Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2001-2004 by David Brownell
4 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 */
6
7/* this file is part of ehci-hcd.c */
8
9/*-------------------------------------------------------------------------*/
10
11/*
12 * EHCI scheduled transaction support: interrupt, iso, split iso
13 * These are called "periodic" transactions in the EHCI spec.
14 *
15 * Note that for interrupt transfers, the QH/QTD manipulation is shared
16 * with the "asynchronous" transaction support (control/bulk transfers).
17 * The only real difference is in how interrupt transfers are scheduled.
18 *
19 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20 * It keeps track of every ITD (or SITD) that's linked, and holds enough
21 * pre-calculated schedule data to make appending to the queue be quick.
22 */
23
24static int ehci_get_frame(struct usb_hcd *hcd);
25
26/*
27 * periodic_next_shadow - return "next" pointer on shadow list
28 * @periodic: host pointer to qh/itd/sitd
29 * @tag: hardware tag for type of this record
30 */
31static union ehci_shadow *
32periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 __hc32 tag)
34{
35 switch (hc32_to_cpu(ehci, tag)) {
36 case Q_TYPE_QH:
37 return &periodic->qh->qh_next;
38 case Q_TYPE_FSTN:
39 return &periodic->fstn->fstn_next;
40 case Q_TYPE_ITD:
41 return &periodic->itd->itd_next;
42 /* case Q_TYPE_SITD: */
43 default:
44 return &periodic->sitd->sitd_next;
45 }
46}
47
48static __hc32 *
49shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 __hc32 tag)
51{
52 switch (hc32_to_cpu(ehci, tag)) {
53 /* our ehci_shadow.qh is actually software part */
54 case Q_TYPE_QH:
55 return &periodic->qh->hw->hw_next;
56 /* others are hw parts */
57 default:
58 return periodic->hw_next;
59 }
60}
61
62/* caller must hold ehci->lock */
63static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64{
65 union ehci_shadow *prev_p = &ehci->pshadow[frame];
66 __hc32 *hw_p = &ehci->periodic[frame];
67 union ehci_shadow here = *prev_p;
68
69 /* find predecessor of "ptr"; hw and shadow lists are in sync */
70 while (here.ptr && here.ptr != ptr) {
71 prev_p = periodic_next_shadow(ehci, prev_p,
72 Q_NEXT_TYPE(ehci, *hw_p));
73 hw_p = shadow_next_periodic(ehci, &here,
74 Q_NEXT_TYPE(ehci, *hw_p));
75 here = *prev_p;
76 }
77 /* an interrupt entry (at list end) could have been shared */
78 if (!here.ptr)
79 return;
80
81 /* update shadow and hardware lists ... the old "next" pointers
82 * from ptr may still be in use, the caller updates them.
83 */
84 *prev_p = *periodic_next_shadow(ehci, &here,
85 Q_NEXT_TYPE(ehci, *hw_p));
86
87 if (!ehci->use_dummy_qh ||
88 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 != EHCI_LIST_END(ehci))
90 *hw_p = *shadow_next_periodic(ehci, &here,
91 Q_NEXT_TYPE(ehci, *hw_p));
92 else
93 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
94}
95
96/*-------------------------------------------------------------------------*/
97
98/* Bandwidth and TT management */
99
100/* Find the TT data structure for this device; create it if necessary */
101static struct ehci_tt *find_tt(struct usb_device *udev)
102{
103 struct usb_tt *utt = udev->tt;
104 struct ehci_tt *tt, **tt_index, **ptt;
105 unsigned port;
106 bool allocated_index = false;
107
108 if (!utt)
109 return NULL; /* Not below a TT */
110
111 /*
112 * Find/create our data structure.
113 * For hubs with a single TT, we get it directly.
114 * For hubs with multiple TTs, there's an extra level of pointers.
115 */
116 tt_index = NULL;
117 if (utt->multi) {
118 tt_index = utt->hcpriv;
119 if (!tt_index) { /* Create the index array */
120 tt_index = kzalloc(utt->hub->maxchild *
121 sizeof(*tt_index), GFP_ATOMIC);
122 if (!tt_index)
123 return ERR_PTR(-ENOMEM);
124 utt->hcpriv = tt_index;
125 allocated_index = true;
126 }
127 port = udev->ttport - 1;
128 ptt = &tt_index[port];
129 } else {
130 port = 0;
131 ptt = (struct ehci_tt **) &utt->hcpriv;
132 }
133
134 tt = *ptt;
135 if (!tt) { /* Create the ehci_tt */
136 struct ehci_hcd *ehci =
137 hcd_to_ehci(bus_to_hcd(udev->bus));
138
139 tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
140 if (!tt) {
141 if (allocated_index) {
142 utt->hcpriv = NULL;
143 kfree(tt_index);
144 }
145 return ERR_PTR(-ENOMEM);
146 }
147 list_add_tail(&tt->tt_list, &ehci->tt_list);
148 INIT_LIST_HEAD(&tt->ps_list);
149 tt->usb_tt = utt;
150 tt->tt_port = port;
151 *ptt = tt;
152 }
153
154 return tt;
155}
156
157/* Release the TT above udev, if it's not in use */
158static void drop_tt(struct usb_device *udev)
159{
160 struct usb_tt *utt = udev->tt;
161 struct ehci_tt *tt, **tt_index, **ptt;
162 int cnt, i;
163
164 if (!utt || !utt->hcpriv)
165 return; /* Not below a TT, or never allocated */
166
167 cnt = 0;
168 if (utt->multi) {
169 tt_index = utt->hcpriv;
170 ptt = &tt_index[udev->ttport - 1];
171
172 /* How many entries are left in tt_index? */
173 for (i = 0; i < utt->hub->maxchild; ++i)
174 cnt += !!tt_index[i];
175 } else {
176 tt_index = NULL;
177 ptt = (struct ehci_tt **) &utt->hcpriv;
178 }
179
180 tt = *ptt;
181 if (!tt || !list_empty(&tt->ps_list))
182 return; /* never allocated, or still in use */
183
184 list_del(&tt->tt_list);
185 *ptt = NULL;
186 kfree(tt);
187 if (cnt == 1) {
188 utt->hcpriv = NULL;
189 kfree(tt_index);
190 }
191}
192
193static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
194 struct ehci_per_sched *ps)
195{
196 dev_dbg(&ps->udev->dev,
197 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
198 ps->ep->desc.bEndpointAddress,
199 (sign >= 0 ? "reserve" : "release"), type,
200 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
201 ps->phase, ps->phase_uf, ps->period,
202 ps->usecs, ps->c_usecs, ps->cs_mask);
203}
204
205static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
206 struct ehci_qh *qh, int sign)
207{
208 unsigned start_uf;
209 unsigned i, j, m;
210 int usecs = qh->ps.usecs;
211 int c_usecs = qh->ps.c_usecs;
212 int tt_usecs = qh->ps.tt_usecs;
213 struct ehci_tt *tt;
214
215 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
216 return;
217 start_uf = qh->ps.bw_phase << 3;
218
219 bandwidth_dbg(ehci, sign, "intr", &qh->ps);
220
221 if (sign < 0) { /* Release bandwidth */
222 usecs = -usecs;
223 c_usecs = -c_usecs;
224 tt_usecs = -tt_usecs;
225 }
226
227 /* Entire transaction (high speed) or start-split (full/low speed) */
228 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
229 i += qh->ps.bw_uperiod)
230 ehci->bandwidth[i] += usecs;
231
232 /* Complete-split (full/low speed) */
233 if (qh->ps.c_usecs) {
234 /* NOTE: adjustments needed for FSTN */
235 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
236 i += qh->ps.bw_uperiod) {
237 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
238 if (qh->ps.cs_mask & m)
239 ehci->bandwidth[i+j] += c_usecs;
240 }
241 }
242 }
243
244 /* FS/LS bus bandwidth */
245 if (tt_usecs) {
246 tt = find_tt(qh->ps.udev);
247 if (sign > 0)
248 list_add_tail(&qh->ps.ps_list, &tt->ps_list);
249 else
250 list_del(&qh->ps.ps_list);
251
252 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
253 i += qh->ps.bw_period)
254 tt->bandwidth[i] += tt_usecs;
255 }
256}
257
258/*-------------------------------------------------------------------------*/
259
260static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
261 struct ehci_tt *tt)
262{
263 struct ehci_per_sched *ps;
264 unsigned uframe, uf, x;
265 u8 *budget_line;
266
267 if (!tt)
268 return;
269 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
270
271 /* Add up the contributions from all the endpoints using this TT */
272 list_for_each_entry(ps, &tt->ps_list, ps_list) {
273 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
274 uframe += ps->bw_uperiod) {
275 budget_line = &budget_table[uframe];
276 x = ps->tt_usecs;
277
278 /* propagate the time forward */
279 for (uf = ps->phase_uf; uf < 8; ++uf) {
280 x += budget_line[uf];
281
282 /* Each microframe lasts 125 us */
283 if (x <= 125) {
284 budget_line[uf] = x;
285 break;
286 }
287 budget_line[uf] = 125;
288 x -= 125;
289 }
290 }
291 }
292}
293
294static int __maybe_unused same_tt(struct usb_device *dev1,
295 struct usb_device *dev2)
296{
297 if (!dev1->tt || !dev2->tt)
298 return 0;
299 if (dev1->tt != dev2->tt)
300 return 0;
301 if (dev1->tt->multi)
302 return dev1->ttport == dev2->ttport;
303 else
304 return 1;
305}
306
307#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
308
309/* Which uframe does the low/fullspeed transfer start in?
310 *
311 * The parameter is the mask of ssplits in "H-frame" terms
312 * and this returns the transfer start uframe in "B-frame" terms,
313 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
314 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
315 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
316 */
317static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
318{
319 unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
320
321 if (!smask) {
322 ehci_err(ehci, "invalid empty smask!\n");
323 /* uframe 7 can't have bw so this will indicate failure */
324 return 7;
325 }
326 return ffs(smask) - 1;
327}
328
329static const unsigned char
330max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
331
332/* carryover low/fullspeed bandwidth that crosses uframe boundries */
333static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
334{
335 int i;
336
337 for (i = 0; i < 7; i++) {
338 if (max_tt_usecs[i] < tt_usecs[i]) {
339 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
340 tt_usecs[i] = max_tt_usecs[i];
341 }
342 }
343}
344
345/*
346 * Return true if the device's tt's downstream bus is available for a
347 * periodic transfer of the specified length (usecs), starting at the
348 * specified frame/uframe. Note that (as summarized in section 11.19
349 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
350 * uframe.
351 *
352 * The uframe parameter is when the fullspeed/lowspeed transfer
353 * should be executed in "B-frame" terms, which is the same as the
354 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
355 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
356 * See the EHCI spec sec 4.5 and fig 4.7.
357 *
358 * This checks if the full/lowspeed bus, at the specified starting uframe,
359 * has the specified bandwidth available, according to rules listed
360 * in USB 2.0 spec section 11.18.1 fig 11-60.
361 *
362 * This does not check if the transfer would exceed the max ssplit
363 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
364 * since proper scheduling limits ssplits to less than 16 per uframe.
365 */
366static int tt_available(
367 struct ehci_hcd *ehci,
368 struct ehci_per_sched *ps,
369 struct ehci_tt *tt,
370 unsigned frame,
371 unsigned uframe
372)
373{
374 unsigned period = ps->bw_period;
375 unsigned usecs = ps->tt_usecs;
376
377 if ((period == 0) || (uframe >= 7)) /* error */
378 return 0;
379
380 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
381 frame += period) {
382 unsigned i, uf;
383 unsigned short tt_usecs[8];
384
385 if (tt->bandwidth[frame] + usecs > 900)
386 return 0;
387
388 uf = frame << 3;
389 for (i = 0; i < 8; (++i, ++uf))
390 tt_usecs[i] = ehci->tt_budget[uf];
391
392 if (max_tt_usecs[uframe] <= tt_usecs[uframe])
393 return 0;
394
395 /* special case for isoc transfers larger than 125us:
396 * the first and each subsequent fully used uframe
397 * must be empty, so as to not illegally delay
398 * already scheduled transactions
399 */
400 if (usecs > 125) {
401 int ufs = (usecs / 125);
402
403 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
404 if (tt_usecs[i] > 0)
405 return 0;
406 }
407
408 tt_usecs[uframe] += usecs;
409
410 carryover_tt_bandwidth(tt_usecs);
411
412 /* fail if the carryover pushed bw past the last uframe's limit */
413 if (max_tt_usecs[7] < tt_usecs[7])
414 return 0;
415 }
416
417 return 1;
418}
419
420#else
421
422/* return true iff the device's transaction translator is available
423 * for a periodic transfer starting at the specified frame, using
424 * all the uframes in the mask.
425 */
426static int tt_no_collision(
427 struct ehci_hcd *ehci,
428 unsigned period,
429 struct usb_device *dev,
430 unsigned frame,
431 u32 uf_mask
432)
433{
434 if (period == 0) /* error */
435 return 0;
436
437 /* note bandwidth wastage: split never follows csplit
438 * (different dev or endpoint) until the next uframe.
439 * calling convention doesn't make that distinction.
440 */
441 for (; frame < ehci->periodic_size; frame += period) {
442 union ehci_shadow here;
443 __hc32 type;
444 struct ehci_qh_hw *hw;
445
446 here = ehci->pshadow[frame];
447 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
448 while (here.ptr) {
449 switch (hc32_to_cpu(ehci, type)) {
450 case Q_TYPE_ITD:
451 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
452 here = here.itd->itd_next;
453 continue;
454 case Q_TYPE_QH:
455 hw = here.qh->hw;
456 if (same_tt(dev, here.qh->ps.udev)) {
457 u32 mask;
458
459 mask = hc32_to_cpu(ehci,
460 hw->hw_info2);
461 /* "knows" no gap is needed */
462 mask |= mask >> 8;
463 if (mask & uf_mask)
464 break;
465 }
466 type = Q_NEXT_TYPE(ehci, hw->hw_next);
467 here = here.qh->qh_next;
468 continue;
469 case Q_TYPE_SITD:
470 if (same_tt(dev, here.sitd->urb->dev)) {
471 u16 mask;
472
473 mask = hc32_to_cpu(ehci, here.sitd
474 ->hw_uframe);
475 /* FIXME assumes no gap for IN! */
476 mask |= mask >> 8;
477 if (mask & uf_mask)
478 break;
479 }
480 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
481 here = here.sitd->sitd_next;
482 continue;
483 /* case Q_TYPE_FSTN: */
484 default:
485 ehci_dbg(ehci,
486 "periodic frame %d bogus type %d\n",
487 frame, type);
488 }
489
490 /* collision or error */
491 return 0;
492 }
493 }
494
495 /* no collision */
496 return 1;
497}
498
499#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
500
501/*-------------------------------------------------------------------------*/
502
503static void enable_periodic(struct ehci_hcd *ehci)
504{
505 if (ehci->periodic_count++)
506 return;
507
508 /* Stop waiting to turn off the periodic schedule */
509 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
510
511 /* Don't start the schedule until PSS is 0 */
512 ehci_poll_PSS(ehci);
513 turn_on_io_watchdog(ehci);
514}
515
516static void disable_periodic(struct ehci_hcd *ehci)
517{
518 if (--ehci->periodic_count)
519 return;
520
521 /* Don't turn off the schedule until PSS is 1 */
522 ehci_poll_PSS(ehci);
523}
524
525/*-------------------------------------------------------------------------*/
526
527/* periodic schedule slots have iso tds (normal or split) first, then a
528 * sparse tree for active interrupt transfers.
529 *
530 * this just links in a qh; caller guarantees uframe masks are set right.
531 * no FSTN support (yet; ehci 0.96+)
532 */
533static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
534{
535 unsigned i;
536 unsigned period = qh->ps.period;
537
538 dev_dbg(&qh->ps.udev->dev,
539 "link qh%d-%04x/%p start %d [%d/%d us]\n",
540 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
541 & (QH_CMASK | QH_SMASK),
542 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
543
544 /* high bandwidth, or otherwise every microframe */
545 if (period == 0)
546 period = 1;
547
548 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
549 union ehci_shadow *prev = &ehci->pshadow[i];
550 __hc32 *hw_p = &ehci->periodic[i];
551 union ehci_shadow here = *prev;
552 __hc32 type = 0;
553
554 /* skip the iso nodes at list head */
555 while (here.ptr) {
556 type = Q_NEXT_TYPE(ehci, *hw_p);
557 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
558 break;
559 prev = periodic_next_shadow(ehci, prev, type);
560 hw_p = shadow_next_periodic(ehci, &here, type);
561 here = *prev;
562 }
563
564 /* sorting each branch by period (slow-->fast)
565 * enables sharing interior tree nodes
566 */
567 while (here.ptr && qh != here.qh) {
568 if (qh->ps.period > here.qh->ps.period)
569 break;
570 prev = &here.qh->qh_next;
571 hw_p = &here.qh->hw->hw_next;
572 here = *prev;
573 }
574 /* link in this qh, unless some earlier pass did that */
575 if (qh != here.qh) {
576 qh->qh_next = here;
577 if (here.qh)
578 qh->hw->hw_next = *hw_p;
579 wmb();
580 prev->qh = qh;
581 *hw_p = QH_NEXT(ehci, qh->qh_dma);
582 }
583 }
584 qh->qh_state = QH_STATE_LINKED;
585 qh->xacterrs = 0;
586 qh->unlink_reason = 0;
587
588 /* update per-qh bandwidth for debugfs */
589 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
590 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
591 : (qh->ps.usecs * 8);
592
593 list_add(&qh->intr_node, &ehci->intr_qh_list);
594
595 /* maybe enable periodic schedule processing */
596 ++ehci->intr_count;
597 enable_periodic(ehci);
598}
599
600static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
601{
602 unsigned i;
603 unsigned period;
604
605 /*
606 * If qh is for a low/full-speed device, simply unlinking it
607 * could interfere with an ongoing split transaction. To unlink
608 * it safely would require setting the QH_INACTIVATE bit and
609 * waiting at least one frame, as described in EHCI 4.12.2.5.
610 *
611 * We won't bother with any of this. Instead, we assume that the
612 * only reason for unlinking an interrupt QH while the current URB
613 * is still active is to dequeue all the URBs (flush the whole
614 * endpoint queue).
615 *
616 * If rebalancing the periodic schedule is ever implemented, this
617 * approach will no longer be valid.
618 */
619
620 /* high bandwidth, or otherwise part of every microframe */
621 period = qh->ps.period ? : 1;
622
623 for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
624 periodic_unlink(ehci, i, qh);
625
626 /* update per-qh bandwidth for debugfs */
627 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
628 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
629 : (qh->ps.usecs * 8);
630
631 dev_dbg(&qh->ps.udev->dev,
632 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
633 qh->ps.period,
634 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
635 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
636
637 /* qh->qh_next still "live" to HC */
638 qh->qh_state = QH_STATE_UNLINK;
639 qh->qh_next.ptr = NULL;
640
641 if (ehci->qh_scan_next == qh)
642 ehci->qh_scan_next = list_entry(qh->intr_node.next,
643 struct ehci_qh, intr_node);
644 list_del(&qh->intr_node);
645}
646
647static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
648{
649 if (qh->qh_state != QH_STATE_LINKED ||
650 list_empty(&qh->unlink_node))
651 return;
652
653 list_del_init(&qh->unlink_node);
654
655 /*
656 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
657 * avoiding unnecessary CPU wakeup
658 */
659}
660
661static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
662{
663 /* If the QH isn't linked then there's nothing we can do. */
664 if (qh->qh_state != QH_STATE_LINKED)
665 return;
666
667 /* if the qh is waiting for unlink, cancel it now */
668 cancel_unlink_wait_intr(ehci, qh);
669
670 qh_unlink_periodic(ehci, qh);
671
672 /* Make sure the unlinks are visible before starting the timer */
673 wmb();
674
675 /*
676 * The EHCI spec doesn't say how long it takes the controller to
677 * stop accessing an unlinked interrupt QH. The timer delay is
678 * 9 uframes; presumably that will be long enough.
679 */
680 qh->unlink_cycle = ehci->intr_unlink_cycle;
681
682 /* New entries go at the end of the intr_unlink list */
683 list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
684
685 if (ehci->intr_unlinking)
686 ; /* Avoid recursive calls */
687 else if (ehci->rh_state < EHCI_RH_RUNNING)
688 ehci_handle_intr_unlinks(ehci);
689 else if (ehci->intr_unlink.next == &qh->unlink_node) {
690 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
691 ++ehci->intr_unlink_cycle;
692 }
693}
694
695/*
696 * It is common only one intr URB is scheduled on one qh, and
697 * given complete() is run in tasklet context, introduce a bit
698 * delay to avoid unlink qh too early.
699 */
700static void start_unlink_intr_wait(struct ehci_hcd *ehci,
701 struct ehci_qh *qh)
702{
703 qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
704
705 /* New entries go at the end of the intr_unlink_wait list */
706 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
707
708 if (ehci->rh_state < EHCI_RH_RUNNING)
709 ehci_handle_start_intr_unlinks(ehci);
710 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
711 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
712 ++ehci->intr_unlink_wait_cycle;
713 }
714}
715
716static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
717{
718 struct ehci_qh_hw *hw = qh->hw;
719 int rc;
720
721 qh->qh_state = QH_STATE_IDLE;
722 hw->hw_next = EHCI_LIST_END(ehci);
723
724 if (!list_empty(&qh->qtd_list))
725 qh_completions(ehci, qh);
726
727 /* reschedule QH iff another request is queued */
728 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
729 rc = qh_schedule(ehci, qh);
730 if (rc == 0) {
731 qh_refresh(ehci, qh);
732 qh_link_periodic(ehci, qh);
733 }
734
735 /* An error here likely indicates handshake failure
736 * or no space left in the schedule. Neither fault
737 * should happen often ...
738 *
739 * FIXME kill the now-dysfunctional queued urbs
740 */
741 else {
742 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
743 qh, rc);
744 }
745 }
746
747 /* maybe turn off periodic schedule */
748 --ehci->intr_count;
749 disable_periodic(ehci);
750}
751
752/*-------------------------------------------------------------------------*/
753
754static int check_period(
755 struct ehci_hcd *ehci,
756 unsigned frame,
757 unsigned uframe,
758 unsigned uperiod,
759 unsigned usecs
760) {
761 /* complete split running into next frame?
762 * given FSTN support, we could sometimes check...
763 */
764 if (uframe >= 8)
765 return 0;
766
767 /* convert "usecs we need" to "max already claimed" */
768 usecs = ehci->uframe_periodic_max - usecs;
769
770 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
771 uframe += uperiod) {
772 if (ehci->bandwidth[uframe] > usecs)
773 return 0;
774 }
775
776 /* success! */
777 return 1;
778}
779
780static int check_intr_schedule(
781 struct ehci_hcd *ehci,
782 unsigned frame,
783 unsigned uframe,
784 struct ehci_qh *qh,
785 unsigned *c_maskp,
786 struct ehci_tt *tt
787)
788{
789 int retval = -ENOSPC;
790 u8 mask = 0;
791
792 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
793 goto done;
794
795 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
796 goto done;
797 if (!qh->ps.c_usecs) {
798 retval = 0;
799 *c_maskp = 0;
800 goto done;
801 }
802
803#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
804 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
805 unsigned i;
806
807 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
808 for (i = uframe+2; i < 8 && i <= uframe+4; i++)
809 if (!check_period(ehci, frame, i,
810 qh->ps.bw_uperiod, qh->ps.c_usecs))
811 goto done;
812 else
813 mask |= 1 << i;
814
815 retval = 0;
816
817 *c_maskp = mask;
818 }
819#else
820 /* Make sure this tt's buffer is also available for CSPLITs.
821 * We pessimize a bit; probably the typical full speed case
822 * doesn't need the second CSPLIT.
823 *
824 * NOTE: both SPLIT and CSPLIT could be checked in just
825 * one smart pass...
826 */
827 mask = 0x03 << (uframe + qh->gap_uf);
828 *c_maskp = mask;
829
830 mask |= 1 << uframe;
831 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
832 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
833 qh->ps.bw_uperiod, qh->ps.c_usecs))
834 goto done;
835 if (!check_period(ehci, frame, uframe + qh->gap_uf,
836 qh->ps.bw_uperiod, qh->ps.c_usecs))
837 goto done;
838 retval = 0;
839 }
840#endif
841done:
842 return retval;
843}
844
845/* "first fit" scheduling policy used the first time through,
846 * or when the previous schedule slot can't be re-used.
847 */
848static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
849{
850 int status = 0;
851 unsigned uframe;
852 unsigned c_mask;
853 struct ehci_qh_hw *hw = qh->hw;
854 struct ehci_tt *tt;
855
856 hw->hw_next = EHCI_LIST_END(ehci);
857
858 /* reuse the previous schedule slots, if we can */
859 if (qh->ps.phase != NO_FRAME) {
860 ehci_dbg(ehci, "reused qh %p schedule\n", qh);
861 return 0;
862 }
863
864 uframe = 0;
865 c_mask = 0;
866 tt = find_tt(qh->ps.udev);
867 if (IS_ERR(tt)) {
868 status = PTR_ERR(tt);
869 goto done;
870 }
871 compute_tt_budget(ehci->tt_budget, tt);
872
873 /* else scan the schedule to find a group of slots such that all
874 * uframes have enough periodic bandwidth available.
875 */
876 /* "normal" case, uframing flexible except with splits */
877 if (qh->ps.bw_period) {
878 int i;
879 unsigned frame;
880
881 for (i = qh->ps.bw_period; i > 0; --i) {
882 frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
883 for (uframe = 0; uframe < 8; uframe++) {
884 status = check_intr_schedule(ehci,
885 frame, uframe, qh, &c_mask, tt);
886 if (status == 0)
887 goto got_it;
888 }
889 }
890
891 /* qh->ps.bw_period == 0 means every uframe */
892 } else {
893 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
894 }
895 if (status)
896 goto done;
897
898 got_it:
899 qh->ps.phase = (qh->ps.period ? ehci->random_frame &
900 (qh->ps.period - 1) : 0);
901 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
902 qh->ps.phase_uf = uframe;
903 qh->ps.cs_mask = qh->ps.period ?
904 (c_mask << 8) | (1 << uframe) :
905 QH_SMASK;
906
907 /* reset S-frame and (maybe) C-frame masks */
908 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
909 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
910 reserve_release_intr_bandwidth(ehci, qh, 1);
911
912done:
913 return status;
914}
915
916static int intr_submit(
917 struct ehci_hcd *ehci,
918 struct urb *urb,
919 struct list_head *qtd_list,
920 gfp_t mem_flags
921) {
922 unsigned epnum;
923 unsigned long flags;
924 struct ehci_qh *qh;
925 int status;
926 struct list_head empty;
927
928 /* get endpoint and transfer/schedule data */
929 epnum = urb->ep->desc.bEndpointAddress;
930
931 spin_lock_irqsave(&ehci->lock, flags);
932
933 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
934 status = -ESHUTDOWN;
935 goto done_not_linked;
936 }
937 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
938 if (unlikely(status))
939 goto done_not_linked;
940
941 /* get qh and force any scheduling errors */
942 INIT_LIST_HEAD(&empty);
943 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
944 if (qh == NULL) {
945 status = -ENOMEM;
946 goto done;
947 }
948 if (qh->qh_state == QH_STATE_IDLE) {
949 status = qh_schedule(ehci, qh);
950 if (status)
951 goto done;
952 }
953
954 /* then queue the urb's tds to the qh */
955 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
956 BUG_ON(qh == NULL);
957
958 /* stuff into the periodic schedule */
959 if (qh->qh_state == QH_STATE_IDLE) {
960 qh_refresh(ehci, qh);
961 qh_link_periodic(ehci, qh);
962 } else {
963 /* cancel unlink wait for the qh */
964 cancel_unlink_wait_intr(ehci, qh);
965 }
966
967 /* ... update usbfs periodic stats */
968 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
969
970done:
971 if (unlikely(status))
972 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
973done_not_linked:
974 spin_unlock_irqrestore(&ehci->lock, flags);
975 if (status)
976 qtd_list_free(ehci, urb, qtd_list);
977
978 return status;
979}
980
981static void scan_intr(struct ehci_hcd *ehci)
982{
983 struct ehci_qh *qh;
984
985 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
986 intr_node) {
987
988 /* clean any finished work for this qh */
989 if (!list_empty(&qh->qtd_list)) {
990 int temp;
991
992 /*
993 * Unlinks could happen here; completion reporting
994 * drops the lock. That's why ehci->qh_scan_next
995 * always holds the next qh to scan; if the next qh
996 * gets unlinked then ehci->qh_scan_next is adjusted
997 * in qh_unlink_periodic().
998 */
999 temp = qh_completions(ehci, qh);
1000 if (unlikely(temp))
1001 start_unlink_intr(ehci, qh);
1002 else if (unlikely(list_empty(&qh->qtd_list) &&
1003 qh->qh_state == QH_STATE_LINKED))
1004 start_unlink_intr_wait(ehci, qh);
1005 }
1006 }
1007}
1008
1009/*-------------------------------------------------------------------------*/
1010
1011/* ehci_iso_stream ops work with both ITD and SITD */
1012
1013static struct ehci_iso_stream *
1014iso_stream_alloc(gfp_t mem_flags)
1015{
1016 struct ehci_iso_stream *stream;
1017
1018 stream = kzalloc(sizeof(*stream), mem_flags);
1019 if (likely(stream != NULL)) {
1020 INIT_LIST_HEAD(&stream->td_list);
1021 INIT_LIST_HEAD(&stream->free_list);
1022 stream->next_uframe = NO_FRAME;
1023 stream->ps.phase = NO_FRAME;
1024 }
1025 return stream;
1026}
1027
1028static void
1029iso_stream_init(
1030 struct ehci_hcd *ehci,
1031 struct ehci_iso_stream *stream,
1032 struct urb *urb
1033)
1034{
1035 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1036
1037 struct usb_device *dev = urb->dev;
1038 u32 buf1;
1039 unsigned epnum, maxp;
1040 int is_input;
1041 unsigned tmp;
1042
1043 /*
1044 * this might be a "high bandwidth" highspeed endpoint,
1045 * as encoded in the ep descriptor's wMaxPacket field
1046 */
1047 epnum = usb_pipeendpoint(urb->pipe);
1048 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1049 maxp = usb_endpoint_maxp(&urb->ep->desc);
1050 buf1 = is_input ? 1 << 11 : 0;
1051
1052 /* knows about ITD vs SITD */
1053 if (dev->speed == USB_SPEED_HIGH) {
1054 unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1055
1056 stream->highspeed = 1;
1057
1058 buf1 |= maxp;
1059 maxp *= multi;
1060
1061 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1062 stream->buf1 = cpu_to_hc32(ehci, buf1);
1063 stream->buf2 = cpu_to_hc32(ehci, multi);
1064
1065 /* usbfs wants to report the average usecs per frame tied up
1066 * when transfers on this endpoint are scheduled ...
1067 */
1068 stream->ps.usecs = HS_USECS_ISO(maxp);
1069
1070 /* period for bandwidth allocation */
1071 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1072 1 << (urb->ep->desc.bInterval - 1));
1073
1074 /* Allow urb->interval to override */
1075 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1076
1077 stream->uperiod = urb->interval;
1078 stream->ps.period = urb->interval >> 3;
1079 stream->bandwidth = stream->ps.usecs * 8 /
1080 stream->ps.bw_uperiod;
1081
1082 } else {
1083 u32 addr;
1084 int think_time;
1085 int hs_transfers;
1086
1087 addr = dev->ttport << 24;
1088 if (!ehci_is_TDI(ehci)
1089 || (dev->tt->hub !=
1090 ehci_to_hcd(ehci)->self.root_hub))
1091 addr |= dev->tt->hub->devnum << 16;
1092 addr |= epnum << 8;
1093 addr |= dev->devnum;
1094 stream->ps.usecs = HS_USECS_ISO(maxp);
1095 think_time = dev->tt->think_time;
1096 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1097 dev->speed, is_input, 1, maxp));
1098 hs_transfers = max(1u, (maxp + 187) / 188);
1099 if (is_input) {
1100 u32 tmp;
1101
1102 addr |= 1 << 31;
1103 stream->ps.c_usecs = stream->ps.usecs;
1104 stream->ps.usecs = HS_USECS_ISO(1);
1105 stream->ps.cs_mask = 1;
1106
1107 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1108 tmp = (1 << (hs_transfers + 2)) - 1;
1109 stream->ps.cs_mask |= tmp << (8 + 2);
1110 } else
1111 stream->ps.cs_mask = smask_out[hs_transfers - 1];
1112
1113 /* period for bandwidth allocation */
1114 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1115 1 << (urb->ep->desc.bInterval - 1));
1116
1117 /* Allow urb->interval to override */
1118 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1119 stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1120
1121 stream->ps.period = urb->interval;
1122 stream->uperiod = urb->interval << 3;
1123 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1124 stream->ps.bw_period;
1125
1126 /* stream->splits gets created from cs_mask later */
1127 stream->address = cpu_to_hc32(ehci, addr);
1128 }
1129
1130 stream->ps.udev = dev;
1131 stream->ps.ep = urb->ep;
1132
1133 stream->bEndpointAddress = is_input | epnum;
1134 stream->maxp = maxp;
1135}
1136
1137static struct ehci_iso_stream *
1138iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1139{
1140 unsigned epnum;
1141 struct ehci_iso_stream *stream;
1142 struct usb_host_endpoint *ep;
1143 unsigned long flags;
1144
1145 epnum = usb_pipeendpoint (urb->pipe);
1146 if (usb_pipein(urb->pipe))
1147 ep = urb->dev->ep_in[epnum];
1148 else
1149 ep = urb->dev->ep_out[epnum];
1150
1151 spin_lock_irqsave(&ehci->lock, flags);
1152 stream = ep->hcpriv;
1153
1154 if (unlikely(stream == NULL)) {
1155 stream = iso_stream_alloc(GFP_ATOMIC);
1156 if (likely(stream != NULL)) {
1157 ep->hcpriv = stream;
1158 iso_stream_init(ehci, stream, urb);
1159 }
1160
1161 /* if dev->ep [epnum] is a QH, hw is set */
1162 } else if (unlikely(stream->hw != NULL)) {
1163 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1164 urb->dev->devpath, epnum,
1165 usb_pipein(urb->pipe) ? "in" : "out");
1166 stream = NULL;
1167 }
1168
1169 spin_unlock_irqrestore(&ehci->lock, flags);
1170 return stream;
1171}
1172
1173/*-------------------------------------------------------------------------*/
1174
1175/* ehci_iso_sched ops can be ITD-only or SITD-only */
1176
1177static struct ehci_iso_sched *
1178iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1179{
1180 struct ehci_iso_sched *iso_sched;
1181 int size = sizeof(*iso_sched);
1182
1183 size += packets * sizeof(struct ehci_iso_packet);
1184 iso_sched = kzalloc(size, mem_flags);
1185 if (likely(iso_sched != NULL))
1186 INIT_LIST_HEAD(&iso_sched->td_list);
1187
1188 return iso_sched;
1189}
1190
1191static inline void
1192itd_sched_init(
1193 struct ehci_hcd *ehci,
1194 struct ehci_iso_sched *iso_sched,
1195 struct ehci_iso_stream *stream,
1196 struct urb *urb
1197)
1198{
1199 unsigned i;
1200 dma_addr_t dma = urb->transfer_dma;
1201
1202 /* how many uframes are needed for these transfers */
1203 iso_sched->span = urb->number_of_packets * stream->uperiod;
1204
1205 /* figure out per-uframe itd fields that we'll need later
1206 * when we fit new itds into the schedule.
1207 */
1208 for (i = 0; i < urb->number_of_packets; i++) {
1209 struct ehci_iso_packet *uframe = &iso_sched->packet[i];
1210 unsigned length;
1211 dma_addr_t buf;
1212 u32 trans;
1213
1214 length = urb->iso_frame_desc[i].length;
1215 buf = dma + urb->iso_frame_desc[i].offset;
1216
1217 trans = EHCI_ISOC_ACTIVE;
1218 trans |= buf & 0x0fff;
1219 if (unlikely(((i + 1) == urb->number_of_packets))
1220 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1221 trans |= EHCI_ITD_IOC;
1222 trans |= length << 16;
1223 uframe->transaction = cpu_to_hc32(ehci, trans);
1224
1225 /* might need to cross a buffer page within a uframe */
1226 uframe->bufp = (buf & ~(u64)0x0fff);
1227 buf += length;
1228 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1229 uframe->cross = 1;
1230 }
1231}
1232
1233static void
1234iso_sched_free(
1235 struct ehci_iso_stream *stream,
1236 struct ehci_iso_sched *iso_sched
1237)
1238{
1239 if (!iso_sched)
1240 return;
1241 /* caller must hold ehci->lock! */
1242 list_splice(&iso_sched->td_list, &stream->free_list);
1243 kfree(iso_sched);
1244}
1245
1246static int
1247itd_urb_transaction(
1248 struct ehci_iso_stream *stream,
1249 struct ehci_hcd *ehci,
1250 struct urb *urb,
1251 gfp_t mem_flags
1252)
1253{
1254 struct ehci_itd *itd;
1255 dma_addr_t itd_dma;
1256 int i;
1257 unsigned num_itds;
1258 struct ehci_iso_sched *sched;
1259 unsigned long flags;
1260
1261 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1262 if (unlikely(sched == NULL))
1263 return -ENOMEM;
1264
1265 itd_sched_init(ehci, sched, stream, urb);
1266
1267 if (urb->interval < 8)
1268 num_itds = 1 + (sched->span + 7) / 8;
1269 else
1270 num_itds = urb->number_of_packets;
1271
1272 /* allocate/init ITDs */
1273 spin_lock_irqsave(&ehci->lock, flags);
1274 for (i = 0; i < num_itds; i++) {
1275
1276 /*
1277 * Use iTDs from the free list, but not iTDs that may
1278 * still be in use by the hardware.
1279 */
1280 if (likely(!list_empty(&stream->free_list))) {
1281 itd = list_first_entry(&stream->free_list,
1282 struct ehci_itd, itd_list);
1283 if (itd->frame == ehci->now_frame)
1284 goto alloc_itd;
1285 list_del(&itd->itd_list);
1286 itd_dma = itd->itd_dma;
1287 } else {
1288 alloc_itd:
1289 spin_unlock_irqrestore(&ehci->lock, flags);
1290 itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1291 &itd_dma);
1292 spin_lock_irqsave(&ehci->lock, flags);
1293 if (!itd) {
1294 iso_sched_free(stream, sched);
1295 spin_unlock_irqrestore(&ehci->lock, flags);
1296 return -ENOMEM;
1297 }
1298 }
1299
1300 memset(itd, 0, sizeof(*itd));
1301 itd->itd_dma = itd_dma;
1302 itd->frame = NO_FRAME;
1303 list_add(&itd->itd_list, &sched->td_list);
1304 }
1305 spin_unlock_irqrestore(&ehci->lock, flags);
1306
1307 /* temporarily store schedule info in hcpriv */
1308 urb->hcpriv = sched;
1309 urb->error_count = 0;
1310 return 0;
1311}
1312
1313/*-------------------------------------------------------------------------*/
1314
1315static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1316 struct ehci_iso_stream *stream, int sign)
1317{
1318 unsigned uframe;
1319 unsigned i, j;
1320 unsigned s_mask, c_mask, m;
1321 int usecs = stream->ps.usecs;
1322 int c_usecs = stream->ps.c_usecs;
1323 int tt_usecs = stream->ps.tt_usecs;
1324 struct ehci_tt *tt;
1325
1326 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
1327 return;
1328 uframe = stream->ps.bw_phase << 3;
1329
1330 bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1331
1332 if (sign < 0) { /* Release bandwidth */
1333 usecs = -usecs;
1334 c_usecs = -c_usecs;
1335 tt_usecs = -tt_usecs;
1336 }
1337
1338 if (!stream->splits) { /* High speed */
1339 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1340 i += stream->ps.bw_uperiod)
1341 ehci->bandwidth[i] += usecs;
1342
1343 } else { /* Full speed */
1344 s_mask = stream->ps.cs_mask;
1345 c_mask = s_mask >> 8;
1346
1347 /* NOTE: adjustment needed for frame overflow */
1348 for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1349 i += stream->ps.bw_uperiod) {
1350 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1351 (++j, m <<= 1)) {
1352 if (s_mask & m)
1353 ehci->bandwidth[i+j] += usecs;
1354 else if (c_mask & m)
1355 ehci->bandwidth[i+j] += c_usecs;
1356 }
1357 }
1358
1359 tt = find_tt(stream->ps.udev);
1360 if (sign > 0)
1361 list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1362 else
1363 list_del(&stream->ps.ps_list);
1364
1365 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1366 i += stream->ps.bw_period)
1367 tt->bandwidth[i] += tt_usecs;
1368 }
1369}
1370
1371static inline int
1372itd_slot_ok(
1373 struct ehci_hcd *ehci,
1374 struct ehci_iso_stream *stream,
1375 unsigned uframe
1376)
1377{
1378 unsigned usecs;
1379
1380 /* convert "usecs we need" to "max already claimed" */
1381 usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1382
1383 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1384 uframe += stream->ps.bw_uperiod) {
1385 if (ehci->bandwidth[uframe] > usecs)
1386 return 0;
1387 }
1388 return 1;
1389}
1390
1391static inline int
1392sitd_slot_ok(
1393 struct ehci_hcd *ehci,
1394 struct ehci_iso_stream *stream,
1395 unsigned uframe,
1396 struct ehci_iso_sched *sched,
1397 struct ehci_tt *tt
1398)
1399{
1400 unsigned mask, tmp;
1401 unsigned frame, uf;
1402
1403 mask = stream->ps.cs_mask << (uframe & 7);
1404
1405 /* for OUT, don't wrap SSPLIT into H-microframe 7 */
1406 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1407 return 0;
1408
1409 /* for IN, don't wrap CSPLIT into the next frame */
1410 if (mask & ~0xffff)
1411 return 0;
1412
1413 /* check bandwidth */
1414 uframe &= stream->ps.bw_uperiod - 1;
1415 frame = uframe >> 3;
1416
1417#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1418 /* The tt's fullspeed bus bandwidth must be available.
1419 * tt_available scheduling guarantees 10+% for control/bulk.
1420 */
1421 uf = uframe & 7;
1422 if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1423 return 0;
1424#else
1425 /* tt must be idle for start(s), any gap, and csplit.
1426 * assume scheduling slop leaves 10+% for control/bulk.
1427 */
1428 if (!tt_no_collision(ehci, stream->ps.bw_period,
1429 stream->ps.udev, frame, mask))
1430 return 0;
1431#endif
1432
1433 do {
1434 unsigned max_used;
1435 unsigned i;
1436
1437 /* check starts (OUT uses more than one) */
1438 uf = uframe;
1439 max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1440 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1441 if (ehci->bandwidth[uf] > max_used)
1442 return 0;
1443 }
1444
1445 /* for IN, check CSPLIT */
1446 if (stream->ps.c_usecs) {
1447 max_used = ehci->uframe_periodic_max -
1448 stream->ps.c_usecs;
1449 uf = uframe & ~7;
1450 tmp = 1 << (2+8);
1451 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1452 if ((stream->ps.cs_mask & tmp) == 0)
1453 continue;
1454 if (ehci->bandwidth[uf+i] > max_used)
1455 return 0;
1456 }
1457 }
1458
1459 uframe += stream->ps.bw_uperiod;
1460 } while (uframe < EHCI_BANDWIDTH_SIZE);
1461
1462 stream->ps.cs_mask <<= uframe & 7;
1463 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1464 return 1;
1465}
1466
1467/*
1468 * This scheduler plans almost as far into the future as it has actual
1469 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1470 * "as small as possible" to be cache-friendlier.) That limits the size
1471 * transfers you can stream reliably; avoid more than 64 msec per urb.
1472 * Also avoid queue depths of less than ehci's worst irq latency (affected
1473 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1474 * and other factors); or more than about 230 msec total (for portability,
1475 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1476 */
1477
1478static int
1479iso_stream_schedule(
1480 struct ehci_hcd *ehci,
1481 struct urb *urb,
1482 struct ehci_iso_stream *stream
1483)
1484{
1485 u32 now, base, next, start, period, span, now2;
1486 u32 wrap = 0, skip = 0;
1487 int status = 0;
1488 unsigned mod = ehci->periodic_size << 3;
1489 struct ehci_iso_sched *sched = urb->hcpriv;
1490 bool empty = list_empty(&stream->td_list);
1491 bool new_stream = false;
1492
1493 period = stream->uperiod;
1494 span = sched->span;
1495 if (!stream->highspeed)
1496 span <<= 3;
1497
1498 /* Start a new isochronous stream? */
1499 if (unlikely(empty && !hcd_periodic_completion_in_progress(
1500 ehci_to_hcd(ehci), urb->ep))) {
1501
1502 /* Schedule the endpoint */
1503 if (stream->ps.phase == NO_FRAME) {
1504 int done = 0;
1505 struct ehci_tt *tt = find_tt(stream->ps.udev);
1506
1507 if (IS_ERR(tt)) {
1508 status = PTR_ERR(tt);
1509 goto fail;
1510 }
1511 compute_tt_budget(ehci->tt_budget, tt);
1512
1513 start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1514
1515 /* find a uframe slot with enough bandwidth.
1516 * Early uframes are more precious because full-speed
1517 * iso IN transfers can't use late uframes,
1518 * and therefore they should be allocated last.
1519 */
1520 next = start;
1521 start += period;
1522 do {
1523 start--;
1524 /* check schedule: enough space? */
1525 if (stream->highspeed) {
1526 if (itd_slot_ok(ehci, stream, start))
1527 done = 1;
1528 } else {
1529 if ((start % 8) >= 6)
1530 continue;
1531 if (sitd_slot_ok(ehci, stream, start,
1532 sched, tt))
1533 done = 1;
1534 }
1535 } while (start > next && !done);
1536
1537 /* no room in the schedule */
1538 if (!done) {
1539 ehci_dbg(ehci, "iso sched full %p", urb);
1540 status = -ENOSPC;
1541 goto fail;
1542 }
1543 stream->ps.phase = (start >> 3) &
1544 (stream->ps.period - 1);
1545 stream->ps.bw_phase = stream->ps.phase &
1546 (stream->ps.bw_period - 1);
1547 stream->ps.phase_uf = start & 7;
1548 reserve_release_iso_bandwidth(ehci, stream, 1);
1549 }
1550
1551 /* New stream is already scheduled; use the upcoming slot */
1552 else {
1553 start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1554 }
1555
1556 stream->next_uframe = start;
1557 new_stream = true;
1558 }
1559
1560 now = ehci_read_frame_index(ehci) & (mod - 1);
1561
1562 /* Take the isochronous scheduling threshold into account */
1563 if (ehci->i_thresh)
1564 next = now + ehci->i_thresh; /* uframe cache */
1565 else
1566 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1567
1568 /* If needed, initialize last_iso_frame so that this URB will be seen */
1569 if (ehci->isoc_count == 0)
1570 ehci->last_iso_frame = now >> 3;
1571
1572 /*
1573 * Use ehci->last_iso_frame as the base. There can't be any
1574 * TDs scheduled for earlier than that.
1575 */
1576 base = ehci->last_iso_frame << 3;
1577 next = (next - base) & (mod - 1);
1578 start = (stream->next_uframe - base) & (mod - 1);
1579
1580 if (unlikely(new_stream))
1581 goto do_ASAP;
1582
1583 /*
1584 * Typical case: reuse current schedule, stream may still be active.
1585 * Hopefully there are no gaps from the host falling behind
1586 * (irq delays etc). If there are, the behavior depends on
1587 * whether URB_ISO_ASAP is set.
1588 */
1589 now2 = (now - base) & (mod - 1);
1590
1591 /* Is the schedule about to wrap around? */
1592 if (unlikely(!empty && start < period)) {
1593 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1594 urb, stream->next_uframe, base, period, mod);
1595 status = -EFBIG;
1596 goto fail;
1597 }
1598
1599 /* Is the next packet scheduled after the base time? */
1600 if (likely(!empty || start <= now2 + period)) {
1601
1602 /* URB_ISO_ASAP: make sure that start >= next */
1603 if (unlikely(start < next &&
1604 (urb->transfer_flags & URB_ISO_ASAP)))
1605 goto do_ASAP;
1606
1607 /* Otherwise use start, if it's not in the past */
1608 if (likely(start >= now2))
1609 goto use_start;
1610
1611 /* Otherwise we got an underrun while the queue was empty */
1612 } else {
1613 if (urb->transfer_flags & URB_ISO_ASAP)
1614 goto do_ASAP;
1615 wrap = mod;
1616 now2 += mod;
1617 }
1618
1619 /* How many uframes and packets do we need to skip? */
1620 skip = (now2 - start + period - 1) & -period;
1621 if (skip >= span) { /* Entirely in the past? */
1622 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1623 urb, start + base, span - period, now2 + base,
1624 base);
1625
1626 /* Try to keep the last TD intact for scanning later */
1627 skip = span - period;
1628
1629 /* Will it come before the current scan position? */
1630 if (empty) {
1631 skip = span; /* Skip the entire URB */
1632 status = 1; /* and give it back immediately */
1633 iso_sched_free(stream, sched);
1634 sched = NULL;
1635 }
1636 }
1637 urb->error_count = skip / period;
1638 if (sched)
1639 sched->first_packet = urb->error_count;
1640 goto use_start;
1641
1642 do_ASAP:
1643 /* Use the first slot after "next" */
1644 start = next + ((start - next) & (period - 1));
1645
1646 use_start:
1647 /* Tried to schedule too far into the future? */
1648 if (unlikely(start + span - period >= mod + wrap)) {
1649 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1650 urb, start, span - period, mod + wrap);
1651 status = -EFBIG;
1652 goto fail;
1653 }
1654
1655 start += base;
1656 stream->next_uframe = (start + skip) & (mod - 1);
1657
1658 /* report high speed start in uframes; full speed, in frames */
1659 urb->start_frame = start & (mod - 1);
1660 if (!stream->highspeed)
1661 urb->start_frame >>= 3;
1662 return status;
1663
1664 fail:
1665 iso_sched_free(stream, sched);
1666 urb->hcpriv = NULL;
1667 return status;
1668}
1669
1670/*-------------------------------------------------------------------------*/
1671
1672static inline void
1673itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1674 struct ehci_itd *itd)
1675{
1676 int i;
1677
1678 /* it's been recently zeroed */
1679 itd->hw_next = EHCI_LIST_END(ehci);
1680 itd->hw_bufp[0] = stream->buf0;
1681 itd->hw_bufp[1] = stream->buf1;
1682 itd->hw_bufp[2] = stream->buf2;
1683
1684 for (i = 0; i < 8; i++)
1685 itd->index[i] = -1;
1686
1687 /* All other fields are filled when scheduling */
1688}
1689
1690static inline void
1691itd_patch(
1692 struct ehci_hcd *ehci,
1693 struct ehci_itd *itd,
1694 struct ehci_iso_sched *iso_sched,
1695 unsigned index,
1696 u16 uframe
1697)
1698{
1699 struct ehci_iso_packet *uf = &iso_sched->packet[index];
1700 unsigned pg = itd->pg;
1701
1702 /* BUG_ON(pg == 6 && uf->cross); */
1703
1704 uframe &= 0x07;
1705 itd->index[uframe] = index;
1706
1707 itd->hw_transaction[uframe] = uf->transaction;
1708 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1709 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1710 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1711
1712 /* iso_frame_desc[].offset must be strictly increasing */
1713 if (unlikely(uf->cross)) {
1714 u64 bufp = uf->bufp + 4096;
1715
1716 itd->pg = ++pg;
1717 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1718 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1719 }
1720}
1721
1722static inline void
1723itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1724{
1725 union ehci_shadow *prev = &ehci->pshadow[frame];
1726 __hc32 *hw_p = &ehci->periodic[frame];
1727 union ehci_shadow here = *prev;
1728 __hc32 type = 0;
1729
1730 /* skip any iso nodes which might belong to previous microframes */
1731 while (here.ptr) {
1732 type = Q_NEXT_TYPE(ehci, *hw_p);
1733 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1734 break;
1735 prev = periodic_next_shadow(ehci, prev, type);
1736 hw_p = shadow_next_periodic(ehci, &here, type);
1737 here = *prev;
1738 }
1739
1740 itd->itd_next = here;
1741 itd->hw_next = *hw_p;
1742 prev->itd = itd;
1743 itd->frame = frame;
1744 wmb();
1745 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1746}
1747
1748/* fit urb's itds into the selected schedule slot; activate as needed */
1749static void itd_link_urb(
1750 struct ehci_hcd *ehci,
1751 struct urb *urb,
1752 unsigned mod,
1753 struct ehci_iso_stream *stream
1754)
1755{
1756 int packet;
1757 unsigned next_uframe, uframe, frame;
1758 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1759 struct ehci_itd *itd;
1760
1761 next_uframe = stream->next_uframe & (mod - 1);
1762
1763 if (unlikely(list_empty(&stream->td_list)))
1764 ehci_to_hcd(ehci)->self.bandwidth_allocated
1765 += stream->bandwidth;
1766
1767 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1768 if (ehci->amd_pll_fix == 1)
1769 usb_amd_quirk_pll_disable();
1770 }
1771
1772 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1773
1774 /* fill iTDs uframe by uframe */
1775 for (packet = iso_sched->first_packet, itd = NULL;
1776 packet < urb->number_of_packets;) {
1777 if (itd == NULL) {
1778 /* ASSERT: we have all necessary itds */
1779 /* BUG_ON(list_empty(&iso_sched->td_list)); */
1780
1781 /* ASSERT: no itds for this endpoint in this uframe */
1782
1783 itd = list_entry(iso_sched->td_list.next,
1784 struct ehci_itd, itd_list);
1785 list_move_tail(&itd->itd_list, &stream->td_list);
1786 itd->stream = stream;
1787 itd->urb = urb;
1788 itd_init(ehci, stream, itd);
1789 }
1790
1791 uframe = next_uframe & 0x07;
1792 frame = next_uframe >> 3;
1793
1794 itd_patch(ehci, itd, iso_sched, packet, uframe);
1795
1796 next_uframe += stream->uperiod;
1797 next_uframe &= mod - 1;
1798 packet++;
1799
1800 /* link completed itds into the schedule */
1801 if (((next_uframe >> 3) != frame)
1802 || packet == urb->number_of_packets) {
1803 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1804 itd = NULL;
1805 }
1806 }
1807 stream->next_uframe = next_uframe;
1808
1809 /* don't need that schedule data any more */
1810 iso_sched_free(stream, iso_sched);
1811 urb->hcpriv = stream;
1812
1813 ++ehci->isoc_count;
1814 enable_periodic(ehci);
1815}
1816
1817#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1818
1819/* Process and recycle a completed ITD. Return true iff its urb completed,
1820 * and hence its completion callback probably added things to the hardware
1821 * schedule.
1822 *
1823 * Note that we carefully avoid recycling this descriptor until after any
1824 * completion callback runs, so that it won't be reused quickly. That is,
1825 * assuming (a) no more than two urbs per frame on this endpoint, and also
1826 * (b) only this endpoint's completions submit URBs. It seems some silicon
1827 * corrupts things if you reuse completed descriptors very quickly...
1828 */
1829static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1830{
1831 struct urb *urb = itd->urb;
1832 struct usb_iso_packet_descriptor *desc;
1833 u32 t;
1834 unsigned uframe;
1835 int urb_index = -1;
1836 struct ehci_iso_stream *stream = itd->stream;
1837 struct usb_device *dev;
1838 bool retval = false;
1839
1840 /* for each uframe with a packet */
1841 for (uframe = 0; uframe < 8; uframe++) {
1842 if (likely(itd->index[uframe] == -1))
1843 continue;
1844 urb_index = itd->index[uframe];
1845 desc = &urb->iso_frame_desc[urb_index];
1846
1847 t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1848 itd->hw_transaction[uframe] = 0;
1849
1850 /* report transfer status */
1851 if (unlikely(t & ISO_ERRS)) {
1852 urb->error_count++;
1853 if (t & EHCI_ISOC_BUF_ERR)
1854 desc->status = usb_pipein(urb->pipe)
1855 ? -ENOSR /* hc couldn't read */
1856 : -ECOMM; /* hc couldn't write */
1857 else if (t & EHCI_ISOC_BABBLE)
1858 desc->status = -EOVERFLOW;
1859 else /* (t & EHCI_ISOC_XACTERR) */
1860 desc->status = -EPROTO;
1861
1862 /* HC need not update length with this error */
1863 if (!(t & EHCI_ISOC_BABBLE)) {
1864 desc->actual_length = EHCI_ITD_LENGTH(t);
1865 urb->actual_length += desc->actual_length;
1866 }
1867 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1868 desc->status = 0;
1869 desc->actual_length = EHCI_ITD_LENGTH(t);
1870 urb->actual_length += desc->actual_length;
1871 } else {
1872 /* URB was too late */
1873 urb->error_count++;
1874 }
1875 }
1876
1877 /* handle completion now? */
1878 if (likely((urb_index + 1) != urb->number_of_packets))
1879 goto done;
1880
1881 /*
1882 * ASSERT: it's really the last itd for this urb
1883 * list_for_each_entry (itd, &stream->td_list, itd_list)
1884 * BUG_ON(itd->urb == urb);
1885 */
1886
1887 /* give urb back to the driver; completion often (re)submits */
1888 dev = urb->dev;
1889 ehci_urb_done(ehci, urb, 0);
1890 retval = true;
1891 urb = NULL;
1892
1893 --ehci->isoc_count;
1894 disable_periodic(ehci);
1895
1896 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1897 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1898 if (ehci->amd_pll_fix == 1)
1899 usb_amd_quirk_pll_enable();
1900 }
1901
1902 if (unlikely(list_is_singular(&stream->td_list)))
1903 ehci_to_hcd(ehci)->self.bandwidth_allocated
1904 -= stream->bandwidth;
1905
1906done:
1907 itd->urb = NULL;
1908
1909 /* Add to the end of the free list for later reuse */
1910 list_move_tail(&itd->itd_list, &stream->free_list);
1911
1912 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1913 if (list_empty(&stream->td_list)) {
1914 list_splice_tail_init(&stream->free_list,
1915 &ehci->cached_itd_list);
1916 start_free_itds(ehci);
1917 }
1918
1919 return retval;
1920}
1921
1922/*-------------------------------------------------------------------------*/
1923
1924static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1925 gfp_t mem_flags)
1926{
1927 int status = -EINVAL;
1928 unsigned long flags;
1929 struct ehci_iso_stream *stream;
1930
1931 /* Get iso_stream head */
1932 stream = iso_stream_find(ehci, urb);
1933 if (unlikely(stream == NULL)) {
1934 ehci_dbg(ehci, "can't get iso stream\n");
1935 return -ENOMEM;
1936 }
1937 if (unlikely(urb->interval != stream->uperiod)) {
1938 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1939 stream->uperiod, urb->interval);
1940 goto done;
1941 }
1942
1943#ifdef EHCI_URB_TRACE
1944 ehci_dbg(ehci,
1945 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1946 __func__, urb->dev->devpath, urb,
1947 usb_pipeendpoint(urb->pipe),
1948 usb_pipein(urb->pipe) ? "in" : "out",
1949 urb->transfer_buffer_length,
1950 urb->number_of_packets, urb->interval,
1951 stream);
1952#endif
1953
1954 /* allocate ITDs w/o locking anything */
1955 status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1956 if (unlikely(status < 0)) {
1957 ehci_dbg(ehci, "can't init itds\n");
1958 goto done;
1959 }
1960
1961 /* schedule ... need to lock */
1962 spin_lock_irqsave(&ehci->lock, flags);
1963 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1964 status = -ESHUTDOWN;
1965 goto done_not_linked;
1966 }
1967 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1968 if (unlikely(status))
1969 goto done_not_linked;
1970 status = iso_stream_schedule(ehci, urb, stream);
1971 if (likely(status == 0)) {
1972 itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1973 } else if (status > 0) {
1974 status = 0;
1975 ehci_urb_done(ehci, urb, 0);
1976 } else {
1977 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1978 }
1979 done_not_linked:
1980 spin_unlock_irqrestore(&ehci->lock, flags);
1981 done:
1982 return status;
1983}
1984
1985/*-------------------------------------------------------------------------*/
1986
1987/*
1988 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1989 * TTs in USB 2.0 hubs. These need microframe scheduling.
1990 */
1991
1992static inline void
1993sitd_sched_init(
1994 struct ehci_hcd *ehci,
1995 struct ehci_iso_sched *iso_sched,
1996 struct ehci_iso_stream *stream,
1997 struct urb *urb
1998)
1999{
2000 unsigned i;
2001 dma_addr_t dma = urb->transfer_dma;
2002
2003 /* how many frames are needed for these transfers */
2004 iso_sched->span = urb->number_of_packets * stream->ps.period;
2005
2006 /* figure out per-frame sitd fields that we'll need later
2007 * when we fit new sitds into the schedule.
2008 */
2009 for (i = 0; i < urb->number_of_packets; i++) {
2010 struct ehci_iso_packet *packet = &iso_sched->packet[i];
2011 unsigned length;
2012 dma_addr_t buf;
2013 u32 trans;
2014
2015 length = urb->iso_frame_desc[i].length & 0x03ff;
2016 buf = dma + urb->iso_frame_desc[i].offset;
2017
2018 trans = SITD_STS_ACTIVE;
2019 if (((i + 1) == urb->number_of_packets)
2020 && !(urb->transfer_flags & URB_NO_INTERRUPT))
2021 trans |= SITD_IOC;
2022 trans |= length << 16;
2023 packet->transaction = cpu_to_hc32(ehci, trans);
2024
2025 /* might need to cross a buffer page within a td */
2026 packet->bufp = buf;
2027 packet->buf1 = (buf + length) & ~0x0fff;
2028 if (packet->buf1 != (buf & ~(u64)0x0fff))
2029 packet->cross = 1;
2030
2031 /* OUT uses multiple start-splits */
2032 if (stream->bEndpointAddress & USB_DIR_IN)
2033 continue;
2034 length = (length + 187) / 188;
2035 if (length > 1) /* BEGIN vs ALL */
2036 length |= 1 << 3;
2037 packet->buf1 |= length;
2038 }
2039}
2040
2041static int
2042sitd_urb_transaction(
2043 struct ehci_iso_stream *stream,
2044 struct ehci_hcd *ehci,
2045 struct urb *urb,
2046 gfp_t mem_flags
2047)
2048{
2049 struct ehci_sitd *sitd;
2050 dma_addr_t sitd_dma;
2051 int i;
2052 struct ehci_iso_sched *iso_sched;
2053 unsigned long flags;
2054
2055 iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2056 if (iso_sched == NULL)
2057 return -ENOMEM;
2058
2059 sitd_sched_init(ehci, iso_sched, stream, urb);
2060
2061 /* allocate/init sITDs */
2062 spin_lock_irqsave(&ehci->lock, flags);
2063 for (i = 0; i < urb->number_of_packets; i++) {
2064
2065 /* NOTE: for now, we don't try to handle wraparound cases
2066 * for IN (using sitd->hw_backpointer, like a FSTN), which
2067 * means we never need two sitds for full speed packets.
2068 */
2069
2070 /*
2071 * Use siTDs from the free list, but not siTDs that may
2072 * still be in use by the hardware.
2073 */
2074 if (likely(!list_empty(&stream->free_list))) {
2075 sitd = list_first_entry(&stream->free_list,
2076 struct ehci_sitd, sitd_list);
2077 if (sitd->frame == ehci->now_frame)
2078 goto alloc_sitd;
2079 list_del(&sitd->sitd_list);
2080 sitd_dma = sitd->sitd_dma;
2081 } else {
2082 alloc_sitd:
2083 spin_unlock_irqrestore(&ehci->lock, flags);
2084 sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2085 &sitd_dma);
2086 spin_lock_irqsave(&ehci->lock, flags);
2087 if (!sitd) {
2088 iso_sched_free(stream, iso_sched);
2089 spin_unlock_irqrestore(&ehci->lock, flags);
2090 return -ENOMEM;
2091 }
2092 }
2093
2094 memset(sitd, 0, sizeof(*sitd));
2095 sitd->sitd_dma = sitd_dma;
2096 sitd->frame = NO_FRAME;
2097 list_add(&sitd->sitd_list, &iso_sched->td_list);
2098 }
2099
2100 /* temporarily store schedule info in hcpriv */
2101 urb->hcpriv = iso_sched;
2102 urb->error_count = 0;
2103
2104 spin_unlock_irqrestore(&ehci->lock, flags);
2105 return 0;
2106}
2107
2108/*-------------------------------------------------------------------------*/
2109
2110static inline void
2111sitd_patch(
2112 struct ehci_hcd *ehci,
2113 struct ehci_iso_stream *stream,
2114 struct ehci_sitd *sitd,
2115 struct ehci_iso_sched *iso_sched,
2116 unsigned index
2117)
2118{
2119 struct ehci_iso_packet *uf = &iso_sched->packet[index];
2120 u64 bufp;
2121
2122 sitd->hw_next = EHCI_LIST_END(ehci);
2123 sitd->hw_fullspeed_ep = stream->address;
2124 sitd->hw_uframe = stream->splits;
2125 sitd->hw_results = uf->transaction;
2126 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2127
2128 bufp = uf->bufp;
2129 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2130 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2131
2132 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2133 if (uf->cross)
2134 bufp += 4096;
2135 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2136 sitd->index = index;
2137}
2138
2139static inline void
2140sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2141{
2142 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2143 sitd->sitd_next = ehci->pshadow[frame];
2144 sitd->hw_next = ehci->periodic[frame];
2145 ehci->pshadow[frame].sitd = sitd;
2146 sitd->frame = frame;
2147 wmb();
2148 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2149}
2150
2151/* fit urb's sitds into the selected schedule slot; activate as needed */
2152static void sitd_link_urb(
2153 struct ehci_hcd *ehci,
2154 struct urb *urb,
2155 unsigned mod,
2156 struct ehci_iso_stream *stream
2157)
2158{
2159 int packet;
2160 unsigned next_uframe;
2161 struct ehci_iso_sched *sched = urb->hcpriv;
2162 struct ehci_sitd *sitd;
2163
2164 next_uframe = stream->next_uframe;
2165
2166 if (list_empty(&stream->td_list))
2167 /* usbfs ignores TT bandwidth */
2168 ehci_to_hcd(ehci)->self.bandwidth_allocated
2169 += stream->bandwidth;
2170
2171 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2172 if (ehci->amd_pll_fix == 1)
2173 usb_amd_quirk_pll_disable();
2174 }
2175
2176 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2177
2178 /* fill sITDs frame by frame */
2179 for (packet = sched->first_packet, sitd = NULL;
2180 packet < urb->number_of_packets;
2181 packet++) {
2182
2183 /* ASSERT: we have all necessary sitds */
2184 BUG_ON(list_empty(&sched->td_list));
2185
2186 /* ASSERT: no itds for this endpoint in this frame */
2187
2188 sitd = list_entry(sched->td_list.next,
2189 struct ehci_sitd, sitd_list);
2190 list_move_tail(&sitd->sitd_list, &stream->td_list);
2191 sitd->stream = stream;
2192 sitd->urb = urb;
2193
2194 sitd_patch(ehci, stream, sitd, sched, packet);
2195 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2196 sitd);
2197
2198 next_uframe += stream->uperiod;
2199 }
2200 stream->next_uframe = next_uframe & (mod - 1);
2201
2202 /* don't need that schedule data any more */
2203 iso_sched_free(stream, sched);
2204 urb->hcpriv = stream;
2205
2206 ++ehci->isoc_count;
2207 enable_periodic(ehci);
2208}
2209
2210/*-------------------------------------------------------------------------*/
2211
2212#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2213 | SITD_STS_XACT | SITD_STS_MMF)
2214
2215/* Process and recycle a completed SITD. Return true iff its urb completed,
2216 * and hence its completion callback probably added things to the hardware
2217 * schedule.
2218 *
2219 * Note that we carefully avoid recycling this descriptor until after any
2220 * completion callback runs, so that it won't be reused quickly. That is,
2221 * assuming (a) no more than two urbs per frame on this endpoint, and also
2222 * (b) only this endpoint's completions submit URBs. It seems some silicon
2223 * corrupts things if you reuse completed descriptors very quickly...
2224 */
2225static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2226{
2227 struct urb *urb = sitd->urb;
2228 struct usb_iso_packet_descriptor *desc;
2229 u32 t;
2230 int urb_index;
2231 struct ehci_iso_stream *stream = sitd->stream;
2232 struct usb_device *dev;
2233 bool retval = false;
2234
2235 urb_index = sitd->index;
2236 desc = &urb->iso_frame_desc[urb_index];
2237 t = hc32_to_cpup(ehci, &sitd->hw_results);
2238
2239 /* report transfer status */
2240 if (unlikely(t & SITD_ERRS)) {
2241 urb->error_count++;
2242 if (t & SITD_STS_DBE)
2243 desc->status = usb_pipein(urb->pipe)
2244 ? -ENOSR /* hc couldn't read */
2245 : -ECOMM; /* hc couldn't write */
2246 else if (t & SITD_STS_BABBLE)
2247 desc->status = -EOVERFLOW;
2248 else /* XACT, MMF, etc */
2249 desc->status = -EPROTO;
2250 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2251 /* URB was too late */
2252 urb->error_count++;
2253 } else {
2254 desc->status = 0;
2255 desc->actual_length = desc->length - SITD_LENGTH(t);
2256 urb->actual_length += desc->actual_length;
2257 }
2258
2259 /* handle completion now? */
2260 if ((urb_index + 1) != urb->number_of_packets)
2261 goto done;
2262
2263 /*
2264 * ASSERT: it's really the last sitd for this urb
2265 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2266 * BUG_ON(sitd->urb == urb);
2267 */
2268
2269 /* give urb back to the driver; completion often (re)submits */
2270 dev = urb->dev;
2271 ehci_urb_done(ehci, urb, 0);
2272 retval = true;
2273 urb = NULL;
2274
2275 --ehci->isoc_count;
2276 disable_periodic(ehci);
2277
2278 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2279 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2280 if (ehci->amd_pll_fix == 1)
2281 usb_amd_quirk_pll_enable();
2282 }
2283
2284 if (list_is_singular(&stream->td_list))
2285 ehci_to_hcd(ehci)->self.bandwidth_allocated
2286 -= stream->bandwidth;
2287
2288done:
2289 sitd->urb = NULL;
2290
2291 /* Add to the end of the free list for later reuse */
2292 list_move_tail(&sitd->sitd_list, &stream->free_list);
2293
2294 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2295 if (list_empty(&stream->td_list)) {
2296 list_splice_tail_init(&stream->free_list,
2297 &ehci->cached_sitd_list);
2298 start_free_itds(ehci);
2299 }
2300
2301 return retval;
2302}
2303
2304
2305static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2306 gfp_t mem_flags)
2307{
2308 int status = -EINVAL;
2309 unsigned long flags;
2310 struct ehci_iso_stream *stream;
2311
2312 /* Get iso_stream head */
2313 stream = iso_stream_find(ehci, urb);
2314 if (stream == NULL) {
2315 ehci_dbg(ehci, "can't get iso stream\n");
2316 return -ENOMEM;
2317 }
2318 if (urb->interval != stream->ps.period) {
2319 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2320 stream->ps.period, urb->interval);
2321 goto done;
2322 }
2323
2324#ifdef EHCI_URB_TRACE
2325 ehci_dbg(ehci,
2326 "submit %p dev%s ep%d%s-iso len %d\n",
2327 urb, urb->dev->devpath,
2328 usb_pipeendpoint(urb->pipe),
2329 usb_pipein(urb->pipe) ? "in" : "out",
2330 urb->transfer_buffer_length);
2331#endif
2332
2333 /* allocate SITDs */
2334 status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2335 if (status < 0) {
2336 ehci_dbg(ehci, "can't init sitds\n");
2337 goto done;
2338 }
2339
2340 /* schedule ... need to lock */
2341 spin_lock_irqsave(&ehci->lock, flags);
2342 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2343 status = -ESHUTDOWN;
2344 goto done_not_linked;
2345 }
2346 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2347 if (unlikely(status))
2348 goto done_not_linked;
2349 status = iso_stream_schedule(ehci, urb, stream);
2350 if (likely(status == 0)) {
2351 sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2352 } else if (status > 0) {
2353 status = 0;
2354 ehci_urb_done(ehci, urb, 0);
2355 } else {
2356 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2357 }
2358 done_not_linked:
2359 spin_unlock_irqrestore(&ehci->lock, flags);
2360 done:
2361 return status;
2362}
2363
2364/*-------------------------------------------------------------------------*/
2365
2366static void scan_isoc(struct ehci_hcd *ehci)
2367{
2368 unsigned uf, now_frame, frame;
2369 unsigned fmask = ehci->periodic_size - 1;
2370 bool modified, live;
2371 union ehci_shadow q, *q_p;
2372 __hc32 type, *hw_p;
2373
2374 /*
2375 * When running, scan from last scan point up to "now"
2376 * else clean up by scanning everything that's left.
2377 * Touches as few pages as possible: cache-friendly.
2378 */
2379 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2380 uf = ehci_read_frame_index(ehci);
2381 now_frame = (uf >> 3) & fmask;
2382 live = true;
2383 } else {
2384 now_frame = (ehci->last_iso_frame - 1) & fmask;
2385 live = false;
2386 }
2387 ehci->now_frame = now_frame;
2388
2389 frame = ehci->last_iso_frame;
2390
2391restart:
2392 /* Scan each element in frame's queue for completions */
2393 q_p = &ehci->pshadow[frame];
2394 hw_p = &ehci->periodic[frame];
2395 q.ptr = q_p->ptr;
2396 type = Q_NEXT_TYPE(ehci, *hw_p);
2397 modified = false;
2398
2399 while (q.ptr != NULL) {
2400 switch (hc32_to_cpu(ehci, type)) {
2401 case Q_TYPE_ITD:
2402 /*
2403 * If this ITD is still active, leave it for
2404 * later processing ... check the next entry.
2405 * No need to check for activity unless the
2406 * frame is current.
2407 */
2408 if (frame == now_frame && live) {
2409 rmb();
2410 for (uf = 0; uf < 8; uf++) {
2411 if (q.itd->hw_transaction[uf] &
2412 ITD_ACTIVE(ehci))
2413 break;
2414 }
2415 if (uf < 8) {
2416 q_p = &q.itd->itd_next;
2417 hw_p = &q.itd->hw_next;
2418 type = Q_NEXT_TYPE(ehci,
2419 q.itd->hw_next);
2420 q = *q_p;
2421 break;
2422 }
2423 }
2424
2425 /*
2426 * Take finished ITDs out of the schedule
2427 * and process them: recycle, maybe report
2428 * URB completion. HC won't cache the
2429 * pointer for much longer, if at all.
2430 */
2431 *q_p = q.itd->itd_next;
2432 if (!ehci->use_dummy_qh ||
2433 q.itd->hw_next != EHCI_LIST_END(ehci))
2434 *hw_p = q.itd->hw_next;
2435 else
2436 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2437 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2438 wmb();
2439 modified = itd_complete(ehci, q.itd);
2440 q = *q_p;
2441 break;
2442 case Q_TYPE_SITD:
2443 /*
2444 * If this SITD is still active, leave it for
2445 * later processing ... check the next entry.
2446 * No need to check for activity unless the
2447 * frame is current.
2448 */
2449 if (((frame == now_frame) ||
2450 (((frame + 1) & fmask) == now_frame))
2451 && live
2452 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2453
2454 q_p = &q.sitd->sitd_next;
2455 hw_p = &q.sitd->hw_next;
2456 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2457 q = *q_p;
2458 break;
2459 }
2460
2461 /*
2462 * Take finished SITDs out of the schedule
2463 * and process them: recycle, maybe report
2464 * URB completion.
2465 */
2466 *q_p = q.sitd->sitd_next;
2467 if (!ehci->use_dummy_qh ||
2468 q.sitd->hw_next != EHCI_LIST_END(ehci))
2469 *hw_p = q.sitd->hw_next;
2470 else
2471 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2472 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2473 wmb();
2474 modified = sitd_complete(ehci, q.sitd);
2475 q = *q_p;
2476 break;
2477 default:
2478 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2479 type, frame, q.ptr);
2480 /* BUG(); */
2481 /* FALL THROUGH */
2482 case Q_TYPE_QH:
2483 case Q_TYPE_FSTN:
2484 /* End of the iTDs and siTDs */
2485 q.ptr = NULL;
2486 break;
2487 }
2488
2489 /* Assume completion callbacks modify the queue */
2490 if (unlikely(modified && ehci->isoc_count > 0))
2491 goto restart;
2492 }
2493
2494 /* Stop when we have reached the current frame */
2495 if (frame == now_frame)
2496 return;
2497
2498 /* The last frame may still have active siTDs */
2499 ehci->last_iso_frame = frame;
2500 frame = (frame + 1) & fmask;
2501
2502 goto restart;
2503}
1/*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20/* this file is part of ehci-hcd.c */
21
22/*-------------------------------------------------------------------------*/
23
24/*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37static int ehci_get_frame (struct usb_hcd *hcd);
38
39/*-------------------------------------------------------------------------*/
40
41/*
42 * periodic_next_shadow - return "next" pointer on shadow list
43 * @periodic: host pointer to qh/itd/sitd
44 * @tag: hardware tag for type of this record
45 */
46static union ehci_shadow *
47periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 __hc32 tag)
49{
50 switch (hc32_to_cpu(ehci, tag)) {
51 case Q_TYPE_QH:
52 return &periodic->qh->qh_next;
53 case Q_TYPE_FSTN:
54 return &periodic->fstn->fstn_next;
55 case Q_TYPE_ITD:
56 return &periodic->itd->itd_next;
57 // case Q_TYPE_SITD:
58 default:
59 return &periodic->sitd->sitd_next;
60 }
61}
62
63static __hc32 *
64shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 __hc32 tag)
66{
67 switch (hc32_to_cpu(ehci, tag)) {
68 /* our ehci_shadow.qh is actually software part */
69 case Q_TYPE_QH:
70 return &periodic->qh->hw->hw_next;
71 /* others are hw parts */
72 default:
73 return periodic->hw_next;
74 }
75}
76
77/* caller must hold ehci->lock */
78static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
79{
80 union ehci_shadow *prev_p = &ehci->pshadow[frame];
81 __hc32 *hw_p = &ehci->periodic[frame];
82 union ehci_shadow here = *prev_p;
83
84 /* find predecessor of "ptr"; hw and shadow lists are in sync */
85 while (here.ptr && here.ptr != ptr) {
86 prev_p = periodic_next_shadow(ehci, prev_p,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 hw_p = shadow_next_periodic(ehci, &here,
89 Q_NEXT_TYPE(ehci, *hw_p));
90 here = *prev_p;
91 }
92 /* an interrupt entry (at list end) could have been shared */
93 if (!here.ptr)
94 return;
95
96 /* update shadow and hardware lists ... the old "next" pointers
97 * from ptr may still be in use, the caller updates them.
98 */
99 *prev_p = *periodic_next_shadow(ehci, &here,
100 Q_NEXT_TYPE(ehci, *hw_p));
101
102 if (!ehci->use_dummy_qh ||
103 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
104 != EHCI_LIST_END(ehci))
105 *hw_p = *shadow_next_periodic(ehci, &here,
106 Q_NEXT_TYPE(ehci, *hw_p));
107 else
108 *hw_p = ehci->dummy->qh_dma;
109}
110
111/* how many of the uframe's 125 usecs are allocated? */
112static unsigned short
113periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
114{
115 __hc32 *hw_p = &ehci->periodic [frame];
116 union ehci_shadow *q = &ehci->pshadow [frame];
117 unsigned usecs = 0;
118 struct ehci_qh_hw *hw;
119
120 while (q->ptr) {
121 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
122 case Q_TYPE_QH:
123 hw = q->qh->hw;
124 /* is it in the S-mask? */
125 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
126 usecs += q->qh->usecs;
127 /* ... or C-mask? */
128 if (hw->hw_info2 & cpu_to_hc32(ehci,
129 1 << (8 + uframe)))
130 usecs += q->qh->c_usecs;
131 hw_p = &hw->hw_next;
132 q = &q->qh->qh_next;
133 break;
134 // case Q_TYPE_FSTN:
135 default:
136 /* for "save place" FSTNs, count the relevant INTR
137 * bandwidth from the previous frame
138 */
139 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
140 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
141 }
142 hw_p = &q->fstn->hw_next;
143 q = &q->fstn->fstn_next;
144 break;
145 case Q_TYPE_ITD:
146 if (q->itd->hw_transaction[uframe])
147 usecs += q->itd->stream->usecs;
148 hw_p = &q->itd->hw_next;
149 q = &q->itd->itd_next;
150 break;
151 case Q_TYPE_SITD:
152 /* is it in the S-mask? (count SPLIT, DATA) */
153 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
154 1 << uframe)) {
155 if (q->sitd->hw_fullspeed_ep &
156 cpu_to_hc32(ehci, 1<<31))
157 usecs += q->sitd->stream->usecs;
158 else /* worst case for OUT start-split */
159 usecs += HS_USECS_ISO (188);
160 }
161
162 /* ... C-mask? (count CSPLIT, DATA) */
163 if (q->sitd->hw_uframe &
164 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
165 /* worst case for IN complete-split */
166 usecs += q->sitd->stream->c_usecs;
167 }
168
169 hw_p = &q->sitd->hw_next;
170 q = &q->sitd->sitd_next;
171 break;
172 }
173 }
174#ifdef DEBUG
175 if (usecs > ehci->uframe_periodic_max)
176 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
177 frame * 8 + uframe, usecs);
178#endif
179 return usecs;
180}
181
182/*-------------------------------------------------------------------------*/
183
184static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
185{
186 if (!dev1->tt || !dev2->tt)
187 return 0;
188 if (dev1->tt != dev2->tt)
189 return 0;
190 if (dev1->tt->multi)
191 return dev1->ttport == dev2->ttport;
192 else
193 return 1;
194}
195
196#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
197
198/* Which uframe does the low/fullspeed transfer start in?
199 *
200 * The parameter is the mask of ssplits in "H-frame" terms
201 * and this returns the transfer start uframe in "B-frame" terms,
202 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
203 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
204 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
205 */
206static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
207{
208 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
209 if (!smask) {
210 ehci_err(ehci, "invalid empty smask!\n");
211 /* uframe 7 can't have bw so this will indicate failure */
212 return 7;
213 }
214 return ffs(smask) - 1;
215}
216
217static const unsigned char
218max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
219
220/* carryover low/fullspeed bandwidth that crosses uframe boundries */
221static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
222{
223 int i;
224 for (i=0; i<7; i++) {
225 if (max_tt_usecs[i] < tt_usecs[i]) {
226 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
227 tt_usecs[i] = max_tt_usecs[i];
228 }
229 }
230}
231
232/* How many of the tt's periodic downstream 1000 usecs are allocated?
233 *
234 * While this measures the bandwidth in terms of usecs/uframe,
235 * the low/fullspeed bus has no notion of uframes, so any particular
236 * low/fullspeed transfer can "carry over" from one uframe to the next,
237 * since the TT just performs downstream transfers in sequence.
238 *
239 * For example two separate 100 usec transfers can start in the same uframe,
240 * and the second one would "carry over" 75 usecs into the next uframe.
241 */
242static void
243periodic_tt_usecs (
244 struct ehci_hcd *ehci,
245 struct usb_device *dev,
246 unsigned frame,
247 unsigned short tt_usecs[8]
248)
249{
250 __hc32 *hw_p = &ehci->periodic [frame];
251 union ehci_shadow *q = &ehci->pshadow [frame];
252 unsigned char uf;
253
254 memset(tt_usecs, 0, 16);
255
256 while (q->ptr) {
257 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
258 case Q_TYPE_ITD:
259 hw_p = &q->itd->hw_next;
260 q = &q->itd->itd_next;
261 continue;
262 case Q_TYPE_QH:
263 if (same_tt(dev, q->qh->dev)) {
264 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
265 tt_usecs[uf] += q->qh->tt_usecs;
266 }
267 hw_p = &q->qh->hw->hw_next;
268 q = &q->qh->qh_next;
269 continue;
270 case Q_TYPE_SITD:
271 if (same_tt(dev, q->sitd->urb->dev)) {
272 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
273 tt_usecs[uf] += q->sitd->stream->tt_usecs;
274 }
275 hw_p = &q->sitd->hw_next;
276 q = &q->sitd->sitd_next;
277 continue;
278 // case Q_TYPE_FSTN:
279 default:
280 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
281 frame);
282 hw_p = &q->fstn->hw_next;
283 q = &q->fstn->fstn_next;
284 }
285 }
286
287 carryover_tt_bandwidth(tt_usecs);
288
289 if (max_tt_usecs[7] < tt_usecs[7])
290 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
291 frame, tt_usecs[7] - max_tt_usecs[7]);
292}
293
294/*
295 * Return true if the device's tt's downstream bus is available for a
296 * periodic transfer of the specified length (usecs), starting at the
297 * specified frame/uframe. Note that (as summarized in section 11.19
298 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
299 * uframe.
300 *
301 * The uframe parameter is when the fullspeed/lowspeed transfer
302 * should be executed in "B-frame" terms, which is the same as the
303 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
304 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
305 * See the EHCI spec sec 4.5 and fig 4.7.
306 *
307 * This checks if the full/lowspeed bus, at the specified starting uframe,
308 * has the specified bandwidth available, according to rules listed
309 * in USB 2.0 spec section 11.18.1 fig 11-60.
310 *
311 * This does not check if the transfer would exceed the max ssplit
312 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
313 * since proper scheduling limits ssplits to less than 16 per uframe.
314 */
315static int tt_available (
316 struct ehci_hcd *ehci,
317 unsigned period,
318 struct usb_device *dev,
319 unsigned frame,
320 unsigned uframe,
321 u16 usecs
322)
323{
324 if ((period == 0) || (uframe >= 7)) /* error */
325 return 0;
326
327 for (; frame < ehci->periodic_size; frame += period) {
328 unsigned short tt_usecs[8];
329
330 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
331
332 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
333 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
334 frame, usecs, uframe,
335 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
336 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
337
338 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
339 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
340 frame, uframe);
341 return 0;
342 }
343
344 /* special case for isoc transfers larger than 125us:
345 * the first and each subsequent fully used uframe
346 * must be empty, so as to not illegally delay
347 * already scheduled transactions
348 */
349 if (125 < usecs) {
350 int ufs = (usecs / 125);
351 int i;
352 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
353 if (0 < tt_usecs[i]) {
354 ehci_vdbg(ehci,
355 "multi-uframe xfer can't fit "
356 "in frame %d uframe %d\n",
357 frame, i);
358 return 0;
359 }
360 }
361
362 tt_usecs[uframe] += usecs;
363
364 carryover_tt_bandwidth(tt_usecs);
365
366 /* fail if the carryover pushed bw past the last uframe's limit */
367 if (max_tt_usecs[7] < tt_usecs[7]) {
368 ehci_vdbg(ehci,
369 "tt unavailable usecs %d frame %d uframe %d\n",
370 usecs, frame, uframe);
371 return 0;
372 }
373 }
374
375 return 1;
376}
377
378#else
379
380/* return true iff the device's transaction translator is available
381 * for a periodic transfer starting at the specified frame, using
382 * all the uframes in the mask.
383 */
384static int tt_no_collision (
385 struct ehci_hcd *ehci,
386 unsigned period,
387 struct usb_device *dev,
388 unsigned frame,
389 u32 uf_mask
390)
391{
392 if (period == 0) /* error */
393 return 0;
394
395 /* note bandwidth wastage: split never follows csplit
396 * (different dev or endpoint) until the next uframe.
397 * calling convention doesn't make that distinction.
398 */
399 for (; frame < ehci->periodic_size; frame += period) {
400 union ehci_shadow here;
401 __hc32 type;
402 struct ehci_qh_hw *hw;
403
404 here = ehci->pshadow [frame];
405 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
406 while (here.ptr) {
407 switch (hc32_to_cpu(ehci, type)) {
408 case Q_TYPE_ITD:
409 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
410 here = here.itd->itd_next;
411 continue;
412 case Q_TYPE_QH:
413 hw = here.qh->hw;
414 if (same_tt (dev, here.qh->dev)) {
415 u32 mask;
416
417 mask = hc32_to_cpu(ehci,
418 hw->hw_info2);
419 /* "knows" no gap is needed */
420 mask |= mask >> 8;
421 if (mask & uf_mask)
422 break;
423 }
424 type = Q_NEXT_TYPE(ehci, hw->hw_next);
425 here = here.qh->qh_next;
426 continue;
427 case Q_TYPE_SITD:
428 if (same_tt (dev, here.sitd->urb->dev)) {
429 u16 mask;
430
431 mask = hc32_to_cpu(ehci, here.sitd
432 ->hw_uframe);
433 /* FIXME assumes no gap for IN! */
434 mask |= mask >> 8;
435 if (mask & uf_mask)
436 break;
437 }
438 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
439 here = here.sitd->sitd_next;
440 continue;
441 // case Q_TYPE_FSTN:
442 default:
443 ehci_dbg (ehci,
444 "periodic frame %d bogus type %d\n",
445 frame, type);
446 }
447
448 /* collision or error */
449 return 0;
450 }
451 }
452
453 /* no collision */
454 return 1;
455}
456
457#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
458
459/*-------------------------------------------------------------------------*/
460
461static int enable_periodic (struct ehci_hcd *ehci)
462{
463 u32 cmd;
464 int status;
465
466 if (ehci->periodic_sched++)
467 return 0;
468
469 /* did clearing PSE did take effect yet?
470 * takes effect only at frame boundaries...
471 */
472 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
473 STS_PSS, 0, 9 * 125);
474 if (status) {
475 usb_hc_died(ehci_to_hcd(ehci));
476 return status;
477 }
478
479 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
480 ehci_writel(ehci, cmd, &ehci->regs->command);
481 /* posted write ... PSS happens later */
482 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
483
484 /* make sure ehci_work scans these */
485 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
486 % (ehci->periodic_size << 3);
487 if (unlikely(ehci->broken_periodic))
488 ehci->last_periodic_enable = ktime_get_real();
489 return 0;
490}
491
492static int disable_periodic (struct ehci_hcd *ehci)
493{
494 u32 cmd;
495 int status;
496
497 if (--ehci->periodic_sched)
498 return 0;
499
500 if (unlikely(ehci->broken_periodic)) {
501 /* delay experimentally determined */
502 ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
503 ktime_t now = ktime_get_real();
504 s64 delay = ktime_us_delta(safe, now);
505
506 if (unlikely(delay > 0))
507 udelay(delay);
508 }
509
510 /* did setting PSE not take effect yet?
511 * takes effect only at frame boundaries...
512 */
513 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
514 STS_PSS, STS_PSS, 9 * 125);
515 if (status) {
516 usb_hc_died(ehci_to_hcd(ehci));
517 return status;
518 }
519
520 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
521 ehci_writel(ehci, cmd, &ehci->regs->command);
522 /* posted write ... */
523
524 free_cached_lists(ehci);
525
526 ehci->next_uframe = -1;
527 return 0;
528}
529
530/*-------------------------------------------------------------------------*/
531
532/* periodic schedule slots have iso tds (normal or split) first, then a
533 * sparse tree for active interrupt transfers.
534 *
535 * this just links in a qh; caller guarantees uframe masks are set right.
536 * no FSTN support (yet; ehci 0.96+)
537 */
538static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
539{
540 unsigned i;
541 unsigned period = qh->period;
542
543 dev_dbg (&qh->dev->dev,
544 "link qh%d-%04x/%p start %d [%d/%d us]\n",
545 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
546 & (QH_CMASK | QH_SMASK),
547 qh, qh->start, qh->usecs, qh->c_usecs);
548
549 /* high bandwidth, or otherwise every microframe */
550 if (period == 0)
551 period = 1;
552
553 for (i = qh->start; i < ehci->periodic_size; i += period) {
554 union ehci_shadow *prev = &ehci->pshadow[i];
555 __hc32 *hw_p = &ehci->periodic[i];
556 union ehci_shadow here = *prev;
557 __hc32 type = 0;
558
559 /* skip the iso nodes at list head */
560 while (here.ptr) {
561 type = Q_NEXT_TYPE(ehci, *hw_p);
562 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
563 break;
564 prev = periodic_next_shadow(ehci, prev, type);
565 hw_p = shadow_next_periodic(ehci, &here, type);
566 here = *prev;
567 }
568
569 /* sorting each branch by period (slow-->fast)
570 * enables sharing interior tree nodes
571 */
572 while (here.ptr && qh != here.qh) {
573 if (qh->period > here.qh->period)
574 break;
575 prev = &here.qh->qh_next;
576 hw_p = &here.qh->hw->hw_next;
577 here = *prev;
578 }
579 /* link in this qh, unless some earlier pass did that */
580 if (qh != here.qh) {
581 qh->qh_next = here;
582 if (here.qh)
583 qh->hw->hw_next = *hw_p;
584 wmb ();
585 prev->qh = qh;
586 *hw_p = QH_NEXT (ehci, qh->qh_dma);
587 }
588 }
589 qh->qh_state = QH_STATE_LINKED;
590 qh->xacterrs = 0;
591 qh_get (qh);
592
593 /* update per-qh bandwidth for usbfs */
594 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
595 ? ((qh->usecs + qh->c_usecs) / qh->period)
596 : (qh->usecs * 8);
597
598 /* maybe enable periodic schedule processing */
599 return enable_periodic(ehci);
600}
601
602static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
603{
604 unsigned i;
605 unsigned period;
606
607 // FIXME:
608 // IF this isn't high speed
609 // and this qh is active in the current uframe
610 // (and overlay token SplitXstate is false?)
611 // THEN
612 // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
613
614 /* high bandwidth, or otherwise part of every microframe */
615 if ((period = qh->period) == 0)
616 period = 1;
617
618 for (i = qh->start; i < ehci->periodic_size; i += period)
619 periodic_unlink (ehci, i, qh);
620
621 /* update per-qh bandwidth for usbfs */
622 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
623 ? ((qh->usecs + qh->c_usecs) / qh->period)
624 : (qh->usecs * 8);
625
626 dev_dbg (&qh->dev->dev,
627 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
628 qh->period,
629 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
630 qh, qh->start, qh->usecs, qh->c_usecs);
631
632 /* qh->qh_next still "live" to HC */
633 qh->qh_state = QH_STATE_UNLINK;
634 qh->qh_next.ptr = NULL;
635 qh_put (qh);
636
637 /* maybe turn off periodic schedule */
638 return disable_periodic(ehci);
639}
640
641static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
642{
643 unsigned wait;
644 struct ehci_qh_hw *hw = qh->hw;
645 int rc;
646
647 /* If the QH isn't linked then there's nothing we can do
648 * unless we were called during a giveback, in which case
649 * qh_completions() has to deal with it.
650 */
651 if (qh->qh_state != QH_STATE_LINKED) {
652 if (qh->qh_state == QH_STATE_COMPLETING)
653 qh->needs_rescan = 1;
654 return;
655 }
656
657 qh_unlink_periodic (ehci, qh);
658
659 /* simple/paranoid: always delay, expecting the HC needs to read
660 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
661 * expect khubd to clean up after any CSPLITs we won't issue.
662 * active high speed queues may need bigger delays...
663 */
664 if (list_empty (&qh->qtd_list)
665 || (cpu_to_hc32(ehci, QH_CMASK)
666 & hw->hw_info2) != 0)
667 wait = 2;
668 else
669 wait = 55; /* worst case: 3 * 1024 */
670
671 udelay (wait);
672 qh->qh_state = QH_STATE_IDLE;
673 hw->hw_next = EHCI_LIST_END(ehci);
674 wmb ();
675
676 qh_completions(ehci, qh);
677
678 /* reschedule QH iff another request is queued */
679 if (!list_empty(&qh->qtd_list) &&
680 HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
681 rc = qh_schedule(ehci, qh);
682
683 /* An error here likely indicates handshake failure
684 * or no space left in the schedule. Neither fault
685 * should happen often ...
686 *
687 * FIXME kill the now-dysfunctional queued urbs
688 */
689 if (rc != 0)
690 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
691 qh, rc);
692 }
693}
694
695/*-------------------------------------------------------------------------*/
696
697static int check_period (
698 struct ehci_hcd *ehci,
699 unsigned frame,
700 unsigned uframe,
701 unsigned period,
702 unsigned usecs
703) {
704 int claimed;
705
706 /* complete split running into next frame?
707 * given FSTN support, we could sometimes check...
708 */
709 if (uframe >= 8)
710 return 0;
711
712 /* convert "usecs we need" to "max already claimed" */
713 usecs = ehci->uframe_periodic_max - usecs;
714
715 /* we "know" 2 and 4 uframe intervals were rejected; so
716 * for period 0, check _every_ microframe in the schedule.
717 */
718 if (unlikely (period == 0)) {
719 do {
720 for (uframe = 0; uframe < 7; uframe++) {
721 claimed = periodic_usecs (ehci, frame, uframe);
722 if (claimed > usecs)
723 return 0;
724 }
725 } while ((frame += 1) < ehci->periodic_size);
726
727 /* just check the specified uframe, at that period */
728 } else {
729 do {
730 claimed = periodic_usecs (ehci, frame, uframe);
731 if (claimed > usecs)
732 return 0;
733 } while ((frame += period) < ehci->periodic_size);
734 }
735
736 // success!
737 return 1;
738}
739
740static int check_intr_schedule (
741 struct ehci_hcd *ehci,
742 unsigned frame,
743 unsigned uframe,
744 const struct ehci_qh *qh,
745 __hc32 *c_maskp
746)
747{
748 int retval = -ENOSPC;
749 u8 mask = 0;
750
751 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
752 goto done;
753
754 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
755 goto done;
756 if (!qh->c_usecs) {
757 retval = 0;
758 *c_maskp = 0;
759 goto done;
760 }
761
762#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
763 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
764 qh->tt_usecs)) {
765 unsigned i;
766
767 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
768 for (i=uframe+1; i<8 && i<uframe+4; i++)
769 if (!check_period (ehci, frame, i,
770 qh->period, qh->c_usecs))
771 goto done;
772 else
773 mask |= 1 << i;
774
775 retval = 0;
776
777 *c_maskp = cpu_to_hc32(ehci, mask << 8);
778 }
779#else
780 /* Make sure this tt's buffer is also available for CSPLITs.
781 * We pessimize a bit; probably the typical full speed case
782 * doesn't need the second CSPLIT.
783 *
784 * NOTE: both SPLIT and CSPLIT could be checked in just
785 * one smart pass...
786 */
787 mask = 0x03 << (uframe + qh->gap_uf);
788 *c_maskp = cpu_to_hc32(ehci, mask << 8);
789
790 mask |= 1 << uframe;
791 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
792 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
793 qh->period, qh->c_usecs))
794 goto done;
795 if (!check_period (ehci, frame, uframe + qh->gap_uf,
796 qh->period, qh->c_usecs))
797 goto done;
798 retval = 0;
799 }
800#endif
801done:
802 return retval;
803}
804
805/* "first fit" scheduling policy used the first time through,
806 * or when the previous schedule slot can't be re-used.
807 */
808static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
809{
810 int status;
811 unsigned uframe;
812 __hc32 c_mask;
813 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
814 struct ehci_qh_hw *hw = qh->hw;
815
816 qh_refresh(ehci, qh);
817 hw->hw_next = EHCI_LIST_END(ehci);
818 frame = qh->start;
819
820 /* reuse the previous schedule slots, if we can */
821 if (frame < qh->period) {
822 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
823 status = check_intr_schedule (ehci, frame, --uframe,
824 qh, &c_mask);
825 } else {
826 uframe = 0;
827 c_mask = 0;
828 status = -ENOSPC;
829 }
830
831 /* else scan the schedule to find a group of slots such that all
832 * uframes have enough periodic bandwidth available.
833 */
834 if (status) {
835 /* "normal" case, uframing flexible except with splits */
836 if (qh->period) {
837 int i;
838
839 for (i = qh->period; status && i > 0; --i) {
840 frame = ++ehci->random_frame % qh->period;
841 for (uframe = 0; uframe < 8; uframe++) {
842 status = check_intr_schedule (ehci,
843 frame, uframe, qh,
844 &c_mask);
845 if (status == 0)
846 break;
847 }
848 }
849
850 /* qh->period == 0 means every uframe */
851 } else {
852 frame = 0;
853 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
854 }
855 if (status)
856 goto done;
857 qh->start = frame;
858
859 /* reset S-frame and (maybe) C-frame masks */
860 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
861 hw->hw_info2 |= qh->period
862 ? cpu_to_hc32(ehci, 1 << uframe)
863 : cpu_to_hc32(ehci, QH_SMASK);
864 hw->hw_info2 |= c_mask;
865 } else
866 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
867
868 /* stuff into the periodic schedule */
869 status = qh_link_periodic (ehci, qh);
870done:
871 return status;
872}
873
874static int intr_submit (
875 struct ehci_hcd *ehci,
876 struct urb *urb,
877 struct list_head *qtd_list,
878 gfp_t mem_flags
879) {
880 unsigned epnum;
881 unsigned long flags;
882 struct ehci_qh *qh;
883 int status;
884 struct list_head empty;
885
886 /* get endpoint and transfer/schedule data */
887 epnum = urb->ep->desc.bEndpointAddress;
888
889 spin_lock_irqsave (&ehci->lock, flags);
890
891 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
892 status = -ESHUTDOWN;
893 goto done_not_linked;
894 }
895 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
896 if (unlikely(status))
897 goto done_not_linked;
898
899 /* get qh and force any scheduling errors */
900 INIT_LIST_HEAD (&empty);
901 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
902 if (qh == NULL) {
903 status = -ENOMEM;
904 goto done;
905 }
906 if (qh->qh_state == QH_STATE_IDLE) {
907 if ((status = qh_schedule (ehci, qh)) != 0)
908 goto done;
909 }
910
911 /* then queue the urb's tds to the qh */
912 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
913 BUG_ON (qh == NULL);
914
915 /* ... update usbfs periodic stats */
916 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
917
918done:
919 if (unlikely(status))
920 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
921done_not_linked:
922 spin_unlock_irqrestore (&ehci->lock, flags);
923 if (status)
924 qtd_list_free (ehci, urb, qtd_list);
925
926 return status;
927}
928
929/*-------------------------------------------------------------------------*/
930
931/* ehci_iso_stream ops work with both ITD and SITD */
932
933static struct ehci_iso_stream *
934iso_stream_alloc (gfp_t mem_flags)
935{
936 struct ehci_iso_stream *stream;
937
938 stream = kzalloc(sizeof *stream, mem_flags);
939 if (likely (stream != NULL)) {
940 INIT_LIST_HEAD(&stream->td_list);
941 INIT_LIST_HEAD(&stream->free_list);
942 stream->next_uframe = -1;
943 stream->refcount = 1;
944 }
945 return stream;
946}
947
948static void
949iso_stream_init (
950 struct ehci_hcd *ehci,
951 struct ehci_iso_stream *stream,
952 struct usb_device *dev,
953 int pipe,
954 unsigned interval
955)
956{
957 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
958
959 u32 buf1;
960 unsigned epnum, maxp;
961 int is_input;
962 long bandwidth;
963
964 /*
965 * this might be a "high bandwidth" highspeed endpoint,
966 * as encoded in the ep descriptor's wMaxPacket field
967 */
968 epnum = usb_pipeendpoint (pipe);
969 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
970 maxp = usb_maxpacket(dev, pipe, !is_input);
971 if (is_input) {
972 buf1 = (1 << 11);
973 } else {
974 buf1 = 0;
975 }
976
977 /* knows about ITD vs SITD */
978 if (dev->speed == USB_SPEED_HIGH) {
979 unsigned multi = hb_mult(maxp);
980
981 stream->highspeed = 1;
982
983 maxp = max_packet(maxp);
984 buf1 |= maxp;
985 maxp *= multi;
986
987 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
988 stream->buf1 = cpu_to_hc32(ehci, buf1);
989 stream->buf2 = cpu_to_hc32(ehci, multi);
990
991 /* usbfs wants to report the average usecs per frame tied up
992 * when transfers on this endpoint are scheduled ...
993 */
994 stream->usecs = HS_USECS_ISO (maxp);
995 bandwidth = stream->usecs * 8;
996 bandwidth /= interval;
997
998 } else {
999 u32 addr;
1000 int think_time;
1001 int hs_transfers;
1002
1003 addr = dev->ttport << 24;
1004 if (!ehci_is_TDI(ehci)
1005 || (dev->tt->hub !=
1006 ehci_to_hcd(ehci)->self.root_hub))
1007 addr |= dev->tt->hub->devnum << 16;
1008 addr |= epnum << 8;
1009 addr |= dev->devnum;
1010 stream->usecs = HS_USECS_ISO (maxp);
1011 think_time = dev->tt ? dev->tt->think_time : 0;
1012 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1013 dev->speed, is_input, 1, maxp));
1014 hs_transfers = max (1u, (maxp + 187) / 188);
1015 if (is_input) {
1016 u32 tmp;
1017
1018 addr |= 1 << 31;
1019 stream->c_usecs = stream->usecs;
1020 stream->usecs = HS_USECS_ISO (1);
1021 stream->raw_mask = 1;
1022
1023 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1024 tmp = (1 << (hs_transfers + 2)) - 1;
1025 stream->raw_mask |= tmp << (8 + 2);
1026 } else
1027 stream->raw_mask = smask_out [hs_transfers - 1];
1028 bandwidth = stream->usecs + stream->c_usecs;
1029 bandwidth /= interval << 3;
1030
1031 /* stream->splits gets created from raw_mask later */
1032 stream->address = cpu_to_hc32(ehci, addr);
1033 }
1034 stream->bandwidth = bandwidth;
1035
1036 stream->udev = dev;
1037
1038 stream->bEndpointAddress = is_input | epnum;
1039 stream->interval = interval;
1040 stream->maxp = maxp;
1041}
1042
1043static void
1044iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1045{
1046 stream->refcount--;
1047
1048 /* free whenever just a dev->ep reference remains.
1049 * not like a QH -- no persistent state (toggle, halt)
1050 */
1051 if (stream->refcount == 1) {
1052 // BUG_ON (!list_empty(&stream->td_list));
1053
1054 while (!list_empty (&stream->free_list)) {
1055 struct list_head *entry;
1056
1057 entry = stream->free_list.next;
1058 list_del (entry);
1059
1060 /* knows about ITD vs SITD */
1061 if (stream->highspeed) {
1062 struct ehci_itd *itd;
1063
1064 itd = list_entry (entry, struct ehci_itd,
1065 itd_list);
1066 dma_pool_free (ehci->itd_pool, itd,
1067 itd->itd_dma);
1068 } else {
1069 struct ehci_sitd *sitd;
1070
1071 sitd = list_entry (entry, struct ehci_sitd,
1072 sitd_list);
1073 dma_pool_free (ehci->sitd_pool, sitd,
1074 sitd->sitd_dma);
1075 }
1076 }
1077
1078 stream->bEndpointAddress &= 0x0f;
1079 if (stream->ep)
1080 stream->ep->hcpriv = NULL;
1081
1082 kfree(stream);
1083 }
1084}
1085
1086static inline struct ehci_iso_stream *
1087iso_stream_get (struct ehci_iso_stream *stream)
1088{
1089 if (likely (stream != NULL))
1090 stream->refcount++;
1091 return stream;
1092}
1093
1094static struct ehci_iso_stream *
1095iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1096{
1097 unsigned epnum;
1098 struct ehci_iso_stream *stream;
1099 struct usb_host_endpoint *ep;
1100 unsigned long flags;
1101
1102 epnum = usb_pipeendpoint (urb->pipe);
1103 if (usb_pipein(urb->pipe))
1104 ep = urb->dev->ep_in[epnum];
1105 else
1106 ep = urb->dev->ep_out[epnum];
1107
1108 spin_lock_irqsave (&ehci->lock, flags);
1109 stream = ep->hcpriv;
1110
1111 if (unlikely (stream == NULL)) {
1112 stream = iso_stream_alloc(GFP_ATOMIC);
1113 if (likely (stream != NULL)) {
1114 /* dev->ep owns the initial refcount */
1115 ep->hcpriv = stream;
1116 stream->ep = ep;
1117 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1118 urb->interval);
1119 }
1120
1121 /* if dev->ep [epnum] is a QH, hw is set */
1122 } else if (unlikely (stream->hw != NULL)) {
1123 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1124 urb->dev->devpath, epnum,
1125 usb_pipein(urb->pipe) ? "in" : "out");
1126 stream = NULL;
1127 }
1128
1129 /* caller guarantees an eventual matching iso_stream_put */
1130 stream = iso_stream_get (stream);
1131
1132 spin_unlock_irqrestore (&ehci->lock, flags);
1133 return stream;
1134}
1135
1136/*-------------------------------------------------------------------------*/
1137
1138/* ehci_iso_sched ops can be ITD-only or SITD-only */
1139
1140static struct ehci_iso_sched *
1141iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1142{
1143 struct ehci_iso_sched *iso_sched;
1144 int size = sizeof *iso_sched;
1145
1146 size += packets * sizeof (struct ehci_iso_packet);
1147 iso_sched = kzalloc(size, mem_flags);
1148 if (likely (iso_sched != NULL)) {
1149 INIT_LIST_HEAD (&iso_sched->td_list);
1150 }
1151 return iso_sched;
1152}
1153
1154static inline void
1155itd_sched_init(
1156 struct ehci_hcd *ehci,
1157 struct ehci_iso_sched *iso_sched,
1158 struct ehci_iso_stream *stream,
1159 struct urb *urb
1160)
1161{
1162 unsigned i;
1163 dma_addr_t dma = urb->transfer_dma;
1164
1165 /* how many uframes are needed for these transfers */
1166 iso_sched->span = urb->number_of_packets * stream->interval;
1167
1168 /* figure out per-uframe itd fields that we'll need later
1169 * when we fit new itds into the schedule.
1170 */
1171 for (i = 0; i < urb->number_of_packets; i++) {
1172 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1173 unsigned length;
1174 dma_addr_t buf;
1175 u32 trans;
1176
1177 length = urb->iso_frame_desc [i].length;
1178 buf = dma + urb->iso_frame_desc [i].offset;
1179
1180 trans = EHCI_ISOC_ACTIVE;
1181 trans |= buf & 0x0fff;
1182 if (unlikely (((i + 1) == urb->number_of_packets))
1183 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1184 trans |= EHCI_ITD_IOC;
1185 trans |= length << 16;
1186 uframe->transaction = cpu_to_hc32(ehci, trans);
1187
1188 /* might need to cross a buffer page within a uframe */
1189 uframe->bufp = (buf & ~(u64)0x0fff);
1190 buf += length;
1191 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1192 uframe->cross = 1;
1193 }
1194}
1195
1196static void
1197iso_sched_free (
1198 struct ehci_iso_stream *stream,
1199 struct ehci_iso_sched *iso_sched
1200)
1201{
1202 if (!iso_sched)
1203 return;
1204 // caller must hold ehci->lock!
1205 list_splice (&iso_sched->td_list, &stream->free_list);
1206 kfree (iso_sched);
1207}
1208
1209static int
1210itd_urb_transaction (
1211 struct ehci_iso_stream *stream,
1212 struct ehci_hcd *ehci,
1213 struct urb *urb,
1214 gfp_t mem_flags
1215)
1216{
1217 struct ehci_itd *itd;
1218 dma_addr_t itd_dma;
1219 int i;
1220 unsigned num_itds;
1221 struct ehci_iso_sched *sched;
1222 unsigned long flags;
1223
1224 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1225 if (unlikely (sched == NULL))
1226 return -ENOMEM;
1227
1228 itd_sched_init(ehci, sched, stream, urb);
1229
1230 if (urb->interval < 8)
1231 num_itds = 1 + (sched->span + 7) / 8;
1232 else
1233 num_itds = urb->number_of_packets;
1234
1235 /* allocate/init ITDs */
1236 spin_lock_irqsave (&ehci->lock, flags);
1237 for (i = 0; i < num_itds; i++) {
1238
1239 /* free_list.next might be cache-hot ... but maybe
1240 * the HC caches it too. avoid that issue for now.
1241 */
1242
1243 /* prefer previously-allocated itds */
1244 if (likely (!list_empty(&stream->free_list))) {
1245 itd = list_entry (stream->free_list.prev,
1246 struct ehci_itd, itd_list);
1247 list_del (&itd->itd_list);
1248 itd_dma = itd->itd_dma;
1249 } else {
1250 spin_unlock_irqrestore (&ehci->lock, flags);
1251 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1252 &itd_dma);
1253 spin_lock_irqsave (&ehci->lock, flags);
1254 if (!itd) {
1255 iso_sched_free(stream, sched);
1256 spin_unlock_irqrestore(&ehci->lock, flags);
1257 return -ENOMEM;
1258 }
1259 }
1260
1261 memset (itd, 0, sizeof *itd);
1262 itd->itd_dma = itd_dma;
1263 list_add (&itd->itd_list, &sched->td_list);
1264 }
1265 spin_unlock_irqrestore (&ehci->lock, flags);
1266
1267 /* temporarily store schedule info in hcpriv */
1268 urb->hcpriv = sched;
1269 urb->error_count = 0;
1270 return 0;
1271}
1272
1273/*-------------------------------------------------------------------------*/
1274
1275static inline int
1276itd_slot_ok (
1277 struct ehci_hcd *ehci,
1278 u32 mod,
1279 u32 uframe,
1280 u8 usecs,
1281 u32 period
1282)
1283{
1284 uframe %= period;
1285 do {
1286 /* can't commit more than uframe_periodic_max usec */
1287 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1288 > (ehci->uframe_periodic_max - usecs))
1289 return 0;
1290
1291 /* we know urb->interval is 2^N uframes */
1292 uframe += period;
1293 } while (uframe < mod);
1294 return 1;
1295}
1296
1297static inline int
1298sitd_slot_ok (
1299 struct ehci_hcd *ehci,
1300 u32 mod,
1301 struct ehci_iso_stream *stream,
1302 u32 uframe,
1303 struct ehci_iso_sched *sched,
1304 u32 period_uframes
1305)
1306{
1307 u32 mask, tmp;
1308 u32 frame, uf;
1309
1310 mask = stream->raw_mask << (uframe & 7);
1311
1312 /* for IN, don't wrap CSPLIT into the next frame */
1313 if (mask & ~0xffff)
1314 return 0;
1315
1316 /* this multi-pass logic is simple, but performance may
1317 * suffer when the schedule data isn't cached.
1318 */
1319
1320 /* check bandwidth */
1321 uframe %= period_uframes;
1322 do {
1323 u32 max_used;
1324
1325 frame = uframe >> 3;
1326 uf = uframe & 7;
1327
1328#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1329 /* The tt's fullspeed bus bandwidth must be available.
1330 * tt_available scheduling guarantees 10+% for control/bulk.
1331 */
1332 if (!tt_available (ehci, period_uframes << 3,
1333 stream->udev, frame, uf, stream->tt_usecs))
1334 return 0;
1335#else
1336 /* tt must be idle for start(s), any gap, and csplit.
1337 * assume scheduling slop leaves 10+% for control/bulk.
1338 */
1339 if (!tt_no_collision (ehci, period_uframes << 3,
1340 stream->udev, frame, mask))
1341 return 0;
1342#endif
1343
1344 /* check starts (OUT uses more than one) */
1345 max_used = ehci->uframe_periodic_max - stream->usecs;
1346 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1347 if (periodic_usecs (ehci, frame, uf) > max_used)
1348 return 0;
1349 }
1350
1351 /* for IN, check CSPLIT */
1352 if (stream->c_usecs) {
1353 uf = uframe & 7;
1354 max_used = ehci->uframe_periodic_max - stream->c_usecs;
1355 do {
1356 tmp = 1 << uf;
1357 tmp <<= 8;
1358 if ((stream->raw_mask & tmp) == 0)
1359 continue;
1360 if (periodic_usecs (ehci, frame, uf)
1361 > max_used)
1362 return 0;
1363 } while (++uf < 8);
1364 }
1365
1366 /* we know urb->interval is 2^N uframes */
1367 uframe += period_uframes;
1368 } while (uframe < mod);
1369
1370 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1371 return 1;
1372}
1373
1374/*
1375 * This scheduler plans almost as far into the future as it has actual
1376 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1377 * "as small as possible" to be cache-friendlier.) That limits the size
1378 * transfers you can stream reliably; avoid more than 64 msec per urb.
1379 * Also avoid queue depths of less than ehci's worst irq latency (affected
1380 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1381 * and other factors); or more than about 230 msec total (for portability,
1382 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1383 */
1384
1385#define SCHEDULE_SLOP 80 /* microframes */
1386
1387static int
1388iso_stream_schedule (
1389 struct ehci_hcd *ehci,
1390 struct urb *urb,
1391 struct ehci_iso_stream *stream
1392)
1393{
1394 u32 now, next, start, period, span;
1395 int status;
1396 unsigned mod = ehci->periodic_size << 3;
1397 struct ehci_iso_sched *sched = urb->hcpriv;
1398
1399 period = urb->interval;
1400 span = sched->span;
1401 if (!stream->highspeed) {
1402 period <<= 3;
1403 span <<= 3;
1404 }
1405
1406 if (span > mod - SCHEDULE_SLOP) {
1407 ehci_dbg (ehci, "iso request %p too long\n", urb);
1408 status = -EFBIG;
1409 goto fail;
1410 }
1411
1412 now = ehci_readl(ehci, &ehci->regs->frame_index) & (mod - 1);
1413
1414 /* Typical case: reuse current schedule, stream is still active.
1415 * Hopefully there are no gaps from the host falling behind
1416 * (irq delays etc), but if there are we'll take the next
1417 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1418 */
1419 if (likely (!list_empty (&stream->td_list))) {
1420 u32 excess;
1421
1422 /* For high speed devices, allow scheduling within the
1423 * isochronous scheduling threshold. For full speed devices
1424 * and Intel PCI-based controllers, don't (work around for
1425 * Intel ICH9 bug).
1426 */
1427 if (!stream->highspeed && ehci->fs_i_thresh)
1428 next = now + ehci->i_thresh;
1429 else
1430 next = now;
1431
1432 /* Fell behind (by up to twice the slop amount)?
1433 * We decide based on the time of the last currently-scheduled
1434 * slot, not the time of the next available slot.
1435 */
1436 excess = (stream->next_uframe - period - next) & (mod - 1);
1437 if (excess >= mod - 2 * SCHEDULE_SLOP)
1438 start = next + excess - mod + period *
1439 DIV_ROUND_UP(mod - excess, period);
1440 else
1441 start = next + excess + period;
1442 if (start - now >= mod) {
1443 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1444 urb, start - now - period, period,
1445 mod);
1446 status = -EFBIG;
1447 goto fail;
1448 }
1449 }
1450
1451 /* need to schedule; when's the next (u)frame we could start?
1452 * this is bigger than ehci->i_thresh allows; scheduling itself
1453 * isn't free, the slop should handle reasonably slow cpus. it
1454 * can also help high bandwidth if the dma and irq loads don't
1455 * jump until after the queue is primed.
1456 */
1457 else {
1458 start = SCHEDULE_SLOP + (now & ~0x07);
1459
1460 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1461
1462 /* find a uframe slot with enough bandwidth */
1463 next = start + period;
1464 for (; start < next; start++) {
1465
1466 /* check schedule: enough space? */
1467 if (stream->highspeed) {
1468 if (itd_slot_ok(ehci, mod, start,
1469 stream->usecs, period))
1470 break;
1471 } else {
1472 if ((start % 8) >= 6)
1473 continue;
1474 if (sitd_slot_ok(ehci, mod, stream,
1475 start, sched, period))
1476 break;
1477 }
1478 }
1479
1480 /* no room in the schedule */
1481 if (start == next) {
1482 ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1483 urb, now, now + mod);
1484 status = -ENOSPC;
1485 goto fail;
1486 }
1487 }
1488
1489 /* Tried to schedule too far into the future? */
1490 if (unlikely(start - now + span - period
1491 >= mod - 2 * SCHEDULE_SLOP)) {
1492 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1493 urb, start - now, span - period,
1494 mod - 2 * SCHEDULE_SLOP);
1495 status = -EFBIG;
1496 goto fail;
1497 }
1498
1499 stream->next_uframe = start & (mod - 1);
1500
1501 /* report high speed start in uframes; full speed, in frames */
1502 urb->start_frame = stream->next_uframe;
1503 if (!stream->highspeed)
1504 urb->start_frame >>= 3;
1505 return 0;
1506
1507 fail:
1508 iso_sched_free(stream, sched);
1509 urb->hcpriv = NULL;
1510 return status;
1511}
1512
1513/*-------------------------------------------------------------------------*/
1514
1515static inline void
1516itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1517 struct ehci_itd *itd)
1518{
1519 int i;
1520
1521 /* it's been recently zeroed */
1522 itd->hw_next = EHCI_LIST_END(ehci);
1523 itd->hw_bufp [0] = stream->buf0;
1524 itd->hw_bufp [1] = stream->buf1;
1525 itd->hw_bufp [2] = stream->buf2;
1526
1527 for (i = 0; i < 8; i++)
1528 itd->index[i] = -1;
1529
1530 /* All other fields are filled when scheduling */
1531}
1532
1533static inline void
1534itd_patch(
1535 struct ehci_hcd *ehci,
1536 struct ehci_itd *itd,
1537 struct ehci_iso_sched *iso_sched,
1538 unsigned index,
1539 u16 uframe
1540)
1541{
1542 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1543 unsigned pg = itd->pg;
1544
1545 // BUG_ON (pg == 6 && uf->cross);
1546
1547 uframe &= 0x07;
1548 itd->index [uframe] = index;
1549
1550 itd->hw_transaction[uframe] = uf->transaction;
1551 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1552 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1553 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1554
1555 /* iso_frame_desc[].offset must be strictly increasing */
1556 if (unlikely (uf->cross)) {
1557 u64 bufp = uf->bufp + 4096;
1558
1559 itd->pg = ++pg;
1560 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1561 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1562 }
1563}
1564
1565static inline void
1566itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1567{
1568 union ehci_shadow *prev = &ehci->pshadow[frame];
1569 __hc32 *hw_p = &ehci->periodic[frame];
1570 union ehci_shadow here = *prev;
1571 __hc32 type = 0;
1572
1573 /* skip any iso nodes which might belong to previous microframes */
1574 while (here.ptr) {
1575 type = Q_NEXT_TYPE(ehci, *hw_p);
1576 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1577 break;
1578 prev = periodic_next_shadow(ehci, prev, type);
1579 hw_p = shadow_next_periodic(ehci, &here, type);
1580 here = *prev;
1581 }
1582
1583 itd->itd_next = here;
1584 itd->hw_next = *hw_p;
1585 prev->itd = itd;
1586 itd->frame = frame;
1587 wmb ();
1588 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1589}
1590
1591/* fit urb's itds into the selected schedule slot; activate as needed */
1592static int
1593itd_link_urb (
1594 struct ehci_hcd *ehci,
1595 struct urb *urb,
1596 unsigned mod,
1597 struct ehci_iso_stream *stream
1598)
1599{
1600 int packet;
1601 unsigned next_uframe, uframe, frame;
1602 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1603 struct ehci_itd *itd;
1604
1605 next_uframe = stream->next_uframe & (mod - 1);
1606
1607 if (unlikely (list_empty(&stream->td_list))) {
1608 ehci_to_hcd(ehci)->self.bandwidth_allocated
1609 += stream->bandwidth;
1610 ehci_vdbg (ehci,
1611 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1612 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1613 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1614 urb->interval,
1615 next_uframe >> 3, next_uframe & 0x7);
1616 }
1617
1618 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1619 if (ehci->amd_pll_fix == 1)
1620 usb_amd_quirk_pll_disable();
1621 }
1622
1623 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1624
1625 /* fill iTDs uframe by uframe */
1626 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1627 if (itd == NULL) {
1628 /* ASSERT: we have all necessary itds */
1629 // BUG_ON (list_empty (&iso_sched->td_list));
1630
1631 /* ASSERT: no itds for this endpoint in this uframe */
1632
1633 itd = list_entry (iso_sched->td_list.next,
1634 struct ehci_itd, itd_list);
1635 list_move_tail (&itd->itd_list, &stream->td_list);
1636 itd->stream = iso_stream_get (stream);
1637 itd->urb = urb;
1638 itd_init (ehci, stream, itd);
1639 }
1640
1641 uframe = next_uframe & 0x07;
1642 frame = next_uframe >> 3;
1643
1644 itd_patch(ehci, itd, iso_sched, packet, uframe);
1645
1646 next_uframe += stream->interval;
1647 next_uframe &= mod - 1;
1648 packet++;
1649
1650 /* link completed itds into the schedule */
1651 if (((next_uframe >> 3) != frame)
1652 || packet == urb->number_of_packets) {
1653 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1654 itd = NULL;
1655 }
1656 }
1657 stream->next_uframe = next_uframe;
1658
1659 /* don't need that schedule data any more */
1660 iso_sched_free (stream, iso_sched);
1661 urb->hcpriv = NULL;
1662
1663 timer_action (ehci, TIMER_IO_WATCHDOG);
1664 return enable_periodic(ehci);
1665}
1666
1667#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1668
1669/* Process and recycle a completed ITD. Return true iff its urb completed,
1670 * and hence its completion callback probably added things to the hardware
1671 * schedule.
1672 *
1673 * Note that we carefully avoid recycling this descriptor until after any
1674 * completion callback runs, so that it won't be reused quickly. That is,
1675 * assuming (a) no more than two urbs per frame on this endpoint, and also
1676 * (b) only this endpoint's completions submit URBs. It seems some silicon
1677 * corrupts things if you reuse completed descriptors very quickly...
1678 */
1679static unsigned
1680itd_complete (
1681 struct ehci_hcd *ehci,
1682 struct ehci_itd *itd
1683) {
1684 struct urb *urb = itd->urb;
1685 struct usb_iso_packet_descriptor *desc;
1686 u32 t;
1687 unsigned uframe;
1688 int urb_index = -1;
1689 struct ehci_iso_stream *stream = itd->stream;
1690 struct usb_device *dev;
1691 unsigned retval = false;
1692
1693 /* for each uframe with a packet */
1694 for (uframe = 0; uframe < 8; uframe++) {
1695 if (likely (itd->index[uframe] == -1))
1696 continue;
1697 urb_index = itd->index[uframe];
1698 desc = &urb->iso_frame_desc [urb_index];
1699
1700 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1701 itd->hw_transaction [uframe] = 0;
1702
1703 /* report transfer status */
1704 if (unlikely (t & ISO_ERRS)) {
1705 urb->error_count++;
1706 if (t & EHCI_ISOC_BUF_ERR)
1707 desc->status = usb_pipein (urb->pipe)
1708 ? -ENOSR /* hc couldn't read */
1709 : -ECOMM; /* hc couldn't write */
1710 else if (t & EHCI_ISOC_BABBLE)
1711 desc->status = -EOVERFLOW;
1712 else /* (t & EHCI_ISOC_XACTERR) */
1713 desc->status = -EPROTO;
1714
1715 /* HC need not update length with this error */
1716 if (!(t & EHCI_ISOC_BABBLE)) {
1717 desc->actual_length = EHCI_ITD_LENGTH(t);
1718 urb->actual_length += desc->actual_length;
1719 }
1720 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1721 desc->status = 0;
1722 desc->actual_length = EHCI_ITD_LENGTH(t);
1723 urb->actual_length += desc->actual_length;
1724 } else {
1725 /* URB was too late */
1726 desc->status = -EXDEV;
1727 }
1728 }
1729
1730 /* handle completion now? */
1731 if (likely ((urb_index + 1) != urb->number_of_packets))
1732 goto done;
1733
1734 /* ASSERT: it's really the last itd for this urb
1735 list_for_each_entry (itd, &stream->td_list, itd_list)
1736 BUG_ON (itd->urb == urb);
1737 */
1738
1739 /* give urb back to the driver; completion often (re)submits */
1740 dev = urb->dev;
1741 ehci_urb_done(ehci, urb, 0);
1742 retval = true;
1743 urb = NULL;
1744 (void) disable_periodic(ehci);
1745 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1746
1747 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1748 if (ehci->amd_pll_fix == 1)
1749 usb_amd_quirk_pll_enable();
1750 }
1751
1752 if (unlikely(list_is_singular(&stream->td_list))) {
1753 ehci_to_hcd(ehci)->self.bandwidth_allocated
1754 -= stream->bandwidth;
1755 ehci_vdbg (ehci,
1756 "deschedule devp %s ep%d%s-iso\n",
1757 dev->devpath, stream->bEndpointAddress & 0x0f,
1758 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1759 }
1760 iso_stream_put (ehci, stream);
1761
1762done:
1763 itd->urb = NULL;
1764 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1765 /* OK to recycle this ITD now. */
1766 itd->stream = NULL;
1767 list_move(&itd->itd_list, &stream->free_list);
1768 iso_stream_put(ehci, stream);
1769 } else {
1770 /* HW might remember this ITD, so we can't recycle it yet.
1771 * Move it to a safe place until a new frame starts.
1772 */
1773 list_move(&itd->itd_list, &ehci->cached_itd_list);
1774 if (stream->refcount == 2) {
1775 /* If iso_stream_put() were called here, stream
1776 * would be freed. Instead, just prevent reuse.
1777 */
1778 stream->ep->hcpriv = NULL;
1779 stream->ep = NULL;
1780 }
1781 }
1782 return retval;
1783}
1784
1785/*-------------------------------------------------------------------------*/
1786
1787static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1788 gfp_t mem_flags)
1789{
1790 int status = -EINVAL;
1791 unsigned long flags;
1792 struct ehci_iso_stream *stream;
1793
1794 /* Get iso_stream head */
1795 stream = iso_stream_find (ehci, urb);
1796 if (unlikely (stream == NULL)) {
1797 ehci_dbg (ehci, "can't get iso stream\n");
1798 return -ENOMEM;
1799 }
1800 if (unlikely (urb->interval != stream->interval)) {
1801 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1802 stream->interval, urb->interval);
1803 goto done;
1804 }
1805
1806#ifdef EHCI_URB_TRACE
1807 ehci_dbg (ehci,
1808 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1809 __func__, urb->dev->devpath, urb,
1810 usb_pipeendpoint (urb->pipe),
1811 usb_pipein (urb->pipe) ? "in" : "out",
1812 urb->transfer_buffer_length,
1813 urb->number_of_packets, urb->interval,
1814 stream);
1815#endif
1816
1817 /* allocate ITDs w/o locking anything */
1818 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1819 if (unlikely (status < 0)) {
1820 ehci_dbg (ehci, "can't init itds\n");
1821 goto done;
1822 }
1823
1824 /* schedule ... need to lock */
1825 spin_lock_irqsave (&ehci->lock, flags);
1826 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1827 status = -ESHUTDOWN;
1828 goto done_not_linked;
1829 }
1830 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1831 if (unlikely(status))
1832 goto done_not_linked;
1833 status = iso_stream_schedule(ehci, urb, stream);
1834 if (likely (status == 0))
1835 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1836 else
1837 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1838done_not_linked:
1839 spin_unlock_irqrestore (&ehci->lock, flags);
1840
1841done:
1842 if (unlikely (status < 0))
1843 iso_stream_put (ehci, stream);
1844 return status;
1845}
1846
1847/*-------------------------------------------------------------------------*/
1848
1849/*
1850 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1851 * TTs in USB 2.0 hubs. These need microframe scheduling.
1852 */
1853
1854static inline void
1855sitd_sched_init(
1856 struct ehci_hcd *ehci,
1857 struct ehci_iso_sched *iso_sched,
1858 struct ehci_iso_stream *stream,
1859 struct urb *urb
1860)
1861{
1862 unsigned i;
1863 dma_addr_t dma = urb->transfer_dma;
1864
1865 /* how many frames are needed for these transfers */
1866 iso_sched->span = urb->number_of_packets * stream->interval;
1867
1868 /* figure out per-frame sitd fields that we'll need later
1869 * when we fit new sitds into the schedule.
1870 */
1871 for (i = 0; i < urb->number_of_packets; i++) {
1872 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1873 unsigned length;
1874 dma_addr_t buf;
1875 u32 trans;
1876
1877 length = urb->iso_frame_desc [i].length & 0x03ff;
1878 buf = dma + urb->iso_frame_desc [i].offset;
1879
1880 trans = SITD_STS_ACTIVE;
1881 if (((i + 1) == urb->number_of_packets)
1882 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1883 trans |= SITD_IOC;
1884 trans |= length << 16;
1885 packet->transaction = cpu_to_hc32(ehci, trans);
1886
1887 /* might need to cross a buffer page within a td */
1888 packet->bufp = buf;
1889 packet->buf1 = (buf + length) & ~0x0fff;
1890 if (packet->buf1 != (buf & ~(u64)0x0fff))
1891 packet->cross = 1;
1892
1893 /* OUT uses multiple start-splits */
1894 if (stream->bEndpointAddress & USB_DIR_IN)
1895 continue;
1896 length = (length + 187) / 188;
1897 if (length > 1) /* BEGIN vs ALL */
1898 length |= 1 << 3;
1899 packet->buf1 |= length;
1900 }
1901}
1902
1903static int
1904sitd_urb_transaction (
1905 struct ehci_iso_stream *stream,
1906 struct ehci_hcd *ehci,
1907 struct urb *urb,
1908 gfp_t mem_flags
1909)
1910{
1911 struct ehci_sitd *sitd;
1912 dma_addr_t sitd_dma;
1913 int i;
1914 struct ehci_iso_sched *iso_sched;
1915 unsigned long flags;
1916
1917 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1918 if (iso_sched == NULL)
1919 return -ENOMEM;
1920
1921 sitd_sched_init(ehci, iso_sched, stream, urb);
1922
1923 /* allocate/init sITDs */
1924 spin_lock_irqsave (&ehci->lock, flags);
1925 for (i = 0; i < urb->number_of_packets; i++) {
1926
1927 /* NOTE: for now, we don't try to handle wraparound cases
1928 * for IN (using sitd->hw_backpointer, like a FSTN), which
1929 * means we never need two sitds for full speed packets.
1930 */
1931
1932 /* free_list.next might be cache-hot ... but maybe
1933 * the HC caches it too. avoid that issue for now.
1934 */
1935
1936 /* prefer previously-allocated sitds */
1937 if (!list_empty(&stream->free_list)) {
1938 sitd = list_entry (stream->free_list.prev,
1939 struct ehci_sitd, sitd_list);
1940 list_del (&sitd->sitd_list);
1941 sitd_dma = sitd->sitd_dma;
1942 } else {
1943 spin_unlock_irqrestore (&ehci->lock, flags);
1944 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1945 &sitd_dma);
1946 spin_lock_irqsave (&ehci->lock, flags);
1947 if (!sitd) {
1948 iso_sched_free(stream, iso_sched);
1949 spin_unlock_irqrestore(&ehci->lock, flags);
1950 return -ENOMEM;
1951 }
1952 }
1953
1954 memset (sitd, 0, sizeof *sitd);
1955 sitd->sitd_dma = sitd_dma;
1956 list_add (&sitd->sitd_list, &iso_sched->td_list);
1957 }
1958
1959 /* temporarily store schedule info in hcpriv */
1960 urb->hcpriv = iso_sched;
1961 urb->error_count = 0;
1962
1963 spin_unlock_irqrestore (&ehci->lock, flags);
1964 return 0;
1965}
1966
1967/*-------------------------------------------------------------------------*/
1968
1969static inline void
1970sitd_patch(
1971 struct ehci_hcd *ehci,
1972 struct ehci_iso_stream *stream,
1973 struct ehci_sitd *sitd,
1974 struct ehci_iso_sched *iso_sched,
1975 unsigned index
1976)
1977{
1978 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1979 u64 bufp = uf->bufp;
1980
1981 sitd->hw_next = EHCI_LIST_END(ehci);
1982 sitd->hw_fullspeed_ep = stream->address;
1983 sitd->hw_uframe = stream->splits;
1984 sitd->hw_results = uf->transaction;
1985 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1986
1987 bufp = uf->bufp;
1988 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1989 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1990
1991 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1992 if (uf->cross)
1993 bufp += 4096;
1994 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1995 sitd->index = index;
1996}
1997
1998static inline void
1999sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2000{
2001 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2002 sitd->sitd_next = ehci->pshadow [frame];
2003 sitd->hw_next = ehci->periodic [frame];
2004 ehci->pshadow [frame].sitd = sitd;
2005 sitd->frame = frame;
2006 wmb ();
2007 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2008}
2009
2010/* fit urb's sitds into the selected schedule slot; activate as needed */
2011static int
2012sitd_link_urb (
2013 struct ehci_hcd *ehci,
2014 struct urb *urb,
2015 unsigned mod,
2016 struct ehci_iso_stream *stream
2017)
2018{
2019 int packet;
2020 unsigned next_uframe;
2021 struct ehci_iso_sched *sched = urb->hcpriv;
2022 struct ehci_sitd *sitd;
2023
2024 next_uframe = stream->next_uframe;
2025
2026 if (list_empty(&stream->td_list)) {
2027 /* usbfs ignores TT bandwidth */
2028 ehci_to_hcd(ehci)->self.bandwidth_allocated
2029 += stream->bandwidth;
2030 ehci_vdbg (ehci,
2031 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2032 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2033 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2034 (next_uframe >> 3) & (ehci->periodic_size - 1),
2035 stream->interval, hc32_to_cpu(ehci, stream->splits));
2036 }
2037
2038 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2039 if (ehci->amd_pll_fix == 1)
2040 usb_amd_quirk_pll_disable();
2041 }
2042
2043 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2044
2045 /* fill sITDs frame by frame */
2046 for (packet = 0, sitd = NULL;
2047 packet < urb->number_of_packets;
2048 packet++) {
2049
2050 /* ASSERT: we have all necessary sitds */
2051 BUG_ON (list_empty (&sched->td_list));
2052
2053 /* ASSERT: no itds for this endpoint in this frame */
2054
2055 sitd = list_entry (sched->td_list.next,
2056 struct ehci_sitd, sitd_list);
2057 list_move_tail (&sitd->sitd_list, &stream->td_list);
2058 sitd->stream = iso_stream_get (stream);
2059 sitd->urb = urb;
2060
2061 sitd_patch(ehci, stream, sitd, sched, packet);
2062 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2063 sitd);
2064
2065 next_uframe += stream->interval << 3;
2066 }
2067 stream->next_uframe = next_uframe & (mod - 1);
2068
2069 /* don't need that schedule data any more */
2070 iso_sched_free (stream, sched);
2071 urb->hcpriv = NULL;
2072
2073 timer_action (ehci, TIMER_IO_WATCHDOG);
2074 return enable_periodic(ehci);
2075}
2076
2077/*-------------------------------------------------------------------------*/
2078
2079#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2080 | SITD_STS_XACT | SITD_STS_MMF)
2081
2082/* Process and recycle a completed SITD. Return true iff its urb completed,
2083 * and hence its completion callback probably added things to the hardware
2084 * schedule.
2085 *
2086 * Note that we carefully avoid recycling this descriptor until after any
2087 * completion callback runs, so that it won't be reused quickly. That is,
2088 * assuming (a) no more than two urbs per frame on this endpoint, and also
2089 * (b) only this endpoint's completions submit URBs. It seems some silicon
2090 * corrupts things if you reuse completed descriptors very quickly...
2091 */
2092static unsigned
2093sitd_complete (
2094 struct ehci_hcd *ehci,
2095 struct ehci_sitd *sitd
2096) {
2097 struct urb *urb = sitd->urb;
2098 struct usb_iso_packet_descriptor *desc;
2099 u32 t;
2100 int urb_index = -1;
2101 struct ehci_iso_stream *stream = sitd->stream;
2102 struct usb_device *dev;
2103 unsigned retval = false;
2104
2105 urb_index = sitd->index;
2106 desc = &urb->iso_frame_desc [urb_index];
2107 t = hc32_to_cpup(ehci, &sitd->hw_results);
2108
2109 /* report transfer status */
2110 if (t & SITD_ERRS) {
2111 urb->error_count++;
2112 if (t & SITD_STS_DBE)
2113 desc->status = usb_pipein (urb->pipe)
2114 ? -ENOSR /* hc couldn't read */
2115 : -ECOMM; /* hc couldn't write */
2116 else if (t & SITD_STS_BABBLE)
2117 desc->status = -EOVERFLOW;
2118 else /* XACT, MMF, etc */
2119 desc->status = -EPROTO;
2120 } else {
2121 desc->status = 0;
2122 desc->actual_length = desc->length - SITD_LENGTH(t);
2123 urb->actual_length += desc->actual_length;
2124 }
2125
2126 /* handle completion now? */
2127 if ((urb_index + 1) != urb->number_of_packets)
2128 goto done;
2129
2130 /* ASSERT: it's really the last sitd for this urb
2131 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2132 BUG_ON (sitd->urb == urb);
2133 */
2134
2135 /* give urb back to the driver; completion often (re)submits */
2136 dev = urb->dev;
2137 ehci_urb_done(ehci, urb, 0);
2138 retval = true;
2139 urb = NULL;
2140 (void) disable_periodic(ehci);
2141 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2142
2143 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2144 if (ehci->amd_pll_fix == 1)
2145 usb_amd_quirk_pll_enable();
2146 }
2147
2148 if (list_is_singular(&stream->td_list)) {
2149 ehci_to_hcd(ehci)->self.bandwidth_allocated
2150 -= stream->bandwidth;
2151 ehci_vdbg (ehci,
2152 "deschedule devp %s ep%d%s-iso\n",
2153 dev->devpath, stream->bEndpointAddress & 0x0f,
2154 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2155 }
2156 iso_stream_put (ehci, stream);
2157
2158done:
2159 sitd->urb = NULL;
2160 if (ehci->clock_frame != sitd->frame) {
2161 /* OK to recycle this SITD now. */
2162 sitd->stream = NULL;
2163 list_move(&sitd->sitd_list, &stream->free_list);
2164 iso_stream_put(ehci, stream);
2165 } else {
2166 /* HW might remember this SITD, so we can't recycle it yet.
2167 * Move it to a safe place until a new frame starts.
2168 */
2169 list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2170 if (stream->refcount == 2) {
2171 /* If iso_stream_put() were called here, stream
2172 * would be freed. Instead, just prevent reuse.
2173 */
2174 stream->ep->hcpriv = NULL;
2175 stream->ep = NULL;
2176 }
2177 }
2178 return retval;
2179}
2180
2181
2182static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2183 gfp_t mem_flags)
2184{
2185 int status = -EINVAL;
2186 unsigned long flags;
2187 struct ehci_iso_stream *stream;
2188
2189 /* Get iso_stream head */
2190 stream = iso_stream_find (ehci, urb);
2191 if (stream == NULL) {
2192 ehci_dbg (ehci, "can't get iso stream\n");
2193 return -ENOMEM;
2194 }
2195 if (urb->interval != stream->interval) {
2196 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2197 stream->interval, urb->interval);
2198 goto done;
2199 }
2200
2201#ifdef EHCI_URB_TRACE
2202 ehci_dbg (ehci,
2203 "submit %p dev%s ep%d%s-iso len %d\n",
2204 urb, urb->dev->devpath,
2205 usb_pipeendpoint (urb->pipe),
2206 usb_pipein (urb->pipe) ? "in" : "out",
2207 urb->transfer_buffer_length);
2208#endif
2209
2210 /* allocate SITDs */
2211 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2212 if (status < 0) {
2213 ehci_dbg (ehci, "can't init sitds\n");
2214 goto done;
2215 }
2216
2217 /* schedule ... need to lock */
2218 spin_lock_irqsave (&ehci->lock, flags);
2219 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2220 status = -ESHUTDOWN;
2221 goto done_not_linked;
2222 }
2223 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2224 if (unlikely(status))
2225 goto done_not_linked;
2226 status = iso_stream_schedule(ehci, urb, stream);
2227 if (status == 0)
2228 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2229 else
2230 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2231done_not_linked:
2232 spin_unlock_irqrestore (&ehci->lock, flags);
2233
2234done:
2235 if (status < 0)
2236 iso_stream_put (ehci, stream);
2237 return status;
2238}
2239
2240/*-------------------------------------------------------------------------*/
2241
2242static void free_cached_lists(struct ehci_hcd *ehci)
2243{
2244 struct ehci_itd *itd, *n;
2245 struct ehci_sitd *sitd, *sn;
2246
2247 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2248 struct ehci_iso_stream *stream = itd->stream;
2249 itd->stream = NULL;
2250 list_move(&itd->itd_list, &stream->free_list);
2251 iso_stream_put(ehci, stream);
2252 }
2253
2254 list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2255 struct ehci_iso_stream *stream = sitd->stream;
2256 sitd->stream = NULL;
2257 list_move(&sitd->sitd_list, &stream->free_list);
2258 iso_stream_put(ehci, stream);
2259 }
2260}
2261
2262/*-------------------------------------------------------------------------*/
2263
2264static void
2265scan_periodic (struct ehci_hcd *ehci)
2266{
2267 unsigned now_uframe, frame, clock, clock_frame, mod;
2268 unsigned modified;
2269
2270 mod = ehci->periodic_size << 3;
2271
2272 /*
2273 * When running, scan from last scan point up to "now"
2274 * else clean up by scanning everything that's left.
2275 * Touches as few pages as possible: cache-friendly.
2276 */
2277 now_uframe = ehci->next_uframe;
2278 if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2279 clock = ehci_readl(ehci, &ehci->regs->frame_index);
2280 clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2281 } else {
2282 clock = now_uframe + mod - 1;
2283 clock_frame = -1;
2284 }
2285 if (ehci->clock_frame != clock_frame) {
2286 free_cached_lists(ehci);
2287 ehci->clock_frame = clock_frame;
2288 }
2289 clock &= mod - 1;
2290 clock_frame = clock >> 3;
2291 ++ehci->periodic_stamp;
2292
2293 for (;;) {
2294 union ehci_shadow q, *q_p;
2295 __hc32 type, *hw_p;
2296 unsigned incomplete = false;
2297
2298 frame = now_uframe >> 3;
2299
2300restart:
2301 /* scan each element in frame's queue for completions */
2302 q_p = &ehci->pshadow [frame];
2303 hw_p = &ehci->periodic [frame];
2304 q.ptr = q_p->ptr;
2305 type = Q_NEXT_TYPE(ehci, *hw_p);
2306 modified = 0;
2307
2308 while (q.ptr != NULL) {
2309 unsigned uf;
2310 union ehci_shadow temp;
2311 int live;
2312
2313 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2314 switch (hc32_to_cpu(ehci, type)) {
2315 case Q_TYPE_QH:
2316 /* handle any completions */
2317 temp.qh = qh_get (q.qh);
2318 type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2319 q = q.qh->qh_next;
2320 if (temp.qh->stamp != ehci->periodic_stamp) {
2321 modified = qh_completions(ehci, temp.qh);
2322 if (!modified)
2323 temp.qh->stamp = ehci->periodic_stamp;
2324 if (unlikely(list_empty(&temp.qh->qtd_list) ||
2325 temp.qh->needs_rescan))
2326 intr_deschedule(ehci, temp.qh);
2327 }
2328 qh_put (temp.qh);
2329 break;
2330 case Q_TYPE_FSTN:
2331 /* for "save place" FSTNs, look at QH entries
2332 * in the previous frame for completions.
2333 */
2334 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2335 dbg ("ignoring completions from FSTNs");
2336 }
2337 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2338 q = q.fstn->fstn_next;
2339 break;
2340 case Q_TYPE_ITD:
2341 /* If this ITD is still active, leave it for
2342 * later processing ... check the next entry.
2343 * No need to check for activity unless the
2344 * frame is current.
2345 */
2346 if (frame == clock_frame && live) {
2347 rmb();
2348 for (uf = 0; uf < 8; uf++) {
2349 if (q.itd->hw_transaction[uf] &
2350 ITD_ACTIVE(ehci))
2351 break;
2352 }
2353 if (uf < 8) {
2354 incomplete = true;
2355 q_p = &q.itd->itd_next;
2356 hw_p = &q.itd->hw_next;
2357 type = Q_NEXT_TYPE(ehci,
2358 q.itd->hw_next);
2359 q = *q_p;
2360 break;
2361 }
2362 }
2363
2364 /* Take finished ITDs out of the schedule
2365 * and process them: recycle, maybe report
2366 * URB completion. HC won't cache the
2367 * pointer for much longer, if at all.
2368 */
2369 *q_p = q.itd->itd_next;
2370 if (!ehci->use_dummy_qh ||
2371 q.itd->hw_next != EHCI_LIST_END(ehci))
2372 *hw_p = q.itd->hw_next;
2373 else
2374 *hw_p = ehci->dummy->qh_dma;
2375 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2376 wmb();
2377 modified = itd_complete (ehci, q.itd);
2378 q = *q_p;
2379 break;
2380 case Q_TYPE_SITD:
2381 /* If this SITD is still active, leave it for
2382 * later processing ... check the next entry.
2383 * No need to check for activity unless the
2384 * frame is current.
2385 */
2386 if (((frame == clock_frame) ||
2387 (((frame + 1) & (ehci->periodic_size - 1))
2388 == clock_frame))
2389 && live
2390 && (q.sitd->hw_results &
2391 SITD_ACTIVE(ehci))) {
2392
2393 incomplete = true;
2394 q_p = &q.sitd->sitd_next;
2395 hw_p = &q.sitd->hw_next;
2396 type = Q_NEXT_TYPE(ehci,
2397 q.sitd->hw_next);
2398 q = *q_p;
2399 break;
2400 }
2401
2402 /* Take finished SITDs out of the schedule
2403 * and process them: recycle, maybe report
2404 * URB completion.
2405 */
2406 *q_p = q.sitd->sitd_next;
2407 if (!ehci->use_dummy_qh ||
2408 q.sitd->hw_next != EHCI_LIST_END(ehci))
2409 *hw_p = q.sitd->hw_next;
2410 else
2411 *hw_p = ehci->dummy->qh_dma;
2412 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2413 wmb();
2414 modified = sitd_complete (ehci, q.sitd);
2415 q = *q_p;
2416 break;
2417 default:
2418 dbg ("corrupt type %d frame %d shadow %p",
2419 type, frame, q.ptr);
2420 // BUG ();
2421 q.ptr = NULL;
2422 }
2423
2424 /* assume completion callbacks modify the queue */
2425 if (unlikely (modified)) {
2426 if (likely(ehci->periodic_sched > 0))
2427 goto restart;
2428 /* short-circuit this scan */
2429 now_uframe = clock;
2430 break;
2431 }
2432 }
2433
2434 /* If we can tell we caught up to the hardware, stop now.
2435 * We can't advance our scan without collecting the ISO
2436 * transfers that are still pending in this frame.
2437 */
2438 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2439 ehci->next_uframe = now_uframe;
2440 break;
2441 }
2442
2443 // FIXME: this assumes we won't get lapped when
2444 // latencies climb; that should be rare, but...
2445 // detect it, and just go all the way around.
2446 // FLR might help detect this case, so long as latencies
2447 // don't exceed periodic_size msec (default 1.024 sec).
2448
2449 // FIXME: likewise assumes HC doesn't halt mid-scan
2450
2451 if (now_uframe == clock) {
2452 unsigned now;
2453
2454 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2455 || ehci->periodic_sched == 0)
2456 break;
2457 ehci->next_uframe = now_uframe;
2458 now = ehci_readl(ehci, &ehci->regs->frame_index) &
2459 (mod - 1);
2460 if (now_uframe == now)
2461 break;
2462
2463 /* rescan the rest of this frame, then ... */
2464 clock = now;
2465 clock_frame = clock >> 3;
2466 if (ehci->clock_frame != clock_frame) {
2467 free_cached_lists(ehci);
2468 ehci->clock_frame = clock_frame;
2469 ++ehci->periodic_stamp;
2470 }
2471 } else {
2472 now_uframe++;
2473 now_uframe &= mod - 1;
2474 }
2475 }
2476}