
5022	struct css_id *tmp;
5023	int tmpid;
5024	int rootid = css_id(root);
5025	int depth = css_depth(root);
5026
5027	if (!rootid)
5028		return NULL;
5029
5030	BUG_ON(!ss->use_id);
5031	/* fill start point for scan */
5032	tmpid = id;
5033	while (1) {
5034		/*
5035		 * scan next entry from bitmap(tree), tmpid is updated after
5036		 * idr_get_next().
5037		 */
5038		spin_lock(&ss->id_lock);
5039		tmp = idr_get_next(&ss->idr, &tmpid);
5040		spin_unlock(&ss->id_lock);
5041
5042		if (!tmp)
5043			break;
5044		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5045			ret = rcu_dereference(tmp->css);
5046			if (ret) {
5047				*foundid = tmpid;
5048				break;
5049			}
5050		}
5051		/* continue to scan from next id */
5052		tmpid = tmpid + 1;
5053	}
5054	return ret;
5055}
5056
5057/*
5058 * get corresponding css from file open on cgroupfs directory
5059 */
5060struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5061{
5062	struct cgroup *cgrp;
5063	struct inode *inode;
5064	struct cgroup_subsys_state *css;
5065
5066	inode = f->f_dentry->d_inode;
5067	/* check in cgroup filesystem dir */
5068	if (inode->i_op != &cgroup_dir_inode_operations)
5069		return ERR_PTR(-EBADF);
5070
5071	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5072		return ERR_PTR(-EINVAL);
5073
5074	/* get cgroup */
5075	cgrp = __d_cgrp(f->f_dentry);
5076	css = cgrp->subsys[id];
5077	return css ? css : ERR_PTR(-ENOENT);
5078}
5079
5080#ifdef CONFIG_CGROUP_DEBUG
5081static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5082						   struct cgroup *cont)
5083{
5084	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5085
5086	if (!css)
5087		return ERR_PTR(-ENOMEM);
5088
5089	return css;
5090}
5091
5092static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5093{
5094	kfree(cont->subsys[debug_subsys_id]);
5095}
5096
5097static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5098{
5099	return atomic_read(&cont->count);
5100}
5101
5102static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5103{
5104	return cgroup_task_count(cont);
5105}
5106
5107static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5108{
5109	return (u64)(unsigned long)current->cgroups;
5110}
5111
5112static u64 current_css_set_refcount_read(struct cgroup *cont,
5113					   struct cftype *cft)
5114{
5115	u64 count;
5116
5117	rcu_read_lock();
5118	count = atomic_read(&current->cgroups->refcount);
5119	rcu_read_unlock();
5120	return count;
5121}
5122
5123static int current_css_set_cg_links_read(struct cgroup *cont,
5124					 struct cftype *cft,
5125					 struct seq_file *seq)
5126{
5127	struct cg_cgroup_link *link;
5128	struct css_set *cg;
5129
5130	read_lock(&css_set_lock);
5131	rcu_read_lock();
5132	cg = rcu_dereference(current->cgroups);
5133	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5134		struct cgroup *c = link->cgrp;
5135		const char *name;
5136
5137		if (c->dentry)
5138			name = c->dentry->d_name.name;
5139		else
5140			name = "?";
5141		seq_printf(seq, "Root %d group %s\n",
5142			   c->root->hierarchy_id, name);
5143	}
5144	rcu_read_unlock();
5145	read_unlock(&css_set_lock);
5146	return 0;
5147}
5148
5149#define MAX_TASKS_SHOWN_PER_CSS 25
5150static int cgroup_css_links_read(struct cgroup *cont,
5151				 struct cftype *cft,
5152				 struct seq_file *seq)
5153{
5154	struct cg_cgroup_link *link;
5155
5156	read_lock(&css_set_lock);
5157	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5158		struct css_set *cg = link->cg;
5159		struct task_struct *task;
5160		int count = 0;
5161		seq_printf(seq, "css_set %p\n", cg);
5162		list_for_each_entry(task, &cg->tasks, cg_list) {
5163			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5164				seq_puts(seq, "  ...\n");
5165				break;
5166			} else {
5167				seq_printf(seq, "  task %d\n",
5168					   task_pid_vnr(task));
5169			}
5170		}
5171	}
5172	read_unlock(&css_set_lock);
5173	return 0;
5174}
5175
5176static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5177{
5178	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5179}
5180
5181static struct cftype debug_files[] =  {
5182	{
5183		.name = "cgroup_refcount",
5184		.read_u64 = cgroup_refcount_read,
5185	},
5186	{
5187		.name = "taskcount",
5188		.read_u64 = debug_taskcount_read,
5189	},
5190
5191	{
5192		.name = "current_css_set",
5193		.read_u64 = current_css_set_read,
5194	},
5195
5196	{
5197		.name = "current_css_set_refcount",
5198		.read_u64 = current_css_set_refcount_read,
5199	},
5200
5201	{
5202		.name = "current_css_set_cg_links",
5203		.read_seq_string = current_css_set_cg_links_read,
5204	},
5205
5206	{
5207		.name = "cgroup_css_links",
5208		.read_seq_string = cgroup_css_links_read,
5209	},
5210
5211	{
5212		.name = "releasable",
5213		.read_u64 = releasable_read,
5214	},
5215};
5216
5217static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5218{
5219	return cgroup_add_files(cont, ss, debug_files,
5220				ARRAY_SIZE(debug_files));
5221}
5222
5223struct cgroup_subsys debug_subsys = {
5224	.name = "debug",
5225	.create = debug_create,
5226	.destroy = debug_destroy,
5227	.populate = debug_populate,
5228	.subsys_id = debug_subsys_id,
5229};
5230#endif /* CONFIG_CGROUP_DEBUG */