Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * algif_aead: User-space interface for AEAD algorithms
  3 *
  4 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
  5 *
  6 * This file provides the user-space API for AEAD ciphers.
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms of the GNU General Public License as published by the Free
 10 * Software Foundation; either version 2 of the License, or (at your option)
 11 * any later version.
 12 *
 13 * The following concept of the memory management is used:
 14 *
 15 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
 16 * filled by user space with the data submitted via sendpage/sendmsg. Filling
 17 * up the TX SGL does not cause a crypto operation -- the data will only be
 18 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
 19 * provide a buffer which is tracked with the RX SGL.
 20 *
 21 * During the processing of the recvmsg operation, the cipher request is
 22 * allocated and prepared. As part of the recvmsg operation, the processed
 23 * TX buffers are extracted from the TX SGL into a separate SGL.
 24 *
 25 * After the completion of the crypto operation, the RX SGL and the cipher
 26 * request is released. The extracted TX SGL parts are released together with
 27 * the RX SGL release.
 28 */
 29
 30#include <crypto/internal/aead.h>
 31#include <crypto/scatterwalk.h>
 32#include <crypto/if_alg.h>
 33#include <crypto/skcipher.h>
 34#include <crypto/null.h>
 35#include <linux/init.h>
 36#include <linux/list.h>
 37#include <linux/kernel.h>
 38#include <linux/mm.h>
 39#include <linux/module.h>
 40#include <linux/net.h>
 41#include <net/sock.h>
 42
 43struct aead_tfm {
 44	struct crypto_aead *aead;
 45	struct crypto_skcipher *null_tfm;
 46};
 47
 48static inline bool aead_sufficient_data(struct sock *sk)
 49{
 50	struct alg_sock *ask = alg_sk(sk);
 51	struct sock *psk = ask->parent;
 52	struct alg_sock *pask = alg_sk(psk);
 53	struct af_alg_ctx *ctx = ask->private;
 54	struct aead_tfm *aeadc = pask->private;
 55	struct crypto_aead *tfm = aeadc->aead;
 56	unsigned int as = crypto_aead_authsize(tfm);
 57
 58	/*
 59	 * The minimum amount of memory needed for an AEAD cipher is
 60	 * the AAD and in case of decryption the tag.
 61	 */
 62	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
 63}
 64
 65static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 66{
 67	struct sock *sk = sock->sk;
 68	struct alg_sock *ask = alg_sk(sk);
 69	struct sock *psk = ask->parent;
 70	struct alg_sock *pask = alg_sk(psk);
 71	struct aead_tfm *aeadc = pask->private;
 72	struct crypto_aead *tfm = aeadc->aead;
 73	unsigned int ivsize = crypto_aead_ivsize(tfm);
 74
 75	return af_alg_sendmsg(sock, msg, size, ivsize);
 76}
 77
 78static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
 79				struct scatterlist *src,
 80				struct scatterlist *dst, unsigned int len)
 81{
 82	SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
 83
 84	skcipher_request_set_tfm(skreq, null_tfm);
 85	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
 86				      NULL, NULL);
 87	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
 88
 89	return crypto_skcipher_encrypt(skreq);
 90}
 91
 92static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
 93			 size_t ignored, int flags)
 94{
 95	struct sock *sk = sock->sk;
 96	struct alg_sock *ask = alg_sk(sk);
 97	struct sock *psk = ask->parent;
 98	struct alg_sock *pask = alg_sk(psk);
 99	struct af_alg_ctx *ctx = ask->private;
100	struct aead_tfm *aeadc = pask->private;
101	struct crypto_aead *tfm = aeadc->aead;
102	struct crypto_skcipher *null_tfm = aeadc->null_tfm;
103	unsigned int i, as = crypto_aead_authsize(tfm);
104	struct af_alg_async_req *areq;
105	struct af_alg_tsgl *tsgl, *tmp;
106	struct scatterlist *rsgl_src, *tsgl_src = NULL;
107	int err = 0;
108	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
109	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
110	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
111	size_t processed = 0;		/* [in]  TX bufs to be consumed */
112
113	if (!ctx->used) {
114		err = af_alg_wait_for_data(sk, flags);
115		if (err)
116			return err;
117	}
118
119	/*
120	 * Data length provided by caller via sendmsg/sendpage that has not
121	 * yet been processed.
122	 */
123	used = ctx->used;
124
125	/*
126	 * Make sure sufficient data is present -- note, the same check is
127	 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
128	 * shall provide an information to the data sender that something is
129	 * wrong, but they are irrelevant to maintain the kernel integrity.
130	 * We need this check here too in case user space decides to not honor
131	 * the error message in sendmsg/sendpage and still call recvmsg. This
132	 * check here protects the kernel integrity.
133	 */
134	if (!aead_sufficient_data(sk))
135		return -EINVAL;
136
137	/*
138	 * Calculate the minimum output buffer size holding the result of the
139	 * cipher operation. When encrypting data, the receiving buffer is
140	 * larger by the tag length compared to the input buffer as the
141	 * encryption operation generates the tag. For decryption, the input
142	 * buffer provides the tag which is consumed resulting in only the
143	 * plaintext without a buffer for the tag returned to the caller.
144	 */
145	if (ctx->enc)
146		outlen = used + as;
147	else
148		outlen = used - as;
149
150	/*
151	 * The cipher operation input data is reduced by the associated data
152	 * length as this data is processed separately later on.
153	 */
154	used -= ctx->aead_assoclen;
155
156	/* Allocate cipher request for current operation. */
157	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
158				     crypto_aead_reqsize(tfm));
159	if (IS_ERR(areq))
160		return PTR_ERR(areq);
161
162	/* convert iovecs of output buffers into RX SGL */
163	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
164	if (err)
165		goto free;
166
167	/*
168	 * Ensure output buffer is sufficiently large. If the caller provides
169	 * less buffer space, only use the relative required input size. This
170	 * allows AIO operation where the caller sent all data to be processed
171	 * and the AIO operation performs the operation on the different chunks
172	 * of the input data.
173	 */
174	if (usedpages < outlen) {
175		size_t less = outlen - usedpages;
176
177		if (used < less) {
178			err = -EINVAL;
179			goto free;
180		}
181		used -= less;
182		outlen -= less;
183	}
184
185	processed = used + ctx->aead_assoclen;
186	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
187		for (i = 0; i < tsgl->cur; i++) {
188			struct scatterlist *process_sg = tsgl->sg + i;
189
190			if (!(process_sg->length) || !sg_page(process_sg))
191				continue;
192			tsgl_src = process_sg;
193			break;
194		}
195		if (tsgl_src)
196			break;
197	}
198	if (processed && !tsgl_src) {
199		err = -EFAULT;
200		goto free;
201	}
202
203	/*
204	 * Copy of AAD from source to destination
205	 *
206	 * The AAD is copied to the destination buffer without change. Even
207	 * when user space uses an in-place cipher operation, the kernel
208	 * will copy the data as it does not see whether such in-place operation
209	 * is initiated.
210	 *
211	 * To ensure efficiency, the following implementation ensure that the
212	 * ciphers are invoked to perform a crypto operation in-place. This
213	 * is achieved by memory management specified as follows.
214	 */
215
216	/* Use the RX SGL as source (and destination) for crypto op. */
217	rsgl_src = areq->first_rsgl.sgl.sg;
218
219	if (ctx->enc) {
220		/*
221		 * Encryption operation - The in-place cipher operation is
222		 * achieved by the following operation:
223		 *
224		 * TX SGL: AAD || PT
225		 *	    |	   |
226		 *	    | copy |
227		 *	    v	   v
228		 * RX SGL: AAD || PT || Tag
229		 */
230		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
231					   areq->first_rsgl.sgl.sg, processed);
232		if (err)
233			goto free;
234		af_alg_pull_tsgl(sk, processed, NULL, 0);
235	} else {
236		/*
237		 * Decryption operation - To achieve an in-place cipher
238		 * operation, the following  SGL structure is used:
239		 *
240		 * TX SGL: AAD || CT || Tag
241		 *	    |	   |	 ^
242		 *	    | copy |	 | Create SGL link.
243		 *	    v	   v	 |
244		 * RX SGL: AAD || CT ----+
245		 */
246
247		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
248		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
249					   areq->first_rsgl.sgl.sg, outlen);
250		if (err)
251			goto free;
252
253		/* Create TX SGL for tag and chain it to RX SGL. */
254		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
255						       processed - as);
256		if (!areq->tsgl_entries)
257			areq->tsgl_entries = 1;
258		areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) *
259					      areq->tsgl_entries,
260					  GFP_KERNEL);
261		if (!areq->tsgl) {
262			err = -ENOMEM;
263			goto free;
264		}
265		sg_init_table(areq->tsgl, areq->tsgl_entries);
266
267		/* Release TX SGL, except for tag data and reassign tag data. */
268		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
269
270		/* chain the areq TX SGL holding the tag with RX SGL */
271		if (usedpages) {
272			/* RX SGL present */
273			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
274
275			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
276			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
277				 areq->tsgl);
278		} else
279			/* no RX SGL present (e.g. authentication only) */
280			rsgl_src = areq->tsgl;
281	}
282
283	/* Initialize the crypto operation */
284	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
285			       areq->first_rsgl.sgl.sg, used, ctx->iv);
286	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
287	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
288
289	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
290		/* AIO operation */
291		sock_hold(sk);
292		areq->iocb = msg->msg_iocb;
293
294		/* Remember output size that will be generated. */
295		areq->outlen = outlen;
296
297		aead_request_set_callback(&areq->cra_u.aead_req,
298					  CRYPTO_TFM_REQ_MAY_BACKLOG,
299					  af_alg_async_cb, areq);
300		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
301				 crypto_aead_decrypt(&areq->cra_u.aead_req);
302
303		/* AIO operation in progress */
304		if (err == -EINPROGRESS || err == -EBUSY)
305			return -EIOCBQUEUED;
306
307		sock_put(sk);
308	} else {
309		/* Synchronous operation */
310		aead_request_set_callback(&areq->cra_u.aead_req,
311					  CRYPTO_TFM_REQ_MAY_BACKLOG,
312					  crypto_req_done, &ctx->wait);
313		err = crypto_wait_req(ctx->enc ?
314				crypto_aead_encrypt(&areq->cra_u.aead_req) :
315				crypto_aead_decrypt(&areq->cra_u.aead_req),
316				&ctx->wait);
317	}
318
319
320free:
321	af_alg_free_resources(areq);
322
323	return err ? err : outlen;
324}
325
326static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
327			size_t ignored, int flags)
328{
329	struct sock *sk = sock->sk;
330	int ret = 0;
331
332	lock_sock(sk);
333	while (msg_data_left(msg)) {
334		int err = _aead_recvmsg(sock, msg, ignored, flags);
335
336		/*
337		 * This error covers -EIOCBQUEUED which implies that we can
338		 * only handle one AIO request. If the caller wants to have
339		 * multiple AIO requests in parallel, he must make multiple
340		 * separate AIO calls.
341		 *
342		 * Also return the error if no data has been processed so far.
343		 */
344		if (err <= 0) {
345			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
346				ret = err;
347			goto out;
348		}
349
350		ret += err;
351	}
352
353out:
354	af_alg_wmem_wakeup(sk);
355	release_sock(sk);
356	return ret;
357}
358
359static struct proto_ops algif_aead_ops = {
360	.family		=	PF_ALG,
361
362	.connect	=	sock_no_connect,
363	.socketpair	=	sock_no_socketpair,
364	.getname	=	sock_no_getname,
365	.ioctl		=	sock_no_ioctl,
366	.listen		=	sock_no_listen,
367	.shutdown	=	sock_no_shutdown,
368	.getsockopt	=	sock_no_getsockopt,
369	.mmap		=	sock_no_mmap,
370	.bind		=	sock_no_bind,
371	.accept		=	sock_no_accept,
372	.setsockopt	=	sock_no_setsockopt,
373
374	.release	=	af_alg_release,
375	.sendmsg	=	aead_sendmsg,
376	.sendpage	=	af_alg_sendpage,
377	.recvmsg	=	aead_recvmsg,
378	.poll		=	af_alg_poll,
379};
380
381static int aead_check_key(struct socket *sock)
382{
383	int err = 0;
384	struct sock *psk;
385	struct alg_sock *pask;
386	struct aead_tfm *tfm;
387	struct sock *sk = sock->sk;
388	struct alg_sock *ask = alg_sk(sk);
389
390	lock_sock(sk);
391	if (ask->refcnt)
392		goto unlock_child;
393
394	psk = ask->parent;
395	pask = alg_sk(ask->parent);
396	tfm = pask->private;
397
398	err = -ENOKEY;
399	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
400	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
401		goto unlock;
402
403	if (!pask->refcnt++)
404		sock_hold(psk);
405
406	ask->refcnt = 1;
407	sock_put(psk);
408
409	err = 0;
410
411unlock:
412	release_sock(psk);
413unlock_child:
414	release_sock(sk);
415
416	return err;
417}
418
419static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
420				  size_t size)
421{
422	int err;
423
424	err = aead_check_key(sock);
425	if (err)
426		return err;
427
428	return aead_sendmsg(sock, msg, size);
429}
430
431static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
432				       int offset, size_t size, int flags)
433{
434	int err;
435
436	err = aead_check_key(sock);
437	if (err)
438		return err;
439
440	return af_alg_sendpage(sock, page, offset, size, flags);
441}
442
443static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
444				  size_t ignored, int flags)
445{
446	int err;
447
448	err = aead_check_key(sock);
449	if (err)
450		return err;
451
452	return aead_recvmsg(sock, msg, ignored, flags);
453}
454
455static struct proto_ops algif_aead_ops_nokey = {
456	.family		=	PF_ALG,
457
458	.connect	=	sock_no_connect,
459	.socketpair	=	sock_no_socketpair,
460	.getname	=	sock_no_getname,
461	.ioctl		=	sock_no_ioctl,
462	.listen		=	sock_no_listen,
463	.shutdown	=	sock_no_shutdown,
464	.getsockopt	=	sock_no_getsockopt,
465	.mmap		=	sock_no_mmap,
466	.bind		=	sock_no_bind,
467	.accept		=	sock_no_accept,
468	.setsockopt	=	sock_no_setsockopt,
469
470	.release	=	af_alg_release,
471	.sendmsg	=	aead_sendmsg_nokey,
472	.sendpage	=	aead_sendpage_nokey,
473	.recvmsg	=	aead_recvmsg_nokey,
474	.poll		=	af_alg_poll,
475};
476
477static void *aead_bind(const char *name, u32 type, u32 mask)
478{
479	struct aead_tfm *tfm;
480	struct crypto_aead *aead;
481	struct crypto_skcipher *null_tfm;
482
483	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
484	if (!tfm)
485		return ERR_PTR(-ENOMEM);
486
487	aead = crypto_alloc_aead(name, type, mask);
488	if (IS_ERR(aead)) {
489		kfree(tfm);
490		return ERR_CAST(aead);
491	}
492
493	null_tfm = crypto_get_default_null_skcipher();
494	if (IS_ERR(null_tfm)) {
495		crypto_free_aead(aead);
496		kfree(tfm);
497		return ERR_CAST(null_tfm);
498	}
499
500	tfm->aead = aead;
501	tfm->null_tfm = null_tfm;
502
503	return tfm;
504}
505
506static void aead_release(void *private)
507{
508	struct aead_tfm *tfm = private;
509
510	crypto_free_aead(tfm->aead);
511	crypto_put_default_null_skcipher();
512	kfree(tfm);
513}
514
515static int aead_setauthsize(void *private, unsigned int authsize)
516{
517	struct aead_tfm *tfm = private;
518
519	return crypto_aead_setauthsize(tfm->aead, authsize);
520}
521
522static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
523{
524	struct aead_tfm *tfm = private;
525
526	return crypto_aead_setkey(tfm->aead, key, keylen);
527}
528
529static void aead_sock_destruct(struct sock *sk)
530{
531	struct alg_sock *ask = alg_sk(sk);
532	struct af_alg_ctx *ctx = ask->private;
533	struct sock *psk = ask->parent;
534	struct alg_sock *pask = alg_sk(psk);
535	struct aead_tfm *aeadc = pask->private;
536	struct crypto_aead *tfm = aeadc->aead;
537	unsigned int ivlen = crypto_aead_ivsize(tfm);
538
539	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
540	sock_kzfree_s(sk, ctx->iv, ivlen);
541	sock_kfree_s(sk, ctx, ctx->len);
542	af_alg_release_parent(sk);
543}
544
545static int aead_accept_parent_nokey(void *private, struct sock *sk)
546{
547	struct af_alg_ctx *ctx;
548	struct alg_sock *ask = alg_sk(sk);
549	struct aead_tfm *tfm = private;
550	struct crypto_aead *aead = tfm->aead;
551	unsigned int len = sizeof(*ctx);
552	unsigned int ivlen = crypto_aead_ivsize(aead);
553
554	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
555	if (!ctx)
556		return -ENOMEM;
557	memset(ctx, 0, len);
558
559	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
560	if (!ctx->iv) {
561		sock_kfree_s(sk, ctx, len);
562		return -ENOMEM;
563	}
564	memset(ctx->iv, 0, ivlen);
565
566	INIT_LIST_HEAD(&ctx->tsgl_list);
567	ctx->len = len;
568	ctx->used = 0;
569	atomic_set(&ctx->rcvused, 0);
570	ctx->more = 0;
571	ctx->merge = 0;
572	ctx->enc = 0;
573	ctx->aead_assoclen = 0;
574	crypto_init_wait(&ctx->wait);
575
576	ask->private = ctx;
577
578	sk->sk_destruct = aead_sock_destruct;
579
580	return 0;
581}
582
583static int aead_accept_parent(void *private, struct sock *sk)
584{
585	struct aead_tfm *tfm = private;
586
587	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
588		return -ENOKEY;
589
590	return aead_accept_parent_nokey(private, sk);
591}
592
593static const struct af_alg_type algif_type_aead = {
594	.bind		=	aead_bind,
595	.release	=	aead_release,
596	.setkey		=	aead_setkey,
597	.setauthsize	=	aead_setauthsize,
598	.accept		=	aead_accept_parent,
599	.accept_nokey	=	aead_accept_parent_nokey,
600	.ops		=	&algif_aead_ops,
601	.ops_nokey	=	&algif_aead_ops_nokey,
602	.name		=	"aead",
603	.owner		=	THIS_MODULE
604};
605
606static int __init algif_aead_init(void)
607{
608	return af_alg_register_type(&algif_type_aead);
609}
610
611static void __exit algif_aead_exit(void)
612{
613	int err = af_alg_unregister_type(&algif_type_aead);
614	BUG_ON(err);
615}
616
617module_init(algif_aead_init);
618module_exit(algif_aead_exit);
619MODULE_LICENSE("GPL");
620MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
621MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");